
Foundations of Knowledge
Graphs: Complexity of Arithmetic

in Vadalog

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Lucas Berent, BSc
Matrikelnummer 01625723

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Prof. Dr. Emanuel Sallinger
Mitwirkung: Dipl.-Ing. Markus Nissl

Wien, 30. August 2021
Lucas Berent Emanuel Sallinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Foundations of Knowledge
Graphs: Complexity of Arithmetic

in Vadalog

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Lucas Berent, BSc
Registration Number 01625723

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dr. Emanuel Sallinger
Assistance: Dipl.-Ing. Markus Nissl

Vienna, 30th August, 2021
Lucas Berent Emanuel Sallinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Lucas Berent, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. August 2021
Lucas Berent

v

Danksagung

Ich möchte meinem Betreuer, Emanuel Sallinger, für seine tatkräftige Unterstützung,
wertvollen Einblicke und Geduld danken. Ich - sowie auch diese Arbeit - haben sehr von
seinen Ideen und Diskussionen mit Emanuel profitiert. Des Weiteren möchte ich Markus
Nissl meinen Dank aussprechen, der mich sehr mit strukturellen Aspekten der Arbeit,
aber auch durch technische Diskussionen unterstützt hat.

vii

Acknowledgements

First and foremost, I would like to thank my Advisor Prof. Emanuel Sallinger for his
continuous support, invaluable insight, and patience. I (as well as this thesis) profited
greatly through discussions and new ideas Emanuel proposed. Moreover, I am grateful for
the help of Markus Nissl, who supported me greatly with structuring and proofreading
the thesis, as well as with technical discussions.

ix

Kurzfassung

Vadalog ist ein modernes Knowledge Graph (KG) System, dessen logische Kernkompo-
nente gute (beweisbare) theoretische Garantien aufweist. Die Sprache, die in Vadalog zur
Wissensrepräsentation und zur logischen Derivation verwendet wird, ist eine Erweiterung
von Datalog. Die Datalog Sprache wird weitgehend - sowohl in der Forschung als auch in
der Industrie - in wissensbasierten Systemen und in der Datenanalyse, im Kontext von
Big Data, eingesetzt. Die zentralen Gründe für die Verwendung von Datalog sind dessen
deklarative Semantik, Skalierbarkeit und die Eigenschaft, volle Rekursion ausdrücken
zu können. Die mathematischen Garantien der Vadalog Sprache umfassen jedoch nicht
wichtige Erweiterungen, wie etwa Arithmetik, welche in der Datenanalyse häufig benötigt
werden. In der Tat gibt es keine Komplexitätsresultate für eine (entscheidbare) Datalog
Sprache, erweitert durch Arithmetik und existentielle Quantifizierung in den Regelköpfen.
Letztere wird unter anderem benötigt, um Ontologien logisch zu verarbeiten.

In dieser Arbeit untersuchen wir Möglichkeiten, Arithmetik in Vadalog zu integrieren und
zeigen, dass es nicht trivial ist, KG Sprachen mit Arithmetik zu erweitern. Wir definieren
eine neue, Logik basierte Sprache in der Form einer Erweiterung der Kernsprache von
Vadalog mit einer effizienten Form von Arithmetik. Wir beweisen P-Vollständigkeit unserer
Sprache, die wir Warded Bound DatalogZ nennen. Des Weiteren zeigen wir die ersten
Resultate der Expressivität von limit DatalogZ, welches kürzlich in einer bemerkenswerten
Reihe von Publikationen von Kaminski et al. eingeführt wurde. Unsere Beiträge beweisen,
dass unsere Sprache hohes Potential für die Verwendung in wissensbasierten Systemen der
Künstlichen Intelligenz (KI) hat. Dadurch legen wir mit unseren theoretischen Resultaten
den Grundstein für ausdrucksstarke, logische Sprachen, welche einerseits die Vielseitigkeit
von komplexer, logischer Wissensableitung und Arithmetik kombinieren und andererseits
effiziente Algorithmen für Applikationen in modernen KI-Systemen, wie KGs, garantieren.

xi

Abstract

Vadalog is a powerful state-of-the-art Knowledge Graph (KG) system with strong theo-
retical underpinnings for its core logical reasoning component. Vadalog’s reasoning and
knowledge representation language is an extension of Datalog. The Datalog language is
widely used in the context of knowledge-based systems and Big Data analytics because of
its declarative nature, scalability, and its ability to express full recursion. The theoretical
guarantees of the Vadalog language, however, do not cover extensions heavily needed
in data analytics, such as arithmetic. In fact, there are no complexity results for the
combination of a (decidable) Datalog language extended with arithmetic and existentials
in rule heads, the latter of which is needed e.g., for ontological reasoning.

In this work we investigate potential candidates for arithmetic in Vadalog and show that
extending KG reasoning languages with arithmetic is a non-trivial problem. We define a
new language as extension of Vadalog’s core language with a well-behaving and efficient
form of arithmetic. We prove P-completeness of our language, which we call Warded
Bound DatalogZ. Moreover, we show the first expressivity results for a decidable language
supporting arithmetic. In particular, we prove capture results for Limit DatalogZ, a
language that was recently introduced in a remarkable line of work by Kaminski et
al. Our contributions prove that our language is a suitable candidate for reasoning in
AI systems. Thereby, we lay the theoretical foundation for highly expressive logical
languages that combine the power of complex recursive reasoning and arithmetic, while
maintaining efficient reasoning algorithms for applications in modern AI systems, such as
KGs.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Problem Formulation . 3
1.2 Research Questions . 4
1.3 Results . 5
1.4 Organization . 7

2 Preliminaries 9
2.1 Notation . 9
2.2 Computational Complexity . 10
2.3 Datalog Foundations . 12
2.4 Database-theoretic Notions . 13
2.5 Logical Core of Vadalog . 16
2.6 Limit DatalogZ . 18

3 Related Work 23
3.1 Background on Knowledge Graphs . 23
3.2 Datalog± . 25
3.3 Arithmetic and Aggregation in Datalog 28
3.4 Descriptive Complexity Theory . 34

4 Main Contributions 35
4.1 Negative Results . 36
4.2 A Syntactic Fragment of DatalogZ . 38
4.3 Descriptive Complexity Results . 44
4.4 Towards Reasoning in KGs: Existentials in Rule Heads 51
4.5 Discussion . 58

5 Conclusion 61

xv

List of Figures 63

List of Tables 65

List of Algorithms 67

Bibliography 69

CHAPTER 1
Introduction

The resurgence of declarative programming and specifically Datalog [DEGV01] has been
extensively observed in research recently. Especially for systems supporting data analytic
tasks, ranging from aggregation of data to complex query answering, Datalog is a key
aspect [ACC+10, CMA+12, Mar14, SGL15, SYI+16, WBH15]. Some of the reasons for
this growing interest in Datalog are its scalability and that it has been argued that the
declarative programming paradigm allows users to express complex queries in a more
intuitive way than the imperative paradigm. Academics have repeatedly advocated
that programs in data analysis should be expressed with declarative programming
(Datalog) [ACC+10, SYI+16] and that systems should support this paradigm in their
language. Moreover, Datalog supports full recursion, which is needed to express common
and complex problems in Big Data analytics. Consequently, Datalog is a prime candidate
for a broad variety of research areas such as parallel and distributed systems [Hel10], Big
Data systems [ABC+11], and ontological query answering in the area of the Semantic
Web [GOP11] amongst others. Ordinary Datalog, however, is not powerful enough to
express use cases in such complex scenarios. Thus, a major field of current research is to
find languages that extend Datalog with properties to make it more powerful, but at the
same time carefully restrict the syntax to keep the complexity of reasoning provably low.
In this work we tackle the problem of identifying a new Datalog language that supports
arithmetic and can be used for reasoning in Knowledge Graphs. We prove the complexity
of our language, present novel reasoning algorithms and compare our language with
existing Datalog languages.

Reasoning in KGs. The context of this work is mainly set in the realm of Knowledge
Graphs and reasoning in such AI systems. Knowledge Graphs (KGs) represent knowledge
in graph-based models and allow for reasoning over the knowledge base with the use
of mathematical methods. KGs support traditional logic-based reasoning as well as
machine learning (ML) and statistical reasoning and thus enable to manage and leverage

1

1. Introduction

knowledge in a versatile and powerful way. There is no standard definition of KGs in
academia. The term Knowledge Graph was coined by Google’s KG [Sin12] and may refer
to triple-based models or to other structures representing entities and relations. In the
following we will use KG mainly when talking about the Vadalog system, which is a KG
system supporting relations of arbitrary arity, generalizing triple-based scenarios [BSG18].
Bellomarini, Sallinger and Gottlob (BSG) have identified three minimum requirements a
reasoning language for KGs needs to fulfil [BSG18]:

(i) Full recursion over KGs,
(ii) ontological reasoning over KGs, and additionally
(iii) low complexity of reasoning.

Requirement (i) states that the language needs to be able to support full recursion and
joins. These features are needed for navigating and reasoning over graph structures.
Ordinary Datalog fulfils this requirement, hence the requirement could be equally stated
as the language should (at least) encompass Datalog. Ontological query answering (ii)
is needed to express common data analytic tasks and the exact requirement is that the
language must be able to express SPARQL queries under the OWL 2 QL entailment
regime [GOH+13]. Requirement (iii) can be further specified by requiring reasoning to
be tractable in data complexity. Hence, algorithms computing fundamental reasoning
problems in polynomial time or even more efficiently (e.g., in NLogSPACE) are needed.

Datalog for Scalable Analytics. There are several variations or fragments of the Dat-
alog language, which extend ordinary Datalog with features (syntactically or semantically),
in order to fulfil the aforementioned requirements. There is a long line of work investi-
gating various fragments and their complexity [BLMS11, CGK13, CGL09b, CGL+10].
BSG, however, observed that most of these fragments do not fulfil all the criteria and are
therefore unsuitable for reasoning over KGs. This is why the Vadalog language, based
on the Warded Datalog± fragment, was introduced. Warded Datalog± extends Datalog
with features that enable complex reasoning (existential quantification in rule heads) but
at the same time restricts the syntax in order to keep the complexity of the language
low [BGPS19]. While the Vadalog language can handle reasoning with existential rule
heads efficiently and has strong theoretical underpinnings (i.e. polynomial data com-
plexity), there is a vast number of additional features needed, such as arithmetic and
aggregation, equality in rule heads, and access to external functions (e.g., ML) [GPS19].
A naive combination of these advanced features with the core language immediately leads
to undecidability of the language (even the combination of only one additional feature
and the core language leads to undecidability). Undecidability implies inefficient program
evaluation and bad worst-case behaviour of reasoning algorithms in general. Practical
data-intensive applications and reasoning systems that implement undecidable languages
would potentially suffer from bad computational behaviour and in the worst case from
non-terminating algorithms. Therefore, complexity theoretic results that pin down the
complexity of Datalog fragments are vital in theory and practice. In order to achieve
this goal, Datalog fragments and careful restrictions of these fragments that strike the

2

1.1. Problem Formulation

perfect balance between the expressive power of the language and efficiency need to be
identified. This is clearly a highly non-trivial undertaking and several approaches have
been proposed, but all of them fail to make the language powerful enough to support
both reasoning over KGs and arithmetic. Furthermore, most existing Datalog fragments
that are capable of arithmetic and aggregation are either undecidable or introduce strict
monotonicity requirements and are hence very restrictive. Consequently, it is vital to
identify fragments that are powerful enough to extend the query language in a reasonable
way and at the same time are also carefully restricted, to allow for good computational
complexity results.

Arithmetic in Datalog. Arithmetic and aggregation in recursion play a crucial role for
elementary data analytic problems e.g., for computing shortest paths in a graph or bill of
materials queries. There is a long line of work that investigates extensions of Datalog with
arithmetic and aggregation dating back to the late 1990’s [BNST91, CM90, GGZ95, Gel92,
KS91, MPR90, RS92] that is experiencing renewed academic interest [FPL11, MSZ13b,
ZYD+17]. Earlier approaches mainly try to establish semantics that bring together
recursion and arithmetic in Datalog. These semantic mechanisms, however, wrestle with
the problem of monotonicity. The semantics of Datalog is based on monotonicity (with
respect to set containment) properties of its least fixpoint operator, while arithmetic and
aggregates in general violate these monotonicity requirements. This leads to a twofold
problem of such approaches: Either they rely on strong monotonicity requirements, which
restrict the arithmetic and aggregate functions, or they are undecidable. These problems
(most notably undecidability) also carry over to systems implementing the aforementioned
theoretical solutions. Prominent examples are DeALS [SYZ15], BOOM [ACC+10],
LogicBlox [AtCG+15], and SociaLite [SGL15]. With the goal of tackling these problems,
Kaminski et al. proposed limit DatalogZ, which is a fragment of Datalog with integer
arithmetic. Since Datalog extended with integer arithmetic was shown to be undecidable
in general [DEGV01], Kaminski et al. introduce restrictions in order to obtain a decidable
fragment of DatalogZ. They show that by opposing further restrictions on their language,
a tractable (polynomial time) fragment can be obtained. On the downside, limit DatalogZ
is - as all other arithmetic approaches proposed so far - not powerful enough for reasoning
in KGs. In particular, it does not fulfil requirement (ii) mentioned above since it does
not support existential rule heads. Moreover, limit DatalogZ does not allow aggregates
such as sum and count and its semantics is expressed in an implicit way in programs,
rendering limit programs not as well readable as programs with an explicit syntax.

1.1 Problem Formulation
From the notions introduced above it is evident that there is a gap in current research
between Datalog languages that support ontological reasoning with existential rule heads
and are therefore used for reasoning over KGs (specifically Vadalog) and fragments of
DatalogZ that support arithmetic but do not support advanced reasoning over KGs. To
the best of our knowledge, there are no formal results that unify these two lines of work

3

1. Introduction

and hence lay the theoretical foundations for complex data analytic tasks over KGs. More
generally, there are no results that prove the complexity of a Datalog language supporting
both existentials in the rule heads and some form of arithmetic. In order to provide
sufficiently efficient algorithms, which enable well-behaving practical implementations,
theoretical results for suitable reasoning languages are needed. More specifically, it
is of paramount importance to establish complexity bounds on fundamental reasoning
problems of Datalog fragments in order to pin down the complexity of the languages. Such
results have a major impact on practical implementations, since naively implementing
language fragments with no theoretical underpinnings may lead to very inefficient systems.
Formal results such as hardness of language fragments or upper bounds are essential to
guarantee the existence of efficient algorithms or to identify fragments for which no such
algorithm can exist.

1.2 Research Questions
In this work, we close the gap between KG reasoning languages and arithmetic in data
analytics. We use Vadalog and its core language as an exemplary representative for KGs
and reasoning languages. Our contributions lay the foundations for powerful Datalog
fragments that can be used for efficient reasoning incorporating arithmetic. Naturally,
a class of such languages has a broad range of applications in data analytics and logic
programming. Moreover, we prove novel results in descriptive complexity theory that
relate modern formalisms to deep theoretic results. In more detail, apart from discussing
current state-of-the-art reasoning languages for data analytic tasks and KGs, we tackle
the following main questions that motivate us. Since there are no complexity results for
arithmetic in Vadalog - or any KG reasoning language - we firstly want to investigate
simple, straight forward combinations of various language fragments in the context of
Vadalog and reasoning in KGs. Because of the novelty of Vadalog, there are no such
results in state-of-the-art research.

Question 1. Are naive extensions of Vadalog with arithmetic decidable?

There is a clear gap in current research between Datalog languages that support arithmetic
and fragments used for reasoning over KGs. Therefore, we want to develop a new fragment
that closes this gap. Our goal is to define a DatalogZ language that is powerful enough
to be used for reasoning over KGs. Specifically, we strive to define the first fragment
that fulfils all the requirements for KG reasoning discussed above, and that additionally
supports arithmetic with the potential of being extended to common aggregate functions.
It is of utter importance that such a language is decidable for both theory and potential
implementations. There is no such language yet, and generally speaking, no complexity
result for any combination of existential in rule heads and arithmetic in Datalog is known
until today.

4

1.3. Results

Question 2. Is it possible to define a decidable Datalog language that is capable of
both reasoning over KGs and arithmetic?

Even though there has been a lot of research on the complexity of the Vadalog language
and several variants of the core language, there are no results of the language extended
with arithmetic (as remarked in [GPS19]). More generally, the complexity of arithmetic
and aggregation in KG reasoning languages is still wide open. As discussed above, many
state-of-the-art reasoning systems rely on formalisms with weak or almost no theoretical
guarantees. Our aim is to prove the first complexity results for reasoning with a language
supporting arithmetic and reasoning over KGs.

Question 3. What is the complexity of a decidable reasoning language for KGs
(Vadalog) that supports arithmetic?

The results of Kaminski et al. on the complexity of arithmetic in DatalogZ do not explicitly
prove the expressive power or connections to descriptive complexity theory in general.
This, however, would greatly improve our understanding of the interplay between logic,
arithmetic, and computational complexity. As a result, it is essential to prove connections
between limit DatalogZ and descriptive complexity. Thereby we could also answer a
question about the expressive power of limit DatalogZ mentioned by recently by Grau et
al. in [GHK+19].

Question 4. What is the expressive power of a Datalog language with decidable
arithmetic? In particular, what is the expressive power of limit DatalogZ?

1.3 Results
Firstly, we show that naive combinations of the Vadalog language, and several relevant
fragments thereof are undecidable. In particular, we investigate Warded Datalog±

extended with arithmetic, piece-wise linear Warded Datalog± extended with arithmetic
and piece-wise linear Warded Datalog± extended with limit arithmetic. We show that all
these fragments are undecidable. On an intuitive level, these results strongly emphasize
that it is non-trivial to find a language that is powerful enough for reasoning in KGs and
supports arithmetic. Furthermore, these negative results motivate us to find a suitable
Datalog fragment with decidable reasoning.

Theorem 1.3.1. (Informal Statement). A naive extension of Warded Datalog± with
arithmetic is undecidable.

