
Privatsphärebewahrende
Authentifizierte

Schlüsselaustauschverfahren
Modellierung, Konstruktionen, Beweise und

Verifikation

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Andreas Weninger, BSc.
Matrikelnummer 01526989

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Matteo Maffei
Mitwirkung: Dr. Daniel Slamanig

Wien, 15. Dezember 2020
Andreas Weninger Matteo Maffei

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Privacy Preserving Authenticated
Key Exchange

Modelling, Constructions, Proofs and Formal
Verification

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Andreas Weninger, BSc.
Registration Number 01526989

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Matteo Maffei
Assistance: Dr. Daniel Slamanig

Vienna, 15th December, 2020
Andreas Weninger Matteo Maffei

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Andreas Weninger, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. Dezember 2020
Andreas Weninger

v

Danksagung

Ich bedanke mich für die Betreuung und vielen hilfreichen Erklärungen von Prof. Matteo
Maffei und Dr. Daniel Slamanig. Außerdem danke ich dem Austrian Institute of Technology
(AIT) für das Unterstützen und Finanzieren dieser Arbeit. Weiters danke ich dem
AIT sowie konkret Dr. Sebastian Ramacher und nochmal Dr. Daniel Slamanig für die
gemeinsame Arbeit an der mit dieser Masterarbeit verbundenen Publikation “Privacy-
Preserving Authenticated Key Exchange: Stronger Privacy and Generic Constructions”
welche beim 26th European Symposium on Research in Computer Security (ESORICS
2021) akzeptiert wurde und im Tagungsband veröffentlicht wird.

vii

Acknowledgements

I would like to thank Prof. Matteo Maffei and Dr. Daniel Slamanig for supervising
this thesis and their many helpful explanations. Furthermore I would like to show
my appreciation for the Austrian Institute of Technology (AIT), who supported and
funded this work. I also thank the AIT, particularly Dr. Sebastian Ramacher and again
Dr. Daniel Slamanig for the successful joint work on the paper “Privacy-Preserving
Authenticated Key Exchange: Stronger Privacy and Generic Constructions” which will
be presented and published in the proceedings of the 26th European Symposium on
Research in Computer Security (ESORICS 2021).

ix

Kurzfassung

Privatsphärebewahrende authentifizierte Schlüsselaustauschverfahren (PPAKE, von engl.
Privacy Preserving Authenticated Key Exchange) sind AKE (engl. Authenticated Key
Exchange) Protkolle, die so konzipiert werden, dass sie die Identität der beiden Kom-
munikationspartner vor Dritten geheim halten. PPAKE Protokolle wurden bereits in
der Vergangenheit betrachtet. In diesem Werk möchten wir die bestehenden formalen
Privatsphäreeigenschaften solcher Protokolle stärken. Der wichtigste Zusatz ist, dass wir
auch Angreifer betrachten, die den Protokollablauf nicht korrekt beenden (z.B. weil sie
sich nicht authentifizieren können). Auch derartige Angriffe sind relevant, da es dem
Angreifer möglicherweise egal ist, ob der Protkollablauf abgebrochen wird, nachdem er
die Identität seines Zieles herausgefunden hat. Zusätzlich präsentieren wir ein forma-
les Modell das diese Eigenschaften abbildet und mehrere Protkolle, die unterschiedlich
starke Privatsphärebewahrungseigenschaften erfüllen. Eines davon ist eine genersiche
Konstruktion aus generischen kryptografischen Grundbausteinen und kann daher auf
eine Art instanziiert werden, von der angenommen wird dass sie selbst gegen zukünftige
Quantencomputer sicher ist. Zudem präsentieren wir formale Beweise aller Protokolle in
dem von uns eingeführten Modell.

Der zweite Teil dieser Masterarbeit behandelt die automatische Verifikation der Pri-
vatsphäreeigenschaften des wichtigsten Protokolls aus dem ersten Teil. Automatische
Verifikation wird verwendet, um entweder einen Angriff gegen ein Protokoll zu finden,
oder festzustellen dass die angegebenen Eigenschaften tatsächlich erüllt sind. Dadurch
wird die Wahrscheinlichkeit, in den von Menschenhand geschriebenen Beweisen einen
Fehler gemacht zu haben, minimiert. Als erstes untersuchten wir die automatische Verifi-
kationssoftware “Tamarin Prover”, die jedoch, bevor der zugeteilte Arbeitsspeicher von
ca. 60 GB aufgebraucht war, zu keinem Ergebnis führte (weder einem Beweis noch einem
Angriff). Daher nutzten wir stattdessen die Verifikationssoftware ProVerif und konnten
die gewünschten Eigenschaften erfolgreich beweisen. In diesem Werk präsentieren wir
sowohl unsere Tamarin- als auch unsere ProVerif-Formulierung.

xi

Abstract

Privacy preserving authenticated key exchange (PPAKE) protocols are authenticated key
exchange (AKE) protocols that aim to hide the identities of the communicating parties
from third parties. Hence the security models of AKE are extended with additional
properties. PPAKE protocols have been studied previously. Our aim is to strengthen
the existing privacy properties of such protocols. Most notably we additionally consider
attacks in which the adversary does not complete the protocol run (e.g. due to the inability
to authenticate itself). These attacks are relevant because since some adversaries might not
even care if the protocol run is aborted after they deanonymize their target. Furthermore
we introduce a formal model that incorporates these properties and several protocols
that fulfill different levels of privacy. One of the protocols is a generic construction
from generic cryptographic building blocks and hence allows for a post-quantum secure
instantiation. Additonally we present formal proofs of all protocols in our model.

The second part of this thesis deals with the automated verification of the privacy
properties of the main protocol of the first part. Automated verification is used to either
find an attack or conclude that the specified properties indeed hold. This gives additional
confidence in the correctness of the security proofs contained in this work. First we
evaluated the protocol using the Tamarin Prover, which however is unable to finish its
proof or find a contradiction with the given resources (approx. 60 GB memory). Then
we utilized the verification software ProVerif and were able to prove the security of the
protocol. We will present both the Tamarin Prover encoding as well as the ProVerif
encoding.

xiii

Note
Part of this work is also used in the joint work “Privacy-Preserving Authenticated Key
Exchange: Stronger Privacy and Generic Constructions”[RSW21] by Sebastian Ramacher,
Daniel Slamanig and me (Andreas Weninger) that was accepted to ESORICS 2021.

Contents

Kurzfassung xi

Abstract xiii

Contents xvi

1 Introduction 1
1.1 Motivation . 1

1.1.1 PPAKE . 1
1.1.2 Automated Verification . 5

1.2 Cryptographic Preliminaries . 7
1.2.1 Notation . 7
1.2.2 Cryptographic Hash Functions 8
1.2.3 Unauthenticated Two-Move Key Exchange 8
1.2.4 Symmetric Encryption . 10
1.2.5 Public Key Encryption . 11
1.2.6 Digital Signatures . 12
1.2.7 Diffie-Hellman Assumptions . 13
1.2.8 Security Proofs: Sequence of Games 14

1.3 Preliminaries Tamarin . 14
1.4 Preliminaries ProVerif . 17

2 PPAKE Model 23
2.1 Overview . 23
2.2 Design Goals . 23
2.3 Model Definition . 26

2.3.1 Communication Model . 26
2.3.2 Security Experiment . 27
2.3.3 Oracles Available to the Adversary 27
2.3.4 Preliminary Definitions . 29

Partnering . 29
Oracle Status: Corrupted, Revealed, Fresh 29

2.3.5 Adversary Restrictions . 29
2.3.6 Security Definitions . 30

xvi

2.4 Model Summary . 31
2.5 Model Discussion . 33

2.5.1 Relations Between the Privacy Properties 33
2.5.2 Partnering . 35
2.5.3 One-way privacy . 35
2.5.4 Revocation . 35
2.5.5 Completed Session Privacy . 35
2.5.6 Weak MITM Privacy . 36
2.5.7 Strong MITM Privacy . 36
2.5.8 Forward Privacy . 37

3 PPAKE Protocols 39
3.1 Protocol ΠGen . 39

3.1.1 Protocol Definition . 39
3.1.2 Protocol Discussion . 41
3.1.3 Proof: Explicit Authentication 42
3.1.4 Proof: Strong MITM-Privacy 46
3.1.5 Proof: Forward-Privacy . 49
3.1.6 Proof: Key Indistinguishability 50

3.2 Protocols with Reduced Privacy and Round Complexity 51
3.2.1 Using a shared secret: Πss . 52
3.2.2 Two move protocol: Π2

PKE . 57
3.2.3 One-move PPAKE . 61

3.3 Existing Protocols in the Literature 62
3.3.1 Construction by Zhao . 62
3.3.2 Construction by Schäge, Schwenk and Lauer 64

3.4 Summary . 66

4 Automated Verification 69
4.1 Overview . 69
4.2 Tamarin Prover . 70

4.2.1 Modelling if/else for observational equivalence 70
4.2.2 ΠGen Formulation (Tamarin Prover) 71

4.3 ProVerif . 76
4.3.1 Introduction . 76
4.3.2 Modified model . 77
4.3.3 ΠGen sMITM Privacy Formulation (ProVerif) 78

4.4 Results . 89

5 Conclusion 91

List of Figures 93

List of Tables 95

Bibliography 99

CHAPTER 1
Introduction

1.1 Motivation
1.1.1 PPAKE
In modern times, communicating over the Internet without encryption is unthinkable.
When two users send messages to each other, encryption ensures that no third party is
able to read the messages. Recently, there is increased interest in also hiding the identities
of the communicating parties. When an adversary intercepts some message, they might be
able to deanonymize users through their network routing information (like IP addresses).
However, this is not the focus of this work, since there are scenarios in which this is not
relevant. On the one hand users may limit the usefulness of such information by using
services like Virtual Private Networks (VPN) [FH98] or Tor [DMS04]. On the other hand
there are networks in which no such routing information is sent (e.g. in many wireless
networks all messages are broadcast). However, even in these scenarios, where network
level information is not a problem, adversaries may be able to deanonymize users due to
the content of the sent messages. We will now motivate how the basic goal of efficient
encrypted communication can subsequently lead to such privacy problems.

There are algorithms, such as the advanced encryption standard (AES) that allow two
users to exchange messages in a secure way, granted that they both know the secret key
(i.e. some information that is only available to these two users). When dealing with a
large group of users, sharing this secret among all users implies that all members can read
all messages. On the other hand it is infeasible for each user to confidentially exchange
secret keys with all other users and to then store them until needed.

Key exchange (KE) protocols, such as the Diffie-Hellman Key Exchange (DHKE)[DH76],
remove the need to securely exchange keys with all other users beforehand. Instead
of previously establishing a shared secret, users will run the key exchange protocol
directly prior to encrypting their messages. Consequently, users do not need to share and

1

1. Introduction

maintain keys for all other users, and instead only need to maintain the key that they
exchanged with their current communication partner and only for the current session.
Furthermore, key exchange protocols provide security even if eavesdroppers are present,
whereas sharing a key might otherwise require a secure method.

Alice Bob

Draw random x

X = gx mod p

X

Draw random y

Y = gy mod p

Y

k = Y x mod p k = Xy mod p

Figure 1.1: DHKE

Figure 1.1 shows the Diffie-Hellman Key Exchange. We assume that there are publicly
known p, g ∈ N, so that 2 ≤ g < p, p is a prime number. Omitting technical details for
the sake of brevity, it is guaranteed that both parties compute the same k = gxy mod p,
which can then be used as a key for encryption. Even if some adversary eavesdrops on
this communication and hence knows X and Y , it is assumed that there is no efficient
way for them to determine k (this is called the Diffie-Hellman assumption).

However, this algorithm is not secure against so called Man-In-The-Middle (MITM)
adversaries. These adversaries are not restricted to only listening to the conversation,
but are also able to intercept the sent messages and send their own.

As exemplified in Figure 1.2, the MITM adversary simply runs the protocol with both
Alice and Bob and thereby arrives at the two keys k� and k∗. Neither Alice nor Bob
notice the interference, but instead of communicating with each other they are actually
talking to Eve.

In order to fend of such MITM adversaries, the protocol can be extended to use digital
signatures (see Figure 1.3). When using digital signature algorithms, each user U has a
public key pkU and a private key skU. The user can sign any message, in this example X
or Y from the DHKE, by using their private key. All other users are able to then verify
that the message was indeed sent by that user by using the public key of that user. Since
this means that both users are now authenticated, we speak of an Authenticated Key
Exchange (AKE) protocol.

However this approach leads to a new potential problem, namely privacy. While the

2

1.1. Motivation

Alice Eve Bob

Draw random x

X = gx mod p

X

Draw random y�

Y � = gy�

Y �

Draw random x∗

X∗ = gx∗
mod p

X∗

Draw random y

Y = gy mod p

Y

k� = (Y �)x k� = X(y�), k∗ = Y (x∗) k∗ = (X∗)y

Figure 1.2: DHKE with MITM adversary (omitted mod p in the final line for brevity)

DHKE does not reveal who is talking to whom, the addition of signatures allows any
eavesdropper to determine the identities of the two users. At first glance, authentication
and privacy seem to be two incompatible goals. One requires the identity to be known
and one seeks to prevent this. However, authentication actually only requires the identity
to be known by the other communication partner. Indeed, let us consider Figure 1.4.

Figure 1.4 shows a protocol that first runs a DHKE and only afterwards exchanges
identity related information (i.e. the signatures) in encrypted messages (Ek(m) denotes
the encryption of m with key k). This means that an eavesdropper will not be able
to efficiently determine the identities of the communicating parties. At the same time,
due to the signatures, the key k is secure even against MITM adversaries (since the
users abort and potentially restart the protocol run if a signature is not sent or invalid).
Protocols like this are called Privacy Preserving Authenticated Key Exchange (PPAKE)
protocols1.

Note however, that in the aforementioned example (Figure 1.4), the identities of the
1This term was introduced in [SSL20] and will be used hereafter.

3

1. Introduction

Alice Bob

X = gx mod p

σAlice = SignskAlice
(X)

X, σAlice

Y = gy mod p

σBob = SignskBob
(Y)

Y, σBob

k = Y x mod p k = Xy mod p

Figure 1.3: Signed DHKE

Alice Bob

gx mod p

gy mod p

k = gxy mod p k = gxy mod p

Ek(σA)

Ek(σB)

Figure 1.4: Simplified PPAKE

users are not safe against a MITM adversary. The adversary can act as the responder,
correctly run the DHKE and receive the third message, without ever needing to send
a signature on their own. This problem might at first also seem inherent to PPAKE
protocols, since either the initiator or the responder has to “go first” in authenticating
themselves. However, later in this work (c.f. Section 3.1) we will present protocols that
are able to protect the privacy of both parties even in presence of a MITM adversary.

4

1.1. Motivation

Previous Work

Privacy preserving authenticated key exchange (PPAKE) protocols have been studied
previously. As mentioned before, these protocols fulfill everything that is required from
an AKE protocol while also mitigating the risk of identity information being leaked. In
the literature, there are many different formulations of these privacy preserving properties.
The list below gives a few examples.

1. To the best of our knowledge, the first work that explicitly deals with privacy in
the AKE setting is Aiello et al. [ABB+04]. The proposed protocols are designed to
only protect the privacy of one party, either the initiator or the responder, against
active adversaries. One of the proposed protocols does however protect the privacy
of both parties against passive eavesdroppers.
Aiello et al. reference the paper of Canetti and Krawczyk [CK02], which contains
an even earlier mention of “identity concealment”. It informally discusses how
achieving this notion is possible by encrypting the identities.

2. In [ABF+19], the unilateral authentication in the Transport Layer Security protocol
version 1.3 (TLS 1.3) and hence unilateral privacy is investigated. The nature of
unilateral authentication strongly limits the possible privacy guarantees. In the
TLS 1.3 setting, any client should be allowed to contact a server. Simply consider
an active adversary that takes the role of the (unauthenticated) client and runs the
protocol normally. The server will authenticate itself and hence reveal its identity.

3. In the work of Schäge, Schwenk and Lauer [SSL20], the Internet Key Exchange
(IKEv2) protocol [KHN+14] is examined. The proposed security model guarantees
the privacy of both parties if the protocol is completed successfully. This work also
coined the term PPAKE.

4. In [Zha16] a construction named CAKE is presented. Again, the security model
guarantees the privacy of both parties if the protocol is completed successfully.

This thesis aims to strengthen the existing PPAKE models in the literature by providing
privacy guarantees for both the initiator and the responder, in particular even in cases in
which the adversary is not able to complete the protocol session successfully. These cases
are relevant since some adversaries might not even care if the protocol run is aborted
after they deanonymize their target.

1.1.2 Automated Verification
In cryptography, just like in many other areas of science, scientists support their claims
with mathematical proofs. The problem one deals with is that of course these proofs
could contain mistakes and might thus be incorrect. In order to mitigate this risk, formal
verification (also called automated verification) can be used. This entails writing the claims
in computer readable form (i.e. some tool-specific input format) and running a formal

5

1. Introduction

verification software. Usually the software will continuously apply some calculus, i.e. a set
of rules to rewrite the expressions that were provided by the user or derive new knowledge.
It terminates upon finding a contradiction or determining that no contradiction was
found and no more rules can be applied (which means that the statement is correct).
There is also the possibility that the proof search does not terminate. This is unavoidable
in any proof system that allows sufficiently sophisticated expressions (e.g. general first
order logic statements), since first order logic and similar systems are undecidable, as
shown by Gödel’s incompleteness theorems.

In this work we utilize and evaluate two tools for formal verification:

Tamarin Prover. The Tamarin Prover is a formal verification software tailored specif-
ically to prove properties of cryptographic protocols. It uses a specific format called rules
to encode the individual steps of a protocol and allows the user to specify the properties
in (a fraction of) first order logic. The state of a system at a point in time during the
execution of the protocol is encoded as a multiset of facts. A more detailed overview is
given in Section 1.3.

ProVerif. ProVerif is another tool for formal verification of cryptographic protocols. It
specifies protocols in process format. Security properties are encoded as queries, which
are logical statements of a specific form. There are no state facts as with the Tamarin
Prover, instead the order of executing operations is specified since the protocols are
encoded in the process format. A more detailed overview is given in Section 1.4.

Verifying a protocol using automated verification has its limits. As mentioned before
the tool might not terminate. Even if it does terminate by concluding that the specified
properties hold, there might be security flaws in the protocol. The reason is that these
tools do not create the type of proofs that are used in the cryptographic literature.
There, usually all security properties are derived from some assumption, that a specific
mathematical problem is computationally infeasible to solve by the adversary. Tamarin
and ProVerif however will only prove that the methods that were defined in the input
cannot be used to attack the user-defined property. This means that these tools implicitly
assume that there are no relevant mathematical properties aside from those that were
specified by the user. To illustrate this, consider some encryption scheme that simply
multiplies the message with the key, where the key is always an odd number. Clearly the
ciphertext would leak information about the message. If the the ciphertext is an even
number, it can be deduced that the message was even too. However the designer of the
algorithm might encode the protocol and what it means to multiply and see a “proof
successful” message. The reason is that Tamarin and ProVerif do not know about odd or
even numbers, unless the user specifies corresponding functions. Since numbers being
odd or even are irrelevant for the algorithm itself, the algorithm designer would most
likely not include such a definition in the encoding.
However, Tamarin and ProVerif do usually give certainty if they find an attack.2 These

2There are rare cases, in which the tools apply some internal simplifications which lead to wrong

6

1.2. Cryptographic Preliminaries

attacks are then described in detail in the tools’ outputs. Since they work with the
limited tools given to them, they also work in a real-world setting.

This work encodes the protocol ΠGen, which is presented in Section 3.1, and evaluates
the Tamarin Prover for this use case. Since that Tamarin encoding cannot be efficiently
solved as discussed in Chapter 4, we also show a ProVerif encoding. That encoding is
successfully proven.

1.2 Cryptographic Preliminaries

1.2.1 Notation
Security Parameter λ. In this work we deal with asymptotic security. This means
that by increasing λ, which is the size of security relevant information (e.g. the length
of keys in the system), the workload of an adversary that tries to break our security
goals should increase faster than any polynomial (e.g. exponentially). All complexity
measurements are hence given as a function of λ.

Negligible Functions. A negligible function is a function f : N → R s.t. for every
positive polynomial poly(·) there is some Npoly > 0 s.t. for all n > Npoly it holds that

|f(n)| <
1

poly(n)

Adversary Advantage. In many security experiments, one may trivially break the
security of any protocol by random guessing with at least some probability. For example,
if the adversary’s goal in an experiment is to determine whether a secret bit is 0 or 1,
random guessing will yield a winning probability of 1

2 . The advantage of an adversary
denotes how much better the adversary is compared to random guessing. If some adversary
in the previous example outputs the correct bit with a probability of 3

4 , this means it has
an advantage of 3

4 − 1
2 = 1

4 .

Probablistic Polynomial Time (PPT) Adversaries. As mentioned before, breaking
the security of our protocols should take a superpolynomial amount of time (in the security
parameter λ). Hence all Probablistic Polynomial Time (PPT) adversaries, i.e. adversaries
which execute an algorithm that has at most polynomial complexity and may use
randomness, should have at most a negligible advantage.

Allowing Adversary A to Use Oracle O. By AO we denote that the adversary
A, while running their algorithm, is allowed to flexibly use the oracle O any number of
times.

results, namely invalid attacks (c.f. [BBS]). This can be ruled out by manually checking the resulting
attack descriptions or setting the option to disable these simplifications.

7

1. Introduction

Algorithm Syntax. In algorithms we write a ← b to denote that the value b is assigned
to the variable a. a ←R M denotes that the variable a is assigned a uniformly random
element from the set M . ||x|| denotes the length of x (in binary notation).

Group Theory. When writing G = (G, q, g) we refer to a cyclic group with the elements
in G, the order (i.e. number of elements) q and some generator element g.

1.2.2 Cryptographic Hash Functions
A cryptographic hash function h is an algorithm that maps data of arbitrary size to a
fixed size bitstring. It is a one-way function, i.e. any PPT adversary should have only
negligible advantage for finding some input value x when given the output value h(x). A
hash function is called collision resistant if it is infeasible for a PPT adversary to find a
collision, i.e. two different values m1, m2 s.t. h(m1) = h(m2).

The random oracle model is an idealization of real-world hash functions used in security
proofs (c.f. [BR93]). The random oracle (RO), denoted H, is a truly random function.
Both the protocols as well as the adversary can query the RO. Consider the setting in
which the adversary intercepts a message by the protocol, that contains y = H(x) for
some secret x. Since the output of H is random, the adversary does not directly learn
anything about x. However, the adversary can try different guesses for x and query
H(x) themselves. Furthermore, if the protocol uses the same value x multiple times for
different messages, the adversary will notice that y is the same.

As a generally accepted practice, cryptographic proofs may “program” the RO. This
means that if the RO is queried for any input for the first time, the proof can make the
RO output a specific value depending on the input.

In a practical protocol a RO is then instantiated with a secure hash function, e.g. SHA-2
or SHA-3.

1.2.3 Unauthenticated Two-Move Key Exchange
We denote by Γ a two-move key exchange protocol between two PPT algorithms A

and B running in three steps: (stA, outA) ← Γ(1)
A (1λ) produces A’s state and output;

(kB, outB) ← Γ(1)
B (1λ, outA) on input A’s output produces a key kB ∈ K and finally on

input B’s output kA ← Γ(2)
A (1λ, outB, stA) produces a key kA ∈ K. Note that Γ(1)

A (·) and
Γ(1)

B (·, ·) are stateless functions that only take the specified inputs. Specifically, they do
not have access to any long-term keys. Correctness requires that for all λ ∈ N, where λ
denotes the security parameter, and all random tapes of A and B we have that kA = kB ,
except for a negligible error probability. We use the shorthand (k, trans) ← ΓA,B(1λ) to
denote a run of the protocol where trans = (outA, outB). We say that a two-move key
exchange protocol is secure against eavesdroppers if and only if any PPT adversary A
has only negligible advantage in the following security experiment.

