
D I P L O M A R B E I T

Deep Learning Techniques in Portfolio

Optimization under Constraints

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Masterstudiums

Finanz- und Versicherungsmathematik

ausgeführt am

Institut für

Stochastik und Wirtschaftsmathematik

der Technischen Universität Wien

unter der Betreuung von

Prof. Dr. Josef Teichmann

durch

Kristof Wiedermann, BSc

Matrikelnummer: 01635829

Wien, 12. August 2021
Kristof Wiedermann Josef Teichmann

Abstract

We consider the constrained utility maximization problem and the corresponding dual prob-
lem with regard to theoretical results which allow the formulation of algorithmic solvers
which make use of deep learning techniques. We place great emphasis on detailed proofs
of the underlying theoretical results. At first, the deep controlled 2BSDE algorithm from
[5] is derived in a Markovian setting. It combines the dynamic programming approach
with the adjoint equation from the stochastic maximum principle (SMP). In the case of
random coefficients, we prove stochastic maximum principles for the primal and the dual
problem, respectively. Furthermore, we show that the strong duality property holds under
additional assumptions. This leads to the formulation of the deep SMP algorithm as in
[5]. Moreover, we use the aforementioned result for the primal problem for defining a new
algorithm, which we call deep primal SMP algorithm. Numerical examples illustrate the
effectiveness of the studied algorithms – in particular for higher-dimensional problems and
problems with random coefficients, which are either path dependent or satisfy their own
SDEs. Moreover, our numerical experiments for constrained problems show that the novel
deep primal SMP algorithm overcomes the deep SMP algorithm’s weakness of erroneously
producing the value of the corresponding unconstrained problem. Furthermore, in contrast
to the deep controlled 2BSDE algorithm, this algorithm is also applicable to problems with
path dependent coefficients. As the deep primal SMP algorithm even yields the most ac-
curate results in many of our studied problems, we can highly recommend its usage.

Keywords: Portfolio optimization under constraints, utility maximization problem, dual
problem, deep learning, machine learning, stochastic maximum principle, dynamic pro-
gramming approach.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 12. August 2021
Kristof Wiedermann

Contents

1 Introduction 1

2 The Utility Maximization Problem and Its Dual Problem 3
2.1 The Underlying Market Model . 3
2.2 The Utility Maximization Problem in Portfolio Optimization 4
2.3 The Dual Problem . 6

2.3.1 The Legendre-Fenchel Transform . 7
2.3.2 Derivation of the Dual Problem . 9

3 The Deep Controlled 2BSDE Algorithm in a Markovian Setting 13
3.1 Formulation of a More General Control Problem 13
3.2 The Dynamic Programming Approach Leading to the Hamilton-Jacobi-Bellman

Equation . 16
3.3 The Stochastic Maximum Principle . 24

3.3.1 A General Formulation . 25
3.3.2 Deriving a Maximum Principle by Means of the Dynamic Program-

ming Approach . 28
3.4 Formulation of the Deep Controlled 2BSDE Algorithm 36

4 The Deep SMP and the Deep Primal SMP Algorithm in a Non-Markovian
Setting 40
4.1 A Stochastic Maximum Principle for the Dual Problem 41
4.2 An Analogous Result for the Primal Problem 53
4.3 Constructing a Solution to the Primal Problem by Means of a Solution to

Its Dual Problem . 60
4.4 Formulation of the Deep SMP Algorithm 62
4.5 Formulation of the Novel Deep Primal SMP Algorithm 63

5 Numerical Experiments 67
5.1 Markovian Utility Maximization Problems 67
5.2 Non-Markovian Utility Maximization Problems: Path Dependent Coefficients 76
5.3 Non-Markovian Utility Maximization Problems: Coefficients Satisfying Their

Own SDEs . 81

6 Conclusion and Future Work 92

Appendix A Python Codes for the Studied Algorithms Used in Example 5.5 93
A.1 Python Implementation of the Primal Version of the Deep Controlled 2BSDE

Algorithm . 93

i

A.2 Python Implementation of the Dual Version of the Deep Controlled 2BSDE
Algorithm . 99

A.3 Python Implementation of the Deep SMP Algorithm 105
A.4 Python Implementation of the Deep Primal SMP Algorithm 111

Bibliography 117

ii

1 Introduction

In mathematical finance, as well as in practical applications, it is of greatest interest to
utilize the given freedom in a model, e.g. the (potentially constrained) choice of an invest-
ment strategy, in order to optimize the expected result. In the present thesis we consider
the utility maximization problem, where the quality of the terminal result, i.e. the port-
folio value at terminal time, is measured by means of a strictly concave utility function
U . Clearly, solving this infinite-dimensional problem is extremely difficult as one intends
to maximize a functional over a space of progressively measurable processes. This is ag-
gravated by the fact that, in practice, one usually has certain limitations in choosing the
strategy. For example, selling stocks short is either limited or prohibited. We take this
into consideration by requiring that the strategies have to take values in a closed, convex
set K. However, the convexity of K and the strict concavity of U allow us to formulate
a closely related problem by means of convex duality methods, the so-called dual problem
(cf. [15, 16]). This problem is potentially easier to solve. For example, the dual control is
forced to be the zero process, if the primal problem is unconstrained.

There are two popular theoretical concepts which can be used for solving the aforemen-
tioned control problems: The dynamic programming approach (DP) in a Markovian setting
and the stochastic maximum principle (SMP), which is also applicable to problems with
random coefficients. The first approach is centered around a nonlinear PDE, the so-called
Hamilton-Jacobi-Bellman (HJB) equation, which is derived by varying the initial condition
of the control problem. In some cases, the value function can then be obtained by solving
the HJB equation. The second concept is based on a necessary condition for an optimal
control. It states that if a control is optimal, then it necessarily has to maximize a certain
function almost everywhere, where the other arguments are given by the solution to an
FBSDE system.

We will see that also the first approach can be used for formulating an FBSDE system. The
main idea, which then leads to the algorithmic solvers, is to model all processes which only
appear in the integrands of the FBSDE systems by means of neural networks for each point
in a time discretization. This concept was first studied in [1] and [6], where the authors aim
at solving FBSDE systems via deep learning. In [5], this method was extended to controlled
FBSDE systems which appear in the study of stochastic control problems. Hence, also the
control process has to be modeled by means of neural networks. Since a neural network can
be described by means of a finite-dimensional parameter vector, the algorithm, therefore, is
required to solve a problem which is only finite-dimensional. The choice of neural networks
is insofar appealing, as they have desirable approximation properties. Moreover, this puts
the problem into the context of deep learning.

The rest of this thesis is structured as follows. In Chapter 2, we introduce the constrained

1

utility maximization problem and derive its dual problem. In Chapter 3, we restrict our-
selves to a Markovian setting. At first, we consider the dynamic programming approach
and discuss theoretical conditions which ensure that the value function indeed solves the
HJB equation (almost everywhere). Then the adjoint equation is introduced, which also
appears in the general SMP for Markovian problems. These two ingredients are later used
for proving a mathematical result which justifies the formulation of the deep controlled
2BSDE algorithm (cf. [5]). In Chapter 4, we prove SMPs for the primal problem and its
dual problem, respectively. These results are then used for defining the deep SMP algo-
rithm (cf. [5]) and the novel deep primal SMP algorithm. Moreover, we provide numerical
examples which display the performance of the studied algorithms for concrete utility maxi-
mization problems (cf. Chapter 5). This includes high-dimensional problems and problems
with random coefficients which are either path dependent or satisfy their own SDEs. More-
over, we apply the studied algorithms to Heston’s stochastic volatility model, where the
parameters are calibrated to market data. Finally, in Chapter 6, we review our results and
give a preview of future work.

2

2 The Utility Maximization Problem and Its
Dual Problem

The aim of the first section of this chapter is to present the abstract market model we are
going to use in the following. In contrast to Chapter 3 of [19], we choose a rather general
formulation here in order to allow the price processes to be non-Markovian. Moreover,
in Section 2.2, we present the utility maximization problem and discuss useful additional
assumptions on utility functions. Finally, we introduce the Legendre-Fenchel transform of
a concave function in Section 2.3. We also derive some important properties of the afore-
mentioned transform, which will be needed later. The chapter concludes with a derivation
of the dual problem.

2.1 The Underlying Market Model

Let us fix a finite time horizon T ∈ R+. We consider a standard m-dimensional, m ∈
N+, Brownian motion B on a filtered probability space (Ω,F ,F = (Ft)t∈[0,T],P), where
we choose the filtration F as the natural filtration generated by B, completed with all
subsets of null sets of (Ω,F ,P). By construction, we obtain a complete filtration. Hence,
as Brownian motion has independent future increments and continuous paths, we conclude
the right-continuity of our filtration from a version of Blumenthal’s zero-one law, which
states that under these assumptions suitable sets from Ft and F+

t only differ by a set of
measure zero. Therefore, the filtration fulfills the so-called usual conditions. Since we have
a Brownian filtration, we are allowed to apply the martingale representation theorem to
local F-martingales, which is of greatest importance for the considerations in the following
chapters, in particular for Chapter 4.

Analogously to [5] and [16], we consider a market consisting of m stocks and one risk-free
bond. Let r : Ω × [0, T] → R, µ : Ω × [0, T] → Rm and σ : Ω × [0, T] → Rm×m be
F-progressively measurable processes. For notational convenience, we are going to omit
the argument ω in the following. Furthermore, we assume that those three processes are
uniformly bounded and σ satisfies the strong non-degeneracy condition:

∃k ∈ R+, ∀(y, t) ∈ Rm × [0, T] : y σ(t)σ (t)y ≥ k |y|2,

where we denote the Euclidean norm by | · |. According to Section 5.8 of [10], this ensures
that σ(t) and its transpose are invertible for all t ∈ [0, T] with the inverse matrices also
being uniformly bounded.

We can now define the dynamics of the risk-free bond S0, i.e. the bank account, and the

3

stocks Si, i ∈ {1, . . . ,m}, via
dS0(t) = S0(t)r(t)dt, t ∈ [0, T], S0(0) = 1, and

dSi(t) = Si(t) µi(t)dt+ σi·(t)dB(t) , t ∈ [0, T], Si(0) > 0.
(2.1)

Due to our assumptions on r, µ and σ, essentially the uniform boundedness and the pro-
gressive measurability, the SDEs in (2.1), which remind us of the dynamics of stochastic
exponentials, admit unique strong solutions.

2.2 The Utility Maximization Problem in Portfolio Optimization

Suppose that a market model as discussed in Section 2.1 is given. At first, we aim at
constructing a portfolio for a small investor with initial capital x0 ∈ R+. The notion of a
“small” investor is insofar important as we can assume as a consequence that trades which
are executed by our investor do not affect the stock prices.

Consider a progressively measurable process π : Ω × [0, T] → Rm. For notational con-
venience, we call the set of these processes Aprog. We denote by πi(t), i ∈ {1, . . . ,m},
the portion of wealth invested into the ith stock at time t. Since we focus on the utility
maximization problem under constraints, we restrict ourselves to processes whose images
lie in a closed, convex subset K ⊆ Rm. The set K is a priori given and we suppose that it
contains the zero vector, which is equivalent to only holding the risk-free bond. As we shall
see later, when checking the solvability of the SDE (2.3), it is sufficient to require that π is
square-integrable with respect to the product measure P⊗ λ|[0,T]. Therefore, we choose to
define the set of all admissible portfolio strategies like in [16] as

A := π ∈ Aprog π(t) ∈ K a.s. for a.e. t ∈ [0, T], E
T

0
|π(t)|2 dt < ∞ . (2.2)

Note that this implies in particular that the H2(0, T ;Rm)-norm (cf. (3.21) below) of π is
finite and the stochastic integral process π •B is a martingale for all π ∈ A. By requiring
the portfolio to be self-financing, we can now define the dynamics of the associated wealth
process Xπ for any given portfolio process π ∈ A as

dXπ(t) =

m

i=1

Xπ(t)πi(t)

Si(t)
dSi(t) +

Xπ(t) 1− m
j=1 πj(t)

S0(t)
dS0(t), t ∈ [0, T].

By plugging in according to (2.1) and simplifying we obtain for every t ∈ [0, T]:

dXπ(t) = Xπ(t) r(t) + π (t)σ(t)θ(t) dt+ π (t)σ(t)dB(t) , (2.3)

with initial condition Xπ(0) = x0. Here, we defined θ(t) as the market price of risk

θ(t) := σ−1(t) µ(t)− (r(t), . . . , r(t)) .

Of course, this process is also progressively measurable and uniformly bounded thanks to
the strong non-degeneracy condition. Due to π ∈ A, the uniform boundedness of σ, θ and

4

r and the inclusion L2 ⊆ L1 for finite measure spaces, we can conclude that the expres-
sion within the square brackets in (2.3) is the differential of a continuous semimartingale.
Therefore, we obtain that there exists a unique strong solution Xπ to this SDE, namely
the corresponding stochastic exponential. Note that the structure of (2.3) implies that the
wealth process remains positive after starting in x0 ∈ R+. Hence, negative wealth levels,
i.e. the investor’s ruin, are a priori excluded.

In the following, we give a definition of a utility function which requires stronger differen-
tiability assumptions than the classical definition. We shall see in Chapter 4 below that
this proves to be helpful.

Definition 2.1. Let U ∈ C2(R+) be a real-valued function which is strictly increasing and
strictly concave. We then call U a utility function. Furthermore, if

lim
x 0

U (x) = ∞ and lim
x ∞

U (x) = 0

hold, we say that U satisfies the so-called Inada conditions.

Due to the strict concavity of U according to the definition above, we obtain from the
inverse function theorem that I = (U)−1 is continuously differentiable, as well. This is
an important observation with regard to Section 2.3. Furthermore, the Inada conditions
guarantee that the domain of I is R+. We recall that requiring a utility function to be
increasing and concave is motivated by the following practical interpretation: More wealth
is more favorable to an investor and an increase of wealth, e.g. by one monetary unit,
affects an average investor more than a billionaire.

For our considerations in Chapter 4, we are going to need the following additional assump-
tion (see [11]):

Assumption 2.2. Let U be a utility function according to Definition 2.1 which satisfies
the Inada conditions. We require that there exist constants β ∈ (0, 1) and γ ∈ (1,∞) such
that

∀x ∈ R+ : βU (x) ≥ U (γx), (2.4)

and idR+ · U is nondecreasing, where we denote the identity function of R+ by idR+ .

An application of the product rule shows under the premise of the last statement that the
Arrow-Pratt index of relative risk aversion of U is bounded above by 1.

Example 2.3. Consider U1 := log and U2,p := p−1 · (idR+)p as two prominent examples
of utility functions, namely the log utility function and the power utility function with
parameter p ∈ (0, 1). Clearly, these functions satisfy Definition 2.1. The derivatives are
given by

U1(x) =
1

x
and U2,p(x) = xp−1, x ∈ (0,∞).

From (p− 1) ∈ (−1, 0) we can, therefore, conclude that in both cases the Inada conditions
are satisfied. Furthermore, we record the fact that ✶R+ and (idR+)p, p ∈ (0, 1), are nonde-
creasing, where ✶R+ denotes the indicator function which maps every x ∈ R+ to 1.

5

Due to the simple structure of U1, we can even choose for any β ∈ (0, 1) a constant γ with
the desired properties, namely β−1. In the case of power utility we obtain by βq, where
q := (p − 1)−1 ∈ (−∞,−1), likewise a constant γ for any β ∈ (0, 1), i.e. an even stronger
result than required via (2.4). Hence, U1 and U2,p, p ∈ (0, 1), satisfy Assumption 2.2.

We are now in position to formulate the constrained utility maximization problem.

Definition 2.4. Let U be a utility function according to Definition 2.1 and Xπ the solution
to the SDE (2.3) for π ∈ A, where A is defined in (2.2). We define the gain function, which
maps every π ∈ A to the expected utility of the portfolio at time T , by

J(π) := E[U(Xπ(T))].

Maximizing the expected utility corresponds to finding

V := sup
π∈A

J(π). (2.5)

A control π∗ ∈ A is called optimal, if it attains the supremum in (2.5), i.e. V = J(π∗).

Quite naturally, we are interested in the case where V is a real number. Initially, one has
to verify that the expectation in the definition of J(π) is well-defined. In [19] it is suggested
to additionally require boundedness from below or a quadratic growth condition from U .
Indeed, in the first case this is achieved since the integral of the negative part of U(Xπ(T))
is finite. Clearly, this is satisfied, if limx 0 U(x) is greater than −∞, which holds for the
power utility functions from Example 2.3 but not for the log utility function. If we assume
that the closed, convex set K is bounded, then the same holds true for all processes π ∈ A.
Hence, if U satisfies a quadratic growth condition, the expectations are also well-defined in
this case because of the square-integrability of Xπ(T) according to Theorem 1.3.15 of [19].
In the following, the additional assumptions for ensuring that J(π) is well-defined might
vary from one section to another. For example, in our considerations of the general non-
Markovian setup in Chapter 4 we are going to require that even U(Xπ(T)) ∈ L1 holds for
all strategies (cf. Assumption 4.10 below). We close this section with a remark regarding
initial wealth and time.

Remark 2.5. As we considered a very general, not necessarily Markovian setup in this
section, we studied the constrained utility maximization problem with a fixed pair of initial
time and wealth (0, x0). As we shall see in Chapter 3, where all processes Xπ are controlled
Markov processes, we are allowed to apply the dynamic programming approach in this case.
This means that we consider a family of control problems with different initial times and
wealth, i.e. pairs (t, x). Hence, we obtain the so-called value function by mapping every
pair (t, x) to the corresponding value given by (2.5), where the initial condition in (2.3) has
to be adapted accordingly.

2.3 The Dual Problem

The aim of this section is introducing the Legendre-Fenchel transform of a concave func-
tion and proving some useful properties, especially in connection with Definition 2.1 and
Assumption 2.2. Furthermore, we derive and formulate the dual problem accompanying
the constrained utility maximization problem from Definition 2.4.

6

2.3.1 The Legendre-Fenchel Transform

The following considerations are similar to [9] and [11], since we are interested in properties
of the Legendre-Fenchel transform under the special circumstances of Definition 2.1. We
refer to [20] for a general theory under milder assumptions. At first, we define the Legendre-
Fenchel transform of a utility function.

Definition 2.6. Let U be a utility function as defined in Definition 2.1. Then the Legendre-
Fenchel transform, U : R+ → R, is defined by

U(y) := sup
x∈R+

U(x)− xy , y ∈ R+. (2.6)

Hence, U maps every y ∈ R+ to the maximum signed distance between U and a linear
function starting in zero whose first derivative is equal to y. In the literature, the Legendre-
Fenchel transform is usually defined for convex functions f first via f(y) := supx∈D{xy −
f(x)}, where D denotes the domain of f . However, applying this definition to the strictly
convex, strictly increasing function −U(−x), x ∈ R−, leads precisely to (2.6).
The next lemma shows some general properties of U .

Lemma 2.7. Let U be a utility function satisfying the Inada conditions according to Defini-
tion 2.1 and U the corresponding Legendre-Fenchel transform. Then the following properties
hold:

(i) U(y) = U(I(y))− yI(y), y ∈ R+,

(ii) U ∈ C2(R+), strictly decreasing, strictly convex,

(iii) U(x) = U(U (x)) + xU (x) = infy∈R+ U(y) + xy , x ∈ R+,

(iv) U (y) = −I(y), y ∈ R+,

(v) U(0) := limy 0 U(y) = limx ∞ U(x) =: U(∞) and

(vi) U(∞) := limy ∞ U(y) = limx 0 U(x) =: U(0).

Proof. (i): Let y ∈ R+ be fixed. We can infer from the strict concavity of U that the same
holds true for the mapping uy : x → U(x) − xy , x ∈ R+. Since U is strictly decreasing
and continuous and the Inada conditions hold by assumption, we are guaranteed to find
a unique solution to U (x) = y, namely I(y), where I := (U)−1. Hence, we can conclude
from the strict concavity and uy ∈ C2(R+) that is attains the global maximum at I(y).
This shows the desired formula.
(ii): As mentioned below Definition 2.1, I is continuously differentiable. Therefore, (i) and
an application of chain and product rule yield

U (y) = U (I(y))I (y)− yI (y)− I(y) = −I(y) and

U (y) =− I (y), y ∈ R+.
(2.7)

Hence, U ∈ C2(R+) holds as I and I are continuous functions. (2.7) shows as well that U
is strictly decreasing and strictly convex, because I maps to R+ and I (y) < 0 holds true

7

since the function I is strictly decreasing.
(iii): With the same argument as in the proof of (i), we get that U maps R+ bijectively
onto itself. Therefore, a change of variables via x := I(y) leads to the first equality. Due
to U being strictly convex according to (ii), the same holds true for ux : y → U(y) + xy ,
where x ∈ R+ is fixed. Moreover, (ii) ensures that ux ∈ C2(R+) holds. Following the
argument in (i), the global minimum is attained at the unique solution of −U (y) = x,
which, combined with (2.7), shows the second equality.
(iv): This is an immediate consequence of the first equation of (2.7).
(v): At first, it has to be pointed out that, as a result of the monotonicity of U and U ,
U(0) and U(∞) are well-defined. We show the equality by proving both inequalities. Since
xU (x) is always greater than 0, we obtain from (iii) and applying the limit

U(∞) ≥ lim
x ∞

U(U (x)) = U(0),

where we used the monotonicity of U (see (ii)) and the suitable Inada condition for the
last equality.
For the proof of the reverse inequality, we take arbitrary, fixed numbers ε, y ∈ R+. Hence,
also εy−1 lies in R+. Therefore, we get

U(y) ≤ U(εy−1) + ε, y ∈ R+.

Since this holds for any y ∈ R+, we can send y towards infinity. Due to the fact that U
is strictly monotone, it holds in particular that U(0) does not depend on the choice of the
sequence converging to 0, as the limit is well-defined. Since ε was arbitrary, we are done.
(vi): The proof of this statement is very similar to (v). Since yI(y) > 0 holds for any
y ∈ R+, we can conclude from (i) that U(y) ≤ U(I(y)) is valid. Applying limy ∞ to
this inequality, using the monotonicity of U and limy ∞ I(y)=0, which follows from the
suitable Inada condition, results in the first inequality.
We take again arbitrary numbers ε, z ∈ R+. Analogously to above, it follows from the
definition of U that

U(z) ≥ U(εz−1)− ε

holds. Sending z towards ∞ results in U(∞) ≥ U(0) − ε, since U is strictly monotone.
Because ε was again chosen arbitrarily, the proof is completed.

In the following lemma, we summarize the implications of Assumption 2.2 for U and I =
−U , which is of greatest importance for our considerations in Chapter 4.

Lemma 2.8. In addition to the assumptions in Lemma 2.7, we require that U satisfies
Assumption 2.2. Then we additionally obtain

(i) x → xI(x) is nonincreasing on R+,

(ii) x → U(exp(x)) is convex on R and

(iii) ∃β ∈ (0, 1), γ ∈ (1,∞) : ∀x ∈ R+ : I(βx) ≤ γI(x) .

8

Proof. (i): The Inada conditions and U being continuous and strictly decreasing guarantee
that U maps R+ bijectively onto itself. Hence, we are allowed to change variables via
z := I(x), where I := (U)−1 as usual. This leads to the mapping z → zU (z), z ∈ R+,
which is nondecreasing by assumption. But since I corresponds to a strictly decreasing
transformation, it follows from the chain rule, that the original function is nonincreasing.
(ii): By means of the chain rule we obtain

d

dx
U(exp(x)) = U (exp(x)) exp(x) = −I(exp(x)) exp(x), (2.8)

where we used Lemma 2.7 (iv) for the last equality. Due to exp being strictly increasing
we can conclude from (i) that this expression is nondecreasing in x. Hence, we obtain the
desired convexity, because U is sufficiently smooth according to Lemma 2.7 (ii).
(iii): At first, we apply the strictly decreasing function I to (2.4), which results in

∀x ∈ R+ : I βU (x) ≤ γx.

By using the same argument as in the proof of (i), we can express every x uniquely via
I(y) with y ∈ R+. Applying this change of variables to the above inequality leads to the
desired result.

By multiplying in (i) and (iii) with −1 and Lemma 2.7 (iv), we obtain the reverse results
for U . Finally, we briefly consider Example 2.3 in the light of Lemma 2.8.

Example 2.9. Let U1 and U2,p, p ∈ (0, 1), be given as in Example 2.3. One can easily see
that

I1(x) =
1

x
and I2,p(x) = x

1
p−1 , x ∈ R+,

holds. Hence, by Lemma 2.7 (i) we can write U1 and U2,p explicitly as

U1(y) = − log(y)− 1 and U2,p(y) =
1− p

p
y

p
p−1 , y ∈ R+.

We know from Example 2.3 that these utility functions satisfy Assumption 2.2. Therefore,
Lemma 2.8 is applicable. Explicit calculation shows that the same constants β, γ as in
Example 2.3 work for the statement of Lemma 2.8 (iii), as indicated by its proof. Like
in Example 2.3, we obtain a stronger result here, because we find for every β ∈ (0, 1) a
constant γ ∈ (1,∞) which does the job.

2.3.2 Derivation of the Dual Problem

Solving the constrained utility maximization problem (cf. Definition 2.4) explicitly can
become very difficult in many instances. Therefore, formulating an accompanying problem,
that can potentially be solved with less computational effort, would be highly favorable,
especially with regard to our numerical implementations using deep learning. We aim at
obtaining an upper bound for the value of the classical problem while using the Legendre-
Fenchel transform U in the formulation of this new problem. Similarly to [12], we are
interested in nonnegative semimartingales Y such that XπY is a supermartingale for every

9

π ∈ A. By the definition of U(y), it is for every x ∈ R+ an upper bound for U(x) − xy.
This observation will serve as motivation. In the following, we are going to elaborate on
the details while following the approach presented in [16].

In accordance with the above mentioned idea, we choose the following ansatz to describe
the dynamics of the desired one-dimensional process Y :

dY (t) = Y (t) a(t)dt+ b (t)dB(t) , t ∈ [0, T],

with initial condition Y (0) = y, where y ∈ R+. Here, the progressively measurable pro-
cesses a : Ω× [0, T] → R and b : Ω× [0, T] → Rm have to be chosen such that Y is uniquely
given by the corresponding stochastic exponential. Clearly, requiring a ∈ L1 and b ∈ L2

with respect to the product measure P⊗λ|[0,T] is sufficient for this purpose. Hence, we can
apply for every π ∈ A the integration by parts formula for continuous semimartingales to
XπY and we obtain

d(XπY)(t) = (XπY)(t) a(t)+r(t)+π (t)σ(t)θ(t)+π (t)σ(t)b(t) dt+ π (t)σ(t)+b (t) dB(t) ,

for t ∈ [0, T]. Since x0 and y are positive, the same is true for the process XπY as it
is a well-defined stochastic exponential thanks to our integrability assumptions. We can
conclude from its explicit representation that the local martingale part is nonnegative due
to the corresponding property of the exponential function. Hence, an application of Fatou’s
lemma for conditional expectations shows that this part is even a supermartingale. Now,
if we require that the remaining part is decreasing, we are done. This is clearly satisfied if
and only if we have for every π ∈ K:

a(t) + r(t) + π σ(t)θ(t) + σ(t)b(t) ≤ 0, a.s. for a.e. t ∈ [0, T].

At first, we bring the expression which contains π to the right-hand side. Since this holds
for any π ∈ K, the inequality is also true, if we apply the infimum with respect to this set.
Converting this infimum into a supremum leads to

a(t) + r(t) ≤ − sup
π∈K

π σ(t)θ(t) + σ(t)b(t) , a.s. for a.e. t ∈ [0, T].

Remark 2.10. We remember that the support function of −K, whereK is a closed, convex
set, is defined via

δK(z) = sup
π∈K

{−π z}, z ∈ Rm. (2.9)

We observe that δK is positive homogeneous and subadditive since the corresponding prop-
erties also hold for the supremum. Therefore, it is a convex function, which we shall use in
Chapter 4. Furthermore, δK is nonnegative because we assumed 0 ∈ K.

By means of δK , we can now write the above inequality as

a(t) + r(t) + δK − σ(t)(θ(t) + b(t)) ≤ 0, a.s. for a.e. t ∈ [0, T]. (2.10)

For notational convenience, we denote the input of δK in (2.10) by v(t), t ∈ [0, T]. Hence,
we obtain the following properties for the processes a and b from the ansatz:

b(t) =− (θ(t) + σ−1(t)v(t)), and

a(t) ≤− r(t)− δK(v(t)), a.s. for a.e. t ∈ [0, T].
(2.11)

10

Since we only get an upper bound for a, we have to examine which choice of a yields the
smallest upper bound regarding the classical problem. We claim that this holds, if we have
equality in (2.11). In this case, we obtain the following SDE:

dY (y,v)(t) = −Y (y,v)(t) r(t)+δK(v(t)) dt+ θ(t)+σ−1(t)v(t) dB(t) , t ∈ [0, T], (2.12)

with initial condition Y (y,v)(0) = y. Note that we hereby obtain a family of SDEs which
can be described by means of the inital condition y and a progressively measurable process
v, as indicated by the notation. The process v, which will be called dual control process
from now on, has to be chosen such that the above SDE admits a unique strong solution.
This is clearly satisfied, if we introduce the set of all admissible pairs of initial values and
dual control processes, similarly to (2.2), via

D := (y, v) ∈ R+ ×Aprog E
T

0
|v(t)|2 + δK(v(t)) dt < ∞ . (2.13)

Let (y, v) ∈ D be fixed and a, so that we do not have equality in (2.11). This leads to an
SDE with the same initial condition, whose diffusion part agrees with the corresponding
structure in (2.12):

dY (t) = Y (t) a(t)dt− θ(t) + σ−1(t)v(t) dB(t) , t ∈ [0, T], Y (0) = y.

Therefore, by comparison of the explicit stochastic exponential representations of the so-
lutions we conclude that Y (y,v)(t) ≥ Y (t) holds almost surely for almost every t ∈ [0, T].
Hence, as U is decreasing, we obtain

E U(Y (y,v)(T)) ≤ E U(Y (T)) ,

which implies that the choice of a as in (2.12) is indeed optimal for our purpose. By the
definition of U and the supermartingale property ofXπY (y,v) we obtain the following result:

E U(Xπ(T)) ≤ E U(Y (y,v)(T)) + E Xπ(T)Y (y,v)(T) ≤ E U(Y (y,v)(T)) + x0y. (2.14)

Since this is true for any π ∈ A and (y, v) ∈ D, we can take the supremum on the left-hand
side and the infimum on the right-hand side. This leads to

V = sup
π∈A

E U(Xπ(T)) ≤ inf
(y,v)∈D

E U(Y (y,v)(T)) + x0y , (2.15)

where V is exactly the same as in (2.5). The right-hand side corresponds to the so-called
dual problem:

Definition 2.11. Let a constrained utility maximization problem according to Definition
2.4 be given. The value of the corresponding dual problem is defined by

V := inf
(y,v)∈D

E U(Y (y,v)(T)) + x0y , (2.16)

where D is given by (2.13) and Y (y,v) denotes the unique solution to the SDE (2.12) for a
fixed tuple (y, v) ∈ D. A pair (y∗, v∗) ∈ D is called optimal, if it attains the infimum on
the right-hand side of (2.16).

11

Note that we also have to optimize with respect to the initial condition here, whereas x0 is
a priori given in the original problem. A crucial advantage of the dual problem compared
to the original one is that the set K is directly incorporated within the dynamics of the
dual “wealth” process given by (2.12). Except for the integrability condition on δK(v), the
set of all admissible dual pairs, as defined in (2.13), does not depend on K. Therefore, it is
possible that the dual problem becomes unconstrained. Contrary to this, the dynamics of
Xπ does not explicitly depend on K. In this case, we implement the constraints by means
of explicitly requiring π ∈ K in the definition of A. However, this is certainly a more
difficult condition in view of solving the optimization problem by means of the algorithms
which will we introduced later.

We conclude this section with three classical examples of closed, convex sets and their
implications for the corresponding dual problems.

Example 2.12. We consider K1 := Rm, K2 := Br, r > 0, and a closed convex cone K3,
e.g. the conical hull of finitely many vectors such that the origin does not lie in the convex
hull of the original vectors. Here, the last requirement ensures the closedness of the conical
hull. Br denotes the closed ball of radius r centered at the origin.
Clearly, δK1 maps to infinity with the exception of δK1(0) = 0. Therefore, a dual control
process v has to agree with the zero process (a.s for a.e t ∈ [0, T]) in order to be admissible
according to (2.13). Hence, only the optimal initial dual wealth y∗ needs to be found, which
decisively simplifies the dual optimization problem.
Due to the Cauchy-Schwarz inequality, we know that the scalar product in the definition
of δK2 attains its maximum absolute value, if the two vectors are linearly dependent. For
any (−z) ∈ Rm \ {0}, the vector from K2 pointing in the same direction with maximum
length is given by

πmax := −r
z

|z| .

Hence, we obtain δK2(z) = r|z|, z ∈ Rm, which simplifies the admissibility condition (2.13).
Finally, we study K3. At first, we consider z ∈ Rm such that for any π ∈ K3, −π z ≤ 0
holds. Since we have 0 ∈ K by assumption, we obtain δK3(z) = 0 in this case. For every
other z, there exists π ∈ K3 such that −π z is strictly greater than zero. As K3 is a cone,
λπ lies in K3 as well for every λ ∈ R+. Hence, the set {−π z}π∈K3 is not bounded above,
i.e. δK3(z) = ∞. Note that K1 is a special case thereof.

12

3 The Deep Controlled 2BSDE Algorithm in
a Markovian Setting

In this chapter, we discuss the special case of the market model introduced in Section 2.1,
where r, µ and σ are deterministic processes, i.e. their paths do not depend on ω ∈ Ω.
These assumptions imply that the risk-free bond and them stocks become Markov processes
due to the structure of the SDEs in (2.1). We refer to Chapter 7 of [18] for a proof in the
time-homogeneous case, where the drift and diffusion coefficient at time t are given by
measurable functions of the demanded process at t. It is claimed that if these coefficients
also depend explicitly on t, this case can be reduced to the situation above via considering
the process (t,X(t))t∈[0,T]. Hence, the state processes in the utility maximization problem
and the associated dual problem become controlled Markov diffusion processes, which are
thoroughly discussed in [7].

As briefly mentioned in Remark 2.5, this controlled Markovian structure allows us to study
a family of control problems with varying initial conditions. In accordance with this idea,
we discuss the dynamic programming approach for a more general type of control problems,
cf. Section 3.1, in the second section of this chapter. Moreover, we show how this principle
motivates the derivation of the so-called Hamilton-Jacobi-Bellman equation. Furthermore,
the stochastic maximum principle is presented in Section 3.3, whose first-order adjoint
equation is also an essential ingredient for the ensuing formulation of the deep controlled
2BSDE algorithm in Section 3.4.

3.1 Formulation of a More General Control Problem

Since we intend to formulate the deep controlled 2BSDE algorithm such that it is applicable
to the constrained utility maximization problem as well as the associated dual problem,
we choose a more abstract notation in the following, which covers both cases. We shall see
that the results of the following sections indeed hold for both problems and even for more
general ones, if certain technical properties are satisfied.

Let the probability space from Section 2.1, K ⊆ Rm and two deterministic, measurable
functions a : [0, T] × R × K → R and b : [0, T] × R × K → Rm be given, which are
locally Lipschitz continuous in the second argument. This is important with respect to the
measurability of the value function (cf. (3.4)). Furthermore, we consider all progressively
measurable, K-valued processes π such that

dX(t,x),π(s) = a s,X(t,x),π(s), π(s) ds+ b s,X(t,x),π(s), π(s) dB(s), (3.1)

has a pathwise unique strong solution for all initial conditions X(t,x),π(t) = x, where (t, x) ∈
[0, T]×R. We denote the subset consisting of all processes π with the above property which

13

are considered for the specific control problem withAM . In the following, we usually restrict
AM to control processes which lie in H2(0, T ;K) (cf. (3.21) below) since in the proof of
the DPP (cf. Theorem 3.4) one intends to equip the control space with a metric.

Remark 3.1. Due to the choice of A and D in Chapter 2, the above requirements are
satisfied by the SDEs of the form (2.3) and (2.12) for any π ∈ A and (y, v) ∈ D, respectively.
Clearly, since the processes r, µ and σ are assumed to be deterministic in this chapter, these
SDEs admit a representation as in (3.1), while choosing K = K := {z ∈ Rm | δK(z) < ∞}
for the dual problem. It is important to point out that, contrary to the classical setting
as presented in [7] or [19], we do not require that a and b satisfy a Lipschitz condition in
x which holds uniformly for all t and π. The main reason for imposing such assumptions
is ensuring the existence of a unique strong solution to the SDE (3.1). However, we do
not need those properties for this purpose due to the special structure of (2.3) and (2.12),
which allows us to apply the corresponding results for stochastic exponentials of continuous
semimartingales. We note that the aforementioned Lipschitz condition is satisfied for the
primal problem, if K is bounded. For the dual problem, it would require the boundedness
of δK(K) and K, respectively.

Remark 3.2. One disadvantage of not requiring the uniform Lipschitz condition is that
classical moment estimates for the solutions might no longer hold. We refer to Section 2.5
of [13] for detailed proofs of the estimates under Lipschitz and linear growth conditions.
The proofs rely heavily on Grönwall’s lemma and Hölder’s inequality. The aforementioned
estimates essentially state that the pth Moment of X(t,x),π ∗

(T) := sups∈[t,T] X(t,x),π(s)
is bounded above by the pth moment of the initial random variable modulo additive and
multiplicative constants. This upper bound is trivially finite, if one considers constant
starting values as in the setting of our market model. The following example shows that,
in general, we cannot draw this conclusion in our setup.

Example 3.3. We consider a utility maximization problem constrained to the closed,
convex set K = R+

0 and p = 2. For the sake of simplicity, we remove the strong non-
degeneracy condition here. Hence, we can choose m = 1, T ∈ R+, x0 = 1, σ ≡ r ≡ 0 and
µ ≡ 1. Furthermore, we consider the strategy defined via π := ✶[T/2,T](·) exp B(T/2) −
T/4 . The idea is to obtain the mgf of a log-normally distributed random variable as a

lower bound for E ((Xπ)∗(T))2 , where Xπ := X(0,1),π.
At first, we have to check that π ∈ A holds indeed. Obviously, π cannot take values outside
of K. Furthermore, the progressive measurability of π follows from the right-continuity of
its paths and the adaptedness of B. A short calculation shows

E
T

0
|π(t)|2 dt =

T

2
E e2B(T/2)−T

2 =
T

2
e

T
2 < ∞,

whence π ∈ A follows. However, Xπ(T) is not in L2:

E (Xπ(T))2 = E eTeB(T/2)−T
4 = ∞, (3.2)

where the last equality follows due to exp B(T/2) − T/4 being non-degenerate log-
normally distributed, T > 0 and the fact that the mgf of a non-degenerate log-normal

14

distribution is infinite/not defined for positive numbers. This concludes the counterexam-
ple, since |Xπ(T)| ≤ (Xπ)∗(T) holds.

Now we turn to the formulation of a generalized optimization problem, which admits the
constrained utility maximization problem from Section 2.2 as a special case. As indicated
in Remark 2.5, we intend to map any initial pair (t, x) ∈ [0, T] × R to the value of the
corresponding optimization problem instead of merely considering one fixed pair (0, x0) as
in Definition 2.4.

As in [19], we consider measurable functions f : [0, T] × R ×K → R and g : R → R. The
function g corresponds to the terminal gain function. As discussed below Definition 2.4, g
being bounded from below or satisfying a polynomial growth condition (if the respective
moments of X(t,x),π are finite, cf. Remark 3.2) ensures that the expectation in (3.3) is
well-defined. For example, let g|R+ := U be a utility function, where g is set to zero on the
remaining real line (and analogously for U). Since U is decreasing, we obtain from Lemma
2.7 (vi) that U is bounded from below if and only if U has this property.

Contrary to the setup in Chapter 2, we introduce a running gains function f here, which
enlarges the set of the considered control problems. The reason for allowing only control
problems of a very specific type in Chapter 2 is that we encounter in general a non-
Markovian setup there due to the potential path-dependency of r, µ and σ. As we shall
see in Chapter 4, deriving optimality conditions becomes rather difficult in this case, since
the approach of this chapter is in general invalid under those circumstances. For the same
reason, we only consider utility functions in Chapter 2, which justifies the application of
convex duality and optimality methods. In contrast to this, we note that we do not require
g to satisfy any (strict) convexity/concavity properties here.