As a first step towards a new reasoning language, we firstly review the limit arithmetic
introduced by Kaminski et al. and discuss why their proposed semantics are not ideal
e.g., for users. Note that their fragment is to the best of our knowledge the only
decidable Datalog language supporting arithmetic where also a tractable fragment has

5

1. Introduction

been identified. We define a syntactic fragment using some of their ideas and prove
that we can leverage their interesting formal techniques in order to obtain complexity
guarantees for our syntactic fragment. We show decidability and coNP-completeness of
our language, called bound DatalogZ.

Theorem 1.3.2. (Informal Statement). Bound DatalogZ is coNP-complete.

Since we somewhat build on ideas proposed in the context of limit DatalogZ, we also
investigate the expressive power of positive limit DatalogZ. That is, we formally examine
the connection between computational complexity and the power of this logic language.
Such investigations generally fall into the area of descriptive complexity theory. One of our
central contributions is that we prove expressive power results for limit DatalogZ, which
show that limit DatalogZ captures coNP, meaning that every property decidable by a
coNP algorithm can be expressed as a limit DatalogZ program. This provides deep insight
into arithmetic in logic and logic programming, and its connection to computational
complexity. To the best of our knowledge, this is the first expressive power result for a
decidable DatalogZ language capable of arithmetic.

Theorem 1.3.3. (Informal Statement). Limit DatalogZ captures coNP.

In order to bridge the gap between arithmetic and reasoning in KGs, which is the central
goal of this thesis, we design a carefully restricted extension of the core Vadalog language
with our bound fragment which we call Warded Bound DatalogZ. To the best of our
knowledge this is the first well-defined notion of a language supporting arithmetic and
being powerful enough for reasoning in KGs. Hence, we define the first (Datalog-based)
reasoning language consisting of a combination of Datalog extended with both arithmetic
and existential rule heads. Finally, we present an algorithm for reasoning in Warded
Bound DatalogZ based on a reasoning algorithm with a termination strategy for Warded
Datalog± and ideas from our bounded fragment. This result does not only provide us
with respective complexity bounds on reasoning with our new language but can also be
seen as a reasonable basis for a potential practical implementation in KG systems such
as Vadalog.

Theorem 1.3.4. (Informal Statement). Warded Bound DatalogZ is P-complete.

Note that Theorem 1.3.1 refutes Question 1, Theorem 1.3.4 provides answers to Question
2 and Question 3, and finally, Theorem 1.3.3 answers Question 4.

Summary of Main Results. Our results encompass the following main aspects:

• We prove several undecidability results that show limitations of naive combinations
of arithmetic and complex reasoning in KGs

• We propose a syntactic fragment of arithmetic in Datalog (denoted bound DatalogZ),
based on the ideas of Kaminski et al. and their limit DatalogZ fragment. We show
that we can leverage techniques of Kaminski et al. for this purely syntactic fragment
in order to obtain complexity results

6

1.4. Organization

• We show new descriptive complexity results that prove the expressive power of
limit arithmetic i.e., we show that limit DatalogZ captures coNP

• We prove the first complexity result for programs with arithmetic and existential
heads in Datalog. We not only show decidability but even tractability of our
language Warded Bound DatalogZ

• We give an efficient reasoning algorithm with practical potential for our new KG
reasoning language, Warded Bound DatalogZ, which supports arithmetic

1.4 Organization
The rest of this work is organized as follows. We begin the technical part of this thesis
with some preliminary definitions and an overview over techniques we use in Chapter 2.
In Chapter 3 we give an outline of current research areas and important results such as
several Datalog fragments relevant for the rest of this work. The heart of our technical
work is Chapter 4, where we prove our main theorems. Section 4.1 covers negative results
that discuss boundaries of naive approaches. In Section 4.2 we introduce our syntactic
fragment, in Section 4.3 we prove descriptive complexity results of limit DatalogZ and in
Section 4.4 we show how one can integrate arithmetic in Vadalog. Finally, we conclude
with a brief discussion and comparison in Section 4.5 and give a summary and an outlook
on possible future research in Chapter 5.

7

CHAPTER 2
Preliminaries

In this section we give fundamental definitions needed throughout the rest of this work.
We assume basic knowledge of logic and model theory. In particular, we assume familiarity
with first-order logic, logic programming and finite model theory. Furthermore, we assume
that the reader is familiar with basic complexity theoretic aspects, for instance complexity
classes and reductions. This chapter is organized as follows. In Section 2.2 we give
complexity theoretic definitions of Turing machines and complexity classes. In Section 2.3
we introduce important notions from Datalog and logic programming in general. These
aspects are extended in Section 2.4 to a database-theoretic context. Finally, in Section 2.5
and Section 2.6 we discuss essential aspects around Vadalog and arithmetic in Datalog,
which lay the foundation of our contributions.

2.1 Notation

We write tuples (t1, . . . , tn) as t. By slight abuse of notation, we sometimes write t to
indicate the set {ti | ti ∈ t} and use e.g., ti ∈ t and |t|. We use |= to denote semantic
consequence (i.e., logical entailment). When we do not specify an encoding we refer to
some canonical binary encoding of an object and if x is some object (e.g., an integer) x
denotes the binary encoding of x, i.e., some canonical encoding over the language {0, 1}∗.
With || x || we denote the size of a binary encoding of S and with |S| we denote the
number of elements in S. Sometimes we also drop the and denote with x both the
object and its representative (binary) encoding. We write complexity classes as CLASS,
names for algorithmic problems as Problem, and names for important relations or sets
as importantset. We use syntactic shorthand notation R(x) .= 0 for R(x) ≤ 0 ∧ R(x) ≥ 0,
R(x ≥ y) for R(y ≤ x) and R(x ≤ y ≤ z) for R(x ≤ y) ∧ R(y ≤ z).

9

2. Preliminaries

2.2 Computational Complexity
In this section we present definitions of Turing Machines, basic complexity classes, and
reductions that are needed throughout this work, we thereby follow [AB09].

2.2.1 Turing Machines
In general, we use Turing Machines (TMs) to define computational properties of com-
plexity classes. Some of the most fundamental ones are the class of problems solvable in
polynomial time, P, and the class of problems solvable in non-deterministic polynomial
time, NP. Note that for the definitions we talk about languages and TMs accepting them,
as problems are usually encoded as languages over {0, 1}∗ and the question asked is if a
(encoding of a) problem instance is in the respective language or not. In the rest of this
work, we assume that all mentioned functions are time-constructible.

A k-tape Turing machine M = (Γ, Q, δ) is defined as follows.

• Γ is a set of symbols that the tapes of M can contain. We assume that Γ contains
a special blank symbol, , a designated start symbol, , and numbers 0 and 1;

• The set Q holds the states M ’s registers can be in. We assume that qstart, qhalt ∈ Q;
• The transition function δ : Q × Γk → Q × Γk × {L, S, R}k, which describes the rules

M uses to perform stepwise computation.

If M is in state q and the tuple of symbols currently on the k tapes is (σ1, . . . , σk)
and δ(q, (σ1, . . . , σk)) = (q , (σ1, . . . , σk), z) for a z ∈ {L, S, R}k, then symbols σ will be
replaced by symbols σ at the next step, M will be in state q and the k heads will move
left, right or stay at their position, as given by z. Initially all tapes except for one, which
contains the input, have the start symbol in the first location and the blank symbol
in all other locations. The tape containing the input has the start symbol in its first
location followed by the finite input string (not containing blank symbols) and the rest
of tape contains blank symbols. The start configuration of M is defined by all heads of
M being on the left most position of the tapes and M is in state qstart. The state qhalt is
the halting state of M , specified by the property that δ disallows any further changes of
states or modifications of the tapes. Let us now define the measure of complexity of our
model of computation. Intuitively, the complexity of a TM M computing a function is
given by the number of steps M performs in order to compute its output.

Definition 2.2.1. Let f : {0, 1}∗ → {0, 1}∗ and T : N → N, and let M be a Turing
machine. We say M computes f in time T -time if ∀x ∈ {0, 1}∗, M halts after at most
T (|x|) steps with f(x) written on its output tape.
Turing machine M computes f if it computes f in T -time for some T : N → N.

2.2.2 Complexity Classes
We are now ready to formally define complexity classes, which are sets of languages that
can be computed with a certain (asymptotic) time bound.

10

2.2. Computational Complexity

Definition 2.2.2. Let T : N → N be some function. The set of all Boolean functions
that are computable in c · T -time for some constant c > 0 is denoted DTIME(T (n)).
The class of polynomial-time decision problems is defined as

P =
c≥1

DTIME(nc)

DTIME refers to deterministic time, hence these languages can be computed by deter-
ministic TMs. The class P is generally associated with efficiently computable languages.
Informally, NP is the class of languages whose correctness is easy to verify. Hence,
provided with a possible solution to a problem instance, a certificate, it is computably
easy to verify if the certificate is a correct solution of the problem.

Definition 2.2.3. A language L ⊆ {0, 1}∗ is in NP if there exists a polynomial p : N → N
and a polynomial time TM M s.t. for every x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1

Note that as it is allowed that p(|x|) = 0 (u is empty) it follows directly that P ⊆ NP
by definition. Non-deterministic computation is characterized by a variant of ordinary
Turing machines called non-deterministic Turing machines (NDTM). These TMs have
two transition functions and an additional special state, qaccept. A non-deterministic TM
is said to accept the input if the accepting state qaccept is reached by some computation
branch of the machine. When an NDTM M computes a function, it makes an arbitrary
decision at each step, deciding which transition function to apply. Machine M accepts
an input if there exists a sequence of such choices that makes M reach an accepting
state. Conversely, M rejects if all such sequences of choices reach a halting state without
reaching an accepting state. We say M runs in time T if for every input x ∈ {0, 1}∗ and
every sequence of non-deterministic choices, M reaches a halting state or an accepting
state within T (|x|) steps.
Let the complement of a language L ⊆ {0, 1}∗ be denoted as L̄, i.e., L̄ = {0, 1}∗ \ L.
Intuitively, NP computation can be thought of as certifying computation, in the sense
that the accepting computation path of a NP TM serves as certificate for an element of
the language it decides. The following definition provides us with the complexity class
that defines languages whose complements can be certified in NP.

Definition 2.2.4. coNP = {L : L̄ ∈ NP}

It is essential to say that coNP is not the complement of NP. In fact, NP ∩ coNP = ∅
and P is contained in this intersection. A wide-open question in complexity is if it
holds that NP = coNP. It is widely believed that these classes are in fact unequal. An
alternative definition for coNP in a similar fashion as the definition of NP would be
to define coNP as the class of languages for which a polynomial time TM M accepts
an input for all certificates. The exponential time analogues for P and NP are defined
in a similar fashion as their polynomial equivalents, i.e., EXP = c≥0 DTIME(2nc) and
NEXP = c≥0 NTIME(2nc).

11

2. Preliminaries

2.2.3 Reductions

In order to prove hardness results of problems, it is generally useful to use the notion of
reductions. Thus, for instance by (polynomial-time Karp-) reducing an NP-hard problem
to a new problem, we can conclude that the new problem is also NP-hard. We give an
exemplary definition of polynomial-time Karp reductions.

Definition 2.2.5. A language L ⊆ {0, 1}∗ is polynomial-time Karp reducible to L ⊆
{0, 1}∗, denoted as L ≤p

m L , if there is a polynomial-time computable function f :
{0, 1}∗ → {0, 1}∗ s.t. for every x ∈ {0, 1}∗, x ∈ L ⇔ f(x) ∈ L .

We can also generalize this notion of reducability to functions of various complexity
classes. We write L ≤C

m L if there is a function f ∈ C s.t. x ∈ L ⇔ f(x) ∈ L , where C
is a complexity class. There is a more powerful notion of reducability that uses oracle
TMs to prove a result. Informally, oracle Turing Machines are TMs that have access
to an oracle that can act as black box for a certain problem and can answer questions
about the respective language in one computational step. For instance, a TM can ask an
oracle for a language L: “is x in L” and the oracle will reply with the correct answer in
one step. Results obtained in such a way are called relativized. In general, the language
O ⊆ {0, 1}∗ is called the oracle for a TM. We say that a language L is Turing reducible
to L ⊆ {0, 1}∗, denoted as L ≤C

T L , if there is an oracle machine M ∈ C accepting L
when given oracle L . Alternatively we write L ∈ CL .

2.3 Datalog Foundations

Let us introduce some basic notions in the area of logic programming. We follow [Llo87].
The theory of logic programs lays the foundation of Datalog languages. We consider
countably infinite, disjoint sets of predicates, variables, and constants. The union of
the set of variables and the set of constants is the set of terms. Each predicate P has
non-negative arity n, written as P/n for some n ≥ 0. The position P [i] of an n-ary
predicate P for some i ∈ [1, n] denotes the i-th argument of P . An atom is of the form
P (t1, . . . , tn) where P is an n-ary predicate and t1, . . . , tn are terms. We write vars(α)
to denote the set of variables occurring in the atom α. Variable free terms are called
ground. A rule r is a FO sentence of the form ∀xφ → ψ where x contains all variables
in φ and ψ and φ is called body and ψ is called the head of the rule. The formula φ is
a conjunction of atoms and the head consists of one atom. We use head(r) to denote
the atom in the head of r and body(r) to denote set of body atoms of r. A fact is a rule
r with body(r) = ∅ and head(r) contains only constants (similar to a unit clause in
classical logic programming [Llo87]). A logic program P consists of a set of rules whose
variables are assumed to be universally quantified (we usually do not write the universal
quantifiers explicitly). A substitution is a function h : T → T where T, T are sets of
terms. We write h|S to denote the restriction of h to some S ⊆ T : {t → h(t) | t ∈ S}.

12

2.4. Database-theoretic Notions

2.3.1 Semantics of Logic Programs
The semantics of logic programs is defined via traditional notions stemming from math-
ematical logic such as interpretations and models. Let us introduce some standard
definitions.

Definition 2.3.1. (Herbrand Universe, Herbrand Base) Let L be a FO language.
The Herbrand universe is the set UL of all ground terms constructed from constants and
function symbols in L. The Herbrand base of L is the set HBL of all ground atoms that
can be formed using predicate symbols in L with ground terms from UL as arguments.

The Herbrand base is the set of atoms that can be constructed from symbols of the
language with ground terms of the universe. This is used as fundamental notion for
interpretations and models of languages that are used to describe the semantics of logic
programs, similarly to interpretations in model theory.

Definition 2.3.2. (Herbrand Interpretation) Let L be a first-order language. The
Herbrand interpretation is an interpretation whose domain is UL, mapping constants
c ∈ L to c.

Definition 2.3.3. (Herbrand Model) Let L be a first-order language and S a set of
closed formulas of L. A Herbrand model for S is a Herbrand interpretation for L which
is a model of S.

For a set S of formulas, we will refer to an interpretation of S rather than to the underlying
FO language, assuming that the language is defined by constants and predicate symbols
from S. Thus, we refer to Herbrand interpretations of S as subsets of HBS . Mostly, S
will be a program P and we refer to UP and HBP .

The following definition introduces a forward chaining operator which is applied rules
in an iterative way. The least fixpoint of this operator can be used to define the least
fixpoint semantics of logic programs, which is a notion heavily used in logic programming
and Datalog.

Definition 2.3.4. (Immediate Consequence Operator) Let ground(P) be the set
of all ground instances of rules in P . The immediate consequence operator TP is a function
on Herbrand interpretations of P :

TP(I) = {α | α ← β ∈ ground(P) ∧ {β} ⊆ I}

2.4 Database-theoretic Notions
Let us introduce fundamental definitions specifically related to a database theoretic
context. Logic programming and database theory are deeply interconnected. For
definitions we follow [BGPS19] in this section. We need the following notions: a schema
S is a finite set of predicates. An instance J over S is a set of atoms that contains

13

2. Preliminaries

constants and labelled nulls that are equivalent to new Skolem constants, not appearing
in the set of terms yet. A database over S is a finite set of facts over S. Since queries can
be seen as functions, mappings between sets of atoms are important in a database context.
An atom homomorphism between two sets of atoms A, B is a substitution h : A → B
s.t. h is the identity for constants and P (t1, . . . , tn) ∈ A implies h(P (t1, . . . , tn)) =
P (h(t1), . . . , h(tn)) ∈ B. We consider conjunctive queries, which are equivalent to simple
SELECT, FROM, WHERE queries in SQL and are of main interest in database theory.
A conjunctive query (CQ) over a schema S is a rule of the form

Q(x) ← P1(z1), . . . , Pn(zn),

where the predicate Q is used in the head only, P1, . . . , Pn are atoms without nulls and
x ⊆ zi are the output variables. A Boolean conjunctive query (BCQ) is a CQ where
the head predicate Q is of arity 0, hence contains no (free) variables in x. The answer to
a BCQ q is yes if the empty tuple () is an answer of q.

The evaluation of a CQ q(x) over an instance J is the set of all tuples of constants induced
by a homomophism h(x), where h : atoms(q) → J . We mostly consider an extension of
traditional logic programs, which allow existential quantification in rule heads. These
types of rules are called Tuple Generating Dependencies in database theory.

Definition 2.4.1. (Tuple Generating Dependencies, TGDs) A Tuple Generating
Dependency σ is a first order sentence of the form

∀x∀y(φ(x, y) → ∃zψ(x, z)),

where x,y,z are tuples of variables and φ, ψ are conjunctions of atoms without constants
and nulls. Equivalently to standard Datalog rules, body(σ) and head(σ) denote the body
and head of the rule. The frontier of σ is defined as frontier(σ) = vars(φ) ∩ vars(ψ). The
set of existential variables in σ is var∃(σ) = vars(ψ) \ frontier(σ). The set of predicates in
Σ is denoted sch(Σ).

For brevity we typically write a TGD φ(x, y) → ∃zψ(x, z) and use comma instead of
∧ to indicate conjunctions (and joins respectively). A TGD σ is applicable w.r.t. an
interpretation I if there exists a homomorphism h s.t. h(body(σ)) ⊆ I. If a TGD
is applicable to an interpretation, it can be applied, deriving the head atom of the
TGD. Having the definition of rule applicability at hand, we can now define the formal,
model-theoretic semantics of TGDs w.r.t. an interpretation.