8

1.2. Cryptographic Preliminaries

Exp. Expeav
Γ,A(λ)

k0 ←$ K
b ←$ {0, 1}
(k1, trans) ← Γ(1λ)
b� ← A(kb, trans)
if b = b� then return 1 else return 0

Figure 1.5: The EAV experiment for a two-move key exchange protocol Γ.

Definition 1. For any PPT adversary A the advantage function

Adveav
Γ,A(λ) :=

����Pr
�
Expeav

Γ,A(λ) = 1
�

− 1
2

����,
is negligible in λ, where the experiment Expeav

Γ,A(λ) is given in Figure 1.5 and Γ is a
two-move key exchange protocol as above.

For brevity, we will call Γ secure if it is EAV-secure and we will write outA ← Γ(0) for
A’s first message and outB ← Γ(1, outA) for B’s message and denote with Γ.key the
resulting key if everything is clear from the context.

Lemma 1. Let Γ be an EAV-secure two-move key exchange protocol Γ, then it holds
that:

Pr[outA = out�
A] ≤ negl(λ) and Pr[outB = out�

B] ≤ negl(λ)

where outA, out�
A and outB, out�

B are results of independent calls to Γ(0) and Γ(1, outA),
respectively.

Proof. Note that correctness demands that a specific transcript fully determines a single
key. If one pair (outA, outB) could be produced in multiple runs with different resulting
keys, then A and B would have no way to tell which key to agree on in a specific run,
since they have no common information besides the transcript.
Assume the lemma does not hold, and view the case that Pr[outA = out�

A] is non-negligible
(the other case can be treated analogously). Construct an adversary A against the security
of Γ as follows:

1. Upon receiving k, (outA, outB), simply call (st�
A, out�

A) ← Γ(1)
A (1λ).

2. Case 1. out�
A �= outA.

Output a random bit b�.

3. Case 2. out�
A = outA.

Call kA ← Γ(2)
A (1λ, outB, st�

A). As discussed before, kA must be identical to the
actual key that was derived in the challenger’s protocol run. Hence output b�

according to whether kA equals k.

9

1. Introduction

Exp. Expse-ind-cca
Ω,A (λ)

k ←$ K
(M0, M1, l) ← AEk,Dk(pk)
b ←$ {0, 1}
ctxt∗ ← Ek(Mb, l)
b� ← AEk,Dk(ctxt∗)
if b = b� then return 1 else return 0

Figure 1.6: LH-SE-IND-CCA security for SE Ω.

Since Case 2 has non-negligible probability of happening, this gives A a non-negligible
advantage.

1.2.4 Symmetric Encryption
A symmetric encryption with padding (SE) scheme Ω with key space K and message
space M consists of the PPT algorithms (E, D) defined as follows:

Ek(M, l) : On input secret key k, message M ∈ M and length l (l ≥ |M |), outputs a
ciphertext ctxt.

Dk(ctxt) : On input secret key k and ctxt, outputs M ∈ M ∪ {⊥}.

A SE Ω is correct if for all k ←$ K, M ←$ M, l ≥ |M | it holds that

Pr[ctxt ← Ek(M, l) : Dk(ctxt) = M] = 1.

We say a SE Ω is LH-SE-IND-CCA-secure (length-hiding indistinguishable under chosen
ciphertext attacks) if and only if any PPT adversary A has only negligible advantage
in the following security experiment. A outputs messages (M0, M1) and length l with
l ≥ max{M0, M1} and, in return, gets ctxt∗ ← Ek(Mb, l), for b ←$ {0, 1}. Eventually, A
outputs a guess b�. If b = b�, then the experiment outputs 1. During the experiment A
has access to an encryption oracle Ek and decryption oracle Dk where the adversary can
query decryptions of ciphertexts distinct from ctxt∗.

Definition 2. For any PPT adversary A the advantage function

Advse-ind-cca
Ω,A (λ) :=

����Pr
�
Expse-ind-cca

Ω,A (λ) = 1
�

− 1
2

����,
is negligible in λ, where the experiment Expse-ind-cca

Ω,A (λ) is given in Figure 1.6 and Ω is a
SE as above.

In our protocols we write Ek(M) instead of Ek(M, l) if we assume there to be a suitable
publicly known maximum length l.

10

1.2. Cryptographic Preliminaries

1.2.5 Public Key Encryption
We briefly recall the definition and security notions of public-key encryption (PKE)
including the notion of key-privacy introduced by Bellare et al [BBDP01]. A public-key
encryption scheme PKE with message space M consists of the three PPT algorithms
(PSetup, PGen, PEnc, PDec) defined as follows:

PSetup(λ) : On input security parameter λ, outputs public parameters pp.

PGen(pp) : On input public parameters pp, outputs public and secret keys (pk, sk).

PEncpk(M) : On input pk and message M ∈ M, outputs a ciphertext ctxt.

PDecsk(ctxt) : On input sk and ctxt, outputs M ∈ M ∪ {⊥}.

We note that we make the generation of shared public parameters, e.g., the choice of
groups, explicit as separate algorithm PSetup. This is necessary for key privacy that we
will discuss below.

A PKE scheme is correct if for all pp ← PSetup(λ) and (pk, sk) ← PGen(pp), then

Pr[c ← PEncpk(M) : PDecsk(c) �= M] ≤ negl(λ).

We say a PKE is PKE-IND-CCA-secure if and only if any PPT adversary A has only
negligible advantage in the following security experiment. First, A gets an honestly
generated public key pk. A outputs equal-length messages (M0, M1) and, in return,
gets ctxt∗

b ← PEncpk(Mb), for b ←$ {0, 1}. Eventually, A outputs a guess b�. If b = b�,
then the experiment outputs 1. During the experiment A has access to a decryption
oracle PDecsk where the adversary can query decryptions of ciphertexts distinct from
ctxt∗. If the adversary is not given access to the decryption oracle, then the scheme is
PKE-IND-CPA-secure.

Definition 3. For any PPT adversary A the advantage function

Advpke-ind-cca
Π,A (λ) :=

����Pr
�
Exppke-ind-cca

PKE,A (λ) = 1
�

− 1
2

����,
is negligible in λ, where the experiment Exppke-ind-cca

PKE,A (λ) is given in Figure 1.7 and PKE
is a PKE as above.

We say a PKE PKE is PKE-IK-CCA-secure (also called key private) if and only if any
PPT adversary A has only negligible advantage in the following security experiment.
First, A gets two honestly generated public keys pk0, pk1. A outputs a message M and,
in return, gets ctxt∗

b ← PEncpkb
(M), for b ←$ {0, 1}. Eventually, A outputs a guess b�.

If b = b�, then the experiment outputs 1. During the experiment A has access to a
decryption oracles PDecsk0 and PDecsk1 where the adversary can query decryptions of
ciphertexts distinct from ctxt∗.

11

1. Introduction

Exp. Exppke-ind-cca
PKE,A (λ)

pp ← PSetup(λ)
(pk, sk) ← PGen(pp)
(M0, M1) ← APDecsk(pk)
b ←$ {0, 1}
ctxt∗ ← PEncpk(Mb)
b� ← APDecsk(ctxt∗)
if b = b� then return 1 else return 0

Figure 1.7: PKE-IND-CCA security for PKE PKE.

Exp. Exppke-ik-cca
PKE,A (λ)

pp ← PSetup(λ)
(pk0, sk0) ← PGen(pp), (pk1, sk1) ← PGen(pp)
M ← APDecsk0 ,PDecsk1 (pk)
b ←$ {0, 1}
ctxt∗ ← PEncpkb

(M)
b� ← APDecsk0 ,PDecsk1 (ctxt∗)
if b = b� then return 1 else return 0

Figure 1.8: PKE-IK-CCA security for PKE PKE.

Definition 4. For any PPT adversary A the advantage function

Advpke-ik-cca
PKE,A (λ) :=

����Pr
�
Exppke-ik-cca

PKE,A (λ) = 1
�

− 1
2

����,
is negligible in λ, where the experiment Exppke-ik-cca

PKE,A (λ) is given in Figure 1.8 and PKE is
a PKE as above.

We note that for both notions we presented the single-challenge notions. Using a hybrid
argument, both can be extended to multi-challenge notions, e.g., see [BBM00].

1.2.6 Digital Signatures
A signature scheme Σ consists of the PPT algorithms (Gen, Sign, Verify), which are defined
as follows:

Gen(1λ) : On input security parameter λ outputs a signing key sk and a verification key
pk with associated message space M.

Signsk(M) : On input, a secret key sk and a message M ∈ M, outputs a signature σ.

Verifypk(M, σ) : On input a public key pk, a message M ∈ M and a signature σ, outputs
a bit b.

12

1.2. Cryptographic Preliminaries

Exp. Expeuf−cma
Σ,A (λ)

(pk, sk) ← Gen(1λ)
(M∗, σ∗) ← ASignsk(pk)
if Verify(pk, M∗, σ∗) = 1 then return 1 else return 0

Figure 1.9: The EUF-CMA experiment for a signature scheme Σ.

We assume that a signature scheme satisfies the usual (perfect) correctness notion, i.e.
for all security parameters λ ∈ N, for all (pk, sk) ← Gen(1λ), for all m ∈ M, we have that

Pr
�
Verifypk(M, Signsk(M)) = 1

�
= 1.

We say a signature Σ is EUF-CMA-secure if and only if any PPT adversary A has
only negligible advantage in the following security experiment. First, A gets a honestly
generated public key and outputs a message M∗ and signature σ∗. During the experiment
A has access to an singing oracle Signsk where the adversary can query signatures for
arbitrary messages. The experiment outputs 1 if and only if Verifypk(M∗, σ∗) = 1 and
M∗ was not queried to the signing oracle.

Definition 5. For any PPT adversary A, we define the advantage in the EUF-CMA
experiment Expeuf−cma

Σ,A (cf. Figure 1.9) as

Adveuf−cma
Σ,A (λ) := Pr

�
Expeuf−cma

Σ,A (λ) = 1
�

.

A signature scheme Σ is EUF-CMA-secure, if Adveuf−cma
Σ,A (λ) is a negligible function in λ

for all PPT adversaries A.

1.2.7 Diffie-Hellman Assumptions

Subsequently, we recall the strong Diffie-Hellman (SDH) assumption and the oracle
Diffie-Hellman assumption (ODH) where the hash function is modeled as a random
oracle which is implied by SDH in the ROM [BFGJ17]. Specifically, we consider the
mmPRF-ODH assumption where the PRF is instantiated with a random oracle.

Definition 6 (SDH). The strong Diffie-Hellman assumption holds relative to G = (G, q, g)
and an oracle stDHx(gy, gz) that returns 1 if and only if xy = z, if for all PPT adversaries
A, there is a negligible function ε such that

Pr
�

x, y
$← Zq

h∗ ← AstDHx(·,·) (gx, gy)
: h∗ = gxy

�
≤ ε(κ).

13

1. Introduction

Definition 7 (ODH). The ODH assumption holds relative to G = (G, q, g) and an oracle
H : G → {0, 1}λ, if for all PPT adversaries A, there is a negligible function ε such that������������

Pr


x, y

$← Zq, b
$← {0, 1}

t∗ ← AHx (gx)�
w

$← {0, 1}λ if b = 0
w ← H(gxy, t∗) otherwise

b∗ ← AHx,Hy (gx, gy, w)

: b = b∗

 − 1
2

������������
≤ ε(κ)

where Hx(h, t) = H(hx, t) and Hy(h, t) = H(hy, t) and the adversary may not query Hx

on (gy, t∗) and Hy on (gx, t∗), respectively.

Definition 8 (GDH). The GDH assumption (see [OP01]) holds relative to G = (G, q, g)
if the following problem cannot be solved by any PPT adversary A: Given a triple
(g, ga, gb) find the element C = gab with the help of a Decision Diffie-Hellman Oracle
(which answers whether a given quadruple is a Diffie-Hellman quadruple or not).

1.2.8 Security Proofs: Sequence of Games
In cryptographic proofs, an often used schema is to specify a sequence of games. The
first game is the original security game as defined for the property that should be proven.
Usually the adversary has to win this game with non-negligible advantage, in order to
break the security property. Each subsequent game is then a copy of the previous one
with a small change. The final game can then usually be trivially evaluated. In order
to complete the proof, one then has to show that all changes between two subsequent
games can only be detected with negligible probability by the adversary that plays that
game. To be precise, of all the cases in which the adversary wins the first game, the
probability that the adversary notices the change to the second game must be negligible.
This change from one game to another is called “Game Hop”.

The proof argument then goes as follows: Assume for contradiction that some adversary
A is able to win Game 1 with non-negligible probability. Since with non-negligible
probability, A cannot notice the game hop to Game 2, A also wins Game 2 with non-
negligible probability. This argument continues to some Game N . Usually the adversary
cannot win such a Game N for obvious reasons, which yields a contradiction. Hence we
conclude that the initial assumption of an adversary winning Game 1 is false.

For a more detailed explanation we refer the reader to [Sho04].

1.3 Preliminaries Tamarin
This section is not intended as a full tutorial on all of Tamarin’s capabilities. For that
please refer to available online material such as [Tea]. However it gives a brief overview
that should highlight and explain the language constructs that are used in the later
chapters of this thesis.

14

1.3. Preliminaries Tamarin

1 theory Example
2 begin
3
4 functions : KE_m1/1 , KE_m2/2 , KE_kA/2 , KE_kB/2
5 equations : KE_kA(randA , KE_m2(randB , KE_m1(randA))) = KE_kB(

randB , KE_m1(randA))
6
7 // . . . (Rules)
8
9 end

Listing 1.1: Functions and Equations

Listing 1.1 shows the theory “Example”. Every file should contain one theory, that is
specified with a name as well as the begin and end commands. The example also shows
how functions and equations can be used to model a cryptographic primitive, namely
unauthenticated two-move key exchange. KE_m1 and KE_m2 are used for the messages
of the two parties (i.e. gx and gy in the case of DHKE), KE_kA and KE_kB are used
for both sides deriving the session key. Functions are defined with their name and arity.
Equations can relate terms. In this case, we define that the resulting session key should
be the same for both sides.

1 theory Example
2 begin
3
4 built ins : hashing , asymmetric−encrypt ion , s i gn ing , symmetric−

encrypt ion
5
6 // . . . (Functions / Equations)
7
8 // . . . (Rules)
9

10 end

Listing 1.2: Builtins

Listing 1.2 shows how to activate some predefined functionality of Tamarin. Builtins
always provide functions and equations for the specific topic, e.g. signing contains the
functions pk, sign and verify as well as an equation, which is used to model the basic
behavior of digital signatures with public and private keys.

1 rule Crea t e Ident i t y :
2 let
3 caS ig = s i gn (<~id , pk(~ ltk_Sign) >, l t k)
4 in

15

1. Introduction

5 [Fr (~ id) , Fr (~ ltk_Sign) , Fr (~ ltk_AEnc) , !CA(l tk , pub)]
6 −−[CreatedParty (~ id , ~ ltk_Sign , ~ltk_AEnc)]−>
7 [! Party (~ id , ~ ltk_Sign , ~ltk_AEnc , caS ig) ,
8 Out(~ id) , Out(pk(~ ltk_Sign)) , Out(pk(~ ltk_AEnc)) , Out(caS ig

)]

Listing 1.3: Rules

Listing 1.3 shows how to create rules in Tamarin. Rules are used to specify the protocol
steps. The example defines the rule CreateIdentity that adds new users to the experiment.
The let ... in statements define macros, i.e. all instances of caSig are replaced with
sign(<ĩd, pk(̃ltk_Sign)>, ltk). In the first square brackets [·] the inputs are specified,
together with the initialization of fresh variables (denoted by Fr(·)) like ĩd. Fresh
variables are used to model randomly drawn values and their names always start with ˜.
Inputs can also be facts like !CA(ltk, pub). Facts are created by rules and consumed by
rules, unless they are marked with ! in order to define them as persistent facts. Action
facts like CreatedParty are created whenever the rule is executed and can be used to
reason about rule executions in lemmas or restrictions, which are introduced later. In
the final [·], the output values are defined. On the one hand, these can be messages sent
to the network (by using Out). On the other hand these can be facts.

1 rule CA_Init :
2 [Fr (~ l t k)]
3 −−[CA_Init ()]−>
4 [!CA(~ l tk , pk(~ l t k))]
5
6 restr ict ion CA_Init_Once :
7 "
8 All #i #j . CA_Init () @ #i & CA_Init () @ #j ==> #i = #j
9 "

Listing 1.4: Restrictions and Lemmas

Listing 1.4 defines the rule CA_Init, that is used to model one Certificate Authority (CA)
that signs the keys of all users. It uses the predefined function pk by the signing builtin.
The example also shows a restriction that says CA_Init may only occur once. This is
encoded with the first order logic statement “For all timestamps i and j, if CA_Init()
happened at timestamp i and CA_Init() happened at timestamp j, then i = j”. The
same syntax can also be used for a lemma. In that case, the truth of the statement is
evaluated instead of being enforced like with the restriction.

1
2 rule TestPrivacy :
3 [! Party (a , k1 , k2 , caA) , ! Party (b , l1 , l2 , caB) , Fr (~ c) , !CA(

sk , pk)] −−[Test () , TestPriv (a , b , ~c)]−>

16

1.4. Preliminaries ProVerif

4 [! Party (~c , d i f f (k1 , l 1) , d i f f (k2 , l 2) , s i gn (<~c , d i f f (k1 , l 1)
>, sk)) , Out(~ c)]

Listing 1.5: Observational Equivalence

Listing 1.5 shows how to use the diff operator. This operator causes Tamarin to evaluate
observational equivalence, i.e. it checks whether an adversary could notice the difference
between two worlds, one in which all diff terms are replaced with their first argument
and the other world in which the second argument is used.

1.4 Preliminaries ProVerif
This section is not intended as a full tutorial on all of ProVerif’s capabilities. For that
please refer to available online material such as [BBS]. However it gives a brief overview
that should highlight and explain the language constructs that are used in the later
chapters of this thesis.

ProVerif is a tool for automated verification. Users encode their security protocols as
well as the desired security properties in ProVerifs specification language. ProVerif then
automatically checks whether the desired properties hold. If not, an attack is shown.
However, ProVerif can only use the specified functions. If a function that is need for an
attack is not defined in the input file, ProVerif might not be able to find an attack on a
protocol, even though it has security flaws, as discussed before (see Section 1.1.2).

In this thesis we focus on ProVerif’s typed pi calculus (.pv) file format. There are several
others available, which however are less useful for our application. An input file consists
of

1. initial definitions, such as type definitions, constants and functions,

2. desired security properties, encoded as queries and

3. the actual protocol specification, encoded as processes.

For easier understanding, we will explain the initial definitions and the protocol specifica-
tion before detailing how to specify security properties.

Initial Definitions
Consider the following example of some initial definitions.

1 type key .
2 fun senc (b i t s t r i n g , key) : b i t s t r i n g .
3 fun sdec (b i t s t r i n g , key) : b i t s t r i n g .
4 equation f o r a l l m: b i t s t r i n g , k : key ; sdec (senc (m, k) , k) = m.

Listing 1.6: Defining symmetric encryption

17

1. Introduction

In Listing 1.6 we show one possibility of how to encode symmetric encryption. In line
1 we define a new type, called key. Then we define the functions senc and sdec that
take two arguments as input, the first being of the predefined type bitstring and the
second of type key. Both output a bitstring. The intended functionality is that users call
senc(m, k) in order to apply symmetric encryption with key k on message m. Similarly,
sdec is supposed to be called with some ciphertext and the appropriate key and produce
the initial message as output. In line 4 we specify this behaviour in the form of an equation.

Notice that we never specified how senc works. In ProVerif, all functions are assumed to
reveal absolutely no information about their input. In reality, a symmetric encryption
scheme might leak the length of the message m. However this is not the case in ProVerif
unless we explicitly model this, e.g. by adding a function getLength.
Further notice that all functions are assumed to be publicly known (unless marked as
private) and deterministic. Consider the setting in which a client applies asymmetric
encryption to some message it sends to the server. If we model the ciphertext as aenc(m,
pubKey) and the adversary knows m is one of two possibilities m1, m2, they may recom-
pute aenc(mi, pubKey) for i ∈ {1, 2} and compare it to the received ciphertext. This
effectively allows the adversary break the ciphertext indistinguishability in this model.
In real-world asymmetric encryption schemes this is impossible since senc is required
to be a probabilistic function. If we want to model such functions, they should take
an additional argument that is used to provide the necessary randomness, i.e. aenc(m,
pubKey, randomness).

1 type key .
2 fun senc (b i t s t r i n g , key) : b i t s t r i n g .
3 reduc f o r a l l m: b i t s t r i n g , k : key ; sdec (senc (m, k) , k) = m.

Listing 1.7: Defining symmetric encryption (alternative version)

In Listing 1.7 we show an alternative way to encode symmetric encryption. Instead of
modelling sdec as proper function, it is now modelled with the reduc construct. This is
useful when the function symbol, in this case sdec, is only used to reduce complex terms
to smaller terms. In this variation sdec cannot be applied to arbitrary bitstrings like in
the previous example. Instead, sdec(x) will fail if x is not of the proper form.

1 type name .
2 const a : name .

Listing 1.8: Constants

In Listing 1.8 we show how to create a constant a of type name. This might be useful if we
want to model a multi-user setting in which a specific user should be treated differently.

18

1.4. Preliminaries ProVerif

Specifying the protocol: Processes
The actual protocol is specified as process. Let us consider the following example.

1 fun someFunc (b i t s t r i n g) : b i t s t r i n g .
2 channel c .
3
4 process
5 new x : b i t s t r i n g ;
6 l et y = someFunc (x) in
7 out (c , y)

Listing 1.9: The main process

In Listing 1.9 we first define someFunc. Then we use channel c (which is equivalent to
const c : channel) to create a channel constant. Channels represent the network and can
be public (default) or private (using [private]). Any message sent to a public channel can
be intercepted by the adversary, who can also modify messages or send its own messages
(i.e. full Man-In-The-Middle capabilities). In line 4 we use the keyword process to start
the definition of the main process. This is a sequence of operations. First, a new variable
x is initialized with a random bitstring. Then the variable y is initialized to the output
of someFunc(x) using the let ... in keywords. Finally y is transmitted over the channel c
using out(c, y), effectively revealing it to the adversary.

One may define subprocesses as follows:
1 channel c .
2
3 let sender (x : b i t s t r i n g) =
4 new z : b i t s t r i n g ;
5 out (c , (x , z)) .
6
7 let r e c e i v e r () =
8 in (c , msg : b i t s t r i n g) ;
9 l et (x : b i t s t r i n g , z : b i t s t r i n g) = msg in

10 in (c , (a : b i t s t r i n g , b : b i t s t r i n g)) ;
11 out (c , (a , b , x , z)) .
12
13 process
14 new x : b i t s t r i n g ;
15 sender (x) | r e c e i v e r ()

Listing 1.10: Defining process macros

Listing 1.10 illustrates how process macros can be defined using “let [...]]([...]) = [...].”.
ProVerif basically copies the code to all occurrences of the process macro name (with the

19

1. Introduction

variables being renamed if necessary). The process macros sender and receiver model
two different communication parties, where sender is called with the parameter x, draws
a random z and outputs the tuple (x, z). Tuples are always of type bitstring. The process
macro receiver first receives a message of type bitstring. Then it attempts to decode the
tuple by using the let ... in construct. This can also be used to attempt to match some
variable against a term with function calls. We could use else to specify behaviour in
case the decoding fails. Currently this process macro simply aborts its execution. In line
10 we show a compact formulation that captures the behaviour of line 8 and 9. Finally
line 11 outputs a new tuple with four values.
The main process creates a random value x. Then it calls the process macros in parallel
using “|”.

Specifying security properties
In order to specify security properties that deal with the protocol’s execution, e.g. saying
that in some protocol, the received messages of one party were sent by another honest
party, we need to define events.