The function f has to be chosen such that the corresponding integral in (3.3) is well-defined.
We assume that f is bounded until further notice. We shall see later that the dynamic
programming approach and the classical stochastic maximum principle can be quite easily
extended to problems with running gains. Hence, also the deep controlled 2BSDE algorithm
can be applied to more general control problems than the ones discussed in Chapter 2.
Now we can define the gain function similarly to Definition 2.4 for any initial pair (t, x) ∈
[0, T]× R and π ∈ AM via

J(t, x, π) := E
T

t
f s,X(t,x),π(s), π(s) ds+ g X(t,x),π(T) . (3.3)

Again, we intend to maximize J with respect to π. This leads to the so-called value
function:

v(t, x) := sup
π∈AM

J(t, x, π), (t, x) ∈ [0, T]× R. (3.4)

Even though the dual problem is a minimization problem, in particular also with respect
to the initial value y (using the notation of Chapter 2), we can still write it in the form
of (3.4), where we ignore the minimization with respect to y and the summand x0y from
(2.16) for the moment. This leads to the value function

v(t, y) := inf
v∈D2

E U(Y (t,y),v(T)) , (t, y) ∈ [0, T]× R, (3.5)

15

where D2 := {v ∈ Aprog| (1, v) ∈ D} with D as defined in (2.13) and U is defined as the
zero function on the negative real line. Furthermore, Y (t,y),v corresponds to the process
with dynamics given by (2.12) and satisfying the initial condition Y (t,y),v(t) = y. Note that
the solvability of a stochastic exponential-type SDE with global integrability assumptions
on the coefficients as in (2.13) does not depend on the choice of the deterministic initial
pair (t, y). Hence, −v describes the value function of a classical controlled maximization
problem as in (3.4) with g = −U ✶R+ and f ≡ 0. Finally, we have to minimize for every
t ∈ [0, T] with respect to y ∈ R+:

V (t) := inf
y∈R+

{v(t, y) + x0y}, t ∈ [0, T], (3.6)

where x0 denotes the starting value of the state process in the associated primal problem.
For t = 0, this yields exactly V from (2.16). We conclude from (3.6) that if we consider
dual problems, we have an additional variable which has to be optimized, namely y. Hence,
we need to add another loss function to the deep controlled 2BSDE algorithm in this case,
as we shall see in Section 3.4.

3.2 The Dynamic Programming Approach Leading to the
Hamilton-Jacobi-Bellman Equation

Since, in the setting of this chapter, the state processes of the form (3.1) are controlled
Markovian diffusion processes, we can apply the dynamic programming approach in order
to analyze the dynamics of the associated value function. The first essential result for
this purpose is the so-called dynamic programming principle (DPP), which is stated in the
following:

Theorem 3.4. Let a stochastic control problem as discussed in Section 3.1 be given with
associated value function v. Then the following holds for every (t, x) ∈ [0, T] × R and
stopping time τ : Ω → [t, T] :

v(t, x) = sup
π∈AM

E
τ

t
f s,X(t,x),π(s), π(s) ds+ v τ,X(t,x),π(τ) . (3.7)

There are many proofs for this result in the literature. Usually these require explicitly
that a and b satisfy a Lipschitz condition in x, which holds uniformly for all t and π,
and a boundedness condition. The main purpose of these requirements is ensuring that
(3.1) admits a pathwise unique strong solution. However, this holds by assumption in our
setting (cf. Remark 3.1). We refer to [19] for a great overview of the proof concept which
involves proving both inequalities in (3.7) separately. The most delicate part of the proof
is finding an admissible, thus in particular progressively measurable, ε-optimal control for
the problem starting in (τ,X(t,x),π(τ)) as τ is not necessarily deterministic. In [4], this
problem is tackled by means of a measurable selection theorem. It is shown that there
exists a Borel-measurable function which maps ν-almost every pair (t, x) to an ε-optimal
control for the problem starting in (t, x), where ν is an arbitrary product measure formed
by a measure on [0, T] and a probability measure on R. This result is then applied to

16

τ(ω), X(t,x),π(ω, τ(ω)) , ω ∈ Ω, and the measure induced by X(t,x),π(τ) leading to an ε-

optimal control for the problem starting in (τ,X(t,x),π(τ)).

It has to be pointed out that Theorem 3.4 holds in particular for constant stopping times, i.e.
deterministic times τ ≡ s ∈ [t, T]. (3.7) admits the following natural interpretation: If we
want to invest optimally in [t, T], we can subdivide the time interval into [t, τ] and [τ, T] and
proceed as follows: Roughly speaking, we can choose for any π ∈ AM an optimal trading
strategy, if it exists, for the problem starting at time τ , where the corresponding initial
wealth is exactly given by X(t,x),π(τ) as we applied the strategy π for [t, τ]. Additionally,
the running gains generated by π during [t, τ] have to be added. Clearly, we are interested
in the strategy π which maximizes the expected gains of this procedure. (3.7) states that
this approach is equivalent to behaving optimally on [t, T].

Since it is certainly very difficult to solve (3.7) directly in order to obtain v, we are interested
in an infinitesimal version of it. This leads to the so-called Hamilton-Jacobi-Bellman (HJB)
equation, which will be formally derived below. As these considerations rely heavily on Itô’s
formula, we have to assume that the value function is sufficiently smooth, i.e. we require
v ∈ C1,2([0, T] × R). We want to place emphasis on the fact that this assumption is non-
trivial, as Example 3.7 shows.

Let (t, x) ∈ [0, T)×R be fixed, h ∈ (0, T−t] an arbitrary number and π ∈ K an arbitrary, but
fixed, constant control. Moreover, we assume that all such constant controls are admissible.
Obviously, this is trivially satisfied by the constrained utility maximization problem. Since
K is precisely chosen as the set K for the dual problem (cf. Remark 3.1), the above
assumption also holds for the dual problem. Furthermore, we define the following stopping
time:

τt,x,1 := inf s ∈ [t, T] : X(t,x),π(s)− x ≥ 1 ∧ T.

Since X(t,x),π is a continuous and adapted process, this defines indeed a stopping time.
Hereby, we intend to keep the stopped process X(t,x),π τt,x,1 close to the starting value x.
By Theorem 3.4 applied to the stopping time τh := τt,x,1 ∧ (t+ h), we obtain

v(t, x) ≥ E
τh

t
f s,X(t,x),π(s), π ds+ v τh, X

(t,x),π(τh) . (3.8)

Since v ∈ C1,2([0, T]×R) holds by assumption, we can apply Itô’s formula to v τh, X
(t,x),π(τh) ,

which leads to

0 ≥ E
τh

t
f s,X(t,x),π(s), π + a s,X(t,x),π(s), π

∂v

∂x
s,X(t,x),π(s)

+
∂v

∂t
s,X(t,x),π(s) +

1

2
b s,X(t,x),π(s), π

2 ∂2v

∂x2
s,X(t,x),π(s) ds

+
τh

t
b s,X(t,x),π(s), π

∂v

∂x
s,X(t,x),π(s) dB(s) ,

(3.9)

where we subtracted v(t, x) from both sides of the inequality. For notational convenience,
we define for π ∈ K:

Lπv(s, y) := a(s, y, π)
∂v

∂x
(s, y) +

1

2
b(s, y, π)

2 ∂2v

∂x2
(s, y), (s, y) ∈ [0, T]× R. (3.10)

17

We wish that the expectation of the above stochastic integral with respect to B is zero,
which is certainly satisfied if the expectation of the corresponding covariation is finite, i.e.

E
τh

t
b s,X(t,x),π(s), π

2 ∂v

∂x

2

s,X(t,x),π(s) ds < ∞.

Clearly, the partial derivative part does not prevent us from achieving our goal, since
X(t,x),π is bounded up to time τh and the partial derivative with respect to x is a continuous
function by assumption. Hence, this factor is bounded by a constant C. However, it is non-
trivial that the remaining integral has finite expectation, since we assumed no continuity
properties for b and we can only conclude almost sure finiteness of the integral from X(t,x),π

being a strong solution to (3.1). Hence, we have to assume that this property holds. At
least, it is encouraging that this holds for the original and the dual state processes given
by (2.3) and (2.12), respectively, due to the boundedness of X(t,x),π τh , θ, σ and σ−1 and
the respective choice of the set of admissible controls. Under this assumption, simplifying
(3.9) and dividing by h > 0 leads to

0 ≥ E
1

h

τh

t
f s,X(t,x),π(s), π +

∂v

∂t
s,X(t,x),π(s) + Lπv(s,X(t,x),π(s))ds . (3.11)

In the following, we would like to send h towards zero and apply the dominated convergence
theorem to (3.11). As the paths of X(t,x),π are continuous, we can find for (almost) every
ω a positive real number hω such that t + hω ≤ τt,x,1(ω) holds, i.e. τh(ω) = t + h for
all h ∈ (0, hω]. Hence, we can conclude from the fundamental theorem of calculus (for
Lebesgue integrals), the integrability properties according to the concept of strong solutions
and the boundedness of the occurring partial derivative terms that the expression within
the expectation converges in particular almost surely to

f(t, x, π) +
∂v

∂t
(t, x) + Lπv(t, x).

Since we assumed that f is bounded, we only have to consider conditions on a and b which
guarantee that we find an integrable majorant. For example, requiring that a and b are
continuous is sufficient. Alternatively, as π is a constant, it would also be sufficient for this
purpose to require boundedness in t for all (x, π) and continuity in x, which reflects exactly
the situation of the primal and the dual problem as discussed in Chapter 2. Therefore,
under suitable conditions, an application of the dominated convergence theorem shows

0 ≥ f(t, x, π) +
∂v

∂t
(t, x) + Lπv(t, x). (3.12)

Since π ∈ K was chosen arbitrarily, the above inequality also holds, if we take the supremum
on the right-hand side, which results in

0 ≥ ∂v

∂t
(t, x) + sup

π∈K
f(t, x, π) + Lπv(t, x) . (3.13)

Finally, it has to be justified why it is reasonable to require equality in (3.13). Under the
assumption that there exists an optimal control π∗ attaining the supremum in (3.7), we have

18

equality in (3.8), where π is not necessarily a constant process anymore. By calculations
analogous to above, we obtain “equality” in (3.12), i.e.

0 = E
∂v

∂t
(t, x) + f(t, x, π∗(t)) + Lπ∗(t)v(t, x) , (3.14)

where the requirements for a and b which ensure that the above arguments work have to be
adapted accordingly, as the influence of the control on the integrals is non-trivial anymore.
This is closely related to the structure of a and b concerning π and potential integrability
assumptions required in the definition of AM . We refer to Assumption 3.18 below for a
set of conditions which guarantees that the HJB equation, i.e. equality in (3.13), is almost
surely satisfied for the points of the form s,X(t,x),π∗

(s) , s ∈ [t, T], where π∗ is an optimal
control. We shall see in Subsection 3.3.2 that this result suffices for our considerations, i.e.
we do not need the HJB equation in its full strength. This is insofar encouraging as, in
the case of the primal and the dual problem from Chapter 2 (with deterministic r, µ and
σ), the aforementioned result holds, if v is sufficiently smooth, an optimal control π∗ exists
and certain growth and integrability conditions are fulfilled. The multiplicative structure
of the coefficients and the integrability assumptions in (2.2) and (2.13), respectively, will
be essential for this purpose (cf. Example 3.19 and Lemma 3.20 below).

Note that, contrary to (3.12), we still have the expectation operator in (3.14) since π∗(t)
is not necessarily a constant random variable. However, because π∗(t) is K-valued, we can
conclude from (3.13) that the expression within the expectation is nonpositive. Therefore,
combining this with (3.14) leads to

0 =
∂v

∂t
(t, x) + f(t, x, π∗(t)) + Lπ∗(t)v(t, x) a.s. (3.15)

Hence, it is plausible to require equality in (3.13) with regard to the formulation of the
HJB equation, which is lastly obtained by multiplying both sides with −1. Finally, we
shall consider t = T by deriving a reasonable terminal condition. (3.3) and (3.4) show
immediately that requiring v(T, ·) = g serves this purpose.

Remark 3.5. In contrast to the sufficient requirements above, which have been formulated
after each step such that the respective argument works, we want to emphasize that a priori
requiring additional properties for a, b, f and g, which are in general not fulfilled in the
setting of Section 3.1, leads indeed to the value function v necessarily satisfiying the HJB
equation, if v ∈ C1,2([0, T]×R) holds. We refer to [22] for a result in this direction. There,
a, b, f and g are supposed to be uniformly continuous. Furthermore, it is required that
each function satisfies a Lipschitz condition with respect to x which holds uniformly in t
and π, as well as for x = 0, these functions are supposed to be bounded in t and π. We
notice that all constant controls are admissible under these assumptions. Furthermore, in
contrast to our considerations above and essentially due to the uniform continuity, one does
not have to presuppose the existence of an optimal control π∗, as the proof in [22] shows.
Hence, whenever v ∈ C1,2([0, T] × R) holds in this setting, v necessarily has to solve the
HJB equation.

Now we are in position to define the HJB equation associated with the general stochastic
control problem, as previously introduced.

19

Definition 3.6. Let a stochastic control problem be given as discussed in Section 3.1.
Then the so-called Hamilton-Jacobi-Bellman (HJB) equation associated with this problem
is defined via

− ∂v

∂t
(t, x)− sup

π∈K
f(t, x, π) + Lπv(t, x) = 0, (t, x) ∈ [0, T)× R, (3.16)

where we are interested in solutions satisfying the terminal condition

v(T, x) = g(x), x ∈ R. (3.17)

Furthermore, the so-called Hamiltonian H : [0, T] × R ×K × R × R → R associated with
this stochastic control problem is defined as

H(t, x, π, y, z) = a(t, x, π)y+
1

2
b(t, x, π)

2
z+f(t, x, π), (t, x, π, y, z) ∈ [0, T]×R×K×R×R.

Alternatively, we can write the HJB equation, which is a nonlinear PDE of second order,
by means of the associated Hamiltonian as

− ∂v

∂t
(t, x)− sup

π∈K
H t, x, π,

∂v

∂x
(t, x),

∂2v

∂x2
(t, x) = 0, (t, x) ∈ [0, T)× R. (3.18)

As the entire considerations above are performed under the premise that v ∈ C1,2([0, T]×R)
holds, which is also a necessary requirement for classical solutions to (3.16), it is natural
to ask whether this is in general true for value functions. Unfortunately, this has to be
unambiguously negated. The following example, which is based on [18] and [19], shows
that the aforementioned condition can even be violated in a rather simple setting.

Example 3.7. We consider an unconstrained stochastic control problem as discussed in
Section 3.1 with m = 1. Hence, we have K = R. We choose A from (2.2) as the set of our
admissible strategies. Furthermore, we consider state processes which satisfy the following
SDE:

dX(t,x),π(s) = π(s)dB(s), s ∈ [t, T], X(t,x),π(t) = x,

where π ∈ A, which greatly simplifies (3.1). Due to the definition of A we can even conclude
that X(t,x),π is a martingale for every control process π and initial pair (t, x). Moreover,
we choose f ≡ 0 and g as a function which satisfies a linear growth condition. Therefore,
E g X(t,x),π(T) is always finite due to the integrability of X(t,x),π(T).
Moreover, as all constant controls π ≡ c ∈ R lie in A and a ≡ 0 and b ≡ c holds in this
case, we can conclude that the above arguments leading to (3.12) are in fact applicable to
this problem, if we assume v ∈ C1,2([0, T]× R). Hence, we obtain

∀(t, x) ∈ [0, T)× R : 0 ≥ ∂v

∂t
(t, x) +

c2

2

∂2v

∂x2
(t, x).

Since the first summand on the right-hand side is obviously finite and the above inequality
holds for every c ∈ R, it is immediately clear that the second-order partial derivative has
to be nonpositive, i.e. the function v(t, ·) is concave for every t ∈ [0, T).

20

In the following, we denote the upper concave envelope of g by gc. It follows from X(t,x),0 ≡
x and (3.4) that v(t, ·) ≥ g holds for every t ∈ [0, T). Due to the concavity of v(t, ·) and
the minimality of gc we can conclude that also v(t, ·) ≥ gc holds for every t ∈ [0, T).
Finally, we want to show that also the converse inequality is true. We convince ourselves
thereof by performing the following short calculation, which uses gc ≥ g, Jensen’s inequality
for concave functions and X(t,x),π being a martingale:

∀(t, x) ∈ [0, T)× R : v(t, x) ≤ sup
π∈A

E gc X(t,x),π(T) ≤ gc(x).

Hence, the value function in this example is explicitly given by

v(t, x) = gc(x), (t, x) ∈ [0, T)× R.

Therefore, v cannot lie in C1,2([0, T] × R), if gc /∈ C2(R). For example, if we choose
g1(x) := −max{K − x, 0} = min{x −K, 0} with K ∈ R+, which corresponds to shorting
a put option on the value of the state process at T , we obtain the desired contradiction
because gc1 = g1 is not even continuously differentiable.
Another way for finding a counterexample by means of the above results is considering
functions g which differ from their upper concave envelope gc. We can conclude for such a
function that the corresponding value function v is not even continuous in t, which results
from the jump at T . Therefore, v /∈ C1,2([0, T]× R) follows in particular. As an example,
we consider g2(x) := |x|, x ∈ R, leading to gc2 ≡ ∞. Moreover, we want to verify by
hand that the corresponding value function is indeed infinite for t ∈ [0, T). For constant

controls π ≡ c ∈ R we obtain X(t,x),c(T)
d
= |x + cY |, where Y ∼ N (0, T − t). Since Y is

non-degenerate normally distributed and c can be chosen arbitrarily large, it follows that
v(t, ·) = ∞ indeed holds true for every t ∈ [0, T).

As outlined in the course of the formal derivation of the HJB equation and in Remark
3.5, the value function necessarily has to satisfy the HJB equation, if v ∈ C1,2([0, T] × R)
and certain additional properties hold. Hence, a reasonable approach for identifying the
value function of the control problem is to analyze the solutions to the associated HJB
equation. The aim of so-called verification theorems is to give sufficient conditions such
that a particular solution to (3.16) and (3.17) is indeed the value function of the studied
control problem. Even though there are many different versions of such theorems in the
literature, they all agree with regard to the basic idea of the statement and the proof.
For example, results in this direction can be found in [7], [18], where a control problem is
studied for which only Markovian controls of the form π(t) = h(t,X(t)) are allowed, [19]
and [22]. In the following, we cite a slightly generalized version of the result presented in
[19], as this allows us to formulate a recipe for solving certain stochastic control problems.

Theorem 3.8. Let a stochastic control problem as in Section 3.1 be given and let u ∈
C1,2([0, T] × R) be a classical solution to (3.16) satisfying the terminal condition (3.17).
Moreover, we suppose that there exists a measurable function π∗ : [0, T) × R → K, such
that for every pair (t, x) ∈ [0, T) × R the supremum in (3.16), or equivalently in (3.18),
is attained by π∗(t, x). Additionally, we assume that the following SDE, which is closely
related to (3.1), admits a unique strong solution for every initial pair (t, x):

dX(t,x)(s) = a s,X(t,x)(s), π∗ s,X(t,x)(s) ds+ b s,X(t,x)(s), π∗ s,X(t,x)(s) dB(s).

21

We suppose that π∗
(t,x) := π∗ s,X(t,x)(s)

s∈[t,T]
∈ AM holds. Furthermore, we assume

that u satisfies a polynomial growth condition, i.e. ∃k ∈ N+ such that

∃C ∈ R+, ∀(t, x) ∈ [0, T]× R : |u(t, x)| ≤ C 1 + |x|k , (3.19)

and additionally that X(t,x),π ∗
(T), X(t,x) ∗

(T) ∈ Lk holds true for every pair (t, x) and
π ∈ AM with the same constant k as above. Then u agrees with the value function globally
on [0, T]×R and π∗

(t,x) corresponds to an optimal control for the related optimization problem

starting in (t, x).

In the following, as the arguments for proofing such statements are usually very similar, we
briefly summarize the main idea of the applied proof concept. We refer to Section 3.5 of [19]
for a detailed proof for the special case k = 2. At first, we are for every (t, x) ∈ [0, T)× R
and π ∈ AM interested in a sequence of stopping times (τn)n∈N which satisfies τn T as
n → ∞ and guarantees that the stochastic integral resulting from Itô’s formula applied to
the stopped process u ·∧τn, X(t,x),π(·∧ τn) is for each n even a true martingale, i.e. it has
expectation 0. Moreover, by the HJB equation we can find an upper estimate containing f
for the remaining integrand. Taking the expectation, removing the stopping times, which
is justified by the growth and integrability assumptions and the dominated convergence
theorem, and using the terminal condition leads to v ≤ u. However, if a function π∗

satisfying the required properties exits, then the above estimate for the integrand becomes,
in fact, equality for π∗

(t,x). Therefore, one can conclude u = v.

Note that, contrary to [19], we have to explicitly impose integrability assumptions on the
controlled supremum processes, as this is non-trivial in our setup according to Remark
3.2 and Example 3.3. Theorem 3.8 suggests the following procedure for solving a control
problem:

• ∀(t, x) ∈ [0, T) × R: Determine maximizers of the Hamiltonian for the pair (t, x)
(cf. (3.18)), where the partial derivatives serve as placeholders. This can be used for
defining a function π∗, once a solution is known.

• Solve the HJB equation (3.16) with terminal condition (3.17), if possible, by plugging
in the maximizers from the previous step and finding an appropriate ansatz for the
resulting PDE. Let u denote a solution.

• Finally, check whether u and π∗ meet the requirements formulated in Theorem 3.8.

A successful application of this approach can be found in Section 3.6 of [19], where Merton’s
classical portfolio allocation problem with power utility function is studied. Here, the choice
of the utility function greatly simplifies the first two steps of the above procedure (cf. also
Examples 5.1 and 5.3 below).

We notice that requiring the existence of such a measurable function π∗ is rather strong.
However, by Theorem 3.8 we then get intriguing additional insights into the considered
family of control problems. For instance, we obtain that these optimal controls even have a
Markovian structure. Furthermore, the knowledge of π∗ leads for all initial pairs (t, x) via

22

π∗
(t,x) to an optimal control for the corresponding control problem. In contrast to this, the

results in [7] and [22] give for a fixed initial pair (t, x) a condition on an admissible control
π∗ which ensures that π∗ is optimal for this specific problem. To be more precise, π∗ has
to satisfy almost surely for almost every s ∈ [t, T]:

H s,X(t,x),π∗
(s), π∗(s),

∂u

∂x
s,X(t,x),π∗

(s) ,
∂2u

∂x2
s,X(t,x),π∗

(s)

= sup
π∈K

H s,X(t,x),π∗
(s), π,

∂u

∂x
s,X(t,x),π∗

(s) ,
∂2u

∂x2
s,X(t,x),π∗

(s) ,

(3.20)

i.e. π∗ maximizes the Hamiltonian in the above sense. Clearly, similar arguments as
presented below Theorem 3.8 show that π∗ is indeed optimal. We will return to (3.20) in
the course of Section 3.3 below (cf. (3.34)).

Remark 3.9. It has to be pointed out that the above considerations regarding the veri-
fication step were performed under the premise that a classical, hence sufficiently smooth,
solution to the HJB equation (3.16) exists, which satisfies the terminal condition (3.17).
However, this is a non-trivial assumption. Fortunately, one can find sufficient, albeit strong,
conditions such that a classical solution indeed exist. We refer to Section IV.4 of [7] for
a summary of different results in this direction which rely in a large part on arguments
thoroughly presented in Chapter 6 of [14]. In the following, we cite one possible collection
of requirements which is sufficient for this purpose. The paramount assumption, which all
the aforementioned results have in common, is that b is supposed to satisfy the following
uniform parabolicity condition: There exists a constant c ∈ R+ such that

∀(t, x, π) ∈ [0, T)× R×K, ∀y ∈ R : |b(t, x, π)|2y2 ≥ cy2,

holds, i.e. |b|2 is bounded from below by c ∈ R+. Note that this simple structure results
from the fact that the state processes are one-dimensional in our considerations. We notice
that this property clearly does not hold for the dynamics (2.3) in the classical utility
maximization problem due the multiplicative structure of the diffusion coefficient and 0 ∈ K
by assumption. Furthermore, it is assumed that K is compact and a, |b|2, f and g satisfy
certain smoothness properties, namely a, |b|2, f ∈ C1,2

b and g ∈ C3
b . As usual, we denote

by Cj
b the set of functions from Cj such that the function itself and its partial derivatives

up to order j are bounded. In conclusion, if the above conditions hold, then we obtain the
existence of a candidate function for our verification procedure as described above.

We conclude this section with two remarks on the notion of viscosity solutions of HJB
equations, which represents a significantly weaker solution concept and allows to associate
even not necessarily smooth value functions with (3.16) in an appropriate way. This is
important, as value functions are in general not even for problems with a simple structure
smooth enough (cf. Example 3.7) and sufficient conditions for obtaining the existence of a
classical solution to (3.16) are very strong (cf. Remark 3.9).

Remark 3.10. We remember that u ∈ C0([0, T]×R) is called a viscosity sub-/supersolution
to (3.16) with terminal condition (3.17), if for every test function φ ∈ C1,2([0, T]×R) and

23

all maximizers/minimizers (t, x) ∈ [0, T)× R of u− φ the following holds:

−∂φ

∂t
(t, x)− sup

π∈K
H t, x, π,

∂φ

∂x
(t, x),

∂2φ

∂x2
(t, x) ≤ / ≥ 0, and

∀x ∈ R : u(T, x) ≤ / ≥ g(x).

Consequently, u is called a viscosity solution, if it is a viscosity sub- as well as a superso-
lution. By considering the smooth functions φ(t, x) := φ(t, x) + (u(t, x)− φ(t, x)), (t, x) ∈
[0, T]×R, for all maximizers/minimizers (t, x) we can require w.l.o.g that u(t, x) = φ(t, x)
holds in the above definition. Hence, the viscosity sub-/supersolution property can be in-
terpreted as follows: Every φ ∈ C1,2([0, T]×R) which lies above/below u has to satisfy the
classical sub-/supersolution property for all intersection points of φ and u. Obviously, it
is reasonable to require certain properties which are closely related to (3.16) for arbitrary,
sufficiently smooth test functions in the above notion, since the derivatives of u do not even
have to exist. Clearly, if u ∈ C1,2([0, T]×R) is a viscosity solution, then it is also a classical
solution to the HJB equation, as φ = u shows. Since also the converse holds (see [7] or [22]
for a proof), the concept of viscosity solution represents indeed a meaningful generalization
of the classical notion of a solution to a PDE.

Remark 3.11. A crucial result in the setting of Remark 3.5 is that the value function v is
the unique viscosity solution to the associated HJB equation in a class of functions which
satisfy certain growth conditions. We refer to [22] for details and a proof. The proof of the
viscosity solution property of v essentially relies on the application of the DPP (cf. Theorem
3.4) to v and Itô’s formula to an arbitrary function φ with the same properties as above.
By the maximality/minimality of (t, x) we get v(t, x) − φ(t, x) − v(t, x) + φ(t, x) ≥ / ≤ 0,
in particular for pairs (t, x) close to (t, x) with t > t. Finally, similar arguments as in the
formal derivation of the HJB equation and Remark 3.5 lead to the desired result.
Furthermore, we refer to Chapter 4 of [19] for a more generalized notion of viscosity so-
lutions, where the continuity assumption is replaced by local boundedness. However, one
has to consider the so-called HJB variational inequality in this case.

3.3 The Stochastic Maximum Principle

The aim of this section is to present the statement of the so-called stochastic maximum
principle (SMP) for stochastic control problems as introduced in Section 3.1. Hereby, we
obtain a second tool for solving stochastic control problems, since the SMP is derived
independently from the dynamic programming approach. The main statement of the SMP
is that, under additional assumptions, an optimal control process necessarily maximizes a
Hamiltonian-type function with respect to π ∈ K, where the other arguments are given by
processes which solve certain forward and backward SDEs (BSDEs).

Furthermore, we will see that if we require additional properties which make the results
from Section 3.2 applicable, we can even find exact solutions to the first-order adjoint
equation ocurring in the SMP by means of the value function’s partial derivatives. These
results essentially form the motivation for the formulation of the deep controlled 2BSDE
algorithm as in Section 3.4 below.

24

3.3.1 A General Formulation

At first, we recall the definition of BSDEs and cite some results which guarantee the
existence of solutions. We refer to [19] and [22] for a detailed exposition. In contrast to
the heretofore considered (forward) SDEs, the solutions to BSDEs are required to satisfy a
terminal condition. However, as solutions to SDEs have to be adapted, finding solutions to
BSDEs becomes rather delicate because a reversal of time as for ODEs is not necessarily
helpful. Furthermore, unlike in the forward case, finding the diffusion part should also be
a part of the solution as the following simple example shows (see [22] for details): At first,
we define for every j ∈ N the following spaces of progressively measurable processes for
later usage:

H2(0, T ;Rj) := X : Ω× [0, T] → Rj prog.m. ∧ E
T

0
|X(t)|2 dt < ∞ and

S2(0, T ;Rj) := X : Ω× [0, T] → Rj prog.m. ∧ E sup
t∈[0,T]

|X(t)|2 < ∞ .

(3.21)

Let ξ ∈ L2(Ω,FT ,P;R) be given such that ξ is not F0-measurable. Then the “simple” SDE
with drift and diffusion coefficient being equal to the zero process and terminal condition
ξ clearly does not admit an adapted solution, in contrast to the corresponding forward
SDE combined with a measurable initial random variable. However, we can circumvent
this issue by considering the martingale Y := E[ξ|F·] instead and applying the martingale
representation theorem, which is allowed as the filtration is Brownian, in order to obtain
Y = E[ξ] + Z •B for a process Z ∈ H2(0, T ;Rm). Hence, Y satisfies the SDE

dY (t) = Z (t)dB(t), t ∈ [0, T], Y (T) = ξ a.s.

As the process Z is a priori unknown, it has to be part of the solution. This motivates
Definition 3.12 below. Using the above notation, we can define the following:

Definition 3.12. Consider the probability space from Section 2.1. Let h : Ω× [0, T]×R×
Rm → R be a measurable function, called generator, and ξ ∈ L2(Ω,FT ,P;R) the random
variable representing the terminal condition. For notational convenience, we omit ω in
the following. A pair of processes (Y, Z) ∈ S2(0, T ;R) × H2(0, T ;Rm), whose component
processes are thus in particular adapted, is called solution to the BSDE

dY (t) = h(t, Y (t), Z(t))dt+ Z (t)dB(t), t ∈ [0, T], Y (T) = ξ a.s., (3.22)

if the following holds almost surely for every t ∈ [0, T]:

Y (t) = ξ −
T

t
h(s, Y (s), Z(s))ds−

T

t
Z (s)dB(s). (3.23)

If, in addition, h(t, y, z)
t∈[0,T]

is progressively measurable for every (y, z) ∈ R × Rm,

h(t, 0, 0)
t∈[0,T]

∈ H2(0, T ;R) and there exists a constant C ∈ R+ such that almost surely

the following uniform Lipschitz condition holds:

∀t ∈ [0, T], ∀y1, y2 ∈ R, ∀z1, z2 ∈ Rm : |h(t, y2, z2)−h(t, y1, z1)| ≤ C(|y2− y1|+ |z2− z1|),

25

then the BSDE (3.22) admits a unique solution (Y,Z) ∈ S2(0, T ;R) × H2(0, T ;Rm). A
proof of this statement relying on Banach’s fixed point theorem for contraction maps can
be found in [19] and [22]. Even though we will not need this existence and uniqueness result
in the following, it provides the interested reader with an important insight with regard to
the solvability of BSDEs.

As a preparation for the formulation of the adjoint equations, we define the so-called
generalized Hamiltonian for a minimization problem first (cf. Remark 3.17):

Definition 3.13. Let a minimization problem as discussed in Section 3.1 be given. Then
the function H : [0, T] × R ×K × R × Rm → R which maps every (t, x, π, y, z) ∈ [0, T] ×
R×K × R× Rm to

H(t, x, π, y, z) := a(t, x, π)y + b (t, x, π)z − f(t, x, π) (3.24)

is called the generalized Hamiltonian for the minimization problem.

Now we can define the first- and second-order adjoint equations:

Definition 3.14. Consider a minimization problem as introduced in Section 3.1 and fix
(t, x) ∈ [0, T] × R and π ∈ AM . If the functions a, b, f and g are sufficiently smooth, we
can define the first-order adjoint equation via

dP1(s) = −∂H
∂x

s,X(t,x),π(s), π(s), P1(s), Q1(s) ds+Q1(s)dB(s), s ∈ [t, T], (3.25)

with accompanying terminal condition P1(T) = − ∂g
∂x X(t,x),π(T) and the second-order

adjoint equation via

dP2(s) = − 2
∂a

∂x
s,X(t,x),π(s), π(s) P2(s) +

∂b

∂x
s,X(t,x),π(s), π(s)

2

P2(s)

+2
∂b

∂x
s,X(t,x),π(s), π(s) Q2(s)

+
∂2H
∂x2

s,X(t,x),π(s), π(s), P1(s), Q1(s) ds+Q2(s)dB(s), s ∈ [t, T],

(3.26)

with terminal condition P2(T) = − ∂2g
∂x2 X(t,x),π(T) , where ∂b

∂x has to be understood com-
ponentwise.

The SMP states that if there exists an optimal control π∗ ∈ AM with corresponding state
process X(t,x),π∗

and processes P ∗
1 , P

∗
2 ∈ S2(t, T ;R) and Q∗

1, Q
∗
2 ∈ H2(t, T ;Rm) which

satisfy the adjoint equations (cf. Definition 3.14), then π∗ necessarily has to maximize a
Hamiltonian-related function, as defined below, with respect to π ∈ K. However, this is
not the most satisfying formulation, as it is not specified, when we can indeed expect that
solutions to the adjoint equations exist. This is insofar a delicate question, as (3.1), (3.25)
and (3.26) form a system of one forward and two backward SDEs, i.e. they are coupled. At
least it is encouraging that (3.1) is independent of P ∗

1 , Q
∗
1, P

∗
2 and Q∗

2 and the generators
of (3.25) and (3.26) are affine in Q∗

1 and Q∗
2, respectively. In the following, we cite the

assumptions made in [22] which guarantee the solvability of (3.25) and (3.26). In addition
to the assumptions incorporated in the setting of Section 3.1 we require:

26

Assumption 3.15. The functions a, b, f and g are twice continuously differentiable in x
and there exists a constant L ∈ R+ and moduli of continuity w1, w2 : R+

0 → R+
0 such that

the aforementioned functions, each denoted by h, satisfy the following properties:

∀s ∈ [0, T], x1, x2 ∈ R, π1, π2 ∈ K : |h(s, 0, π1)| ≤ L,

|h(s, x2, π2)− h(s, x1, π1)| ≤ L|x2 − x1|+ w1(|π2 − π1|),
|hx(s, x2, π2)− hx(s, x1, π1)| ≤ L|x2 − x1|+ w2(|π2 − π1|) and

|hxx(s, x2, π2)− hxx(s, x1, π1)| ≤ w2(|x2 − x1|+ |π2 − π1|),
where hx and hxx denote the corresponding partial derivatives for notational convenience.

This enables us to formulate the version of the SMP presented in [22]:

Theorem 3.16. Let a minimization problem (cf. Remark 3.17) in the setting of Section
3.1 be given and suppose that Assumption 3.15 holds and there exists an optimal control
π∗ ∈ AM . Then there exist pairs of processes (P ∗

1 , Q
∗
1) and (P ∗

2 , Q
∗
2) which satisfy the

associated adjoint equations (cf. Definition 3.14) and it holds almost surely for almost
every s ∈ [t, T]:

H s,X(t,x),π∗
(s), π∗(s), P ∗

1 (s), Q
∗
1(s) − 1

2
b s,X(t,x),π∗

(s), π∗(s) 2
P ∗
2 (s)

= sup
π∈K

H s,X(t,x),π∗
(s), π, P ∗

1 (s), Q
∗
1(s) +

1

2
b s,X(t,x),π∗

(s), π
2
P ∗
2 (s)

− b s,X(t,x),π∗
(s), π∗(s) b s,X(t,x),π∗

(s), π P ∗
2 (s) ,

(3.27)

which is equivalent to the so-called variational inequality: It holds for every π ∈ K:

H s,X(t,x),π∗
(s), π∗(s), P ∗

1 (s), Q
∗
1(s) −H s,X(t,x),π∗

(s), π, P ∗
1 (s), Q

∗
1(s)

−1

2
b s,X(t,x),π∗

(s), π∗(s) − b s,X(t,x),π∗
(s), π

2

P ∗
2 (s) ≥ 0, a.s. for a.e. s ∈ [t, T].

Proof. We refer to Theorem 3.2 in Chapter 3 of [22] for a proof.

Remark 3.17. Note that we explicitly formulated Theorem 3.16 for a minimization prob-
lem, since the statement in the above form serves as the formal starting point for our
considerations in Section 4.1 with regard to the dual problem. As already discussed in
connection with (3.5), a maximization problem described by (3.3) and (3.4) can easily be
transformed into a minimization problem with “gain functions” −f and −g, and vice versa.
Hence, by defining the generalized Hamiltonian for a maximization problem H analogously
to (3.24) via

H(t, x, π, y, z) := a(t, x, π)y + b (t, x, π)z + f(t, x, π), (3.28)

for all (t, x, π, y, z) ∈ [0, T]× R×K × R× Rm, the first-order adjoint equation becomes

dP1(s) = −∂H
∂x

s,X(t,x),π(s), π(s), P1(s), Q1(s) ds+Q1(s)dB(s), s ∈ [t, T], (3.29)

with associated terminal condition P1(T) =
∂g
∂x X(t,x),π(T) and similarly for the second-

order case. (3.29) will play an important role in the following subsection.

27

3.3.2 Deriving a Maximum Principle by Means of the Dynamic Programming
Approach

The aim of this subsection is to show that if certain additional requirements are fulfilled
and π∗ is an optimal control, then v s,X(t,x),π∗

(s)
s∈[t,T]

is a solution to a BSDE which

is coupled with (3.1) and (3.29) and π∗ maximizes the classical Hamiltonian in a suitable
sense (cf. (3.44) below). Hence, solving control problems with the deep controlled 2BSDE
algorithm essentially consists of solving a system of one forward and two backward SDEs
and making sure that a maximum condition holds. At first, we formulate assumptions
which guarantee that the generator of (3.29) is well-defined and which are necessary for
the derivation of the HJB equation in the points s,X(t,x),π∗

(s) , s ∈ [t, T], (cf. (3.33)).

Assumption 3.18. The generalized Hamiltonian of the considered control problem H is
differentiable with respect to x, which is determined by the corresponding property of a, b
and f . Furthermore, AM is chosen such that for all π ∈ AM , x ∈ R and n ∈ N:

sup
t∈[0,T]

sup
y∈[x−n,x+n]

a t, y, π(s)
s∈[0,T]

∈ H1(0, T ;R) and

sup
t∈[0,T]

sup
y∈[x−n,x+n]

b t, y, π(s)
s∈[0,T]

∈ H2(0, T ;R)
(3.30)

hold, where H1(0, T ;R) is defined analogously to (3.21). Moreover, all constant controls
are required to be admissible.

Note that we assumed the boundedness of f in Section 3.1. If we intend to relax this
assumption, we have to impose in Assumption 3.18 the same requirements on f as on a.
In the following example, we briefly discuss Assumption 3.18 in the light of the utility
maximization problem and its dual problem (with r, µ and σ being deterministic).

Example 3.19. Since the processes r, µ and σ are deterministic, we observe that (2.3) is
of the structure (3.1) with a1(t, x, π) := x(r(t) + π σ(t)θ(t)) and b1(t, x, π) := xσ (t)π for
every (t, x, π) ∈ [0, T] × R × K. Therefore, the associated generalized Hamiltonian is for
every (t, x, π, y, z) ∈ [0, T]× R×K × R× Rm given by

H1(t, x, π, y, z) := x (r(t) + π σ(t)θ(t))y + xπ σ(t)z. (3.31)

The set of admissible strategies is defined by AM,1 := A, cf. (2.2). Since f ≡ 0 holds in
this setup, the differentiability of H1 with respect to x follows directly from the respective
properties of a1 and b1. Clearly, a1 and b1 are bounded in t, i.e. the functions a1(·, x, π)
and b1(·, x, π) are bounded for every (x, π) ∈ R × K, as this also holds for r, θ and σ,
respectively. It is an immediate consequence of (2.2) that all constant controls are admis-
sible. Moreover, the integrability properties (3.30) hold due to a1 and b1 being continuous
in x, the compactness of [x−n, x+n], the boundedness of a1 and b1 in t, π ∈ H2(0, T ;Rm)
according to (2.2) and the fact that L2 ⊆ L1 holds for finite measure spaces.
With arguments similar to above, we obtain that (2.12) from the dual problem is also of
the form (3.1) with a2(t, x, π) := −x (r(t) + δK(π)) and b2(t, x, π) := −x (θ(t) + σ−1(t)π)
for every (t, x, π) ∈ [0, T] × R × K and AM,2 := D, cf. (2.13). It follows with arguments

28

analogous to above that all the requirements from Assumption 3.18 are also fulfilled by
the dual problem. In particular, we can conclude that all constant control processes are
admissible as they are required to map to the set K. Therefore, the support function is
necessarily finite for these processes. Since we have f ≡ 0 here, it follows that (3.24) and
(3.28) agree. Hence, we can denote the generalized Hamiltonian by H2 in this case. For
every (t, x, π, y, z) ∈ [0, T]× R×K × R× Rm it is explicitly given by

H2(t, x, π, y, z) := −x (r(t) + δK(π))y − x θ(t) + σ−1(t)π z. (3.32)

Hence, in conclusion, Assumption 3.18 is not restrictive with respect to the constrained
utility maximization problem and its associated dual problem. This is insofar satisfying as
these problems are also the main focus of this thesis.

The next lemma presents conditions in connection with Assumption 3.18 which guarantee
that the value function almost surely satisfies the HJB equation in the points s,X(t,x),π∗

(s) ,
s ∈ [t, T]. Moreover, it shows that an optimal control maximizes the Hamiltonian in the
sense of (3.20).

