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ABSTRACT

The system waveform (SWFM) of a pulsed LiDAR is obtained from the pulse shape received when pointing
the sensor towards a flat, extended target with the surface normal equal to the laser beam direction. The
SWFM is determined by the shape of the outgoing laser pulse and the transfer characteristics of the receiver.
Knowing the SWFM is essential for performing highly accurate range measurements, for interpreting the LiDAR
waveforms correctly, and to derive additional attributes for detected target returns. Often the actual SWFM is
not known explicitly, and a Gaussian pulse shape is used in lieu thereof. However, the Gaussian pulse, despite its
advantageous properties, does not properly address asymmetries and ringing effects typically present in real-life
SWFMs. We present a model of the SWFM composed of harmonic and exponential terms which is able to account
for these effects while at the same time being mathematically easy to handle. Unfortunately, the approximation
of data by a sum of harmonics and exponentials belongs to the class of ill-posed problems. Nevertheless, we
present a pragmatic solution to the problem and demonstrate the versatility of the resulting model.
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1. INTRODUCTION

The signal flow of a time-of-flight LiDAR system starts at a pulsed laser source. Fig. 1 shows a block diagram of
a mono-static sensor where the transmitted pulse PR(t) and the received pulse PE(t) are collinear. At a range
R, part of the pulse is reflected back as described by the differential back-scatter cross section dBSCS σ(R),
resulting in

PE(t) ∝
∫
PT (t− 2R

vg
)σ(R)dR , (1)

with vg the group velocity in the medium at the frequency of the laser source. The received pulse is essentially
proportional to the convolution of the transmitted pulse and the dBSCS, see e.g. Ref. 1.

A rotating mirror is used to deflect the beam to effect a scan of the remote target scene. Another system of
mirrors is used to route the received beam to a photo detector.

At the detector the signal is converted from the optical domain to the electrical domain. The block diagram
suggests that this conversion is a linear process that can be described by a factor k, a real number. Before
quantizing and sampling the signal, the bandwidth must be limited by the filter h(t) to avoid aliasing. Assuming
linearity, the signal can be described by two convolutions where all proportionality factors have been subsumed
into the single factor k

sE(t) = PT (t) ∗ σ(t) ∗ kh(t) . (2)

By rearranging terms, we can identify the system waveform (SWFM) pS(t)

sE(t) = (kh(t) ∗ PT (t)) ∗ σ(t) = pS(t) ∗ σ(t) (3)

as the convolution of the outgoing pulse with the receivers impulse response. We note that if σ(t) is approximately
Dirac shaped, the signal sE(t) equals the SWFM.
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Figure 1. Signal flow of a pulsed LiDAR system. The transmitted laser pulse PT (t) is reflected by the range dependent
differential backscatter cross-section σ(R) and is received as a pulse PE(t). The pulse PE(t) is converted from the optical
domain to the electrical domain, amplified by a factor k,and band-limited by a filter with impulse response h(t). Finally,
the electrical signal sE(t) is converted to the digital domain for further processing.

Deconvolution is the process of retrieving the dBSCS from a recording of the received waveform. For the
application of deconvolution either explicit knowledge of the SWFM is required2 or the SWFM must be assumed3

implicitly, usually as Gaussian shaped. It has been proposed to use a B-spline model4 for the SWFM because
of its mathematical properties. We propose a model of the SWFM composed of a sum of complex exponentials
because of its ability to express the convolution with an exponential segment in explicit form.5

The mathematical problem of approximating a measured function with a sum of exponentials is well known to
belong into the range of numerically difficult6 problems. The problem can be dated back to Prony, who published
a method for the solution in 1795. Osborne and Smyth presented an algorithm for exponential function fitting7

in 1995. As it turned out the algorithms performed poorly on our data. The question as for the exact reasons
remains unanswered to us for now. It might be that the number of data samples was too large (about 400)
for successful application or that the combination of strong damping coefficients and sinusoids at the same time
constituted a problem. However, this is why we aimed for a pragmatic approach based on classical non-linear
optimization techniques. The main contribution of this presentation is the construction of good initial values for
the optimization, so that the iteration will converge with high probability.