1 channel c .
2
3 event matchingBits (b i t s t r i n g) . (∗ Define the event i n t e r f a c e ∗)
4
5 query x : b i t s t r i n g ; event (matchingBits (x)) . (∗ Secur i t y

proper ty ∗)
6
7 process
8 new x : b i t s t r i n g ;
9 in (c , y : b i t s t r i n g) ;

10 i f x = y then
11 event matchingBits (x) (∗ Cause the event ∗)

Listing 1.11: Events and queries

In Listing 1.11, line 3 we define the event matchingBits which should also record a value of
type bitstring. Brackets with stars “(* *)” denote comments. Line 5 states a reachability
query in order to define a security property (see detailed explanation of query types
below). The process creates a random bitstring x, receives some value y and compares
them. In case they are equal, the previously defined event is called.

In this protocol, it should be impossible for the adversary to reach the event matchingBits,
since the value x is never revealed. This is encoded in the query in line 5. It basically asks
“Can the adversary find some bitstring x and somehow interact with the protocol such
that the event matchingBits(x) is called?” In a regular human-written security proof, one

20

1.4. Preliminaries ProVerif

would argue that the probability of guessing x is negligible if x is from a sufficiently large
set. ProVerif (with this input file) instead does not even model guessing. It actually tries
to somehow deterministically derive or compute the needed value x from the output of
the process (which is none in this case) or other public information. Therefore ProVerif
will determine this protocol to be fully secure.

Security properties are specified in three ways, one of which is the reachability query
that was used in Listing 1.11:

1. Reachability Query.
Using query var:VARTYPE, var2:VARTYPE2 [, ...]; event(eventName(var, var2,
const1)) a reachability query may be specified. This query is written above the pro-
tocol specification. It may contain existentially quantified variables (var:VARTYPE,
var2:VARTYPE2 [, ...]) and constants (const1). Such queries are always inter-
preted as “in a secure protocol, this should not be reachable”, i.e. if ProVerif
manages to reach the event, it will output “query [...] is false”. Furthermore, by
adding “ & varX <> varY ” (meaning: and varX is not equal to varY) or similar
clauses, it is possible to specify relations between the variables.

2. Implication Query.
Queries can also be specified like this: query [...]; event(evName1([...])) ==>
event(evName2([...])) . This should be read as whenever evName1 occurs, there
has been an appropriate occurence of evName2 before. Hence if ProVerif manages
to reach evName1 without triggering evName2 before, it will output “query [...] is
false”.

3. Observation Equivalence.
This functionality is not specified using a query statement above the protocol
specification. Instead diff (or equivalently choice) is used inside of the protocol
specification. By writing diff[termA, termB] we tell ProVerif to create two protocols,
one with termA and one with termB. Multiple uses of diff do not cause the creation
of more protocols, instead the first protocol varation uses all left terms inside of
diff[termA, termB] statements and the second protocol varation uses all right
terms. If at least one diff occurs in the protocol specification, ProVerif will attempt
to prove observational equivalence. This means that for any adversary and any
adaptive interaction with the protocol, both protocol varations behave equivalently.
This means that any chosen if-then path and any format errors (i.e. a tuple of two
values was expected, but only a single value was received) is the same for both
variations. The only exception are if-then switches inside of terms. Furthermore all
terms the adversary receives should be indistinguishable. Consider the following
example. The adversary receives f(a, x) (i.e. the output of some function f applied
to a and x) in the first variation and f(b, x) in the second variation. We assume
that a and b are known to the adversary. Observational equivalence holds if and
only if x is not known to the adversary. Otherwise the adversary can recompute

21

1. Introduction

f(a, x) and check whether the result matches the received term, which is only true
in one of the variations.

22

CHAPTER 2
PPAKE Model

2.1 Overview
In order to formally analyze security protocols, it is necessary to first specify the security
model, i.e. how do we represent different parties, what capabilities does the adversary
have and which security properties should protocols fulfill.

In Section 2.2 we informally discuss the main goals that our model should achieve,
i.e. which real-world scenarios it should represent and what kind of attacks should be
prevented. In Section 2.3 we describe the model and all of its features in detail, as well
as the security definitions. This is then compiled into a short summary in Section 2.4.
Finally in Section 2.5 we address questions as to why some design choices were made
and why we decided against certain other possibilities.

2.2 Design Goals
In order to explain the design of the model, we first describe what the protocols should
achieve. We aim to create an authenticated key exchange (AKE) protocol, that does
not leak the identities of the communicating parties to potential adversaries of different
strength.

Real World Setting
A real-world use case could be some client contacting a server over some network (e.g. the
Internet), in order to establish a common secret key that will then be used for secure
communication. Aside from protecting the content of the communication, the client
additionally wants to hide who is talking to whom. We assume that the underlying
network does not leak the identities, either by nature of the network or through the
use of additional tools that are outside the scope of this model (e.g. in case of the

23

2. PPAKE Model

Internet, through the use of VPN services or Tor [DMS04]). Even in this setting, many
AKE protocols will still reveal the communicating parties’ identities. This is due to the
messages of the protocol allowing adversaries to determine the identities.

The focus of our privacy notions is hence to prevent leaking identity related information
through the content of the messages. Furthermore our model should contain the standard
AKE security notion of key indistinguishability.

Modelling Privacy
We have to somehow formally capture the notion of privacy. Privacy means that an
adversary cannot determine who is talking to whom. We model this in the strongest
possible way: the adversary only has to deanonymize one communication partner, and
only differentiate between two possible parties for that communication partner (instead
of determining the correct identity out of a large set of possibilities). Furthermore, these
two parties are chosen by the adversary. This is implemented by giving the adversary
access to an oracle Test(m). The adversary will pass two parties, let us denote them by
Pi and Pj , to Test(m) which then creates a new party Pi|j which either behaves like Pi

or Pj , depending on some secret random bit.

Attacks
Concretely, we want to address the following potential attacks:

1. Passive eavesdropping. This is the most basic attack. Adversaries that simply
passively listen to the communication should not be able to determine the identities
of the parties.

2. Actively impersonating a party (without any secret keys). A MITM
adversary might intercept all messages that are sent by a party and attempt to
answer them directly. Due to the lack of the secret information of the intended
party, e.g. some signing key, the adversary is unable to complete the protocol run
of many protocols. However, unless the protocol is carefully designed, even such an
incomplete protocol run might leak the identity of the first party or its intended
peer.

3. Cross tunnel attack. The goal of this attack is to deanonymize a party that acts
as a responder in the protocol, even though an analogous attack can be executed
against the initiator.
Consider Figure 2.1. The adversary knows that two sessions are active. One
between A and the unknown party, which could be B or C. The other session is
known to be between A and B. The adversary reroutes the messages, so that B/C
(from the first session) is communicating with A (from the second session). In case
that B/C is B, the cross tunnel attack still results in an accepted session. If there

24

2.2. Design Goals

Without adversary interference:
A B/C A B

Cross-tunnel attack:
A B/C A B

Figure 2.1: Cross tunnel attack: At the top the figure shows how the four protocol
instances intend to communicate. At the bottom it shows the effect of the adversaries
interference.

is any error, the session is aborted or one party tries to re-initiate the session, then
the adversary knows B/C corresponds to C.1

4. Future corruptions. In this attack scenario, the adversary recorded all commu-
nication between two parties, where it does not know the identity of one of the
parties. At some point in the future, some parties in the system (potentially all),
leak their secret keys. The adversary will now attempt to determine the unknown
identity in the previously recorded communication.

Among other reasons, we specifically chose these attacks, since “Actively impersonating
a party (without any secret keys)” and “Cross tunnel attacks” are not considered in the
models in the literature and break their proposed protocols (e.g. [Zha16], [SSL20], see
Section 3.3). We build our model in a modular way which allows us to both evaluate
protocols that prevent such attacks as well as protocols that do not.

We aim to prevent other potential attacks that were not listed by formulating the security
properties rather general. Furthermore we examine the feasibility of preventing all
mentioned attacks if the adversary is able to corrupt parties.

This leads to the following novel security notions that our model incorporates:

• (Weak) MITM Privacy. When attempting to break (weak) MITM privacy of
a protocol, the adversary is able to act as a MITM in all communication. Aside
from the protocol messages themselves it may also use error messages that might
be sent by the communicating parties, e.g. because some message was malformed
or if a specific session was aborted.2 (Weakly) MITM private protocols hence
prevent the following previously discussed attacks: Passive eavesdropping, actively
impersonating a party (without any secret keys), cross tunnel attacks.

1In order to prevent this type of attack, our protocols are designed to not behave noticeably different
in case of an error, and instead send dummy messages. Clearly, higher level protocols also need to
implement a similar behavior in order to fully prevent this attack.

2Time is not part of our model. While in a real-world setting the fact that one user takes particularly
long to answer might be useful information to an adversary, this is outside the scope of our model.

25

2. PPAKE Model

• Strong MITM Privacy. This notion strengthens the adversaries capabilities by
allowing the corruption of users, as long as it does not yield a trivial, protocol inde-
pendent, attack. Strongly MITM private protocols hence also prevent the following
previously discussed attacks: Passive eavesdropping, actively impersonating a party
(without any secret keys), cross tunnel attacks.

• Forward Privacy. Similar to commonly examined forward secrecy, this notion
models the setting in which a protocol session happened without interference. Later,
an adversary that recorded the information also gains access to some secret keys.
The identities of the communicating parties should still remain secret. Forward
private protocols hence prevent the following previously discussed attacks: Passive
eavesdropping, future corruptions.

Since we model AKE protocols, the standard security property, i.e. key indistinguishability
is also incorporated into our model. Furthermore we create a specific security property,
called completed-session privacy, that should capture the notions already present in the
literature (i.e. [Zha16] and [SSL20]).

2.3 Model Definition
We build upon the model of [CCG+19] and extend it with additional concepts that allow
the evaluation of privacy related notions. The model is parameterized with the number of
parties µ ∈ N and their number of sessions (∈ N. In [CCG+19] these values are used to
give concrete security bounds, i.e. breaking a specific protocol takes at least f time, where
f is a function depending on µ and (. In this work however we only consider asymptotic
security, i.e. if a PPT adversary could break specific protocols. For this reason, µ and (
can simply be considered arbitrary integers greater than 1 and polynomially bounded in
the security paramenter λ. Hence a PPT adversary is able to iterate over all parties in
the system.

2.3.1 Communication Model
We consider µ parties 1, . . . , µ. Each party Pi is represented by a set of oracles,
{π1

i , . . . , π�
i }, where each oracle corresponds to a session, i.e., a single execution of

a protocol role, and where (∈ N is the maximum number of protocol sessions per party.
Each oracle πs

i is equipped with a randomness tape rs
i containing random bits, but is

otherwise deterministic. Each oracle πs
i has access to the long-term key pair (ski, pki)3 of

party Pi and to the public keys of all other parties, and maintains a list of internal state
variables that are described in the following:

• Pids
i (“peer id”) stores the identity of the intended communication partner. We

assume the initator of a protocol to know who she contacts when sending her first
3While modeled as a single key pair, in a concrete protocol the private/public keys might be a tuple

that contains various private and public keys for signatures and encryption.

26

2.3. Model Definition

message, hence for the initator this value is set at the start of the protocol run. Due
to the nature of PPAKE the responder might not immediately know the identity of
the initiator, hence for the responder this value is initialized to ∅ and only set once
he receives a message containing the initiator’s identity.

• Ψs
i ∈ {∅, Accept, Reject} indicates whether πs

i has successfully completed the proto-
col execution and “accepted” the resulting key.

• ks
i stores the session key computed by πs

i

• roles
i ∈ {∅, Initiator, Responder} indicates πs

i ’s role during the protocol execution.

For each oracle πs
i these variables are initialized to the empty string ∅. The computed

session key is assigned to the variable ks
i if and only if πs

i reaches the Accept state, that
is we have ks

i �= ∅ ⇔ Ψs
i = Accept. Furthermore the environment maintains two initially

empty lists lists Lcorr, LSend and LSessKey of all corrupted parties, sent messages and session
keys respectively.

2.3.2 Security Experiment
The security experiment ExpX

PPAKE,A is defined as follows.

1. Let µ be the number of parties in the game and (the number of sessions per user.
The challenger C begins by drawing a random bit b

$← {0, 1} and generating key
pairs {(ski, pki)|1 ≤ i ≤ µ} as well as oracles {πs

i |1 ≤ i ≤ µ, 1 ≤ s ≤ (}.

2. C now runs A, providing all the public keys as input. During its execution, A may
adaptively issue the queries defined below (see Section 2.3.3). While doing so, A is
under some restrictions that are defined later (see Section 2.3.5).

3. The game ends when A terminates with output b�, representing the guess of the
secret bit b. If b� = b, output 1. Otherwise output 0.

2.3.3 Oracles Available to the Adversary
The adversary A interacts with the oracles through queries. It is assumed to have full
control over the communication network, modeled by a Send(i, s, m) query which allows
it to send arbitrary messages to any oracle. The adversary is also granted a number of
additional queries that model the fact that various secrets might get lost or leaked. The
queries are described in detail below.

• Send(i, s, m): This query allows A to send an arbitrary message m to oracle πs
i .

The oracle will respond according to the protocol specification and its current
internal state. To start a new oracle, the message m takes the form:

27

2. PPAKE Model

(START : role, j) : If πs
i was already initialized before, return ⊥. Otherwise this

initializes πs
i in the role role, having party Pj as its intended peer. Thus, it sets

Pids
i := j and roles

i := role. If πs
i is started in the initiator role (role = Initiator),

then it outputs the first message of the protocol.

All Send(i, s, m) calls are recorded in the list LSend.

• RevLTK(i): For i ≤ µ, this query returns the long-term private key ski of party
Pi. After this query, Pi and all its protocol instances πs

i (for any s) are said to be
corrupted and Pi is added to Lcorr.

• RegisterLTK(i, pki): For i > µ, this query allows the adversary to register a new
party Pi with the public key pki. The adversary is not required to know the
corresponding private key. After the query the pair (i, pki) is distributed to all
other parties. Parties registered by RegisterLTK(i, pki) (and their protocol instances)
are corrupted by definition and are added to Lcorr.

• RevSessKey(i, s): This query allows the adversary to learn the session key derived
by an oracle. If Ψs

i = Accept, return ks
i . Otherwise return a random key k∗ and

add (πs
i , k∗) to LSessKey. After this query πs

i is said to be revealed.

If this query is called for an oracle πs
i , while there is an entry (πt

j , k∗) in LSessKey,
so that πs

i and πt
j have matching conversations, then k∗ is returned.4

Additionally, it is given access to a special query Test(m), which, depending on a secret bit
b chosen by the challenger, either returns real or random keys (for key indistinguishability)
or an oracle to communicate with one of two specified parties in the sense of a left-or-right
oracle for the privacy notions. The goal of the adversary is to guess the bit b. The
adversary is only allowed to call Test(m) once and we distinguish the following two cases:

• Case m = (TestKeyIndist, i, s): If Ψs
i �= Accept, return ⊥. Else, return kb where

k0 = ks
i and k1

$← K is a random key. After this query, oracle πs
i is said to be

tested.

• Case m = (X, i, j), X ∈ {Test-w-MITMPriv, Test-s-MITMPriv, TestForwardPriv,
TestCompletedSessionPriv}: Create a new Party Pi|j with identifier i|j. This party
has all properties of Pi (if b = 0) or Pj (if b = 1), but no active sessions. The public
key of Pi|j is not announced to the adversary and the query RevLTK(i|j) always
returns ⊥. Furthermore create exactly one session π1

i|j . Return the new handle i|j.

4Note that the bookkeeping and consistent answers for matched sessions are required to avoid trivial
distinguishers in case of cross tunnel attacks (cf. Section 2.2).

28

2.3. Model Definition

2.3.4 Preliminary Definitions
Partnering

We use the following partnering definitions (cf. [CCG+19]). Note that no-match attacks
(cf. [LS17]) are prevented by our protocols by including the full transcript in the key
derivation.

Definition 9 (Origin-oracle). An oracle πt
j is an origin-oracle for an oracle πs

i if Ψt
j �= ∅,

Ψs
i = Accept and the messages sent by πt

j equal the messages received by πs
i , i.e., if

sentt
j = recvs

i .

Definition 10 (Partner oracles). We say that two oracles πs
i and πt

j are partners if
(1) each is an origin-oracle for the other; (2) each one’s identity is the other one’s
peer identity, i.e., Pids

i = j and Pidt
j = i; and (3) they do not have the same role, i.e.,

roles
i �= rolet

j.

Oracle Status: Corrupted, Revealed, Fresh

As defined above, a party Pi is called corrupted if (a) the adversary used RevLTK(i) or
(b) Pi was created by calling RegisterLTK(i, pki). An oracle πs

i is corrupted if its party
Pi is corrupted.

An oracle πs
i is called revealed if RevSessKey(i, s) was called, as defined above.

Definition 11 (Freshness). An oracle πs
i is fresh if

1. RevSessKey(i, s) has not been issued

2. no query RevSessKey(j, t) has been issued, where πt
j is a partner of πs

i .

3. Pids
i was:

a) not corrupted before πs
i accepted if πs

i has an origin-oracle, and
b) not corrupted at all if πs

i has no origin-oracle.

2.3.5 Adversary Restrictions
During the game, the provided queries may be used any number of times, except for
Test(m), which may be queried only once. Depending on what argument X the Test(m)
oracle was called with, we require the corresponding property below to hold through the
entire game.

1. TestKeyIndist: The tested oracle remains fresh (cf. Definition 11).

2. Test-w-MITMPriv: No oracle is ever corrupted.

29

2. PPAKE Model

3. Test-s-MITMPriv: Pi and Pj are never corrupted. Furthermore we require that
Pid1

i|j = ∅ or Pid1
i|j = k for some k, while Pk is never corrupted.

4. TestForwardPriv: The returned oracle π1
i|j has a partner oracle πr

k at the end of the
game. Furthermore no oracle besides πr

k may be instructed to start a protocol run
with intended partner Pi|j .

5. TestCompletedSessionPriv: The returned oracle π1
i|j ’s state is Accept at the end

of the game. Let k = Pid1
i|j. Pk are not corrupted, RevSessKey(i|j, 1) was never

queried and RevSessKey(k, r) (for any πr
k that has matching conversations) was

never queried.
Furthermore no oracle besides πr

k may be instructed to start a protocol run with
intended partner Pi|j .

2.3.6 Security Definitions
The above model can be parameterized by allowing or prohibiting the different types of
Test(m) queries. This leads to the following:

Definition 12. A key-exchange protocol Γ is called X if for any PPT adversary A with
access to the oracle Test(m) with queries of the form defined below, the advantage function

AdvX
Γ (λ) :=

����Pr
�
ExpX

PPAKE,A(λ) = 1
�

− 1
2

����
is negligible in λ, where

• A queries TestKeyIndist: X = secure.

• A queries Test-w-MITMPriv: X = 2-way MITM private.

• A queries Test-s-MITMPriv: X = strongly 2-way MITM private.

• A queries TestForwardPriv: X = forward private.

• A queries TestCompletedSessionPriv: X = completed-session private.

In the above definition, secure corresponds to having indistinguishable session keys, weak
forward secrecy and security against key compromise impersonation (KCI). In order to
model explicit entity authentication, we use the following definition.

Definition 13 (Matching Conversation). Let Π be an N -message two-party protocol in
which all messages are sent sequentially.

• If a session oracle πs
i sent the last message of the protocol, then πt

j is said to have
matching conversations to πs

i if the first N − 1 messages of πs
i ’s transcript agrees

with the first N − 1 messages of πt
j’s transcript.

30

2.4. Model Summary

• If a session oracle πs
i received the last message of the protocol, then πt

j is said to
have matching conversations to πs

i if all N messages of πs
i ’s transcript agrees with

πt
j’s transcript.

We now define implicit authentication through the fact that even a MITM adversary
would not be able to derive the session key. This can be done in two moves. Explicit
authentication is characterized by the fact that, additionally to providing implicit authen-
tication, the protocol fails if a party does not possess a valid secret key (i.e. an active
MITM adversary).

Definition 14 (Explicit entity authentication). On game PPAKE2-way-priv
A define breakEA

to be the event that there exists an oracle πs
i for which all the following conditions are

satisfied.

1. πs
i has accepted, that is, Ψs

i = Accept.

2. Pids
i = j and party j is not corrupted.

3. There is no oracle πt
j having:

a) matching conversations to πs
i and

b) Pidt
j = i and

c) rolet
j �= roles

i

Definition 15. A key-exchange protocol Γ has explicit authentication, if, for any PPT
adversary A, the event breakEA (see Definition 14) occurs with at most negl(λ) probability.

2.4 Model Summary
Below we informally summarize all oracles that the adversary can access.

Oracles [Recap]

• Send(i, s, m): Sending messages.
• RevLTK(i): Revealing long-term keys (corrupting).
• RegisterLTK(i, pki): Creating new parties (immediately corrupted).
• RevSessKey(i, s): Reveal computed session key. Returns a random key if πs

i has
not accepted.
• Test(m): One-time query to choose security game (i.e. key indistinguishability
or some privacy notion). Returns a real-or-random key (key indistinguishability)
or the handle for π1

i|j (privacy notions).

31

2. PPAKE Model

Below we recall the different security properties. The “goal” is what the adversary must
accomplish in order to break the specified security. While attempting to do so, the
adversary must not violate the “restrictions”. These boxes will be shown again at the
beginning of proofs that they are relevant for.

Explicit Authentication [Recap]

Goal: There is some πs
i s.t.

1. πs
i has accepted, that is, Ψs

i = Accept.
2. Pids

i = j and party j is not corrupted.
3. There is no oracle πt

j having:
a) matching conversations to πs

i and
b) Pidt

j = i and
c) rolet

j �= roles
i

Key Indistinguishability [Recap]

Goal: Return bit b, indicating wether the given key was a real or a random key.

Restrictions: The tested oracle remains fresh (cf. Definition 11).

weak MITM Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: No oracle is ever corrupted.

strong MITM Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: Pi and Pj are never corrupted. Furthermore we require that
Pid1

i|j = ∅ or Pid1
i|j = k for some k, while Pk is never corrupted.

32

2.5. Model Discussion

Forward Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: The returned oracle π1
i|j has a partner oracle πr

k at the end of the
game. Furthermore no oracle besides πr

k may be instructed to start a protocol run
with intended partner Pi|j .

Completed Session Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: The returned oracle π1
i|j ’s state is Accept at the end of the game.

Let k = Pid1
i|j. Pk are not corrupted. Also RevSessKey(i|j, 1) was never queried and

RevSessKey(k, r) (for any πr
k that has matching conversations) was never queried.

2.5 Model Discussion
In Section 2.5.1 we discuss some relations between the presented security notions. Some
of these relations show that the different properties are actually describing different
classes of protocols, i.e. for a pair of properties there are some protocols that achieve one
property but not the other. Furthermore the section shows some implications between
some properties, which are useful since they mean that for concrete protocols, not all
properties have to be explicitly shown. In the following sections we discuss several
design choices regarding the model, including why some potential extensions where not
implemented.

2.5.1 Relations Between the Privacy Properties
Subsequently, we investigate the relations between the different privacy notions.

Lemma 2. Strong 2-way MITM privacy is strictly stronger than (weak) 2-way MITM
privacy.

Proof. This immediately follows from the tighter restrictions put on the attacker in the
(weak) 2-way MITM privacy test. Furthermore, there are protocols that are (weak) 2-way
MITM anonymous but not strongly 2-way MITM anonymous (see e.g. Figure 3.2 in
Section 3.2).

Lemma 3. The 2-way MITM privacy notions are independent of forward privacy.

33

2. PPAKE Model

Proof. Note that the privacy notions do not allow corruptions of the test oracle and
forward privacy does not allow the attacker modify any sent messages (i.e. does not allow
the attack to act as an active MITM). For example Π2

PKE (see Section 3.2) is strongly
2-way MITM private and hence also (weakly) 2-way MITM private, but it is not forward
private as the identities are only encrypted using long term keys. On the other hand a
protocol that runs the classic Diffie-Hellman key exchange followed by transmitting their
identities symmetrically encrypted would reach forward privacy, but no 2-way MITM
privacy, as any MITM adversary could simply run the protocol, pretending to be the
intended peer.

Completed-session privacy is implied by the other privacy notions: if a protocol is strong
MITM private or has explicit authentication and is forward private, then it also provides
completed session-privacy. The following lemma shows the implication starting from
strong MITM privacy.