Definition 2.4.2. (Semantics of TGDs) An instance J satisfies a TGD σ, denoted
J |= σ, if the following holds: If σ is applicable w.r.t. J , i.e., there is a homomorphism h
in σ s.t. h(φ(x, y)) ⊆ J then there is a homomorphism h ⊇ h|x s.t. h (ψ(x, z)) ⊆ J .
An instance J satisfies a set of TGDs Σ, J |= Σ, if J |= σ for each σ ∈ Σ.

Since we are concerned with the complexity of reasoning with logical languages, we need
to define fundamental reasoning tasks whose complexity we use as measure. These are

14

2.4. Database-theoretic Notions

the main problems we use in our complexity theoretic investigations. Conjunctive query
answering is one of the fundamental reasoning tasks of TGDs [BGPS19].

Definition 2.4.3. (CQ answering under TGDs) Given a database D and a set of
TGDs Σ, an instance J is a model of D and Σ s.t. J ⊇ D and J |= Σ. We use mods(D, Σ)
to denote the set of all models of D, Σ.

One of the main tasks considered in database systems is computing the certain answers,
cert(q, D, Σ) to a query q, which is usually defined as the set of tuples occurring in
all models of a database and a set of TGDs: cert(q, D, Σ) = J∈mods(D,Σ) q(J). For
complexity theoretic questions we consider the corresponding decision problem of deciding
whether for a tuple c, c ∈ cert(q, D, Σ) and denote this decision problem CQAns(Σ).

Chase Procedure. The standard technique that can be applied to solve the problem
of computing certain answers is the chase procedure [JK82, MMS79]. This is a forward
chaining approach to compute the certain answers to a query. We let chase(J, Σ) denote
the result of applying the chase procedure for an instance J under a set of TGDs Σ (i.e.,
a universal model which is homomorphically embeddable into every other model of D
and Σ). A standard result in database theory is that given a database D and a CQ q,
cert(q, D, Σ) = q(chase(D, Σ)).

A central problem in database theory is the problem of checking whether a certain tuple
can be derived from a database and a set of rules, i.e., whether the database and the set
of rules entail a certain tuple. This problem is usually called query evaluation.

Definition 2.4.4. (BCQ Evaluation Problem, BCQEval) Given a BCQ q, a set of
TGDs Σ and a database D, the BCQ evaluation problem is to decide whether the empty
tuple () is entailed:

D ∪ Σ |= q

Note that showing that D ∪ Σ |= q ⇐⇒ showing D ∪ Σ ∪ {¬q} is an unsatisfiable theory
(i.e., an unsatisfiable set of first-order sentences) [CGK13]. A classical result in database
theory shows that two of the most fundamental problems, CQAns and BCQEval are
LogSPACE-equivalent [CGK13].

Another fundamental problem that is often used to prove complexity results about
Datalog languages is the problem of deciding whether a database D and a set of rules Σ
entail a certain fact.

Definition 2.4.5. (Fact Entailment Problem, Factent) Given a program P = D∪Σ
and a fact α, the problem of deciding whether P |= α is denoted Factent.

Note that since we can encode a CQ as a rule (a CQ is essentially a rule), the notion of
fact entailment subsumes conjunctive query answering [Kos20, BLMS11]. The following
easy to verify proposition formalizes this intuition.

15

2. Preliminaries

Proposition 2.4.6. BCQEval ≤p
m Factent.

Proof. Let Q = φ(x) → q be a BCQ. We construct an instance of Factent (P, α):
P = φ(x) → q and α = q.

• (=⇒) If Q is a positive instance of BCQEval then there exists a homomorphism
h : h(φ(x)) ∈ I for an interpretation I. Then I |= P implies I |= α, thus P |= α.

• (⇐=) If P |= α then I |= α whenever I |= P . Hence, I |= φ(x) and q ∈ I.

The reduction is clearly computable in polynomial time.

As with problems above, we consider both data complexity and combined complexity of
Factent:

• Combined complexity: we assume P and α are part of the input
• Data complexity: we assume P to be given as a dataset D and a program P :

P = P ∪ D where only D and α are part of the input and P is fixed.

2.5 Logical Core of Vadalog
The logical core of Vadalog is an extension of Datalog± which is a family of Datalog
languages with existentials in rule heads and restrictions in order to make the language
decidable. This fragment restricts the way nulls can be propagated when applying
TGDs. In this section we give the basic definitions of this fragment, called Warded
Datalog±. Moreover, we review the way the Vadalog language restricts recursion leading
to the definition of piece-wise linear Warded Datalog±. We review the most important
definitions and theorems around Warded Datalog± proposed in [BGPS19]. Warded
Datalog± restricts the syntax of TGDs in order to control the use of so-called dangerous
variables that can be unified null values in existential rule heads during program evaluation.
It introduces wards, which are designated body atoms that firstly cover all dangerous
variables that might be unified with a null value during program evaluation and secondly,
the ward restricts the way the rest of the body can interact with those values. The
goal is to restrict derivation of predicates with null values, since it has been shown
that unrestricted use of dangerous variables has a direct relation to high complexity of
reasoning [CGK13]. In order to define wardedness we need several basic definitions. We
define the set of positions of a schema S, pos(S) as the set {P [i] | P/n ∈ S, i ∈ [1, n]}.
We write pos(Σ) to denote the respective set over a set of TGDs Σ.

Definition 2.5.1. (Affected Positions) The set of affected positions of sch(Σ), denoted
affected(Σ) is defined inductively:

• if there exists σ ∈ Σ and a variable x ∈ var∃(σ) at position π, then π ∈ affected(Σ),
and

• if there exists σ ∈ Σ and a variable x ∈ frontier(σ) in the body of σ only at positions
of affected(Σ) and x appears in the head of σ at position π, then π ∈ affected(Σ).

16

2.5. Logical Core of Vadalog

The set of non-affected positions is defined as: nonaffected(Σ)= pos(Σ) \ affected(Σ).

Depending on the position variables occur in rules and how they “interact” with nulls
and other variables, we can classify them into three stages.

Definition 2.5.2. (Harmless, Harmful and Dangerous Body Variables) For a
TGD σ ∈ Σ and a variable x ∈ body(σ):

• x is harmless if at least one occurrence of it is in body(σ) at a position π ∈
nonaffected(Σ)

• x is harmful if it is not harmless
• x is dangerous if it is harmful and x ∈ frontier(σ)

We are now ready to formally define wardedness.

Definition 2.5.3. (Warded TGDs) A set Σ of TGDs is warded if either

1. for each σ ∈ Σ, there are no dangerous variables in body(σ), or
2. there is an atom α ∈ body(σ), called ward, s.t. (i) all the dangerous variables

in body(σ) occur in α and (ii) each variable of vars(α) ∩ vars(body(σ) \ {α}) is
harmless

Let WARD denote the family of all finite warded sets of TGDs. Reasoning with warded
TGDs is tractable in data complexity. More formally, CQAns(WARD) is EXP-complete
in combined complexity and P-complete in data complexity [AGP14]. Besides limiting
the way variables can interact with atoms in TGDs, Vadalog employs another restriction
which controls the way recursion is allowed by warded rules. The intuition behind this
idea is that each TGD has at most one atom in the body of the rule whose predicate
is mutually recursive with a predicate occurring in the head of the TGD. This type
of recursion is called piece-wise linear recursion and has already been investigated in
the context of Datalog. In order to define piece-wise linearity we need to define some
preliminary concepts. The predicate graph of a set of TGDs Σ, denoted pg(Σ) is a
directed graph G = (V, E) where V = sch(Σ). The edge relation is defined as follows:
E = {(P, R) | σ ∈ Σ : P ∈ body(σ) and R ∈ head(σ)}. Two predicates P, R are mutually
recursive if there exists a cycle in the predicate graph containing P and R.

Definition 2.5.4. (Piece-wise linear TGDs) A set of TGDs Σ is piece-wise linear if
for each σ ∈ Σ there exists at most one atom in body(σ) whose predicate is mutually
recursive with a predicate in head(σ). We let PWL denote the family of set of piece-wise
linear TGDs.

By restricting warded TGDs to be piece-wise linear the data complexity of reasoning can
be pushed down even further and in [BGPS19] the authors show that CQAns(WARD
∩ PWL) is PSPACE-complete in combined complexity and NLogSPACE-complete in
data complexity. Moreover, the combination of piece-wise linearity and wardedness is
reasonable since reasoning with piece-wise linear rules is undecidable in general [BGPS19].

17

2. Preliminaries

2.6 Limit DatalogZ

We review the main definitions and results presented by Kaminski, Grau, Kostylev,
Motik and Horrocks (KGKMH) in [KGK+17]. In DatalogZ we assume countably infinite
(mutually disjoint) sets of objects, object variables, numeric variables, and predicates.
Each predicate position is either an object or a numeric position. The set of predicates
also contains {≤, <} which we denote comparison predicates. Variables can be object
variables or integer variables. We consider integers in Z and {+, −, ×} are the standard
arithmetic functions of addition, subtraction, and multiplication over the standard field
of integers, Z. An object term is either an object variable or an object. A constant is
an object or an integer from Z. A numeric term is an integer, a numeric variable or an
arithmetic term of the form t1 ◦ t2 where ◦ ∈ {+, −, ×} and t1, t2 are numeric terms. We
distinguish between standard and comparison atoms. Standard atoms are of the form
A(t1, . . . , tn) where A/n is a standard predicate and each ti is a term. Comparison atoms
have the form t1 ◦ t2, where t1, t2 are numeric terms and ◦ ∈ {≤, <} is a comparison
predicate. As in Datalog, a rule r is a sentence ∀xφ → ψ. The body of r, φ, is a
conjunction of atoms, the head of r is a standard atom and x denotes the tuple containing
all variables in head and body of r. We use sb(r) to denote the standard body of r,
consisting of a conjunction of all standard atoms in the body of r and analogously we use
cb(r) to denote the conjunction of all comparison atoms in the body of r. Equivalently
to above we use head(r) and body(r) to denote the head and body of r. A fact is a rule
that has an empty body and there are no variables or arithmetic functions in the head of
the rule.

We adapt the usual Datalog notions to DatalogZ. An interpretation I is a set of facts. I
satisfies a ground atom α, I |= α if one of the following holds:

• α is a standard atom and I contains each fact obtained from α by evaluating the
numeric terms in α;

• α is a comparison atom, evaluating to true under the usual semantics of comparisons

This notion can be extended to conjunctions of ground atoms, rules and programs as in
first-order logic. A model is an interpretation that satisfies all rules of a program: I |= P .
We say P entails a fact, P |= α, if whenever I |= P then I |= α holds. We are specifically
interested in fact entailment as a fundamental problem of Datalog languages.

A first result shows that even when only using addition, Factent is still undecidable for
DatalogZ programs, even if the program contains no multiplication or subtraction and each
atom has at most one numeric term. As Factent is undecidable for DatalogZ [DEGV01]
and is even undecidable if a program contains no multiplication or subtraction and each
standard atom has at most one numeric term, Kamninski et al. introduced limit programs.
First and foremost, this fragment is a semantic restriction of how numeric values are
handled, however as the authors point out, one can axiomatize their limit notion in
DatalogZ. This axiomatization, however, requires constructing atoms for all integers.

18

2.6. Limit DatalogZ

Definition 2.6.1. (Limit DatalogZ) Predicates in limit DatalogZ are either object
predicates without numeric positions or numeric predicates where only the last position is
allowed to be numeric. Limit DatalogZ distinguishes between limit numeric predicates and
ordinary (exact) numeric predicates. Limit predicates are either min or max predicates.
A DatalogZ rule r is a limit rule if either

• body(r) = ∅, or
• each atom in sb(r) is an object, ordinary numeric or a limit atom and head(r) is an

object or limit atom and all exact predicates are EDB

A limit DatalogZ program P is a program that contains only limit rules.

For a limit atom C we write C for ≤ if C is max and ≥ if C is a min limit predicate (with
≺C , C , C defined accordingly). Essentially, limit predicates are used to keep track of
the minimum/maximum integer value for a tuple of a predicate. Let us now formally
recall the most important definitions of Kaminski et al. and their limit fragment as they
are needed for parts of our work. First, the notion of interpretations must be adapted to
capture the semantics of limit predicates. We want to be able to formally express that
min/max predicates imply the validity of numeric predicates that are subsumed by the
limit notion.

An interpretation I is limit-closed if C(a, k) ∈ I for each limit fact C(a, k) ∈ I and each
integer k s.t. k C k. Note that if a limit-closed interpretation contains B(t, k) then it
holds that either

• B(a, l) for an integer l C k and B(t, k) /∈ I for all k C l , or
• B(t, k) ∈ I, ∀k ∈ Z.

Limit-closed interpretations containing at least one limit fact are infinite in general.
Therefore, we use the notion of pseudointerpretations which allow for a finite representation
of interpretations and correspond naturally to limit-closed interpretations. In Datalog it
is common to consider groundings of variables and programs for simplicity, i.e., eliminate
variables from rules and programs. But since in DatalogZ numeric values range over Z,
groundings can be infinite. Kaminski et al. propose the notion of semi-groundings to
tackle this issue by eliminating only variables that do not occur in limit atoms. In the
following we usually consider semi-ground programs.

In order to express the notion of limit interpretations in a finite way, the authors resort to
introducing a new symbol, ∞, in interpretations s.t. for all limit facts B(t, k1), B(t, k2) ∈
J : k1 = k2 for k1, k2 ∈ Z ∪ {∞}. Such interpretations over Z ∪ {∞} are called
pseudointerpretations.

Example 2.6.2. (Interpretations & Pseudointerpretations) Assume I is a limit-closed
interpretation, I = {A(t, k), B(s, l), C(4)} for k ≥ 3, l ∈ Z, for some limit DatalogZ
program, where A is a max predicate, B is a min predicate and C(2) is an exact numeric
predicate. The pseudointerpretation corresponding to I is J = {A(t, 3), B(s, ∞), C(4)}.

19

2. Preliminaries

It is easy to see that limit-closed interpretations and pseudointerpretations admit a
one-to-one correspondence. The notion of the classical immediate consequence operator
TP , must be adapted to pseudointerpretations. Checking rule applicability is a little
more difficult for limit atoms than for normal atoms since atoms in the interpretation
might not fit directly but might still be applicable due to the limit semantics. Therefore,
TP converts each r ∈ P into a linear integer constraint s.t. r is applicable if and only
if its corresponding constraint has a solution. Then TP derives the optimal head value
according to the integer solution of the rule, i.e., the largest value in all integer solutions
for max head atoms and the smallest value for min atoms.

Example 2.6.3. (Rule Applicability) Let r = A(t1, x) ∧ (x ≥ 0) → B(t1, x + 1), where
A, B are max limit predicates. Furthermore, let J = {A(t, 1)} be a pseudointerpretation.
The corresponding integer constraint C(r, J) = (x ≥ 0) ∧ (x ≤ 1) has solutions {x → 0}
and {x → 1}, hence r is applicable to J . Since B is max, TP derives B(t1, 2).

KGKMH show that even for limit DatalogZ programs, Factent is still undecidable. This
is due to the fact that multiplication is allowed in rules which implies that checking rule
applicability is equivalent to solving non-linear inequalities over integers. Thus, KGKMH
restrict the language to limit linear DatalogZ, essentially disallowing multiplication
through restricting programs to linear numeric terms. In limit linear DatalogZ in each
multiplication at most one argument may contain one variable that does not occur in the
rule body in a function-free exact atom. This ensures that each variable occurring in
a function-free exact atom can only be matched to facts explicitly mentioned in P. By
reduction to validity of Presburger Arithmetic, KGKMH showed that the restriction to
linear multiplication leads to decidability, i.e., that limit-linear DatalogZ is decidable.

Example 2.6.4. (Limit linear DatalogZ) Let A, B, C, T be max limit atoms and R a
EDB numeric (exact) atom. The following rule is not linear, since both variables in the
multiplication term occur in limit body atoms.

A(x), B(y) → C(x × y) (2.1)

In contrast, the following rules are limit-linear, as in the first rule x is a limit variable
and 3 a constant. In the second rule both x is a limit variable and y does not occur in a
limit atom.

A(x) →C(x × 3) (2.2)
A(x), R(y) →T (x × y) (2.3)

A key element in the complexity proofs of limit DatalogZ is the fact that we can bound the
magnitudes of integers in limit linear DatalogZ programs. The main result of KGKMH is
the following Theorem. They prove upper bounds on the pseudomodels and integers in
pseudomodels of limit DatalogZ programs and Theorem 2.6.5 shows that these bounds
are tight by proving matching lower bounds.

20

2.6. Limit DatalogZ

Theorem 2.6.5. For a limit-linear program P and a fact α, Factent is coNEXP-
complete in combined complexity and coNP-complete in data complexity.

Remarks. The results of Kaminski et al. allow for decidable and even tractable arith-
metic in DatalogZ. However, their fragment was not shown to be extendable to more
general forms of aggregation (i.e., they do not include other aggregate functions as sum
or count). Furthermore, they use a rather implicit semantic notation, which can be
cumbersome to use. We try to tackle these problems by introducing an equivalent purely
syntactical formulation in Section 4.2. Moreover, as mentioned above, limit DatalogZ is
too weak for reasoning in KGs.

21

CHAPTER 3
Related Work

In this chapter we discuss some scientific background on research areas of interest and
state-of-the-art research. We focus on high-level discussions and approaches of relevance
to our work. This chapter is organized as follows. We start with a short (historical)
background on Knowledge Graphs in Section 3.1. In Section 3.2 we discuss a family of
Datalog fragments which constitute the basis for modern reasoning languages. Section 3.3
discusses approaches for arithmetic in Datalog. We will return to these approaches in
our final Discussion in Chapter 4.5. Finally, we give a brief background on descriptive
complexity theory in Section 3.4.