2. METHOD

2.1 Linear part of the system waveform

A Dirac shaped σ(t) is realized when targeting the laser towards a flat, extended target in perpendicular direction.
In theory, following from linearity, a single pulse of sufficient energy should then be enough to characterize the
whole system. However, for any realizable system linearity holds only to a certain degree, and as such for higher
pulse amplitudes there is a deviation from linearity. In order to operate a sensor even in this non-linear range,
the SWFMs are recorded also for high power signals8 as part of the calibration procedure. The linear part of
the SWFM can be derived from these waveforms.

Fig. 2, left, shows the SWFM pS(A, t) for excitation pulses pT (t) of varying amplitudes A. A linear subset
from these pulses can be selected by noting that a necessary criterion for linearity is that for any two amplitudes
Ai, Aj the waveforms must satisfy a proportionality of

pS(Aj , t) = kijpS(Ai, t) + dij (4)

for fixed constants kij and dij . This problem can be readily solved by calculating the Pearson’s correlation
coefficient for any combination of i and j and selecting the subset where the coefficient surpasses a given threshold
for all indices. Fig. 2, right, shows a set of traces selected by this procedure. The next step is to generate the
linear prototype SWFM from these traces by averaging. Before averaging each trace, pS(Aj , t) is normalized as

pN (Aj , t) =
pS(Aj , t)− pS(Aj , t)∣∣∣pS(Aj , t)− pS(Aj , t)

∣∣∣
, (5)
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Figure 2. Nonlinear and linear recordings of sE(t) when pointing the laser towards a flat, extended target. Left: Recorded
traces of the received signal sE(t) for different relative power levels A. Right: For levels of low power the traces exhibit a
linear similarity, which can be found by cross correlation.

where the mean and magnitude operations are defined by x(t) = 1
T

∑T
t=0x(t) and |x(t)| =

√∑T
t=0 x

2(t). The

chosen kind of normalization makes the result immune to errors from offset. Finally, assuming the number of
traces is J , the SWFM

pS(t) = k


 1

J

J∑

j=1

pN (Aj , t)


+ d (6)

is the mean of the normalized traces with k and d chosen so that the start of the trace equals zero and the
maximum equals one, as can be seen in the left image of Fig. 3.
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Figure 3. Linear SWFM. Left: The SWFM is the mean, marked by dots, of all normalized traces belonging to the linear
range. The maximum and minimum of all traces are overlaid in red and blue respectively. Right: Upper maximum error
(red) and lower maximum error (blue) of the normalized traces from the mean trace.

To illustrate the effectiveness of the procedure, the upper and lower bounds of all traces, scaled by the same
k and d, have been super-imposed on the SWFM. Since the differences are too small to be viewable in the same
graph as pS(t), the right image of Fig. 3 shows a logarithmic plot of the differences in two colors, with upper
bound minus pS(t) in red and lower bound minus pS(t) in blue.
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2.2 Sum of causal complex exponentials

A common approach to modeling the SWFM is by means of a function of Gaussian shape. This has a lot of
mathematical, theoretical, and practical advantages, but it also has its shortcomings. The Gaussian shape is
inherently symmetric with respect to its mean value and it is never exactly zero. The latter, although usually
not a problem in practice, has the theoretical implication that the Gaussian shaped function does not describe
a causal system because it is not zero for t < 0. A class of functions which are causal and can be expected to be
suitable for modeling of the SWFM can be defined as the real part of a sum of I truncated exponentials

p(t) = u(t)<
(
I−1∑

i=0

aie
αit

)
(7)

with complex parameters ai and αi. The unit step function u(t) is zero for t < 0 and one everywhere else. By
noting that the real part of a complex number is <(x) = 1

2 (x + x∗) and the settings α = γ + iω and a = Aeiϕ,
Eq. 7 can alternatively be written as

p(t) = u(t)
I−1∑

i=0

Aie
γit cos(ωit+ ϕi) . (8)

In order to arrive at p(t) = 0 for t→ +∞ all γi or equivalently all <(αi) must be negative.
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Figure 4. An exponential sum consisting of three terms. The components in red, green, and blue add up to the pulse
shape of p(t) in black. At the beginning the sum is forced to zero, and for t → +∞ all components are exponentially
damped. For time instances t < 0 the sum is zero by definition.