Lemma 4. Let Γ be a PPAKE protocol. If Γ is strong MITM private, then it is
completed-session private.

Proof. Strong 2-way MITM privacy test puts less restrictions on the attacker.

Finally, the following Theorem covers completed-session privacy from explicit authentica-
tion forward privacy.

Theorem 1. Let Γ be a PPAKE protocol. If Γ has explicit authentication and is forward
private, then it is completed-session private.

Proof. Assume for contradiction that some Γ has explicit authentication and is forward
private, but is not completed-session private. This means a PPT-adversary A is able
to call TestCompletedSessionPriv and not violate the imposed restrictions, while also
correctly guessing the challenge bit b with non-negligible probability. Since Γ is forward
private, the adversary violates a necessary restriction for calling TestForwardPriv while
correctly guessing the challenge bit b. (Note that otherwise the exact same adversary A
breaks forward privacy by simply using the argument TestForwardPriv instead).

Since both notions do not allow to call the oracle RevSState(i|j, 1), this part of the
restriction for using TestForwardPriv is fulfilled. It follows that after A is done, π1

i|j does
not have a partner oracle with non-negligible probability (which is the only other way
to violate the restriction for calling TestForwardPriv). As per requirement of winning
with TestCompletedSessionPriv, there is the oracle π1

i|j which has accepted and party Pk,
where k = Pid1

i|j, is not corrupted. Due to Γ providing explicit authentication, there is an
oracle πr

k s.t. πr
k has matching conversations to π1

i|j , Pidr
k = i|j and roler

k �= role1
i|j (see

Def. 14 detailing explicit entity authentication). Then A could simply not drop the last
message (if it did before) thereby making π1

i|j and πr
k have matching conversations to

34

2.5. Model Discussion

each other. This also makes π1
i|j and πr

k be partnered to each other, without making it
less likely for A to correctly guess the challenge bit b. Hence A is able to break forward
privacy, which is a contradiction.

2.5.2 Partnering
In this work we define partnering with regards to origin-oracles. There is an alternative
variation based on original keys by Li and Schäge [LS17], which addresses a potential
model-theoretical attack they discovered called no-match attack. This attack is prevented
by our protocols by using the full transcript for key derivation, a generic countermeasure
that was also described by Li and Schäge [LS17].

2.5.3 One-way privacy
Note that the second case of the query Test(m) produces π1

i|j which can be used as an
initiator or a responder. This means that we model two-way privacy. In case of one-way
privacy, i.e. the privacy only holds either for the initiator or the responder (depending
on the protocol), we need to restrict the adversary s.t. the first message sent to π1

i|j via
Send(i|j, 1, m) must be a START command. Analogously, we can model scenarios where
we only consider privacy of the responder involved in a session.

2.5.4 Revocation
In our model, corruptions are immediately publicly known. While this is an idealization,
defending against secret corruptions is infeasible, since an adversary could perfectly
impersonate the corrupted user.

In a real-world implementation, corruptions could be handled by using revocation. There
is previous work that formally models revocation for AKE protocols [BCF+13], but we
decided against this possibility (as typically done in AKE). The reason is that we want
to avoid the additional complexity of the model and we also do not want to restrict
the implementations to one specific revocation mechanism. We note however that for
any revocation mechanism, the revocation status of a communication partner can only
be checked after they revealed their identity. For this reason, we model strong MITM
privacy so that the adversary can corrupt users as long as it does not openly identify
itself as that user.

2.5.5 Completed Session Privacy
As mentioned in the design goals (Section 2.2), completed session privacy is meant to
capture the privacy definitions seen in the literature ([SSL20] and [Zha16]). We do not
give a proof that the representation is accurate and leave that to the readers inspection.
It should be noted that we made the additional restriction “no oracle besides πr

k may
be instructed to start a protocol run with intended partner Pi|j”. This is a necessary

35

2. PPAKE Model

addition since due to the nature of our model there are otherwise trivial attacks against
a large class of protocols:

First of all the adversary makes the test oracle complete its session without interfering
and hence fulfills the experiment’s requirements. It then corrupts both of the test oracle’s
possible identities. Finally it instructs a new oracle to initiate the protocol with the test
oracle being the intended recipient, but answers all messages itself using the information
obtained with the corruptions. If the imitator at any point uses the intended recipient’s
public key, e.g. for PKE, then the adversary learns the test oracle’s identity.

This problem does not exist in the model of Zhao [Zha16] since it does not inform the
initiator about the responders identity. It also does not exist in the model of Schäge
et al. [SSL20], since they let each initiator determine the identity of the test oracle
(if configured correspondingly), instead of having the identity of the test oracle fixed
throughout the entire experiment. We note that while [SSL20] always model two identities
per party, in our model every party only has a single identity.5

2.5.6 Weak MITM Privacy

As mentioned in the design goals (Section 2.2), weak MITM privacy should prevent
cross tunnel attacks. Indeed, if such an attack is possible against some protocol then
that protocol cannot provide MITM privacy. The reason is that our model allows the
adversary to create the exact situation needed for cross tunnel attacks. They simply
use Test(m) to create π1

i|j and use Send() to instruct some other oracle to initiate the
protocol run with intended peer Pi, but redirect the messages to π1

i|j .

Furthermore weak MITM privacy should prevent attackers from simply running the
protocol, obtaining the identity of either the initiator or the responder, and then aborting
the protocol run. Indeed, if such an attack is possible against a protocol, an adversary in
our model can utilize this method to break MITM privacy. Note that this is the reason
why the protocols that are discussed by Zhao [Zha16] and Schäge et al. [SSL20] do not
provide MITM privacy (see discussion in Section 3.3).

2.5.7 Strong MITM Privacy

As mentioned in the design goals (Section 2.2), strong MITM privacy represents security
against the same attack scenarios as weak MITM privacy while allowing as much additional
corruptions as possible. However it is still necessary to prohibit the corruption of π1

i|j ’s
peer. Clearly if an adversary has corrupted some party Pk, they can simply execute a
normal protocol run while perfectly imitating Pk, since we do not model revocations. As
explained in Section 2.5.1 we do allow the adversary to corrupt some party Pk and use
its information against π1

i|j , as long as Pid1
i|j is not set.

5Clearly, one could however group parties to generate virtual parties with more identities in our
model though.

36

2.5. Model Discussion

Furthermore the adversary cannot be allowed to corrupt Pi or Pj . Otherwise it might
instruct some unrelated oracle πr

k to initiate the protocol run with intended peer Pi|j ,
but intercept the messages and answer by running the protocol with the secret key of Pi

(Pj , respectively). If the protocol run does not succeed, the adversary knows that Pi|j
corresponds to Pj (Pi, respectively).

2.5.8 Forward Privacy
As mentioned in the design goals (Section 2.2), forward privacy should capture the setting
in which the adversary records communication between two parties and later learns
the secret keys of some (or all) parties in the system. We model this by fully allowing
corruptions. In order to simulate a previously recorded completed session, we require
π1

i|j to have a partner oracle (which implies that there was no interference during the
communication).

Furthermore we require that no oracle besides the partner oracle may be instructed to
start communicating with π1

i|j . This is needed to prevent the same trivial attack as
discussed in Section 2.5.5.

37

CHAPTER 3
PPAKE Protocols

In this chapter we present several protocols and prove their security in the previously
introduced model. In Section 3.1 we present the main result of this work, a 4-move
PPAKE that achieves all privacy definitions of the model. Since the full privacy might not
be needed for certain applications, in Section 3.2 we examine protocols which only fulfill
some privacy properties, but in turn provide a reduced round complexity. In Section 3.3
we examine recent protocols of the literature in our model and discuss why they do not
achieve our strongest privacy notions. Finally this chapter is concluded in Section 3.4.

3.1 Protocol ΠGen

In this section we present the main contribution of this work, namely the protocol ΠGen.
It is a 4-move protocol that fulfils all security and privacy properties of the model.

3.1.1 Protocol Definition
In Figure 3.1 we present the protocol ΠGen.

Certificates. In our protocol we write CertA to indicate a tuple consisting of A’s name,
A’s public key and the CA’s signature on that information.1 As is usually done, the
cryptographic guarantees are not based on keeping CertX secret, where X is some honest
user. Instead, it should be hard for the adversary to produce a new, valid CertX on their
own (in particular for parties that the adversary creates on their own).

Theorem 2. The protocol ΠGen in Figure 3.1 provides explicit authentication, and
is secure, strongly MITM private and forward private, if KE Γ is unauthenticated and

1We note that in small-scale systems, in which all users keep a table of all authentic public keys,
CertA can also be realized as simply being the name A.

39

3. PPAKE Protocols

secure, the PKE PKE is PKE-IND-CCA- and PKE-IK-CCA-secure, symmetric encryption
scheme Ω is LH-SE-IND-CCA-secure, and the signature scheme Σ is EUF-CMA-secure.

The proofs of the individual properties are given in Section 3.1.3 and the subsequent
sections.

Alice Bob
(check if B is revoked)

m1 = Γ(0)

m2 = Γ(1, m1)

x
$← {0, 1}λ

k� ← H(Γ.key, x, ctxt)

m3 = (c0 = EΓ.key(PEncB(x)),
c1 = Ek�(CertA, SignA(A||B||c0||ctxt)))

Attempt:
x ← PDecB(DΓ.key(c0))
k� ← H(Γ.key, x, ctxt)
(Cert, Sign) ← Dk�(c1)
Validate Cert and Sign

if any attempted step failed
or Cert is revoked:
send random m4.

otherwise

m4 = H(x, ctxt2)

(Internally verify m4)
k ← H(Γ.key, x, ctxt3) k ← H(Γ.key, x, ctxt3)

Figure 3.1: Protocol ΠGen, using an unauthenticated KE Γ, PKE PKE = (PEnc, PDec),
symmetric encryption Ω = (E, D), signature scheme Σ = (Sign, Verify), CertA as
discussed in Section 3.1.1, ctxt = m1||m2, ctxt2 = A||B||m1||m2||m3, and ctxt3 =
A||B||m1||m2||m3||m4.

40

3.1. Protocol ΠGen

3.1.2 Protocol Discussion
This section gives an informal description of ΠGen and the purpose of each of its compo-
nents.

Achieving Forward Secrecy and Privacy
Related components: m1, m2, Unauthenticated Key Exchange Γ

m1 and m2 represent the execution of the unauthenticated key exchange protocol Γ (e.g.
Diffie-Hellman Key Exchange). This part of the protocol on its own is susceptible to
MITM attacks, which is why it is designed to depend solely on ephemeral randomness
(and no long-term, i.e. identity related, information). The computed key Γ.key is used to
provide forward secrecy and privacy, since even if all secret keys are leaked later, Γ.key
cannot be recovered.

Defense Against MITM Attackers (1/2)
Related components: Nonce x, Public Key Encryption PEnc, PDec

The random nonce x can only be known to the initiator and the intended responder, as
it was encrypted using the responders public key. Its main purpose is to fend off MITM
attackers.

Defense Against MITM Attackers (2/2)
Related components: k�, m3 (c0), Symmetric Encryption Ω = (E, D), Key Privacy

Since Γ.key can be produced by a MITM adversary, we introduce k� which also depends
on the aforementioned x. Since x is not known to the responder before receiving m3, m3
is split into two parts, c0 and c1.

c0 contains x, which is encrypted twice. The public key encryption one the one hand
is used to authenticate B (as mentioned in the previous section) and on the other
hand prevents MITM adversaries from obtaining x. Since PKE is key private (PKE-IK-
CCA-secure), even a MITM adversary that computed Γ.key cannot learn the intended
responders identity from c0. The public key ciphertext is again encrypted using symmetric
encryption with Γ.key. This is needed to provide forward privacy. (Recall: forward
privacy considers an adversary which obtains all secret keys.) The reason is that key
privacy does not hold if the secret keys are leaked.

Authenticating A and Guaranteeing Equal Transcripts
Related components: m3 (c1), Cert, Signature Scheme Σ = (Sign, Verify)

c1 contains the certificate CertA, which is some data that is sufficient to (a) convince B
that there is an honest user A in the system and (b) allow B to obtain that honest user’s
public key (see discussion in Section 3.1.1). Note that CertA of an honest user A could
have been sent by an adversary since it is easy to obtain. For this reason we additionally
use signatures.

41

3. PPAKE Protocols

Indeed, c1 contains a signature on all information to this point. This is used to authenticate
the initiator and guarantee that both sides agree on the transcript so far.

Authenticating B and Guaranteeing Equal Transcripts
Related components: m4, k

The final message m4 is used to authenticate the responder. Since x is needed to produce
m4, only the initiator’s intended peer can create m4, as discussed before. The hash
value m4 also depends on the context ctxt2, which ensures that both parties agree on
the transcript. This also prevents the adversary from recording m4 and using it to
impersonate B in a different communication, as the adversary is then forced to use the
same m2 (without knowing the randomness that is needed to derive Γ.key). Furthermore
its structure (simply a hash value) allows the protocol to easily fake m4, which can only
be detected by the party that sent m3 (since x is needed to correctly compute m4).

Finally the resulting key k is derived from all information that was used in the protocol
run.

3.1.3 Proof: Explicit Authentication

Lemma 5. ΠGen in Figure 3.1 provides explicit authentication if Γ is a secure unau-
thenticated two-move key exchange protocol, PKE is a PKE-IND-CCA secure public-key
encryption scheme, Ω is a LH-SE-IND-CCA secure symmetric encryption scheme and Σ
is an EUF-CMA secure signature scheme.

Oracles [Recap]

• Send(i, s, m): Sending messages.
• RevLTK(i): Revealing long-term keys (corrupting).
• RegisterLTK(i, pki): Creating new parties (immediately corrupted).
• RevSessKey(i, s): Reveal computed session key. Returns a random key if πs

i has
not accepted.
• Test(m): One-time query to choose security game (i.e. key indistinguishability
or some privacy notion). Returns a real-or-random key (key indistinguishability)
or the handle for π1

i|j (privacy notions).

42

3.1. Protocol ΠGen

Explicit Authentication [Recap]

Goal: There is some πs
i s.t.

1. πs
i has accepted, that is, Ψs

i = Accept.
2. Pids

i = j and party j is not corrupted.
3. There is no oracle πt

j having:
a) matching conversations to πs

i and
b) Pidt

j = i and
c) rolet

j �= roles
i

Proof. Assume for contradiction that A breaks explicit authentication, i.e. for some πs
i ,

that has accepted and its peer j = Pids
i is not corrupted, there is no πt

j that has matching
conversations. We view the two cases of πs

i ’s role separately.

Case 1. roles
i = Initiator. It follows that πs

i has received a valid m4. Except with negl(λ)
probability, this means that H(x, ctxt2) was queried. Note that m3 is the only available
source to reproduce x.

• Game 0: The original game.

• Game 1: Guess i, s, j. Abort if wrong.

• Game 2: Let x be the value that πs
i computes for sending m3. (This is determined

before the game using πs
i ’s randomness tape.) Pick x∗ randomly so that ||x∗|| = ||x||.

Modify πs
i to use c∗ = PEncj(x∗) instead of PEncj(x) in its message. Modify all

instances πt
j of Pj to not actually decrypt c∗ but instead treat x as the result of the

decryption. (Hence in this game all oracles act as if x was still used everywhere,
except that m3 and hence the ctxts have changed. Note that m3 is now independent
of x.)

Notice that in Game 2, x is only ever used as input to the RO. Hence the adversary
can only guess x. Also the adversary or an oracle must produce m4 = H(x, ctxt2). If an
oracle used the correct ctxt2 this means it has matching conversations to πs

i and agrees on
the identities and roles, which contradicts the initial assumption. Therefore the adversary
must have guessed x or m4 and the probability of winning Game 2 is negl(λ).

Indistinguishability of game hops.

• Game 0 → Game 1: This guessing leads to a polynomial loss of winning probability.

• Game 1 → Game 2: If A notices this change, we can break PKE-IND-CCA-security
of the PKE. For this, modify Game 2 as follows: Let pk, PDec be the public key

43

3. PPAKE Protocols

and oracle provided by the PKE-IND-CCA-challenger. Set pkj = pk. All messages
m3 sent to instances of Pj can be decrypted using the challenger’s oracle PDec.
Replace c∗ sent by πs

i with the ciphertext c obtained from the PKE-IND-CCA-
challenger for the messages a0 = x, a1 = x∗. Notice that PDec(c) is never queried
as due to the definition of Game 2. Now if the challengers bit b = 0, this game is
behaving identical to Game 1. If b = 1, then this game behaves identical to Game
2. Therefore, our constructed adversary against PKE-IND-CCA-security outputs 1
if A notices the Game Hop from 1 to 2. Otherwise output a random bit.

Case 2. roles
i = Responder. Then πs

i received a valid m3, which contains σ =
Signj(j||i||c0||ctxt).

Case 2a. Assume some πt
j computed σ at any point. It follows πt

j has matching
m1, m2, c0. Since m1, m2 are matching, Γ.key is also matching. Since c0 is matching, x
and hence k� is also matching. The only way that πt

j does not have matching conversations
is if πt

j produced a different c1.

We show that this is only possible if A can break LH-SE-IND-CCA security of Ek or the
EUF-CMA security of Sign. Let E, D be the oracles provided by some LH-SE-IND-CCA-
challenger.

• Game 0: The original game.

• Game 1: Guess i, s, j, t. Abort if wrong.

• Game 2: πs
i and πt

j use a random k�.

• Game 3: πt
j , instead of outputting c1, outputs c∗

1 which is received from the LH-
SE-IND-CCA-challenger for (a0 = (Certj , Signj(A||B||c0||ctxt)), a1) where a1 is a
random message. πs

i uses D for decryption and treats a1 as verifying. (a0 will
verify just like any other pair (Certj , Sign) where Sign is a valid signature by Pj .)

Indistinguishability of game hops.

• Game 0 → Game 1: This guessing leads to a polynomial loss of winning probability.

• Game 1 → Game 2: Notice both have matching m1, m2 i.e. honestly generated
Γ(0), Γ(1). Due to the security of Γ we have an indistinguishable-from-random
Γ.key and consequently an indistinguishable-from-random k�.

• Game 2 → Game 3: In case m∗
3 is the encrypted a0, this change is unobservable.

Hence if A can detect this change, we again break LH-SE-IND-CCA-security. Our
constructed adversary against LH-SE-IND-CCA-security outputs b� = 1 if A detects
the change and a random bit b� otherwise.

44

3.1. Protocol ΠGen

Since πt
j does not have matching conversations as per assumption, D is never queried for

m∗
3. Hence embedding the LH-SE-IND-CCA-challenger’s oracles as done above is valid.

Per assumption, the adversary is able to win Game 0. As just shown the adversary
therefore also has non-negligible probability to win Game 3. We now discuss how we can
utilize this fact to construct an adversary against the LH-SE-IND-CCA security of Ω or
the EUF-CMA security of Σ.

• Note that the final game is identical to Game 2 from A’s view, if the LH-SE-IND-
CCA-challenger’s bit bC was 0. It follows that A has non-negligible advantage if
bC = 0 (since A was able to win Game 2).

• Hence A must have non-negligible advantage as well if bC = 1 (otherwise simply
construct an adversary against LH-SE-IND-CCA-security that outputs 0 if A wins
or a random bit otherwise).

• View the case that bC = 1. In order to win, A needs to produce some c∗
1, c∗

1 �= c1
(where c1 was produced by πt

j) and c∗
1 is decrypted to a1 or the pair (Certj , Σ∗) for

some valid Σ∗ of Pj . We distinguish the two cases.

– Case 1. A produces some c1 that is decrypted by πs
i to a1 with non-negligible

probability. This allows us to construct an adversary against the LH-SE-IND-
CCA security of the symmetric encryption scheme since a1 was randomly
chosen and can hence only be recovered by the adversary if bC = 1.

– Case 2. A produces some c1 that is decrypted by πs
i to (Certj , Σ∗) (where

Σ∗ is a valid signature) with non-negligible probability, we will show that this
means that A was able to break EUF-CMA.
First of all, start an EUF-CMA challenger to receive pk∗ and gain access to the
oracle Sign. Since we now attack EUF-CMA security, the LH-SE-IND-CCA
challenger is considered part of our game and can be modified.

∗ Game 3.0: Our current game, including the LH-SE-IND-CCA challenger.
∗ Game 3.1: The LH-SE-IND-CCA challenger always uses bC = 1.
∗ Game 3.2: Instead of querying the LH-SE-IND-CCA challenger for (a0, a1)

as defined before, query it for (a∗, a1), where a∗ is a random message.
∗ Game 3.3: Replace the pk of Pj with pk∗ and all protocol instances of

party Pj use the provided oracle Sign instead of computing signatures
themselves.

Indistinguishable Game Hops:
∗ Game 3.0 → 3.1: If this is noticeable to A, this yields a trivial distinguisher

against the LH-SE-IND-CCA security.
∗ Game 3.1 → 3.2: This cannot be detected by A, since a0 is never used by

the LH-SE-IND-CCA challenger anyways.

45

3. PPAKE Protocols

∗ Game 3.2 → 3.3: Since corruptions of Pj are not allowed, A cannot notice
this change.

Constructing an adversary against EUF-CMA If A wins Game 3.3, it
has to provide a valid signature (as discussed before). The message of this
signature was never queried using the Sign oracle, since πt

j will not have called
this query as per game design and other oracles will never arrive at the same
ctxt (recall Lemma 1). Hence the signature that A provided can be used to
win the EUF-CMA game.

Case 2b. If no πt
j produced σj(ctxt): Break EUF-CMA as illustrated below. Let pk,

Sign be given by a EUF-CMA challenger.

• Game 0: The original game.

• Game 1: Guess i, s, j, abort if wrong.

• Game 2: Set pkj ← pk, implicitly setting skj to the sk by the EUF-CMA challenger.
Any signing operations done by instances of Pj are done by calling Sign.

Our constructed adversary against EUF-CMA outputs the received σj(ctxt).

Indistinguishability of game hops.

• Game 0 → Game 1: This guessing leads to a polynomial loss of winning probability.

• Game 1 → Game 2: This change is unobservable, since Pj must not be corrupted.

It follows that A wins Game 2 with non-negligible probability, which also causes our
adversary against EUF-CMA to win with non-negligible probability, which is a contradic-
tion.

3.1.4 Proof: Strong MITM-Privacy

Recall the following theorem:

Theorem 2. The protocol ΠGen in Figure 3.1 provides explicit authentication, and
is secure, strongly MITM private and forward private, if KE Γ is unauthenticated and
secure, the PKE PKE is PKE-IND-CCA- and PKE-IK-CCA-secure, symmetric encryption
scheme Ω is LH-SE-IND-CCA-secure, and the signature scheme Σ is EUF-CMA-secure.

46

3.1. Protocol ΠGen

strong MITM Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: Pi and Pj are never corrupted. Furthermore we require that
Pid1

i|j = ∅ or Pid1
i|j = k for some k, while Pk is never corrupted.

Lemma 6. ΠGen is strongly MITM-private, if KE Γ is unauthenticated and secure, the
PKE PKE is PKE-IND-CCA- and PKE-IK-CCA-secure, symmetric encryption scheme
Ω is LH-SE-IND-CCA-secure, and the signature scheme Σ is EUF-CMA-secure.

Proof. • Case 1. π1
i|j is Initiator. Therefore p := Pid1

i|j is immediately set, and Pp

must not be corrupted. Clearly, m1 and m2 are independent of the test bit b (i.e.
independent of pki|j , ski|j).

– Game 0: The original game.
– Game 1: Guess i, j, p. Abort if Test(m) does not return i|j or p �= Pid1

i|j at the
end of the game.

– Game 2: Replace part of the message m3 by π1
i|j as follows: Instead of sending

c0 = EΓ.key(PEncp(x)) send c∗
0 = EΓ.key(PEncp(z)) where z is a random

number of equal length to x. Program all other oracles to treat c∗
0 as c0 (i.e.

the decryption is x).
– Game 3: Pick k∗ randomly. Program all oracles to use k∗ instead of computing

their original k�, if k� should be computed using k� ← H(Γ.key, x, ctxt) where
x is the value computed by π1

i|j (determined before the game using π1
i|j ’s

randomness tape) and Γ.key, ctxt are arbitrary values.
– Game 4: Replace part of the message m3 by π1

i|j as follows: Instead of sending
c1 = Ek∗(u) where u = (CertA, SignA(A||B||c0||ctxt)) send c∗

1 = Ek∗(w) for
some random w. (Note that E is length hiding.)