Lemma 3.20. Let a maximization problem in the setting of Section 3.1 with value function
v be given and suppose that Assumption 3.18 holds and v ∈ C1,2([0, T]×R). Then it follows
that v satisfies (3.13). Furthermore, consider the problem starting in (t, x) and assume that
there exists an optimal control π∗ ∈ AM . If v, in addition, satisfies a polynomial growth
condition of order k ∈ N, cf. (3.19), and X(t,x),π∗ ∗

(T) ∈ Lk holds for the corresponding
state process then v necessarily satisfies the following equation which is closely related to
the associated HJB equation (cf. Definition 3.6):

0 = − sup
π∈K

H s,X(t,x),π∗
(s), π,

∂v

∂x
s,X(t,x),π∗

(s) ,
∂2v

∂x2
s,X(t,x),π∗

(s)

−∂v

∂t
s,X(t,x),π∗

(s) , a.s. for a.e. s ∈ [t, T].

(3.33)

Moreover, π∗ satisfies almost surely for almost every s ∈ [t, T]:

H s,X(t,x),π∗
(s), π∗(s),

∂v

∂x
s,X(t,x),π∗

(s) ,
∂2v

∂x2
s,X(t,x),π∗

(s)

= sup
π∈K

H s,X(t,x),π∗
(s), π,

∂v

∂x
s,X(t,x),π∗

(s) ,
∂2v

∂x2
s,X(t,x),π∗

(s) .

(3.34)

Proof. The proof of the first assertion follows from the fact that the assumptions have
precisely been chosen such that the arguments presented in Section 3.2 leading to (3.13)
work. In particular, (3.30) ensures that the occurring stochastic integral is even a true
martingale and that the dominated convergence theorem is applicable.
For the proof of the other claims, we consider a sequence of stopping times (τn)n∈N, where
for each n ∈ N, τn is defined by

τn := inf s ∈ [t, T] : X(t,x),π∗
(s)− x ≥ n ∧ T.

29

Since X(t,x),π∗
has continuous paths, we can conclude that τn T holds almost surely as

n → ∞. We notice that the differentiability of b with respect to x implies its continuity
in x. Therefore, (3.30) implies that the expectation of the integral with respect to B
resulting from the application of Itô’s formula to v τn, X

(t,x),π∗
(τn) is zero as X(t,x),π∗ τn

is bounded. Hence, by using the optimality of π∗, the definition of H, expanding additively
and taking the expectation we obtain

J(t, x, π∗)
(1)
= v(t,x) = E v τn, X

(t,x),π∗
(τn) + E

τn

t
f s,X(t,x),π∗

(s), π∗(s) ds

−E
τn

t
H s,X(t,x),π∗

(s), π∗(s),
∂v

∂x
s,X(t,x),π∗

(s) ,
∂2v

∂x2
s,X(t,x),π∗

(s)

+
∂v

∂t
s,X(t,x),π∗

(s) ds

(2)

≥ E v τn, X
(t,x),π∗

(τn) + E
τn

t
f s,X(t,x),π∗

(s), π∗(s) ds

−E
τn

t
sup
π∈K

H s,X(t,x),π∗
(s), π,

∂v

∂x
s,X(t,x),π∗

(s) ,
∂2v

∂x2
s,X(t,x),π∗

(s)

+
∂v

∂t
s,X(t,x),π∗

(s) ds

(3)

≥ E v τn, X
(t,x),π∗

(τn) + E
τn

t
f s,X(t,x),π∗

(s), π∗(s) ds .

where (3) follows from (3.13). As f is bounded by assumption, v satisfies the polynomial
growth condition (3.19) and X(t,x),π∗ ∗

(T) ∈ Lk holds, we can apply the dominated con-
vergence theorem to the right-hand side of (3) for n → ∞. Because v satisfies the terminal
condition (3.17), the limit corresponds exactly to J(t, x, π∗). Hence, the inequalities (2) and
(3) above become, in fact, equalities as n → ∞. Therefore, by subtracting the real-valued
limit of the right-hand side of (3), i.e. J(t, x, π∗) = v(t, x), and applying the monotone
convergence theorem to the remaining integrals, which is justified by the fact that (3.13)
prevents the integrands from changing sign, we get the following identities:

0 = E
T

t
− sup

π∈K
H s,X(t,x),π∗

(s), π,
∂v

∂x
s,X(t,x),π∗

(s) ,
∂2v

∂x2
s,X(t,x),π∗

(s)

− ∂v

∂t
s,X(t,x),π∗

(s) ds , and

0 = E
T

t
sup
π∈K

H s,X(t,x),π∗
(s), π,

∂v

∂x
s,X(t,x),π∗

(s) ,
∂2v

∂x2
s,X(t,x),π∗

(s)

−H s,X(t,x),π∗
(s), π∗(s),

∂v

∂x
s,X(t,x),π∗

(s) ,
∂2v

∂x2
s,X(t,x),π∗

(s) ds .

The nonnegativity of both integrands implies (3.33) and (3.34), respectively, which con-
cludes the proof.

As already discussed in connection with (3.20), also the converse of the last statement is
true, i.e. if (3.33) and (3.34) hold for π∗ ∈ AM then π∗ is an optimal control. This can be

30

shown by performing calculations and arguments which are analogous to above. Here, (2)
and (3) yield equality by assumption, which shows that equality (1) holds indeed, i.e. π∗

is optimal.

We refer to [22] for an alternative proof of the last statement of Lemma 3.20, which is
performed in the setting of Remark 3.5. The idea is to use a corollary of the DPP in
order to decompose Y := v s,X(t,x),π∗

(s)
s∈[t,T]

into a martingale of the form M :=

E[ξ|F·] and an integral process containing f . The first part can be written as the sum of
a random variable and an integral with respect to our Brownian motion by the martingale
representation theorem. On the other hand, one can apply Itô’s formula to Y as in our
proof above. Comparing these two representations and using the HJB equation leads to
(3.34), as well. Note that this proof concept relies on imposing growth conditions on f
and g (cf. Remark 3.5) and the classical moment estimates for solutions to SDEs, whose
coefficients satisfy certain Lipschitz conditions, in order to guarantee that M is indeed a
martingale. As shown in [22], v always satisfies a polynomial growth condition in this case.
Since the aforementioned results are not applicable to our general setting as introduced in
Section 3.1 (cf. Example 3.3), we have to explicitly make assumptions in our formulation
of Lemma 3.20 which point in this direction.

Note that the arguments presented in our proof of Lemma 3.20 show in particular that π∗

is also optimal in the sense of (3.7). This can be easily seen by applying Itô’s formula to
v τ ∧ τn, X

(t,x),π∗
(τ ∧ τn) for an arbitrary stopping time τ : Ω → [t, T], using (3.33) and

(3.34), taking the expectation and removing the localizing sequence as above.

The next result shows by means of Lemma 3.20 that if some technical properties hold (cf.
(3.35)), Y solves a BSDE whose generator depends on the running gains function f , the
control π∗ and the corresponding solution to (3.1).

Lemma 3.21. Suppose that the assumptions made in Lemma 3.20 hold. By π∗ we de-
note again an optimal control for the control problem with initial pair (t, x) ∈ [0, T] × R.
Moreover, we assume that the technical integrability conditions

Y := v s,X(t,x),π∗
(s)

s∈[t,T]
∈ S2(t, T ;R) and

Z := b s,X(t,x),π∗
(s), π∗(s)

∂v

∂x
s,X(t,x),π∗

(s)
s∈[t,T]

∈ H2(t, T ;Rm)
(3.35)

hold. Then these processes solve the BSDE

dY (s) = −f s,X(t,x),π∗
(s), π∗(s) ds+ Z (s)dB(s), s ∈ [t, T], (3.36)

with associated terminal condition Y (T) = g X(t,x),π∗
(T) .

Proof. At first, it has to be pointed out that the integrability conditions in (3.35) ensure
that Y and Z satisfy at least the technical requirements for being a solution to a BSDE
according to Definition 3.12. Since v is sufficiently smooth by assumption, we can apply
Itô’s formula to Y , from which we obtain for s ∈ [t, T]:

dY (s) =
∂v

∂t
s,X(t,x),π∗

(s) + Lπ∗(s)v s,X(t,x),π∗
(s) ds+ Z (s)dB(s),

31

where we used (3.10) and the definition of Z. Expanding the finite variation part additively
by ±f s,X(t,x),π∗

(s), π∗(s) ds and substituting for the partial derivative with respect to t
according to (3.33), which is justified by Lemma 3.20, leads to

dY (s) = H s,X(t,x),π∗
(s), π∗(s),

∂v

∂x
s,X(t,x),π∗

(s) ,
∂2v

∂x2
s,X(t,x),π∗

(s)

− sup
π∈K

H s,X(t,x),π∗
(s), π,

∂v

∂x
s,X(t,x),π∗

(s) ,
∂2v

∂x2
s,X(t,x),π∗

(s) ds

−f s,X(t,x),π∗
(s), π∗(s) ds+ Z (s)dB(s), s ∈ [t, T].

(3.37)

Again by Lemma 3.20, π∗ maximizes the Hamiltonian in the sense of (3.34). Hence, the
expression within the square brackets in (3.37) vanishes (a.s. for a.e. s ∈ [t, T]), which
shows (3.36). Finally, we obtain Y (T) = v T,X(t,x),π∗

(T) = g X(t,x),π∗
(T) from the

definition of Y , where the last equality is an immediate consequence of v satisfying the
terminal condition (3.17). Therefore, the pair Y , Z indeed solves the above BSDE, which
concludes the proof.

Note that we could again conclude the required integrability properties for Y and Z, if v,
∂v
∂x and |b| satisfy certain growth conditions and suitable moments of X(t,x),π∗ ∗

(T) are
finite, whose order should usually be at least twice as high as the order of the respective
growth conditions.

The following lemma (cf. [19] and [22] for similar results) states that if we require v to be
smoother than in the previous considerations and certain technical integrability conditions
hold, we can explicitly describe solutions to the first-order adjoint BSDE (3.29) by means
of partial derivatives of v, an optimal control π∗ and the associated state process X(t,x),π∗

.

Lemma 3.22. Suppose that the assumptions from Lemma 3.20 hold, v is even an element
of C1,3([0, T]× R) and ∂2v

∂t∂x exists and is continuous. Let an optimal control π∗ ∈ AM for
the control problem starting in (t, x) ∈ [0, T]× R be given. If, in addition, the processes

P :=
∂v

∂x
s,X(t,x),π∗

(s)
s∈[t,T]

and

Q := b s,X(t,x),π∗
(s), π∗(s)

∂2v

∂x2
s,X(t,x),π∗

(s)
s∈[t,T]

(3.38)

are elements of S2(t, T ;R) and H2(t, T ;Rm), respectively, then the pair P ,Q solves the
first-order adjoint equation, which is given by (3.29) for a maximization problem.

Proof. At first, we notice that we can apply Itô’s formula to P , since ∂v
∂x ∈ C1,2([0, T]×R)

holds by assumption. Hence, we obtain for s ∈ [t, T]:

dP (s) =
∂2v

∂t∂x
s,X(t,x),π∗

(s) + a s,X(t,x),π∗
(s), π∗(s)

∂2v

∂x2
s,X(t,x),π∗

(s)

+
1

2
b s,X(t,x),π∗

(s), π∗(s) 2 ∂3v

∂x3
s,X(t,x),π∗

(s) ds+Q (s)dB(s),

(3.39)

32

where we used the definition of Q. Therefore, it remains to show that the expression within
the square brackets can indeed be described by means of −∂H

∂x .

By using (3.12), (3.33) and (3.34), as shown in Lemma 3.20, pointwise for s,X(t,x),π∗
(s) ,

we obtain for every y ∈ R the following result almost surely for almost every s ∈ [t, T]:

0 =
∂v

∂t
s,X(t,x),π∗

(s) +H s,X(t,x),π∗
(s), π∗(s),

∂v

∂x
s,X(t,x),π∗

(s) ,
∂2v

∂x2
s,X(t,x),π∗

(s)

≥ ∂v

∂t
(s, y) +H s, y, π∗(s),

∂v

∂x
(s, y),

∂2v

∂x2
(s, y) .

By viewing the right-hand side of the above inequality for fixed s ∈ [t, T] and ω ∈ Ω (except
for some null sets) as a function of y, we can conclude that X(t,x),π∗

(s) is almost surely
a local maximum in the above sense, because R is an open set. These functions are in
particular differentiable with respect to y due to our differentiability assumptions above
(including Assumption 3.18). Hence, X(t,x),π∗

(s) is a critical point in the above meaning.
This observation together with an application of the chain and the product rule leads to

0 =
∂

∂x

∂v

∂t
(s, y) +H s, y, π∗(s),

∂v

∂x
(s, y),

∂2v

∂x2
(s, y)

y=X(t,x),π∗
(s)

=
∂2v

∂t∂x
s,X(t,x),π∗

(s) + a s,X(t,x),π∗
(s), π∗(s)

∂2v

∂x2
s,X(t,x),π∗

(s)

+
1

2
b s,X(t,x),π∗

(s), π∗(s) 2 ∂3v

∂x3
s,X(t,x),π∗

(s)

+
∂a

∂x
s,X(t,x),π∗

(s), π∗(s)
∂v

∂x
s,X(t,x),π∗

(s) +
∂f

∂x
s,X(t,x),π∗

(s), π∗(s)

+
∂b

∂x
s,X(t,x),π∗

(s), π∗(s) b s,X(t,x),π∗
(s), π∗(s)

∂2v

∂x2
s,X(t,x),π∗

(s) ,

(3.40)

where ∂b
∂x has to be understood componentwise and ∂

∂x in the first line corresponds to
differentiating with respect to y, i.e. the second component, with a slight abuse of notation.
(Note that x is already assigned to the fixed initial value of the state process.) The terms
in the last two rows of (3.40) correspond exactly to

∂H
∂x

s,X(t,x),π∗
(s), π∗(s), P (s), Q(s) . (3.41)

Since (3.40) holds almost surely for almost every s ∈ [t, T], we obtain the following result
from inserting (3.40) and (3.41) into (3.39):

dP (s) = −∂H
∂x

s,X(t,x),π∗
(s), π∗(s), P (s), Q(s) ds+Q (s)dB(s), s ∈ [t, T],

i.e. the pair P ,Q satisfies (3.29). Finally, the terminal condition described in Remark
3.17 is satisfied as well, since v(T, ·) = g holds and we, therefore, obtain from the definition
of the process P :

P (T) =
∂g

∂x
X(t,x),π∗

(T) ,

which completes the proof, as P ,Q ∈ S2(t, T ;R)×H2(t, T ;Rm) holds by assumption.

33

The following theorem combines the results of the previous three lemmata. It forms the
mathematical foundation for the deep controlled 2BSDE algorithm, which shall be formu-
lated in Section 3.4 below.

Theorem 3.23. Let a maximization problem in the setting of Section 3.1 be given with
value function v and suppose that Assumption 3.18 holds, v ∈ C1,3([0, T] × R) and the

partial derivative ∂2v
∂t∂x exists and is even continuous.

Fix (t, x) ∈ [0, T]×R. Assume that there exists an optimal control π∗ ∈ AM for the control
problem starting in (t, x). As usual, we denote by X(t,x),π∗

the corresponding solution to
(3.1). Moreover, if v satisfies a polynomial growth condition, cf. (3.19), of order k ∈ N,
X(t,x),π∗ ∗

(T) ∈ Lk holds and the technical integrability conditions (3.35) and (3.38) are
satisfied, then the processes

X∗ := X(t,x),π∗
(s)

s∈[t,T]
, Y ∗ := v s,X(t,x),π∗

(s)
s∈[t,T]

,

Z∗ :=
∂v

∂x
s,X(t,x),π∗

(s)
s∈[t,T]

and Q∗ :=
∂2v

∂x2
s,X(t,x),π∗

(s)
s∈[t,T]

(3.42)

solve the following coupled system consisting of one forward and two backward SDEs: For
s ∈ [t, T], it is defined via

dX(s) =a s,X(s), π∗(s) ds+ b s,X(s), π∗(s) dB(s),

dY (s) =− f s,X(s), π∗(s) ds+ b s,X(s), π∗(s) Z(s)dB(s),

dZ(s) =− ∂H
∂x

s,X(s), π∗(s), Z(s), b s,X(s), π∗(s) Q(s) ds

+ b s,X(s), π∗(s) Q(s)dB(s),

(3.43)

with initial condition X(t) = x and terminal conditions Y (T) = g(X(T)) and Z(T) =
∂g
∂x(X(T)). Moreover, π∗ maximizes the Hamiltonian in the following sense almost surely
for almost every s ∈ [t, T]:

H s,X∗(s), π∗(s), Z∗(s), Q∗(s) = sup
π∈K

H s,X∗(s), π, Z∗(s), Q∗(s) . (3.44)

Proof. This follows immediately from (3.1), Lemmata 3.20, 3.21 and 3.22 and observing
that, using the terminology of Lemmata 3.21 and 3.22, Z(s) = b s,X(t,x),π∗

(s), π∗(s) P (s)
holds for s ∈ [t, T].

Note that Theorem 3.23 can also be interpreted as a “maximum principle” as the statement
has a structure similar to Theorem 3.16: Roughly speaking, if an optimal control exists, it
necessarily maximizes a Hamiltonian-type function, namely H, where the other arguments
of H are given by a solution to a system of forward and backward SDEs. A solution can
even be stated explicitly as the dynamic programming approach is applicable thanks to
the smoothness assumptions on v. Clearly, this is a decisive difference compared to the
statement of Theorem 3.16, where an abstract existence result is formulated.

Remark 3.24. Note that Theorem 3.23 is formulated explicitly for maximization problems.
However, we can easily state the corresponding result for minimization problems in the

34

setting of Section 3.1: Again, v denotes the value function. As discussed in connection
with (3.5), −v corresponds to the value function of a maximization problem with running
gains function −f and terminal gain function −g. Hence, we can apply Theorem 3.23 to
this problem, if the prerequisites are met. Except for the different notion of optimality, i.e.
sup vs. inf, the assumptions above are independent of the sign. By using the fact that
sup(−F) = − inf F holds for an arbitrary function F and the definition of the classical
Hamiltonian, we can conclude that, in this case, (3.44) becomes

H s,X∗(s), π∗(s), Z∗(s), Q∗(s) = inf
π∈K

H s,X∗(s), π, Z∗(s), Q∗(s) , (3.45)

where H, Z∗ and Q∗ are defined with respect to v, f and g as in Theorem 3.23. The remain-
ing results of Theorem 3.23 hold equally for the minimization problem, as the consideration
of −v, −f and −g shows: By plugging the explicit solutions (with −v) into (3.43) (with
−f and −g), i.e. the system for the previously constructed maximization problem, and
multiplying by −1, we obtain exactly (3.43) in its original form. Clearly, this also works
for the terminal conditions. Hence, except for replacing (3.44) with (3.45), Theorem 3.23
holds equally for minimization problems.

Remark 3.25. The arguments presented in this chapter are given under the premise that
the prerequisites, e.g. the sufficient smoothness of the value function, are met on the entire
space [0, T]×R, for simplicity. However, these requirements can insofar be weakened as they
only have to be satisfied on a set [0, T]×O, where O is an open set which contains the image
of every possible state process. For example, the state processes in the utility maximization
problem and its dual problem can only attain positive values due to x0, y ∈ R+ and the
structures of their SDEs. Hence, we are only interested in the value function on [0, T]×R+

with the above requirements adapted accordingly.

For notational convenience, all of the above results are presented and proved for one-
dimensional state processes, as this is precisely the case for the utility maximization problem
and its dual problem. However, the dynamic programming approach obviously also works
for problems with d-dimensional state processes which leads to a generalized version of
Theorem 3.23. This is an important observation with regard to our numerical experiments
in Chapter 5, as it allows us to apply the deep controlled 2BSDE algorithm also to problems
with random coefficients which satisfy their own SDEs. Even though those problems are
per se non-Markovian, they can become Markovian, if the wealth process is expanded by
these coefficient processes leading to a multi-dimensional state process. We refer to Section
5.3 for details.

In this setup, we consider an SDE of type (3.1) with deterministic, measurable functions
a : [0, T] × Rd ×K → Rd and b : [0, T] × Rd ×K → Rm×d. Let f : [0, T] × Rd ×K → R
and g : Rd → R be our gain functions. Hence, the value function can be defined on
[0, T]×Rd similarly to (3.4). Motivated by Itô’s formula, the classical Hamiltonian for this
higher-dimensional setup is defined via

H(t, x, π, y, z) := a (t, x, π)y +
1

2
tr b (t, x, π) b(t, x, π)z + f(t, x, π), (3.46)

35

for every (t, x, π, y, z) ∈ [0, T]×Rd×K×Rd×Rd×d. Moreover, the generalized Hamiltonian
is defined by

H(t, x, π, y, z) := a (t, x, π)y + tr b(t, x, π)z + f(t, x, π), (3.47)

for every (t, x, π, y, z) ∈ [0, T]×Rd×K×Rd×Rd×m. It follows under analogous conditions
that if an optimal control for the problem starting in (t, x) ∈ [0, T] × Rd exists, then one
can find processes which solve the system

dX(s) =a s,X(s), π∗(s) ds+ b s,X(s), π∗(s) dB(s),

dY (s) =− f s,X(s), π∗(s) ds+ Z (s) b s,X(s), π∗(s) dB(s),

dZ(s) =−∇xH s,X(s), π∗(s), Z(s), Q(s) b s,X(s), π∗(s) ds

+Q(s) b s,X(s), π∗(s) dB(s),

(3.48)

for s ∈ [t, T], with initial condition X(t) = x and terminal conditions Y (T) = g(X(T)) and
Z(T) = ∇xg(X(T)). As in Theorem 3.23, these processes can even be stated explicitly.
In contrast to (3.42), the partial derivative operators are replaced by ∇x and the Hessian
operator with respect to x, i.e. Hx. Moreover, the Hamiltonian maximization condition
(3.44) also holds in this case. The proof can be carried out by means of the same arguments
as above and the multidimensional version of Itô’s formula. Clearly, this result is equivalent
to Theorem 3.23, if d = 1 holds.

3.4 Formulation of the Deep Controlled 2BSDE Algorithm

The deep controlled 2BSDE algorithm, which was originally formulated in [5], is essentially
an extension of the algorithm proposed in [1] for solving second-order BSDEs. As the
optimal control is in many cases a priori not known, one has to take the optimization
with respect to the control space into consideration as well. As we shall see below, this is
achieved by integrating the Hamiltonian maximization condition (3.44) from Theorem 3.23
(or its generalization, if d > 1) into the algorithm.

At first, we determine an equidistant time discretization (ti)i∈{0,...,N} of [0, T] with step size
Δt := T/N , where N ∈ N is fixed. The processes X, Y and Z are simulated by means of a
discrete-time forward scheme which is based on the Euler-Maruyama method. This leads
to processes (Xi)i∈{0,...,N}, (Yi)i∈{0,...,N} and (Zi)i∈{0,...,N} (cf. (3.51) below). Obviously,
applying this method requires the knowledge of not necessarily optimal processes π and Q,
as well. For every i ∈ {0, . . . , N − 1}, we model π(ti) and Q(ti) as

πi := Nθi,π(Xi) and Qi := Nθi,Q(Xi), (3.49)

respectively, where the neural networks Nθi,π : Rd → Rm and Nθi,Q : Rd → Rd×d are
parameterized by appropriate vectors θi,π and θi,Q. We ensure that every πi is a K-
valued random variable by applying a surjective, almost everywhere differentiable function
mapping to K to the outputs of the final dense layers of the neural networks Nθi,π . We

recall that the set K is precisely given by K for the dual problem. (3.49) implies that
we are only interested in finding a Markovian control. This simplification is not overly

36

restrictive as a result from [18] shows, which states (under additional assumptions) that
an investor cannot perform better by using more general progressively measurable control
processes. Moreover, the process Q∗ from Theorem 3.23 (and similarly its generalization
for d > 1) suggests that it is plausible to model Q(ti) as a function of Xi.

Since we do not know the initial values of Y and Z, we model them by means of variables
y0 and z0 which have to be optimized. Hence, the scheme starts with

X0 := x0, Y0 := y0 and Z0 := z0. (3.50)

Let (ΔBi)i∈{0,...,N−1} be a family of i.i.d. m-dimensional, centered normally distributed
random vectors with covariance matrix Δt · Im. For every i ∈ {0, . . . , N − 1}, we can then
define inductively:

Xi+1 :=Xi + a(ti, Xi, πi)Δt+ b (ti, Xi, πi)ΔBi,

Yi+1 :=Yi − f(ti, Xi, πi)Δt+ Zi b (ti, Xi, πi)ΔBi,

Zi+1 :=Zi −∇Hx ti, Xi, πi, Zi, Qi b (ti, Xi, πi) Δt+Qi b (ti, Xi, πi)ΔBi,

(3.51)

which corresponds to a discretized version of (3.48). As the processes Y and Z have to
satisfy certain terminal conditions according to Theorem 3.23 and its generalization, we
have to ensure that the parameters which are not used for the control, i.e. y0, z0 and θi,Q
for i ∈ {0, . . . , N − 1}, minimize the corresponding squared L2-error

L2BSDE(y0, z0, θ0,Q, . . . , θN−1,Q) := E YN − g(XN)
2
+ ZN −∇xg(XN)

2
. (3.52)

Furthermore, we are required to maximize the Hamiltonian (cf. (3.44)), i.e. we intend to
minimize for every i ∈ {0, . . . , N − 1}:

Li
control(θi,π) := −E H ti, Xi, πi, Zi, Qi , (3.53)

where we use the expectation operator for simplicity as we consider only a finite number
of trajectories in each optimization step and the algorithm almost surely works with a
trajectory at most once (cf. Algorithm 1). If the studied problem is a minimization
problem, then we have to remove the negative sign on the right-hand side of (3.53) (cf.
Remark 3.24).

In the case of the dual problem, the above procedure only solves the part problem (3.5) for
a fixed parameter value y ∈ R+ which replaces x0 in (3.50) above. However, in the spirit of
(3.6), we can likewise model the initial value of (Xi)i∈{0,...,N} as a trainable variable which
needs to be optimized with respect to the loss function

Ldual(y) := E U(XN) + x0y. (3.54)

Note that XN implicitly depends on the parameter y.

After randomly initializing the parameters, the deep controlled 2BSDE algorithm generates
a fixed number of realizations of (ΔBi)i∈{0,...,N−1}, i.e. a batch of size bsize, for every

37

training step and updates the parameters with respect to the above loss functions, where
the expectation operator is replaced by the sample mean. For each loss function, the
updates are performed by means of one step of a stochastic gradient descent algorithm. In
the following pseudocode (cf. Algorithm 1), we summarize the structure of the algorithm
by describing a full training step. This procedure is supposed to be repeated until the
parameters seem to have converged. Note that we already use the updated parameters
from previous substeps for the optimization substeps in connection with (3.53) and (3.54),
respectively. This should facilitate convergence. We close this section with a remark on
the network architectures of Nθ0,π and Nθ0,Q , respectively.

Remark 3.26. By the definition of our filtration, random variables which are measurable
with respect to F0 have to be almost surely constant. Hence, it is sufficient to model π(0)
and Q(0) by means of trivial neural networks which merely consist of a bias vector. This
becomes even clearer, if we combine the ansatz (3.49) with X0 being deterministic. Hence,
a more complex network architecture would not improve the result while still increasing
the dimensionality of the problem.

38

Algorithm 1 One training step of the deep controlled 2BSDE algorithm

1: Generate bsize realizations of (ΔBi)i∈{0,...,N−1};
2: // Substep 1: Minimizing L2BSDE

3: Initialize according to (3.50) for every j ∈ {1, . . . , bsize} (dual: Xj
0 = y);

4: for i = 0, 1, . . . , N − 1 do
5: for j = 1, 2, . . . , bsize do
6: Calculate πj

i and Qj
i by means of (3.49);

7: Use (3.51) in order to obtain Xj
i+1, Y

j
i+1 and Zj

i+1;
8: end for
9: end for

10: loss1 ← 1
bsize

bsize
j=1 Y j

N − g(Xj
N)

2
+ Zj

N −∇xg(X
j
N)

2
;

11: Update y0, z0, θ0,Q, . . . , θN−1,Q with one step of an SGD algorithm w.r.t. loss1;
12: // Substep 2: Minimizing Li

control for every i ∈ {0, . . . , N − 1}
13: for i = 0, 1, . . . , N − 1 do
14: for j = 1, 2, . . . , bsize do
15: if i==0 then
16: Initialize Xj

0 (dual: Xj
0 = y), Y j

0 and Zj
0 according to (3.50);

17: else
18: Use (3.51) in order to obtain Xj

i , Y
j
i and Zj

i ;
19: end if
20: Calculate πj

i and Qj
i by means of (3.49);

21: end for
22: if problemtype == max then
23: loss2i ← − 1

bsize

bsize
j=1 H ti, X

j
i , π

j
i , Z

j
i , Q

j
i ;

24: else
25: loss2i ← 1

bsize

bsize
j=1 H ti, X

j
i , π

j
i , Z

j
i , Q

j
i ;

26: end if
27: Update θi,π with one step of an SGD algorithm w.r.t. loss2i;
28: end for
29: // Substep 3: Minimizing Ldual

30: if problem == dual then
31: Initialize Xj

0 with y for every j ∈ {1, . . . , bsize};
32: for i = 0, 1, . . . , N − 1 do
33: for j = 1, 2, . . . , bsize do
34: Calculate πj

i by means of (3.49);

35: Use (3.51) in order to obtain Xj
i+1;

36: end for
37: end for
38: loss3 ← 1

bsize

bsize
j=1 U(Xj

N) + x0y;
39: Update y with one step of an SGD algorithm w.r.t. loss3;
40: end if

39

4 The Deep SMP and the Deep Primal SMP
Algorithm in a Non-Markovian Setting

In this chapter, we consider the utility maximization problem and its dual problem, as
introduced in Chapter 2, in its full generality. Hence, in contrast to the setting of Chapter
3, r, µ and σ are allowed to be random here, i.e. dependent on ω. This implies that
the dynamic programming approach is not necessarily applicable, as already mentioned in
Chapter 3. However, considering whether we can prove stochastic maximum principles for
both problems might be worthwhile as there are several such results in the literature which
also work for random coefficients. For example, [3] finds an SMP for problems with random
coefficients, where the drift and the diffusion coefficient of the state process Xπ are affine
in π and Xπ. Unfortunately, this does not hold for our problem, as (2.3) shows.

The aim of the following considerations is proving stochastic maximum principles for the
utility maximization problem and its dual problem, respectively, where a simplified version
of Theorem 3.16 serves as the formal starting point. In [22] it is argued that the purpose
of the adjustment of H (= H, since f ≡ 0) in the maximum condition (3.27) precisely is
ensuring that the adjusted function is concave in π. Moreover, it is pointed out that if H is
already concave in π, then the second-order adjoint equation (3.26) is superfluous. Clearly,
this is the case for the utility maximization problem and its dual problem as (3.31), (3.32)
and the concavity of −δK show. Hence, we intend to prove for both problems a result
similar to Theorem 3.16 with P2 ≡ 0 while also allowing random coefficients. (3.27) will,
therefore, correspond to maximizing H with respect to the control space. Furthermore, we
will see that also the reverse implication holds. We refer to Theorems 4.6 and 4.12 and
Remarks 4.9 and 4.15 below for details. Note that we are going to weaken Definition 3.12
in the following insofar as we require from a potential solution (Y, Z) to a BSDE only that
the right-hand side of (3.23) is well-defined. This is in line with [1, 6, 8, 21]. Alternatively,
we could simply require the necessary integrability conditions as in Theorem 3.23.
Moreover, it follows from (3.31) and (3.32) that the corresponding first-order adjoint equa-
tions are for t ∈ [0, T] given by

dp1(t) = − r(t) + π (t)σ(t)θ(t) p1(t) + π (t)σ(t)q1(t) dt+ q1(t)dB(t), (4.1)

with associated terminal condition p1(T) = −U Xπ(T) for the utility maximization prob-
lem and

dp2(t) = r(t) + δK(v(t)) p2(t) + θ(t) + σ−1(t)v(t) q2(t) dt+ q2(t)dB(t), (4.2)

with terminal condition p2(T) = −U Y (y,v)(T) for the accompanying dual problem.

As motivated above, we begin this chapter by proving a stochastic maximum principle for

40

the dual problem in great detail. As we shall see below, Section 4.1 will pave the way for
the formulation of the deep SMP algorithm in Section 4.4. Moreover, we derive a similar
result for the primal problem in Section 4.2, namely Theorem 4.12. This result can be used
on the one hand for formulating an algorithm made-to-measure for the primal problem
(cf. Section 4.5) and on the other hand, as done in Section 4.3, for proving a relationship
with the solution to the corresponding dual problem. This justifies applying the deep SMP
algorithm also for solving the primal problem.
The first three sections are based on the results found in [16], which partially rely on
arguments presented in [15] and [21], respectively. In the following, we place great emphasis
on carrying out the proofs in great detail and removing mistakes from the presentation in
[16]. In the case of Theorem 4.12, this leads to a formulation which differs fundamentally
from the original result. We refer to Remarks 4.7, 4.8 and 4.13 for details and other major
changes. The deep SMP algorithm was originally formulated in [5].

4.1 A Stochastic Maximum Principle for the Dual Problem

At first, we derive the aforementioned result for the dual problem as it is the key to the
deep SMP algorithm. We are going to need the following technical assumption:

Assumption 4.1. Suppose that U Y (y,v)(T) ∈ L2 holds for any admissible pair (y, v) ∈
D, where Y (y,v) denotes the solution to the corresponding SDE (2.12), as usual.

Remark 4.2. The motivation for formulating Assumption 4.1 as above is a result from
[15] which guarantees that there exists an optimal pair (y∗, v∗) for the dual problem, if,
in addition, Assumption 2.2, U(0) > −∞, U(∞) = ∞ and V ∈ R (cf. (2.5)) hold.
Alternatively, we could directly require the integrability condition which is needed for the
second part of Lemma 4.3, as it is done for Lemma 4.11 in Section 4.2.

The first auxiliary result ensures that, in the setting of Theorem 4.6, there always exists a
pair solving (4.2) and satisfying the prerequisites. Hence, it is guaranteed that Theorem
4.6 does not correspond to a statement on the empty set.

Lemma 4.3. Consider a fixed pair (y, v) ∈ D and suppose that Assumptions 2.2 and
4.1 and either, using the notation of Lemma 2.7, U(0) > −∞ or U = log hold. Then
Y (y,v)(T)U Y (y,v)(T) ∈ L2 and there exists a solution (p2, q2) to (4.2) such that p2Y

(y,v)

is a martingale.

Proof. Following the argument presented in [16], we obtain for z ∈ R+ and the constants
β, γ from Lemma 2.8 (iii):

U(z)− U(∞) ≥ U(z)− U(β−1z) = −
β−1z

z
U (s)ds ≥ −(β−1z − z)U (β−1z)

≥ −1− β

βγ
zU (z),

(4.3)

where we used the monotonicity of U and U from Lemma 2.7 (ii) in the first line. The last
inequality follows from Lemma 2.8 (iii) and −U = I according to Lemma 2.7 (iv). As the

41

right-hand side of (4.3) is nonnegative, the relation remains valid after squaring each side.
Hence, the proof of the first claim under the first set of assumptions can be completed by
plugging Y (y,v)(T) into the squared version of (4.3) and using U(∞) = U(0) (cf. Lemma
2.7 (vi)) and Assumption 4.1. If U = log, then U is given by − log−1 according to Example
2.9. Hence, we obtain Y (y,v)(T)U Y (y,v)(T) ≡ −1, which, therefore, lies in L2.

Due to our previous considerations, M := E −Y (y,v)(T)U Y (y,v)(T) Ft t∈[0,T]
defines a

square-integrable martingale. We obtain from the martingale representation theorem that
there exists a continuous version of this martingale which can be written as V := M0+W•B,
where W ∈ H2(0, T ;Rm) is unique. Hence, (V,W) is the unique solution to

dV (t) = W (t)dB(t), t ∈ [0, T], V (T) = −Y (y,v)(T)U Y (y,v)(T) .

Obviously, V/Y (y,v) satisfies the terminal condition of the first-order adjoint equation.
Therefore, it remains to show that we can choose q2 such that (4.2) holds as well. Since
Y (y,v) is strictly positive, an application of Itô’s formula to p2 := V/Y (y,v) leads to

dp2(t) = p2(t) r(t) + δK(v(t)) + p2(t) θ(t) + σ−1(t)v(t)
2

+ θ(t) + σ−1(t)v(t)
W (t)

Y (y,v)(t)
dt+ p2(t) θ(t) + σ−1(t)v(t) +

W (t)

Y (y,v)(t)
dB(t),

t ∈ [0, T]. Hence, defining the process q2 for t ∈ [0, T] via

q2(t) := p2(t) θ(t) + σ−1(t)v(t) +
W (t)

Y (y,v)(t)
,

reduces the equation above exactly to (4.2), i.e. (p2, q2) solves the first-order adjoint equa-
tion. By construction, we have p2 Y

(y,v) = V , which is a martingale.

Furthermore, we are going to need an easy, albeit important, result on the concavity/con-
vexity of the composition of concave and convex functions, respectively, if certain mono-
tonicity properties hold.

Lemma 4.4. Let A,B ⊆ R be convex sets and consider a convex, nonincreasing function
f : B → R and a concave function g : A → R, such that g(A) ⊆ B holds. Then f ◦ g is a
convex function on A. Moreover, if f is nondecreasing and concave and g is again concave,
then f ◦ g is concave.

Proof. Fix arbitrary numbers a1, a2 ∈ A and λ ∈ [0, 1]. By using the concavity of g and
the monotonicity of f in (1) and the convexity of f in (2) we obtain

f g λa1 + (1− λ)a2
(1)

≤ f λg(a1) + (1− λ)g(a2)
(2)

≤ λf(g(a1)) + (1− λ)f(g(a2)).

The second claim follows as the relations (1) and (2) are precisely reversed in this case.

If f and g were supposed to be twice differentiable, the above result would follow immedi-
ately from differentiating. The next lemma shows that for a given progressively measurable

42

process Y there exists another progressively measurable process Z such that Z and δK(Z)
are bounded and Z(t) attaining 0 characterizes Y (t) being K-valued. Since we have 0 ∈ K
by assumption, we obtain in particular that δK is bounded from below (by 0). Hence, the
results presented in [11] are valid for our setting.

Lemma 4.5. Let a closed, convex set K ⊆ Rm containing 0 be given and define δK as in
(2.9). Consider a progressively measurable process Y : Ω× [0, T] → Rm. Then there exists
a progressively measurable process Z : Ω× [0, T] → Rm such that it holds almost surely for
every t ∈ [0, T]:

Z(t) ≤ 1 and δK(Z(t)) ≤ 1,

Y (t) ∈ K ⇐⇒ Z(t) = 0 and

Y (t) /∈ K ⇐⇒ δK(Z(t)) + Y (t)Z(t) < 0.

Proof. See Lemma 4.2 in Chapter 5 of [11].

Note that Z(t) = 0 implies δK(Z(t)) + Y (t)Z(t) = 0. In the following, we summarize the
idea of the proof: The proof relies essentially on

y ∈ K ⇐⇒ ∀x ∈ K : δK(x) + y x ≥ 0 , (4.4)

where K := {x ∈ Rm | δK(x) < ∞}, which is an immediate consequence of −K correspond-
ing exactly to the intersection of all closed half-spaces containing −K (cf. [20]). Consider
an exhaustion (Kn)n∈N of K by compact subsets. The crucial part of the proof is an
application of a version of the Dubins-Savage measurable selection theorem for lower semi-
continuous functions (cf. [2]) in order to obtain for all n ∈ N a Borel-measurable selection
function ϕn : Rm → Kn such that x∗y := ϕn(y) minimizes δK(x) + y x in x ∈ Kn for every
y ∈ Rm. Clearly, if y ∈ K holds, then δK(ϕn(y)) + y ϕn(y) is nonnegative for every n ∈ N
according to (4.4), whereas, also by (4.4), there exists n(y) ∈ N such that this expression be-
comes negative, if y /∈ K. Hence, these results can be used for defining a Borel-measurable
function ϕ : Rm → K satisfying ϕ(y) = 0 for y ∈ K and δK(ϕ(y)) + y ϕ(y) < 0 for y /∈ K.
Dividing ϕ(Y) by the strictly positive process 1 + |ϕ(Y)| + δK(ϕ(Y)) defines a process Z
with the required properties.

Now that we have these preliminary results at our disposal, we are in position to formulate
and prove the main result which justifies the formulation of the deep SMP algorithm like
in Section 4.4.