Fig. 4 shows the components, in color, and the sum, in black, of a three-term causal exponential sum. At
time t = 0 the parameters must be chosen such that the terms add up to zero. The terms are not evaluated for
t < 0 since in this case the function is zero by definition.

2.3 Finding the parameters of the exponentials to match the SWFM

The function model described by Eq. 7 is matched to the data given by Eq. 6 with a non-linear parameter fit
based on the method of Levenberg-Marquardt (LM). The method is not new and has been described in the
literature and it is well known that a very good estimate of the initial parameters is required for convergence
(see e.g. Ref. 6). The adjective pragmatic in the title of this paper is attributed to the manner in which such
good initial values of the parameters can be found.

The very first step is to shift the time axis such that the start of the pulse will occur shorty after time instant
zero, see Fig. 4. The precise location of the beginning will consequently be adjusted by making the start instant
a parameter of the fitting procedure.
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Although we will later see that the simplest model, which is able to describe a causal pulse, consists of only
a single term we start with the following 3 parameter, two term, model

p1(t) = a(eαt − eβt) (9)

with parameters a, α, and β. We note that p1(0) = 0 for t = 0. By means of the Fourier transform one can
further show that

Mn =

∫ ∞

0

tnp1(t)dt = (−1)n+1n!a

(
1

αn+1
− 1

βn+1

)
. (10)

It is worth noting that the integral to the left of Eq. 10 is similar to the definition of statistical or mechanical
moments. However, because p1(t) need not be a strictly positive function, the sign of Mn also may be negative.
Being aware of the apparent difference to the mechanical moments nevertheless we define

M0 = A (11)

M1 = µA (12)

M2 = A(σ2 + µ2) (13)

with A corresponding to the area, µ the center of gravity and σ the deviation. Now the following relations
between the parameters an the moments can be deduced:

a =
A√

2σ2 − µ2
(14)

α =
1

(µ2 − σ2)
(−µ+

√
2σ2 − µ2) (15)

β =
1

(µ2 − σ2)
(−µ−

√
2σ2 − µ2) . (16)

If 2σ2 < µ2, the square root of Eq. 14 is purely imaginary, and so is a. This means that the two terms in braces
of Eq. 9 are conjugate complex, which is why the sum can be represented as a single term of Eq. 7 in that case.

Equating A, µ, and σ with the moments of the sampled signal

A =

T∑

t=0

ps(t) (17)

µ =
1

A

T∑

t=0

tps(t) (18)

σ2 =
1

A

T∑

t=0

(t− µ)2ps(t) (19)

we get a first order approximation for the parameters. In Fig. 5, left image, it can be seen that the approximation
(red line) to the SWFM (dotted) clearly is not very good yet.

Proceeding by taking the difference of pS(t)− p1(t) we get a pulse like the one that can be seen in the right
image of Fig. 5, red line. We recognize that, because pS(t) and p1(t) have effectively the same area, the difference
must be oscillatory. Thus it is reasonable to model the difference as a harmonic modulated by p1(t)

pS(t)− p1(t) = p1(t)Bcos(ωt+ ϕ) . (20)

The frequency ω can be deduced from the zero crossings, the amplitude B by matching the maximum and the
phase ϕ by shifting the cosine so that the maxima occur at the same time instant. The blue line in the right
image of Fig. 5 shows the result of such a choice of parameters. The second order initial value is then given as

p2(t) = p1(t)(1 +Bcos(ωt+ ϕ)) . (21)
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Figure 5. Finding the parameters of the sum of causal exponentials. The dotted line in the left image is the SWFM
defined by the sample values pS(t). The red and blue lines are the first p1(t) and second order p2(t) approximations for
the initial values of non-linear parameter fit. The image on the right shows the difference of the sample values pS(t) and
the first order approximation (red line) and a model of the difference (blue line) according to Eq. 20.

The right hand side of Eq. 21 can be put in the form of Eq. 7, i.e., an exponential sum. The blue line of the left
image in Fig. 5 indicates that p2(t) is now a much better initial value.