3.1 Background on Knowledge Graphs
Let us briefly discuss some historical developments around KGs, in order to be able to
show the importance of KGs and their far-reaching influence in academia and industry.
This is especially intriguing since the research around KGs brings together a broad variety
of related research fields. There are several key research areas whose development lead
to the creation of Knowledge Graphs [GS21]. Important examples are:

1. Automated Reasoning
2. Search Problems
3. Data Management Systems
4. Knowledge Representation

Research in automated reasoning lead to essential developments, such as the creation
of programs for solving problems which require “intelligence” [NSS59], the resolution
principle [Rob65], and work on the connection between automated theorem proving
and deductive databases [GR68]. Further essential findings were the development of
search algorithms (e.g., A∗) for large search spaces, which is vital for modern AI ap-
plications, the development of systems for semantic information retrieval [GR68], and

23

3. Related Work

the creation of database management systems which stems from a line of work initiated
by Bachman et al. [Bac09]. Collecting and managing knowledge has been important
for the industry especially since the late 1970s and 1980s when expert systems and
deductive databases grew more and more interesting for enterprises, e.g., as tools to
support decision making on business level using enterprise knowledge. Cornerstones in
this area were the development of the relational model for databases and the ER model
as graph model of databases [Cod70, Che76]. A breakthrough result by Hayes showed
that first-order logic was able to formalize frame networks [Hay77]. Frame networks
are represented as nodes and relations and built on rather weak logical foundations.
Frame networks were considered to be the first knowledge reasoning and knowledge
representation systems [Min19]. Soon logic based programming languages such as Prolog
with corresponding knowledge based systems emerged [DBS77]. Brachman and Levesque
discussed the direct relation between expressive power and complexity of logic and thus
created the foundation for investigations of logics with nice properties. This insight gave
rise to description logics and F-logic [BL84]. Deductive databases tackled the problem
of unifying logic and relational databases into coherent systems. One of the first such
systems was LDL [TZ86]. Furthermore, for deductive database systems Datalog emerged
as primary programming language. The further development of deductive database
systems lead to great interest in finding well behaving Datalog fragments. Disjunctive
Datalog [EGM97], Datalog± [CGL09a] and probabilistic Datalog [Fuh95] are famous
examples for early findings in this area. The so-called Big Data revolution, starting in the
2000s, lead to the fact that large companies were interested in pushing boundaries on sys-
tems that operate on huge amounts of data. These developments were especially relevant
in the context of AI, machine learning, and deep learning as statistical methods and deep
learning require handling large amounts of data. With the ever growing mass of data and
the complementing rise in the complexity of data, the need to maintain knowledge in a
scalable way has gained more and more weight. In particular, recent developments in AI
research pushed the need for handling huge amounts of data. While the term Knowledge
Graph (KG) had previously been mentioned in the literature [Bak87], it was coined by the
development of Google’s Knowledge Graph [Sin12]. There is no standard definition for
the term Knowledge Graph in the literature. In spite of that it is common understanding
that on a high level a Knowledge Graph is a large network of entities, properties and
relationships between entities [EW16] and allows for the integration of data, knowledge,
logic, and statistical methods. Hence KGs can be considered as frameworks that unify
the developments of various research areas of the past 60 years.

3.1.1 State-of-the-Art Knowledge Graph Systems
The Vadalog system, which is part of the VADA research project [FGNS16, GPL,
KKA+17], is a Knowledge Graph system built on top of the underlying Vadalog language,
which is based on Datalog. The most interesting part of Vadalog concerning this
work is its logical core, with its underlying Vadalog language and reasoning engine.
Further prominent examples for KGs are YAGO [SKW07], Freebase [BEP+08] and
DBpedia [ABK+07], amongst others. An example for a practical use case scenario for

24

3.2. Datalog±

Knowledge Graphs is close link detection between companies, which is highly relevant
for financial institutions. Close link detection ensures that companies that have a close
relationship to each other cannot act as guarantors for one another, for instance in
the case that one company is a subsidiary of another. Modelling such a scenario in a
KG is very straight forward, as companies can be represented as entities in the KG
and relationships (e.g., a relationship owns(x,y) whenever company x owns company
y) between those entities as relationships of the KG [GPS19]. Another example is the
detection of how certain control units (e.g., families) influence companies, i.e., checking
the total number of shares of an asset owned by members of the same unit (family). This
use case was denoted Detection of Family Owned Business in [BFGS19]. In Section 4.4 we
provide an example written in our new language, which can easily express this exemplary
use case.

3.2 Datalog±

Datalog± [CGL09b] is a family of logical languages based on Datalog. Additional features,
that Datalog± languages extend Datalog with, are (one or a combination of) existentials,
equality and the logical constant falsum, ⊥, in rule heads. A naive combination of only
one of these features with Datalog immediately leads to undecidability of the language.
Hence, languages of the Datalog± family introduce syntactic restrictions in order to obtain
decidability and in the further course tractability and efficient reasoning algorithms. In
the following section we focus on Datalog± languages that allow existentials in rule heads,
since this extension is the most relevant one for the rest of our work.

From traditional logic programming and Datalog in particular, we know that for each
dataset D and set of rules Σ, there is a unique least minimal model denoted LHM(D ∪Σ)
(for least Herbrand model). The LHM(D ∪ Σ) contains all ground atoms s.t. D ∪ Σ |= a
for a fact a. Moreover, LHM(D ∪ Σ) can be computed by a least fixpoint computation.
There are several use cases for which we want to define the existence of variables which
do not appear in the universe of the input of the logic program at hand [CGL+10]. For
instance:

1. Data Exchange: tasks such as copying data between databases with heterogeneous
schemas

2. Ontological Query Answering: specifically for Description Logics [BCM+03]. In
ontological query answering we want to formalize ontological knowledge about
entities and the existence of relationships between entities of a certain domain

3. Web Data extraction: In order to identify objects on a web page and grouping such
matched objects into a coherent, new object, existentials are needed

Rules that can have existentials in the rule heads are called tuple generating dependencies
(TGDs) in database theory. It is known that fundamental reasoning tasks for TGDs,
such as deciding whether D ∪ Σ |= a for a fact a, are undecidable [BV81]. Let us now
discuss several languages of the Datalog± family and syntactic restrictions introduced by

25

3. Related Work

each of those fragments in order to obtain decidability of basic reasoning tasks. Some of
the most prominent examples of Datalog± languages in research are

• Guarded Datalog±

• Linear Datalog±

• Weakly guarded Datalog±

• Sticky Datalog±

We will focus on the first three fragments and refer the reader to [CGP10] for a thorough
discussion on sticky Datalog± and its complexity. In the following we assume the existence
of some schema S for sets of rules, queries and databases (instances) and omit an explicit
declaration in definitions and theorems.

3.2.1 Guarded Datalog±

The syntactic property introduced in guarded Datalog± in order to obtain decidability
of reasoning in the language is guardedness. This property restricts the rule bodies s.t.
there is one atom containing all universally quantified variables of the rule.

Definition 3.2.1. A TGD σ is guarded if it contains a body atom which contains all
universally quantified variables of σ. A set of TGDs Σ is guarded if each rule σ ∈ Σ is
guarded.

Consider the following examples, which highlight the difference between guardedness and
non-guarded programs.

Example 3.2.2. (Graph Reachability in a Digraph) Given a digraph represented
by the relation Edge/2, a unary relation Special, and a unary relation Reachable. The
following program computes the set of vertices reachable, encoded in Reachable from
the special vertices in the digraph:

S(x) →Reachable(x)
Reachable(x), Edge(x, y) →Reachable(y)

Example 3.2.3. (Transitive Closure) Let Edge be as in Example 3.2.2 and Closure/2
be a predicate. The following program computes the transitive closure encoded in Closure
on the graph given by Edge:

Edge(x, y) →Closure(x, y)
Edge(x, y), Closure(y, z) →Closure(x, z)

Example 3.2.3 is guarded, as the S predicate in the first rule and the Edge predicate
in the second rule act as guards and cover all universally quantified variables in the
respective rule. Conversely, Example 3.2.2 is not guarded since there is no atom that
covers all universal variables in the second rule. Guarded TGDs are theories in the

26

3.2. Datalog±

guarded fragment of FO logic [ANvB98]. Satisfiability of guarded FO sentences is 2·
EXP-complete. This bound carries over to TGDs as well. The guardedness condition
ensures the existence of tree-like universal models, which is the main aspect in the
decidability proof. The complexity of guarded Datalog± was investigated in [CGK13].
Cali et al. showed EXP-completeness for programs with atoms of bounded arity and
2·EXP-completeness for guarded Datalog±. The data complexity of guarded Datalog±,
however, is tractable - as the following theorem shows.

Theorem 3.2.4. Let Σ be a set of guarded Datalog± rules, D be an instance and let q
be a BCQ. Then deciding whether D ∪ Σ |= q is P-complete in data complexity.

3.2.2 Linear Datalog±

A fragment of guarded Datalog± is linear Datalog±, which only allows TGDs with a single
IDB body atom. Linear Datalog± enjoys the property of being FO rewritable which leads
to low data complexity. Extensions of linear Datalog± have been studied in [BLMS11].
For instance the first rule in Example 3.2.3 and the first rule in Example 3.2.2 are
linear. Intuitively, first-order rewritability reduces the entailment problem to a model
checking problem of a FO theory. To be precise, a class C of TGDs is FO rewritable
if for every set Σ ∈ of TGDs and every BCQ q, there exists a FO query qΣ s.t. it
holds that D ∪ Σ |= q ⇐⇒ D |= qΣ for every instance D. FO rewritability can be
established by leveraging tree-like properties of models of linear Datalog±, similar to
guarded Datalog±. A well-known result in database theory and logic is that linear TGDs
are FO rewritable. As FO query answering is in AC0 in data complexity [Var95] and
linear TGDs are FO rewritable, the following theorem that establishes the complexity of
linear TGDs immediately follows.

Theorem 3.2.5. Let Σ be a set of linear TGDs, D a database and q a BCQ. Then
deciding whether D ∪ Σ |= q is in AC0 in data complexity.

3.2.3 Weakly Guarded Datalog±

Weakly guarded Datalog± is a generalization of guarded Datalog± obtained by relaxing
the guardedness condition. Its definition is based on weakly acyclic TGDs [FKMP05].
Various extension of this fragment have been studied in [Mar09, GHK+13]. In order to
define weakly guardedness we need the definition of affected positions of a schema with
respect to a set of TGDs, see Definition 2.5.1.

Definition 3.2.6. Let S be a relational schema, Σ a set of TGDs over S. A TGD σ ∈ Σ
is weakly guarded w.r.t. Σ if there exist a body atom of σ that contains all universally
quantified variables of σ that appear in affected positions of S w.r.t. Σ.

Observe that the set of guarded TGDs is a subset of the set of weakly guarded TGDs,
hence guarded TGDs are weakly guarded.

27

3. Related Work

Example 3.2.7. (Weakly Guarded TGDs)

P (x, y) →∃zR(y, z)
R(w, x) →P (y, x)

The set of affected positions for the rules in Example 3.2.7 is {R[2], P [2]} and variable x
appears only at affected positions in the second rule. Hence the rules in Example 3.2.7
are weakly guarded.

Example 3.2.8. (Not Weakly Guarded TGDs)

P (x, y) →∃zR(y, z)
R(w, x), P (w, y) →P (w, x)

In Example 3.2.8 the set of affected positions is {R[2], P [2]} The first rule is weakly
guarded (and even linear) but the second rule is not weakly guarded, since x and y appear
only in affected positions but there is no atom covering both variables. The following
Theorem establishes the complexity of weakly guarded TGDs.

Theorem 3.2.9. Let Σ be a set of weakly guarded TGDs, D an instance and q a BCQ.
Deciding whether D ∪ Σ |= q is 2EXP-complete.

3.3 Arithmetic and Aggregation in Datalog
DatalogZ extends ordinary Datalog with integer arithmetic and comparison predicates.
These features are needed for data analytic tasks and the computation of traditional
problems in the domain of data analytics such as computing shortest path in a graph.
Dantsin et al. however showed that a naive combination of Datalog and arithmetic is
undecidable [DEGV01]. In this section we review approaches that try to bring together
Datalog and arithmetic or aggregation respectively, other than through naive combination
which allows arithmetic function symbols over integers in Datalog programs.

3.3.1 Limit DatalogZ

As we discuss limit DatalogZ and important technicalities in depth in Chapter 2, we only
give a brief overview for completeness’ sake at this point. Limit DatalogZ was introduced
by Kaminski et al. in [KGK+17] and allows for decidable arithmetic in positive Datalog
over integers. Additionally, Kaminksi et al. have recently investigated limit Datalog and
stratified negation [KGK+18] and disjunction and negation [KGKH20]. The main idea
is to introduce several semantic restrictions for DatalogZ in order to obtain decidability.
First, they introduce a special notion of predicates (limit predicates) which allow to
represent interpretations finitely (since interpretations over integers are infinite in general).

28

3.3. Arithmetic and Aggregation in Datalog

The authors remark, however, that this restriction is not yet enough to obtain decidatility
of the language, since the free use of multiplication renders the language undecidable.
Decidability is obtained by essentially disallowing multiplication, i.e., allowing linear terms
only. Finally, an efficient (polynomial time) fragment is defined by further restricting the
language through preventing divergence of numeric values during the application of the
immediate consequence operator used for reasoning.

3.3.2 DatalogF S

Mazuran et al. (MSZ) proposed DatalogF S in their line of work [MSZ13b, MSZ13a],
which lays the formal foundation of DeALS, a Datalog-based system for data analytic
tasks developed by Shkapsky et al. in [SYZ15]. Mazuran et al. tackle the problem of
using aggregate functions in recursive Datalog rules. Aggregation is needed for complex
analytic tasks, but ordinary aggregates violate monotonicity requirements the semantics
of (the fixpoint computation) Datalog is built upon. Hence, a simple combination is
undesirable. Therefore, they introduce an extension of Datalog, called DatalogF S , which
allows so-called frequency support goals in Datalog rules. Frequency support goals
enable counting of occurrences of predicates that satisfy conjunctions of goals in rules.
MSZ introduce a mechanism for monotonic counting whose semantics can be reduced
to standard Horn clauses and which is based on the fact that cumulative counting is
monotonic in the lattice of set containment [ZYD+17].

MSZ consider Datalog programs that are function symbol free and stratified w.r.t.
negation, i.e., a Datalog program P whose predicates are partitioned into strata s.t. for
each r ∈ P the head predicate of r is in a stratum which is higher than or equal to the
strata of body predicates in r and strictly higher than the stratum of every negated
predicate in r (we give a more technical definition in Chapter 2). Furthermore, MSZ use a
differential fixpoint computation, which uses a rewriting to avoid redundant computation
of facts, to define the semantics of DatalogF S programs.

Definition 3.3.1. (Syntax) DatalogF S is a function free, negation stratified fragment
of Datalog without comparison predicates, extending it with the following constructs:

1. FS goals which are either Running-FS goals or Final-FS goals and
2. multioccuring predicates (FS-assert terms)

such that the following hold:

• the head of a rule r can either be (i) an atom or (ii) a multioccuring predicate, and
• the body or a rule r consists of (i) (negated) atoms and (ii) FS-goals

A running-FS goal is of the form Kj : [φ], where φ is a conjunction of positive atoms and
Kj is a constant or variable not occurring in φ. The expression φ is called b-expression
(bracket expression). Variables in φ that also appear outside of the goal are called global
and correspond to universally quantified variables. Variables only occurring in φ are local
and correspond to existentially quantified variables, following the minimum frequency
support constraint set by Kj , meaning that there exists at least Kj distinct occurrences

29

3. Related Work

of the atoms in φ.
A final-FS goal is of the form Kj :=![φ], and allows to retrieve the exact number of Kj

distinct atoms in φ. A multioccurring predicate is of the form P (x) : K, where x is a
tuple of variables. Multioccurring predicates enable the expression of predicates with
support greater than one.

Definition 3.3.1 introduces the syntax of DatalogF S . While disallowing arithmetic and
comparisons in the syntax directly, the semantics of DatalogF S is based on a rewriting to
Datalog using arithmetic, comparisons, and lists. The semantics of each of the constructs
introduced above is defined via a rewriting to a set of Datalog rules. The semantics of
final-FS goals is defined via a rewriting to running-FS goals with an additional predicate,
hence it does not add to the expressive power directly and can be considered syntactic
sugar. Each running-FS goal of a DatalogF S program is rewritten separately into a set
of Datalog rules. This rewriting based semantics implies that DatalogF S goals do not
violate the monotonicity requirement of Datalog, hence FS-goals are monotonic w.r.t. the
usual set containment ordering of Datalog. Thus the use of FS-goals in recursion imposes
no problem w.r.t. least fixpoint semantics of Datalog. Let us introduce the rewriting for
Running FS-goals as exemplary rewriting proposed by MSZ. The semantics of Running
FS-goal Kj : [φ(x, y)] are defined by a rewriting to the predicate conj(Kj , x, _), where
conj(Kj , x, _) is defined as:

φ(x, y) → conj(1, x, [y])
φ(x, y), conj(n, x, t), notin(y, t), n1 = n + 1 → conj(n1, x, [y|x])

Where the predicate notin is defined without negation and can be reused between
rewritings of different running-FS goals as the definition is generic and independent of
the actual goal that is rewritten:

notin(x, [])
notin(x, t), x = y → notin(x, [y|t])

Hence, notin is a simple check if an element is in a list. The intuitive meaning behind
the semantics of a running-FS goal is therefore that the goal is satisfied if there are Kj

distinct atoms φ.

Consider Example 3.3.2 below. Instead of expressing all five different occurrences of
atoms S(x, y) explicitly, we can use a running FS goal.

Example 3.3.2. (Running FS-goal)

P (x) →R(x)
5 : [S(x, y)] →R(y)

30

3.3. Arithmetic and Aggregation in Datalog

Expressive Power

The authors show several results concerning the expressive power of DatalogF S . Their
main results in this respect state that stratified DatalogF S is not a subset of aggregation-
stratified Datalog (Da) and that negation stratified Datalog with addition (Datalog¬+)
is a subset of stratified DatalogF S .