Theorem 4.6. Let a dual problem according to Definition 2.11 be given such that Assump-
tions 2.2 and 4.1 and either U(0) > −∞ or U = log hold and consider an admissible pair
(y∗, v∗) ∈ D. Moreover, let Y (y∗,v∗), p∗2 and q∗2 denote processes which solve the following
FBSDE system and assume that p∗2 Y (y∗,v∗) is even a martingale. For t ∈ [0, T]:

dY (y∗,v∗)(t) = −Y (y∗,v∗)(t) r(t) + δK(v∗(t)) dt+ θ(t) + σ−1(t)v∗(t) dB(t) ,

dp∗2(t) = r(t) + δK(v∗(t)) p∗2(t) + θ(t) + σ−1(t)v∗(t) q∗2(t) dt+ q∗2 (t)dB(t),
(4.5)

with initial condition Y (y∗,v∗)(0) = y∗ and terminal condition p∗2(T) = −U Y (y∗,v∗)(T) ,
respectively. Then (y∗, v∗) is optimal in the sense of Definition 2.11 if and only if the

43

following properties are satisfied almost surely for almost every t ∈ [0, T]:

p∗2(0) = x0, (4.6)

p∗−1
2 (t) σ−1 (t)q∗2(t) ∈ K and (4.7)

p∗2(t)δK(v∗(t)) + σ−1(t)v∗(t) q∗2(t) = 0. (4.8)

Proof. Note that Lemma 4.3 ensures that there always exists a pair of processes (p∗2, q∗2)
which solves (4.5) (together with the unique process Y (y∗,v∗) satisfying (2.12)) such that
p∗2 Y (y∗,v∗) is a martingale. For reasons of clarity, we will subdivide the proof into seven
steps. At first, we show that the above conditions are necessarily satisfied by an optimal
control.

Step 1. Necessary Condition: (4.6) is satisfied: Applying the dominated convergence theo-
rem to a sequence of difference quotients of a function which maps, for fixed v∗,
possible initial conditions to their corresponding expected terminal “gains”.

Let (y∗, v∗) ∈ D be an optimal pair. Then we can define a function h : R+ → R by
h(z) := x0zy

∗ + E U zY (y∗,v∗)(T) for each z ∈ R+. Note that this function is well-

defined due to (zy∗, v∗) ∈ D (cf. (2.13)), Assumption 4.1 and zY (y∗,v∗) = Y (zy∗,v∗), which
follows from the fact that solutions to (2.12) are stochastic exponentials. Since (y∗, v∗) is
optimal, we can conclude that h has a global minimum in z = 1 which is also a local one
due to the openness of R+. Hence, differentiability in z = 1, in particular for the second
summand, would be favorable in order to obtain a stationary point. An application of the
dominated convergence theorem shows that this holds indeed:
Let δ ∈ R+ be small and fixed. It suffices to consider h in a neighborhood of 1, i.e.
h|(1−δ,1+δ). Obviously, thanks to Lemma 2.7 (ii), U zY (y∗,v∗)(T) is differentiable in z for

an arbitrary, but fixed ω ∈ Ω with derivative Y (y∗,v∗)(T)U zY (y∗,v∗)(T) . Moreover, we

obtain from the considerations above and Assumption 4.1 that U zY (y∗,v∗)(T) ∈ L1 holds

for any z ∈ (1− δ, 1+ δ). Finally, we can conclude from U < 0 and the convexity of U (cf.
Lemma 2.7 (ii)) that the following estimate holds pointwise for any z ∈ (1− δ, 1 + δ):

Y (y∗,v∗)(T)U zY (y∗,v∗)(T) ≤ −Y (y∗,v∗)(T)U (1− δ)Y (y∗,v∗)(T) , (4.9)

where the majorant on the right-hand side lies in L1 due to (1−δ)y∗, v∗ ∈ D and Lemma
4.3. Note that finding a majorant in the sense of (4.9) suffices for applying the dominated
convergence theorem to a sequence of difference quotients, as in our case, due to the mean
value theorem. Hence, h is differentiable in z = 1, which, therefore, is a stationary point.
As the above procedure additionally yields h (1) explicitly, we obtain

x0 y
∗ + E Y (y∗,v∗)(T)U Y (y∗,v∗)(T) = 0.

As p∗2 Y (y∗,v∗) is a martingale by assumption (cf. Lemma 4.3) and F0 is P-trivial, we can
conclude that the second summand corresponds to −p∗2(0)y∗. This proves (4.6).

Step 2. Necessary Condition: (4.7) is satisfied: [0, 1] ε → U Y (y∗,v∗+ε(v−v∗))(T) is
convex for certain pairs (y∗, v) ∈ D and almost every ω ∈ Ω.

Fix an arbitrary pair (y∗, v) ∈ D which satisfies (y∗, v − v∗) ∈ D (cf. Remark 4.7). Hence,

44

the initial condition agrees in particular with the one associated with our optimal pair. We
denote the function described in the summary of Step 2 above as Φv, where ω is omitted
for notational convenience. Clearly, Φv is well-defined as convex combinations of admissible
control processes are again admissible. This is an immediate consequence of the convexity
of δK (cf. Remark 2.10) and the integrability properties in the definition of D. Hence, the
corresponding SDE (2.12) admits a unique solution which is a stochastic exponential. At
time T it is precisely given by

Y (y∗,v∗+ε(v−v∗))(T) = y∗ exp −
T

0
r(t) + δK v∗(t) + ε(v(t)− v∗(t)) dt

− 1

2

T

0
θ(t) + σ−1(t) v∗(t) + ε(v(t)− v∗(t)) 2

dt

−
T

0
θ(t) + σ−1(t) v∗(t) + ε(v(t)− v∗(t)) dB(t)

This representation allows us to conclude that gv(ε) := log Y (y∗,v∗+ε(v−v∗))(T) is concave
in ε due to the concavity of ε → Cε2 with C ≤ 0, the linearity of (stochastic) integrals and
the convexity of δK , which is preserved, if the input is transformed by an affine function.
This is certainly the case, if the integrals in the above representation are finite, which holds
for almost every ω ∈ Ω due to the definition of D. Moreover, we obtain from (2.8) and
Lemma 2.8 (ii) that U ◦ exp is nonincreasing and convex on R. Therefore, Lemma 4.4
shows that Φv = U ◦ exp ◦gv is indeed a convex function.

Step 3. Necessary Condition: (4.7) is satisfied: Find for each ε ∈ (0, 1) an upper estimate
for the difference quotient of Φv over [0, ε] such that the resulting sequence conver-
ges for ε 0.

Let ΔεΦv denote the difference quotient of Φv over [0, ε]. From the convexity of Φv we
conclude that ΔεΦv ε∈(0,1) is increasing in ε, which will allow us to apply the reverse

Fatou lemma in the following. Note that it is in general not easy to obtain an explicit
expression for limε 0ΔεΦv since it depends on δK , if it exists, which is linked to the
existence of maximizers in (2.9). However, we can circumvent this issue by considering
a suitable sequence which lies for every ε ∈ (0, 1) above ΔεΦv and whose limit can be
calculated rather easily. This suffices for proving (4.7), as we shall see later.
Similar to [16], define Hv,ε as the logarithm of Y (y∗,v∗)/Y (y∗,v∗+ε(v−v∗)), i.e. for t ∈ [0, T]
we obtain from the explicit representation presented in Step 2 :

Hv,ε(t) =
t

0
δK v∗(s) + ε(v(s)− v∗(s)) − δK v∗(s) ds+ ε

t

0
θ (s)σ−1(s) (v(s)− v∗(s))ds

+ ε
t

0
v∗ (s) σ−1 (s)σ−1(s) (v(s)− v∗(s))ds+

1

2
ε2

t

0
σ−1(s) (v(s)− v∗(s)) 2

ds

+ ε
t

0
σ−1(s) (v(s)− v∗(s)) dB(s).

Since δK is subadditive and positive homogeneous, it follows that an upper estimate for the
integrand in the first integral is given by εδK v(s)−v∗(s) . Hence, because (y∗, v−v∗) ∈ D

45

holds by assumption, this adjusted process can be differentiated at ε = 0 quite effortlessly
(for fixed ω ∈ Ω, except for a null set). This leads to a process Hv which is defined by

Hv(t) :=
t

0
δK v(s)− v∗(s) + θ (s)σ−1(s) (v(s)− v∗(s))

+ v∗ (s) σ−1 (s)σ−1(s) (v(s)− v∗(s)) ds+
t

0
σ−1(s) (v(s)− v∗(s)) dB(s),

t ∈ [0, T]. By expanding the quotient in the definition of ΔεΦv in the spirit of the chain
rule we obtain for ε ∈ (0, 1):

ΔεΦv =
U Y (y∗,v∗+ε(v−v∗))(T) − U Y (y∗,v∗)(T)

Y (y∗,v∗+ε(v−v∗))(T)− Y (y∗,v∗)(T)
Y (y∗,v∗)(T)

exp −Hv,ε(T) − 1

ε
. (4.10)

Note that the aforementioned upper estimate of Hv,ε(T) serves the same purpose in (4.10)

as the first quotient is negative due to the monotonicity of U according to Lemma 2.7 (ii).
Therefore, we obtain that the estimate for the last quotient converges almost surely to
−Hv(T), if we send ε towards 0. As in our previous considerations, it is essential that the
occurring integrals are almost surely finite, which is guaranteed by the admissibility of v∗,
v and v − v∗ and the estimate ab ≤ 0.5(a2 + b2), where a, b are arbitrary real numbers.
Furthermore, it holds that Y (y∗,v∗+ε(v−v∗))(T) converges almost surely to Y (y∗,v∗)(T) for
ε 0. We convince ourselves of this fact by considering the first integral in the explicit
representation (cf. Step 2) as the result clearly holds for the remaining integrals. At first,
we find bounds for the integrand which are independent of ε. For t ∈ [0, T] we have

0
(1)

≤ δK v∗(t) + ε(v(t)− v∗(t))
(2)

≤ (1− ε)δK(v∗(t)) + εδK(v(t))
(1)

≤ δK(v∗(t)) + δK(v(t)),

where (1) and (2) follow from the nonnegativity and the convexity of δK , respectively. (cf.
Remark 2.10) Since the controls v and v∗ are admissible, it follows that the right-hand
side of the previous inequality is integrable with respect to λ|[0,T] for almost every ω ∈ Ω.
Moreover, we obtain from [20] (cf. Theorem 13.2 therein) that δK is lower semicontinuous,
which implies in particular that

δK(v∗(t)) ≤ lim inf
ε 0

δK v∗(t) + ε(v(t)− v∗(t)) (4.11)

holds. On the other hand, we can conclude from the subadditivity property and the positive
homogeneity of δK and the admissibility of v − v∗ that we have almost surely for almost
every t ∈ [0, T]:

lim sup
ε 0

δK v∗(t) + ε(v(t)− v∗(t)) ≤ δK(v∗(t)) + lim sup
ε 0

εδK v(t)− v∗(t) = δK(v∗(t)).

Combining this with (4.11) shows that the considered integrand converges almost every-
where to δK(v∗(t)). Hence, the dominated convergence theorem proves that also the integral
converges (for almost every ω ∈ Ω).
Finally, this shows by means of Lemma 2.7 (ii) that the first quotient in (4.10) converges

46

almost surely towards U Y (y∗,v∗)(T) . Taking the limit superior on both sides of (4.10)
and estimating the right-hand side, as discussed earlier, leads to

lim sup
ε 0

ΔεΦv ≤ −U Y (y∗,v∗)(T) Y (y∗,v∗)(T)Hv(T), a.s., (4.12)

which is essential for Step 4 below.

Step 4. Necessary Condition: (4.7) is satisfied: Localization and an application of the
reverse Fatou lemma.

Consider an arbitrary pair (y∗, v) ∈ D which satisfies (y∗, v−v∗) ∈ D. The aim of this step
is finding a sequence of stopping times converging almost surely to T which guarantees on
the one hand that Hv is square-integrable and on the other hand that a stochastic integral
appearing in Step 5 is even a true martingale up to each of these stopping times. For each
n ∈ N, we define the stopping time

τ vn := inf t ≥ 0 :
t

0
p∗2(s)Y

(y∗,v∗)(s) v(s)− v∗(s) σ−1 (s)dB(s) ≥ n

∧ inf t ≥ 0 : |Hv(t)| ≥ n ∧ T.

(4.13)

Since the process p∗2 Y (y∗,v∗) is continuous, σ−1 is bounded and v − v∗ is L2 with respect
to P ⊗ λ|[0,T] thanks to its admissibility, it follows that the process within the norm in
the first line of (4.13) is a well-defined continuous local martingale. Hence, the first line
defines a localizing sequence for this process such that corresponding stopped process is
bounded for each n ∈ N. A similar argument shows that the stopping time in the second
line localizes the well-defined continuous semimartingale Hv in the same sense as above,
i.e. Hv is locally bounded. Note that the pointwise minimum of two localizing sequences
is a localizing sequence for both processes. Clearly, the continuity is essential such that
τ vn T holds indeed almost surely.
Fix n ∈ N and define vn := ✶[0,τvn]

(v − v∗). Obviously, vn is again admissible due to the
positive homogeneity of δK and ✶[0,τvn] mapping to {0, 1}. Note that ✶[0,τvn] is progressively
measurable because its paths are left-continuous and {ω ∈ Ω | ✶[0,τvn(ω)](t) = 0} = {τ vn <
t} ∈ Ft holds for every t ∈ [0, T] as τvn is in particular a weak stopping time. Replacing
v− v∗ with vn in Step 2 and Step 3 shows that the original arguments work in this case as
well, since the most crucial assumption is the admissibility of the process which is multiplied
by ε. Note that the limit of the estimate for the rightmost quotient in (4.10) is precisely

H
τvn
v (T) (a.s.) here as we additionally obtain the factor ✶[0,τvn] for each integrand. Clearly,

the first quotient in (4.10) converges again almost surely towards U Y (y∗,v∗)(T) because
(2) from Step 3 holds again as ε✶[0,τvn] and 1−ε✶[0,τvn] (understood pointwise) are admissible
weights for a convex combination and ✶[0,τvn]

is bounded. Moreover, define

ΔεΦ
n
v :=

U Y (y∗,v∗+ε✶[0,τvn](v−v∗))(T) − U Y (y∗,v∗)(T)

ε
. (4.14)

Hence, we can conclude from the previous considerations for any n ∈ N:

lim sup
ε 0

ΔεΦ
n
v ≤ −U Y (y∗,v∗)(T) Y (y∗,v∗)(T)Hτvn

v (T), a.s. (4.15)

47

Note that the right-hand side agrees with (4.12) except for the fact that Hv is now stopped
by the stopping time τ vn .
Fix n ∈ N. We recall from Step 3 applied to the modification (4.14) that ΔεΦ

n
v ε∈(0,1) is

increasing in ε. Therefore, this family is almost surely bounded above by

U Y (y∗,v∗+✶[0,τvn](v−v∗))(T) − U Y (y∗,v∗)(T) ,

which lies in L1 due to the admissibility of ✶[0,τvn](v − v∗) and Assumption 4.1. Hence, we
can apply the reverse Fatou lemma, which yields combined with (4.15):

0 ≤ lim sup
ε 0

E ΔεΦ
n
v ≤ E lim sup

ε 0
ΔεΦ

n
v

≤ E − U Y (y∗,v∗)(T) Y (y∗,v∗)(T)Hτvn
v (T) ,

(4.16)

where the first inequality results from the optimality of (y∗, v∗) as all the considered dual
state processes start in y∗. Furthermore, it follows from Lemma 4.3 and (4.13) that the
expectation on the right-hand side of (4.16) is finite since the integrand even lies in L2.

Step 5. Necessary Condition: (4.7) is satisfied: Applying Itô’s formula to the right-hand
side of (4.16) and, finally, Lemma 4.5.

At first, we recall that the continuous process p∗2 Y (y∗,v∗) is even a martingale by assumption.
Therefore, as p∗2 satisfies the terminal condition associated with (4.2), we can conclude for
every t ∈ [0, T]:

p∗2(t)Y
(y∗,v∗)(t) = E − U Y (y∗,v∗)(T) Y (y∗,v∗)(T) Ft , a.s. (4.17)

Hence, p∗2 Y (y∗,v∗) is a modification of the continuous process V ∗ discussed in the proof
of Lemma 4.3. The continuity of both processes implies by means of a standard result,
whose proof essentially relies on the fact that [0, T] ∩ Q is countable and dense in [0, T],
that they are even indistinguishable. This observation enables us to apply Itô’s formula
more efficiently to the process p∗2 Y (y∗,v∗)H

τvn
v as we have already calculated the dynamics

of p∗2 Y (y∗,v∗) in the course of the proof of Lemma 4.3.

d p∗2 Y
(y∗,v∗)Hτvn

v (t) = p∗2(t)Y
(y∗,v∗)(t)✶[0,τvn](t) δK v(t)− v∗(t) + θ (t)σ−1(t) (v(t)− v∗(t))

+ v∗ (t) σ−1 (t)σ−1(t) (v(t)− v∗(t)) dt+ ✶[0,τvn]
(t) σ−1(t) (v(t)− v∗(t)) q∗2(t)Y

(y∗,v∗)(t)

− p∗2(t)Y
(y∗,v∗)(t) θ(t) + σ−1(t)v∗(t) dt+ p∗2(t)Y

(y∗,v∗)(t)✶[0,τvn](t) (v(t)− v∗(t)) σ−1 (t)

+ q∗2(t)Y
(y∗,v∗)(t)− p∗2(t)Y

(y∗,v∗)(t) θ(t) + σ−1(t)v∗(t) Hτvn
v (t) dB(t),

where t ∈ [0, T]. It follows immediately from the definition of τvn in (4.13) that the stochastic
integrals arising from the local martingale part above are even true martingales. In order
to illustrate this for the last term, recall that H

τvn
v is bounded due to (4.13) and for each

t ∈ [0, T]:
q∗2(t)Y

(y∗,v∗)(t)− p∗2(t)Y
(y∗,v∗)(t) θ(t) + σ−1(t)v∗(t)

48

coincides with W ∗(t) from the proof of Lemma 4.3. Hence, the statement follows as
W ∗ ∈ H2(0, T ;Rm) holds. Simplifying the remaining differentials and applying the identity
(CD) = D C for real-valued matrices C, D shows that the finite variation part can be
written as

✶[0,τvn]
(t)Y (y∗,v∗)(t) p∗2(t)δK v(t)− v∗(t) + q∗2 (t)σ−1(t) (v(t)− v∗(t)) dt.

Combining this with the martingale property of the occuring stochastic integrals with
respect to B, H

τvn
v starting in 0 and (4.16) proves

0 ≤ E
τvn

0
Y (y∗,v∗)(t) p∗2(t)δK v(t)− v∗(t) + q∗2 (t)σ−1(t) (v(t)− v∗(t)) dt . (4.18)

We conclude the proof of (4.7) by showing that if (4.7) did not hold, we would have a
contradiction to (4.18). Clearly, p∗−1

2 σ−1 q∗2 is a well-defined, progressively measurable
process since p∗2 is a strictly positive process (cf. (4.17)). Hence, we obtain from Lemma 4.5
that there exists a progressively measurable process v which characterizes p∗−1

2 σ−1 q∗2
taking values in K in the following way:

p∗−1
2 (t) σ−1 (t)q∗2(t) ∈ K ⇐⇒ δK(v(t)) + p∗−1

2 (t)q∗2 (t)σ−1(t)v(t) = 0 and

p∗−1
2 (t) σ−1 (t)q∗2(t) /∈ K ⇐⇒ δK(v(t)) + p∗−1

2 (t)q∗2 (t)σ−1(t)v(t) < 0.
(4.19)

As the processes v and δK(v) are almost everywhere bounded, it follows immediately that
(y∗, v) ∈ D holds (cf. (2.13)). Define v := v∗ + v. Then (y∗, v) is also admissible due to
the subadditivity property of δK . Since we have by construction that also the difference
v − v∗ = v is an admissible dual control, it follows that our previous results are applicable
to (y∗, v). Hence, (4.18) becomes in this case

0 ≤ E
τvn

0
Y (y∗,v∗)(t) p∗2(t)δK v(t) + q∗2 (t)σ−1(t)v(t) dt . (4.20)

If N := (ω, t) ∈ Ω × [0, T] : p∗−1
2 (t) σ−1 (t)q∗2(t) /∈ K was not a P ⊗ λ|[0,T]-null set,

then there would exist a number n∗ ∈ N such that

P⊗ λ|[0,T] N ∩ {(ω, t) ∈ Ω× [0, T] : ✶[0,τvn](t) = 1} > 0 (4.21)

holds as well for every n ∈ N with n ≥ n∗. This is an immediate consequence of τ vn T ,
i.e. ✶[0,τvn] ✶[0,T], almost surely as n → ∞ and the fact that P⊗λ|[0,T] is continuous from

below. Hence, combining (4.19), (4.21) and the fact that p∗2 Y (y∗,v∗) is a strictly positive
process shows that (4.20) cannot hold for n ≥ n∗, which yields the desired contradiction.
Therefore, N has to be a P ⊗ λ|[0,T]-null set. By Fubini’s theorem, this is equivalent to

p∗−1
2 (t) σ−1 (t)q∗2(t) ∈ K being satisfied almost surely for almost every t ∈ [0, T].

Step 6. Necessary Condition: (4.8) is satisfied: Refining the previous steps for the special
case v ≡ 0.

At first, we notice that the arguments presented above are in general not valid for (y∗, 0) ∈ D

49

as−v∗ is possibly not admissible. However, we can adapt the proof such that a result similar
to (4.18) holds in this case as well. The key observation for this purpose is that we have
for every ε ∈ [0, 1] by the positive homogeneity of δK :

δK v∗(t) + ε(v(t)− v∗(t)) = δK (1− ε)v∗(t) = (1− ε)δK v∗(t) . (4.22)

Obviously, the right-hand side defines a convex function of ε. Hence, combining this with
the admissibility of v∗ shows that the conclusion of Step 2 holds. As the expression above
is affine in ε, there is no need for an upper estimate of H0,ε as in Step 3. Except for this
detail, we can proceed analogously to above. Hence, differentiating H0,ε at ε = 0 results in
a process H0 which is defined by

H0(t) :=
t

0
− δK v∗(s) + θ (s)σ−1(s) (−v∗(s)) + v∗ (s) σ−1 (s)σ−1(s) (−v∗(s)) ds

+
t

0
σ−1(s) (−v∗(s)) dB(s), t ∈ [0, T].

Note that H0 is well-defined due to the admissibility of v∗. Furthermore, thanks to (4.22),
the proof of Y (y∗,(1−ε)v∗)(T) → Y (y∗,v∗)(T) almost surely as ε 0 does not require the
admissibility of −v∗ as an assumption. Therefore, we obtain as in Step 3

lim sup
ε 0

ΔεΦ0 ≤ −U Y (y∗,v∗)(T) Y (y∗,v∗)(T)H0(T), a.s. (4.23)

We define a sequence of stopping times (τ0n)n∈N as in (4.13) for v = 0 and H0 as defined
above. Clearly, τ0n T almost surely as n → ∞ holds again due to the admissibility of v∗.
Moreover, it follows from the fact that (4.22) is still true, if we replace ε with ε✶[0,τ0n], that
the localization procedure from Step 4 also works in this case. In particular, we have that
(1− ε✶[0,τ0n])v

∗ is admissible for every ε ∈ [0, 1] and n ∈ N. Therefore, we obtain again by
means of the reverse Fatou lemma (cf. (4.16)):

0 ≤ E lim sup
ε 0

ΔεΦ
n
0 ≤ E − U Y (y∗,v∗)(T) Y (y∗,v∗)(T)H

τ0n
0 (T) . (4.24)

Finally, an application of Itô’s formula as in Step 5 shows that the structure of the dynamics

of p∗2 Y (y∗,v∗)H
τ0n
0 agrees with the one obtained in the original argument, except for replacing

δK − v∗(t) with −δK v∗(t) . This observation is not surprising, if one compares the
dynamics of H0 with Hv from Step 3. Therefore, the analogue of (4.18) is given by

0 ≤ E
τ0n

0
Y (y∗,v∗)(t) − p∗2(t)δK v∗(t) − q∗2 (t)σ−1(t)v∗(t) dt . (4.25)

in this case. This is equivalent to

0 ≥ E
τ0n

0
p∗2(t)Y

(y∗,v∗)(t) δK v∗(t) + p∗−1
2 (t)q∗2 (t)σ−1(t)v∗(t) dt . (4.26)

It follows from the strict positivity of p∗2 Y (y∗,v∗), (4.7), whose proof was carried out inde-
pendently from our current considerations, and the definition of δK that the integrand in

50

(4.26) is nonnegative (up to a P⊗ λ|[0,T]-null set). However, since (4.26) holds as well, we
necessarily obtain the following result for every n ∈ N:

P⊗ λ|[0,T] M ∩ {(ω, t) ∈ Ω× [0, T] : ✶[0,τ0n](t) = 1} = 0, where

M := (ω, t) ∈ Ω× [0, T] : δK v∗(t) + p∗−1
2 (t)q∗2 (t)σ−1(t)v∗(t) = 0 .

(4.27)

Combining this with τ0n T almost surely as n → ∞ and P ⊗ λ|[0,T] being continuous
from below proves that M is a P⊗λ|[0,T]-null set. Hence, Fubini’s theorem applied to ✶Mc

shows that we have almost surely for almost every t ∈ [0, T]:

δK v∗(t) + p∗−1
2 (t)q∗2 (t)σ−1(t)v∗(t) = 0. (4.28)

Finally, transposing the scalars on the left-hand side and multiplying (4.28) by p∗2(t) com-
pletes the proof of (4.8).

Step 7. Sufficient Condition: (y∗, v∗) is optimal: Proving that p∗2 Y (y,v) is a supermartingale

for every (y, v) ∈ D and applying the convexity of U .

We conclude the proof by showing that the three conditions together are even sufficient
for deeming a dual pair optimal. Let (y∗, v∗) ∈ D and the corresponding (unique) state
process Y (y∗,v∗) be given such that (4.6), (4.7) and (4.8) are satisfied together with a pair
(p∗2, q∗2) which solves the dual adjoint equation and achieves that p∗2 Y (y∗,v∗) is a martingale.
Consider an arbitrary, but fixed pair (y, v) ∈ D with associated state process Y (y,v). We
obtain by means of the integration by parts formula for continuous semimartingales

p∗2 Y
(y,v) = p∗2(0)y +

·

0
Y (y,v)(t) r(t) + δK(v∗(t)) p∗2(t) + θ(t) + σ−1(t)v∗(t) q∗2(t) dt

−
·

0
Y (y,v)(t) p∗2(t) r(t) + δK(v(t)) + θ(t) + σ−1(t)v(t) q∗2(t) dt

+
·

0
Y (y,v)(t) − p∗2(t) θ(t) + σ−1(t)v(t) + q∗2 (t) dB(t).

Applying (4.6) and (4.8) and noticing that there are two pairs of terms which cancel each
other out yields

p∗2 Y
(y,v) = x0 y +

·

0
−p∗2(t)Y

(y,v)(t) δK(v(t)) + v(t) p∗−1
2 (t) σ−1 (t)q∗2(t) dt

+
·

0
− p∗2(t)Y

(y,v)(t) θ(t) + σ−1(t)v(t) + Y (y,v)(t)q∗2 (t) dB(t).

(4.29)

Since p∗2 Y (y,v) is a strictly positive (cf. (4.17) and the accompanying arguments for the
strict positivity of p∗2), continuous semimartingale, it admits a representation of the form
p∗2 Y (y,v) = x0y E(Z), where Z is precisely the associated stochastic logarithm

Z = −
·

0
δK(v(t)) + v(t) p∗−1

2 (t) σ−1 (t)q∗2(t) dt

−
·

0
θ(t) + σ−1(t)v(t) − p∗−1

2 (t)q∗2 (t) dB(t) =: A+M.

(4.30)

51

Hence, we obtain p∗2 Y (y,v) = x0y exp(A) exp(M−[M]/2). Moreover, it holds that x0y E(M)
= x0y exp(M−[M]/2) is a local martingale which is even a supermartingale as it is bounded
from below and its starting value x0y is integrable. Furthermore, it follows from (4.7) and
the definition of δK that the integrand of A is nonpositive, i.e. A is decreasing.
Now we are in position to verify that p∗2 Y (y,v) is a supermartingale: Obviously, the process is
adapted. The integrability follows from the boundedness of exp(A) by 1 and the remaining
part being a supermartingale. Fix s, t ∈ [0, T] with s ≤ t. Then we obtain from x0y > 0,
the monotonicity of A and the supermartingale property of the remaining part:

E p∗2(t)Y
(y,v)(t)|Fs ≤ x0y exp(A(s))E E(M)t|Fs ≤ p∗2(s)Y

(y,v)(s).

Hence, p∗2 Y (y,v) is indeed a supermartingale. Since it holds by assumption that p∗2 Y (y∗,v∗)

is even a martingale (starting in x0y
∗ according to (4.6)) we can conclude

x0y
∗ − x0y ≤ E p∗2(T)Y

(y∗,v∗)(T) − E p∗2(T)Y
(y,v)(T)

= E U Y (y∗,v∗)(T) Y (y,v)(T)− Y (y∗,v∗)(T)

≤ E U Y (y,v)(T) − U Y (y∗,v∗)(T) ,

(4.31)

where the last inequality follows from the convexity of U according to Lemma 2.7 (ii).
Rearranging (4.31) yields

x0y
∗ + E U Y (y∗,v∗)(T) ≤ x0y + E U Y (y,v)(T) . (4.32)

As we considered an arbitrary pair (y, v) ∈ D, (4.32) implies the optimality of (y∗, v∗) for
the dual problem. Therefore, the proof is completed.

Remark 4.7. In [16], it is claimed that the process Iv :=
·
0 δK(v(s) − v∗(s)) 2

ds is for
every (y∗, v) ∈ D locally bounded, i.e. there exists a sequence of stopping times (τv,n)n∈N
with τv,n T (a.s.) as n → ∞ such that I

τv,n
v is bounded for each n ∈ N. However this is in

general not true for admissible dual strategies v1, v2 as the following example shows: Take
m = 1 and K = R+

0 (no short selling of stocks). Then v1 :≡ 1 and v2 :≡ 2 are admissible
dual controls due to sup R−

0 = 0. However, we obtain δK(v1 − v2) ≡ δK(−1) = ∞, whence
·
0 δK(v1(s)− v2(s))

2
ds is not locally bounded. Fortunately, as the arguments presented

in Step 5 show, it suffices to consider admissible dual controls v such that v − v∗ is again
an admissible dual control process.

Remark 4.8. Besides that, we implemented the following major changes in comparison
with [16]: In Step 3, we explicitly proved Y (y∗,v∗+ε(v−v∗))(T) → Y (y∗,v∗)(T) almost surely
for ε 0 as this takes some care. We optimized the sequence of stopping times (τvn)n∈N
insofar as our definition in (4.13) makes it straightforward that the stochastic integrals in
Step 5 are in fact true martingales. Moreover, we explicitly consider the special case v ≡ 0
in Step 6 as proving that also (4.8) is a necessary condition requires a different approach
than in the previous steps. In Step 7, we placed great emphasis on showing that p∗2 Y (y,v) is
a supermartingale for every pair (y, v) ∈ D. Hence, this reminds us of a common concept
in optimization theory: If a process from a family of supermartingales, which is indexed
by the set of the admissible strategies, is even a true martingale, then the corresponding

52

control is optimal. Similar changes are implemented in the proof of the SMP for the primal
problem (cf. Theorem 4.12). Most importantly, we refer to Remark 4.13 for an argument,
why our formulation differs fundamentally from the original result in [16].

Remark 4.9. It follows from (3.32) and the strict positivity of Y (y∗,v∗) that the Hamilto-
nian maximization condition

H2 t, Y (y∗,v∗)(t), v∗(t), p∗2(t), q
∗
2(t) = sup

v∈K
H2 t, Y (y∗,v∗)(t), v, p∗2(t), q

∗
2(t) , (4.33)

is equivalent to

p∗2(t)δK v∗(t) + σ−1(t)v∗(t) q∗2(t) = inf
v∈K

p∗2(t)δK(v) + σ−1(t)v q∗2(t) , (4.34)

being satisfied almost surely for almost every t ∈ [0, T]. Clearly, (4.8) yields that the left-
hand side is 0. Moreover, we obtain from (4.7), p∗2 being strictly positive and the definition

of δK that the expression within the curly brackets is nonnegative for every v ∈ K. Hence,
(4.33) holds indeed for an optimal dual control process v∗. Furthermore, as Step 1 shows,
(4.6) results from considering the minimization problem infy∈R+ x0y+E U Y (y,v∗)(T)
with v∗ being fixed. Consequently, Theorem 4.6 can be regarded as a stochastic maximum
principle for the dual problem which also takes the optimization with respect to y into
account.

4.2 An Analogous Result for the Primal Problem

The aim of this section is deriving a result for characterizing the optimality of a control
π∗ for the primal problem which is conceptually similar to Theorem 4.6. It will allow us
to derive an insightful relationship between solutions to the primal problem and solutions
to its associated dual problem (cf. Section 4.3 below). At first, we formulate technical
assumptions which we are going to need in the following.

Assumption 4.10. Suppose that we have U Xπ(T) ∈ L1 and Xπ(T)U Xπ(T) ∈ L2

for every admissible strategy π ∈ A, where Xπ denotes the unique solution to (2.3).

Note that the second condition is trivially satisfied by U = log. This assumption guarantees
in the spirit of the second part of Lemma 4.3 that there exists a solution to (4.1).

Lemma 4.11. Consider π ∈ A and suppose that Assumption 4.10 is in place. Then there
exists a pair (p1, q1) solving (4.1) such that p1X

π is a martingale.

Proof. As in the proof of Lemma 4.3, we obtain by means of the martingale representation
theorem that there exists a continuous version V of the square-integrable martingale

M := E −Xπ(T)U Xπ(T) Ft t∈[0,T]
,

which can be written as M0 + W • B, where the process W ∈ H2(0, T ;Rm) is unique.
Clearly, p1 := V/Xπ is well-defined and satisfies the terminal condition associated with

53

(4.1). Hence, an application of Itô’s formula to p1 shows

dp1(t) = − p1(t) r(t) + π (t)σ(t)θ(t)− π (t)σ(t)
2 − π (t)σ(t)W (t)

Xπ(t)
dt

+
W (t)

Xπ(t)
− p1(t)π (t)σ(t) dB(t),

(4.35)

t ∈ [0, T]. Therefore, defining a process q1 for t ∈ [0, T] by

q1(t) :=
W (t)

Xπ(t)
− p1(t)σ (t)π(t)

reduces (4.35) to (4.1). Hence, (p1, q1) solves the primal adjoint equation and p1X
π = V

is indeed a martingale, which concludes the proof.

Now we are in position to formulate the main result of this section.

Theorem 4.12. Let a utility maximization problem in the setting of Definition 2.4 be given
and suppose that Assumption 4.10 is satisfied. Consider an admissible control π∗ ∈ A: Let
Xπ∗

, p∗1 and q∗1 denote processes which satisfy Xπ∗
(0) = x0, p

∗
1(T) = −U Xπ∗

(T) and
for t ∈ [0, T]:

dXπ∗
(t) = Xπ∗

(t) r(t) + π∗ (t)σ(t)θ(t) dt+ π∗ (t)σ(t)dB(t) ,

dp∗1(t) = − r(t) + π∗ (t)σ(t)θ(t) p∗1(t) + π∗ (t)σ(t)q∗1(t) dt+ q∗1 (t)dB(t),
(4.36)

such that p∗1Xπ∗
is even a martingale. Moreover, suppose that at least one of the following

statements is true:

(i) idR+ · U is a nonincreasing function on R+.

(ii) Define Θ := (π− π∗)✶C π ∈ K,C ∈ Σ
F,[0,T]
p , where Σ

F,[0,T]
p denotes the progressive

σ-algebra accompanying our filtered probability space and π also stands for the constant
control process mapping to π, for notational convenience. For every θ ∈ Θ, we have
the uniform integrability of the family

Δθ
ε ε∈(0,1) :=

U Xπ∗+εθ(T) − U Xπ∗
(T)

ε ε∈(0,1)
.

(iii) For every θ ∈ Θ, there exists a random variable ξθ with (ξθ)
− ∈ L1 such that Δθ

ε is
(a.s.) bounded below by ξθ for every ε ∈ (0, 1).

Then π∗ is optimal in the sense of Definition 2.4 if and only if it holds almost surely for
almost every t ∈ [0, T]:

π∗ (t) − σ(t) p∗1(t)θ(t) + q∗1(t) = sup
π∈K

π − σ(t) p∗1(t)θ(t) + q∗1(t) . (4.37)

54

Proof. At first, we recall that Lemma 4.11 guarantees the existence of processes Xπ∗
, p∗1

and q∗1 which meet the requirements.

Step 1. Necessary Condition: (4.37) is satisfied: Φπ(ε) := U Xπ∗+ε(π−π∗)(T) , ε ∈ [0, 1],
is right differentiable at ε = 0 and the corresponding derivative is almost surely
given by U Xπ∗

(T) Xπ∗
(T)Hπ(T), for every π ∈ A.

Let π∗ ∈ A be an optimal control and consider an arbitrary, but fixed, control π ∈ A.
Since K is a convex set, it follows that the convex combination π∗ + ε(π − π∗) is for every
ε ∈ [0, 1] again an admissible control. Hence, Φπ is well-defined for almost every ω ∈ Ω.
Moreover, due to the structure of (2.3), Xπ∗+ε(π−π∗)(T) is explicitly given by

Xπ∗+ε(π−π∗)(T) = x0 exp
T

0
r(t) + π∗(t) + ε(π(t)− π∗(t)) σ(t)θ(t) dt

− 1

2

T

0
π∗(t) + ε(π(t)− π∗(t)) σ(t)

2
dt

+
T

0
π∗(t) + ε(π(t)− π∗(t)) σ(t)dB(t) .

(4.38)

Fix δ ∈ R−. We consider a function gπ on (δ, 1] which is defined by log Xπ∗+ε(π−π∗)(T)
=: gπ(ε) for ε ∈ [0, 1] and for the remaining points of the domain by the logarithm of the
right-hand side of (4.38), which is also meaningful for negative ε. As gπ is a polynomial in
ε, it follows immediately that it is differentiable with respect to ε. Its derivative at ε = 0
is given by Hπ(T), where the process Hπ is defined as follows:

Hπ :=
·

0
π(t)− π∗(t) σ(t)θ(t)− π(t)− π∗(t) σ(t)σ (t)π∗(t) dt

+
·

0
π(t)− π∗(t) σ(t)dB(t).

(4.39)

Therefore, we obtain from the chain rule and Φπ = (U ◦ exp ◦gπ) [0,1]
:

lim
ε 0

ΔεΦπ = U Xπ∗
(T) Xπ∗

(T)Hπ(T), a.s., (4.40)

where ΔεΦπ denotes the difference quotient of Φπ over [0, ε]. It is important to place
emphasis on the fact that, in contrast to the situation for the dual problem, gπ is already
differentiable with respect to ε. Hence, there is no necessity for searching for a converging
estimate as in Step 3 from the proof of Theorem 4.6.

Step 2. Necessary Condition: (4.37) is satisfied: Localization by appropriate stopping times.

For every π ∈ A, we define a sequence of stopping times (τπn)n∈N via

τπn := inf t ≥ 0 :
t

0
p∗1(s)X

π∗
(s) π(s)− π∗(s) σ(s)dB(s) ≥ n

∧ inf t ≥ 0 : |Hπ(t)| ≥ n ∧ T,

(4.41)

for n ∈ N. These stopping times serve exactly the same purpose as in the proof of Theorem
4.6 (cf. (4.13)). As the processes within the norm | · | are continuous semimartingales, we

55

can conclude again that τπn T holds almost surely as n → ∞.
Fix n ∈ N. Clearly, π∗ + ✶[0,τπn] ε (π − π∗) defines an admissible control as well, since it
corresponds pointwise to convex combinations of elements of K. Hence, the arguments
presented in Step 1 are also applicable, if we replace π∗ + ε(π − π∗) with the previously
introduced control process. Note that the derivative at ε = 0 of the adjusted right-hand
side of (4.38) is exactly given by H

τπn
π (T) since the occurring integrands are, in comparison

with the original result, precisely multiplied by ✶[0,τπn]. Moreover, we define the function

Φn
π(ε) := U Xπ∗+✶[0,τπn] ε (π−π∗)(T) , ε ∈ [0, 1], and

ΔεΦ
n
π :=

U Xπ∗+✶[0,τπn] ε (π−π∗)(T) − U Xπ∗
(T)

ε
, (4.42)

for each ε ∈ (0, 1]. Hence, it follows from our previous considerations for any n ∈ N:

lim
ε 0

ΔεΦ
n
π = U Xπ∗

(T) Xπ∗
(T)Hτπn

π (T), a.s. (4.43)

Step 3. Necessary Condition: (4.7) is satisfied: Proving E U Xπ∗
(T) Xπ∗

(T)H
τπn
π (T)

≤ 0 under the premise of (i), (ii) or (iii), respectively.