The remainder of the algorithm is a standard parameter fit with a few constraints to be imposed

I−1∑

i=0

ai = 0 (22)

<(αi) < 0 . (23)

If after convergence the fit is not accurate enough it is possible to increase the order of the model by adding
another term. We have seen that zero initializing these additional parameters usually will give satisfying results.

3. RESULTS AND DISCUSSION

Owing to the pragmatic approach, the authors did not attempt to give a mathematical proof for the convergence
of the method or the uniqueness of the solution. Instead the method was tested for a range of SWFMs from
different types of RIEGL instruments with good results. Tab. 1 lists 20 samples of four instrument types. The
algorithm succeeded in all cases. The remaining columns are a 2σ value, reminiscent of the pulse width as known
from the Gaussian pulse shape, the number of terms N chosen by the algorithm, the root-mean-square-error
(RMSE) between the model and the data, and the maximum error between the model and data. As can be seen
in sample 17 and 18 of Tab. 1, since σ2 need not be a positive number if the pulse is not strictly positive, the
2σ value may turn complex. Despite this fact, which might be perplexing at first, the algorithm is still able to
converge to a good approximation of the SWFM. Considering that the maximum of the pulse has been scaled to
one, the error figures show that it is possible to approximate the SWFM by a few exponential terms resulting in
errors consistently less than 10−2. This is comparable to the deviations between the mean sample SWFM and
the other traces, as can bee seen in Fig. 3.

4. CONCLUSIONS AND OUTLOOK

The findings presented here indicate that it is possible to approximate the SWFM of a laser sensor by a few
exponential terms. Similar to the approximation with a Gaussian pulse shape, the exponential sum is a sample
rate free, i.e. a continuous, description of the SWFM. For a good model of the SWFM it is desirable that the
operation of convolution can be carried out explicitly. It is well known that the convolution of two Gaussian
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Table 1. Pulse model estimation results for 20 RIEGL instruments SWFMs of various types. RMSE is the root-mean-
square between data and model, εmax is the magnitude of the largest error, N is the number of exponential terms, and
2σ is a measure of pulse width. Note: 2σ may become complex, see discussion in the text.

Sample Type 2σ N RMSE εmax

1 VQ-880-G-IR 2.81 ns 4 0.002 0.01

2 VQ-880-G-IR 3.03 ns 4 0.002 0.01

3 VQ-880-G-IR 3.02 ns 4 0.002 0.008

4 VQ-880-G-IR 3.04 ns 4 0.002 0.01

5 VQ-880-G-IR 3.00 ns 4 0.002 0.008

6 VQ-880-G-IR 3.01 ns 4 0.002 0.009

7 VQ-880-G-IR 2.94 ns 4 0.002 0.009

8 VQ-880-G 3.48 ns 4 0.002 0.004

9 VQ-880-G 3.49 ns 4 0.002 0.004

10 VQ-880-G 3.48 ns 4 0.002 0.005

11 BDF-1 1.76 ns 3 0.001 0.004

12 BDF-1 1.79 ns 3 0.001 0.004

13 BDF-1 1.76 ns 3 0.001 0.004

14 BDF-1 1.72 ns 3 0.001 0.005

15 BDF-1 1.71 ns 3 0.001 0.005

16 BDF-1 2.55 ns 4 0.0005 0.002

17 VQ-1560i 5.50i ns 4 0.001 0.005

18 VQ-1560i 7.22i ns 4 0.003 0.008

19 VQ-1560i 4.88 ns 3 0.001 0.004

20 VQ-1560i 4.94 ns 3 0.001 0.003

functions yields a Gaussian shaped result. A corresponding statement holds for the convolution of two exponential
sums. Other function types are possible: the convolution of exponential sums with Dirac-, exponential-, and
boxcar-shaped functions has already been used successfully by the authors to decompose bathymetric signals.5

The Beer-Lambert law, essentially stating exponential attenuation behavior of light in media, lets us expect
that the description of the SWFM by an exponential sum will enable application of our method in areas beyond
bathymetry as well.
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