Note that since it was shown that Datalog¬+ can express all computable functions on
ordered domains [MS95], their results imply that this property also holds for stratified
DatalogF S . Hence stratified DatalogF S can express all computable functions on ordered
domains. MSZ remark that since DatalogF S can express integer arithmetic, they al-
low arithmetic functions as part of the language. Note that this extension of course
immediately renders DatalogF S undecidable.

In order to compute a DatalogF S program, a semi naive bottom-up procedure is used.
Specifically, a differential fixpoint computation algorithm with some modifications for
DatalogF S . The differential computation is a rewriting of recursive rule bodies in order to
avoid redundant computations (i.e., avoid recomputing the same facts in each iteration).
The ordinary semi naive procedure for Datalog produces new δ rules for each recursive
goal in a rule by introducing a new δ predicate for each IDB predicate s.t. each atom
with a delta predicate was derived only at the previous step of the semi naive algorithm.
This enforces the computation of “new” facts only in each iteration of the algorithm.
Instead of producing a delta rule for each recursive goal in a recursive rule, MSZ show
that it suffices to differentiate the b-expression only once. Hence one differential rule is
needed for a running-FS goal in a recursive rule. MSZ propose a series of rewriting steps
for the semi naive evaluation of DatalogF S rules, reducing the differential fixpoint for
DatalogF S to that of standard Datalog.

Remark. In terms of applications and usability, the authors highlight with several
examples that DatalogF S enables expressing a variety of tasks. For instance, they give
DatalogF S programs for Markov chains and reachability in generalized hypergraphs.
Note, however, that their language is undecidable in general, and no decidable fragment
has been identified.

3.3.3 Ross Sagiv Formalism

Ross and Sagiv (RS) introduced a formalism for aggregation in Datalog in [RS92]. Their
ideas are based on a similar notion of iterated minimal models [CH85, Prz88, Naq86].
It is known that stratified aggregation, a restricted form disallowing recursion through
aggregation, can be used with the traditional least fixpoint operator from Datalog.
For many queries in analytic tasks however, aggregation needs to be used in recursion.
RS propose a formalism based on monotonicity assumptions of Datalog programs that
allows for aggregate functions that can be used in recursion. They also identify syntactic
conditions which imply monotonicity of respective programs and can be checked statically.

31

3. Related Work

Aggregation in Datalog

RS define their language as Datalog with comparisons and addition and multiplication
over N which may appear in rule bodies only. They extend ordinary Datalog with cost
predicates that have arguments ranging over a certain domain that is required to be a
complete lattice. In order to avoid inconsistencies, RS define that the cost argument of a
cost predicate functionally depends on the other atoms of the predicate. This restriction
allows duplicate elimination and enforces that atoms with the same object tuples and
different cost arguments cannot be true at the same time.

Example 3.3.3. Assume A(t, x) is an atom with cost argument x. If we compute the
sum for A(t, x) and A(t, 5) was derived twice (by separate rules), the sum over x should
be 5 not 10, since deriving 10 would be non-monotonic. Clearly, if A(t, 5) and A(t, 3)
have been derived, the sum should be 8.

This restriction also helps avoiding non-monotonic arithmetic. Note that in general the
problem of deciding if a given predicate satisfies a functional dependency is undecidable.
The authors give syntactic conditions that establish such functional dependencies for parts
of a program that are (mutually) recursive. In order to be able to compute aggregations,
RS further extend the syntax of the fragment by aggregation functions.

Definition 3.3.4. Let D be a domain called cost domain and let M(D) denote the class
of multisets over D. Let F : M(D) → R. We call F an aggregate function. Aggregate
functions can be used in subgoals of the form

C = FE : p(X1, . . . , Xn, Y1, . . . Ym, E)

where p is a cost predicate ranging over D. Variables Xi may appear outside the subgoal
and are the grouping variables. Variables Yi are local variables which may only appear
in the aggregate subgoal. Variable E appearing in the cost argument is called multiset
variable which is used to form the multiset to which F is applied. Finally, variable C is
called aggregate variable and must be different from Yi and E.

A ground instance of an aggregate subgoal γ is obtained by replacing variables C and Xi

in γ with constants. Given an interpretation for p, a ground instance γ is satisfied if and
only if c = F (S) where S is the multiset defined as

S = πE(σX1=x1,...,Xn=xnP (X1, . . . Xn, Y1, Yn, E))

where xi are the constants from the grounding of the aggregate subgoal and P is the
relation of p according to the given interpretation. Additionally, subgoals with r= instead
of = are introduced, with the difference that a ground instance using r= is false if the
multiset F is applied to is empty. Since it may be the case that atoms are needed but
have not been derived yet, RS introduce a way to set default values for cost arguments
of cost predicates. This mechanism enables us to set a default value which is then true
for the respective predicate. It is reasonable to choose the least value of the respective
cost domain as default value for a cost argument.

32

3.3. Arithmetic and Aggregation in Datalog

Example 3.3.5. The rule n = sum Y : T (t, Y) computes the sum over cost argument
Y of atoms T (t, Y).

Since we want the aggregate variable to be functionally dependent on the global variables,
inconsistencies may arise when atoms are defined in different ways simultaneously, for
instance once with sum as aggregation function and once with min. Inconsistencies may
also arise when functional dependencies are not kept. Thus, RS introduce cost-consistency
which requires that the set of head atoms derived by a single application step of all rules
in the program satisfies the required functional dependencies of cost arguments. In order
to enforce cost-consistency the syntactic notion of conflict-free programs is introduced.
We need to ensure that we enforce that the cost argument is functionally determined
by the non-cost arguments of a rule. Furthermore, to avoid inconsistencies, RS further
restrict rules whose heads unify s.t. it holds the bodies of a pair of rules whose heads
unify cannot be satisfied simultaneously or the unified rules generate identical values for
the cost argument when using the same non-cost arguments.

Monotonic Programs

Since programs using aggregation do not necessarily omit a unique minimal model in the
sense of traditional logic programming (see Example), RS extend standard notions from
logic programming of interpretations and models to aggregate Herbrand interpretations
and models. Essentially, the aggregate Herbrand base extends the traditional Herbrand
base with interpreted constants of domain for cost arguments of cost predicates of a
program. Interpretations are subsets of aggregate Herbrand bases s.t. no two atoms differ
only in the cost argument (which enforces a functional dependency from the non-cost
arguments to the cost argument) and predicates of atoms are given the standard definition
over the respective domain. For cost predicates with default values, it is required that
an interpretation assigns a cost value to every instance for the non-cost variables. The
authors prove that interpretations preserve the ordering of the cost domain of a program.

Example 3.3.6. The following program demonstrates that the use of aggregates implies
that there may exist more than one minimal model for programs using aggregates.

P (a)
R(a)

1 r= count : R(x) →P (b)
1 r= count : P (x) →R(b)

The minimal models are {P (b), P (a), R(a)} and {R(b), P (a), R(a)}.

RS extend the definition of the ordinary immediate consequence operator accordingly, TP

and show that one can ensure cost consistency using properties of TP . Furthermore, they
show monotonicity of the semantics of a program defined by TP . It follows by Tarski’s

33

3. Related Work

Fixpoint Theorem, that a least fixpoint of the operator TP for monotonic programs exists,
similar to traditional logic programs. To be able to guarantee the existence of a unique
minimal model of a program, it is essential to ensure that all aggregates are monotonic
w.r.t. a partial order and that cost values in rules behave monotonically. As RS showed
that the least fixpoint operator exists for monotonic programs, it remains to show how
we can syntactically recognize if a program is monotonic or not, which guarantees the
existence of a least fixpoint of TP . Intuitively, monotonicity for aggregate function means
that when adding more elements to the multiset S an aggregate function F is computing
on, the values of the elements in S can only increase the function value of F . In order
to guarantee monotonicity, RS proposed syntactic conditions on programs which imply
monotonicity of programs. For instance, the authors assume that rules are well typed,
meaning that the cost domain with a corresponding partial order is equivalent for each
aggregate function with multiset variable S and each cost argument in which S occurs.

Remark. The RS formalism introduced above allows for the use of aggregate functions
in Datalog programs. The program is however required to fulfil strict monotonicity
restrictions and allows only interpretations of a special kind as discussed above. Fur-
thermore (as mentioned in [ZYD+17]), since different lattices for different aggregates
can be used, several problems concerning monotonicity and minimal models as discussed
in [Gel93] may occur.

3.4 Descriptive Complexity Theory
Computational complexity usually deals with two main measures: time and space and
investigates the complexity of problems with respect to these measures. A seminal result
by Fagin [Fag74] began to tie complexity to logic as measure of complexity. Fagin showed
that the computational complexity of a problem can be understood as the expressivity
of a logical language which is needed to describe the problem. This is considered the
birth of descriptive complexity. Fagin’s result gave insight behind various other proofs in
complexity, for example the Immerman-Szelepcsényi Theorem (non-deterministic space
classes are closed under complement) [Imm99]. As relational databases can be seen as
(finite) logical structures and query languages are based on extensions of first-order logic,
descriptive complexity provides foundation for database theory. This also ties finite model
theory, a vital area in mathematical logic, to theoretical computer science. Finite model
theory is the study of logic on classes of finite structures and provides a framework for
establishing connections between different areas of theoretical computer science such as
logic, complexity theory, database theory and verification. One of the main motivations
behind considering finite structures are applications in computer science where infinite
models are clearly not representable. Together with the study of expressive power of
logics on finite structures and investigating connections between logic and asymptotic
probabilities, descriptive complexity is a main area of finite model theory [KV96].

34

CHAPTER 4
Main Contributions

In this chapter we present our technical results, thereby answering our motivating research
questioned outlined in the introductory chapter. In Section 4.1 we show that a naive
extension of powerful KG reasoning languages, specifically the Vadalog language, with
arithmetic is not possible due to undecidability of such combinations. On the one hand,
these results confirm the intuition that the problem of finding suitable candidates of
KG languages with arithmetic is hard and that it is highly non-trivial to find a Datalog
fragment that fulfils all desiderata and at the same time has good complexity guarantees.
On the other hand, these undecidability results motivate us to find a carefully defined
and decidable combination of Vadalog with some form of arithmetic.

Since we observed that the definition of limit arithmetic proposed by Kaminski et al.
(KGKMH) is not optimal w.r.t. its usability and extendibility, we define a new syntactic
version of limit arithmetic, which we call bound DatalogZ - based on limit DatalogZ ideas
by KGKMH - in Section 4.2. One of the main results of this work is the expressivity
result of limit DatalogZ in Section 4.3. Since we reuse ideas of KGKMH and their well-
behaving limit arithmetic for our new language, we investigate the expressive power of
limit DatalogZ and prove capture results. This allows us to show interesting connections
between arithmetic in logic and computational complexity.

Besides this result in descriptive complexity, the central contribution of this work is
the definition of our reasoning language in Section 4.4. The main theorem of this
section establishes P-completeness of our language. Finally, in Section 4.5 we give a brief
comparison of the main aspects of relevant Datalog fragments that support arithmetic or
aggregation with our language.

35

4. Main Contributions

4.1 Negative Results
Our first contributions are several negative results. We show that several naive extensions
of current approaches are immediately undecidable and hence not a good fit for further
investigations or in need of further refinement. Firstly, we consider Warded Datalog±

extended with arithmetic and comparison atoms corresponding to limit linear DatalogZ
as proposed in [KGK+17] and described above.

Definition 4.1.1. (Limit-linear Warded DatalogZ) Limit linear Warded DatalogZ
= Warded Datalog± ∩ limit linear DatalogZ.

We present several undecidability results, that show that naive combinations of Warded
Datalog± and arithmetic are undecidable (as expected). A first trivial result can be
obtained from results by Kaminski et al.:

Theorem 4.1.2. For a Warded DatalogZ program P and a fact α, Factent is undecid-
able.

Proof. It is known that Factent in DatalogZ is undecidable [DEGV01]. What is more,
Kaminski et al. showed that Factent is undecidable in DatalogZ even if only addition
is used and each atom has at most one numeric position [KGK+17].
The proof of Theorem 1 in [KGK+17] trivially holds for Warded DatalogZ, since DatalogZ
is a subset of Warded DatalogZ and all of the rules in the proof by Kaminski et al. fulfil
the wardedness condition (Definition 2.5.3). Hence, Factent for Warded DatalogZ
programs is undecidable even if only addition is used and each numeric atom has at most
one numeric position.

When restricting recursion as in Vadalog with piece-wise linearity, a proof of this result is
not trivial anymore. The proof in [KGK+17] contains rules that are not piece-wise linear,
for instance rule (26). Since the predicate State/2 is mutually recursive with Pos/1 and
Tape/2 and rule (26) contains both Tape/2 and Pos/1 in its body and State/2 in its
head:

T ime(x) ∧ State(q, x) ∧ Tape(a, y) ∧ Pos(y)∧
(x ≤ y < x + x) −→ Tape(a , x + y) (25)

T ime(x) ∧ State(q, x) ∧ Tape(a, y) ∧ Pos(y)∧
(x ≤ y < x + x) −→ State(q , x + x) (26)

T ime(x) ∧ State(q, x) ∧ Tape(a, y) ∧ Pos(y)∧
Num(u)... −→ Pos(u) (27)

The corresponding predicate graph is depicted in Figure 4.1. This is a clear violation of
piece-wise linearity (Definition 2.5.4), since rule (26) contains two atoms in its body whose
predicates are mutually recursive with the predicate in the rule head while piece-wise

36

4.1. Negative Results

Figure 4.1: Part of the predicate graph for rules 25-27, edge labels indicate the rules
which imply the respective edge.

linear rules may at most contain one atom which is mutually recursive with the predicate
in the rule head.

We consider the restriction to (piece-wise linear) limit rules as described above:

Theorem 4.1.3. BCQEval for piece-wise linear Warded DatalogZ programs is unde-
cidable.

Proof. Similar to the proof of Theorem 10 in [KGK+17] we use a reduction from Hilbert’s
tenth problem [Hil02]. This problem is to decide if a given Diophantine equation has an
integer solution, i.e., solving P (x1, ...xn) = 0, for a multivariate polynomial P (x1, ..., xn)
with integer coefficients. It is well-known that the problem is undecidable even if the
solutions are restricted to be non-negative integers, we use this variant of the problem.
For every such polynomial P , let D = {A(0)} and Σ contains the rule:

n

i=1
A(xi) ∧ P (x1, ..., xn) .= 0 −→ B()

And q = B() −→ Q. Then D ∪ Σ |= q ⇐⇒ P (x1, ..., xn) = 0 has a non-negative integer
solution. Thus, deciding whether D ∪ Σ |= q is undecidable.

It is easy to verify that the restriction to limit semantics does not lead to decidability of
the problem, thus Factent even for piece-wise linear limit Warded DatalogZ remains
undecidable.

Theorem 4.1.4. BCQEval for piece-wise linear limit Warded DatalogZ programs is
undecidable.

Proof. The proof is equal to the proof of Theorem 4.1.4 with A being a limit min
predicate.

37

4. Main Contributions

4.2 A Syntactic Fragment of DatalogZ

We consider a syntactic fragment of DatalogZ, similar to the limit notions of Kaminski
et al. in [KGK+17] (which we will refer to as KGKMH). We aim at making the limit
semantics explicit through the use of bound operators. We first show that we can exploit
the techniques of KGKMH for our syntactic fragment, in order to establish fundamental
complexity results.

4.2.1 Syntax
We define bound DatalogZ, which is DatalogZ extended with special bound operators
min and max which are used to bound arithmetic expressions and hence integer values
in interpretations.

Definition 4.2.1. Bound DatalogZ extends the syntax of DatalogZ with a set of addi-
tional bound operators ρ(a) ∈ {max(a), min(a)} where a is a numeric term and where
the following conditions hold:

• Predicates are either object with no numeric position, or numeric;
• Numeric predicates are either exact or bound numeric, where the last position

contains a numeric variable referencing the result of a bound operator ρ, i.e.,
= ρ(a);

• All exact numeric predicates are EDB;

Atoms with object predicates are object atoms and analogously for other types of
predicates. A DatalogZ rule r is a bound DatalogZ rule if:

• body(r) = ∅ or
• each atom in sb(r) is object, exact numeric or bound atom and head(r) is an object

or bound atom.

A rule in bound DatalogZ is of the form:

φ → ψ(t, ρ(a))

In database terms: the tuple that is used as grouping argument for ρ (i.e., the tuple for
which the bound predicate ρ holds) is determined by the numeric head atom that uses

= ρ(a). The standard body) φ is a conjunction of object and comparison atoms.

We use A for ≤ (≥) for numeric bound atoms A having a max (min) bound operator in
the last position and A, A, ≺A defined accordingly.

4.2.2 Semantics
For these special operators the group-by argument is determined by the head of the
rule. Since the semantics for our special predicates is equivalent to the semantics of
limit predicates proposed by KGKMH, we exploit these equivalences and show that their

38

4.2. A Syntactic Fragment of DatalogZ

results carry over to our syntactic fragment.
Intuitively, we use bound predicates to only keep the upper and lower bound values of a
predicate for a tuple of object, i.e. using a bound predicate ρ(a) means that the value a
of ρ for a tuple of objects t is at least a if ρ is max or at most k if ρ is min. However,
we do not enforce the semantics for all predicates. For instance, fact A(t, min(3)) says
that A for the tuple of objects t has value at most 3, as A(t, min(3)) implies that fact
A(t, min(4)) also holds. The notions of limit DatalogZ, such as limit-closed interpretations
and corresponding pseudointerpretations, semi-grounding, rule applicability and limit
linearness (see Section 2.6) can easily be extended to bound predicates.

Example 4.2.2. Let P = {A(t, 3), A(s, 5)}. The immediate consequence operator of
Datalog would derive: IP = P . On the other hand, let P = {A(t, 3), A(s, max(5))}, then
every model must contain {A(t, 3), A(s, k)}, ∀k ≤ 5. Thus, we can finitely represent the
interpretation with bound facts.

We adapt the notion of limit-closed interpretations from [KGK+17], in order to capture
the semantics of the bound operators.