(i): At first, we notice that gnπ(ε) := log Xπ∗+✶[0,τπn] ε (π−π∗)(T) , ε ∈ [0, 1], is a concave
function for almost every ω ∈ Ω (cf. an adjusted version of (4.38)). Furthermore, it is
an immediate consequence of Condition (i) that exp · (U ◦ exp) is nonincreasing as well.
Additionally, we have that U ◦ exp is a nondecreasing function on R. Hence, it follows
that U ◦ exp is a concave and nondecreasing function. Lemma 4.4, therefore, guarantees
that Φn

π = U ◦ exp ◦gnπ is a concave function. This observation shows that (ΔεΦ
n
π)ε∈(0,1] is

nonincreasing. Hence, this family is almost surely bounded from below by the integrable
(cf. Assumption 4.10) random variable U Xπ∗+✶[0,τπn] (π−π∗)(T) − U Xπ∗

(T) . Therefore,
we obtain from the optimality of π∗, the monotone convergence theorem and (4.43):

0 ≥ lim
ε 0

E ΔεΦ
n
π = E U Xπ∗

(T) Xπ∗
(T)Hτπn

π (T) , (4.44)

for every n ∈ N. Clearly, this implies

E U Xπ∗
(T) Xπ∗

(T)Hτπn
π (T) ≤ 0, (4.45)

where the integral on the left-hand side is finite due to (4.41) and Assumption 4.10.
(ii): As we shall see in Step 4 below, it is sufficient to consider controls of the form

π = π✶C + π∗
✶Cc with a constant control π and C ∈ Σ

F,[0,T]
p . Hence, we restrict ourselves

to these controls in the following. For a control π with the above structure, we obtain
✶[0,τπn] (π − π∗) = ✶[0,τπn]✶C (π − π∗). We notice that ✶[0,τπn] is progressively measurable
because its paths are left-continuous and {ω ∈ Ω | ✶[0,τπn (ω)](t) = 0} = {τπn < t} ∈ Ft

holds for every t ∈ [0, T] as τπn is in particular a weak stopping time. Hence, it follows
from Condition (ii) that (ΔεΦ

n
π)ε∈(0,1) is uniformly integrable for every n ∈ N. As P is in

particular a finite measure, the convergence in (4.43) also holds in probability. Combining
this with the optimality of π∗ and Vitali’s convergence theorem proves the validity of (4.44)
and (4.45) also in this case.

56

(iii): We recall from the previous paragraph that ✶[0,τπn] (π − π∗) ∈ Θ holds for controls
of the form π = π✶C + π∗

✶Cc as specified above. Hence, Condition (iii) guarantees the
existence of a random variable ξ with ξ− ∈ L1 which is (a.s.) a lower bound for the elements
of (ΔεΦ

n
π)ε∈(0,1). Therefore, we obtain from the optimality of π∗, Fatou’s lemma and (4.43):

0 ≥ lim inf
ε 0

E ΔεΦ
n
π ≥ E lim inf

ε 0
ΔεΦ

n
π = E U Xπ∗

(T) Xπ∗
(T)Hτπn

π (T) , (4.46)

which implies again (4.45).

Step 4. Necessary Condition: (4.37) is satisfied: Applying Itô’s formula to the left-hand
side of (4.45) and concluding the proof by considering certain strategies π ∈ A.

By means of a similar argument as in Step 5 from the proof of Theorem 4.6, we obtain
that p∗1Xπ∗

is indistinguishable from the process V ∗ which we encountered in the course of
the proof of Lemma 4.11. On the one hand this observation facilitates the application of
Itô’s formula below and on the other hand it implies that p∗1Xπ∗

(and, therefore, also p∗1)
is a strictly negative process. The latter will play a decisive role below, especially in Step
5, where this property is also applicable since we did not use the optimality of π∗ for its
proof. We obtain for every n ∈ N by means of Itô’s formula

d p∗1X
π∗

Hτπn
π (t) =p∗1(t)X

π∗
(t)✶[0,τπn](t) π(t)− π∗(t) σ(t) θ(t)− σ (t)π∗(t) dt

+ ✶[0,τπn](t) π(t)− π∗(t) σ(t) p∗1(t)X
π∗
(t)σ (t)π∗(t) +Xπ∗

(t)q∗1(t) dt

+ p∗1(t)X
π∗
(t)✶[0,τπn](t) π(t)− π∗(t) σ(t)dB(t)

+ p∗1(t)X
π∗
(t)π∗ (t)σ(t) +Xπ∗

(t)q∗1 (t) Hτπn
π (t)dB(t),

t ∈ [0, T]. We observe that the integrand of the finite variation part can be simplified to

Xπ∗
(t)✶[0,τπn](t) π(t)− π∗(t) σ(t) p∗1(t)θ(t) + q∗1(t) , t ∈ [0, T]. (4.47)

Note that the process which is multiplied byH
τπn
π in the dynamics above corresponds exactly

to W ∗ from the proof of Lemma 4.11, which lies in H2(0, T ;Rm). Hence, it follows from
(4.41) that the local martingale part defines in fact a true martingale. Combining this with

H
τπn
π (0) = 0 and (4.45) shows for every π ∈ A for which the conclusion of Step 3 holds:

0 ≥ E
τπn

0
−Xπ∗

(t) π(t)− π∗(t) σ(t) p∗1(t)θ(t) + q∗1(t) dt , (4.48)

for every n ∈ N. We conclude this segment of the proof by arguing that (4.48) necessarily
implies (4.37). Fix π ∈ K and consider the set

Nπ := (ω, t) ∈ Ω× [0, T] : − π − π∗(t) σ(t) p∗1(t)θ(t) + q∗1(t) > 0 . (4.49)

Moreover, we define the control process ππ := π✶Nπ + π∗
✶(Nπ)c . The admissibility of ππ

results from π∗ ∈ A and Nπ being measurable with respect to the progressive σ-algebra.
It is an immediate consequence of the special structure of ππ that Step 3 (and, therefore,
also (4.48)) is applicable to ππ under each of the three Conditions (i), (ii) and (iii). As

57

Xπ∗
is a strictly positive process, we necessarily obtain from (4.48) applied to ππ that, for

every n ∈ N, the set

Nπ ∩ {(ω, t) ∈ Ω× [0, T] : ✶
[0,τπ

π
n]

(t) = 1} (4.50)

has to be a P ⊗ λ|[0,T]-null set. Hence, as ✶
[0,τπ

π
n]

✶[0,T] holds almost surely for n → ∞
and P⊗ λ|[0,T] is continuous from below, we can conclude that also Nπ is a P⊗ λ|[0,T]-null
set. Moreover, we obtain from the subadditivity property that even

N :=
π∈K∩Qm

Nπ

is a P ⊗ λ|[0,T]-null set. It follows from K ∩ Qm being dense in K and the continuity of
the Euclidean inner product in every component that we have for P⊗ λ|[0,T]-almost every
(ω, t) ∈ Ω× [0, T] and every π ∈ K:

− π − π∗(t) σ(t) p∗1(t)θ(t) + q∗1(t) ≤ 0, (4.51)

which is equivalent to (4.37).

Step 5. Sufficient Condition: π∗ is optimal: Proving that p∗1Xπ is a submartingale for
every π ∈ A and applying the concavity of U .

Finally, we show by means of an argument, which is similar to Step 7 from the proof of
Theorem 4.6, that (4.37) is also sufficient for the optimality of π∗. Let π∗ ∈ A be given
and assume that (4.37) is satisfied. We obtain for every π ∈ A by means of the integration
by parts formula:

p∗1X
π = p∗1(0)x0 −

·

0
Xπ(t) r(t) + π∗ (t)σ(t)θ(t) p∗1(t) + π∗ (t)σ(t)q∗1(t) dt

+
·

0
Xπ(t) r(t) + π (t)σ(t)θ(t) p∗1(t) + π (t)σ(t)q∗1(t) dt

+
·

0
Xπ(t) p∗1(t)π (t)σ(t) + q∗1 (t) dB(t).

(4.52)

As the process p∗1Xπ is strictly negative (cf. Step 4 for the strict negativity of p∗1), it follows
that it can be written as p∗1(0)x0 E(Z), where the continuous semimartingale Z is given by

Z =
·

0
π (t)− π∗ (t) σ(t) θ(t) + p∗−1

1 (t)q∗1(t) dt

+
·

0
π (t)σ(t) + p∗−1

1 (t)q∗1 (t) dB(t) =: A+M.

(4.53)

Therefore, we obtain the explicit representation p∗1(0)x0 E(M) exp(A). Clearly, E(M) is
a supermartingale as it is a nonnegative local martingale with integrable starting value.
Hence, it is an immediate consequence of p∗1(0) < 0 that p∗1(0)x0 E(M) is a submartingale.
Moreover, it follows from p∗1 being strictly negative and (4.37) that the integrand of A is
nonpositive, i.e. the process exp(A) is decreasing. Obviously, p∗1Xπ is adapted and L1.

58

The second property essentially results from the above representation and exp(A) being
bounded by 1. Fix s, t ∈ [0, T] with s ≤ t. The submartingale property follows from the
monotonicity of exp(A) and p∗1(0)x0 E(M) being a negative submartingale:

E p∗1(t)X
π(t)|Fs ≥ exp(A(s))E p∗1(0)x0 E(M)t|Fs ≥ p∗1(s)X

π(s). (4.54)

Finally, as p∗1Xπ∗
is even a martingale, we obtain from the concavity of U :

0 = p∗1(0)x0 − p∗1(0)x0 ≥ E p∗1(T)X
π∗
(T) − E p∗1(T)X

π(T)

= E U Xπ∗
(T) Xπ(T)−Xπ∗

(T)

≥ E U Xπ(T) − U Xπ∗
(T) .

(4.55)

Since π ∈ A was arbitrary, we can conclude that π∗ is indeed optimal.

Note that our set of assumptions differs fundamentally from [16].

Remark 4.13. In [16], the proof of (4.37) being a necessary optimality condition is carried
out under Assumption 2.2. However, in contrast to Step 4 of Theorem 4.6, this is not
sufficient for concluding that the family of difference quotients (ΔεΦ

n
π)ε∈(0,1] is monotone.

The key difference is that U ◦ exp is decreasing, whereas U ◦ exp is increasing. Note that
both functions are convex under Assumption 2.2 (cf. Lemma 2.8). Furthermore, gnπ as
defined in Step 3 is always concave. In the case of U ◦ exp it is, therefore, in general not
true that Φn

π is either concave or convex as the inequalities (1) and (2) from the proof of
Lemma 4.4 cannot be combined by the transitive property anymore.
However, as the second statement of Lemma 4.4 shows, it is possible to resolve this issue,
if U ◦ exp is concave. Hence, in contrast to Assumption 2.2 (an important assumption for
Theorem 4.6), we have to require that idR+ · U is a nonincreasing function. Note that
this assumption is also formulated in [21]. Since the only utility functions which satisfy
the aforementioned condition and Assumption 2.2 at the same time are given by c · log+d,
where c ∈ R+ and d ∈ R are fixed, we formulate by (ii) and (iii) alternative conditions
which justify interchanging limit and expectation operator in Step 3. Hence, other utility
functions U , in particular those where idR+ · U is strictly increasing, are a priori not
excluded from Theorem 4.12.

Remark 4.14. Note that (4.37) is equivalent to −σ(t) p∗1(t)θ(t)+q∗1(t) being an element
of the normal cone of K at π∗(t) almost surely for almost every t ∈ [0, T], i.e.

∀π ∈ K : π − π∗(t) − σ(t) p∗1(t)θ(t) + q∗1(t) ≤ 0. (4.56)

Remark 4.15. It is an immediate consequence of (3.31) and the strict positivity of Xπ∗

that (4.37) is equivalent to

−H1 t,Xπ∗
(t), π∗(t), p∗1(t), q

∗
1(t) = − inf

π∈K
H1 t,Xπ∗

(t), π, p∗1(t), q
∗
1(t) , (4.57)

almost surely for almost every t ∈ [0, T], i.e. π∗ minimizesH1. Hence, as the primal problem
is a maximization problem and Subsection 3.3.1, in particular Theorem 3.16, is devoted to
minimization problems, it is hereby justified to view Theorem 4.12 as a stochastic maximum

59

principle. Note that (4.1) actually corresponds to the adjoint equation in a minimization
setting. Since H1 is linear in y and z, it follows that (−p∗1,−q∗1) solves (3.29). Hence, (4.37)
would become a maximization condition for H1, if we replaced (4.1) with (3.29) in the
formulation of Theorem 4.12.

Remark 4.16. We observe that neither of the Conditions (i), (ii) and (iii) is necessary
for performing the arguments in Step 5 above. These were just required in order to ensure
that we can interchange limit and expectation operator in Step 3. This is an important ob-
servation with regard to Theorem 4.17 below. Clearly, the same applies to the requirement
that idR+ · U is nondecreasing in the light of Step 7 from Theorem 4.6.

4.3 Constructing a Solution to the Primal Problem by Means of
a Solution to Its Dual Problem

As the deep SMP algorithm (cf. Section 4.4 below) is formulated for solving the dual
problem by means of Theorem 4.6, it is natural to ask whether the obtained results are
also meaningful for the corresponding primal problem.
The following theorem (cf. [16] for a similar result) proves by means of Theorems 4.6 and
4.12 and the technical assumption (4.58) that we can construct a solution to the primal
problem, if there exists an optimal pair for the associated dual problem.

Theorem 4.17. Let a dual problem according to Definition 2.11 be given such that As-
sumptions 2.2 and 4.1 and either U(0) > −∞ or U = log hold. Assume that there exists
an optimal pair (y∗, v∗) ∈ D. Let Y (y∗,v∗), p∗2 and q∗2 denote processes which solve (4.5) and
suppose that p∗2 Y (y∗,v∗) is a martingale (cf. Theorem 4.6). Moreover, assume

π∗ := p∗−1
2 σ−1 q∗2 ∈ H2(0, T ;Rm). (4.58)

Then it follows that π∗ is an optimal control for the corresponding primal problem. Fur-
thermore, a triple of processes solving (4.36) for π∗ is explicitly given by

Xπ∗
:= p∗2, p∗1 := −Y (y∗,v∗) and q∗1 := Y (y∗,v∗) (σ−1 v∗ + θ). (4.59)

Proof. Since (y∗, v∗) is optimal and the requirements of Theorem 4.6 are fulfilled, we obtain
that (4.6), (4.7) and (4.8) hold for p∗2 and q∗2. Hence, combining (4.58) with (4.7) proves
π∗ ∈ A. Plugging π∗ and Xπ∗

according to (4.58) and (4.59), respectively, into the right-
hand side of (2.3) and simplifying the obtained expression shows

p∗2(t) r(t) + p∗−1
2 (t)q∗2 (t)σ−1(t)σ(t)θ(t) dt+ p∗−1

2 (t)q∗2 (t)σ−1(t)σ(t)dB(t)

= r(t)p∗2(t) + q∗2 (t)θ(t) dt+ q∗2 (t)dB(t)

=dp∗2(t) = dXπ∗
(t),

(4.60)

where the second to last equality follows from combining (4.2) and (4.8). Moreover, plug-
ging π∗, p∗1 and q∗1 as defined in (4.58) and (4.59), respectively, into the right-hand side of

60

(4.1) and applying (4.8) and (2.12) leads to

− r(t) + p∗−1
2 (t)q∗2 (t)σ−1(t)σ(t)θ(t) − Y (y∗,v∗)(t)

+ p∗−1
2 (t)q∗2 (t)σ−1(t)σ(t)Y (y∗,v∗)(t) σ−1(t)v∗(t) + θ(t) dt

+ Y (y∗,v∗)(t) σ−1(t)v∗(t) + θ(t) dB(t)

= Y (y∗,v∗)(t) r(t)− p∗−1
2 (t)q∗2 (t)σ−1(t)v∗(t) dt+ σ−1(t)v∗(t) + θ(t) dB(t)

= d − Y (y∗,v∗) (t) = dp∗1(t).

(4.61)

It is an immediate consequence of (4.6) that Xπ∗
starts in x0. Furthermore, it can be

shown by means of Lemma 2.7 (iv) that p∗1 satisfies the required terminal condition:

p∗1(T) = −Y (y∗,v∗)(T) = −U − U Y (y∗,v∗)(T) = −U p∗2(T) = −U Xπ∗
(T) . (4.62)

Hence, combining this with (4.60) and (4.61) proves that the processes defined in (4.59)
solve the FBSDE system (4.36) for π∗ as given in (4.58).
Note that p∗1Xπ∗

= −p∗2 Y (y∗,v∗) is a martingale since p∗2 Y (y∗,v∗) is a martingale by assump-
tion. Moreover, we obtain from (4.59):

−σ(t) p∗1(t)θ(t) + q∗1(t) = −σ(t) − Y (y∗,v∗)(t)θ(t) + Y (y∗,v∗)(t) σ−1(t)v∗(t) + θ(t)

= −Y (y∗,v∗)(t)v∗(t), t ∈ [0, T].

Therefore, the strict positivity of Y (y∗,v∗) implies that (4.37) is equivalent to

∀π ∈ K : −π v∗(t) ≤ −π∗ (t)v∗(t) = −p∗−1
2 (t)q∗2 (t)σ−1(t)v∗(t), (4.63)

being satisfied almost surely for almost every t ∈ [0, T]. We observe that the right-hand
side of (4.63) corresponds precisely to δK(v∗(t)) (cf. (4.8)). Hence, the validity of the
aforementioned statement is an immediate consequence of (2.9) and (4.7).
In conclusion, we obtain from Theorem 4.12 that π∗ is an optimal control as we have proved
that the requirements for (4.37) being a sufficient optimality condition are fulfilled. Note
that neither of the Conditions (i), (ii) and (iii) is necessary for this part of the statement
of Theorem 4.12 (cf. Remark 4.16).

By means of the above result, we can quite easily prove that the so-called strong duality
property, i.e. V = V , holds. This means that the value of the primal problem agrees with
the one of the associated dual problem.

Corollary 4.18. Consider a utility maximization problem and its dual problem and suppose
that the requirements of Theorem 4.17 are met. Then the strong duality property holds.

Proof. Due to our choice of the prerequisites we obtain from Theorem 4.17 that there also
exists an optimal control for the primal problem whose associated state process is explicitly
given by p∗2. Hence, we are required to prove

E U p∗2(T) = x0y
∗ + E U Y (y∗,v∗)(T) . (4.64)

61

Combining p∗2(T) = −U Y (y∗,v∗)(T) with Lemma 2.7 (iii) and (iv) on the left-hand side
of (4.64) shows the equivalence with

E U Y (y∗,v∗)(T) + p∗2(T)Y
(y∗,v∗)(T) = x0y

∗ + E U Y (y∗,v∗)(T) . (4.65)

As p∗2 Y (y∗,v∗) is a martingale and p∗2(0) = x0 according to (4.6) from Theorem 4.6, we
obtain

E p∗2(T)Y
(y∗,v∗)(T) = x0y

∗, (4.66)

which concludes the proof as (4.66) is equivalent to (4.65).

In conclusion, we gather from the previous results that it is indeed reasonable to utilize the
results of the deep SMP algorithm also for a study of the original problem. Furthermore,
(4.64) suggests a method for obtaining high quality upper and lower estimates for the
true value of the dual problem (cf. (4.73)). This is important as, in contrast to the deep
controlled 2BSDE algorithm, the deep SMP algorithm does not provide a natural estimate
for the value of the dual problem by means of the initial values of the processes from (4.5).
As we shall see below, the same applies to the deep primal SMP algorithm.

4.4 Formulation of the Deep SMP Algorithm

In this section, we are going to formulate the deep SMP algorithm (cf. [5]) which combines
the BSDE solver from [6] with the optimality conditions on the dual control (y∗, v∗) from
Theorem 4.6.

As in Section 3.4, we fix an equidistant time discretization (ti)i∈{0,...,N} of [0, T] with step
size Δt := T/N , where N ∈ N is fixed. We consider the system (4.5) from Theorem 4.6.
In the following, we simulate this system by means of a forward scheme in discrete time
leading to processes (pi)i∈{0,...,N} and (Yi)i∈{0,...,N}. Moreover, the random variables v(ti)
and q2(ti) are in our scheme, for every i ∈ {0, . . . , N − 1}, replaced by

vi := Nθi,v(Yi) and qi := pi σ (ti)sK Nθi,q(Yi) , (4.67)

where the neural networks Nθi,v : R → Rm and Nθi,q : R → Rm are parameterized by
vectors θi,v and θi,q, respectively. The map sK : Rm → K is a fixed surjective and almost
everywhere differentiable function which, therefore, ensures that (4.7) is satisfied. More-
over, like in the deep controlled 2BSDE algorithm, hard constraints guarantee via the final
layer of Nθi,v that every vi is K-valued (cf. Chapter 5 for details). For i = 0, we simplify
the network architectures as discussed in Remark 3.26. The initial values of our scheme
are given by

Y0 := y and p0 := x0, (4.68)

where the second assignment is motivated by (4.6). Hence, in contrast to the deep controlled
2BSDE algorithm, the initial value of the BSDE part is known. Let (ΔBi)i∈{0,...,N−1}
be a family of i.i.d. m-dimensional, centered normally distributed random vectors with
covariance matrix Δt · Im. In the spirit of (4.5) and (4.8), this allows us to define

Yi+1 := Yi − Yi r(ti) + δK(vi) Δt− Yi θ(ti) + σ−1(ti)vi ΔBi,

pi+1 := pi + r(ti)pi + θ (ti)qi Δt+ qi ΔBi,
(4.69)

62

for every i ∈ {0, . . . , N−1}. Since (pi)i∈{0,...,N} has to satisfy a terminal condition, we wish
to find parameters which minimize the corresponding L2-error

LBSDE(θ0,q, . . . , θN−1,q) := E pN + U (YN)
2
. (4.70)

Moreover, the parameters for the dual control process have to be chosen such that (4.8)
holds. Hence, we intend to minimize for every i ∈ {0, . . . , N − 1}:

Li
control(θi,v) := E pi δK(vi) + qi σ

−1(ti)vi
2
. (4.71)

Finally, as in the construction of the dual problem, we want to find y such that it minimizes
the loss function

Ldual(y) := E U(YN) + x0y. (4.72)

Similarly to the deep controlled 2BSDE algorithm, the deep SMP algorithm initializes
the parameters randomly and then repeats a training step procedure until the parame-
ters seem to have converged. One such training step is described in Algorithm 2 below.
For every training step, we draw bsize realizations of (ΔBi)i∈{0,...,N−1}, i.e. we sample
{ωj}j∈{1,...,bsize} ⊆ Ω as we study random coefficients.

Note that the deep SMP algorithm does not have a parameter which describes the value of
the control problem, as opposed to y0 in the deep controlled 2BSDE algorithm. However,
motivated by Theorem 4.17, we can formulate a lower and an upper bound, respectively:

Vl := E U(pN) and Vu := E U(YN) + x0y. (4.73)

Corollary 4.18 suggests that the gap between those bounds becomes small, if the technical
requirements are satisfied. In practice, we calculate Vl and Vu by drawing a sample of size
NMC >> bsize from Ω, simulating the processes according to the above scheme and calcu-
lating the corresponding sample means. As this Monte Carlo method is computationally
expensive, the bounds should not be calculated after each training step.

4.5 Formulation of the Novel Deep Primal SMP Algorithm

As (4.37) corresponds to minimizing the generalized HamiltonianH in the control argument
(cf. Remark 4.15), it is natural to ask whether Theorem 4.12 can be used for formulating
an algorithm which solves the primal problem directly. We aim at integrating (4.37) into
the novel algorithm, which will be called deep primal SMP algorithm in the following, in a
way similar to how (3.44) was utilized in Section 3.4.

Let us fix an equidistant time discretization (ti)i∈{0,...,N} of [0, T] with step size Δt := T/N ,
where N ∈ N. We are going to simulate the system (4.36) from Theorem 4.12 by means of
a discrete-time forward scheme which yields two processes (pi)i∈{0,...,N} and (Xi)i∈{0,...,N}.
For every i ∈ {0, . . . , N − 1}, we substitute π(ti) and q1(ti) with

πi := Nθi,π(Xi) and qi := Nθi,q(Xi), (4.74)

respectively, where the neural networks Nθi,π : R → Rm and Nθi,q : R → Rm are parame-
terized by appropriate vectors θi,π and θi,q. Moreover, like in both previously introduced

63

Algorithm 2 One training step of the deep SMP algorithm

1: Generate bsize realizations of (ΔBi)i∈{0,...,N−1}, i.e. {ωj}j∈{1,...,bsize} ⊆ Ω;
2: // Substep 1: Minimizing LBSDE

3: Initialize according to (4.68) for every j ∈ {1, . . . , bsize};
4: for i = 0, 1, . . . , N − 1 do
5: for j = 1, 2, . . . , bsize do
6: Calculate vji and qji by means of (4.67);

7: Use (4.69) in order to obtain Y j
i+1 and pji+1;

8: end for
9: end for

10: loss1 ← 1
bsize

bsize
j=1 pjN + U (Y j

N)
2
;

11: Update θ0,q, . . . , θN−1,q with one step of an SGD algorithm w.r.t. loss1;
12: // Substep 2: Minimizing Li

control for every i ∈ {0, . . . , N − 1}
13: for i = 0, 1, . . . , N − 1 do
14: for j = 1, 2, . . . , bsize do
15: if i==0 then
16: Initialize Y j

0 and pj0 according to (4.68);
17: else
18: Use (4.69) in order to obtain Y j

i and pji ;
19: end if
20: Calculate vji and qji by means of (4.67);
21: end for
22: loss2i ← 1

bsize

bsize
j=1 pji δK(vji) + qji σ−1(ωj , ti)v

j
i

2
;

23: Update θi,v with one step of an SGD algorithm w.r.t. loss2i;
24: end for
25: // Substep 3: Minimizing Ldual

26: Initialize Y j
0 with y for every j ∈ {1, . . . , bsize};

27: for i = 0, 1, . . . , N − 1 do
28: for j = 1, 2, . . . , bsize do
29: Calculate vji by means of (4.67);

30: Use (4.69) in order to obtain Y j
i+1;

31: end for
32: end for
33: loss3 ← 1

bsize

bsize
j=1 U(Y j

N) + x0y;
34: Update y with one step of an SGD algorithm w.r.t. loss3;

64

algorithms, hard constraints guarantee via the final layer of Nθi,π that every πi is K-valued
(cf. Chapter 5 for details). For i = 0, we simplify the network architectures according to
Remark 3.26. We start our scheme with

X0 := x0 and p0 := p, (4.75)

where p is a trainable variable. Let (ΔBi)i∈{0,...,N−1} be a family of i.i.d. m-dimensional,
centered normally distributed random vectors with covariance matrix Δt · Im. Hence, we
can inductively define for every i ∈ {0, . . . , N − 1} (cf. (4.36)):

Xi+1 := Xi +Xi r(ti) + πi σ(ti)θ(ti) Δt+Xi πi σ(ti)ΔBi,

pi+1 := pi − r(ti) + πi σ(ti)θ(ti) pi + πi σ(ti)qi Δt+ qi ΔBi.
(4.76)

As (pi)i∈{0,...,N} is supposed to fulfill a terminal condition, we aim at finding parameters
which minimize

LBSDE(p, θ0,q, . . . , θN−1,q) := E pN + U (XN)
2
. (4.77)

Furthermore, also the parameters for the control process have to be optimized. This is
achieved by minimizing

Li
control(θi,π) := E πi σ(ti) pi θ(ti) + qi , (4.78)

for every i ∈ {0, . . . , N − 1}. In contrast to (4.37), we use the expectation operator here as
the algorithm only considers a finite number of realizations. Moreover, it works with the
same realization almost surely at most once (cf. also (3.53)).

Like the deep SMP algorithm, the deep primal SMP algorithm starts with randomly ini-
tialized parameters. It then repeats the training step procedure (cf. Algorithm 3 below)
until the updates become sufficiently small. For every training step, the algorithm studies
bsize realizations of (ΔBi)i∈{0,...,N−1}, i.e. it samples {ωj}j∈{1,...,bsize} ⊆ Ω.

As in the deep SMP algorithm, there is no parameter which naturally describes the value
of the control problem. However, motivated by (4.59), we can formulate a lower and an
upper bound in a similar manner:

Vl := E U(XN) and Vu := E U(−pN) − x0p. (4.79)

Again, Corollary 4.18 suggests that Vu−Vl becomes small, if the technical requirements are
satisfied. In Chapter 5, we calculate Vl and Vu by drawing a large sample of size NMC >>
bsize from Ω, simulating the processes according to the above scheme and calculating the
corresponding sample means.

65

Algorithm 3 One training step of the deep primal SMP algorithm

1: Generate bsize realizations of (ΔBi)i∈{0,...,N−1}, i.e. {ωj}j∈{1,...,bsize} ⊆ Ω;
2: // Substep 1: Minimizing LBSDE

3: Initialize according to (4.75) for every j ∈ {1, . . . , bsize};
4: for i = 0, 1, . . . , N − 1 do
5: for j = 1, 2, . . . , bsize do
6: Calculate πj

i and qji by means of (4.74);

7: Use (4.76) in order to obtain Xj
i+1 and pji+1;

8: end for
9: end for

10: loss1 ← 1
bsize

bsize
j=1 pjN + U (Xj

N)
2
;

11: Update p, θ0,q, . . . , θN−1,q with one step of an SGD algorithm w.r.t. loss1;
12: // Substep 2: Minimizing Li

control for every i ∈ {0, . . . , N − 1}
13: for i = 0, 1, . . . , N − 1 do
14: for j = 1, 2, . . . , bsize do
15: if i==0 then
16: Initialize Xj

0 and pj0 according to (4.75);
17: else
18: Use (4.76) in order to obtain Xj

i and pji ;
19: end if
20: Calculate πj

i and qji by means of (4.74);
21: end for
22: loss2i ← 1

bsize

bsize
j=1 πj

i σ(ωj , ti) pji θ(ωj , ti) + qji ;
23: Update θi,π with one step of an SGD algorithm w.r.t. loss2i;
24: end for

66

5 Numerical Experiments

In this chapter, we aim at providing numerical examples which illustrate the performance
of the three previously introduced algorithms for specific utility maximization problems.
All experiments have been performed in Python by means of the popular machine learning
library TensorFlow (cf. Appendix A for the Python codes used in Example 5.5). Moreover,
Adam will serve as our SGD algorithm in the following.
Our examples will show that, even after a relatively small number of training steps, the
algorithms provide reliable estimates of the control problem’s value. This holds in particular
for high-dimensional problems (cf. Examples 5.4, 5.5 and 5.12 below).

5.1 Markovian Utility Maximization Problems

At first, we study problems where the processes r, µ and σ are deterministic. Hence, the
state processes are in particular of the form (3.1). Therefore, all of the studied algorithms
can be applied without any restrictions.

Example 5.1. We consider Merton’s classical portfolio allocation problem with K = R,
i.e. we study the unconstrained problem with m = 1. We choose x0 = 1, T = 1, r ≡ 0.1,
µ ≡ 0.15 and σ ≡ 0.2. Our utility function is given by U(x) = 2

√
x, x ∈ R+, whose

Legendre-Fenchel transform has already been calculated in Example 2.9. As previously
mentioned in connection with Theorem 3.8, one can explicitly find the value function for
this problem. In [19] the solution is found by means of a separation of variables ansatz
containing U which leads to an ODE in t with known solution. Moreover, it is observed
that the supremum in (3.18) is attained by the same constant for every (t, x) ∈ [0, T)×R+.
In our unconstrained case, this constant is given by

π∗ := 2
µ− r

σ2
= 2.5. (5.1)

Furthermore, it is shown by means of a verification result (cf. Theorem 3.8) that the
candidate function

v(t, x) := exp(ρ(1− t))U(x), (t, x) ∈ [0, 1]× R+, (5.2)

with ρ := (µ − r)2/(2σ2) + r/2 = 0.0813, corresponds indeed to the value function with
the constant control π∗ being optimal for all initial pairs. Hence, the value of our control
problem is given by V = 2.1693. For our numerical experiments, we choose N = 30 and
bsize = 64. Moreover, the network architectures for ti = 0 and the piecewise constant
learning rate schedules are given in Table 5.1. We place a batch normalization layer in
front of every dense layer and ReLU serves as our activation function (cf. also Appendix
A, where a very similar network architecture is implemented for Example 5.5).

67

Algorithm LR L(2)BSDE LR Li
control/Ldual Network Architecture

2BSDE 10−2 2000→ 10−3 10−3 2000→ 10−4 hidden: 2, neurons/hidden: 11

2BSDE dual 10−2 2000→ 10−3 10−3 2000→ 10−4 hidden: 2, neurons/hidden: 11

SMP 10−2 2000→ 10−3 10−3 2000→ 10−4 hidden: 2, neurons/hidden: 11

SMP primal 10−2 2000→ 10−3 10−3 2000→ 10−4 hidden: 2, neurons/hidden: 11

Table 5.1: Learning rate schedules and network architectures for our numerical experiments
using TensorFlow.

Note that we do not have to train the dual control process as it necessarily has to be
projected onto zero. We ran our algorithms for 5000 steps each. Figure 5.1 shows the
evolution of the value approximations during the training procedure. For both SMP-based
algorithms we calculated the bounds every 200 steps by means of a batch of sizeNMC = 105.

0 500 1000 1500 2000 2500 3000

Number of Iteration

2.0

2.2

2.4

V
a
lu

e

Classical Merton Problem, m= 1, 5000 Training Steps

Target

2BSDE

2BSDE_dual

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

3000 3250 3500 3750 4000 4250 4500 4750 5000

Number of Iteration

2.166

2.168

2.170

2.172

2.174

V
a
lu

e

Figure 5.1: Value approximations for all four of our methods in the classical unconstrained
Merton problem in the course of 5000 training steps.

The above figure shows in particular that the bounds from (4.73) and (4.79) do not neces-
sarily have to hold for the entire training process. This is insofar not surprising as (4.59)
and (4.64) only hold for optimal controls. Hence, we can expect this behavior merely from
close to optimal parameters and larger values for NMC .
Moreover, Figure 5.1 illustrates that we already arrive at good value approximations after

68

only a few hundred training steps in this low-dimensional example. The second subplot
shows that the obtained values fluctuate in a neighborhood of the target value once they
have reached it. However, this is not surprising as we have intentionally chosen learning
rate schedules which feature only one reduction in order to demonstrate this phenomenon.
In our subsequent examples we are, therefore, going to weaken this effect significantly by
introducing a third (and sometimes even a fourth) learning rate level.
Finally, Figure 5.2 displays the neural networks Nθi,π for several indices i from both algo-
rithms which address the primal problem directly.

0.6 0.8 1.0 1.2 1.4 1.6

X

2.0

2.2

2.4

2.6

2.8

3.0

C
o
n
tr

o
l

θ
i,
π
(X

)

Deep Controlled 2BSDE Algorithm

t0 = 0/30

t4 = 4/30

t9 = 9/30

t14 = 14/30

t19 = 19/30

t24 = 24/30

t29 = 29/30

Target

0.6 0.8 1.0 1.2 1.4 1.6

X

2.0

2.2

2.4

2.6

2.8

3.0

C
o
n
tr

o
l

θ
i,
π
(X

)

Deep Primal SMP Algorithm

t0 = 0/30

t4 = 4/30

t9 = 9/30

t14 = 14/30

t19 = 19/30

t24 = 24/30

t29 = 29/30

Target

Figure 5.2: Neural networks modeling π∗(ti) for seven equidistant points in time at the end
of the training procedure.

As the supremum norm of the errors is approximately bounded by 0.3 in both cases (except
for t4) and no initial guesses for the neural networks were used, we consider the approxima-
tion of π∗ as good. Clearly, we have to assess the quality of the approximations for smaller
points in time ti in the light of Xi taking values close to x0 = 1 with a high probability.
Hence, the algorithms do not “see” a lot of training data from regions which are farther
away from 1. An extreme example for this phenomenon would be Nθ0,π , which always
receives x0 = 1 as input. However, we avoided this effect by modeling π0 as a trainable
variable, i.e. a trivial neural network that consists just of a bias vector.

Remark 5.2. During our numerical experiments, especially those which follow below, we
observed that the batch normalization layers’ parameter ε is an essential hyperparameter
for the studied algorithms. As we shall see below, using the default value might lead to
NaN-values, whereas choosing a larger value, e.g. ε = 100, resolves this issue and allows
the algorithm to converge astonishingly fast (cf. Examples 5.3, 5.4 and 5.5). Moreover,
small values for ε may also cause that the bounds of both SMP-based algorithms explode
at the beginning of the training procedure (cf. Examples 5.6 and 5.7 for details). Hence,
tuning ε for each problem is of paramount importance for the training success.

In the following, we slightly modify the problem studied in Example 5.1.

69

Example 5.3. Let us consider Merton’s classical portfolio allocation problem again. We
choose the same parameters as in Example 5.1. However, we require that admissible control
processes have to take values in [0, 1], i.e. K = [0, 1]. Hence, neither short selling nor
borrowing money from the bank account is permitted. It can easily be seen that the
support function is given by δK(z) = (−z)+, z ∈ R. The exact solution to this problem
can be obtained by using the same verification machinery as in Example 5.1. A separation
of variables ansatz for the value function shows for our particular parameter choice that
maximizing the Hamiltonian in (3.18) is equivalent to finding the global maximum of the
quadratic function

[0, 1] π → (−0.01π2 + 0.05π + 0.1)/2. (5.3)

Clearly, it is attained by π∗ := 1 since the stationary point given by (5.1) does not lie in K.
As (5.3) maps π∗ to 0.07, we obtain from an analogue verification procedure as in Example
5.1 that the constant control π∗ is optimal for all (t, x) ∈ [0, 1]×R+ and the value function
is given by

v(t, x) := exp 0.07(1− t) U(x), (t, x) ∈ [0, 1]× R+. (5.4)

Therefore, the value of the studied control problem is given by 2.14502. As in Example
5.1, we choose N = 30, bsize = 64 and NMC = 105. Moreover, we select the same network
architecture as above. In both algorithms which tackle the primal problem directly, the
constraints are incorporated by applying the function x → exp(−x2) to the outputs of
the neural networks which model the control process. Clearly, one could also choose other
functions which project the controls onto K. One decisive advantage of the above function
is that the gradient never vanishes. In contrast to this, our experiments with the natural
choice x → min{x+, 1} led to a significantly larger approximation error since some πi
reached 0 and never recovered. As K = R holds, the dual control does not require a
projection function. Furthermore, we selected sK = (1+ | · |)−1. We ran each algorithm for
10000 steps while using the following piecewise constant learning rate schedules:

Algorithm LR L(2)BSDE LR Li
control/Ldual

2BSDE 10−2 2000→ 10−3 3000→ 10−4 3000→ 10−5 10−3 2000→ 10−4 3000→ 10−5 3000→ 10−6

2BSDE dual 10−2 1000→ 10−3 2000→ 10−4 3000→ 10−5 10−3 1000→ 10−4 2000→ 10−5 3000→ 10−6

SMP 10−2 2000→ 10−3 3000→ 10−4 3000→ 10−5 10−2 2000→ 10−3 3000→ 10−4 3000→ 10−5

SMP primal 10−2 2000→ 10−3 3000→ 10−4 3000→ 10−5 10−3 2000→ 10−4 3000→ 10−5 3000→ 10−6

Table 5.2: Piecewise constant learning rate schedules for our numerical experiments using
TensorFlow.

Figure 5.3 depicts the value approximations obtained during our training procedure. We
observe that all value approximations, with the exception of Vu, are even after only a few
hundred training steps highly accurate. The bounds of both SMP-based algorithms show a
greater variability due to potential errors resulting from the Monte Carlo method. However,
the results from the deep SMP algorithm have to be treated with caution as we modified
the algorithm by projecting v onto 0 in order to obtain faster convergence. In its original
form (cf. Section 4.4), it required 40000 training steps for Vl to reach the same accuracy as

70

0 500 1000 1500 2000 2500 3000 3500 4000

Number of Iteration

1.8

2.0

2.2

2.4

V
a
lu

e

Constrained Merton Problem, m= 1, 10000 Training Steps

2BSDE

2BSDE_dual

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

4000 5000 6000 7000 8000 9000 10000

Number of Iteration

2.144

2.146

V
a
lu

e

Target

2BSDE

2BSDE_dual

SMP: ̃

Vl

SMP_primal: Vl

SMP_primal: Vu

Figure 5.3: Value approximations for the studied constrained Merton problem in the course
of 10000 training steps.

above, whereas Vu remained close to the unconstrained value as in Figure 5.3 above. The
reason for this behavior is that the obtained dual control was very close to the zero process.
This illustrates a weakness of the deep SMP algorithm which has also been observed in [5]:
Since qi is modeled without taking the potential dependency on vi (cf. Theorem 3.23 for
Markovian problems) into account (cf. (4.67)), the zero control always minimizes the loss
function (4.71). Hence, the algorithm tends to mistake the zero control for the optimal
dual control, which leads to an upper bound as in the unconstrained case. This might be
the reason, why in [5] the deep SMP algorithm was applied exclusively to unconstrained
problems or problems with positive market price of risk and K = (R+

0)
m. The lower bound

is not exposed to this issue as it does not depend explicitly on the dual control (cf. (4.69)
and (4.73)). Here the constraints are incorporated by the function sK .
Moreover, we initially observed NaN-values while applying the deep controlled 2BSDE
algorithm for the dual problem. Setting ε = 100 for all batch normalization layers resolved
this issue. At the end of training, we obtain

V = 2.14468, V = 2.14544, Vl = 2.14505, Vl = 2.14473 and Vu = 2.14529. (5.5)

Vu is given by 2.17062. Finally, Table 5.3 shows the approximation quality of the neural
networks modeling the control process for both algorithms which solve the primal problem
directly. We use the supremum norm for measuring the quality since π∗ is a Markovian

71

control as well. For reasons of clarity, we present the results by means of a table, as the
approximations are significantly better than in Example 5.1 (cf. Figure 5.2). The reason
for this performance disparity is that the one-dimensional set K is bounded here with the
optimal constant control mapping to a point in ∂K.

Algorithm i = 4 i = 9 i = 14 i = 19 i = 24 i = 29

2BSDE 0.165721 0.000142 0.000036 0.001166 0.000005 0.000055
SMP primal 0.114749 0.021831 0.001304 0.000062 0.000029 0.000649

Table 5.3: Maximal deviations of the neural networks Nθi,π from the optimal control on

[0.6, 1.7], i.e. 1−Nθi,π ∞, for several indices i.