Indistinguishability of game hops.

– Game 0 → Game 1: This guessing leads to a polynomial loss of winning
probability.

– Game 1 → Game 2: The indistinguishability of this game hop follows from
the PKE-IND-CCA security of PKE, see the proof for Lemma 5.

– Game 2 → Game 3: Since in Game 2, x is only used as input to the RO,
the adversary cannot obtain x and hence not check whether the RO actually
produced this output. It follows that this change is only detectable with
negl(λ) probability as well. (Compare with proof for explicit authentication.)

47

3. PPAKE Protocols

– Game 3 → Game 4: The indistinguishability of this game hop follows from
the PKE-IND-CCA security of the symmetric encryption Ω (see the proof for
ΠGen having explicit authentication).

Notice that in Game 4, pki|j , ski|j were not used at all. Hence in Game 4 all oracles
behave independent of b. It follows the probability of A winning Game 4 is 1

2 .

• Case 2. π1
i|j is Responder. m1 and m2 do not depend on pki|j , ski|j . Below we argue

why m3 does not reveal the key that was used for encryption. m4 only depends on
the key in the sense that it is only valid if m3 can be decrypted.
Since PKE is PKE-IK-CCA, we can replace pki|j with a random key. To show this,
consider the game hops below. Note that a valid or invalid m4, i.e. π1

i|j being able
to decrypt m1 or not, does not give any information about the secret bit b anymore
if pki|j is replaced with a random key.

– Game 0: The original game.
– Game 1: Whenever any oracle sends m3 with intended recipient π1

i|j , it saves
the message it produced in a secret table together with the data that was
encrypted. π1

i|j , instead of decrypting incoming messages, will look up the
content in the secret table. If the message is not in the table, it will attempt
to decrypt the message normally.

– Game 2: π1
i|j treats the incoming message m3 as malformed if there is no match-

ing entry in the secret table. (Note that in this game, under no circumstances
π1

i|j actually decrypts any messages.)
– Game 3: Instead of using the public key of i or j (depending on the secret bit

b), the party Pi|j ’s public key is set to a randomly generated public key pk�.

Indistinguishability of game hops.

– Game 0 → Game 1: This is only a conceptual change.
– Game 1 → Game 2: This change can only be detected, if π1

i|j receives a valid
m3, where m3 is not the (exact) output of some other oracle. π1

i|j would
then wrongfully respond with a randomly generated m4 (since it treats m3 as
malformed) whereas in Game 1 it would respond with a valid m4.However in
these cases, in which π1

i|j produces a valid response in Game 1, π1
i|j is set to

the accept state. Since ΠGen has explicit authentication, it follows that m3
authenticates a corrupted user (since no oracle has matching conversations
to π1

i|j), except with negl(λ) probability. This means that only in a setting
in which the adversary would not have won Game 1 (except with negl(λ)
probabilty), it can detect the change to Game 2. Hence we only lose a negl(λ)
amount of winning probability in this scenario.

– Game 2 → Game 3: If this change is detectable with non-negligible probability,
then the adversary can break the PKE-IK-CCA security. To show this, use a

48

3.1. Protocol ΠGen

PKE-IK-CCA challenger C and modify our Game 3 so that if C has chosen
secret bit bC = 0 we have Game 2 and if bC = 1 we have Game 3. To do so,
we first have to guess i and j that will be used by the adversary in Test(m)
(resulting in polynomial loss of winning probability).
Before the game starts, obtain pk0 and pk1 from C. Set pki = pk0 or pkj = pk0
(depending on the secret bit b), so that pki|j = pk0. Furthermore, set pk�

(defined in Game 3) to pk1. Now any oracle that starts communications with
π1

i|j does not encrypt its first message on its own, but rather queries the
encryption oracle provided by C. If bC = 0 this encrypted message exactly
resembles Game 2 and if bC = 1 it exactly resembles Game 3. The behaviour
of π1

i|j does not need to be changed as it never actually decrypts the incoming
messages.

3.1.5 Proof: Forward-Privacy
Recall the following theorem:

Theorem 2. The protocol ΠGen in Figure 3.1 provides explicit authentication, and
is secure, strongly MITM private and forward private, if KE Γ is unauthenticated and
secure, the PKE PKE is PKE-IND-CCA- and PKE-IK-CCA-secure, symmetric encryption
scheme Ω is LH-SE-IND-CCA-secure, and the signature scheme Σ is EUF-CMA-secure.

Forward Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: The returned oracle π1
i|j has a partner oracle πr

k at the end of the
game. Furthermore no oracle besides πr

k may be instructed to start a protocol run
with intended partner Pi|j .

Lemma 7. ΠGen is forward private if KE Γ is unauthenticated and secure, the PKE
PKE is PKE-IND-CCA- and PKE-IK-CCA-secure, symmetric encryption scheme Ω is
LH-SE-IND-CCA-secure, and the signature scheme Σ is EUF-CMA-secure.

Proof. Consider the following game hops, that end in a game in which the transcript
does not depend on b.

• Game 0: The original game.

• Game 1: Guess i, j, k, r. Abort if π1
i|j is not partnered to πr

k at the end.

49

3. PPAKE Protocols

• Game 2: π1
i|j and πr

k use a random r instead of the computed Γ.key.

• Game 3: π1
i|j and πr

k use a random k∗ instead of k�.

• Game 4: Instead of m3, the initiator sends m∗
3 = (Er(z), Ek∗(v)), where z, v are

random values. (Note that the PKE ciphertext, the certificate and the signature
are removed from the transcript.) The receiver treats m∗

3 as if it was the normally
computed m3.

Indistinguishability of game hops.

• Game 0 → 1: This leads to a polynomial loss of winning probability.

• Game 1 → 2: This change cannot be detected with noticeable probability due
to the security of Γ. To show this, simply embed the messages produced by the
challenger for eavesdropper-security of Γ in the first message of π1

i|j and πr
k. If the

attacker is then able to distinguish the computed key of Γ from a random one, it is
able to win the Expeav

Γ,A(λ) game.

• Game 2 → 3: This change cannot be detected, since the input to the RO (specifically
r) is hidden.

• Game 3 → 4: This change cannot be detected due to the length-hiding PKE-IND-
CCA security of (E, D). To show this, we show that c0 being replaced is undetectable
(c1 can be treated analogously). Ask some LH-SE-IND-CCA-challenger C for the
normal input for encrypting c0 as M0 and M1 = z, receiving ctxt∗. Set c0 = ctxt∗.
If the challengers bit bC = 0 this looks like Game 3 to the adversary. Hence if A
can detect the modification of this game, it can break LH-SE-IND-CCA-security.

3.1.6 Proof: Key Indistinguishability
Recall the following theorem:

Theorem 2. The protocol ΠGen in Figure 3.1 provides explicit authentication, and
is secure, strongly MITM private and forward private, if KE Γ is unauthenticated and
secure, the PKE PKE is PKE-IND-CCA- and PKE-IK-CCA-secure, symmetric encryption
scheme Ω is LH-SE-IND-CCA-secure, and the signature scheme Σ is EUF-CMA-secure.

Key Indistinguishability [Recap]

Goal: Return bit b, indicating wether the given key was a real or a random key.

Restrictions: The tested oracle remains fresh (cf. Definition 11).

50

3.2. Protocols with Reduced Privacy and Round Complexity

Lemma 8. ΠGen is secure if KE Γ is unauthenticated and secure, the PKE PKE is
PKE-IND-CCA- and PKE-IK-CCA-secure, symmetric encryption scheme Ω is LH-SE-
IND-CCA-secure, and the signature scheme Σ is EUF-CMA-secure.

Proof. Let πs
i be the tested oracle. Let j = Pids

i . πs
i must conform to freshness (Definition

11). Case (a) Clause 3a was fulfilled, i.e. there is a partner oracle πt
j . It follows that

πt
j has matching conversations to πs

i . Case (b) Clause 3b was fulfilled, which means j
must not be corrupted. Together with the fact that πs

i accepted, from ΠGen providing
explicit authentication follows that there is some πt

j that has matching conversations to
πs

i . It follows that in any case there is some πt
j that has matching conversations to πs

i .

To distinguish the session key k from random, A needs to query H(Γ.key, x, ctxt3). We
show that Γ.key cannot be produced by the adversary.

• Game 0: The original game.

• Game 1: Guess i, s, j, t, abort if guessed wrong.

• Game 2: Before the game, query the challenger for the security of Γ and recieve a
transcript (m∗

1, m∗
2) and a key k∗. πs

i and πt
j send m∗

1, m∗
2 instead of newly computed

m1, m2 and use k∗ instead of Γ.key.

• Game 3: πs
i and πt

j use a random value u instead of k∗.

Indistinguishable Game Hops:

• Game 0 → 1: This results in a polynomial loss of winning probability.

• Game 1 → 2: If this game hop can be detected, it means that k∗ is not the session
key that corresponds to the transcript, and hence A can break Γ’s security.

• Game 2 → 3: Analogous argument as for Game Hop 1 → 2.

In Game 3, A cannot deduce u since it is only used as input to the RO. Hence A has
negl(λ) chance to win Game 3.

3.2 Protocols with Reduced Privacy and Round
Complexity

In this section we present two protocols that are designed for weaker security guarantees
and can hence be formulated with less moves. Furthermore we discuss the whether a
one-move PPAKE could be feasible.

51

3. PPAKE Protocols

3.2.1 Using a shared secret: Πss

In this section we present a 3-move protocol that utilizes a shared secret to prevent
adversaries from eavesdropping. In terms of our model, the shared secret s is part of the
secret keys and can hence be compromised by corrupting any party. We construct the
protocol so that leaking s does not endanger the usual key indistinguishability.

Alice: CertA = (A = ga, . . .) Bob: CertB = (B = gb, . . .)
skA = (a, s) skB = (b, s)

x
$← Zp

m1 = gx
y

$← Zp

k� ← H(gxy , gx, gy, s)
c2 ← Ek� (CertB)

k� ← H(gxy , gx, gy, s) m2 = (gy, c2, U) U ← H(gxb, gxy , gx, gy , c2, s)

verify B, CertB , U

c3 ← Ek� (CertA)

V ← H(gya, gxy , gx, gy, m2, s) m3 = (c3, V) verify CertA, V

k ← H(gxy, gxb, gya, s, (mi)3
i=1) k ← H(gxy , gxb, gya, s, (mi)3

i=1)

Figure 3.2: Protocol Πss with shared secret s, using symmetric encryption Ω = (E, D).

Note the protocol in Figure 3.2 should behave indistinguishable to real executions (from
an eavesdropper’s view) even if some verification (indicated using boxes) fails, i.e.,
instead of the real m3 the encryption of a random message as well as a random hash is
returned.

Theorem 3. If the Oracle Diffie-Hellman (ODH) assumption holds and symmetric
encryption scheme Ω is LH-SE-IND-CCA-secure, then Πss in Figure 3.2 provides explicit
entity authentication, is secure, weakly 2-way MITM private and forward private.

We prove this theorem in two parts as Lemmas 9 and 10.

For the proof of Lemma 9, we require the following definition:

Definition 16 (LookupOrRandom(∃X1, . . . , Xk : H(V1, . . . , Vm), φ)). Let X1, . . . , Xk de-
note variables. Let V1, . . . , Vm denote expressions, containing the variables X1, . . . , Xk.
Let φ be a logical formula, containing the variables X1, . . . , Xk. The proof shortcut
LookupOrRandom(∃X1, . . . , Xk : H(V1, . . . , Vm)φ) is evaluated as follows.

1. If there are some X1, . . . , Xk s.t. φ is true and the RO was queried before for
H(V1, . . . , Vm), then return this result H(V1, . . . , Vm).

2. Else, draw Z randomly. Program the RO s.t. when it receives a query of the form
H(V1, . . . , Vm) for any X1, . . . , Xk s.t. φ is true, answer Z. Return Z.

52

3.2. Protocols with Reduced Privacy and Round Complexity

Lemma 9. If the ODH assumptions holds, then Πss in Figure 3.2 provides explicit
authentication.

Proof. Assume A breaks explicit authentication.

• Case 1. πs
i is initiator, let m1 be its first message. Let j = Pids

i and b = skj , B = pkj .
The proof below is based on the following fact. Since πs

i accepted, we know it
received m2 = (Y, c2, U) s.t. Dk�(c2) = B and H(Bx, gxy, gx, gy, c2, s) = U . We
show that gxb is hard to construct for A. Let (X∗, B∗) be an arbitrary ODH-
challenge.

– Game 0: The original game.
– Game 1: Before the start of the game, replace pkj with B∗ (thereby also

modifying Certj). After some πt
j receives X as the first message, let U∗ =

LookupOrRandom(∃T : H(T, Xy, X, gy, c2, s), stDHy(X, T) = 1)). m2 = (gy, Ek�(Certj), U∗),
where gy and k� is computed normally. Record (U∗, m1, m2, k�). πt

j returns
m2.
At the end of a protocol run, πt

j determines its session key k as follows: Let a =
Pidt

j , A = pka. k = LookupOrRandom(∃T : H(Xy, T, Ay, s), stDHy(X, T) = 1).
– Game 2: Replace m1 from πs

i with X∗. πs
i , after receiving m2 = (Y, c2, U),

validate U by checking if (a) (U, m1, m2, k�) for some k� is in the secret
table or (b) the RO produced U for the call H(T, Z, X∗, Y, c2, s) for any
T, Z such that stDHx(B∗, T) = stDHx(Y, Z) = 1 (since B∗ is pkj). In
case (b) set k� = H(Z, X∗, Y, s) and V ∗ = LookupOrRandom(∃Z2 : H(Y a, Z2,
X∗, Y, m2, s), stDHx(Y, Z2) = 1). πs

i outputs m3 = (Ek�(pki), V ∗).
At the end of a protocol run, πs

i determines its session key k as follows: Let
there be a second secret table. If the second secret table contains an entry
for (m1, m2, m3, k) for any k, take that k. Otherwise: Let a = ski. k =
LookupOrRandom(∃R, O : H(R, O, Y a, s), stDHx(Y, R) = stDHx(B∗, O) = 1).
Record (m1, m2, m3).2

Indistinguishability of game hops.

– Game 0 → Game 1: The change of pkj cannot be detected from the initial
public key distribution since B∗ is drawn under the same distribution. The
change of U to U∗ cannot be detected, as the RO behaves accordingly. Since
Pids

i must not be corrupted, RevLTK(j) cannot be called.
– Game 1 → Game 2: Replacing the first message cannot be detected, since

X∗ is drawn at the same probability distribution. The validation is indeed
indistinguishable from a normal protocol run. k� either corresponds to the
value of the other modified oracle or can be computed correctly.

2In case both our modified oracles talk, they need to decide on the same random value, hence the
second secret table and the check for (m1, m2, m3, k).

53

3. PPAKE Protocols

Consequences. Notice in Game 2, πs
i only accepts if it receives U s.t. either

(a) (U, m1, m2) was put into the secret table by some πt
j or (b) the RO was called

for H(T, Z, X∗, Y, c2, s) where stDHx(B∗, T) = 1. Since (a) implies that πt
j has a

matching conversation to πs
i , it contradicts the initial assumption. On the other

hand if (b) holds, we can construct an adversary against the ODH-assumption, by
running Game 2 and outputting T .

• Case 2. πs
i is responder, let m1 = X, m3 = (c3, V) be the messages it receives and

m2 = (gy, c2, U) be the sent message. Let j = Pids
i and a = skj , A = pkj . Since

πs
i accepted, we know that V = H(Ay, Xy, X, gy, m2, s). This time Ay = gay is

difficult to produce for the adversary.
Consider analogous game hops to Case 1, again the long-term key of πt

j (in this
case A) and the random group element of πs

i (in this case gy) are replaced with
the ODH-challenge. The proof that these game hops are indistinguishable to the
adversary is analogous. Again, either πt

j has matching conversations to πs
i or we

can construct an adversary against the ODH-assumption.

Lemma 10. If (Ek, Dk) is a LH-SE-IND-CCA secure symmetric encryption scheme
and the DDH assumptions holds, then Πss in Fig. 3.2 is secure, (weakly) 2-way MITM
anonymous and forward private.

Proof. Assume some PPT adversary A wins PPAKE2-way-priv
A with non-negligible proba-

bility. Without loss of generality, assume that only one type of Test(m) query is issued.
(If not, we can construct an adversary AX for X ∈ {TestForwardPriv, Test-w-MITMPriv,
TestKeyIndist} that abort if a Test(m) query without i is called. At least one of them
has non-negligible probability to win PPAKE2-way-priv

A .) We view the different types of
Test(m) queries separately.

1. Assume A used TestKeyIndist. Let πs
i be the tested oracle. In the cases that A

wins, πs
i conforms to freshness (see Definition 11). If clause 3a is satisfied, we know

that there is a partner oracle πt
j and in particular that πs

i and πt
j have matching

conversations. If clause 3b is satisfied, we know that j := Pids
i is not corrupted.

Also from the Test(m) query succeeding we know that πs
i has accepted. Since our

protocol provides explicit authentication (see Theorem 9), it follows that there is
an oracle πt

j having matching conversations to πs
i . Therefore in both cases we have

such an oracle πt
j that has matching conversations to πs

i .

• Game 0: The original game.
• Game 1: Guess s, i for the oracle that Test(m) will be called with. If guessed

wrong: abort.

54

3.2. Protocols with Reduced Privacy and Round Complexity

• Game 2: Guess j, t and abort if πt
j does not have matching conversations to

πs
i at the end.

• Game 3: Let X, Y, Z be the challenge of a DDH-Challenger. Instead of
randomly drawing x, y and thereby calculating gx, gy, πs

i and πt
j transmit

X, Y (notice that due to the matching conversations, these exact values also
reach the respective other oracle). Whenever gxy should be used, i.e. the key
derivation, instead use Z.

Indistinguishability of game hops.

• Game 0 → Game 1: This guessing leads to a polynomial loss of winning
probability.

• Game 1 → Game 2: This guessing leads to a polynomial loss of winning
probability.

• Game 2 → Game 3: Since A is not allowed to call RevSessKey(i, s) for πs
i and

πt
j , it is not able to detect the embedding of X and Y , which are also drawn

uniformly at random. In order to distinguish the keys k and k� from random
or to distinguish them from the correctly calculated ones in Game 2, it needs
to call (1) H(Z, . . .) or (2) H(gxy, . . .), where x and y are the secret exponents
used for X and Y . If Z �= gxy, it was drawn at random and hence cannot be
guessed. We conclude A needed to call H(gxy, . . .). Under the assumption
that A is able to distinguish k from random or distinguish games 2 and 3, we
hence guess which of the poly(n) many queries issued to H by A contained
gxy. Thus, if Z is equal to this value gxy, output 0 to the DDH-Challenger,
otherwise output 1.

2. Assume A used Test-w-MITMPriv and can now interact with π1
i|j . In order to

win, A must not corrupt any oracles. We show that A must be able to break
LH-SE-IND-CCA-security of Ω = (E, D).
Case 1. π1

i|j did not send its last message (i.e. m2 or m3, depending on the role of
π1

i|j). If follows A can only base its decision on (a) m1 and (b) the fact that π1
i|j

might have rejected the previous message (i.e. m1 or m2, depending on the role
of π1

i|j). Since (a) does not reveal information (m1 is random and independent on
the test bit b), only (b) is possible. Since m1 is only rejected if it is malformed, we
only need to view the case that m2 was rejected, i.e. π1

i|j is Initiator. Since m1, m2
and the corresponding validations are independent on the ID of the initiator, m2’s
acceptance/rejection cannot yield any information to the attacker.
Case 2. π1

i|j did send its last message. In case π1
i|j is initiator, this means π1

i|j
has accepted. Since Πss has explicit authentication, this means that there is some
partnered oracle πr

k. Refer to the proof of the case “A used TestForwardPriv” below.
Otherwise, π1

i|j is responder and m2 its only output. Since a fitting U cannot be
produced by the adversary due to not knowing s, the adversary cannot modify m2
in a valid way. Oracles that receive m2 behave independent of the test bit b (and

55

3. PPAKE Protocols

hence the pki|j) except that they might set their state to Reject, which is invisible
to the adversary. Therefore only m2 itself might leak information. We show that
this is not the case by implicitly replacing k� with a random k∗ (only detectable
by solving CDH, formal proof below) and the ciphertext c2, which depends on
the bit b, with a specific ciphertext c∗

2 that is independent of b. We show that
this indistinguishable to the adversary, unless it is able to break CPA-security of
Omega = (E, D).

• Game 0: The original game.
• Game 1: Choose k∗ randomly. Replace k� used by π1

i|j with k∗. If any oracle
has sent the m1, which was received by π1

i|j and receives the modified m2 by
π1

i|j , it also replaces its k� with k∗.

• Game 2: Choose m
$← {Certi, Certj} and replace c�

2 with c∗
2 = Ek∗(m).

In Game 3 all challenge bit b related ID information of π1
i|j was removed, hence the

adversary only has probability 0.5 of winning the game.
Indistinguishability of game hops.

• Game 0 → Game 1: Since k� is the output of a random oracle, it is indis-
tinguishable to the attacker that does not know s, since corruptions are not
allowed.

• Game 1 → Game 2: Due to LH-SE-IND-CCA security of E, this change is
not noticeable. To show this, since the used key k∗ is random and only used
once, we can embed the challenge produced by a LH-SE-IND-CCA-challenger
for (m0 = Certi, m1 = Certj) in c2.

3. Assume A used TestForwardPriv. Hence π1
i|j is partnered to some πr

k, i.e. A was
passive during the communication.

• Game 0: Original Game.
• Game 1: Guess i, j, k, r. If wrong, abort.
• Game 2: Sample k∗ randomly. Produce the same transcript, but instead of

sending Ek�(certX) where X ∈ {i, j, k}, send Ek∗(certX). Also replace U and
V with random values.

• Game 3: Replace the ciphertext sent by π1
i|j with the result of querying

Test(certi, certj) at the CPA challenger.

Since gx, gy, U, V, k∗ are random, and the ciphertext sent by π1
i|j is identical for

b = 0 and b = 1, the adversary has probability 0.5 of winning Game 3.
Indistinguishability of game hops.

• Game 0 → Game 1: This leads to a polynomial loss.
• Game 1 → Game 2: If detectable, then A can solve CDH (gxy).

56

3.2. Protocols with Reduced Privacy and Round Complexity

Alice Bob
x ← Γ(0)

σA ← SignA(x, CertB) m1 = PEncB(x, CertA, σA) decrypt m1 and verify σA

y ← Γ(1, x)

decrypt m2 and verify σB
m2 = PEncA(y, σB) σB ← SignB(x, y)

k ← H(Γ.key, m1, m2) k ← H(Γ.key, m1, m2)

Figure 3.3: Protocol Π2
PKE using a PKE PKE, an unauthenticated KE Γ, and a signature

scheme Σ. where Certs contain Σ and PKE public keys.

• Game 2 → Game 3: Clearly, A behaves identical in Game 1 and Game 2 if b
chosen by our game is equal to b� chosen by the CPA-challenger, since k�. If
A can detect the game hop with non-negligible probability, then b �= b� with
non-negligible probability. Hence send b to the challenger if A did not detect
the game hop and 1 − b otherwise.

On strong MITM privacy. Recall the definition of strong MITM privacy.

strong MITM Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: Pi and Pj are never corrupted. Furthermore we require that
Pid1

i|j = ∅ or Pid1
i|j = k for some k, while Pk is never corrupted.

This protocol clearly is not strongly MITM private, as corrupting any party Pr will
enable the adversary to generate m1 as per protocol definition, send it to Pi|j and then
decrypt the received answer m2. The adversary can hence deanonymize the recipient in
the strong MITM privacy experiment. Note that the restriction of strong MITM privacy
only prevents the adversary from sending a m3 that uses Pr’s identity, but sending m3
at all is not required for this attack.