Definition 4.2.3. (Bound-closed Interpretations) An interpretation I is bound-
closed if for each bound numeric fact A(t, k) ∈ I with k = ρ(a) it holds that:

• if ρ = min(a) it holds that ∀k ≥ a : A(t, min(k)) ∈ I or
• if ρ = max(a) it holds that ∀k ≤ a : A(t, max(k)) ∈ I

An interpretation I is a model of a program P if I |= P and I is limit closed. We restrict
entailment to only take bound-closed interpretations into account.

4.2.3 Fixpoint of Entailment
The notion of semi-ground rules and semi-groundings can easily be adapted to our
fragment. Furthermore, we use the notion of pseudointerpretations to finitely represent
interpretations over integers. For bound operators we only need to store the respective
bound or ∞ if there is no bound in interpretations.

Definition 4.2.4. A pseudofact is either a fact or of the form A(t, ∞). A pseudoint-
erpretation J is a set of pseudofacts s.t. for all bound facts A(t, k), A(t, k) ∈ J with
k = ρ(a), k = ρ(a) it holds that a = a , for a, a ∈ Z ∪ {∞}.

It is easy to see that pseudointerpretations and bound-closed interpretations omit a
one-to-one correspondence.

Example 4.2.5. Let I = {A(1), A(2), B(t1,)} ∪ {B(t2, k)} for all k ∈ Z where =
max(5) be a bound-closed interpretation. Then the pseudointerpretation J corresponding
to I is:

{A(1), A(2), B(t1, max(5)), B(t2, max(∞))}

39

4. Main Contributions

We adapt the definition of the immediate consequence operator from limit DatalogZ:

Definition 4.2.6. For a semi-ground program P and a pseudointerpretation J , the
linear integer constraint corresponding to a rule r ∈ P , C(r, J) is a conjunction of:

• each comparison atom in body(r)
• (0 < 0) if body(r) contains

– an object or exact atom α with α /∈ J , or
– a bound atom A(t, ρ(a)) with A(t, k) /∈ J for each k ∈ Z ∪ {∞}

• (s A) for each A(t, ρ(a)), ∈ body(r) with A(t, s) ∈ J and s = ∞
Operator TP maps J to the smallest interpretation satisfying optHead(r, J) for each
r ∈ P: T 0

P = ∅ and T n
P = TP(T n−1

P) for n ≥ 1. Pseudofact optHead(r, J) is obtained as
follows:

• optHead(r, J) = head(r), if head(r) is object or exact atom
• optHead(r, J) = A(t, opt(r, J)), if head(r) = A(t,) with = min(k), where

opt(r, J) is the smallest value of of all solutions to C(r, J) or ∞ if no such bound
exists and dually for = max(k).

4.2.4 Decidability of Bound DatalogZ

It is easy to see that as with the semantic approach proposed by KGKMH, finite
representations of interpretations do not ensure decidability, for completeness’ sake we
include a formal proof:

Theorem 4.2.7. Factent for positive bound DatalogZ is undecidable.

Proof. We reduce Hilbert’s tenth problem to the Factent in bound DatalogZ. For every
multivariate polynomial with integer coefficients, P (x1, . . . , xn), let PP be the bound
DatalogZ program consisting of the following rule, where A is a 0-ary object atom:

p(x1, ..., xn) .= 0 → A

Therefore PP |= A ⇐⇒ p(x1, ..., xn) = 0 has an integer solution. Thus, Factent is
undecidable.

In order to ensure decidability, we restrict multiplication as in KGKMH, s.t. only linear
numeric terms are allowed. Intuitively, in each multiplication, at most one argument
is allowed which contains a variable that does not occur in the rule body of a function
free, exact atom. Put differently, in each multiplication all arguments must contain
only variables which appear in EDB predicates, except for one. Following KGKMH
We call this restricted language linear bound DatalogZ. We prove that our syntactic
fragment is decidable by reduction to Presburger Arithmetic (PA). As checking validity
of a Presburger sentence is known to be decidable, a reduction from Factent to checking
validity in PA shows decidability of the former. In order to bound the maximal integer
values which is needed for our complexity results, we use the following Lemma.

40

4.2. A Syntactic Fragment of DatalogZ

Lemma 4.2.8. [KGK+17] Let χ = ∀x∃y. n
i=0 ζi where each ζi be a Presburger sentence

where for each i, |ζi| ≤ k mentions at most variables, a is the maximal magnitude of
an integer in χ and m = |x|. Then χ is valid if and only if χ is valid over models where
each integer variable assumes a value whose magnitude is bounded above by

(2O(·log) · ak)n2 ·O(m4)

We adapt techniques from KGKMH in order to obtain complexity results for our syntactic
fragment. The proof consists of the following steps.

1. We encode rules of a linear bound DatalogZ program P as conjunction logical
sentences PA(r).

2. Then, we show that for a pseudointerpretation J and a variable assignment µ,
J |= σ ⇐⇒ µ |= PA(σ) for all r.

3. To argue correctness, we show that for a program P, P |= σ ⇐⇒ there exists a
valid Presburger sentence χ.

4. Finally, we show that magnitude of integers in χ can be bounded in order to obtain
complexity results.

Note that we slightly extend the signature of Presburger Arithmetic. These extensions
can easily be axiomatized using the classical signature of Presburger Arithmetic. The
extended signature allows all i ∈ Z (as constants i), multiplication with at least one
variable free argument (which can be rewritten as addition) and Boolean variables. We
use , ⊥ to denote the Boolean values True and False. We begin with specifying the
reduction from linear bound DatalogZ to Presburger Arithmetic. Essentially, we encode
atoms as variables and rules as Presburger sentences.

Definition 4.2.9. We map predicates to propositional variables: Object predicates A/n
to varAt, exact numeric predicates B/(n + 1) to varBtk and numeric bound predicates
C/(n + 1) to varCt. finCt is a propositional variable indicating if the value in C is finite
and valCt is a integer variable capturing the value in C if it is finite. Either it is infinite
(∞ in J) or the values are smaller (larger) if C contains max (min).
We reduce a rule σ to σ as follows: For each atom α ∈ σ we denote its encoding as
PA(α)

• If α is a comparison atom: PA(α) = α
• If α is an object atom A(t): PA(α) = varAt
• If α is an exact numeric atom B(t, k): PA(α) = varBt,k

• If α is a numeric bound atom C(t, ρ(l)): PA(α) = varCt ∧ (¬finCt ∨ l C valCt)
where C is ≤ (≥) if ρ is max (min).

For a semi-ground program P , PA(P) = σ∈P PA(σ) is a FO formula where PA(σ)=∀x.σ
for all numeric variables x ∈ σ. For a pseudointerpretation J and a (Boolean and
integer) variable assignment µ, J corresponds to µ if the following conditions hold for
all A, B, C, t and all k ∈ Z.

• µ(varAt) = ⇐⇒ A(t) ∈ J

41

4. Main Contributions

• µ(varBt,k) = ⇐⇒ B(t, k) ∈ J
• µ(varCt) = ⇐⇒ there exists a k ∈ Z ∪ {∞} s.t. C(t, ρ(k)) ∈ J
• µ(finCt) = and µ(valCt) = k ⇐⇒ C(t, ρ(k)) ∈ J , ∀k ∈ Z

As k ∈ Z and µ(valCt) = k for some k and J is a pseudointerpretation (hence cannot
contain both C(t, ρ(∞)) and C(t, ρ(k))): C(t, ρ(∞)) implies µ(finCt) = ⊥.

Having the reduction of Definition 4.2.9 at hand, we continue by arguing its correctness.

Lemma 4.2.10. Let J be a pseudointerpretation and µ a variable assignment corre-
sponding to J . Then it holds that for each ground atom α:

J |= α ⇐⇒ µ |= PA(α)

Proof. We simply check all possible forms of α:

• α is a comparison atom. PA(α) = α and its value is independent of J .
• α = A(t) is an object fact. Then PA(α) = varAt, µ(varAt) = ⇐⇒ A(t) ∈ J .
• α = B(t, k) is an exact numeric fact. Then PA(α) = varBt,k, thus µ(varBt,k) =

⇐⇒ B(t, k) ∈ J .
• α = C(t, ρ(l)) is a bound fact. Then PA(α) = varCt ∧ (¬finCt ∨ s C valCt).

(=⇒) If J |= α, then C(t, ρ(∞)) ∈ J or there exists a k ∈ Z s.t. C(t, ρ(k)) ∈ J
and l C k. In both cases µ(varCt) = . In the former case µ(finCt) = ⊥ and in
the latter case µ(finCt) = and µ(valCt) = k.
(⇐=) If µ |= PA(α) then either C(t, ρ(∞)) ∈ J or there is an integer k s.t.
C(t, ρ(k)) ∈ J . In the former case, µ(finCt) = ⊥ and in the latter case µ(finCt) =

∧ µ(valCt) = k implies that C(t, ρ(k)) ∈ J with l C k.

Corollary 4.2.11. For a semi-ground rule σ: J |= σ ⇐⇒ µ |= PA(σ)

Proof. This follows directly from 4.2.10.

We extend the base case of Lemma 4.2.10 to bound DatalogZ programs.

Theorem 4.2.12. Let P be a bound linear DatalogZ program and a fact α. There exists
a Presburger sentence χ s.t. P |= α ⇐⇒ |= χ

Proof. Corollary 4.2.11 directly implies that

P |= α ⇐⇒ |= χ0 = ∀x.PA(α) ∨ ¬PA(P) ≡ ∀x.PA(P) =⇒ PA(α),

where x contains the variables defined by the reduction in PA(P) and PA(α). Thus |x| is
polynomially bounded by ||P|| + ||α|| and the magnitude of each integer in χ0 is bounded
by the maximum magnitude of an integer in P and α. We now bring φ0 into the desired
form by firstly converting each top-level conjunct of PA(P) into the form ∀yr.φr where
φr is CNF for r ∈ P . Then

42

4.2. A Syntactic Fragment of DatalogZ

χ1 = ∀x.PA(α) ∨ ¬
r∈P

∀yr.
kr

j=1
φj

r,

where n = |P| and kr is exponentially bounded by ||r|| and ||φj
r|| and |yr| are linearly

bounded by ||r||. We now can write χ1 in prenex normal form by moving quantifiers to
the front and pushing negations inwards. ψj

r is the negation normal form of each χj
r:

χ2 = ∀x∃y.PA(α) ∨
r∈P

kr

j=1
ψj

r .

Then by construction each integer in χ appears in P or α, χ2 ≡ χ0 by construction and
χ2 is of the required form as each rule semi-ground and linear and the following hold:

• the number of variables in |y| = | r∈P yr| is polynomially bounded by ||P|| and
|x| is polynomially bounded by ||P|| + ||α||

• ||ψj
r || is linearly bounded by ||P||;

• n
r∈P kr is polynomially bounded by |P| and exponentially bounded by maxr∈P ||r||;

• the magnitude of each integer in χ2 is bounded by maxi∈P∪αi;

By the reduction above we can construct a Presburger sentence χ for a bound linear
DatalogZ program P and a fact α that is valid if P |= α.

Now we can apply Lemma 4.2.8 to the Presburger sentence constructed by the reduction.
This provides bounds on the magnitude of integers occurring in models of Presburger
sentences of the exact form used in the reduction.

4.2.5 Complexity of Factent in Bound DatalogZ

Theorem 4.2.13 which also holds in our case, combines the previous lemmata, Lemma 4.2.10
and Lemma, 4.2.8, using the bounds for counter pseudomodel.

Theorem 4.2.13. [KGK+17] For a semi-ground bound linear program P, a dataset D
and a fact α, P ∪ D |= α if and only if there exists a pseudomodel J of P ∪ D where
J |= α, |J | < |P ∪ D| and the magnitude of each integer in J is polynomially bounded
by the largest integer in P ∪ D, exponentially by |P| and double-exponentially by the
size of the largest rule r ∈ P.

43

4. Main Contributions

In order to prove lower bounds we can directly apply the following algorithm (Algo-
rithm 4.1) proposed by Kaminski et al. [KGK+17].

Algorithm 4.1: Algorithm for deciding P |= α [KGK+17]
Input: P, α

Result: True iff P |= α

1 Compute semi-grounding P of P ;

2 Non-deterministically guess a pseudointerpretation J that satisfies the bounds of
Theorem 4.2.13;

3 If TP(J) J , i.e., J |= P and J |= α return True;

As Step 1 and 3 run in exponential time (polynomial in data) and Step 2 runs in non-
deterministic exponential time (non-deterministic polynomial in data), Algorithm 4.1
runs in non-deterministic exponential time in combined complexity and non-deterministic
polynomial time in data complexity. Hence, Factent ∈ coNEXP in combined complexity
and Factent ∈ coNP in data complexity for bound DatalogZ programs.

Lower bounds (i.e., hardness results) follow from reductions from coNP-hard and coNEXP-
hard problems (UNSAT and its succinct version, or Square Tiling and its succinct version).
The proofs are simple adaptions from [KGK+17, GHK+19].

Proposition 4.2.14. Factent is coNEXP-complete in combined complexity and coNP-
complete in data complexity for bound linear DatalogZ programs.

4.3 Descriptive Complexity Results
In this section we prove results about the expressive power of limit DatalogZ, which can
be seen as a contribution to the line of work of Kaminski et al. [KGK+17, KGK+18,
KGKH20]. Before we discuss our results in detail, we introduce fundamental techniques
from the area of descriptive complexity theory. Firstly, let us introduce some basic notions
and standard definitions following [AGK+08]. A vocabulary τ = {R1, ..., Rn, c1, ...cn} is
a finite set of relation symbols with specified arity and constant symbols. A τ -structure
is a tuple A = (A, RA

1 , ..., RA
n , cA1 , ...cAn) s.t. A is a nonempty set, called the universe of A.

A finite τ -structure has a finite universe. Observe that a relational database is a finite
relational structure.

Definition 4.3.1. (Query) Let τ be a vocabulary and k a positive integer.

• A k-ary query Q on a class K of τ -structures is a mapping with domain K s.t.
– For A ∈ K Q(A) is a k-ary relation on A, and
– Q is closed (preserved) under isomorphism;

• A Boolean query Q is a mapping Q : K → {0, 1} that is closed preserved under
isomorphism. This is equivalent to stating that Q coincides with the subclass

44

4.3. Descriptive Complexity Results

K ⊆ K, K = {A ∈ K : Q(A) = 1}. Due to the latter formulation a Boolean query
is often said to be a property of K.

Definition 4.3.2. (L-definable Query) Let L be a logic and K a class of τ -structures.
A Boolean Query Q on K is L-definable if there exists an L formula ϕ(x) with free
variables x s.t. for every A ∈ K:

Q(A) = {(x) ∈ Ak : A |= ϕ(a)}.

It is important to say that the notion of L-definability on a class K of structures is a
uniform definability notion. Hence, the same L-formula serves as specification of the
query on every structure in K. This is analogous to the concept of uniform computation
of Turing machines known from computational complexity theory [AB09].
It is easy to see that to show that a query Q on K is L-definable, it suffices to construct
a L-formula defining Q on every structure in K. Since our languages are in a Datalog
context, let us define the notion of a Datalog query and its complexity.

Definition 4.3.3. (Datalog Query) A Datalog query is a pair (Π, R), of a Datalog
program Π and a head predicate R ∈ Π. The query (Π, R) associates the result (Π, R)A
which is the interpretation of R computed by Π from the input A.

A Datalog query essentially consists of a Datalog program and some designated predicate
occurring in the program. The result of a query for a certain input structure is obtained
by applying the fixpoint semantics of the Datalog language of the query. As in the area
of logic programming the data complexity of Datalog (or logics in general) plays a vital
role for complexity investigations.

Definition 4.3.4. (Data complexity of Logics) Let L be a logic. The data complexity
of L is the family of decision problems Qϕ for each fixed L sentence ϕ: Given a finite
structure A, does A |= ϕ?

We next want to define how we can determine whether the data complexity of a logic is
in a complexity class C, or even hard for a complexity class C. The following is a standard
definition of these two notions.

Definition 4.3.5. (Complexity of Logics) Let L be a logic and C a complexity class.

• The data complexity of L is in C if for each L sentence ϕ, the decision problem Qϕ

is in C.
• The data complexity of L is complete for C if it is in C and at there exists an L

sentence ψ s.t. the decision problem Qψ is C-complete

With these definitions at hand, we can formulate our main question of this section.
Informally put, from the point of view of descriptive complexity we know that every limit
DatalogZ definable query is in coNP and some such queries are even coNP-hard in data

45

4. Main Contributions

complexity by the coNP completeness result of positive limit DatalogZ. The question
now is if DatalogZ is powerful enough to define every coNP computable query. Expressive
power of logics is defined via the notion of capturing complexity classes.

Definition 4.3.6. (Logics Capturing Complexity Classes) A language L captures
a complexity class C on a class of databases D if for each query Q on D it holds that: Q
is definable in L if and only if it is computable in C.

A cornerstone result in the development of descriptive complexity theory was the following
seminal theorem by Fagin showing that the fragment of second-order logic that allows
only existential quantification of relation symbols, existential second-order logic (∃SO,
sometimes denoted as Σ1

1), captures non-deterministic polynomial time on the class of all
finite structures.

Theorem 4.3.7. (Fagin’s Theorem [Fag74]) Let K be an isomorphism-closed class
of finite structures of some finite nonempty vocabulary. Then K is in NP if and only if K
is definable by an existential second-order sentence.

Fagin’s Theorem is a remarkable result, proving the first precise connection between a
computational complexity class and logic. Informally it ensures that a property of finite
structures is recognizable in non-deterministic polynomial time if it is definable in ∃SO.
Note that this immediately implies that the universal fragment of second-order logic
(∀SO) captures coNP by complementation.

We are now ready to state and prove the main theorem of this section.

Theorem 4.3.8. Let Q be a Boolean query. The following are equivalent:

• Q is computable in coNP;
• Q is definable in semi-positive limit DatalogZ;

That is, semi-positive limit DatalogZ = coNP.