We observe that our neural networks Nθi,π are, especially for large i, uniformly close to
π∗(ti) ≡ 1. Again, the values for i = 4 have to be assessed considering the fact that the
probability distribution of X4 has most of its mass concentrated close to 1. In a smaller
neighborhood of 1, we observe the same approximation quality as for larger indices i. Due
to our construction of π0 (cf. Remark 3.26) we do not encounter this issue here. Both
algorithms determine π0 ≡ 1 which corresponds exactly to the theoretical benchmark.

In the following example, we consider a high-dimensional Markovian problem with loga-
rithmic utility function.

Example 5.4. We consider an unconstrained problem with m = 30, i.e. K = R30. The
natural logarithm serves as our utility function. We recall from Example 2.9 that U =
− log−1 holds. Moreover, we choose x0 = 10 and T = 0.5. For every t ∈ [0, 0.5] and
i ∈ {1, . . . , 30}, r(t) and µi(t) are given by 0.06 exp(t/2) and 0.07 + 0.02 sin(4πt+ πi/15),
respectively. Furthermore, the diagonal elements σi,i(t) are given by 0.3 1 +

√
t whereas

the remaining entries are chosen to be 0.1. We consider two possible approaches for finding
a theoretical benchmark for the value of our problem. On the one hand, we can directly
use the well-known (cf. [16], for example) optimal control

π∗(t) = σ(t)σ (t)
−1

µ(t)− r(t), . . . , r(t) , t ∈ [0, 0.5], (5.6)

and calculate the expectation by means of the Monte Carlo method. The same approach
works for the dual problem as well, since v∗ ≡ 0 holds and y∗ = x−1

0 = 0.1 can be concluded

from U = − log−1 and the dual state process being a stochastic exponential. We simulated
the state processes by means of a discrete-time forward scheme as above with N = 50 and
NMC = 106. We obtained V = 2.35069 and V = 2.35067, respectively. Clearly, this method
requires quite some time and still produces an error caused by the discretization and the
Monte Carlo method. Fortunately, as the logarithm satisfies some desirable properties, we
can even find the exact dual value quite easily (cf. [16]). As a preparation for Example
5.5, we consider a general closed, convex set K which contains 0. As U = − log−1 holds,
we obtain y∗ = x−1

0 = 0.1 as well in this general case. Hence, we can conclude (cf. (3.5)
and the integrability assumptions in the definition of D):

V = log(x0) + inf
v∈D2

E
0.5

0
r(t) + δK(v(t)) +

1

2
θ(t) + σ−1(t)v(t)

2
dt . (5.7)

72

The infimum is attained by the deterministic process v∗ which is, for every t ∈ [0, 0.5],
defined via

v∗(t) := argmin
v∈K

δK(v) +
1

2
θ(t) + σ−1(t)v

2
. (5.8)

Obviously, we obtain v∗ ≡ 0 for the unconstrained problem. Combining this with (5.7) and
calculating the occurring integral by means of an equidistant time discretization consisting
of 1000 points yields 2.35058. We use this as our benchmark in the following as this method
eliminates the error caused by the Monte Carlo method. Moreover, we can use a finer time
grid for this method since the computation time is significantly reduced by not having to
draw large samples as in the first approach.
For our numerical experiments, we choose the same network architectures as above. More-
over, we select N = 10, bsize = 64, NMC = 105 and the following piecewise constant
learning rate schedules are used:

Algorithm LR L(2)BSDE LR Li
control/ LR Ldual

2BSDE 10−2 2000→ 10−3 3000→ 10−4 3000→ 10−5 10−3 2000→ 10−4 3000→ 10−5 3000→ 10−6

2BSDE dual 10−2 1000→ 10−3 2000→ 10−4 3000→ 10−5 10−2 200→ 10−4 800→ 10−5 7000→ 10−6

SMP 10−2 2000→ 10−3 3000→ 10−4 3000→ 10−5 10−2 200→ 10−4 800→ 10−5 7000→ 10−6

SMP primal 10−2 1000→ 10−3 2000→ 10−4 5000→ 10−5 10−3 1000→ 10−4 2000→ 10−5 5000→ 10−6

Table 5.4: Piecewise constant learning rate schedules for our numerical experiments using
TensorFlow.

We quickly reduce the learning rate for the parameter y, since it converges at an extremely
high speed to y∗ and its value significantly influences the implied value approximation.
Potential issues with NaN-values were again resolved by choosing ε sufficiently large for all
batch normalization layers. We ran the algorithms for 10000 training steps. The results
are depicted in Figure 5.4 below. Even though we study a high-dimensional example, we
observe that we already obtain good estimates during the first 2000 training steps. At the
end of training, we get

V = 2.34866, V = 2.35226, Vl = 2.35162, Vu = 2.35196,

Vl = 2.35003 and Vu = 2.35067.
(5.9)

It is remarkable that the deep primal SMP algorithm yields the most accurate results despite
the fact that the optimal dual control is a priori known for unconstrained problems, which
significantly reduces the dimensionality of the dual problem.

In the following, we reconsider the above problem. However, we introduce constraints which
further increases the complexity of the problem.

Example 5.5. Let us consider the setting of Example 5.4 again. We define κ := 1/m =
1/30 and choose K = [−κ,∞)30. Hence, short selling is permitted, but only to a certain
extent for each stock. This choice of K implies in particular that the overall short selling

73

0 250 500 750 1000 1250 1500 1750 2000

Number of Iteration

2.0

2.5

3.0

3.5

V
a
lu

e

High-Dimensional Markovian Problem, m= 30, 10000 Training Steps

2BSDE

2BSDE_dual

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Iteration

2.350

2.355

V
a
lu

e

Target

2BSDE

2BSDE_dual

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

Figure 5.4: Value approximations for the studied unconstrained Markovian problem with
logarithmic utility function in the course of 10000 training steps.

volume of stocks must not surpass the portfolio value of an investor. One can easily see that
K = (R+

0)
30 and δK(v) = κ 30

i=1 vi, v ∈ K, hold. We obtain a theoretical benchmark for
this problem by means of the approach described in Example 5.4 above. We approximate
the integral in (5.7) using an equidistant time discretization consisting of 1000 points. For
each of these points, we solved the deterministic convex optimization problem (5.8) by
means of the CVXPY package in Python. After only a few seconds we obtained 2.34335 as
our benchmark, which illustrates again that this method, if applicable to a specific problem,
should be preferred over Monte Carlo methods.
We choose the same network architectures and values for N , bsize and NMC as in Example
5.4 above. For both algorithms which tackle the primal problem directly we implemented
hard constraints by applying x → (x2 − κ) componentwise to the outputs of Nθi,π for
every i ∈ {1, . . . , N −1}. Our numerical experiments have shown that it is favorable to use
x → max{−κ, x} for π0 instead. For the dual control process, we project ontoK in a similar
manner by means of the function x → x2. Moreover, sK in the deep SMP algorithm is
defined as the function which applies x → max{−κ, x} to every component. Our numerical
experiments have shown that also x → (x2 − κ) or x → (|x| − κ) yield similar results. In
the following, we apply the same learning rate schedules as given in Table 5.4. However,
we delay the final learning rate level for the dual version of the deep controlled 2BSDE
algorithm by 2000 training steps as the algorithm yielded the largest approximation errors

74

in the middle of the training procedure. For the deep SMP algorithm, we choose the same
learning rate schedule for the dual control as for the BSDE part, whereas, for the dual
version of the deep controlled 2BSDE algorithm, we use the schedule for the 2BSDE part
with learning rates divided by ten. The Python codes for this specific problem are provided
in Appendix A below.
We ran each algorithm for 10000 training steps. The training progress is depicted in Figure
5.5 below. We observe fast convergence towards the theoretical benchmark. Moreover, we
witness again (cf. Example 5.3) that the deep SMP algorithm tends to mistake v ≡ 0 for
the optimal dual control as Vu agrees approximately with the value of the corresponding
unconstrained problem (cf. (5.10) below). However, as argued in Example 5.3, we can
still use Vl as a reliable estimate. In this example, it is even more accurate than the value
determined by the dual version of the deep controlled 2BSDE algorithm, as Figure 5.5 and
(5.10) show.

0 250 500 750 1000 1250 1500 1750 2000

Number of Iteration

2.0

2.5

3.0

V
a
lu

e

High-Dimensional Constrained Markovian Problem,
 m= 30, 10000 Training Steps

2BSDE

2BSDE_dual

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Iteration

2.342

2.344

2.346

2.348

V
a
lu
e

Target

2BSDE

2BSDE_dual

SMP: ̃

Vl

SMP_primal: Vl

SMP_primal: Vu

Figure 5.5: Value approximations for the studied constrained Markovian problem with log-
arithmic utility function in the course of 10000 training steps.

At the end of the training procedure, we obtain

V = 2.34268, V = 2.34614, Vl = 2.34403, Vu = 2.35192,

Vl = 2.34308 and Vu = 2.34324.
(5.10)

Except for V , Vu and Vu we achieve even smaller relative errors than in the unconstrained
case. Note that the value of Vu is essentially the same as in (5.9). In conclusion, we

75

gather from the above observations that the studied algorithms also provide highly ac-
curate value approximations for high-dimensional Markovian problems with non-trivial
constraints. Moreover, both bounds implied by the deep primal SMP algorithm remain
highly accurate for constrained problems, whereas the upper bound determined by the
deep SMP algorithm tends to attain the value of the associated unconstrained problem.
As in Example 5.4, the deep primal SMP algorithm outperforms even both versions of the
deep controlled 2BSDE algorithm quite significantly (cf. (5.9) and (5.10)).

5.2 Non-Markovian Utility Maximization Problems: Path
Dependent Coefficients

In this section, we study utility maximization problems with path dependent coefficients.
Hence, we cannot apply the deep controlled 2BSDE algorithm. However, we can still use
both SMP-related algorithms and compare their outcomes. At first, we consider a problem
with path dependent µ.

Example 5.6. We consider an unconstrained problem with five stocks, i.e. K = R5.
Moreover, we select U = 2

√·, x0 = 1, T = 0.5, r ≡ 0.1 and σ as a constant matrix
with diagonal elements equal to 0.2 and the remaining entries are set to 0.05. For every
i ∈ {1, . . . , 5} and t ∈ (0, 0.5], we define

µi(t) :=
µhigh for Si(t) ≥ 1

t
t
0 Si(s)ds,

µlow else.
(5.11)

Note that the expression on the right-hand side is well-defined due to the continuity of
Si. Its limit for t 0 exists almost surely and is given by Si(0), which follows again
from the fact that Si has continuous paths. Hence, we can define µi(0) := µhigh. For our
numerical experiments, we choose µlow = 0.08 and µhigh = 0.12. The motivation of (5.11)
is that many private investors nowadays simply make trade decisions based on trends. For
example, if a chart looks “good”, i.e. the stock is rising, but not straight out of a historic
low, then the stock is considered a buy. Hence, the demand rises which strengthens the
upward trend. We assume that the opposite happens, if the stock price is lower than its
historic mean. Moreover, we consider the historic mean over [0, t] instead of a moving
average for a fixed time length as T = 0.5 is rather small.
For our numerical implementation, we take N = 10, bsize = 64 and NMC = 105. Again,
the bounds are calculated every 200 steps. Except for the dimension of the output layers,
we choose the same network architectures as in Example 5.1 (cf. Table 5.1). Moreover, we
use the following learning rate schedules:

Algorithm LR LBSDE LR Li
control LR Ldual

SMP 10−2 300→ 10−3 1700→ 10−4 - 10−2 300→ 10−3 1700→ 10−4

SMP primal 10−2 300→ 10−3 1700→ 10−4 10−3 300→ 10−4 1700→ 10−5 -

Table 5.5: Piecewise constant learning rate schedules for our numerical experiments using
TensorFlow.

76

Figure 5.6 shows the results of running both algorithms for 20000 steps, where we chose ε =
100. This was necessary in order to prevent the lower bound provided by the deep primal
SMP algorithm from becoming very large during the first half of the training procedure
(cf. Remark 5.2).

0 2000 4000 6000 8000 10000

Number of Iteration

2.0

2.2

2.4

V
a
lu

e

Problem with Random Coefficients, m= 5, 20000 Training Steps

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

10000 12000 14000 16000 18000 20000

Number of Iteration

2.05

2.06

2.07

2.08

V
a
lu

e

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

Figure 5.6: Value approximations for both SMP-based algorithms in the studied control
problem with path dependent coefficient µ in the course of 20000 training steps.

Since the non-Markovian structure of the problem complicates finding an explicit solution
significantly, we content ourselves with comparing the bounds implied by the algorithms.
As in the above examples, we observe that most bounds only need a relatively low amount
of training steps for arriving at reasonable estimates. This is in particular the case for
both bounds implied by the deep primal SMP algorithm. After just 400 training steps, we
obtain Vl = 2.0513 and Vu = 2.0516, which almost agrees with the final result (cf. (5.12)
below). At the end of the training procedure, our four estimates are given by

Vl = 2.0515, Vu = 2.0755, Vl = 2.0513 and Vu = 2.0515. (5.12)

It is remarkable that there is a steady duality gap between Vl and Vu. We investigated this
result further by dividing the learning rates by 10 and running the deep SMP algorithm
for 30000 additional steps. We obtained Vl = 2.0514 and Vu = 2.0749, i.e. approximately
the same values as in (5.12), which supports the above observation. Moreover, we repeated
the above experiment for N = 50 and 20000 training steps, which resulted in Vl = 2.0505
and Vu = 2.0758, respectively, i.e. leading to the same result. Furthermore, working with

77

µhigh = 0.14 instead increases the duality gap determined by the deep SMP algorithm to

0.0532, where the obtained bounds are given by Vl = 2.0566 and Vu = 2.1098. In contrast
to this, the deep primal SMP algorithm yields Vl = 2.0565 and Vu = 2.0568, which agrees
again with Vl. Moreover, if we set µlow = µhigh, the duality gap vanishes. Hence, the
duality gap produced by the deep SMP algorithm might have a non-trivial connection with
µhigh − µlow. However, as the duality gap is negligible in the deep primal SMP algorithm,
this behavior should not result from a potential violation of the strong duality property.
In conclusion, we gather from (5.12) and the ensuing considerations that the value of our
control problem should be approximately given by 2.0515 as all bounds except Vu suggest.

In the following, we apply the deep primal SMP algorithm to a problem with path depen-
dent volatility which is also studied in [5], where the problem is tackled by means of the
deep SMP algorithm. Hence, we will be able to compare the results.

Example 5.7. We consider a two-dimensional problem where selling stocks short is pro-
hibited, i.e. K = (R+

0)
2. Moreover, we choose U = 2

√·, x0 = 1, r ≡ 0.05, µ ≡ (0.06, 0.06)
and, for every t ∈ [0, T], σ(t) is given by a diagonal matrix, where the diagonal entry σi,i(t)
is for each i ∈ {1, 2} determined by

σi,i(t) :=
σlow for Si(t) < sups∈[0,t] Si(s),

σhigh else.
(5.13)

As in [5], we choose σlow = 0.3 and σhigh = 0.2. Clearly, the path dependency in (5.13)
makes the problem non-Markovian, which is why we cannot apply the deep controlled
2BSDE algorithm. Furthermore, it complicates finding a theoretical benchmark for the
value of the problem. Therefore, the authors of [5] chose to simply compare the bounds
implied by the deep SMP algorithm. Since we now have a second method for tackling
such problems, namely the novel deep primal SMP algorithm, we can use this algorithm
in order to verify the results of [5] for several pairs (T,N). For our numerical experiments
we choose bsize = 64 and NMC = 105. We select the same network architectures as in
Example 5.1, except for the output dimensions. By applying ReLU right after each final
dense layer of our control process networks Nθi,π , we ensure that the control process maps
to K. Moreover, we work with the following learning rate schedules:

Algorithm LR LBSDE LR Li
control

SMP primal 10−2 300→ 10−3 1700→ 10−4 10−3 300→ 10−4 1700→ 10−5

Table 5.6: Piecewise constant learning rate schedules for our numerical experiments using
TensorFlow.

In accordance with Remark 5.2, we tried different choices for ε. We observed that the
default value for ε worked, except for the experiments with N = 50. Here we witnessed
exploding bounds in the beginning and a relatively low convergence speed. However, setting
ε to 1 resolved both issues, which is why we use ε = 1 for all pairs (T,N) with N = 50 in
the following.

78

We ran the deep primal SMP algorithm for 10000 training steps and for several pairs (T,N).
Table 5.7 provides the results of our numerical experiments and compares them with the
results obtained in [5].

(T,N) Vl Vu Vu − Vl Vl Vu Vu − Vl

(0.2, 5) 2.01057 2.01066 0.00009 2.01058 2.01067 0.00009
(0.2, 10) 2.01054 2.01063 0.00009 2.01061 2.01063 0.00002
(0.2, 20) 2.01057 2.01063 0.00006 2.01051 2.01059 0.00008
(0.2, 50) 2.01061 2.01062 0.00001 2.01051 2.01058 0.00007

(0.5, 5) 2.02652 2.02682 0.00030 2.02624 2.02664 0.00040
(0.5, 10) 2.02654 2.02676 0.00022 2.02633 2.02651 0.00018
(0.5, 20) 2.02648 2.02665 0.00017 2.02602 2.02615 0.00013
(0.5, 50) 2.02637 2.02650 0.00013 2.02628 2.02645 0.00017

(1, 5) 2.05333 2.05421 0.00088 2.05349 2.05391 0.00042
(1, 10) 2.05337 2.05397 0.00060 2.05322 2.05372 0.00050
(1, 20) 2.05327 2.05368 0.00041 2.05286 2.05315 0.00029
(1, 50) 2.05307 2.05339 0.00032 2.05295 2.05332 0.00037

Table 5.7: Results of our numerical experiments using the deep primal SMP algorithm in
comparison with the results of [5], where the deep SMP algorithm was used.

We observe that we obtain slightly better results for small N , i.e. N = 5 and N =
10. However, this conclusion has to be handled with great care as the gaps are usually
determined by the fourth and fifth decimal place, which are certainly exposed to a potential
approximation error resulting from the Monte Carlo method. During all of the above
experiments we experienced that the gap size already falls below 0.001 during the first 2000
training steps (cf. in particular Figure 5.7 below). For example, we obtained Vl = 2.05278
and Vu = 2.05339, respectively, after the initial 2000 steps for (T,N) = (1, 20). Moreover,
we conclude from Table 5.7 that increasing the parameter N does not necessarily have to
improve the results. This is illustrated by the pairs with N = 50. Furthermore, a training
step for the example with (0.2, 10) lasts 0.023 seconds, whereas it takes 0.056 seconds for
the one with (0.2, 50). Those two observations are the reason why we focus on medium
scale values for N in the remainder of Chapter 5.
The aforementioned immense convergence speed of the deep primal SMP algorithm turns
out to be a decisive advantage over the deep SMP algorithm for this particular problem.
For this purpose, we applied the latter algorithm to the problem corresponding to the pair
(0.5, 10). Note that δK ≡ 0 holds on K = (R+

0)
2 according to Example 2.12. Since the deep

SMP algorithm had not converged during the first 10000 steps, we increased the number
of training steps for both algorithms to 20000. The evolution of the bounds is depicted in
Figure 5.7 below. As in Example 5.3, projecting v onto 0 might be a worthwhile approach
as repeating the above experiment while implementing this adjustment shows: We obtained
Vl = 2.0262 and Vu = 2.0267 with a similar accuracy already achieved after 2500 training
steps. It is not surprising that also Vu is accurate here, since the market price of risk is
strictly positive and we only have short selling constraints.

79

0 1000 2000 3000 4000 5000

Number of Iteration

2.0

2.2

2.4

2.6

V
a
lu

e

Problem with Random Coefficients, m= 2, 20000 Training Steps

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

6000 8000 10000 12000 14000 16000 18000 20000

Number of Iteration

2.020

2.025

2.030

V
a
lu

e

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

Figure 5.7: Value approximations for both SMP-based algorithms in our second control
problem with random coefficients for T = 0.5 and N = 10 in the course of
20000 training steps.

We observe that the deep primal SMP algorithm arrives almost immediately at the solution,
whereas its dual counterpart needs significantly more iterations. However, both algorithms
yield relatively small duality gaps. At the end of training the four bounds are given by

Vl = 2.02569, Vu = 2.02695, Vl = 2.02649 and Vu = 2.02652. (5.14)

It is remarkable that the deep primal SMP algorithm already yields Vl = 2.02603 and
Vu = 2.02658 after only 800 training steps.
During a repetition of the above experiment we noticed that the lower bound of the deep
SMP algorithm can become very large at the beginning of the training process (cf. Example
5.6 for a similar phenomenon caused by the deep primal SMP algorithm). However, we
did not increase ε, as suggested by Remark 5.2, for comparability reasons since we used
its default value for the deep primal SMP algorithm. We conclude that the deep primal
SMP algorithm should be used as the primary algorithm for constrained problems with
path dependent volatility as in (5.13). The results can then be verified by means of the
deep SMP algorithm. A reason for this performance disparity might be that, unlike in
the unconstrained case, the dual control optimization procedure is non-trivial. Hence, a
training step consists of three substeps which might initially interfere in a negative way as
they aim at minimizing different loss functions.

80

5.3 Non-Markovian Utility Maximization Problems: Coefficients
Satisfying Their Own SDEs

In this section, we consider problems with coefficients which satisfy their own SDEs. As in
Section 5.2, this implies that the wealth process is not of the form (3.1). However, as we
shall see below, we can still apply the deep controlled 2BSDE algorithm. The problem can
be converted into a Markovian problem by considering higher-dimensional state processes,
where the additional components are precisely the random coefficients.

At first, we consider Heston’s stochastic volatility model with one traded, risky asset. Here
the dynamics of the stock price is given by

dS(t) = S(t) (r +Aν(t))dt+ S(t) ν(t)dB1(t), t ∈ [0, T], (5.15)

where the parameters r, A ∈ R+ can be interpreted as the risk-free interest rate, which
is assumed to be constant, and the market price of risk, respectively. Note that we have
θ = A

√
ν and σ =

√
ν following the notation from Chapter 2. The process ν satisfies

dν(t) = κ(θν − ν(t))dt+ ξ ν(t)dBν(t), t ∈ [0, T], (5.16)

with initial condition ν(0) = ν0 ∈ R+. The Brownian motions Bν and B1 have correlation
parameter ρ ∈ [−1, 1]. Hence, we can write Bν as ρB1+ 1− ρ2B2, where B2 is a standard
Brownian motion which is independent from B1. Therefore, B1, B2 can be viewed as a
standard two-dimensional Brownian motion. We assume that the parameters κ, θν , ξ ∈ R+

satisfy the so-called Feller condition 2κθν > ξ2, which ensures that ν is strictly positive.
Since ν is not necessarily progressively measurable with respect to the filtration generated
by B1, this market is not yet of the form discussed in Section 2.1. Hence, we introduce an
artificial stock, whose local martingale part is driven by B2:

dS2(t) = S2(t)r dt+ S2(t)dB2(t), t ∈ [0, T], (5.17)

which is excluded from trading by requiring that portfolio processes have to take values in
K ×{0}. Moreover, we have θ = (A

√
ν, 0) and σ =

√
ν 0
0 1

in this two-dimensional setup.
Since the second component of admissible controls necessarily has to be 0, we obtain that
B2 influences the wealth process only through ν. For notational convenience, we identify
every control process with its first component. Hence, for each π ∈ A, the wealth process
Xπ satisfies

dXπ(t) = Xπ(t) (r + π(t)Aν(t))dt+Xπ(t)π(t) ν(t)dB1(t), t ∈ [0, T], (5.18)

where the initial wealth is given by a fixed number x0 ∈ R+. Note that the unboundedness
of ν is not an issue here because its invertibility is ensured by the Feller condition. Hence,
the deep primal SMP algorithm is applicable to this problem.

From the derivation of (2.12) and the above considerations we conclude that for every
(y, v1, v2) ∈ D, (v1, v2) := v, the associated dual state process satisfies Y (y,v1,v2)(0) = y and

dY (y,v1,v2)(t) = −Y (y,v1,v2)(t) r + δK(v1(t)) dt+ A ν(t) + v1(t)/ ν(t) dB1(t)

+ v2(t)dB
2(t) , t ∈ [0, T].

(5.19)

81

Following the argument in [5], it can be shown by means of Theorem 4.6 that also the deep
SMP algorithm only has to learn a one-dimensional control process. It is an immediate
consequence of (4.7), p∗2 being strictly positive and the form of σ that the second component
of q∗2 is the zero process. Since δK×{0} does not depend on the second component of its
input as well, we conclude that (4.8) is independent from v∗2. Hence, the second component
can be set to zero and does not need to be trained. As the function sK guarantees (4.7), it
is sufficient that also the neural networks Nθi,q map to a one-dimensional set.

As already mentioned above, also the deep controlled 2BSDE algorithm can be applied
here by increasing the dimension of the state processes. To be more precise, we consider
the processes Xπ, ν and Y (y,v1,v2), ν instead of just Xπ and Y (y,v1,v2), respectively.
Obviously, the value function, therefore, has three arguments. This adjustment converts
the problems into Markovian problems since the resulting two-dimensional SDE systems
satisfy the two-dimensional analogue of (3.1). For the primal problem, we conclude from
(5.16) and (5.18) that the functions a and b are given by

a(t, x, ν, π) = x(r + πAν), κ(θν − ν) , b (t, x, ν, π) =
xπ

√
ν 0

ρξ
√
ν 1− ρ2ξ

√
ν

, (5.20)

where (t, x, ν, π) ∈ [0, T]×R+×R+×K. The terminal gain function is defined by g(x, ν) =
U(x), (x, ν) ∈ (R+)2. For the dual problem, we obtain from (5.16) and (5.19):

a(t, y, ν, v1, v2) = − y(r + δK(v1)), κ(θν − ν) ,

b (t, y, ν, v1, v2) =
−y A

√
ν + v1/

√
ν −yv2

ρξ
√
ν 1− ρ2ξ

√
ν

,
(5.21)

where (t, y, ν, v1, v2) ∈ [0, T]×R+ ×R+ ×K ×R. Furthermore, the terminal gain function
is defined by g(y, ν) = U(y), (y, ν) ∈ (R+)2.

In the following example, we study an unconstrained problem with power utility function
for various terminal times T . This choice is insofar appealing, as explicit solutions are
known in this case, which allows us to assess the quality of the obtained estimates.

Example 5.8. We consider Heston’s stochastic volatility model, as introduced above.
Moreover, we assume that trading is not restricted, i.e. K = R. Motivated by Example
5.1 from [17], we choose r = 0.05, A = 0.5, κ = 10, θν = 0.05, ξ = 0.5, ρ = −0.5,
x0 = 1, v0 = 0.5 and the power utility function with parameter p = 0.5. Clearly, the Feller
condition is satisfied. However, as the process can still become negative due to the SDE
discretization error, we truncate (νi)i∈{0,...,N} at δ := 10−5. We consider three different
values for T , namely 0.2, 0.5 and 1. As indicated above, the value of an unconstrained
power utility maximization problem in a Heston stochastic volatility setting can be found
explicitly. We refer to [17] for details, where the HJB equation of the dual problem is
solved by means of an appropriate ansatz which yields a system of two Riccati equations.
Moreover, it is proved that the duality gap is indeed zero. We refer to Table 5.9 for the
exact benchmark values for all three parameter configurations.
For our numerical experiments, we select bsize = 64, NMC = 105 and the same network

82

architecture as above. Moreover, we choose N such that T/N is constant for all three
configurations (cf. Table 5.9). The learning rate schedules are given in Table 5.8 below.
Note that we chose rather conservative learning rate schedules for both algorithms, which
tackle the primal problem directly, as they converged exceptionally fast. This holds except
for the deep controlled 2BSDE algorithm and T = 1, where too high learning rates even
led to the divergence of the algorithm.

Algorithm LR L(2)BSDE LR Li
control/ LR Ldual

2BSDE 10−2 500→ 10−3 1500→ 10−4 4000→ 10−5 10−3 500→ 10−4 1500→ 10−5 4000→ 10−6

2BSDE dual 10−2 1000→ 10−3 2000→ 10−4 3000→ 10−5 10−3 1000→ 10−4 2000→ 10−5 3000→ 10−6

SMP 10−2 1000→ 10−3 2000→ 10−4 3000→ 10−5 10−3 1000→ 10−4 2000→ 10−5 3000→ 10−6

SMP primal 10−2 200→ 10−3 800→ 10−4 4000→ 10−5 10−3 200→ 10−4 800→ 10−5 4000→ 10−6

Table 5.8: Piecewise constant learning rate schedules for our numerical experiments using
TensorFlow.

Choosing values for the hyperparameter ε which are larger than its default value was again
highly favorable (cf. Remark 5.2). For both algorithms tackling the primal problem we
selected ε = 1 and for the remaining two methods ε = 100. We ran each algorithm for
10000 training steps. The final results are provided in the following table.

(T,N) V V Vl Vu Vl Vu Benchmark

(0.2, 6) 2.02269 2.02278 2.02246 2.02285 2.02228 2.02296 2.02225
(0.5, 15) 2.04237 2.04284 2.04249 2.04301 2.04283 2.04298 2.04268
(1, 30) 2.06609 2.07904 2.07431 2.07525 2.07474 2.07705 2.07484

Table 5.9: Value approximations for the studied unconstrained problem with stochastic
volatility at the end of the training procedure for various pairs (T,N) in com-
parison with the corresponding theoretical benchmarks.

We observe that all value approximations, except V for (T,N) = (1, 30), are highly accu-
rate. This outlier is most likely not a consequence of unfortunate initial guesses as repeating
the experiment several times yielded approximately the same value. Interestingly enough,
reducing N to 5 resulted in V = 2.07498 which would correspond to the second best ap-
proximation in the last row of Table 5.9. Hence, this result could be used for verifying the
results of the other algorithms, if no theoretical benchmark was known. A trader can still
use the control process determined by the deep primal SMP algorithm. This illustrates
the luxury of having four independent methods for solving utility maximization problems.
Moreover, we conclude from Table 5.9, in particular from the last row, that increasing T
while keeping T/N constant usually increases the approximation error. In [5], a similar ob-
servation is made for the deep controlled 2BSDE algorithm and the classical unconstrained
Merton problem.
Motivated by Remark 5.9 below, we refined the deep primal SMP algorithm for the above

83

experiments by also using the current volatility as an input for the neural networks Nθi,q ,
i ∈ {1, . . . , N − 1}. Table 5.9 suggests that this is a worthwhile refinement, as Vl corre-
sponds to the best value approximation for all of the considered pairs (T,N).
Figure 5.8 depicts the evolution of the value approximations during the training procedure
for (T,N) = (0.5, 15).

0 1000 2000 3000 4000 5000

2.00

2.05

2.10

2.15

V
a
lu

e

Problem with Stochastic Volatility, m= 1, 10000 Training Steps

2BSDE

2BSDE_dual

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

5000 6000 7000 8000 9000 10000

Number of Iteration

2.040

2.042

2.044

2.046

2.048

V
a
lu

e

Target

2BSDE

2BSDE_dual

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

Figure 5.8: Value approximations for the studied unconstrained problem with stochastic
volatility in the course of 10000 training steps for (T,N) = (0.5, 15).

As in many of the previous examples, we observe that it only takes 1000 training steps
for arriving at reasonable estimates. Finally, we intend to assess the control approxima-
tion quality for both algorithms tackling the primal problem directly. We choose again
(T,N) = (0.5, 15), as the deep controlled 2BSDE algorithm did not even yield a satisfying
value approximation for (T,N) = (1, 30). In contrast to this, we observed that the control
process determined by the deep primal SMP algorithm boasts a similar accuracy as the
one obtained for the problem with (T,N) = (0.5, 15).
Figure 5.9 illustrates the control processes determined by the deep controlled 2BSDE al-
gorithm and the deep primal SMP algorithm, respectively. For this purpose, the neural
networks Nθi,π are depicted on [0.7, 1.4]× [0, 0.25] for several indices i. We recall that the
neural networks Nθi,π take only a one-dimensional input in the deep primal SMP algo-
rithm. Hence, the corresponding surfaces in Figure 5.9 are constant in ν. For each subplot
and corresponding ti, the domain of the color map is centered around the deterministic
random variable π∗(ti). We refer to [17] for a derivation of the optimal control process

84

π∗, which proves in particular that π∗(ti) is indeed constant. For our parameter choice,
π∗(ti) | i ∈ {0, . . . , 14} lies in [0.9938, 0.9983]. Hence, all the surfaces should lie in a

similar region, as we shall see below.

X

0.8
1.0

1.2
1.4

ν

0.0

0.1

0.2

0.96

0.98

1.00

1.02
2BSDE

pSMP

t0=0/30

0.975

1.000

1.025

X

0.8
1.0

1.2
1.4

ν

0.0

0.1

0.2

0.8

1.0

1.2

2BSDE

pSMP

t3=3/30

0.75

1.00

1.25

X

0.8
1.0

1.2
1.4

ν

0.0

0.1

0.2

0.8

1.0

1.2

2BSDE

pSMP

t6=6/30

0.8

1.0

1.2

X

0.8
1.0

1.2
1.4

ν

0.0

0.1

0.2

0.8

1.0

1.2

2BSDE

pSMP

t9=9/30

0.9

1.0

1.1

X

0.8
1.0

1.2
1.4

ν

0.0

0.1

0.2

0.8

1.0

1.22BSDE

pSMP

t12=12/30

0.9

1.0

1.1

X

0.8
1.0

1.2
1.4

ν

0.0

0.1

0.2

0.8

1.0

1.2
2BSDE

pSMP

t14=14/30

0.8

1.0

Figure 5.9: Neural networks Nθi,π for (T,N) = (0.5, 15), several indices i and both algo-

rithms tackling the primal problem directly.

85

We observe that the approximation quality is good for both algorithms. This holds in par-
ticular for large indices i. Again, the relatively large approximation errors for small indices
and pairs whose first component is farther away from 1 have to be assessed considering the
fact that the wealth at time ti is close to x0 = 1 with high probability. Note, however,
that the deep primal SMP algorithm achieves a significantly better approximation for these
indices. Finally, we compare the maximal absolute errors with respect to the exact solution
on [0.7, 1.4]× [0, 0.25].

Algorithm i = 0 i = 3 i = 6 i = 9 i = 12 i = 14

2BSDE 0.02232 0.41483 0.28734 0.15769 0.08373 0.16496
SMP primal 0.02771 0.09208 0.14719 0.03757 0.14283 0.06164

Table 5.10: Maximal deviations of the neural networks Nθi,π from the deterministic optimal
control process at ti on [0.7, 1.4]× [0, 0.25], i.e. π∗(ti)−Nθi,π ∞, for the same

indices i as in Figure 5.9.

As in Figure 5.9, we observe that the deep primal SMP algorithm yields a more accurate
control process than the deep controlled 2BSDE algorithm.

Remark 5.9. Extending the input vectors of the neural networks Nθi,q in the deep primal
SMP algorithm by

√
νi is motivated by (3.48) and the definition of the function b in (5.20).

This refinement improved the results in all of our numerical experiments.

In the following example, we are going to calibrate the Heston model to market data, which
puts the corresponding real-life portfolio optimization problem into the scope of the studied
algorithms. All the data was collected on the 23rd of April 2021.

Example 5.10. We consider the Dow Jones Industrial Average (DJIA). At first, we wish to
find parameters which describe its dynamics sufficiently well. As we consider a problem with
T = 0.5, we choose r as the current yield of a U.S. 6 Month Treasury Bill, i.e. 0.0003. The
parameters κ, θν , ξ, ρ and ν0 were calibrated by minimizing the error between model and
market values for 55 European options whose expiration dates lie within the next 8 months.
Note that the underlying for the most common European call options on the DJIA is
actually one-hundredth of its value process (DJX). However, it is an immediate consequence
of (5.15) and (5.16) that the above parameters agree for DJIA and DJX, respectively. We
considered options whose strike prices range from 290 to 390. The calibration procedure
was implemented in Python by means the pricing engine provided by QuantLib. Moreover,
Scipy’s implementation of the differential evolution algorithm served as our optimizer. We
obtained κ = 14.133, θν = 0.039, ξ = 2.687, ρ = −0.544 and ν0 = 0.022. Note that the
Feller condition is violated, which is not surprising as this phenomenon is quite common
in the market. In theory, this means that ν, which still exists, can attain 0. However,
as we discretize (5.16) for all algorithms according to the Euler-Maruyama scheme, this
event (and even negative values) were also possible, if the Feller condition held. Hence,
truncating (νi)i∈{0,...,N} at a small positive number δ as in Example 5.8 is necessary in both
cases. Therefore, the violation of the Feller condition merely implies for the discretization
procedure that the process might fall below δ more often, which leads to a potentially

86

larger approximation error. Figure 5.10 illustrates the quality of the calibrated parameters
as the model’s implied volatility surface bears great resemblance to the one observed in the
market.

Strike

300
320

340
360

380 Ti
m

e
to

 M
at

ur
ity

0.1

0.2

0.3

0.4
0.5

0.6

0.15

0.20

0.25

0.30

0.35

Implied Volatility - Model

0.15

0.20

0.25

0.30

0.35

Strike

300
320

340
360

380 Ti
m

e
to

 M
at

ur
ity

0.1

0.2

0.3

0.4
0.5

0.6

0.15

0.20

0.25

0.30

0.35

Implied Volatility - Market

0.15

0.20

0.25

0.30

0.35

Figure 5.10: Implied volatility surface for our calibrated Heston model in comparison with
the observed surface in the market.

Finally, we have to estimate A. This is a delicate task as option pricing models, i.e. the
resulting formulas, do not include the original drift parameter due to the fact that pricing is
performed under a risk-neutral measure. For simplicity, we assume that the drift coefficient
of dS/S is constant and the parameter θν was the same in the past. By calculating the
arithmetic mean of the daily logarithmic returns of the last 20 years and multiplying it with
the number of trading days per year we obtain µ. Our simple, but certainly not optimal,
estimator is then given by (µ + θν/2 − r)/θν , i.e. A = 2.027. We consider an investor
with initial wealth x0 = 1 who selects the power utility function with parameter p = 1/3.
Hence, our investor is more risk averse than in our previous examples with power utility.
Moreover, he intends to invest in the following six months, i.e. T = 0.5. We assume that
selling stocks short is not permitted and the amount of money the investor can borrow is
limited by twice his current wealth, i.e. K = [0, 3]. It follows immediately that K = R
and δK(z) = (−3z)+, z ∈ R, hold. For our numerical experiments, we choose N = 30,
bsize = 64 and NMC = 105. The learning rate schedules are given in Table 5.11.

Algorithm LR L(2)BSDE LR Li
control/ LR Ldual

2BSDE 10−2 500→ 10−3 500→ 10−4 2000→ 10−5 10−3 500→ 10−4 500→ 10−5 2000→ 10−6

2BSDE dual 10−2 500→ 10−3 500→ 10−4 3000→ 10−5 10−3 500→ 10−4 500→ 10−5 3000→ 10−6

SMP 10−2 1000→ 10−3 2000→ 10−4 3000→ 10−5 10−3 1000→ 10−4 2000→ 10−5 3000→ 10−6

SMP primal 10−2 500→ 10−3 500→ 10−4 4000→ 10−5 10−3 500→ 10−4 500→ 10−5 4000→ 10−6

Table 5.11: Piecewise constant learning rate schedules for our numerical experiments using
TensorFlow.

87

We choose to reduce the learning rates rather quickly as this has a beneficial stabilization
effect. For the deep SMP algorithm, we select a more refined network architecture (cf.
Remark 5.11) and sK = 3(1 + | · |)−1. Moreover, the same function serves as projection
function for the controls in both algorithms which tackle the primal problem directly. For
all algorithms, except the dual version of the deep controlled 2BSDE algorithm, we choose
ε = 1 for all batch normalization layers. In contrast to this, we select ε = 100 in the latter
algorithm as the previous choice might lead to NaN-values. We ran each of the studied
algorithms for 10000 training steps. The training progress is depicted in Figure 5.11 below.

0 500 1000 1500 2000 2500 3000

3.0

3.1

3.2

3.3

V
a
lu

e

Problem with Stochastic Volatility, m= 1, 10000 Training Steps

2BSDE

2BSDE_dual

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

3000 4000 5000 6000 7000 8000 9000 10000

Number of Iteration

3.06

3.08

V
a
lu

e

2BSDE

2BSDE_dual

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

Figure 5.11: Value approximations for the studied constrained problem with stochastic
volatility and parameters calibrated to market data in the course of 10000
training steps.