3.2.2 Two move protocol: Π2
PKE

In this section we present a protocol that, contrary to the previously shown protocols, is
not designed to provide forward privacy. This allows us to reduce the necessary moves to
two. At the same time it even provides strong MITM privacy.

Theorem 4. If KE Γ is secure, the PKE PKE is length-hiding, PKE-IND-CCA- and PKE-
IK-CCA-secure, and the signature scheme Σ is EUF-CMA-secure, then Π2

PKE provides

57

3. PPAKE Protocols

explicit entity authentication, is secure, strongly MITM private and completed-session
private.

The theorem is split into Lemmas 11 to 13 and we follow the same strategy as for the
proofs regarding ΠGen, hence we may skip some details.

Lemma 11. If PKE is a length-hiding and PKE-IND-CCA secure PKE, and Σ is a EUF-
CMA secure signature scheme, then Π2

PKE in Figure 3.3 provides explicit authentication.

Proof. Assume for contradiction that A breaks explicit authentication, i.e., for some πs
i ,

that has accepted and its peer j = Pids
i is not corrupted, there is no πt

j that has matching
conversations. We view the two cases of πs

i ’s role separately.

Case 1. roles
i = Initiator. It follows that πs

i has received a valid m2, which contains σB.
This means there are two cases.

The first case is that no oracle computed σB, which means A breaks the EUF − CMA
security of Σ (following a similar argument as the proof of Lemma 5).

The second case is that the adversary used a σB that was produced by some πt
j . We now

show that this yields a contradiction.

• Game 0: The original game.

• Game 1: Guess i, s, j. Abort if wrong.

• Game 2: Let x be the value that πs
i computes for its first message. (This is

determined before the game using πs
i ’s randomness tape.) Pick a random x∗ of

equal length. Modify πs
i to actually send m∗

1 = PEncj(x∗, CertA, σA). Modify all
instances of Pj to treat the first argument x∗ as x when receiving m∗

1. (Hence in
this game all oracles act as if x was still used everywhere, except that m1, which is
now independent of x, has changed.)
Note that if the adversary wins Game 2, they must have taken σB from a message
m2, which was produced by some πt

j after receiving m1 (since otherwise there is no
way to make πt

j create a signature that contains x).

• Game 3: When πt
j would send a signature of x, y (where x is the value that was

read from the randomness tape in Game 2, not the transmitted value in m1 of
πs

i), it now instead sends a random value U of equal length to the actual signature.
Program all oracles to now treat U as equivalent to the original signature.

Indistinguishability of game hops.

• Game 0 → Game 1: This guessing leads to a polynomial loss of winning probability.

58

3.2. Protocols with Reduced Privacy and Round Complexity

• Game 1 → Game 2: Follows from PKE-IND-CCA security of PKE similar to the
proof of Lemma 5.

• Game 2 → Game 3: Follows from PKE-IND-CCA security of PKE similar to the
proof of Lemma 5.

Note that in the final game, there is no trace of σB in the transcript. Hence if the
adversary produces this value, this can be used to attack the EUF − CMA security
of Σ like in the first case. On the other hand, if A sends U to πs

i , this means that the
adversary was able to break PKE-IND-CCA security of PKE (the argument is similar to
the proof of Lemma 5).

Case 2. roles
i = Responder. Then πs

i received a valid m1, which contains σj(ctxt).

Case 2a. If some πt
j produced σj(ctxt), similar to Case 2a. of Lemma 5 we can build an

adversary against PKE-IND-CCA security of PKE or EUF-CMA security of Σ.

• Game 0: The original game.

• Game 1: Guess i, s, j, t. Abort if wrong.

• Game 2: πt
j , instead of outputting m1, outputs m∗

1 which is received from the
PKE-IND-CCA-challenger for a0 = (x, Certj , σj(ctxt)) and a1 being a random string
(note that PKE is length-hiding). πs

i uses the decryption oracle for decryption and
treats both a0 and a1 as verifying.

Since πt
j does not have matching conversations as per assumption, the decryption oracle

is never queried for m∗
1. If in the final game, A wins, our constructed adversary against

PKE-IND-CCA-security outputs b� according to the result of the decryption, i.e. a0 or
a1. Otherwise it outputs a random bit b�.

Indistinguishability of game hops.

• Game 0 → Game 1: Guess this values incurs a polynomial loss.

• Game 1 → Game 2: In case m∗
1 is the encrypted a0, this change is unobservable.

Hence if A can detect this change, we again break PKE-IND-CCA-security.

Case 2b. If no πt
j produced σj(ctxt), we construct and adversary against EUF-CMA of

Σ in the same way as in Case 2b of Lemma 5, which we do not repeat here.

Lemma 12. If KE Γ is unauthenticated and secure, and PKE PKE is length-hiding and
PKE-IK-CCA secure, then Π2

PKE in Figure 3.3 is secure and strongly MITM-private.

Proof. We prove the properties separately.

59

3. PPAKE Protocols

Π2
PKE is secure. Let πs

i be the tested oracle. Let j = Pids
i . πs

i must conform to freshness
(Definition 11). Case (a) Clause 3a was fulfilled, i.e. there is a partner oracle πt

j . It
follows that πt

j has matching conversations to πs
i . Case (b) Clause 3b was fulfilled,

which means j must not be corrupted. Together with the fact that πs
i accepted, from

Lemma 11 follows that there is some πt
j that has matching conversations to πs

i . It follows
that in any case there is some πt

j that has matching conversations to πs
i .

To distinguish the session key k from random, A needs to query H(Γ.key, x, ctxt3).
Following the proof of Lemma 11, we can again use game hops that replace c1 with the
ciphertext of some random value to show that no information about x is leaked by c1.
Since x is otherwise only used as input for the RO, A only has negl(λ) chance to win the
game (e.g. by guessing x or skj).

Π2
PKE is strongly MITM-private. We distinguish cases based on who is the initiator.

• Case 1. π1
i|j is Initiator.

Therefore k := Pid1
i|j is immediately set.

– Game 0: The original game.
– Game 1: Guess i, j, k. Abort if Test(m) does not return i|j or k �= Pid1

i|j at the
end of the game.

– Game 2: Replace m1 by π1
i|j with m∗

1 = PEnck(z) where z is random bit string.
Program all other oracles to treat m∗

1 as m1 (i.e., the decryption is x).

The transitions are the same as in Lemma 11 hence we skip them here. Notice that
in Game 2 A can only guess, hence the probability of winning Game 2 is 1

2 .

• Case 2. π1
i|j is Responder. m2 does not depend pki|j and is sent even after receiving

messages that are invalid or cannot be decrypted. Below we argue why m1 does
not reveal the key that was used for encryption. Since PKE is PKE-IK-CCA, we
can replace pki|j with a random key. To show this, consider the game hops below.
Note that a valid or invalid m2, i.e. π1

i|j being able to decrypt m1 or not, does
not give any information about the secret bit b anymore if pki|j is replaced with a
random key.

– Game 0: The original game.
– Game 1: Whenever any oracle is instructed to initiate communications with

π1
i|j , it saves the message it produced, i.e. m1, in a secret table together with

the data that was encrypted. π1
i|j , instead of decrypting incoming messages,

will look up the content in the secret table. If the message is not in the table,
it will attempt to decrypt the message normally.

– Game 2: π1
i|j treats the incoming message m1 as malformed if there is no match-

ing entry in the secret table. (Note that in this game, under no circumstances
π1

i|j actually decrypts any messages.)

60

3.2. Protocols with Reduced Privacy and Round Complexity

– Game 3: Instead of using the public key of i or j (depending on the secret bit
b), the party Pi|j ’s public key is set to a randomly generated key pk�.

The game hopes are based on the same indistinguishable game hops as discussed in
Theorem 2, hence we do not repeat them here.

Lemma 13. If PKE PKE is PKE-IK-CCA secure, then Π2
PKE is completed-session

private.

Proof. Due to PKE-IND-CCA-security of PKE, m1 and m2 can be replaced with en-
cryptions of random content in this proof (neither party may be corrupted). Due to
PKE-IK-CCA security of PKE the used keys can be replaced with random keys (similar
to proof of Theorem 2). It follows that the full transcript is randomly generated, i.e.
independent of secret bit b.

3.2.3 One-move PPAKE

The question whether a 1-move PPAKE protocol can provide desireable privacy guarantees
is left as an open question for future research. It might not be as far out of reach as it seems,
if powerful (and costly) primitives such as puncturable encryption (PE) [GM15, DGJ+21]
are considered.

A potential protocol might have the initiator send a random nonce as well as its own
identity and signature to the recipient using a PE. This protocol would hence correspond
to the first move of the protocol Π2

PKE. The recipient would then decrypt the message
and puncture its secret key for that message, effectively making it impossible to use the
secret key to later decrypt the message again. This effectively provides forward secrecy.
The session key could be derived from hashing the identities and the nonce.

However the above approach has the problem that for the primitives we examined, leaking
the secret key reveals which messages the key was punctured for. Specifically, if an
adversary intercepts a message m (without knowing its recipient) and later corrupts some
potential recipients’ secret keys, they are then able to determine if one of the potential
recipients have decrypted m.

Another approach is using puncturable encryption, but instead of puncturing for the
message after it was received, puncture for a time period after it ends. However to
formally analyze such a protocol, significant changes have to be made to our model in
order to incorporate time periods and security notions that rely on them. Furthermore
the practical usefulness is not clear, since the involved primitives are so costly. Hence
this topic is left to future research.

61

3. PPAKE Protocols

3.3 Existing Protocols in the Literature

In this section we will discuss two protocols from recent papers (by Zhao [Zha16] and
Schäge, Schwenk and Lauer [SSL20]) on PPAKE protocols (also called identity-conceiling
AKE protocols in the literature). As we will show, both fulfill completed session privacy
but not MITM privacy.

3.3.1 Construction by Zhao

Among other contributions, Zhao [Zha16] presents the protocol CAKE that aims to
authenticate and protect the privacy of both parties.

While Zhao [Zha16] uses a notably different model3, the protocol CAKE in Figure 3.4
can be evaluated in our model without any modifications.

Theorem 5. Protocol CAKE in Figure 3.4 is secure and completed session private under
AEAD security 4 of (E, D) and the GDH assumption in the random oracle model.

Completed Session Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: The returned oracle π1
i|j ’s state is Accept at the end of the game.

Let k = Pid1
i|j. Pk are not corrupted. Also RevSessKey(i|j, 1) was never queried and

RevSessKey(k, r) (for any πr
k that has matching conversations) was never queried.

Proof (Sketch). The fact that protocol CAKE is “strongly CAKE-secure” in Zhao’s
model was proven in [Zha16]. The fact that this relates to completed session privacy is
left to the reader’s inspection.

Lemma 14. Protocol CAKE in Figure 3.4 is not MITM private.

3Zhao’s model [Zha16] does not inform the initiator about the intended recipient. As a consequence,
there is no need to deal with informing other oracles about the test oracle’s identity, and the model hence
easily avoids potential trivial attacks (c.f. the attack discussed in Section 2.5.5). On the other hand this
makes is impossible to e.g. evaluate ΠGen in Zhao’s model.

4AEAD security is not formally introduced in this work. Refer to [Zha16] for formal definition. For
understanding the protocol CAKE, AEAD security can be seen as identical to LH-SE-IND-CCA-security.

62

3.3. Existing Protocols in the Literature

Alice Bob
pidA pidB

PKA : A = ga PKB : B = gb

SKA : a ← Z∗
q SKB : b ← Z∗

q

X ← gx

d = h(X, pidA)

X = AXd

Y = gy

e = h(X, Y, pidB)

PS = X
b+ye

(K1, K2) = KDF(PS, X||Y)

HB , Y = BY e, CB = EK1(HB , Y ||pidB)

PS = Y
a+xd

(K1, K2) = KDF(PS, X||Y)
DK1(HB , CB) = (pidB , Y)
Compute e = h(X, Y, pidB)
Check whether Y = BY e, and abort if not
Session-key is set to be K2

HA, CA = EK1(HA, pidA||X)

DK1(HA, CA) = (A, X)
Compute d = h(X, pidA)
Check whether X = AXd, and abort if not
Session-key is set to be K2

Figure 3.4: Protocol CAKE, see Fig. 7 by Zhao [Zha16], using AEAD Ω = (E, D) 1 and
key-derivation-function KDF2

1 Authenticated Encryption with Associated Data (AEAD) is not formally introduced in this
work. For understanding the protocol, AEAD can be seen as equivalent to symmetric encryption.

Refer to [Zha16] for a formal definition of AEAD.
2 Similarly, key-derivation-function can be viewed as hash functions for understanding the

protocol.

weak MITM Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: No oracle is ever corrupted.

63

3. PPAKE Protocols

Proof (Sketch). Note that the initiator only reveals its identity in the third message
of the protocol. Moreover, any adversary can generate some a ← Z∗

q , A = ga. This means
an adversary can set pidA = 0 for purposes of computing d = h(X, pidA) and run the
protocol normally, but abort instead of sending the third message. This is sufficient
to deanonymize the responder, as it sent pidB in ciphertext which the adversary can
decrypt.

Lemma 15. Protocol CAKE in Figure 3.4 is forward private under AEAD security of
(E, D) and the GDH assumption in the random oracle model.

Forward Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: The returned oracle π1
i|j has a partner oracle πr

k at the end of the
game. Furthermore no oracle besides πr

k may be instructed to start a protocol run
with intended partner Pi|j .

Proof (Sketch). x and y are produced by the partner oracles, and it is hence hard for
the adversary to compute PS = X

b+ye = Y
a+xd which is needed for the input to KDF.

The proof therefore follows a similar argument as for the forward privacy of Πss.

3.3.2 Construction by Schäge, Schwenk and Lauer

Schäge, Schwenk and Lauer [SSL20] examine the privacy of IKEv2. In their paper they
detail the full version of IPsec IKEv2 Phase 1 with digital signature based authentication.
Furthermore they show a simplified version, that only incorporates the security and
privacy relevant aspects. For brevity, and since both versions indeed fulfill the same
privacy properties in our model, we show only the simplified version.

Schäge, Schwenk and Lauer also use a different model 5, but ΠSSL in Figure 3.5 can again
be evaluated in our model without any change. For the purposes of our model, IDA and
IDB simply relate to the party’s index, instead of some identity selector bit like in the
model of Schäge, Schwenk and Lauer.

Theorem 6. Protocol ΠSSL in Figure 3.5 is secure and completed session private, if
KDF , Ω = (E, D) and auth are secure as defined in [SSL20].

5The model of Schäge, Schwenk and Lauer [SSL20] gives all parties two identities, and the adversary
must discern between the two identities of any party it chooses. In order to evaluate ΠGen in their model,
we need to consider their model in the mode that the initiator chooses the responder’s ID.

64

3.3. Existing Protocols in the Literature

Alice Bob
(skA, pkA) (skB , pkB)

Key Agreement
m1 = gx

m2 = gy

Key Derivation
k ← KDF (gxy)

Apply Encryption to Identity-Related Data

m3 = Ek(IDA, pkA, authA)

if authA invalid abort

m4 = Ek(IDB , pkB , authB)

if authB invalid abort

Figure 3.5: Protocol ΠSSL, c.f. Fig. 2 by Schäge, Schwenk and Lauer [SSL20]

Completed Session Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: The returned oracle π1
i|j ’s state is Accept at the end of the game.

Let k = Pid1
i|j. Pk are not corrupted. Also RevSessKey(i|j, 1) was never queried and

RevSessKey(k, r) (for any πr
k that has matching conversations) was never queried.

Proof (Sketch). The security and privacy of ΠSSL was shown in [SSL20]. The fact that
this relates to completed session privacy in our model is left to the reader’s inspection.

Lemma 16. Protocol ΠSSL in Figure 3.5 is not MITM private.

65

3. PPAKE Protocols

weak MITM Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: No oracle is ever corrupted.

Proof (Sketch). Note that the responder only reveals its identity in the fourth message
of the protocol. This means an adversary (even without key material) may run the
protocol normally, but abort instead of sending the fourth message. This is sufficient to
deanonymize the initiator, who authenticates itself in the third message.

As mentioned before, this attack was already noted by Schäge, Schwenk and Lauer.

Lemma 17. Protocol ΠSSL in Figure 3.5 is forward private if KDF is instantiated as
RO H and (E, D) is a LH-SE-IND-CCA secure symmetric encryption scheme.

Forward Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: The returned oracle π1
i|j has a partner oracle πr

k at the end of the
game. Furthermore no oracle besides πr

k may be instructed to start a protocol run
with intended partner Pi|j .

Proof (Sketch). This lemma follows from the hardness of computing gxy as well as
the security of E, D (refer to the forward privacy proof of ΠGen in Section 3.1.5).

3.4 Summary
In this chapter we showed several protocols that fulfill different levels of privacy guarantees.
This is summarized in Table 3.1.

It is possible that even a 1-move PPAKE with strong MITM privacy and forward privacy
is feasible. This could potentially be constructed from puncturable public encryption
schemes. However the practical usefulness is unclear due to the high cost of this primitive.
Furthermore it requires some modifications to the model. For these reasons this question
is left open for future work.

We also discussed two protocols of the literature, which both fulfill completed session
privacy and forward privacy. However they do not provide MITM privacy (see Lemma 14).

66

3.4. Summary

Table 3.1: Comparison of our protocols. “ss” denotes the requirement of a shared secret
and “pk” the requirement to know the public key of the intended responder upfront.

ss pk forward priv. comp.-ses. priv. w.-MITM s.-MITM # moves
ΠGen × � � � � � 4
Πss � × � � � × 3
Π2

PKE × � × � � � 2

The corresponding type of attack was noted by the authors, but purposefully excluded
from their models. Even before, Krawczyk [Kra03] mentioned this attack and called it
unavoidable, as one party must always “go first” with authenticating. However this is only
true if we assume that neither party knows their communication partner beforehand. As
was shown with the protocols ΠGen and those in Section 3.2, this problem can be overcome
if the initiator “go first”, but uses the intended recipients public key for encrypting its
own identity. We believe that the requirement of the initiator knowing who they plan
on contacting is reasonable for most real-world application scenarios. The fact that the
public key must be known beforehand of course requires the public keys to be shared
beforehand or there must be a method of obtaining the public key, similar to DNS
requests in the Internet setting. This method must clearly be secure and potentially
privacy preserving as well.

67

CHAPTER 4
Automated Verification

4.1 Overview
In this chapter we discuss how automated verification can be used to prove the privacy
of ΠGen (introduced in Section 3.1). For this purpose we first present the code for a
Tamarin Prover representation that encodes the protocol and our model. However,
this encoding turns out to be not successful, since Tamarin is not able to finish its
computations (Out-Of-Memory exception even when supplied with approximately 60 GB
of RAM). Hence we created a second encoding, in this case for ProVerif, which allows us
to successfully prove our desired result.

Tamarin Prover vs. ProVerif. As mentioned above, our Tamarin Prover encoding
did not work. This yields the question, whether there might be a different encoding
that works. To answer this, consider the following: The main purpose of automated
verification is to give additional confidence in the security of cryptographic constructions.
In order to accomplish this, the encoding has to closely resemble the actual constructions
and security properties. Due to limitations of the respective tool’s language, one usually
can only encode protocols and properties that are similar or optimally even equivalent to
the original. This might also entail using unnatural workarounds.

Hence, to answer the initial question, yes, there surely is some Tamarin encoding that
can be successfully proven, since the underlying statement “the protocol is secure” is true
(as proven classically and with ProVerif). However that encoding probably has no value
for giving additional confidence, as it probably requires a large amount of workarounds
and modifications to the protocol.

For this reason we chose to instead utilize ProVerif, in particular since it allows us to
naturally encode if/then/else-clauses, which are needed to model ΠGen. Specifically, in
ΠGen the responder performs several checks before sending either a correctly formed

69

4. Automated Verification

m4 or a random value. Tamarin does not have if/then/else in its language and there
is also no simple workaround (see Section 4.2.1). ProVerif however allows if/then/else
statements inside of terms. This has two significant advantages. First of all it is easier
to see that our ProVerif encoding actually represents our protocol, than it is with the
workaround we had to use in the Tamarin encoding. Secondly, this native language
construct in ProVerif is more efficient than our workaround in Tamarin.

Benchmarks. The encodings that will be shown in this chapter have been executed
on a Windows PC using the WSL (Windows Subsystem for Linux) with Ubuntu 20.04.1
LTS. The PC contains an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and has 32 GB of
RAM installed. This setup led to the following runtimes:

• ΠGen Tamarin formulation for strong MITM privacy: Out-Of-Memory error after
approximately 2 hours1

• ΠGen ProVerif formulation for strong MITM privacy: 53 minutes

• ΠGen ProVerif formulation for forward privacy: 10 minutes

4.2 Tamarin Prover
In this section we discuss how we encoded ΠGen for the Tamarin Prover in our attempt
to prove strong MITM privacy. Recall that in Tamarin we use builtins, custom functions
and equations to define the building blocks of our protocol. The protocol itself is specified
using rules and our security properties are encoded using restrictions and lemmas. (See
Section 1.3.)

4.2.1 Modelling if/else for observational equivalence
The main challenge when modelling ΠGen was the lack of if/else-constructs in the Tamarin
Prover’s language, which would be needed to implement the responder’s behavior for
sending the real or random m4. Using multiple rules for the different execution paths of
if/else does not work with observational equivalence, which requires that the same rules are
applied in both worlds in the same order. As a workaround, we used Tamarin’s equations.
This is possible in this scenario, as ΠGen only needs if/then to have the responder either
send a real m4, if all checks succeeded, or send a random value otherwise.

Specifically, in place of m4 the responder sends a term that is a function of the actual
m4, a random nonce and the verification checks. We define an equation that sets a term
of this form equal to the actual m4, but only if the verification results in true. This is
exemplified with the code snippet below, which is a simplified part of the code for ΠGen
that is shown later.

1We also executed the encoding in a virtual machine running a computer cluster. We allocated 64
GB of RAM, but still ran out of memory.

70

4.2. Tamarin Prover

1 functions : CalcM4/4
2 equations : CalcM4 (m, r , true , t rue) = m
3
4 // . . .
5
6 // Using i t in a r u l e :
7 rule SendM4 :
8 l et
9 // . . . (d e f i n i t i o n s o f s i g , msg , pk1 , s ig2 , msg2 , pk2 ,

realM4)
10 in
11 [Fr (~ rand) ,
12 // . . .
13] −−>
14 [Out(CalcM4 (realM4 , ~rand , v e r i f y (s ig , msg , pk1) , v e r i f y (

s ig2 , msg2 , pk2)))]

Listing 4.1: Conditionally revealing information

In Listing 4.1 we use the function CalcM4 to either hide or reveal the real m4. The
first parameter m is filled with the real m4, the second parameter r is filled with a fresh
(random) value to make it impossible for the adversary to recompute the term. The final
two parameters are for the verification checks, that are carried out by the responder in
ΠGen before sending m4.

Note that the builtin verification checks are realized with their own equational theory, and
are per definition equal to true in case that the signature (the first parameter) matches
the specified message (the second parameter) and public key (the third parameter).
Otherwise they remain “not simplified”. Similarly, our term that consists of CalcM4
stays some unknown term, that cannot be recomputed by the adversary (due to ~rand),
unless the verification checks succeeded, in which case it can be simplified to realM4. In
other words we approximated outputting a random value in case that the verifications
fail (as done in the real protocol), by outputting some unknown value in the form of a
“not simplified” term.

This method is successful in modelling our goal and works for proving the lemmas we
specified (some sanity checks and a proof of explicit authentication). However, it leads
to a high computational effort, which makes observational equivalence unprovable on a
reasonably powerful machine, as discussed before.

4.2.2 ΠGen Formulation (Tamarin Prover)
Below we give the full encoding of proving strong MITM privacy for ΠGen. The Tamarin
Prover eventually encountered an Out-Of-Memory exception and was hence unable to

71

4. Automated Verification

complete its proof or find an attack (even for versions in which some aspects like the
adversary oracles were removed). Since we therefore switched to ProVerif, we omit
discussing the adequacy of the Tamarin encoding and only list it for reference.