Note that we extend limit DatalogZ to semi-positive limit DatalogZ, i.e., we allow negation
of EDB (i.e., input) predicates in limit DatalogZ. This is analogous e.g. to the capture
result by Blass, Gurevich [BG87], and independently by Papadimitriou [Pap85] that
Datalog captures P on successor structures. Datalog alone is too weak to capture P, hence
in order to capture P computation, negation of input predicates is needed (we discuss
this issue in more detail in the proof). We begin with the simple direction, proving that
the second item of Theorem 4.3.8 implies the first, which is straightforward knowing that
limit DatalogZ is coNP complete.

Proposition 4.3.9. The positive limit DatalogZ definable Boolean queries are all com-
putable in coNP.

Proof. We can clearly compute every positive limit DatalogZ query in coNP i.e., the
proposition follows from Theorem 2.6.5.

46

4.3. Descriptive Complexity Results

It remains to show that every Boolean query on a class of finite structures computable in
coNP is definable in positive limit DatalogZ, i.e., that the properties decidable in coNP
on finite structures are definable by positive limit DatalogZ queries.

Proposition 4.3.10. All Boolean queries computable in coNP are definable by a Boolean
DatalogZ query.

Proof. We show that every class of structures K that is recognizable by a coNP Turing
machine is definable by a positive limit DatalogZ query. To this end, we construct a
positive limit DatalogZ query Q over a dataset D defining an input structure A.

Before giving the proof, we want to point out several (standard but non-trivial) tech-
nicalities that originate mainly from the discrepancy between logic and our model of
computation.

• Turing machines compute on string encodings of input structures which implicitly
provides a linear order on A (the elements of the universe of A). For our proof
this is not a problem since we can simply non-deterministically guess a respective
linear order. We thus say a TM M decides a class of structures K if M decides the
set of encodings of structures in K. From now on we fix some kind of canonical
encoding (enabled through the linear ordering). We use enc(A, <) to refer to the
set of encodings of a unordered structure A having < as linear order on the universe
of A.

• Turing machines can consider each input bit separately, but Datalog programs
cannot detect that some atom is not part of input structure. This is due to the fact
that negative information is handled via the closed world assumption and the fact
that we only represent positive information in databases [DEGV01]. Thus, we need
to slightly extend the syntax of the programs we consider by allowing negated EDB
predicates in rule bodies. In our proof this is only relevant for the input encoding.

Consider a single-tape coNP TM M s.t. M recognizes a class of structures K, i.e.,
M accepts enc(A, <) if A ∈ K. Let M = (Γ, S, δ) be a single tape, non-deterministic
polynomial time TM recognizing the complement of K. That is, M accepts enc(A, <) if
A /∈ K and rejects enc(A, <) if A ∈ K. Let n be the cardinality of the input structure of
M . We assume w.l.o.g. that M halts in at most nk steps (for some constant k > 0) and
that all computation paths of M end in a halting state.

We represent the non-deterministic guesses of M ’s non-deterministic transition function
as binary string over the alphabet {0, 1}∗. By our assumption that M halts in at most
nk steps, a guess string corresponding to a computation path, π, in the configuration
graph of M represents an integer i ∈ [0, nk]. We use g(π) to denote this representation
by adding 1 as the most significant bit in order to ensure each number g(π) encodes a
unique guess string. This mechanism is the key to encoding non-determinism in limit
DatalogZ. A 0 guess at a certain configuration along a path π in the configuration graph
of M can be represented by doubling g(π), i.e., g(π) = g(π) · 2 and for a 1 guess we
double the number and add 1: g(π) = g(π) · 2 + 1. We use |π| to denote the length of π,

47

4. Main Contributions

i.e., the number of configurations in the computation path π of the configuration graph
of M .

Encoding, ΠM . We construct a positive limit DatalogZ query Q = (ΠM , α) such that
Q evaluates to true on input enc(A, <) if and only if A /∈ K. The limit DatalogZ program
ΠM consists of the following sets of rules:

• Πsucc computing the successor relation on A,
• Πinput: rules describing the input and ensuring that the encoding of A is correct,
• Πenc: rules that describe configurations,
• Πcomp rules that enforce computation of M , and
• Πrej rules that check rejection, i.e., if all computation paths lead to a rejecting

state.

Successor Relation, Πsucc. As discussed above, we assume the existence of a successor
relation < on A. We let succ be the object predicate encoding this relation and let succ+

indicate the transitive closure of succ. We use EDB predicates first, next, and last to
encode the relation accordingly.

Input Encoding, Πinput. Note that it is not enough to just explicitly list atomic facts
defining the input configuration of M for a given input string u. Hence, we encode
successor structures (such as our input) s.t. there exist quantifier-free formulae βu(y) s.t.
A |= βu(a) ⇐⇒ the a-th symbol of the input configuration of M for input enc(A, <) is
u. Let Πinput be the Datalog program equivalent to βu(y).

Configuration Encoding, Πenc. Since we assume that M halts after m = nk steps
and therefore uses at most m tape cells, we can encode a configuration of M as a k-tuple
of objects from the universe of A. We encode a configuration C with the following
(2k + 1)-ary max limit predicates. Intuitively these predicates depend on arguments
encoding space (a tape cell numbers), time (an integer corresponding to a configuration),
and a guess string g(π) for a run π of M :

• For each q ∈ S: headq(t, s, g(π)). For k-tuples over the universe of A, t encodes
|π| − 1 and s encodes the head position;

• For each u ∈ Γ: tapeu(t, s, g(π)). For each i ∈ [0, m − 1] where u is the symbol in
the i-th tape cell in configuration C, s is a k-tuple encoding i and t is as above

Computation, Πcomp. To initialize the computation (the initial configuration), we
start by encoding the input on the input tape, fill the rest of the tape with blank symbols,
encode the head positioned in the left most position, and set the initial state qinit as
current state. The tuple z0 denotes a tuple consisting of k values z0 and z0 is a tuple
consisting of k − 1 repetitions of z0 used for the initial configuration. Rule 4.1 initializes
the head in the left most position, initializing head with k-tuples with the first symbol
from the dataset D. Similarly, Rule 4.2 encodes the input symbols from the input tape

48

4.3. Descriptive Complexity Results

as tapeu for u ∈ {0, 1} and Rule 4.3 fills the rest of the tape with blank symbol . The
last argument of all initialized predicates is set to 1 = g(π) to encode the first, single,
initial configuration of M ’s configuration graph.

first(z0) →headqinit(z0; z0; 1) (4.1)
first(z0), inputu(x) →tapeu(z0; z0, x; 1) (4.2)

first(z0), last(zmax), succ+(z0, zmax, zmax; x) →tape (z0; x; 1) (4.3)

We add the following rules for each q ∈ S \ Sacc ∪ Srej , each u, v ∈ Γ in order to represent
an application of the transition function to the current configuration. Depending on the
movement of the head, as indicated by the transition function of M , we let succ denote
succ(x , x) if the head move is L or succ(x, x) if the head move is R. Atom differ(x, y)
is used to ensure that variables y are different from the head position encoded by x. The
rules encode a computation step in the configuration graph of M when 0 is the current
guess made by the transition function where the head moves from position x to position
x , leaving unchanged positions y intact. In order to model the 0 guess we double g(π)
by computing m = m + m.

headq(t; x; m), tapeu(t; x; m), tapeu(t, y; m),
succ(t, t), succ (x; x), differ(x; y), (m + m = m) →

headq (t ; x ; m), tapeu (t ; x; m), tapev(t ; y; m) (4.4)

Analogously, we add the following rules for each q ∈ S \ Sacc ∪ Srej and each u, v ∈ Γ
when the current guess is 1. We model a 1 guess as explained above by computing
g(π) = g(π) · 2 + 1 = m + m + 1.

headq(t; x; m), tapeu(t; x; m), tapeu(t, y; m),
succ(t, t), succ (x; x), differ(x; y), (m + m + 1 = m) →

headq (t ; x ; m), tapeu (t ; x; m), tapev(t ; y; m) (4.5)

Rejection Check, Πrej. For each rejecting state r ∈ Sreject, we derive the reject max
limit predicate keeping track of the configuration and corresponding guess string for
rejecting configurations. We then propagate this information in a backtracking manner
in the configuration graph of M ’s computation depending on the guess strings for each
configuration represented by the variables m and m .

headr(t; x; m) →reject(t; m) (4.6)
reject(t ; m), succ(t; t), (m + m = m) →reject(t; m) (4.7)

reject(t ; m), succ(t; t), (m + m + 1 = m) →reject(t; m) (4.8)
(4.9)

Because of the backpropagation we simply need to check if for the initial configuration
the reject predicate is derived. It is easy to see that fact confirm is derived if and only if
all configurations reach a rejecting state.

49

4. Main Contributions

first(z0), reject(z0; 1) → confirm (4.10)

The following easy to verify claims argue correctness of the encoding above and follow by
construction of ΠM .

Claim 4.3.11. If M rejects enc(A, <) then (ΠM , confirm) evaluates to true on (A, <).

Assume M rejects enc(A, <). Per definition of a NP TM, each computation path in
the configuration graph of M leads to a rejecting state. By construction of ΠM , for
each configuration along a path π in the configuration graph of M , at time t, the atom
reject(t, m) where m = |π| − 1 is derived. Thus, also for the initial configuration the fact
confirm is derived.

Claim 4.3.12. If (ΠM , confirm) evaluates to true on (A, <), then M rejects enc(A, <).

Assume (ΠM , confirm) evaluates to true on (A, <). Then for each rejecting state r and
each configuration along a computation path π of M leading to r, the atom reject(t; m) is
derived. But then we can “reconstruct” the configuration graph of M from the predicates
derived by ΠM . Since confirm was also derived, we can conclude the input in the initial
state led to a rejection, so M clearly rejects.

Together with Fagin’s Theorem, Theorem 4.3.8 immediately implies the following Corol-
lary, since the universal fragment of second-order logic, ∀SO, is the complement of ∃SO
and therefore captures coNP by Theorem 4.3.7.

Corollary 4.3.13. On finite structures positive limit DatalogZ = ∀SO = coNP.

Let us make several brief remarks on implications and related work of Corollary 4.3.13
around universal SO-logic. Least fixpoint logic (LFP) is of great interest in descriptive
complexity. It is well-known that LFP cannot express every P-computable query on finite
structures. The Immerman-Vardi Theorem shows that, however, LFP can express all
P-computable queries on classes of finite ordered structures [Imm80, Imm86]. A well-
studied fragment of LFP is LFP1 which is an extension of FO logic with least fixpoints of
positive formulae without parameters and closure under conjunctions, disjunctions, and
existential and universal FO quantification (for a formal discussion we refer the reader
to [Kol07]). This language is also referred to as LFP(FO), i.e., least fixpoints of FO
formulae by Immerman in [Imm99]. It is well-known that the data complexity of LFP1
is P-complete. The expressive power of LFP1 was studied by Kleene and Spector on the
class of arithmetic N = (N, +, ×). In the seminal Kleene-Spector Theorem [Kle55, Gar69],
they show that A relation R ⊆ Nk is LFP1 definable on N if and only if it is definable by
a universal second order formula on N.

The Kleene-Spector Theorem establishes the equivalence LFP1(N) = ∀SO(N). Later
this result was extended to countable structures A that have a so-called FO coding

50

4.4. Towards Reasoning in KGs: Existentials in Rule Heads

machinery [Ric79], i.e., countable structures in which finite sequences of each length can
be encoded by elements and decoded in a FO definable way [Kol07].

The language ∀SO was conjectured to properly include NLogSPACE [Wei07]. If this
conjecture holds then our result readily implies that positive limit DatalogZ properly
includes NLogSPACE.

Now that we have examined limit DatalogZ in depth and constructed a syntactic variant
of the language, we have a good setup in terms of arithmetic in our language. In order
to fulfil all language requirements for KG languages, we need to define an extension with
existential quantification in rule heads, which will be covered in the following section.

4.4 Towards Reasoning in KGs: Existentials in Rule
Heads

In the previous section we have seen that our syntactic fragment is capable of decidable
arithmetic, however for reasoning in KGs we need more advanced features, such as
existentials in rule heads. Thus, we want to extend our fragment in this direction. Simply
extending bound DatalogZ with existentials in the rule heads leads to undecidability, as
Datalog rules (without arithmetic) only with existentials in the rule heads (i.e., TGDs)
are undecidable [BV81], even for a fixed set of rules [CGK13]. A fragment of Datalog
with existential rule heads is Warded Datalog± (see Section 2.5), for which the problem
CQAns is known to be P-complete in data complexity and EXP-complete in combined
complexity [BGPS19]. Warded Datalog± is the foundation of the Vadalog language.

We extend our bound DatalogZ fragment with warded existentials in the rule heads.
Thus, we leverage techniques from Vadalog in order to handle reasoning with existentials
in rule heads and prove termination of programs. Moreover, we further restrict arithmetic
in our bound fragment using ideas from limit DatalogZ, in order to avoid divergence
of numeric terms. In order to arrive at a formal definition of Warded Bound DatalogZ
we simply extend Definition 2.5.3 in a straightforward way to DatalogZ to also consider
numeric variables. In our language object and numeric variables are being separated
in a sense that predicates have arguments that are either all object or object with the
last position being numeric. Object predicates may contain null values and numeric
predicates may be exact predicates (EDB) or contain arithmetic expressions which are
only allowed in bound operators. Note that this is a very powerful extension of the
full Vadalog language, using the full potential of arithmetic in bound DatalogZ with
restrictions to obtain tractability and program termination.

Definition 4.4.1. (Warded Bound DatalogZ) Warded Bound DatalogZ is Bound
DatalogZ extended with existentials in the rule heads such that the following conditions
hold:

1. Existentially quantified variables may only appear in object positions.

51

4. Main Contributions

2. Each rule is warded, i.e., the ward may only share harmless (numeric and object)
variables with the rest of the body atoms (thus we extend Definition 2.5.3 by
numeric variables and atoms accordingly)

Observe that we allow predicates with null values and arithmetic terms in rule heads. The
following examples showcase the syntax of our language and its relevance to industrial
use-cases from e.g., the financial domain.

Example 4.4.2. The following rules are Warded Bound DatalogZ rules by Defini-
tion 4.4.1.

R(s, x), P (t, 3) →∃νR(ν, 3)
S(s, y), P (t, z) →R(s, max(y + z))

The following rule is not:

P (t, 3) → ∃zP (t, z)

Example 4.4.3. (Family Ownership) The following example is a main use case in
financial KG applications introduced in [BFGS19]. This scenario is relevant when we
want to study connections between ownership relations of company shares. Note that
we use families in order to model control units, hence the example below shows how
to study how families (or other larger units) control companies. Under the common
assumption that individuals might not act individually per se but rather follow a joint
consensus, which is decided upon within a control unit (a family in this case), such
scenarios are pertinent in industry. Figure 4.2 shows a conceptual depiction of the
knowledge base. The blue part is explicitly given database knowledge, while the implicitly
inferred knowledge is represented by the green part. Thus, the figure also highlights how
we can use existentials to complete relations in KGs, assuming that the family relation
is incomplete or even totally missing.

1. Person(p, x): p is a person with property vector x.
2. Family(f, p): person p belongs to family f .
3. Asset(a, c, v): an asset a of a company c whose (absolute) value is v.
4. Right(o, a, w): o has right on a number w of shares of asset a.
5. Own(f, a, w): a family f owns a number w of shares of asset a.

Person(p, x) →∃fFamily(f, p). (4.11)
Person(p, x), Person(p , x), Family(f, p) →Family(f, p). (4.12)

Right(o, a, w), Asset(a, c, v), Right(c, a , w) →Right(o, a , max(w + v + w)). (4.13)
Right(p, a, w), Family(f, p), Own(f, a, x) →Own(f, a, max(w + x)). (4.14)

In this example, Rule 4.11 defines implicit knowledge, i.e., that a person with a property
vector x exists, then there exists a family relation which contains p. The property vector

52

4.4. Towards Reasoning in KGs: Existentials in Rule Heads

Figure 4.2: Conceptual ER diagram of the family ownership example.

x might for instance be some information identifying a family or, as in [BFGS19], this
information might be provided through the use of external functionality, such as a ML
based property check computed by an external component of the KG. We omit this
advanced functionality here and use the proposed simplification of property vectors that
uniquely identify families, because we only want to use constructs from our language, i.e.,
language constructs for which we have complexity guarantees. Rule 4.12 is used to check
whether the families of two persons coincide. Rule 4.13 defines transitivity on the rights
of an asset, i.e., situations in which an asset a is defined for some company c, which has
rights on another asset, a . Finally, Rule 4.14 expresses the total ownership of a family
based on the rights of its members.

We want to use a chase-like forward chaining operator to define the semantics of Warded
Bound DatalogZ. As we are dealing with a language that supports existential rule heads
and arithmetic, we have to make adaptations to the ordinary chase as well as to the
applicability check of bound DatalogZ in order to support both, arithmetic and existentials.
Since we allow arithmetic in our programs, we need to include the applicability check of
bound DatalogZ programs in the chase algorithm. Finally, we need to handle existentials
correctly, otherwise we cannot guarantee termination of the chase procedure.

4.4.1 Algorithm for Deciding Warded Bound DatalogZ

In this section we present an algorithm for deciding fact entailment for Warded Bound
DatalogZ programs. This algorithm is the first formal algorithm for a reasoning problem
of a decidable Datalog-based language supporting both arithmetic and existential rule
heads. We use the termination strategy proposed in [BSG18], since the Vadalog language
is the foundation of our fragment. Since our focus is the extension of Vadalog with
existentials, we refer the reader to the aforementioned article for an in-depth discussion

53

4. Main Contributions

of the algorithm and use the termination-strategy in a straightforward way in this section
while laying the focus on discussing our arithmetic extension.

A simple consequence operator-like procedure for ordinary bound DatalogZ arithmetic
may not terminate due to potential divergence of arithmetic terms. This would be the
case for instance if a program contained the rule A(max(x)) → A(max(x + 1)). Thus,
in order to use a chase-like approach, we need to ensure that arithmetic expressions
may not diverge by restricting rules to be stable, as proposed by Kaminksi et al. (see
Definition 4.4.6). However, checking stability is undecidable, hence we define the notion of
type consistent programs. Kaminksi et al. showed that type consistency implies stability,
while type consistency can be checked efficiently.