At the end of the training procedure, we obtain

V = 3.05326, V = 3.06176, Vl = 3.05501, Vu = 3.06055,

Vl = 3.05569 and Vu = 3.06519.
(5.22)

As deriving a theoretical benchmark for this constrained problem is certainly very com-
plex, we content ourselves with comparing the results to 3.05373, i.e. the value of the
corresponding unconstrained problem. This is justified since the (deterministic) optimal
control π∗ of the latter problem lies for almost every ti, i ∈ {0, . . . , N−1}, in K. Hence, the
value of the constrained problem should be slightly lower than the above benchmark. We
observe that all the obtained approximations lie within the same region. However, it has

88

to be noted that the values are not as concentrated as in Example 5.8. This may be caused
on the one hand by the constraints and on the other hand, and perhaps most importantly,
by the discretization error for the process ν as the probability of νi being replaced by δ is
significant. The key difference is that ξ is larger and ν0 significantly smaller than in Exam-
ple 5.8. One possible approach to weaken this effect is choosing a more complex simulation
scheme for (νi)i∈{0,...,N}. Moreover, we observed that increasing N substantially reduces
the gaps which is why we chose N = 30. Finally, our investor can apply the obtained
strategy in the future by adjusting the portfolio in accordance with the neural networks
Nθi,π , i ∈ {0, . . . , N − 1}.
Remark 5.11. In a similar manner to Remark 5.9 and motivated by (3.48) and the def-
inition of the function b in (5.21), we extend the input vectors of the neural networks
Nθi,q by

√
νi in the deep SMP algorithm. While this refinement was not necessary for the

unconstrained problem in Example 5.8, it improved the value approximation for the con-
strained problem in Example 5.10 quite significantly. This adjustment reduced the duality
gap approximately by a factor of three.

Finally, we consider the utility maximization setup from Chapter 2, where the short rate r
is, as in the Vasicek model, given by an Ornstein-Uhlenbeck process. Hence, the dynamics
of r is given by

dr(t) = α(β − r(t))dt+ γ dBm+1(t), t ∈ [0, T], (5.23)

with initial condition r(0) = r0 ∈ R and (positive) real-valued parameters α, β and γ.
Moreover, we assume that the Brownian motions Bm+1 and B are independent. Hence,
B := (B,Bm+1) can be viewed as a standard (m+1)-dimensional Brownian motion. Since
r is not progressively measurable with respect to the filtration generated by B, we introduce
an additional stock (cf. (5.17)), whose local martingale part is driven by Bm+1:

dSm+1(t) = Sm+1(t)r(t)dt+ Sm+1(t)dBm+1(t), t ∈ [0, T]. (5.24)

As in our considerations for the Heston model, this stock cannot be traded by the investor,
which ensures that the value of the problem remains unchanged under this generalization.
Hence, we have a market of the form as introduced in Chapter 2 which is driven by B.
Therefore, both SMP-based algorithms are applicable. Following the argument presented
for the Heston model, it can be shown that also the dual control process is essentially
m-dimensional. For notational convenience we, therefore, identify the processes π and v
with their first m components in the following.

Like in the stochastic volatility setting, also the deep controlled 2BSDE algorithm can
be applied here by increasing the dimension of the state processes, i.e. we consider the
processes Xπ, r and Y (y,v), r instead of Xπ and Y (y,v), respectively. For the primal
problem, we obtain from (2.3) and (5.23) that the functions a and b are given by

a(t, x, r, π) = x(r + π (µ(t)− r(1, . . . , 1))), α(β − r) ,

b (t, x, r, π) =
xπ σ(t) 0

0 γ
,

(5.25)

89

where (t, x, r, π) ∈ [0, T]×R+×R×K. For the dual problem, we conclude from (2.12) and
(5.23):

a(t, y, r, v) = − y(r + δK(v)), α(β − r) ,

b (t, y, r, v) =
−y σ−1(t) µ(t)− r(1, . . . , 1) + v 0

0 γ
,

(5.26)

where (t, y, r, v) ∈ [0, T]×R+×R×K. Furthermore, the terminal gain functions are given
by g(x, r) = U(x) and g(y, r) = U(y), for all (x, r), (y, r) ∈ R+ × R.

Example 5.12. We consider a 30-dimensional problem, where short selling is not permit-
ted, i.e. K = (R+

0)
30. Moreover, we choose U = log, x0 = 10 and T = 0.5. The parameters

for the short rate process are selected as r0 = 0.05, α = 5, β = 0.05 and γ = 0.05. The pro-
cesses µ and σ are assumed to be deterministic. For every t ∈ [0, 0.5] and i, j ∈ {1, . . . , 30},
we choose µi(t) = 0.06 + 0.01 sin(4πt + πi/15), σi,i(t) = 0.3/(1 + t) and σi,j(t) = 0.05,
if j = i holds. According to the above considerations, all of the studied algorithms are
applicable to this specific problem.
For our numerical experiments, we select N = 20, bsize = 64 and NMC = 105. We ensure
that the control processes map to K by applying the function x → x2 componentwise to
the outputs of the final dense layers of the corresponding neural networks. Moreover, the
same function serves as projection sK in the deep SMP algorithm. Since K = K holds
for this particular problem, we choose the same projection function for the dual control
processes. The learning rate schedules are given in Table 5.12 below.

Algorithm LR L(2)BSDE LR Li
control/ LR Ldual

2BSDE 10−2 1000→ 10−3 2000→ 10−4 2000→ 10−5 10−3 1000→ 10−4 2000→ 10−5 2000→ 10−6

2BSDE dual 10−2 1000→ 10−3 2000→ 10−4 2000→ 10−5 10−3 1000→ 10−4 2000→ 10−5 2000→ 10−6

SMP 10−2 1000→ 10−3 2000→ 10−4 2000→ 10−5 10−2 1000→ 10−3 2000→ 10−4 2000→ 10−5

SMP primal 10−2 1000→ 10−3 2000→ 10−4 2000→ 10−5 10−3 1000→ 10−4 2000→ 10−5 2000→ 10−6

Table 5.12: Piecewise constant learning rate schedules for our numerical experiments using
TensorFlow.

As in many of our previous examples, choosing larger values for ε, e.g. ε = 1 or ε = 100,
is highly favorable with regards to the convergence of the studied algorithms. We ran each
algorithm for 10000 training steps. The evolution of the implied value approximations in
the course of this procedure is depicted in Figure 5.12 below. We observe that most bounds
converge astonishingly fast. The initial variability of Vu can be explained by the fact that
−p is used as an estimator for the parameter y from the dual problem (cf. (4.79)). Since
p is optimized with respect to LBSDE , its initial learning rate is 10−2 according to Table
5.12, whereas the learning rate schedule for y starts at 10−3 for both algorithms tackling
the dual problem. Once the learning rate is reduced at training step 1000, Vu closes the
duality gap with respect to Vl. In contrast to this, the deep SMP algorithm yields a steady
duality gap which does not decrease as the training procedure progresses. While Vl remains
close to the other value approximations, Vu yields a significantly higher value. Interestingly

90

0 500 1000 1500 2000 2500 3000

2.3

2.4

V
a
lu
e

Problem with Stochastic Interest Rate,
 m= 30, 10000 Training Steps

2BSDE

2BSDE_dual

SMP: ̃

Vl

SMP: ̃

Vu

SMP_primal: Vl

SMP_primal: Vu

3000 4000 5000 6000 7000 8000 9000 10000

Number of Iteration

2.328

2.329

2.330

2.331

V
a
lu

e

Approx. Target

2BSDE

2BSDE_dual

SMP: ̃

Vl

SMP_primal: Vl

SMP_primal: Vu

Figure 5.12: Value approximations for the studied high-dimensional, constrained problem
with stochastic interest rate in the course of 10000 training steps.

enough, applying the other algorithms to the corresponding unconstrained problem yields
values which are very close to Vu. Hence, this is another example, where the deep SMP
algorithm mistakes v ≡ 0 for the optimal dual control. At the end of the training procedure,
we obtain the following estimates for our constrained problem:

V = 2.32842, V = 2.32939, Vl = 2.32877, Vu = 2.33868,

Vl = 2.32856 and Vu = 2.32859.
(5.27)

As all values except Vu lie within an interval of length 10−3, we are highly confident
that also the true value of the problem lies within this region. Moreover, we solved the
corresponding problem with deterministic short rate r ≡ r0 by means of the machinery
described in Examples 5.4 and 5.5, which led to 2.32853. While this is certainly not an
exact benchmark, it emphasizes that the values in (5.27) are plausible.

91

6 Conclusion and Future Work

In the course of this thesis, we studied the constrained utility maximization problem and its
dual problem with regard to theoretical results which allow the formulation deep learning
based, algorithmic solvers. If the processes r, µ and σ are either deterministic or satisfy their
own SDEs, as in the Heston or Vasicek model, we can apply the deep controlled 2BSDE
algorithm by potentially increasing the dimension of the state processes. We observed
that the underlying theoretical result essentially holds, if the value function is sufficiently
smooth and satisfies a growth condition. Moreover, it is clear that this algorithm could
even be used for more general control problems with running gains and a not necessarily
concave/convex terminal gain function. In contrast to this, the strict concavity of U is
essential for our considerations leading to the formulation of the deep SMP algorithm and
the deep primal SMP algorithm, respectively. For this purpose, we derived a stochastic
maximum principle for both problems while also proving the reverse implications. One
decisive advantage of these algorithms is that they can also handle path dependent random
coefficients. Hence, the deep SMP algorithm and the novel deep primal SMP algorithm are
suitable for solving a larger class of utility maximization problems.
Moreover, we conclude from the results of the studied constrained problems that also the
upper bound implied by the deep primal SMP algorithm serves as a reasonable value
approximation. This is an essential advantage over the deep SMP algorithm as the latter
method tends to produce the value of the corresponding unconstrained problem as the upper
bound. Combining this with the fact that the deep primal SMP algorithm outperformed
its dual counterpart in Section 5.2 (cf. Figures 5.6 and 5.7) and that it produced more
accurate results than both versions of the deep controlled 2BSDE algorithm in both high-
dimensional examples with deterministic coefficients (cf. Examples 5.4 and 5.5) illustrates
and underscores the power of our novel algorithm.
If one is interested in the control processes determined by the algorithms, e.g. in order
to apply them in practice, we recommend choosing for every ti, i ∈ {0, . . . , N − 1}, the
neural network Nθi,π from one algorithm which solves the primal problem directly, whereas
both algorithms tackling the dual problem can be used for verifying the obtained value of
the problem. We cannot use the primal control process implied by the dual problem (cf.
(4.58)) for this purpose, as the dual state process, i.e. −1 times the primal adjoint process
according to Theorem 4.17, is not directly observable in the market.

We recall from Section 5.3 that extending the input vectors for the neural networks by
the current value of the volatility/short rate process significantly reduced the duality gap.
Clearly, this generalizes the original definition of both SMP-based algorithms. Hence,
depending on the specific problem, more complex network architectures might lead to even
better results. We leave the systematic study of possible generalizations and their effect on
the approximation quality for our future work.

92

A Python Codes for the Studied Algorithms
Used in Example 5.5

In the following, we provide the Python codes, adapted to the specific problem discussed in
Example 5.5, for all three of the algorithms which have been studied in the course of this
thesis. For the deep controlled 2BSDE algorithm, we present its primal version as well as its
dual version (cf. Sections A.1 and A.2). The source codes for both SMP-based algorithms
(cf. Sections A.3 and A.4) can be quite easily adapted to the setting of random coefficient
problems by adding the dynamics, which are required for determining the coefficients, to
the loops used for the forward simulation of the processes. For example, we included the
stock prices in Examples 5.6 and 5.7, whereas we added the process ν (cf. (5.16)) in our
examples covering the Heston model. Hence, these processes are simulated by means of the
same discrete-time Euler-Maruyama scheme.
At the end of training, it suffices in most cases to save just the neural networks Nθi,π , i ∈
{0, . . . , N − 1}, as these are the most crucial results for a trader wishing to apply the
obtained strategy in practice. This can be done by means of the inherited save-method of
the PartNetwork class.

A.1 Python Implementation of the Primal Version of the Deep
Controlled 2BSDE Algorithm

1 import tensorflow as tf
2 from tensorflow import keras
3 import numpy as np
4 import time
5 from scipy. stats import multivariate normal
6

7 class Deepcontrolled2BSDE(keras.Model):
8

9 def init (self , ∗∗kwargs):
10 super(Deepcontrolled2BSDE, self). init (∗∗kwargs)
11 self.m = 30
12 self.BBdim = 30
13 self.d = 1
14 self.T = 0.5
15 self.N = 10
16 self.dt = self.T/self.N
17 self.layers num = 4 # number of hidden + 2
18 self.nodes = [11, 11] # nodes in hidden layers
19 self.batch size = 64
20 self.x0 = 10
21 self.schedule1 = keras.optimizers.schedules.PiecewiseConstantDecay([2000, 5000, 8000],

93

22 [1e−2, 1e−3, 1e−4, 1e−5])
23 self.schedule2 = [keras.optimizers.schedules.PiecewiseConstantDecay([2000, 5000, 8000],
24 [1e−3, 1e−4, 1e−5, 1e−6]) for in range(self.N)]
25 self.optimizer1 = keras.optimizers.Adam(learning rate=self.schedule1)
26 self.optimizer2 = [keras.optimizers.Adam(learning rate=self.schedule2[i])
27 for i in range(self.N)]
28 self.y0 = tf.Variable(np.random.uniform(size=(1, 1), low=2.1, high=2.3), trainable=True,
29 dtype=tf.float32)
30 self.z0 = tf.Variable(np.random.uniform(size=(1, self.d), low=−0.1, high=0.1),
31 trainable=True, dtype=tf.float32)
32 self.pi0 = tf.Variable(np.random.uniform(size=(1, self.m), low=0.0, high=0.2), trainable=True,
33 dtype=tf.float32, constraint=lambda x: tf.where(x<−1/self.m, −1/self.m, x))
34 self.Q0 = tf.Variable(np.random.uniform(size=(self.d, self.d), low=−0.1, high=0.1),
35 trainable=True, dtype=tf.float32)
36 self.train startvalues = [self.y0, self.z0]
37 self.ModelQ = [self.Q0] + [PartNetwork(self.m, self.d, self.layers num, self.nodes,
38 isQ=True) for in range(self.N−1)]
39 self.varforloss1 = self. train startvalues + self .ModelQ
40 self.Modelpi = [self .pi0] + [PartNetwork(self.m, self.d, self.layers num, self.nodes,
41 isQ=False) for in range(self.N−1)]
42 self.history time = []
43 self.history y0 = []
44

45 def build(self) :
46 for i in range(self.N−1):
47 self.Modelpi[i+1](tf. zeros(shape=(1, self .d)), training = False)
48 self.ModelQ[i+1](tf.zeros(shape=(1, self .d)), training = False)
49 return
50

51 # The following four methods depend essentially on the studied problem. (also d=1 here)
52 def aSDE(self, t , x, pi) :
53 helper = tf.expand dims(tf.range(1, limit=self.m+1, dtype = tf.float32), axis=0)
54 mu = 0.07+0.02∗tf.sin(4∗np.pi∗t+2∗np.pi∗helper/self.m) \
55 ∗tf .ones(shape=(self.batch size, self.m))
56 r = 0.06∗tf.exp(0.5∗t)
57 return x∗(r + tf.reduce sum(pi∗(mu − r), axis = 1, keepdims = True))
58

59 def aSDEx(self, t, x, pi , z) :
60 helper = tf.expand dims(tf.range(1, limit=self.m+1, dtype = tf.float32), axis=0)
61 mu = 0.07+0.02∗tf.sin(4∗np.pi∗t+2∗np.pi∗helper/self.m) \
62 ∗tf .ones(shape=(self.batch size, self.m))
63 r = 0.06∗tf.exp(0.5∗t)
64 return (r + tf.reduce sum(pi∗(mu − r), axis = 1, keepdims = True))∗z
65

66 # has to be (d, BBdim)−valued in the last two dimensions
67 def bSDE(self, t , x, pi) :
68 sigma = (0.3∗(1+tf.sqrt(t))−0.1)∗tf.eye(self.m) + 0.1∗tf.ones(shape=(self.m, self.m))
69 return tf .expand dims(x∗tf.matmul(pi, sigma), axis = 1)
70

71 def bSDEx(self, t, x, pi , q):
72 sigma = (0.3∗(1+tf.sqrt(t))−0.1)∗tf.eye(self.m) + 0.1∗tf.ones(shape=(self.m, self.m))
73 return (tf .expand dims(tf.linalg . trace(tf .matmul(tf.expand dims(
74 tf .matmul(pi, sigma), axis = −1), q)), axis = −1))
75

76 def f(self , t , x, pi) :

94

77 return tf . zeros(shape=(self.batch size , 1))
78

79 def fx(self , t , x, pi) :
80 return tf . zeros(shape=(self.batch size , self.d))
81

82 def g(self , x):
83 # such that the gradients of both branches exist, cf . documentation of tf.where
84 return tf.where(x>0, tf.math.log(tf.where(x>0, x, 1)), 0)
85

86 def gx(self , x):
87 return tf.where(x>0, tf.pow(tf.where(x>0, x, 1), −1), 0)
88

89 def classicalHam(self , t , x, pi , z, q):
90 return (tf.reduce sum(self.aSDE(t, x, pi)∗z, axis = 1, keepdims = True)
91 + tf.expand dims(0.5∗tf.linalg . trace(tf .matmul(tf.matmul(self.bSDE(t, x, pi),
92 self.bSDE(t, x, pi), transpose b = True), q)), axis = −1) + self.f(t , x, pi))
93

94 def genHamx(self, t, x, pi , z, q):
95 return self.aSDEx(t, x, pi, z) + self.bSDEx(t, x, pi, q) + self.fx(t, x, pi)
96

97 def loss1(self , x, y, z) :
98 helper1 = tf.reduce mean(tf.square(y − self .g(x)))
99 helper2 = tf.reduce mean(tf.reduce sum(tf.square(z − self .gx(x)), axis = 1))

100 return helper1 + helper2
101

102 def loss2(self , t , x, pi , z, q):
103 return −tf.reduce mean(self.classicalHam(t, x, pi , z, q))
104

105 @ tf.autograph.experimental.do not convert
106 def simulate1(self , dW):
107

108 X = self.x0 ∗ tf .ones(shape=(self.batch size , self.d))
109 Y = self.y0 ∗ tf .ones(shape=(self.batch size , 1))
110 Z = self .z0 ∗ tf .ones(shape=(self.batch size , self.d))
111

112 pi = self .pi0 ∗ tf .ones(shape=(self.batch size , self.m))
113 Q = self.Q0 ∗ tf.ones(shape=(self.batch size , self.d, self.d))
114

115 Y = Y − self.f (0.0, X, pi) ∗ self.dt \
116 + tf.reduce sum(tf.squeeze(tf .matmul(self.bSDE(0.0, X, pi),
117 dW[:, :, :, 0] ∗ tf . sqrt(self.dt)) , axis = −1) ∗ Z, axis = 1, keepdims = True)
118 Z = Z − self.genHamx(0.0, X, pi, Z, tf .matmul(Q, self.bSDE(0.0, X, pi))) ∗ self.dt \
119 + tf.squeeze(tf .matmul(tf.matmul(Q, self.bSDE(0.0, X, pi)),
120 dW[:, :, :, 0] ∗ tf . sqrt(self.dt)) , axis = −1)
121 X = X + self.aSDE(0.0, X, pi) ∗ self.dt \
122 + tf.squeeze(tf .matmul(self.bSDE(0.0, X, pi), dW[:, :, :, 0] \
123 ∗ tf . sqrt(self.dt)) , axis = −1)
124

125 for i in range(self.N − 1):
126

127 pi = self .Modelpi[i+1](X, training = True)
128 Q = self.ModelQ[i+1](X, training = True)
129

130 Y = Y − self.f((i+1)∗self .dt, X, pi) ∗ self.dt \
131 + tf.reduce sum(tf.squeeze(tf .matmul(self.bSDE((i+1)∗self.dt, X, pi) ,

95

132 dW[:, :, :, i+1] ∗ tf . sqrt(self.dt)) , axis = −1) ∗ Z, axis = 1, keepdims = True)
133 Z = Z − self.genHamx((i+1)∗self.dt, X, pi, Z, tf .matmul(Q,
134 self.bSDE((i+1)∗self.dt, X, pi))) ∗ self.dt \
135 + tf.squeeze(tf .matmul(tf.matmul(Q, self.bSDE((i+1)∗self.dt, X, pi)),
136 dW[:, :, :, i+1] ∗ tf . sqrt(self.dt)) , axis = −1)
137 X = X + self.aSDE((i+1)∗self.dt, X, pi) ∗ self.dt \
138 + tf.squeeze(tf .matmul(self.bSDE((i+1)∗self.dt, X, pi) ,
139 dW[:, :, :, i+1] ∗ tf . sqrt(self.dt)) , axis = −1)
140

141 return X, Y, Z
142

143 @ tf.function
144 def optimize1(self , dW):
145 with tf .GradientTape(watch accessed variables = False) as tape:
146 tape.watch(self.varforloss1.trainable variables)
147

148 X, Y, Z = self .simulate1(dW)
149 loss1 = self.loss1(X, Y, Z)
150

151 grad1 = tape.gradient(loss1, self.varforloss1.trainable variables)
152 self.optimizer1.apply gradients(zip(grad1, self.varforloss1.trainable variables))
153 return
154

155 @ tf.function
156 def optimize2 0(self , optimizer):
157 with tf .GradientTape(watch accessed variables = False) as tape:
158 tape.watch(self .pi0)
159

160 X = self.x0 ∗ tf .ones(shape=(self.batch size , self.d))
161 # Y = self.y0 ∗ tf .ones(shape=(self.batch size , 1))
162 Z = self .z0 ∗ tf .ones(shape=(self.batch size , self.d))
163

164 pi = self .pi0 ∗ tf .ones(shape=(self.batch size , self.m))
165 Q = self.Q0 ∗ tf.ones(shape=(self.batch size , self.d, self.d))
166

167 loss = self.loss2 (0.0, X, pi , Z, Q)
168

169 grad = tape.gradient(loss , self.pi0)
170 optimizer.apply gradients ([(grad, self.pi0)])
171 return
172

173 @ tf.autograph.experimental.do not convert
174 def simulate2(self , dW, N, X, Y, Z, pi, Q):
175

176 Y = Y − self.f((N−1)∗self.dt, X, pi) ∗ self.dt \
177 + tf.reduce sum(tf.squeeze(tf .matmul(self.bSDE((N−1)∗self.dt, X, pi),
178 dW[:, :, :, N−1] ∗ tf.sqrt(self.dt)) , axis = −1) ∗ Z, axis = 1, keepdims = True)
179 Z = Z − self.genHamx((N−1)∗self.dt, X, pi, Z, tf.matmul(Q,
180 self.bSDE((N−1)∗self.dt, X, pi))) ∗ self.dt \
181 + tf.squeeze(tf .matmul(tf.matmul(Q, self.bSDE((N−1)∗self.dt, X, pi)),
182 dW[:, :, :, N−1] ∗ tf.sqrt(self.dt)) , axis = −1)
183 X = X + self.aSDE((N−1)∗self.dt, X, pi) ∗ self.dt \
184 + tf.squeeze(tf .matmul(self.bSDE((N−1)∗self.dt, X, pi),
185 dW[:, :, :, N−1] ∗ tf.sqrt(self.dt)) , axis = −1)
186

96

187 pi = self .Modelpi[N](X, training = True)
188 Q = self.ModelQ[N](X, training = True)
189

190 return X, Y, Z, pi , Q
191

192 def optimize2(self , dW, N, X, Y, Z, pi, Q, optimizer, Model):
193 with tf .GradientTape(watch accessed variables = False) as tape:
194 tape.watch(Model.trainable variables)
195

196 X, Y, Z, pi , Q = self.simulate2(dW, N, X, Y, Z, pi, Q)
197 loss = self.loss2(N∗self .dt, X, pi , Z, Q)
198

199 grad = tape.gradient(loss , Model.trainable variables)
200 optimizer.apply gradients(zip(grad, Model.trainable variables))
201 return X, Y, Z, pi , Q
202

203 def optimize2prepare(self) :
204 self.optimizecontrol = [tf . function(self.optimize2). get concrete function(
205 tf .TensorSpec(shape=[self.batch size, self.BBdim, 1, self .N], dtype=tf.float32) , i+1,
206 tf .TensorSpec(shape=[self.batch size, self.d], dtype=tf.float32) ,
207 tf .TensorSpec(shape=[self.batch size, 1], dtype=tf.float32) ,
208 tf .TensorSpec(shape=[self.batch size, self.d], dtype=tf.float32) ,
209 tf .TensorSpec(shape=[self.batch size, self.m], dtype=tf.float32) ,
210 tf .TensorSpec(shape=[self.batch size, self.d, self.d], dtype=tf.float32) ,
211 self.optimizer2[i+1], self.Modelpi[i+1]) for i in range(self.N−1)]
212 return
213

214 def train(self , steps) :
215 time start = time.time()
216 for k in range(steps) :
217 # dW does not have the desired shape, if BBdim==1
218 dW = tf.constant(multivariate normal.rvs(size=[self.batch size, self.BBdim, self.N]),
219 dtype=tf.float32)
220 if self.BBdim == 1:
221 dW = tf.expand dims(dW, axis = 1)
222 dW = tf.expand dims(dW, axis = 2)
223

224 self.optimize1(dW)
225

226 optimizer = self.optimizer2[0]
227 self.optimize2 0(optimizer)
228

229 X = self.x0 ∗ tf .ones(shape=(self.batch size , self.d))
230 Y = self.y0 ∗ tf .ones(shape=(self.batch size , 1))
231 Z = self .z0 ∗ tf .ones(shape=(self.batch size , self.d))
232

233 pi = self .pi0 ∗ tf .ones(shape=(self.batch size , self.m))
234 Q = self.Q0 ∗ tf.ones(shape=(self.batch size , self.d, self.d))
235

236 for i in range(self.N − 1):
237 X, Y, Z, pi , Q = self.optimizecontrol[i](dW, X, Y, Z, pi, Q)
238

239 self.history time.append(time.time()−time start)
240 self.history y0 .append(self.y0.numpy())
241

97

242 if k%50 == 0:
243 print(”Step: %d, Time: %.2f, y0: %.4f”
244 % (k, self.history time[−1], self.history y0[−1]))
245 return
246

247

248 class PartNetwork(keras.Model):
249

250 def init (self , m, d, layers num, nodes, isQ, ∗∗kwargs):
251 super(PartNetwork, self). init (∗∗kwargs)
252 self.d = d
253 self.m = m
254 self.layers num = layers num
255 self.nodes = nodes
256 self.isQ = isQ
257 if self.isQ == False:
258 self.outdim = self.m
259 else :
260 self.outdim = (self.d)∗∗2
261

262 self.bnorm layers = [keras. layers .BatchNormalization(epsilon=100)
263 for in range(self.layers num−1)]
264 self.dense layers = [keras. layers .Dense(nodes[i], use bias=False, activation=None)
265 for i in range(self.layers num−2)]
266 self.dense layers .append(keras.layers.Dense(self.outdim, activation=None))
267 if self.isQ == True:
268 self.reshape layer = keras. layers .Reshape((self.d, self.d))
269

270 def call (self , x, training) :
271 x = self.bnorm layers[0](x, training)
272 for i in range(self.layers num−2):
273 x = self.dense layers[i](x)
274 x = self.bnorm layers[i+1](x, training)
275 x = tf.nn.relu(x)
276 x = self.dense layers[self.layers num−2](x)
277 if self.isQ == True:
278 x = self . reshape layer(x)
279 if self.isQ == False:
280 x = x∗x−1/self.m
281 return x
282

283

284 Model = Deepcontrolled2BSDE()
285 Model.build()
286 Model.optimize2prepare()
287 Model.train(10000)

Code A.1: Python code for the primal version of the deep controlled 2BSDE algorithm in
the setting of Example 5.5.

98

A.2 Python Implementation of the Dual Version of the Deep
Controlled 2BSDE Algorithm

1 import tensorflow as tf
2 from tensorflow import keras
3 import numpy as np
4 import time
5 from scipy. stats import multivariate normal
6

7 class Deepcontrolled2BSDE dual(keras.Model):
8

9 def init (self , ∗∗kwargs):
10 super(Deepcontrolled2BSDE dual, self). init (∗∗kwargs)
11 self.m = 30
12 self.BBdim = 30
13 self.d = 1
14 self.T = 0.5
15 self.N = 10
16 self.dt = self.T/self.N
17 self.layers num = 4 # number of hidden + 2
18 self.nodes = [11, 11] # nodes in hidden layers
19 self.batch size = 64
20 self.x0 primal = 10
21 self.x0 = tf.Variable(np.random.uniform(size=(1, self.d), low=0.2, high=0.4),
22 trainable=True, dtype=tf.float32)
23 self.schedule1 = keras.optimizers.schedules.PiecewiseConstantDecay([1000, 3000, 8000],
24 [1e−2, 1e−3, 1e−4, 1e−5])
25 self.schedule2 = [keras.optimizers.schedules.PiecewiseConstantDecay([1000, 3000, 8000],
26 [1e−3, 1e−4, 1e−5, 1e−6]) for in range(self.N)]
27 self.schedule3 = keras.optimizers.schedules.PiecewiseConstantDecay([200, 1000, 8000],
28 [1e−2, 1e−4, 1e−5, 1e−6])
29 self.optimizer1 = keras.optimizers.Adam(learning rate = self.schedule1)
30 self.optimizer2 = [keras.optimizers.Adam(learning rate = self.schedule2[i])
31 for i in range(self.N)]
32 self.optimizer3 = keras.optimizers.Adam(learning rate = self.schedule3)
33 self.y0 = tf.Variable(np.random.uniform(size=(1, 1), low=1.4, high=1.6), trainable=True,
34 dtype=tf.float32)
35 self.z0 = tf.Variable(np.random.uniform(size=(1, self.d), low=−0.1, high=0.1),
36 trainable=True, dtype=tf.float32)
37 self.pi0 = tf.Variable(np.random.uniform(size=(1, self.m), low=0.1, high=0.4),
38 trainable=True, dtype=tf.float32, constraint=lambda z: z∗∗2)
39 self.Q0 = tf.Variable(np.random.uniform(size=(self.d, self.d), low=−0.1, high=0.1),
40 trainable=True, dtype=tf.float32)
41 self.train startvalues = [self.y0, self.z0]
42 self.ModelQ = [self.Q0] + [PartNetwork(self.m, self.d, self.layers num, self.nodes,
43 isQ=True) for in range(self.N−1)]
44 self.varforloss1 = self.train startvalues + self.ModelQ
45 self.Modelpi = [self.pi0] + [PartNetwork(self.m, self.d, self.layers num, self.nodes,
46 isQ=False) for in range(self.N−1)]
47 self.history time = []
48 self.history value = []
49

50 def build(self) :
51 for i in range(self.N−1):

99

52 self.Modelpi[i+1](tf. zeros(shape=(1, self.d)), training = False)
53 self.ModelQ[i+1](tf.zeros(shape=(1, self.d)), training = False)
54 return
55

56 def delta K(self , pi) :
57 kappa = 1/self.m
58 return kappa∗tf.reduce sum(pi, axis = 1, keepdims = True)
59

60 # The following four methods depend essentially on the studied problem. (also d=1 here)
61 def aSDE(self, t , x, pi) :
62 r = 0.06∗tf.exp(0.5∗t)
63 return −x∗(r + self.delta K(pi))
64

65 def aSDEx(self, t, x, pi , z) :
66 r = 0.06∗tf.exp(0.5∗t)
67 return −(r + self.delta K(pi))∗z
68

69 def bSDE(self, t , x, pi) :
70 sigma inv = tf.linalg.inv((0.3∗(1+tf.sqrt(t))−0.1)∗tf.eye(self.m) \
71 + 0.1∗tf .ones(shape=(self.m, self.m)))
72 helper = tf.expand dims(tf.range(1, limit=self.m+1, dtype = tf.float32), axis=0)
73 mu = 0.07+0.02∗tf.sin(4∗np.pi∗t+2∗np.pi∗helper/self.m) \
74 ∗tf .ones(shape=(self.batch size , self.m))
75 r = 0.06∗tf.exp(0.5∗t)
76 theta = tf.transpose(tf .matmul(sigma inv, mu−r, transpose b = True))
77 return tf .expand dims(−x∗(theta + tf.transpose(tf.matmul(sigma inv, pi,
78 transpose b = True))), axis = 1)
79

80 def bSDEx(self, t, x, pi , q):
81 sigma inv = tf.linalg.inv((0.3∗(1+tf.sqrt(t))−0.1)∗tf.eye(self.m) \
82 + 0.1∗tf .ones(shape=(self.m, self.m)))
83 helper = tf.expand dims(tf.range(1, limit=self.m+1, dtype = tf.float32), axis=0)
84 mu = 0.07+0.02∗tf.sin(4∗np.pi∗t+2∗np.pi∗helper/self.m) \
85 ∗tf .ones(shape=(self.batch size , self.m))
86 r = 0.06∗tf.exp(0.5∗t)
87 theta = tf.transpose(tf .matmul(sigma inv, mu−r, transpose b = True))
88 helper2 = tf.expand dims(−(theta + tf.transpose(tf.matmul(sigma inv, pi,
89 transpose b = True))), axis = −1)
90 return tf .expand dims(tf.linalg . trace(tf .matmul(helper2, q)), axis = −1)
91

92 def f(self , t , x, pi) :
93 return tf . zeros(shape=(self.batch size , 1))
94

95 def fx(self , t , x, pi) :
96 return tf . zeros(shape=(self.batch size , self.d))
97

98 def g(self , x):
99 return tf.where(x>0, −1−tf.math.log(tf.where(x>0, x, 1)), 0)

100

101 def gx(self , x):
102 return tf.where(x>0, −tf.pow(tf.where(x>0, x, 1), −1), 0)
103

104 def classicalHam(self , t , x, pi , z, q):
105 return (tf .reduce sum(self.aSDE(t, x, pi)∗z, axis = 1, keepdims = True)
106 + tf.expand dims(0.5∗tf.linalg . trace(tf .matmul(tf.matmul(self.bSDE(t, x, pi),

100

107 self.bSDE(t, x, pi), transpose b = True), q)), axis = −1) + self.f(t , x, pi))
108

109 def genHamx(self, t, x, pi , z, q):
110 return self.aSDEx(t, x, pi, z) + self.bSDEx(t, x, pi, q) + self.fx(t, x, pi)
111

112 def loss1(self , x, y, z) :
113 helper1 = tf.reduce mean(tf.square(y − self.g(x)))
114 helper2 = tf.reduce mean(tf.reduce sum(tf.square(z − self.gx(x)), axis = 1))
115 return helper1 + helper2
116

117 def loss2(self , t , x, pi , z, q):
118 return tf .reduce mean(self.classicalHam(t, x, pi , z, q))
119

120 def loss3(self , x):
121 # Note that the dual problem is only meaningful for a one−dimensional process
122 return tf .reduce mean(self.g(x)) + self.x0∗self.x0 primal
123

124 @ tf.autograph.experimental.do not convert
125 def simulate1(self , dW):
126

127 X = self.x0 ∗ tf .ones(shape=(self.batch size , self.d))
128 Y = self.y0 ∗ tf .ones(shape=(self.batch size , 1))
129 Z = self .z0 ∗ tf .ones(shape=(self.batch size , self.d))
130

131 pi = self .pi0 ∗ tf .ones(shape=(self.batch size , self.m))
132 Q = self.Q0 ∗ tf.ones(shape=(self.batch size , self.d, self.d))
133

134 Y = Y − self.f (0.0, X, pi) ∗ self.dt \
135 + tf.reduce sum(tf.squeeze(tf .matmul(self.bSDE(0.0, X, pi),
136 dW[:, :, :, 0] ∗ tf . sqrt(self.dt)) , axis = −1) ∗ Z, axis = 1, keepdims = True)
137 Z = Z − self.genHamx(0.0, X, pi, Z, tf .matmul(Q, self.bSDE(0.0, X, pi))) ∗ self.dt \
138 + tf.squeeze(tf .matmul(tf.matmul(Q, self.bSDE(0.0, X, pi)),
139 dW[:, :, :, 0] ∗ tf . sqrt(self.dt)) , axis = −1)
140 X = X + self.aSDE(0.0, X, pi) ∗ self.dt \
141 + tf.squeeze(tf .matmul(self.bSDE(0.0, X, pi),
142 dW[:, :, :, 0] ∗ tf . sqrt(self.dt)) , axis = −1)
143

144 for i in range(self.N−1):
145

146 pi = self .Modelpi[i+1](X, training = True)
147 Q = self.ModelQ[i+1](X, training = True)
148

149 Y = Y − self.f((i+1)∗self .dt, X, pi) ∗ self.dt \
150 + tf.reduce sum(tf.squeeze(tf .matmul(self.bSDE((i+1)∗self.dt, X, pi) ,
151 dW[:, :, :, i+1] ∗ tf . sqrt(self.dt)) , axis = −1) ∗ Z, axis = 1, keepdims = True)
152 Z = Z − self.genHamx((i+1)∗self.dt, X, pi, Z, tf .matmul(Q,
153 self.bSDE((i+1)∗self.dt, X, pi))) ∗ self.dt \
154 + tf.squeeze(tf .matmul(tf.matmul(Q, self.bSDE((i+1)∗self.dt, X, pi)),
155 dW[:, :, :, i+1] ∗ tf . sqrt(self.dt)) , axis = −1)
156 X = X + self.aSDE((i+1)∗self.dt, X, pi) ∗ self.dt \
157 + tf.squeeze(tf .matmul(self.bSDE((i+1)∗self.dt, X, pi) ,
158 dW[:, :, :, i+1] ∗ tf . sqrt(self.dt)) , axis = −1)
159

160 return X, Y, Z
161

101

162 @ tf.function
163 def optimize1(self , dW):
164 with tf .GradientTape(watch accessed variables = False) as tape:
165 tape.watch(self.varforloss1.trainable variables)
166

167 X, Y, Z = self.simulate1(dW)
168 loss1 = self.loss1(X, Y, Z)
169

170 grad1 = tape.gradient(loss1, self.varforloss1.trainable variables)
171 self.optimizer1.apply gradients(zip(grad1, self.varforloss1.trainable variables))
172 return
173

174 @ tf.function
175 def optimize2 0(self , optimizer):
176 with tf .GradientTape(watch accessed variables = False) as tape:
177 tape.watch(self.pi0)
178

179 X = self.x0 ∗ tf .ones(shape=(self.batch size , self.d))
180 # Y = self.y0 ∗ tf .ones(shape=(self.batch size , 1))
181 Z = self .z0 ∗ tf .ones(shape=(self.batch size , self.d))
182

183 pi = self .pi0 ∗ tf .ones(shape=(self.batch size , self.m))
184 Q = self.Q0 ∗ tf.ones(shape=(self.batch size , self.d, self.d))
185

186 loss = self.loss2 (0.0, X, pi , Z, Q)
187

188 grad = tape.gradient(loss , self.pi0)
189 optimizer.apply gradients ([(grad, self.pi0)])
190 return
191

192 @ tf.autograph.experimental.do not convert
193 def simulate2(self , dW, N, X, Y, Z, pi, Q):
194

195 Y = Y − self.f((N−1)∗self.dt, X, pi) ∗ self.dt \
196 + tf.reduce sum(tf.squeeze(tf .matmul(self.bSDE((N−1)∗self.dt, X, pi),
197 dW[:, :, :, N−1] ∗ tf.sqrt(self.dt)) , axis = −1) ∗ Z, axis = 1, keepdims = True)
198 Z = Z − self.genHamx((N−1)∗self.dt, X, pi, Z, tf.matmul(Q,
199 self.bSDE((N−1)∗self.dt, X, pi))) ∗ self.dt \
200 + tf.squeeze(tf .matmul(tf.matmul(Q, self.bSDE((N−1)∗self.dt, X, pi)),
201 dW[:, :, :, N−1] ∗ tf.sqrt(self.dt)) , axis = −1)
202 X = X + self.aSDE((N−1)∗self.dt, X, pi) ∗ self.dt \
203 + tf.squeeze(tf .matmul(self.bSDE((N−1)∗self.dt, X, pi),
204 dW[:, :, :, N−1] ∗ tf.sqrt(self.dt)) , axis = −1)
205

206 pi = self .Modelpi[N](X, training = True)
207 Q = self.ModelQ[N](X, training = True)
208

209 return X, Y, Z, pi , Q
210

211 def optimize2(self , dW, N, X, Y, Z, pi, Q, optimizer, Model):
212 with tf .GradientTape(watch accessed variables = False) as tape:
213 tape.watch(Model.trainable variables)
214

215 X, Y, Z, pi , Q = self.simulate2(dW, N, X, Y, Z, pi, Q)
216 loss = self.loss2(N∗self.dt, X, pi, Z, Q)

102

217

218 grad = tape.gradient(loss , Model.trainable variables)
219 optimizer.apply gradients(zip(grad, Model.trainable variables))
220

221 return X, Y, Z, pi , Q
222

223 def optimize2prepare(self) :
224 self.optimizecontrol = [tf . function(self.optimize2). get concrete function(
225 tf .TensorSpec(shape=[self.batch size, self.BBdim, 1, self.N], dtype=tf.float32), i+1,
226 tf .TensorSpec(shape=[self.batch size, self.d], dtype=tf.float32) ,
227 tf .TensorSpec(shape=[self.batch size, 1], dtype=tf.float32) ,
228 tf .TensorSpec(shape=[self.batch size, self.d], dtype=tf.float32) ,
229 tf .TensorSpec(shape=[self.batch size, self.m], dtype=tf.float32) ,
230 tf .TensorSpec(shape=[self.batch size, self.d, self.d], dtype=tf.float32) ,
231 self.optimizer2[i+1], self.Modelpi[i+1]) for i in range(self.N−1)]
232 return
233

234 @ tf.autograph.experimental.do not convert
235 def simulate3(self , dW):
236

237 X = self.x0 ∗ tf .ones(shape=(self.batch size , self.d))
238 pi = self .pi0 ∗ tf .ones(shape=(self.batch size , self.m))
239

240 X = X + self.aSDE(0.0, X, pi) ∗ self.dt \
241 + tf.squeeze(tf .matmul(self.bSDE(0.0, X, pi),
242 dW[:, :, :, 0] ∗ tf . sqrt(self.dt)) , axis = −1)
243

244 for i in range(self.N−1):
245

246 pi = self.Modelpi[i+1](X, training = True)
247 X = X + self.aSDE((i+1)∗self.dt, X, pi) ∗ self.dt \
248 + tf.squeeze(tf .matmul(self.bSDE((i+1)∗self.dt, X, pi) ,
249 dW[:, :, :, i+1] ∗ tf . sqrt(self.dt)) , axis = −1)
250

251 return X
252

253 @ tf.function
254 def optimize3(self , dW):
255 with tf .GradientTape(watch accessed variables = False) as tape:
256 tape.watch(self.x0)
257

258 X = self.simulate3(dW)
259 loss3 = self.loss3(X)
260

261 grad = tape.gradient(loss3 , self.x0)
262 self.optimizer3.apply gradients ([(grad, self.x0)])
263 return
264

265 def train(self , steps) :
266 time start = time.time()
267 for k in range(steps) :
268 # dW does not have the desired shape, if BBdim==1
269 dW = tf.constant(multivariate normal.rvs(size=[self.batch size, self.BBdim, self.N]),
270 dtype=tf.float32)
271 if self.BBdim == 1:

103

272 dW = tf.expand dims(dW, axis = 1)
273 dW = tf.expand dims(dW, axis = 2)
274

275 self.optimize1(dW)
276

277 optimizer = self.optimizer2[0]
278 self.optimize2 0(optimizer)
279

280 X = self.x0 ∗ tf .ones(shape=(self.batch size , self.d))
281 Y = self.y0 ∗ tf .ones(shape=(self.batch size , 1))
282 Z = self .z0 ∗ tf .ones(shape=(self.batch size , self.d))
283

284 pi = self .pi0 ∗ tf .ones(shape=(self.batch size , self.m))
285 Q = self.Q0 ∗ tf.ones(shape=(self.batch size , self.d, self.d))
286

287 for i in range(self.N−1):
288 X, Y, Z, pi , Q = self.optimizecontrol[i](dW, X, Y, Z, pi, Q)
289

290 self.optimize3(dW)
291

292 self.history time.append(time.time()−time start)
293 self.history value .append(self.y0.numpy() + self.x0.numpy()∗self.x0 primal)
294

295 if k%50 == 0:
296 print(”Step: %d, Time: %.2f, Value: %.4f”
297 % (k, self.history time[−1], self.history value [−1]))
298 return
299

300

301 class PartNetwork(keras.Model):
302

303 def init (self , m, d, layers num, nodes, isQ, ∗∗kwargs):
304 super(PartNetwork, self). init (∗∗kwargs)
305 self.d = d
306 self.m = m
307 self.layers num = layers num
308 self.nodes = nodes
309 self.isQ = isQ
310 if self.isQ == False:
311 self.outdim = self.m
312 # if unconstrained: self.projection = keras. layers .Lambda(lambda x: x∗0)
313 else :
314 self.outdim = (self.d)∗∗2
315

316 self.bnorm layers = [keras. layers .BatchNormalization(epsilon=100)
317 for in range(self.layers num−1)]
318 self.dense layers = [keras. layers .Dense(nodes[i], use bias=False, activation=None)
319 for i in range(self.layers num−2)]
320 self.dense layers .append(keras.layers.Dense(self.outdim, activation=None))
321 if self.isQ == True:
322 self.reshape layer = keras. layers .Reshape((self.d, self.d))
323

324 def call (self , x, training) :
325 x = self.bnorm layers[0](x, training)
326 for i in range(self.layers num−2):

104

327 x = self.dense layers[i](x)
328 x = self.bnorm layers[i+1](x, training)
329 x = tf.nn.relu(x)
330 x = self.dense layers[self.layers num−2](x)
331 if self.isQ == True:
332 x = self.reshape layer(x)
333 if self.isQ == False:
334 x = x∗x
335 return x
336

337

338 Model = Deepcontrolled2BSDE dual()
339 Model.build()
340 Model.optimize2prepare()
341 Model.train(10000)

Code A.2: Python code for the dual version of the deep controlled 2BSDE algorithm in the
setting of Example 5.5.