1
2 theory PiGen
3 begin
4
5 built ins : hashing , asymmetric−encrypt ion , s i gn ing , symmetric−

encrypt ion
6
7 functions : KE_m1/1 , KE_m2/2 , KE_kA/2 , KE_kB/2 , CalcM4/4
8 equations : KE_kA(randA , KE_m2(randB , KE_m1(randA))) = KE_kB(

randB , KE_m1(randA)) ,
9 CalcM4 (m, r , true , t rue) = m

10
11 // Create the CA
12 rule CA_Init :
13 [Fr (~ l t k)]
14 −−[CA_Init ()]−>
15 [!CA(~ l tk , pk(~ l t k))]
16
17 restr ict ion CA_Init_Once :
18 "
19 All #i #j . CA_Init () @ #i & CA_Init () @ #j ==> #i = #j
20 "
21
22 // This corresponds to the CA s i g n i n g some pks
23 rule Crea t e Ident i t y :
24 l et
25 caS ig = s i gn (<~id , pk(~ ltk_Sign) >, l t k)
26 in
27 [Fr (~ id) , Fr (~ ltk_Sign) , Fr (~ ltk_AEnc) , !CA(l tk , pub)]
28 −−[CreatedParty (~ id , ~ ltk_Sign , ~ltk_AEnc)]−>
29 [! Party (~ id , ~ ltk_Sign , ~ltk_AEnc , caS ig) ,
30 Out(~ id) , Out(pk(~ ltk_Sign)) , Out(pk(~ ltk_AEnc)) , Out(

caS ig)]
31
32 // Sess ion ID cou ld a l s o correspond to connect ion endpoint , i . e

. Port in IP I n t e r n e t model
33 rule I n i t i a l i z e P r o t o c o l :
34 l et
35 m1Inner = KE_m1(~ rand)
36 m1 = <~chnl , m1Inner>

72

4.2. Tamarin Prover

37 in
38 [! Party (a , aSign , aEnc , caS ig) , Fr (~ chnl) , ! Party (b , bSign

, bEnc , caS ig) , Fr (~ rand)]
39 −−[M1(a , ~chnl , m1) , Peer (a , b)]−>
40 [Out(m1) , M1Done(a , ~chnl , b , ~rand , m1Inner) , Randomness (

a , ~rand)]
41
42 rule SendM2 :
43 l et
44 m1_Rec = <chnl , m1>
45 m2Inner = KE_m2(~ rand , m1)
46 m2 = <chnl , m2Inner>
47 ctxt = <m1, m2Inner>
48 in
49 [Fr (~ rand) , ! Party (b , bSign , bEnc , caS ig) , In (m1_Rec)]
50 −−[M2(b , chnl , m2)]−>
51 [Out(m2) , M2Done(b , chnl , KE_kB(~ rand , m1) , m1, m2Inner) ,

Randomness (b , ~rand)]
52
53 rule SendM3 :
54 l et
55 m2_Rec = <chnl , m2>
56 ctxt = <m1, m2>
57 KE_k = KE_kA(rand , m2)
58 k = h(<KE_k, ~x , ctxt >)
59 m3Inner = <senc (aenc (~x , pk (bEnc)) , KE_k) , senc(<a , pk (

aSign) , caSig , s i gn (ctxt , aSign) >, k)>
60 m3 = <chnl , m3Inner>
61 in
62 [Fr (~x) , In (m2_Rec) , M1Done(a , chnl , b , rand , m1) , ! Party (

a , aSign , aEnc , caS ig) , ! Party (b , bSign , bEnc , caSigB)]
63 −−[M3(a , chnl , m1, m2, m3Inner , k)]−>
64 [Out(m3) , M3Done(a , chnl , b , ~x , m1, m2, m3Inner , k)]
65
66 rule SendM4 :
67 l et
68 c tx t = <m1, m2>
69 m3 = <c0 , c1>
70 m3_Rec = <chnl , m3>
71 x = adec (sdec (c0 , KE_k) , bEnc)
72 k = h(KE_k, x , c tx t)
73 c1Dec = sdec (c1 , k)
74 a = f s t (c1Dec)

73

4. Automated Verification

75 pkA = f s t (snd (c1Dec))
76 caS ig = f s t (snd (snd (c1Dec)))
77 aSig = snd (snd (snd (c1Dec)))
78 ctxt2 = <a , b , m1, m2, m3>
79 m4Inner = <x , ctxt2>
80 yesOrNo = CalcM4(h(m4Inner) , ~rand , v e r i f y (caSig , <a ,

pkA>, pub) , v e r i f y (aSig , ctxt , pkA))
81 m4 = <chnl , yesOrNo>
82 ctxt3 = <a , b , m1, m2, m3, yesOrNo>
83 kResult = h(k , x , c txt3)
84 in
85 [In (m3_Rec) , M2Done(b , chnl , KE_k, m1, m2) , Fr (~ rand) , !CA

(l tk , pub) , ! Party (b , bSign , bEnc , caSigB)]
86 −−[B_Finished (b , chnl , ctxt2 , h (m4Inner) , yesOrNo , kResult)

, M4Done(ctxt3) , Peer (b , a)]−> // I f h (m4Inner) = yesOrNo
then t h i s accep t s (s ince t h i s means the v e r i f y s are t rue)

87 [Out(m4) , KeyDerived (kResult , a , b) , Randomness (b , ~rand)
]

88
89 rule ReceiveM4 :
90 l et
91 m4 = <chnl , hash>
92 ctxt3 = <a , b , m1, m2, m3, hash>
93 kResult = h(k , x , c txt3)
94 in
95 [In (m4) , M3Done(a , chnl , b , x , m1, m2, m3, k)]
96 −−[A_Finished (a , chnl , ctxt3 , h(<x , <a , b , m1, m2, m3>>) ,

hash , kResult)]−> // I f h (. . .) = hash then t h i s accep t s
97 [KeyDerived (kResult , a , b)]
98
99 // −−−−−− Test q u e r i e s −−−−−−−−−

100 // Privacy
101 rule TestPrivacy :
102 [! Party (a , k1 , k2 , caA) , ! Party (b , l1 , l2 , caB) , Fr (~ c) , !

CA(sk , pk)] −−[Test () , TestPriv (a , b , ~c)]−>
103 [! Party (~c , d i f f (k1 , l 1) , d i f f (k2 , l 2) , s i gn (<~c , d i f f (k1 ,

l 1) >, sk)) , Out(~ c)]
104
105 // Key I n d i s t i n g u i s h i a b i l i t y
106 rule TestKeyInd :
107 [KeyDerived (k , a , b) , Fr (~ r)] −−[Test () , TestKeyInd (a , b

)]−> [Out(d i f f (k , ~r))]
108

74

4.2. Tamarin Prover

109 restrict ion S ing l eTes t :
110 "
111 All #i #j . Test () @ #i & Test () @ #j ==> #i = #j
112 "
113
114 // −−−−−− Oracles −−−−−−−
115
116 rule ORevLTK:
117 [! Party (a , k1 , k2 , caA)] −−[Corrupted (a)]−> [Out(k1) ,

Out(k2)]
118
119 rule ORegisterLTK :
120 l et
121 caS ig = s i gn (<~id , pkAdv>, l t k)
122 in
123 [Fr (~ id) , In (pkAdv) , !CA(l tk , pub)] −−[Corrupted (~ id)]−>

[Out(caS ig)]
124
125 rule ORevSessKey :
126 [KeyDerived (k , a , b)] −−[Revealed (a , b)]−> [Out(k)]
127
128 // S e t t i n g
129 restrict ion TestKeyInd_Fresh :
130 "
131 All a b #i . TestKeyInd (a , b) @ #i ==> not (Ex #j . Revealed

(a , b) @ #j)
132 "
133
134 restrict ion Test_s_MITPriv :
135 "
136 All a b c #i . TestPriv (a , b , c) @ #i ==>
137 not (Ex #j . Corrupted (c) @ #j)
138 & (All x #l . Peer (c , x) @ #l ==> not (Ex #m .

Corrupted (x) @ #m))
139 & not (Ex #j . Corrupted (a) @ #j)
140 & not (Ex #j . Corrupted (b) @ #j)
141 "
142
143 // −−−−−− Lemmas −−−−−−−−
144 // E x i s t s t r ace
145 lemma Satis f iable_AcceptingSameKey :
146 e x i s t s −t ra c e
147 " Ex a sessA b sessB ctxt2 ctxt3 hash msg kResult #i #j .

75

4. Automated Verification

148 A_Finished (a , sessA , ctxt3 , hash , hash , kResult) @ #i &
B_Finished (b , sessB , ctxt2 , msg , msg , kResult) @ #j "

149
150 // E x p l i c i t a u t h e n t i c a t i o n
151 lemma Expl i c i tAuthent icat ion_BFin i shed :
152 "
153 All b s e s s c txt2 msg kResult #i . B_Finished (b , s e s s , ctxt2

, msg , msg , kResult) @ #i ==>
154 (Ex a s e s s 2 m1 m2 m3Inner k #j . M3(a , se s s2 , m1, m2,

m3Inner , k) @ #j & ctxt2 = <a , b , m1, m2, m3Inner>)
155 "
156
157 lemma Expl i c i tAuthent icat ion_AFin i shed :
158 "
159 All a sessA ctxt3 hash kResult #i . A_Finished (a , sessA ,

ctxt3 , hash , hash , kResult) @ #i ==> (Ex #j . M4Done(c txt3)
@ #j & #j < #i)

160 "
161
162 end

Listing 4.2: s-MITM Privacy of ΠGen (Tamarin Prover)

4.3 ProVerif

In this section we present our encoding of the ΠGen protocol in the setting of either strong
MITM privacy or forward privacy.

4.3.1 Introduction

We utilize ProVerif’s process format (recall Section 1.4). This means we first introduce
several types, functions and equations, define our queries and then specify the processes.
Note that the queries cannot be written in first order logic, but rather can only have
one of a few specific forms. In our formulation we use observational equivalence (for the
main proof) as well as reachability and implication queries (for sanity checking). Since
ProVerif only allows either observational equivalence terms or queries, the latter will be
commented in the code that is shown later. We now first discuss our formulation of ΠGen
and strong MITM privacy, including the simplifications that we have made to the model
specified in Section 2.3. Afterwards we show how the encoding can be adapted to prove
forward privacy.

76

4.3. ProVerif

4.3.2 Modified model

Due to ProVerif’s modelling limitations, we have to make the following adaptions to the
model.

A Priori Corruptions. In our model (see Section 2.3) the adversary is allowed to
call RevLTK() to dynamically corrupt oracles. Trying to model this in ProVerif comes
with difficulties. Note that for strong MITM privacy, the adversary might lose the game
by corrupting the peer of the test oracle, after their communication is completed. This
cannot be modelled directly, as there is no “the adversary has lost now” command in
ProVerif. The above case could be mitigated with a workaround (i.e. refusing to carry
out the corruption in this scenario), but there are more scenarios that make the adversary
lose based the same restriction, like corrupting the peer before the communication.

In order to avoid these problems, we simplified the model in a way that should be
equivalent to the original model (i.e. allow or prevent the same attacks). We model
corruptions by grouping the parties into two arbitrarily large disjunct sets, one with honest
parties and one with corrupted parties. Essentially this means that the adversary must
decide a priori which parties it will corrupt later. This change seems to be reasonable,
considering that strong MITM privacy in our original model is already not influenced by
the specific time at which the adversary corrupts some oracle (recap below).

strong MITM Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: Pi and Pj are never corrupted. Furthermore we require that
Pid1

i|j = ∅ or Pid1
i|j = k for some k, while Pk is never corrupted.

Dummy messages instead of aborting. Note that in our original model, the
adversary loses the game if Pid1

i|j = k and k is corrupted at any point. In ProVerif, if
the adversary first corrupts k, then it is difficult to prevent them from utilizing this
information to identify themselves to the responder. It is easy to detect that Pid1

i|j = k
occurs, but ProVerif, again, does not offer a “the adversary has lost now” command.
Instead the experiment must continue, and we have to make sure that the adversary
cannot possibly win now. In this case the responder should send m4, but instead sends a
random value. Depending on the attack scenario, the adversary can either not detect
this change or it does not provide any additional information to them.

Fixed test party. In our original model, the adversary is able to dynamically choose
which parties it wants to distinguish. Since all parties are equivalent in our ProVerif

77

4. Automated Verification

formulation, we fix two parties, A and B, as well as the test party AB which has the
same keys as either A or B.

Forward privacy. In our model, forward privacy requires the existence of a partner
oracle (see recap below).

Forward Privacy [Recap]

Goal: Return bit b, indicating wether the new party Pi|j is equivalent to Pi or
Pj .

Restrictions: The returned oracle π1
i|j has a partner oracle πr

k at the end of the
game. Furthermore no oracle besides πr

k may be instructed to start a protocol run
with intended partner Pi|j .

This implies that both oracles agree on the transcript, which means that the adversary
did not change any messages between these two oracles. In ProVerif, we realize this by
setting the adversary mode to passive, which makes the adversary entirely unable to
create its own messages. Formally, this is a stronger restriction than in our model, since
our model allows the adversary to create messages and send them to unrelated oracles.
However we argue that communicating with an unrelated oracle (that does not intend to
contact the test oracle, as per restriction in the model) does not benefit the attacker.

4.3.3 ΠGen sMITM Privacy Formulation (ProVerif)
Code Overview

In this section we list the different segments of the code, which will be listed fully in
the next section. Furthermore we discuss the goals and notable design choices of each
segment.

Basics. In this segment we introduce the cryptographic primitives that are independent
of the current protocol. The part “key exchange” correlates to primitives like the Diffie-
Hellman key exchange, as discussed in Section 1.2. Notably, we use equations to model
e.g. the behavior of decryptions, instead of using the reduc keyword. This is necessary
because otherwise decryption failures (in particular of the responder after receiving m3)
cause observational equivalence to be unprovable.

General. This segment contains all remaining definitions.

• Names A, B and AB are for the fixed test party (see Section 4.3.2).

• Table t is used by the initiator to retrieve the responder’s public keys.

78

4.3. ProVerif

• We model the certificates issued by the Certificate Authority (CA) as a private
function because we need a way to check whether a party name and public key is
valid, without potentially causing errors2.

• Party status is modelled as part of the name, since, as discussed in Section 4.3.2,
parties are honest or corrupt from the start. Furthermore we again needed a way to
check the party status, that does not cause an error (or different execution path).

• For the latter reason, we also introduced tuple deconstruction helpers that never
fail, even though tuple deconstruction can be done with native language constructs.

• The private function createK is used to replicate the behavior of RevSessKey()
in our model in case that the oracle did not accept (i.e. output random keys,
but output the same key if the context is the same to a previously queried one,
c.f. Section 2.3.3).

• Finally there are some events, which are irrelevant for the main observational
equivalence proof. They are only used for sanity checking via reachability queries.

Protocol. As the name suggests, this segment contains the protocol definition. Contrary
to the Tamarin Prover formulation, we do not need CalcM4 functions and equations,
since ProVerif allows us to specify terms that contain if/then/else.

Full Code

Below we list the full ProVerif code for showing strong MITM privacy. It was successfully
proven (i.e. observational equivalence was proven).

1
2 (∗ ######## Basics ######### ∗)
3 (∗ Symm Encr ∗)
4 type key .
5 fun senc (b i t s t r i n g , key) : b i t s t r i n g .
6 fun sdec (b i t s t r i n g , key) : b i t s t r i n g .
7 equation f o r a l l m: b i t s t r i n g , k : key ; sdec (senc (m, k) , k) = m.
8 fun bitToKey (b i t s t r i n g) : key [typeConverter] .
9

10 (∗ Asymm Encr ∗)
11 type skey .
12 type pkey .
13 fun pk (skey) : pkey .
14 fun aenc (b i t s t r i n g , pkey) : b i t s t r i n g .

2If, for example, we created a table of all valid parties, then looking up one party’s information would
fail in case that the adversary provided invalid data. This would prevent observational equivalence to be
proven, even though the observables in our model (i.e. the sent message) would be indistinguishable.

79

4. Automated Verification

15 fun adec (b i t s t r i n g , skey) : b i t s t r i n g .
16 equation f o r a l l m: b i t s t r i n g , k : skey ; adec (aenc (m, pk (k)) , k)

= m.
17
18 (∗ S i gna ture s ∗)
19 type s skey .
20 type spkey .
21 type s i g V a l i d i t y .
22 const sigVALID : s i g V a l i d i t y .
23 fun spk (sskey) : spkey .
24 fun s i gn (b i t s t r i n g , s skey) : b i t s t r i n g .
25 fun v fyS ig (b i t s t r i n g , b i t s t r i n g , spkey) : s i g V a l i d i t y .
26 reduc f o r a l l m: b i t s t r i n g , k : s skey ; getmess (s i gn (m, k)) = m.
27 equation f o r a l l m: b i t s t r i n g , k : s skey ; v fyS ig (m, s i gn (m, k) ,

spk (k)) = sigVALID .
28
29 (∗ Randomness ∗)
30 type randomness .
31
32 (∗ Hash ∗)
33 fun h(b i t s t r i n g) : b i t s t r i n g .
34
35 (∗ Key Exchange ∗)
36 type ke_m1 .
37 type ke_m2 .
38 fun ke1 (randomness) : ke_m1 .
39 fun ke2 (randomness , ke_m1) : ke_m2 .
40 fun keK1(randomness , ke_m2) : b i t s t r i n g .
41 fun keK2(randomness , ke_m1) : b i t s t r i n g .
42 equation f o r a l l r1 , r2 : randomness ; keK1(r1 , ke2 (r2 , ke1 (r1)))

= keK2(r2 , ke1 (r1)) .
43
44 (∗ ####### General ######### ∗)
45 channel c .
46
47 type name . (∗ I d e n t i f y p a r t i e s ∗)
48 const A, B, AB : name .
49 t a b l e t (name , pkey , spkey) . (∗ Table f o r r e t r i e v i n g pks ∗)
50
51 (∗ C e r t i f i c a t e s ∗)
52 type caCer tVa l id i ty .
53 const caVALID : caCer tVa l id i ty .
54 fun caCert (name , spkey) : b i t s t r i n g [p r i v a t e] .

80

4.3. ProVerif

55 fun caCertName (b i t s t r i n g) : name .
56 fun caCertKey (b i t s t r i n g) : spkey .
57 fun caCertVal id (b i t s t r i n g) : caCer tVa l id i ty .
58 equation f o r a l l n : name , k : spkey ; caCertName (caCert (n , k)) = n

.
59 equation f o r a l l n : name , k : spkey ; caCertKey (caCert (n , k)) = k .
60 equation f o r a l l n : name , k : spkey ; caCertVal id (caCert (n , k)) =

caVALID .
61
62 (∗ Party S ta tu s ∗)
63 type partyStatus .
64 const psHONEST, psCORRUPT : partyStatus .
65 fun psName(name , partyStatus) : name [p r i v a t e] .
66 fun isPartyOk (name) : partyStatus .
67 equation f o r a l l n : name , ps : partyStatus ; isPartyOk (psName(n ,

ps)) = ps .
68
69 (∗ Tuple Deconstructor Helper ∗)
70 fun p1 (b i t s t r i n g) : b i t s t r i n g .
71 fun p2 (b i t s t r i n g) : b i t s t r i n g .
72 equation f o r a l l x : b i t s t r i n g , y : b i t s t r i n g ; p1 ((x , y)) = x .
73 equation f o r a l l x : b i t s t r i n g , y : b i t s t r i n g ; p2 ((x , y)) = y .
74
75 (∗ Random Key Generation by RevSessKey Oracle ∗)
76 fun createK (ke_m1 , ke_m2 , b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g [

p r i v a t e] .
77
78 (∗ Events ∗)
79 (∗ event i n i t A c c e p t s (k , m1, m2, m3, m4, expectedM4) . ∗)
80 event i n i t i a t o r D o n e (b i t s t r i n g , ke_m1 , ke_m2 , b i t s t r i n g ,

b i t s t r i n g , b i t s t r i n g , partyStatus) .
81
82 (∗ event responderDone (k , m1, m2, m3, m4, caVal , v f yS ig , ps) .

∗)
83 event re sponderStar ted (name) .
84 event responderDone (name , b i t s t r i n g , ke_m1 , ke_m2 , b i t s t r i n g ,

b i t s t r i n g , caCertVal id i ty , s i g V a l i d i t y , partyStatus) .
85
86 (∗ ####### Protoco l ######## ∗)
87 let I n i t i a t o r (name : name , sgn : s skey) =
88 (∗ I n i t i a l i z e ∗)
89 in (c , peer : name) ; (∗ Receive adversary i n s t r u c t i o n o f

whom to con tac t . ∗)

81

4. Automated Verification

90 i f name <> psName(AB, psHONEST) | | isPartyOk (peer) =
psHONEST then (∗ Party AB only t a l k s to honest p a r t i e s ∗)

91 get t(=peer , bPKE : pkey , bSgn : spkey) in
92
93 (∗ m1 ∗)
94 new rand : randomness ;
95 l et m1 = ke1 (rand) in
96 out (c , m1) ;
97
98 (∗ rcv m2 & c a l c key ∗)
99 in (c , m2 : ke_m2) ;

100 l et kek = bitToKey (keK1(rand , m2)) in
101
102 (∗ send m3 ∗)
103 new x : b i t s t r i n g ;
104 l et c tx t = (m1, m2) in
105 l et k ’ = bitToKey (h ((kek , x , c tx t))) in
106 l et c0 = senc (aenc (x , bPKE) , kek) in
107 l et c1 = senc ((caCert (name , spk (sgn)) , s i gn ((name , peer , c0

, c tx t) , sgn)) , k ’) in
108 l et m3 = (c0 , c1) in
109 out (c , m3) ;
110
111 (∗ rcv m4 ∗)
112 in (c , m4 : b i t s t r i n g) ;
113 l et ctxt2 = (name , peer , m1, m2, m3) in
114 l et ctxt3 = (name , peer , m1, m2, m3, m4) in
115 l et expectedM4 = h ((x , c txt2)) in
116 l et k = h ((kek , x , c txt3)) in
117 event i n i t i a t o r D on e (k , m1, m2, m3, m4, expectedM4 ,

isPartyOk (peer)) ;
118
119 out (c , i f m4 = expectedM4 then k else createK (m1, m2, m3,

m4)) ;
120
121 0 .
122
123 l et Responder (name : name , sk : skey) =
124 event re sponderStar ted (name) ;
125
126 (∗ rcv m1 & send m2 ∗)
127 in (c , m1: ke_m1) ;
128 new rand : randomness ;

82

4.3. ProVerif

129 l et m2 = ke2 (rand , m1) in
130 out (c , m2) ;
131 l et c tx t = (m1, m2) in
132 l et kek = keK2(rand , m1) in
133
134 (∗ rcv m3 & send m4 ∗)
135 in (c , (c0 : b i t s t r i n g , c1 : b i t s t r i n g)) ;
136 l et m3 = (c0 , c1) in
137 l et x = adec (sdec (c0 , bitToKey (kek)) , sk) in
138 l et k ’ = bitToKey (h ((kek , x , c tx t))) in
139 l et decoded = sdec (c1 , k ’) in
140 l et c e r t = p1 (decoded) in
141 l et s i g = p2 (decoded) in
142 l et aPK = caCertKey (c e r t) in
143 l et aName = caCertName (c e r t) in
144 l et ctxt2 = (aName , name , m1, m2, m3) in
145 l et m4 = h ((x , c txt2)) in
146 l et caV = caCertVal id (c e r t) in
147 l et sigV = vfyS ig ((aName , name , c0 , c tx t) , s i g , aPK) in
148 l et ctxt3 = (aName , name , m1, m2, m3, m4) in
149 l et k = h ((kek , x , c txt3)) in
150 l et ps = isPartyOk (aName) in
151
152 new randomOutput : b i t s t r i n g ;
153 new randomKey : b i t s t r i n g ;
154 event responderDone (name , k , m1, m2, m3, m4, caV , sigV , ps)

;
155
156 out (c , i f (name <> psName(AB, psHONEST) | | ps = psHONEST)

&& caV = caVALID && sigV = sigVALID then m4 else
randomOutput) ;

157 out (c , i f (name <> psName(AB, psHONEST) | | ps = psHONEST)
&& caV = caVALID && sigV = sigVALID then k else createK (m1,
m2, m3, m4)) ;

158
159 0 .
160
161 let Se s s i onPa i r (name : name , pke : skey , sgn : s skey) =
162 out (c , name) ;
163 i n s e r t t (name , pk (pke) , spk (sgn)) ;
164 I n i t i a t o r (name , sgn) | Responder (name , pke) .
165
166 let Party (name : name , pke : skey , sgn : s skey) =

83

4. Automated Verification

167 out (c , pk (pke)) ;
168 out (c , spk (sgn)) ;
169
170 i f isPartyOk (name) = psCORRUPT then
171 out (c , (pke , sgn , caCert (name , spk (sgn)))) ;
172 ! Se s s i onPa i r (name , pke , sgn)
173 else
174 ! Se s s i onPa i r (name , pke , sgn)
175 .
176
177 l et GenParty (ps : partyStatus) =
178 new nOrig : name ;
179 new sk : skey ;
180 new s sk : s skey ;
181 l et n = psName(nOrig , ps) in
182 Party (n , sk , s sk) .
183
184 process
185 new A_pke : skey ; new B_pke : skey ; new A_sgn : sskey ; new

B_sgn : sskey ;
186
187 Party (psName(A, psHONEST) , A_pke , A_sgn) | Party (psName(B,

psHONEST) , B_pke , B_sgn)
188 | Se s s i onPa i r (psName(AB, psHONEST) , d i f f [A_pke , B_pke] ,

d i f f [A_sgn , B_sgn])
189 | (! GenParty (psHONEST)) | (! GenParty (psCORRUPT))

Listing 4.3: Proving s-MITM Privacy of ΠGen (ProVerif)

Forward Privacy Formulation. In order to test forward privacy, we modified the
previous code by adding the following command.