A.3 Python Implementation of the Deep SMP Algorithm

1 import tensorflow as tf
2 from tensorflow import keras
3 import numpy as np
4 import time
5 from scipy. stats import multivariate normal
6

7 class DeepSMP(keras.Model):
8

9 def init (self , ∗∗kwargs):
10 super(DeepSMP, self). init (∗∗kwargs)
11 self.m = 30
12 self.T = 0.5
13 self.N = 10
14 self.dt = self.T/self.N
15 self.layers num = 4 # number of hidden + 2
16 self.nodes = [11, 11] # nodes in hidden layers
17 self.batch size = 64
18 self.x0 primal = 10
19 self.y0 = tf.Variable(np.random.uniform(low = 0.2, high = 0.4), trainable = True)
20 self.schedule1 = keras.optimizers.schedules.PiecewiseConstantDecay([2000, 5000, 8000],
21 [1e−2, 1e−3, 1e−4, 1e−5])
22 self.schedule2 = [keras.optimizers.schedules.PiecewiseConstantDecay([2000, 5000, 8000],
23 [1e−2, 1e−3, 1e−4, 1e−5]) for in range(self.N)]
24 self.schedule3 = keras.optimizers.schedules.PiecewiseConstantDecay([200, 1000, 8000],
25 [1e−2, 1e−4, 1e−5, 1e−6])
26 self.optimizer1 = keras.optimizers.Adam(learning rate = self.schedule1)
27 self.optimizer2 = [keras.optimizers.Adam(learning rate = self.schedule2[i])
28 for i in range(self.N)]
29 self.optimizer3 = keras.optimizers.Adam(learning rate = self.schedule3)
30 self.p0 = self.x0 primal # Condition 2 from SMP theorem
31 self.pi0 = tf.Variable(np.random.uniform(size = (1, self.m), low = 0.1, high = 0.4),
32 trainable=True, dtype=tf.float32, constraint=lambda z: z∗z)

105

33 self.Q0 = tf.Variable(np.random.uniform(size = (1, self.m), low = −0.1, high = 0.1),
34 trainable=True, dtype=tf.float32)
35 self.ModelQ = [self.Q0] + [PartNetwork(self.m, self.layers num, self.nodes,
36 isQ=True) for in range(self.N − 1)]
37 self.Modelpi = [self.pi0] + [PartNetwork(self.m, self.layers num, self.nodes,
38 isQ=False) for in range(self.N − 1)]
39 self.history time = []
40 self.history y0 = []
41 self.mc size = 100000
42 self.history bound u = []
43 self.history bound l = []
44

45 def build(self) :
46 for i in range(self.N−1):
47 self.Modelpi[i+1](tf. zeros(shape=(1, 1)), training = False)
48 self.ModelQ[i+1](tf.zeros(shape=(1, 1)), training = False)
49 return
50

51 def delta K(self , v):
52 kappa = 1/self.m
53 return kappa∗tf.reduce sum(v, axis = 1, keepdims = True)
54

55 def projection K(self , x):
56 return tf.where(x<−1/self.m, −1/self.m, x)
57

58 def sigma(self , t) :
59 sigma = (0.3∗(1+tf.sqrt(t))−0.1)∗tf.eye(self.m) + 0.1∗tf.ones(shape=(self.m, self.m))
60 return sigma
61

62 def sigma inv(self , t) :
63 sigma inv = tf.linalg.inv(self.sigma(t))
64 return sigma inv
65

66 def mu(self, t , size) :
67 helper = tf.expand dims(tf.range(1, limit=self.m+1, dtype = tf.float32), axis=0)
68 mu = 0.07+0.02∗tf.sin(4∗np.pi∗t+2∗np.pi∗helper/self.m)
69 return mu∗tf.ones(shape=(size, self.m))
70

71 def r(self , t , size) :
72 r = 0.06∗tf.exp(0.5∗t)
73 return r∗tf .ones(shape=(size, 1))
74

75 def theta(self , t , size) :
76 theta = tf.transpose(tf .matmul(self.sigma inv(t), self.mu(t, size)−self.r(t, size) ,
77 transpose b = True))
78 return theta
79

80 def U(self , x):
81 x = tf.expand dims(x, axis = −1)
82 return tf .where(x>0, tf.math.log(tf.where(x>0, x, 1)), 0)
83

84 def g(self , x):
85 x = tf.expand dims(x, axis = −1)
86 return tf .where(x>0, −1−tf.math.log(tf.where(x>0, x, 1)), 0)
87

106

88 def gx(self , x):
89 x = tf.expand dims(x, axis = −1)
90 return tf .where(x>0, −tf.pow(tf.where(x>0, x, 1), −1), 0)
91

92 def loss1(self , y, p):
93 return tf .reduce mean(tf.square(tf.expand dims(p, axis = −1) + self.gx(y)))
94

95 def loss2(self , t , p, v, q):
96 return (tf .reduce mean(tf.square(tf.expand dims(p, axis = −1)∗self.delta K(v)
97 + tf.reduce sum(q∗tf.transpose(tf.matmul(self.sigma inv(t), v,
98 transpose b = True)), axis = 1, keepdims = True))))
99

100 def loss3(self , y):
101 return tf .reduce mean(self.g(y)) + self.y0∗self.x0 primal
102

103 def bounds(self) :
104 dW = tf.constant(multivariate normal.rvs(size=[self.mc size, self.m, self.N]),
105 dtype=tf.float32)
106 if self.m == 1:
107 dW = tf.expand dims(dW, axis = 1)
108 Y, P = self .simulate1(dW, size = self.mc size, training = False)
109

110 bound l = tf.reduce mean(self.U(P))
111 bound u = tf.reduce mean(self.g(Y)) + self.y0∗self.x0 primal
112

113 return [bound l, bound u]
114

115 @ tf.autograph.experimental.do not convert
116 def simulate1(self , dW, size, training) :
117

118 Y = self.y0 ∗ tf .ones(size)
119 P = self .p0 ∗ tf .ones(size)
120

121 pi = self .pi0 ∗ tf .ones(shape=(size, self.m))
122 Q = self.Q0 ∗ tf.ones(shape=(size, self.m))
123

124 P = P + tf.squeeze((self.r(0.0, size) ∗ tf .expand dims(P, axis = −1) + tf.reduce sum(
125 Q ∗ self.theta(0.0, size) , axis = 1, keepdims = True)) ∗ self.dt, axis = 1) \
126 + tf.reduce sum(dW[:, :, 0] ∗ Q ∗ tf . sqrt(self.dt), axis = 1)
127 Y = Y − tf.squeeze(tf.expand dims(Y, axis = −1) ∗ (self.r(0.0, size) + self.delta K(pi))
128 ∗ self.dt, axis = 1) \
129 − tf.reduce sum(dW[:, :, 0] ∗ tf .expand dims(Y, axis = −1) ∗ (self.theta(0.0, size)
130 + tf.transpose(tf .matmul(self.sigma inv(0.0), pi , transpose b = True)))
131 ∗ tf . sqrt(self.dt), axis = 1)
132

133 for i in range(self.N−1):
134

135 pi = self.Modelpi[i+1](tf.expand dims(Y, axis = −1), training)
136 Q = tf.expand dims(P, axis = −1) ∗ tf.matmul(self.projection K(self.ModelQ[i+1](
137 tf .expand dims(Y, axis = −1), training)), self.sigma((i+1)∗self.dt))
138

139 P = P + tf.squeeze((self.r((i+1)∗self .dt, size) ∗ tf .expand dims(P, axis = −1)
140 + tf.reduce sum(Q ∗ self.theta((i+1)∗self.dt, size) , axis = 1, keepdims = True))
141 ∗ self.dt, axis = 1) \
142 + tf.reduce sum(dW[:, :, i+1] ∗ Q ∗ tf . sqrt(self.dt), axis = 1)

107

143 Y = Y − tf.squeeze(tf.expand dims(Y, axis = −1) ∗ (self.r((i+1)∗self .dt, size)
144 + self.delta K(pi)) ∗ self.dt, axis = 1) \
145 − tf.reduce sum(dW[:, :, i+1] ∗ tf .expand dims(Y, axis = −1)
146 ∗ (self.theta((i+1)∗self.dt, size) + tf.transpose(tf .matmul(self.sigma inv(
147 (i+1)∗self.dt), pi, transpose b = True))) ∗ tf . sqrt(self.dt), axis = 1)
148

149 return Y, P
150

151 @ tf.function
152 def optimize1(self , dW):
153 with tf .GradientTape(watch accessed variables = False) as tape:
154 tape.watch(self.ModelQ.trainable variables)
155

156 Y, P = self.simulate1(dW, size = self.batch size , training = True)
157 loss1 = self.loss1(Y, P)
158

159 grad1 = tape.gradient(loss1, self.ModelQ.trainable variables)
160 self.optimizer1.apply gradients(zip(grad1, self.ModelQ.trainable variables))
161 return
162

163 @ tf.function
164 def optimize2 0(self , optimizer):
165 with tf .GradientTape(watch accessed variables = False) as tape:
166 tape.watch(self.pi0)
167

168 # Y = self.y0 ∗ tf .ones(self.batch size)
169 P = self .p0 ∗ tf .ones(self.batch size)
170

171 pi = self .pi0 ∗ tf .ones(shape=(self.batch size , self.m))
172 Q = self.Q0 ∗ tf.ones(shape=(self.batch size , self.m))
173

174 loss2 = self.loss2 (0.0, P, pi , Q)
175

176 grad = tape.gradient(loss2 , self.pi0)
177 optimizer.apply gradients ([(grad, self.pi0)])
178 return
179

180 @ tf.autograph.experimental.do not convert
181 def simulate2(self , dW, N, Y, P, pi, Q):
182

183 P = P + tf.squeeze((self.r((N−1)∗self.dt, self.batch size)∗tf .expand dims(P, axis = −1)
184 + tf.reduce sum(Q∗self.theta((N−1)∗self.dt, self.batch size) , axis = 1,
185 keepdims = True)) ∗ self.dt, axis = 1) \
186 + tf.reduce sum(dW[:, :, N−1] ∗ Q ∗ tf.sqrt(self.dt), axis = 1)
187 Y = Y − tf.squeeze(tf.expand dims(Y, axis = −1) ∗ (self.r((N−1)∗self.dt, self.batch size)
188 + self.delta K(pi)) ∗ self.dt, axis = 1) \
189 − tf.reduce sum(dW[:, :, N−1] ∗ tf.expand dims(Y, axis = −1)
190 ∗ (self.theta((N−1)∗self.dt, self.batch size) + tf.transpose(tf .matmul(self.sigma inv(
191 (N−1)∗self.dt), pi , transpose b = True))) ∗ tf . sqrt(self.dt), axis = 1)
192

193 pi = self .Modelpi[N](tf.expand dims(Y, axis = −1), training = True)
194 Q = tf.expand dims(P, axis = −1) ∗ tf.matmul(self.projection K(self.ModelQ[N](
195 tf .expand dims(Y, axis = −1), training = True)), self .sigma(N∗self.dt))
196

197 return Y, P, pi , Q

108

198

199 def optimize2(self , dW, N, Y, P, pi, Q, optimizer, Model):
200 with tf .GradientTape(watch accessed variables = False) as tape:
201 tape.watch(Model.trainable variables)
202

203 Y, P, pi , Q = self.simulate2(dW, N, Y, P, pi, Q)
204 loss = self.loss2(N∗self.dt, P, pi, Q)
205

206 grad = tape.gradient(loss , Model.trainable variables)
207 optimizer.apply gradients(zip(grad, Model.trainable variables))
208 return Y, P, pi , Q
209

210 def optimize2prepare(self) :
211 self.optimizecontrol = [tf . function(self.optimize2). get concrete function(
212 tf .TensorSpec(shape=[self.batch size, self.m, self.N], dtype=tf.float32) , i+1,
213 tf .TensorSpec(shape=[self.batch size], dtype=tf.float32) ,
214 tf .TensorSpec(shape=[self.batch size], dtype=tf.float32) ,
215 tf .TensorSpec(shape=[self.batch size, self.m], dtype=tf.float32) ,
216 tf .TensorSpec(shape=[self.batch size, self.m], dtype=tf.float32) ,
217 self.optimizer2[i+1], self.Modelpi[i+1]) for i in range(self.N−1)]
218 return
219

220 @ tf.autograph.experimental.do not convert
221 def simulate3(self , dW):
222

223 Y = self.y0 ∗ tf .ones(self.batch size)
224 pi = self .pi0 ∗ tf .ones(shape=(self.batch size, self.m))
225

226 Y = Y − tf.squeeze(tf.expand dims(Y, axis = −1) ∗ (self.r(0.0, self.batch size)
227 + self.delta K(pi)) ∗ self.dt, axis = 1) \
228 − tf.reduce sum(dW[:, :, 0] ∗ tf .expand dims(Y, axis = −1) ∗ (self.theta(0.0,
229 self.batch size) + tf .transpose(tf .matmul(self.sigma inv(0.0), pi ,
230 transpose b = True))) ∗ tf . sqrt(self.dt), axis = 1)
231

232 for i in range(self.N−1):
233

234 pi = self.Modelpi[i+1](tf.expand dims(Y, axis = −1), training = True)
235 Y = Y − tf.squeeze(tf.expand dims(Y, axis = −1) ∗ (self.r((i+1)∗self .dt, self.batch size)
236 + self.delta K(pi)) ∗ self.dt, axis = 1) \
237 − tf.reduce sum(dW[:, :, i+1] ∗ tf .expand dims(Y, axis = −1)
238 ∗ (self.theta((i+1)∗self .dt, self.batch size) + tf.transpose(tf .matmul(
239 self.sigma inv((i+1)∗self .dt), pi , transpose b = True)))
240 ∗ tf . sqrt(self.dt), axis = 1)
241

242 return Y
243

244 @ tf.function
245 def optimize3(self , dW):
246 with tf .GradientTape(watch accessed variables = False) as tape:
247 tape.watch(self.y0)
248

249 Y = self.simulate3(dW)
250 loss3 = self.loss3(Y)
251

252 grad = tape.gradient(loss3 , self.y0)

109

253 self.optimizer3.apply gradients ([(grad, self.y0)])
254 return
255

256 def train(self , steps) :
257 time start = time.time()
258 for k in range(steps) :
259 # dW does not have the desired shape, if BBdim==1
260 dW = tf.constant(multivariate normal.rvs(size=[self.batch size, self.m, self.N]),
261 dtype=tf.float32)
262 if self.m == 1:
263 dW = tf.expand dims(dW, axis = 1)
264

265 self.optimize1(dW)
266

267 optimizer = self.optimizer2[0]
268 self.optimize2 0(optimizer)
269

270 Y = self.y0 ∗ tf .ones(self.batch size)
271 P = self .p0 ∗ tf .ones(self.batch size)
272

273 pi = self .pi0 ∗ tf .ones(shape=(self.batch size, self.m))
274 Q = self.Q0 ∗ tf.ones(shape=(self.batch size, self.m))
275

276 for i in range(self.N−1):
277 Y, P, pi , Q = self.optimizecontrol[i](dW, Y, P, pi, Q)
278

279 self.optimize3(dW)
280

281 self.history time.append(time.time()−time start)
282 self.history y0 .append(self.y0.numpy())
283

284 if k%50 == 0:
285 print(”Step: %d, Time: %.2f, y: %.4f”
286 % (k, self.history time[−1], self.history y0[−1]))
287

288 if k%200 == 0:
289 helper = self.bounds()
290 self.history bound l.append(helper[0].numpy())
291 self.history bound u.append(helper[1].numpy())
292 print(”Step: %d, Bound l: %.4f, Bound u: %.4f”
293 % (k, self.history bound l[−1], self.history bound u[−1]))
294 return
295

296

297 class PartNetwork(keras.Model):
298

299 def init (self , m, layers num, nodes, isQ, ∗∗kwargs):
300 super(PartNetwork, self). init (∗∗kwargs)
301 self.d = 1
302 self.m = m
303 self.layers num = layers num
304 self.nodes = nodes
305 self.isQ = isQ
306 if self.isQ == False:
307 self.outdim = self.m

110

308 # if unconstrained: self.projection = keras. layers .Lambda(lambda x: x∗0)
309 else :
310 self.outdim = self.m
311

312 self.bnorm layers = [keras. layers .BatchNormalization(epsilon=100)
313 for in range(self.layers num−1)]
314 self.dense layers = [keras. layers .Dense(nodes[i], use bias=False, activation=None)
315 for i in range(self.layers num−2)]
316 self.dense layers .append(keras.layers.Dense(self.outdim, activation=None))
317

318 def call (self , x, training) :
319 x = self.bnorm layers[0](x, training)
320 for i in range(self.layers num−2):
321 x = self.dense layers[i](x)
322 x = self.bnorm layers[i+1](x, training)
323 x = tf.nn.relu(x)
324 x = self.dense layers[self.layers num−2](x)
325 if self.isQ == False:
326 x = x∗x
327 return x
328

329

330 Model = DeepSMP()
331 Model.build()
332 Model.optimize2prepare()
333 Model.train(10000)

Code A.3: Python code for the deep SMP algorithm in the setting of Example 5.5.

A.4 Python Implementation of the Deep Primal SMP Algorithm

1 import tensorflow as tf
2 from tensorflow import keras
3 import numpy as np
4 import time
5 from scipy. stats import multivariate normal
6

7 class DeepSMP primal(keras.Model):
8

9 def init (self , ∗∗kwargs):
10 super(DeepSMP primal, self). init (∗∗kwargs)
11 self.m = 30
12 self.T = 0.5
13 self.N = 10
14 self.dt = self.T/self.N
15 self.layers num = 4 # number of hidden + 2
16 self.nodes = [11, 11] # nodes in hidden layers
17 self.batch size = 64
18 self.x0 = 10
19 self.schedule1 = keras.optimizers.schedules.PiecewiseConstantDecay([1000, 3000, 8000],
20 [1e−2, 1e−3, 1e−4, 1e−5])
21 self.schedule2 = [keras.optimizers.schedules.PiecewiseConstantDecay([1000, 3000, 8000],
22 [1e−3, 1e−4, 1e−5, 1e−6]) for in range(self.N)]

111

23 self.optimizer1 = keras.optimizers.Adam(learning rate = self.schedule1)
24 self.optimizer2 = [keras.optimizers.Adam(learning rate = self.schedule2[i])
25 for i in range(self.N)]
26 self.p0 = tf.Variable(np.random.uniform(low=−0.4, high=−0.2), trainable=True)
27 self.pi0 = tf.Variable(np.random.uniform(size=(1, self.m), low=0, high=0.2),
28 trainable=True, dtype=tf.float32,
29 constraint=lambda x: tf.where(x<−1/self.m, −1/self.m, x))
30 self.Q0 = tf.Variable(np.random.uniform(size=(1, self.m), low=−0.1, high=0.1),
31 trainable=True, dtype=tf.float32)
32 self.ModelQ = [self.Q0] + [PartNetwork(self.m, self.layers num, self.nodes, isQ=True)
33 for in range(self.N−1)]
34 self.varforloss1 = [self.p0] + self.ModelQ
35 self.Modelpi = [self.pi0] + [PartNetwork(self.m, self.layers num, self.nodes, isQ=False)
36 for in range(self.N−1)]
37 self.history time = []
38 self.history p0 = []
39 self.mc size = 100000
40 self.history bound u = []
41 self.history bound l = []
42

43 def build(self) :
44 for i in range(self.N−1):
45 self.Modelpi[i+1](tf. zeros(shape=(1, 1)), training = False)
46 self.ModelQ[i+1](tf.zeros(shape=(1, 1)), training = False)
47 return
48

49 def sigma(self , t) :
50 sigma = (0.3∗(1+tf.sqrt(t))−0.1)∗tf.eye(self.m) + 0.1∗tf.ones(shape=(self.m, self.m))
51 return sigma
52

53 def sigma inv(self , t) :
54 sigma inv = tf.linalg.inv(self.sigma(t))
55 return sigma inv
56

57 def mu(self, t , size) :
58 helper = tf.expand dims(tf.range(1, limit=self.m+1, dtype = tf.float32), axis=0)
59 mu = 0.07 + 0.02∗tf.sin(4∗np.pi∗t+2∗np.pi∗helper/self.m)
60 return mu∗tf.ones(shape=(size, self.m))
61

62 def r(self , t , size) :
63 r = 0.06∗tf.exp(0.5∗t)
64 return r∗tf .ones(shape=(size, 1))
65

66 def theta(self , t , size) :
67 theta = tf.transpose(tf .matmul(self.sigma inv(t), self.mu(t, size)−self.r(t, size) ,
68 transpose b = True))
69 return theta
70

71 def U transform(self , x):
72 x = tf.expand dims(x, axis = −1)
73 return tf .where(x>0, −1−tf.math.log(tf.where(x>0, x, 1)), 0)
74

75 def g(self , x):
76 x = tf.expand dims(x, axis = −1)
77 return tf .where(x>0, tf.math.log(tf.where(x>0, x, 1)), 0)

112

78

79 def gx(self , x):
80 x = tf.expand dims(x, axis = −1)
81 return tf .where(x>0, tf.pow(tf.where(x>0, x, 1), −1), 0)
82

83 def loss1(self , x, p):
84 return tf .reduce mean(tf.square(tf.expand dims(p, axis = −1) + self.gx(x)))
85

86 def loss2(self , t , p, pi , q, size) :
87 return (tf .reduce mean(tf.reduce sum(pi ∗ tf.transpose(tf .matmul(self.sigma(t),
88 tf .expand dims(p, axis = −1) ∗ self.theta(t, size) + q, transpose b = True)),
89 axis = 1, keepdims = True)))
90

91 def bounds(self) :
92 dW = tf.constant(multivariate normal.rvs(size=[self.mc size, self.m, self.N]),
93 dtype=tf.float32)
94 if self.m == 1:
95 dW = tf.expand dims(dW, axis = 1)
96 X, P = self .simulate1(dW, size = self.mc size, training = False)
97

98 bound l = tf.reduce mean(self.g(X))
99 bound u = tf.reduce mean(self.U transform(−P)) − self.p0∗self.x0

100

101 return [bound l, bound u]
102

103 @ tf.autograph.experimental.do not convert
104 def simulate1(self , dW, size, training) :
105

106 X = self.x0 ∗ tf .ones(size)
107 P = self .p0 ∗ tf .ones(size)
108

109 pi = self .pi0 ∗ tf .ones(shape=(size, self.m))
110 Q = self.Q0 ∗ tf.ones(shape=(size, self.m))
111

112 P = P − tf.squeeze(((self.r(0.0, size) + tf.reduce sum(tf.matmul(pi, self.sigma(0.0))
113 ∗ self.theta (0.0, size) , axis = 1, keepdims = True)) ∗ tf.expand dims(P, axis = −1)
114 + tf.reduce sum(Q ∗ tf.matmul(pi, self.sigma(0.0)), axis = 1, keepdims = True))
115 ∗ self.dt, axis = 1) \
116 + tf.reduce sum(dW[:, :, 0] ∗ Q ∗ tf . sqrt(self.dt), axis = 1)
117 X = X + tf.squeeze(tf.expand dims(X, axis = −1) ∗ (self.r(0.0, size) + tf.reduce sum(
118 tf .matmul(pi, self.sigma(0.0)) ∗ self.theta(0.0, size) , axis = 1, keepdims = True))
119 ∗ self.dt, axis = 1) \
120 + tf.reduce sum(dW[:, :, 0] ∗ tf .expand dims(X, axis = −1)
121 ∗ tf .matmul(pi, self.sigma(0.0)) ∗ tf . sqrt(self.dt), axis = 1)
122

123 for i in range(self.N−1):
124

125 pi = self.Modelpi[i+1](tf.expand dims(X, axis = −1), training)
126 Q = self.ModelQ[i+1](tf.expand dims(X, axis = −1), training)
127

128 P = P − tf.squeeze(((self.r(self .dt∗(i+1), size) + tf.reduce sum(tf.matmul(pi,
129 self.sigma(self.dt∗(i+1))) ∗ self.theta(self.dt∗(i+1), size) , axis = 1,
130 keepdims = True)) ∗ tf.expand dims(P, axis = −1)
131 + tf.reduce sum(Q ∗ tf.matmul(pi, self.sigma(self.dt∗(i+1))), axis = 1,
132 keepdims = True)) ∗ self.dt, axis = 1) \

113

133 + tf.reduce sum(dW[:, :, i+1] ∗ Q ∗ tf . sqrt(self.dt), axis = 1)
134 X = X + tf.squeeze(tf.expand dims(X, axis = −1) ∗ (self.r(self.dt∗(i+1), size)
135 + tf.reduce sum(tf.matmul(pi, self.sigma(self.dt∗(i+1))) ∗ self.theta(
136 self.dt∗(i+1), size) , axis = 1, keepdims = True)) ∗ self.dt, axis = 1) \
137 + tf.reduce sum(dW[:, :, i+1] ∗ tf .expand dims(X, axis = −1)
138 ∗ tf .matmul(pi, self.sigma(self.dt∗(i+1))) ∗ tf . sqrt(self.dt), axis = 1)
139

140 return X, P
141

142 @ tf.function
143 def optimize1(self , dW):
144 with tf .GradientTape(watch accessed variables = False) as tape:
145 tape.watch(self.varforloss1.trainable variables)
146

147 X, P = self.simulate1(dW, size = self.batch size, training = True)
148 loss1 = self.loss1(X, P)
149

150 grad1 = tape.gradient(loss1, self.varforloss1.trainable variables)
151 self.optimizer1.apply gradients(zip(grad1, self.varforloss1.trainable variables))
152 return
153

154 @ tf.function
155 def optimize2 0(self , optimizer):
156 with tf .GradientTape(watch accessed variables = False) as tape:
157 tape.watch(self.pi0)
158

159 # X = self.x0 ∗ tf .ones(self.batch size)
160 P = self .p0 ∗ tf .ones(self.batch size)
161

162 pi = self .pi0 ∗ tf .ones(shape=(self.batch size , self.m))
163 Q = self.Q0 ∗ tf.ones(shape=(self.batch size , self.m))
164

165 loss2 = self.loss2 (0.0, P, pi , Q, size = self.batch size)
166

167 grad = tape.gradient(loss2 , self.pi0)
168 optimizer.apply gradients ([(grad, self.pi0)])
169 return
170

171 @ tf.autograph.experimental.do not convert
172 def simulate2(self , dW, N, X, P, pi, Q):
173

174 P = P − tf.squeeze(((self.r(self.dt∗(N−1), self.batch size) + tf.reduce sum(tf.matmul(pi,
175 self.sigma(self.dt∗(N−1))) ∗ self.theta(self.dt∗(N−1), self.batch size), axis = 1,
176 keepdims = True)) ∗ tf.expand dims(P, axis = −1)
177 + tf.reduce sum(Q ∗ tf.matmul(pi, self.sigma(self.dt∗(N−1))), axis = 1,
178 keepdims = True)) ∗ self.dt, axis = 1) \
179 + tf.reduce sum(dW[:, :, N−1] ∗ Q ∗ tf.sqrt(self.dt), axis = 1)
180 X = X + tf.squeeze(tf.expand dims(X, axis = −1) ∗ (self.r(self.dt∗(N−1), self.batch size)
181 + tf.reduce sum(tf.matmul(pi, self.sigma(self.dt∗(N−1))) ∗ self.theta(
182 self.dt∗(N−1), self.batch size), axis = 1, keepdims = True)) ∗ self.dt, axis = 1) \
183 + tf.reduce sum(dW[:, :, N−1] ∗ tf.expand dims(X, axis = −1)
184 ∗ tf .matmul(pi, self.sigma(self.dt∗(N−1))) ∗ tf.sqrt(self.dt), axis = 1)
185

186 pi = self.Modelpi[N](tf.expand dims(X, axis = −1), training = True)
187 Q = self.ModelQ[N](tf.expand dims(X, axis = −1), training = True)

114

188

189 return X, P, pi , Q
190

191 def optimize2(self , dW, N, X, P, pi, Q, optimizer, Model):
192 with tf .GradientTape(watch accessed variables = False) as tape:
193 tape.watch(Model.trainable variables)
194

195 X, P, pi , Q = self.simulate2(dW, N, X, P, pi, Q)
196 loss = self.loss2(N∗self .dt, P, pi , Q, size = self.batch size)
197

198 grad = tape.gradient(loss , Model.trainable variables)
199 optimizer.apply gradients(zip(grad, Model.trainable variables))
200 return X, P, pi , Q
201

202 def optimize2prepare(self) :
203 self.optimizecontrol = [tf . function(self.optimize2). get concrete function(
204 tf .TensorSpec(shape=[self.batch size, self.m, self.N], dtype=tf.float32), i+1,
205 tf .TensorSpec(shape=[self.batch size], dtype=tf.float32),
206 tf .TensorSpec(shape=[self.batch size], dtype=tf.float32),
207 tf .TensorSpec(shape=[self.batch size, self.m], dtype=tf.float32),
208 tf .TensorSpec(shape=[self.batch size, self.m], dtype=tf.float32),
209 self.optimizer2[i+1], self.Modelpi[i+1]) for i in range(self.N−1)]
210 return
211

212 def train(self , steps) :
213 time start = time.time()
214 for k in range(steps) :
215 # dW does not have the desired shape, if BBdim==1
216 dW = tf.constant(multivariate normal.rvs(size=[self.batch size, self.m, self.N]),
217 dtype=tf.float32)
218 if self.m == 1:
219 dW = tf.expand dims(dW, axis = 1)
220

221 self.optimize1(dW)
222

223 optimizer = self.optimizer2[0]
224 self.optimize2 0(optimizer)
225

226 X = self.x0 ∗ tf .ones(self.batch size)
227 P = self .p0 ∗ tf .ones(self.batch size)
228

229 pi = self .pi0 ∗ tf .ones(shape=(self.batch size, self.m))
230 Q = self.Q0 ∗ tf.ones(shape=(self.batch size, self.m))
231

232 for i in range(self.N−1):
233 X, P, pi , Q = self.optimizecontrol[i](dW, X, P, pi, Q)
234

235 self.history time.append(time.time()−time start)
236 self.history p0.append(self.p0.numpy())
237

238 if k%50 == 0:
239 print(”Step: %d, Time: %.2f, p 0: %.4f”
240 % (k, self.history time[−1], self.history p0[−1]))
241

242 if k%200 == 0:

115

243 helper = self.bounds()
244 self.history bound l.append(helper[0].numpy())
245 self.history bound u.append(helper[1].numpy())
246 print(”Step: %d, Bound l: %.4f, Bound u: %.4f”
247 % (k, self.history bound l[−1], self.history bound u[−1]))
248 return
249

250

251 class PartNetwork(keras.Model):
252

253 def init (self , m, layers num, nodes, isQ, ∗∗kwargs):
254 super(PartNetwork, self). init (∗∗kwargs)
255 self.d = 1
256 self.m = m
257 self.layers num = layers num
258 self.nodes = nodes
259 self.isQ = isQ
260 if self.isQ == False:
261 self.outdim = self.m
262 # One could also define projection here.
263 else :
264 self.outdim = self.m
265

266 self.bnorm layers = [keras. layers .BatchNormalization(epsilon=100)
267 for in range(self.layers num−1)]
268 self.dense layers = [keras. layers .Dense(nodes[i], use bias=False, activation=None)
269 for i in range(self.layers num−2)]
270 self.dense layers .append(keras.layers.Dense(self.outdim, activation=None))
271

272 def call (self , x, training) :
273 x = self.bnorm layers[0](x, training)
274 for i in range(self.layers num−2):
275 x = self.dense layers[i](x)
276 x = self.bnorm layers[i+1](x, training)
277 x = tf.nn.relu(x)
278 x = self.dense layers[self.layers num−2](x)
279 if self.isQ == False:
280 x = x∗x−1/self.m
281 return x
282

283

284 Model = DeepSMP primal()
285 Model.build()
286 Model.optimize2prepare()
287 Model.train(10000)

Code A.4: Python code for the deep primal SMP algorithm in the setting of Example 5.5.

116

Bibliography

[1] Christian Beck, Weinan E, and Arnulf Jentzen. Machine learning approximation
algorithms for high-dimensional fully nonlinear partial differential equations and
second-order backward stochastic differential equations. Journal of Nonlinear Science,
29:1563–1619, 2019.

[2] Dimitri P. Bertsekas and Steven E. Shreve. Stochastic Optimal Control: The Discrete–
Time Case. Academic Press, 1978.

[3] Abel Cadenillas and Ioannis Karatzas. The Stochastic Maximum Principle for Lin-
ear, Convex Optimal Control with Random Coefficients. SIAM J. Control Optim.,
33(2):590–624, 1995.

[4] Roy Cerqueti. Dynamic Programming via Measurable Selection. Pacific Journal of
Optimization, 5(1):169–181, 2009.

[5] Ashley Davey and Harry Zheng. Deep Learning for Constrained Utility Maximisation.
arXiv:2008.11757, 2020.

[6] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods
for high-dimensional parabolic partial differential equations and backward stochastic
differential equations. Communications in Mathematics and Statistics, 5(4):349–380,
2017.

[7] Wendell H. Fleming and Halil Mete Soner. Controlled Markov Processes and Viscosity
Solutions. Springer, second edition, 2006.

[8] Ulrich Horst, Ying Hu, Peter Imkeller, Anthony Reveillac, and Jianing Zhang.
Forward-backward systems for expected utility maximization. Stochastic Processes
and their Applications, 124(5):1813–1848, 2014.

[9] Ioannis Karatzas, John P. Lehoczky, Steven E. Shreve, and Gan-Lin Xu. Martingale
and Duality Methods for Utility Maximization in an Incomplete Market. SIAM J.
Control Optim., 29(3):702–730, 1991.

[10] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus.
Springer, second edition, 1991.

[11] Ioannis Karatzas and Steven E. Shreve. Methods of Mathematical Finance. Springer,
1998.

[12] Dmitry Kramkov and Walter Schachermayer. The Asymptotic Elasticity of Util-
ity Functions and Optimal Investment in Incomplete Markets. Ann. Appl. Probab.,
9(3):904–950, 1999.

117

[13] Nicolai V. Krylov. Controlled Diffusion Processes. Springer, 1980.

[14] Nicolai V. Krylov. Nonlinear Elliptic and Parabolic Equations of the Second Order.
D. Reidel Publishing Company, 1987.

[15] Chantal Labbé and Andrew J. Heunis. Conjugate duality in problems of constrained
utility maximization. Stochastics, 81(6):545–565, 2009.

[16] Yusong Li and Harry Zheng. Dynamic Convex Duality in Constrained Utility Maxi-
mization. Stochastics, 90(8):1145–1169, 2018.

[17] Jingtang Ma, Wenyuan Li, and Harry Zheng. Dual control Monte Carlo method
for tight bounds of value function under Heston stochastic volatility model.
arXiv:1710.10487, 2017.

[18] Bernt Øksendal. Stochastic Differential Equations: An Introduction with Applications.
Springer, fifth edition, 1998.

[19] Huyên Pham. Continuous-time Stochastic Control and Optimization with Financial
Applications. Springer, 2009.

[20] Tyrrell R. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[21] Marina Santacroce and Barbara Trivellato. Forward Backward Semimartingale Sys-
tems for Utility Maximization. SIAM J. Control Optim., 52(6):3517–3537, 2014.

[22] Jiongmin Yong and Xun Yu Zhou. Stochastic Controls: Hamiltonian Systems and
HJB Equations. Springer, 1999.

118

	Introduction
	The Utility Maximization Problem and Its Dual Problem
	The Underlying Market Model
	The Utility Maximization Problem in Portfolio Optimization
	The Dual Problem
	The Legendre-Fenchel Transform
	Derivation of the Dual Problem

	The Deep Controlled 2BSDE Algorithm in a Markovian Setting
	Formulation of a More General Control Problem
	The Dynamic Programming Approach Leading to the Hamilton-Jacobi-Bellman Equation
	The Stochastic Maximum Principle
	A General Formulation
	Deriving a Maximum Principle by Means of the Dynamic Programming Approach

	Formulation of the Deep Controlled 2BSDE Algorithm

	The Deep SMP and the Deep Primal SMP Algorithm in a Non-Markovian Setting
	A Stochastic Maximum Principle for the Dual Problem
	An Analogous Result for the Primal Problem
	Constructing a Solution to the Primal Problem by Means of a Solution to Its Dual Problem
	Formulation of the Deep SMP Algorithm
	Formulation of the Novel Deep Primal SMP Algorithm

	Numerical Experiments
	Markovian Utility Maximization Problems
	Non-Markovian Utility Maximization Problems: Path Dependent Coefficients
	Non-Markovian Utility Maximization Problems: Coefficients Satisfying Their Own SDEs

	Conclusion and Future Work
	Appendix Python Codes for the Studied Algorithms Used in Example 5.5
	Python Implementation of the Primal Version of the Deep Controlled 2BSDE Algorithm
	Python Implementation of the Dual Version of the Deep Controlled 2BSDE Algorithm
	Python Implementation of the Deep SMP Algorithm
	Python Implementation of the Deep Primal SMP Algorithm

	Bibliography