1 set a t tacke r = passive .

This makes the adversary unable to create their own messages. Instead they can only
read messages and do their own computations. Furthermore we now unconditionally
reveal all information in the subprocess Party. For reference, we show the full code below.

1
2 (∗ ######## S e t t i n g s ####### ∗)
3 set a t tacke r = passive .
4
5 (∗ ######## Basics ######### ∗)
6 (∗ Symm Encr ∗)

84

4.3. ProVerif

7 type key .
8 fun senc (b i t s t r i n g , key) : b i t s t r i n g .
9 fun sdec (b i t s t r i n g , key) : b i t s t r i n g .

10 equation f o r a l l m: b i t s t r i n g , k : key ; sdec (senc (m, k) , k) = m.
11 fun bitToKey (b i t s t r i n g) : key [typeConverter] .
12
13 (∗ Asymm Encr ∗)
14 type skey .
15 type pkey .
16 fun pk (skey) : pkey .
17 fun aenc (b i t s t r i n g , pkey) : b i t s t r i n g .
18 fun adec (b i t s t r i n g , skey) : b i t s t r i n g .
19 equation f o r a l l m: b i t s t r i n g , k : skey ; adec (aenc (m, pk (k)) , k)

= m.
20
21
22 (∗ S i gna ture s ∗)
23 type s skey .
24 type spkey .
25 type s i g V a l i d i t y .
26 const sigVALID : s i g V a l i d i t y .
27 fun spk (sskey) : spkey .
28 fun s i gn (b i t s t r i n g , s skey) : b i t s t r i n g .
29 fun v fyS ig (b i t s t r i n g , b i t s t r i n g , spkey) : s i g V a l i d i t y .
30 reduc f o r a l l m: b i t s t r i n g , k : s skey ; getmess (s i gn (m, k)) = m.
31 equation f o r a l l m: b i t s t r i n g , k : s skey ; v fyS ig (m, s i gn (m, k) ,

spk (k)) = sigVALID .
32
33 (∗ Randomness ∗)
34 type randomness .
35
36 (∗ Hash ∗)
37 fun h(b i t s t r i n g) : b i t s t r i n g .
38
39 (∗ Key Exchange ∗)
40 type ke_m1 .
41 type ke_m2 .
42 fun ke1 (randomness) : ke_m1 .
43 fun ke2 (randomness , ke_m1) : ke_m2 .
44 fun keK1(randomness , ke_m2) : b i t s t r i n g .
45 fun keK2(randomness , ke_m1) : b i t s t r i n g .
46 equation f o r a l l r1 , r2 : randomness ; keK1(r1 , ke2 (r2 , ke1 (r1)))

= keK2(r2 , ke1 (r1)) .

85

4. Automated Verification

47
48 (∗ ####### General ######### ∗)
49 channel c .
50
51 type name . (∗ I d e n t i f y p a r t i e s ∗)
52 const A, B, AB : name .
53 t a b l e t (name , pkey , spkey) . (∗ Table f o r r e t r i e v i n g pks ∗)
54
55 (∗ C e r t i f i c a t e s ∗)
56 type caCer tVa l id i ty .
57 const caVALID : caCer tVa l id i ty .
58 fun caCert (name , spkey) : b i t s t r i n g [p r i v a t e] .
59 fun caCertName (b i t s t r i n g) : name .
60 fun caCertKey (b i t s t r i n g) : spkey .
61 fun caCertVal id (b i t s t r i n g) : caCer tVa l id i ty .
62 equation f o r a l l n : name , k : spkey ; caCertName (caCert (n , k)) = n

.
63 equation f o r a l l n : name , k : spkey ; caCertKey (caCert (n , k)) = k .
64 equation f o r a l l n : name , k : spkey ; caCertVal id (caCert (n , k)) =

caVALID .
65
66 (∗ Tuple Deconstructor Helper ∗)
67 fun p1 (b i t s t r i n g) : b i t s t r i n g .
68 fun p2 (b i t s t r i n g) : b i t s t r i n g .
69 equation f o r a l l x : b i t s t r i n g , y : b i t s t r i n g ; p1 ((x , y)) = x .
70 equation f o r a l l x : b i t s t r i n g , y : b i t s t r i n g ; p2 ((x , y)) = y .
71
72 (∗ Events ∗)
73 (∗ event i n i t A c c e p t s (k , m1, m2, m3, m4, expectedM4) . ∗)
74 event i n i t i a t o r D on e (b i t s t r i n g , ke_m1 , ke_m2 , b i t s t r i n g ,

b i t s t r i n g , b i t s t r i n g) .
75
76 (∗ event responderDone (k , m1, m2, m3, m4, caVal , v f y S i g) . ∗)
77 event responderDone (b i t s t r i n g , ke_m1 , ke_m2 , b i t s t r i n g ,

b i t s t r i n g , caCertVal id i ty , s i g V a l i d i t y) .
78
79 (∗ ####### Queries ######### ∗)
80 (∗ Sani ty check . Can the p r o t o c o l be completed s u c c e s s f u l l y ? ∗)
81 (∗ query k , m3, m4: b i t s t r i n g , m1: ke_m1 , m2: ke_m2 ; event (

i n i t i a t o rDone (k , m1, m2, m3, m4, m4)) && event (responderDone
(k , m1, m2, m3, m4, caVALID , sigVALID)) . ∗)

82
83 (∗ E x p l i c i t Ent i t y Authen t i ca t ion ∗)

86

4.3. ProVerif

84 (∗ query k , m3, m4: b i t s t r i n g , m1: ke_m1 , m2: ke_m2 ; event (
i n i t i a t o rDone (k , m1, m2, m3, m4, m4)) ==> event (
responderDone (k , m1, m2, m3, m4, caVALID , sigVALID)) . ∗)

85
86 (∗ ####### Protoco l ######## ∗)
87 let I n i t i a t o r (name : name , sgn : s skey) =
88 in (c , peer : name) ; (∗ Receive adversary i n s t r u c t i o n o f

whom to con tac t . ∗)
89 get t(=peer , bPKE : pkey , bSgn : spkey) in
90
91 (∗ m1 ∗)
92 new rand : randomness ;
93 l et m1 = ke1 (rand) in
94 out (c , m1) ;
95
96 (∗ rcv m2 & c a l c key ∗)
97 in (c , m2 : ke_m2) ;
98 l et kek = bitToKey (keK1(rand , m2)) in
99

100 (∗ send m3 ∗)
101 new x : b i t s t r i n g ;
102 l et c tx t = (m1, m2) in
103 l et k ’ = bitToKey (h ((kek , x , c tx t))) in
104 l et c0 = senc (aenc (x , bPKE) , kek) in
105 l et c1 = senc ((caCert (name , spk (sgn)) , s i gn ((name , peer , c0

, c tx t) , sgn)) , k ’) in
106 l et m3 = (c0 , c1) in
107 out (c , m3) ;
108
109 (∗ rcv m4 ∗)
110 in (c , m4 : b i t s t r i n g) ;
111 l et ctxt2 = (name , peer , m1, m2, m3) in
112 l et ctxt3 = (name , peer , m1, m2, m3, m4) in
113 l et expectedM4 = h ((x , c txt2)) in
114 l et k = h ((kek , x , c txt3)) in
115 event i n i t i a t o r D o n e (k , m1, m2, m3, m4, expectedM4) ;
116 out (c , k) ;
117
118 0 .
119
120 let Responder (name : name , sk : skey) =
121 (∗ rcv m1 & send m2 ∗)
122 in (c , m1: ke_m1) ;

87

4. Automated Verification

123 new rand : randomness ;
124 l et m2 = ke2 (rand , m1) in
125 out (c , m2) ;
126 l et c tx t = (m1, m2) in
127 l et kek = keK2(rand , m1) in
128
129 (∗ rcv m3 & send m4 ∗)
130 in (c , (c0 : b i t s t r i n g , c1 : b i t s t r i n g)) ;
131 l et m3 = (c0 , c1) in
132 l et x = adec (sdec (c0 , bitToKey (kek)) , sk) in
133 l et k ’ = bitToKey (h ((kek , x , c tx t))) in
134 l et decoded = sdec (c1 , k ’) in
135 l et c e r t = p1 (decoded) in
136 l et s i g = p2 (decoded) in
137 l et aPK = caCertKey (c e r t) in
138 l et aName = caCertName (c e r t) in
139 l et ctxt2 = (aName , name , m1, m2, m3) in
140 l et m4 = h ((x , c txt2)) in
141 l et caV = caCertVal id (c e r t) in
142 l et sigV = vfyS ig ((aName , name , c0 , c tx t) , s i g , aPK) in
143 l et ctxt3 = (aName , name , m1, m2, m3, m4) in
144 l et k = h ((kek , x , c txt3)) in
145
146 new r : b i t s t r i n g ;
147
148 event responderDone (k , m1, m2, m3, m4, caV , sigV) ;
149 out (c , i f caV = caVALID && sigV = sigVALID then m4 else r) ;
150 out (c , k) ;
151
152 0 .
153
154 l et Se s s i onPa i r (name : name , pke : skey , sgn : s skey) =
155 i n s e r t t (name , pk (pke) , spk (sgn)) ;
156 I n i t i a t o r (name , sgn) | Responder (name , pke) .
157
158 l et Party (name : name , pke : skey , sgn : s skey) =
159 out (c , name) ;
160 out (c , pk (pke)) ;
161 out (c , spk (sgn)) ;
162
163 out (c , (pke , sgn , caCert (name , spk (sgn)))) ; (∗ l e a k ∗)
164
165 ! Se s s i onPa i r (name , pke , sgn) .

88

4.4. Results

166
167 process
168 new A_pke : skey ; new B_pke : skey ; new A_sgn : sskey ; new

B_sgn : sskey ;
169
170 Party (A, A_pke , A_sgn) | Party (B, B_pke , B_sgn) |

S e s s i onPa i r (AB, d i f f [A_pke , B_pke] , d i f f [A_sgn , B_sgn])
171 | ! (new n : name ; new sk : skey ; new s sk : s skey ; Party (n ,

sk , s sk))

Listing 4.4: Proving Forward Privacy of ΠGen (ProVerif)

4.4 Results
In this chapter we discussed the encoding of ΠGen both for the Tamarin Prover and
ProVerif. While our Tamarin encoding works for proving simple lemmas, proving its
observational equivalence (for strong MITM privacy) turns out to be infeasible. We
argued why switching to ProVerif is beneficial both for increasing the confidence in the
result (due to a more natural encoding) as well the efficiency of the computation. Indeed
ProVerif successfully proved the strong MITM privacy and forward privacy of ΠGen.

89

CHAPTER 5
Conclusion

Recently there has been an increasing interest in privacy guarantees of protocols, leading
to the work of Zhao [Zha16] and Schäge, Schwenk and Lauer [SSL20]. As we showed,
and also as noted by the authors, the privacy of the protocols shown in both of these
works are vulnerable to MITM attacks, that do not complete the respective session. We
presented a novel model and several protocols that account for these types of attacks.
Unlike the protocols in the previously mentioned literature, most of our protocols require
the initiator to know the intended recipient’s public key (or obtain it through some safe
method). This seems to be a reasonable requirement for most application scenarios, but
even if this cannot be achieved, our protocol Πss can be used. Πss reaches the same
privacy properties as the protocols from the previously mentioned literature in our model,
as well as providing additional defense against MITM attackers. In order to achieve this,
Πss uses a shared secret that needs to be distributed to all honest users, e.g. when the
CA signs their public keys. This shared secret is only needed for our notion of weak
MITM privacy. Leaking this secret does not affect security (key indistinguishability) and
the recently studied privacy notion in the literature, which we call completed session
privacy, still holds.

Furthermore the model we presented is modular and allows to classify protocols based on
the classical security notion of key indistinguishability as well as multiple, novel privacy
notions (weak MITM privacy, strong MITM privacy, forward privacy).

We showed several protocols that require 2, 3 or 4 moves and fulfill varying degrees of
privacy, with the 4-move protocol ΠGen fulfilling all of them. This result was proven
classically, as well as using automated verification tools to give additional confidence. We
evaluated the Tamarin Prover as well as ProVerif. Our Tamarin formulation could not
be processed without running out of memory on a machine with around 60 GB available
RAM. We argued why switching to ProVerif is beneficial both for increasing the confidence
in the result (due to a more natural encoding, in particular of if/then/else-statements)

91

5. Conclusion

as well improving the efficiency of the computation. Indeed, the ProVerif formulation
was proven successfully.

As a potential direction for future research, one might investigate the possibility of a
one-move PPAKE. This could potentially be realized by using puncturable encryption,
but there are some hurdles that need to be overcome. Zhao[Zha16] presents the protocol
Higncryption which can be transformed into a one-move AKE that provides initiator
privacy. However, it would not provide key indistinguishability or forward privacy in our
model, since we allow the corruption of the responder.

92

List of Figures

1.1 DHKE . 2
1.2 DHKE with MITM adversary (omitted mod p in the final line for brevity) 3
1.3 Signed DHKE . 4
1.4 Simplified PPAKE . 4
1.5 The EAV experiment for a two-move key exchange protocol Γ. 9
1.6 LH-SE-IND-CCA security for SE Ω. 10
1.7 PKE-IND-CCA security for PKE PKE. 12
1.8 PKE-IK-CCA security for PKE PKE. 12
1.9 The EUF-CMA experiment for a signature scheme Σ. 13

2.1 Cross tunnel attack: At the top the figure shows how the four protocol
instances intend to communicate. At the bottom it shows the effect of the
adversaries interference. 25

3.1 Protocol ΠGen, using an unauthenticated KE Γ, PKE PKE = (PEnc, PDec),
symmetric encryption Ω = (E, D), signature scheme Σ = (Sign, Verify), CertA

as discussed in Section 3.1.1, ctxt = m1||m2, ctxt2 = A||B||m1||m2||m3, and
ctxt3 = A||B||m1||m2||m3||m4. 40

3.2 Protocol Πss with shared secret s, using symmetric encryption Ω = (E, D). 52
3.3 Protocol Π2

PKE using a PKE PKE, an unauthenticated KE Γ, and a signature
scheme Σ. where Certs contain Σ and PKE public keys. 57

3.4 Protocol CAKE, see Fig. 7 by Zhao [Zha16], using AEAD Ω = (E, D) 1 and
key-derivation-function KDF2 . 63

3.5 Protocol ΠSSL, c.f. Fig. 2 by Schäge, Schwenk and Lauer [SSL20] 65

93

List of Tables

3.1 Comparison of our protocols. “ss” denotes the requirement of a shared secret
and “pk” the requirement to know the public key of the intended responder
upfront. 67

95

Index

Diffie-Hellman assumptions SDH, ODH,
GDH, 13

Digital Signatures (Sign, Verify), 12

Game Hop, 14
Gap Diffie-Hellman Assumption (GDH),

14

Key Exchange (Γ), 8

ODH assumption, 13

Public Key Encryption (PEnc, PDec), 11

Random oracle (RO) H, 8

Symmetric Encryption (E, D), 10

97

Bibliography

[ABB+04] William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ioannidis,
Angelos D. Keromytis, and Omer Reingold. Just fast keying: Key agreement
in a hostile internet. ACM Trans. Inf. Syst. Secur., 7(2):242–273, 2004.

[ABF+19] Ghada Arfaoui, Xavier Bultel, Pierre-Alain Fouque, Adina Nedelcu, and
Cristina Onete. The privacy of the tls 1.3 protocol. Proceedings on Privacy
Enhancing Technologies, 2019(4):190–210, 2019.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval.
Key-privacy in public-key encryption. In Colin Boyd, editor, ASI-
ACRYPT 2001, volume 2248 of LNCS, pages 566–582. Springer, Heidelberg,
December 2001.

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption
in a multi-user setting: Security proofs and improvements. In Bart Preneel,
editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 259–274. Springer,
Heidelberg, May 2000.

[BBS] Vincent Cheval Bruno Blanchet, Ben Smyth and Marc Sylvestre. Proverif
2.02pl1: Automatic cryptographic protocol verifier, user manual and tuto-
rial. https://prosecco.gforge.inria.fr/personal/bblanche/
proverif/manual.pdf. Accessed: April 6th, 2021.

[BCF+13] Colin Boyd, Cas Cremers, Michele Feltz, Kenneth G. Paterson, Bertram
Poettering, and Douglas Stebila. ASICS: Authenticated key exchange security
incorporating certification systems. In Jason Crampton, Sushil Jajodia, and
Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages 381–399.
Springer, Heidelberg, September 2013.

[BFGJ17] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson.
PRF-ODH: Relations, instantiations, and impossibility results. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of
LNCS, pages 651–681. Springer, Heidelberg, August 2017.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi

99

https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf

Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, CCS ’93, Proceedings
of the 1st ACM Conference on Computer and Communications Security,
Fairfax, Virginia, USA, November 3-5, 1993, pages 62–73. ACM, 1993.

[CCG+19] Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, Håkon Jacobsen, and
Tibor Jager. Highly efficient key exchange protocols with optimal tightness.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 767–797. Springer, Heidelberg, August
2019.

[CK02] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-
based key-exchange protocol. In Moti Yung, editor, CRYPTO 2002, volume
2442 of LNCS, pages 143–161. Springer, Heidelberg, August 2002. http:
//eprint.iacr.org/2002/120/.

[DGJ+21] David Derler, Kai Gellert, Tibor Jager, Daniel Slamanig, and Christoph
Striecks. Bloom filter encryption and applications to efficient forward-secret
0-rtt key exchange. J. Cryptol., 34(2):13, 2021.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
transactions on Information Theory, 22(6):644–654, 1976.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In 13th USENIX Security Symposium (USENIX
Security 04), San Diego, CA, August 2004. USENIX Association.

[FH98] Paul Ferguson and Geoff Huston. What is a
vpn? https://www.semanticscholar.org/paper/
What-Is-a-VPN-%E2%80%94-Part-I-Ferguson-Huston/
1dbed25c3b13565073803c32489303e0094b020c, 1998. Accessed
17-05-2021.

[GM15] Matthew D. Green and Ian Miers. Forward secure asynchronous messaging
from puncturable encryption. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 305–320.
IEEE Computer Society, 2015.

[KHN+14] Charlie Kaufman, Paul E. Hoffman, Yoav Nir, Pasi Eronen, and Tero Kivinen.
Internet key exchange protocol version 2 (ikev2). RFC, 7296:1–142, 2014.

[Kra03] Hugo Krawczyk. Sigma: The ‘sign-and-mac’ approach to authenticated diffie-
hellman and its use in the ike protocols. In Dan Boneh, editor, Advances
in Cryptology - CRYPTO 2003, pages 400–425, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

[LS17] Yong Li and Sven Schäge. No-match attacks and robust partnering definitions:
Defining trivial attacks for security protocols is not trivial. In Bhavani M.

100

http://eprint.iacr.org/2002/120/
http://eprint.iacr.org/2002/120/
https://www.semanticscholar.org/paper/What-Is-a-VPN-%E2%80%94-Part-I-Ferguson-Huston/1dbed25c3b13565073803c32489303e0094b020c
https://www.semanticscholar.org/paper/What-Is-a-VPN-%E2%80%94-Part-I-Ferguson-Huston/1dbed25c3b13565073803c32489303e0094b020c
https://www.semanticscholar.org/paper/What-Is-a-VPN-%E2%80%94-Part-I-Ferguson-Huston/1dbed25c3b13565073803c32489303e0094b020c

Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 1343–1360. ACM Press, October / November 2017.

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of
problems for the security of cryptographic schemes. In International workshop
on public key cryptography, pages 104–118. Springer, 2001.

[RSW21] Sebastian Ramacher, Daniel Slamanig, and Andreas Weninger. Privacy-
preserving authenticated key exchange: Stronger privacy and generic con-
structions. In 26th European Symposium on Research in Computer Security
(ESORICS 2021). Springer, 2021. to be published.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security
proofs. IACR Cryptol. ePrint Arch., 2004:332, 2004.

[SSL20] Sven Schäge, Jörg Schwenk, and Sebastian Lauer. Privacy-preserving authen-
ticated key exchange and the case of IKEv2. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II,
volume 12111 of LNCS, pages 567–596. Springer, Heidelberg, May 2020.

[Tea] The Tamarin Team. Tamarin-prover manual. https://tamarin-prover.
github.io/manual/tex/tamarin-manual.pdf. Accessed: April 6th,
2021.

[Zha16] Yunlei Zhao. Identity-concealed authenticated encryption and key exchange.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1464–1479, 2016.

101

https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	PPAKE
	Automated Verification

	Cryptographic Preliminaries
	Notation
	Cryptographic Hash Functions
	Unauthenticated Two-Move Key Exchange
	Symmetric Encryption
	Public Key Encryption
	Digital Signatures
	Diffie-Hellman Assumptions
	Security Proofs: Sequence of Games

	Preliminaries Tamarin
	Preliminaries ProVerif

	PPAKE Model
	Overview
	Design Goals
	Model Definition
	Communication Model
	Security Experiment
	Oracles Available to the Adversary
	Preliminary Definitions
	Partnering
	Oracle Status: Corrupted, Revealed, Fresh

	Adversary Restrictions
	Security Definitions

	Model Summary
	Model Discussion
	Relations Between the Privacy Properties
	Partnering
	One-way privacy
	Revocation
	Completed Session Privacy
	Weak MITM Privacy
	Strong MITM Privacy
	Forward Privacy

	PPAKE Protocols
	Protocol PiGen
	Protocol Definition
	Protocol Discussion
	Proof: Explicit Authentication
	Proof: Strong MITM-Privacy
	Proof: Forward-Privacy
	Proof: Key Indistinguishability

	Protocols with Reduced Privacy and Round Complexity
	Using a shared secret: Pi ss
	Two move protocol: Pi PKE 2
	One-move PPAKE

	Existing Protocols in the Literature
	Construction by Zhao
	Construction by Schäge, Schwenk and Lauer

	Summary

	Automated Verification
	Overview
	Tamarin Prover
	Modelling if/else for observational equivalence
	PiGen Formulation (Tamarin Prover)

	ProVerif
	Introduction
	Modified model
	PiGen sMITM Privacy Formulation (ProVerif)

	Results

	Conclusion
	List of Figures
	List of Tables
	Bibliography