Definition 4.4.4. (Type Consistent Program) A warded bound DatalogZ rule σ is
type consistent if

1. each numeric term is of the form k0 + n
i=1 ki × mi where k0 is an integer and each

ki, i ∈ [1, n] is a non-zero integer
2. if head(σ) = A(t, ρ()) then each variable in ρ() with a positive (negative) coefficient

ki occurs also in a unique bound atom of σ that is of the same (different) type, i.e.,
min or max, as ρ.

3. for each comparison predicate (t1 < t2) or (t1 ≤ t2) in σ, each variable in t1 with
positive (negative) coefficient also occurs in a unique min (max) operator in a body
atom and each variable in t2 with a positive (negative) coefficient also occurs in
max (min) operator in a body atom of σ.

Intuitively, Type Consistency ensures that

1. Each variable contributes to the value of the numeric term it appears in. Hence,
multiplication with 0 or subtraction of a term by itself is forbidden;

2. The value in the head containing a numeric variable x behaves analogously to the
value in the body occurrence of x, i.e., if the value of x occurring in a rule head
increases w.r.t. its occurrence in the body (increases if it appears in max in body
and decreases otherwise), then so does the value of the numeric term in the head,
and finally

3. Comparisons cannot be invalidated by increasing the values of variables involved.

Note that type consistency is a local and syntactic notion and thus can be checked
efficiently. In the following we restrict Warded Bound DatalogZ programs to be type-
consistent. The next, easy to check proposition follows directly from results by KGKMH.

Proposition 4.4.5. The problem of deciding whether a warded bound program is
type-consistent is in LogSPACE.

As mentioned above, in order to use an iterative, chase-like approach, we need to
pay attention to diverging arithmetic terms. This is done by keeping track of how
arithmetic values are propagated between atoms in rule applications. To keep this

54

4.4. Towards Reasoning in KGs: Existentials in Rule Heads

mechanism efficient, we need to decide whether a numeric term diverges after a polynomial
number of steps. In the context of their work, Kaminski et al. used the notion of value
propagation graphs based on the values of IP constraints C(r, J), constructed by the
rule applicability check. The value propagation graph GJ

P = (V, E, µ) of a Warded
Bound DatalogZ program P w.r.t. an interpretation J is a digraph containing a unique
node vAa for each bound fact A(a,) ∈ J . For each rule σ applicable to J with
head(σ) = A(a, 2), vAa ∈ V , body(σ) = B(b, 1), vBb ∈ V and variable m occurring in
, we have (vBb, vAa) ∈ E. Finally, we define a function µ(e) for e = (vBb, vAa) ∈ E

establishing edge weights in G, thereby indicating how values are propagated from body
atoms to head atoms during evaluation of programs. Function µ(e) for e ∈ E is defined
as: µ(e) = max {µr(e) | r ∈ P corresponding to e}, where µr is defined as:

• µr(e) = ∞ if the optimal value of over C(r, J) is unbounded;
• µr(e) = ⊥ if the optimal value of over C(r, J) is bounded and = ∞;
• µr(e) = ca · k − cb · s if the optimal value k of over C(r, J) is bounded and s ∈ Z,

where ca, cb is 1 if A, B contains max and -1 if A, B contains min.

For instance every edge e = (vBb, vAa) encodes the information that a rule is applicable
to some bound fact B(b,) ∈ J , producing the fact A(a, +µ(e)). The notion of stability
allows us to detect divergence of arithmetic terms in Warded Bound DatalogZ programs.
Rule application in a stable program in an iterative manner never decreases the edge
weights, hence introducing a form of monotonicity for bound arithmetic.

Definition 4.4.6. (Stability, [KGK+17]) A Warded Bound DatalogZ program is
stable if for all pseudointerpretations J , J with J ⊆ J , GJ

P and GJ
P and each edge e

in GJ
P :

• µ(e) ≤ µ (e);
• e = (vBb, vAa) and B(b, ∞) ∈ J imply µ(e) = ∞

We are ready to present the main reasoning algorithm, depicted in Algorithm 4.2.
Note that this is an extension of the general Vadalog algorithm, extending ideas from
Bellomarini et al. in [BSG18] (specifically Algorithm 1 in [BSG18]). In essence, this
algorithm is a forward chaining procedure, which derives new facts from the given program
step by step in an iterative way. When deriving a new fact γ, we have to pay attention
to two things: firstly, we have to pain attention to arithmetic terms and atoms in order
to avoid divergence and non-termination. We apply the value propagation graph method
proposed by KGKMH in order to keep track of the arithmetic computations. In each
iteration of the main loop, we update the value propagation graph (adding new nodes and
edges and updating edge weights) of the program w.r.t. the current interpretation GJ

P ,
which replaces diverging arithmetic terms with ∞ in the interpretation. After this step,
we begin to derive new facts by applying the rules (similar to an immediate consequence
computation). Thus, for each rule in the input program, we check if its applicable and
if so, we try to derive a new fact from it. Because of existential rule heads this step
requires an additional termination check since we cannot uncontrollably derive new nulls.

55

4. Main Contributions

Therefore, we use the termination check of wardedness (checkTermination as proposed
in [BSG18]) in order to verify if we can safely derive the current fact. Intuitively, this
termination procedure uses several guiding structures, such as warded forests, in order
to detect isomorphisms between facts. This mechanism allows us to avoid derivation
of superfluous facts. It takes a fact as input and checks, using the underlying data
structures, if no isomorphism for the fact to derive exists in the current derivation graph
of the program. If so, we add the newly derived fact to the pseudointerpretation Jcurr

that is currently being computed. Finally, if no new facts have been derived, i.e., the
pseudointerpretation that has been computed in the current iteration Jcurr is equal to
the previously computed one (J), we terminate the reasoning procedure, do a single
model check against the fact given as input, and return the result of the check.

Algorithm 4.2: Algorithm for Warded Bound DatalogZ
Input: A type-consistent Warded Bound DatalogZ program P = D ∪ Σ, fact α
Result: True if P |= α

1 J := ∅;
2 repeat
3 J := Jcurr;
4 update(GJ

P);
5 foreach σ ∈ Σ do
6 if (γ = checkApplicable(σ, Jcurr)) != NULL then
7 if checkTermination(γ) then
8 Jcurr := Jcurr ∪ γ;
9 end

10 end
11 end
12 until Jcurr = J ;
13 return True if J |= α;

The subprocedure shown in Algorithm 4.3 represents an important step in rule derivation,
namely rule application. Since bound arithmetic with min and max operators is involved,
we cannot simply derive a new arithmetic value, but we need to compute the optimal
value to derive, otherwise it would be possible to derive inconsistent facts which violate
the semantics of the min and max bound operators. In essence, Algorithm 4.3 constructs a
linear integer constraint which has a solution if a rule is applicable w.r.t. an interpretation,
according to the semantics for Warded Bound DatalogZ. Then, there are three cases
according to the syntax of Warded Bound DatalogZ:

1. The current rule contains an object or exact numeric head atom, or
2. The current rule contains a bound atom in the head;
3. The current rule contains an existential head;

For Case 1, we simply check if the rule is applicable to the current interpretation and if so,
we simply derive the head atom. For Case 2, we need to compute the optimal value of the

56

4.4. Towards Reasoning in KGs: Existentials in Rule Heads

Algorithm 4.3: Procedure to check and compute rule applicability
Input: Rule σ, pseudo interpretation J
Result: True if σ is applicable to J

1 Construct corresponding linear integer constraint C(σ, J);
2 if C(σ, J) has an integer solution then
3 if head(σ) is object or exact numeric then
4 γσ,J = head(σ);
5 end
6 else if head(σ) contains a bound operator A(t, ρ(a)) then
7 let opt(σ, J) be optimal integer solution of C(σ, J);
8 γσ,J = A(t, opt(σ, J));
9 end

10 if head(σ) contains an existential, ∃zA(z, x) then
11 γσ,J = A(ν, x) for a new null ν;
12 end
13 return γσ,J ;
14 end
15 else
16 return NULL;
17 end

linear integer constraint, since we are dealing with min/max bound operators and derive
the optimal value. Finally, for Case 3, we need to enforce the semantics of existential
rules, construct a fresh, unused null in the object position in case an existential is present
and derive an atom containing the new null. The value computed for the current rule
γσ,J is then returned, in order to be made available to the main algorithm.

Complexity Analysis

Let us give a formal analysis of our reasoning algorithm introduced above. The following
Theorem establishes the complexity of our language.

Theorem 4.4.7. For a Warded Bound DatalogZ, Factent is P-complete in data com-
plexity.

Proof. The main aspects for the complexity analysis of our main reasoning algorithm,
Algorithm 4.2, are:

1. Line 6 which involves constructing and solving an IP if the body contains numeric
atoms, according to the definition of rule applicability of bound DatalogZ programs;

2. The call in Line 7 which uses the termination-check procedure for the Vadalog
language proposed in [BSG18], and

3. Line 4 which updates the value propagation graph as proposed by [KGK+17].

57

4. Main Contributions

Constructing and solving an integer program for the applicability check can be done in
polynomial time in data complexity since the integer programs have a fixed number of
variables ([KGK+17]). The check-termination procedure requires storing several guiding
structures and checking for isomorphism between facts. As shown in [BSG18], for warded
forests this can be done in polynomial time. Finally, updating the value propagation
graph includes checking whether a node is on a positive weighted cycle in the propagation
graph. This check (and update) can be done for instance with a variant of the well-known
Floyd-Warshall algorithm in P-time.

Note that the bound in Theorem 4.4.7 is tight since both reasoning with existentials and
arithmetic in stable limit DatalogZ programs (plain Datalog resp.) is P-complete in data
complexity.

4.5 Discussion
In this section we discuss the most crucial differences between our language and existing
Datalog languages for data analytic tasks, see Table 4.1 for an overview. Figure 4.3 gives
an overview over the complexities of important reasoning languages.

Language Data Complexity Arithmetic KG reasoning
Warded Bound DatalogZ P-c Yes Yes
Warded Datalog± P-c No Yes
Limit DatalogZ coNP-c Yes No
DatalogF S undecidable Yes No
RS-formalism undecidable Yes No

Table 4.1: Comparison of Datalog fragments for data analytics. The suffix -c is an
abbreviation for “-complete”.

While our new language allows for arithmetic and existential rule heads, it partially
relies on notions of limit arithmetic introduced by Kaminski et al. We show that we
can leverage notions of arithmetic introduced by Kamninski et al. in order to prove
decidability and efficient reasoning. The main reason why we extend some of their ideas
is that their fragment is the only known decidable DatalogZ fragment with decidable
arithmetic and efficient reasoning. However, since we introduce a different and purely
syntactic notion, we succeeded in eliminating obvious problems limit DatalogZ faces due
to its mainly semantic based notion. Firstly, their semantics is rather hard to read for
users and therefore also cumbersome to implement. The semantics of programs differs,
depending on whether predicates are of min or max semantics, which cannot be discerned
when looking at a limit DatalogZ program, since these are purely semantic restrictions
inherent to the respective predicates. We amend this problem by introducing explicitly
syntactic min and max bound operators which allows users to instantaneously see whether
min or max semantics is applied to an arithmetic term. Furthermore, we argue that

58

4.5. Discussion

Figure 4.3: Complexities landscape of reasoning languages. DatalogZ is Datalog with
arithmetic and Datalog∃ is Datalog with existential rule heads. RS stands for the RS-
formalism and ∀SO denotes the universal fragment of second order logic. Our results are
highlighted in blue, i.e., the undecidability of Vadalog with unrestricted arithmetic, the
equivalence of coNP and limit DatalogZ, and Warded Bound DatalogZ in P.

our syntactical notion is easier to extend to other aggregate functions since it allows for
introduction of other syntactic constructs without breaking the min/max semantics of
arithmetic terms in bound atoms. Adding aggregate functions such as count or sum in
limit DatalogZ may not be compatible with “built-in” limit predicates and may require
adaptations of their definitions. Furthermore, limit DatalogZ is of course too weak for
reasoning in KGs since it does not support existential rule heads.

The formalism introduced by Ross and Sagiv (RS) is interesting as, contrary to other
results at that time, it deals with all four common aggregates, i.e., sum, count, min,
and max at once in a coherent manner. A significant drawback of their work is the
monotonicity requirement they enforce. Furthermore, their approach allows to use
different lattices (acting as cost domains the numeric arguments can range over) for
different aggregates. This approach leads to a number of problems, discussed in [Gel93].
Compared with limit DatalogZ, it supports more aggregate functions directly which is
a big benefit. However, both our language and limit DatalogZ have better complexity
guarantees and are provably decidable, while the RS formalism suffers from the fact that
checking monotonicity is undecidable and moreover that monotonicity does not imply
decidability of reasoning (of Factent or BCQEval) in general. As other approaches,
they do not support rules with existentials in heads and are thus not able to express
queries needed for KG reasoning.

Compared to our language (and limit DatalogZ) the most important downside of the
DatalogF S formalism by Mazuran et al. is clearly its undecidability (of Factent).

59

4. Main Contributions

Furthermore, it does not allow existential rule heads and is thus too weak for KG reasoning
tasks. However, it is the underlying formalism for the DeALS system [SYZ15], which
introduced several optimization techniques in order to facilitate fixpoint computation of
DatalogF S programs. Nonetheless the authors do not introduce a decidable fragment
and do not provide theoretical complexity proofs of their general language.

60

CHAPTER 5
Conclusion

Our main goal was to provide the first complexity result for new Datalog languages that
support both existential rule heads and arithmetic. Thereby laying theoretic foundations
that show that a combination of arithmetic and advanced reasoning with existential rule
heads is in principle possible and even decidable. We not only succeeded in showing that
a combination of arithmetic and advanced reasoning in KGs is decidable, but we even
proved that it can be done very efficiently in data complexity. Motivated by finding a
new, powerful arithmetic extension of KG reasoning languages, we identified the following
main gaps in current research:

• There are no results for a combination of TGDs and arithmetic in Datalog;
• In particular, Vadalog has no formal underpinnings for arithmetic;
• Kaminski et al. give the first results for decidable arithmetic in DatalogZ but their

semantic restrictions make the language hard to use. Also, they do not allow
existential rule heads rendering their language inherently to weak for reasoning in
KGs;

• There is no expressivity result for decidable arithmetic in Datalog, more specifically
for the limit DatalogZ fragment.

We closed all of these gaps and provided the first decidability proof of a combination
of arithmetic and advanced reasoning in a Datalog language. In Section 4.4 we showed
complexity results for Datalog fragment supporting arithmetic and existential quantifica-
tion powerful enough for complex reasoning tasks, e.g., needed in KGs. In Section 4.3 we
proved that the fragment we used to support arithmetic in our language, limit DatalogZ
as proposed by Kaminski et al., captures coNP.

Possible further directions for future work include the following:

• Investigate other common aggregates such as sum and count and include them in
our language;

• Explore further notions of decidable arithmetic in fixpoint logics;

61

5. Conclusion

• Implement our techniques in the Vadalog system to show practical feasibility of
our results;

It would be desirable to also support count and sum aggregates directly in our language
since this would allow us to include all common aggregates in one language. Moreover,
we believe that there could be other, even more promising notions of decidable arithmetic
that can be used in Datalog reasoning. Another interesting direction for future work
is to investigate completely new approaches for arithmetic in KG reasoning language
that overcome limitations of limit arithmetic. Finally, a practical implementation of our
reasoning language in a KG system such as Vadalog would allow us to show empirical
results for the efficiency of Warded Bound DatalogZ on real-life datasets.

62

List of Figures

4.1 Part of the predicate graph for rules 25-27, edge labels indicate the rules
which imply the respective edge. 37

4.2 Conceptual ER diagram of the family ownership example. 53
4.3 Complexity landscape of reasoning languages. 59

63

List of Tables

4.1 Comparison of Datalog fragments for data analytics 58

65

List of Algorithms

4.1 Algorithm for deciding P |= α [KGK+17] 44

4.2 Algorithm for Warded Bound DatalogZ 56

4.3 Procedure to check and compute rule applicability 57

67

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[ABC+11] Foto N. Afrati, Vinayak R. Borkar, Michael J. Carey, Neoklis Polyzotis, and
Jeffrey D. Ullman. Map-reduce extensions and recursive queries. In Anastasia
Ailamaki, Sihem Amer-Yahia, Jignesh M. Patel, Tore Risch, Pierre Senellart,
and Julia Stoyanovich, editors, EDBT 2011, 14th International Conference
on Extending Database Technology, Uppsala, Sweden, March 21-24, 2011,
Proceedings, pages 1–8. ACM, 2011.

[ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary G. Ives. Dbpedia: A nucleus for a web of open
data. In Karl Aberer, Key-Sun Choi, Natasha Fridman Noy, Dean Allemang,
Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Peter Mika, Diana
Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux,
editors, The Semantic Web, 6th International Semantic Web Conference,
2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan,
Korea, November 11-15, 2007, volume 4825 of Lecture Notes in Computer
Science, pages 722–735. Springer, 2007.

[ACC+10] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M.
Hellerstein, and Russell Sears. Boom analytics: exploring data-centric,
declarative programming for the cloud. In Christine Morin and Gilles Muller,
editors, European Conference on Computer Systems, Proceedings of the 5th
European conference on Computer systems, EuroSys 2010, Paris, France,
April 13-16, 2010, pages 223–236. ACM, 2010.

[AGK+08] Albert Atserias, E. Grädel, P. Kolaitis, L. Libkin, M. Marx, I. Spencer,
M. Vardi, Y. Venema, and S. Weinstein. Finite model theory and its
applications, springer-verlag. Comput. Sci. Rev., 2(1):55–59, 2008.

[AGP14] Marcelo Arenas, Georg Gottlob, and Andreas Pieris. Expressive languages
for querying the semantic web. In Richard Hull and Martin Grohe, editors,
Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on

69

Principles of Database Systems, PODS’14, Snowbird, UT, USA, June 22-27,
2014, pages 14–26. ACM, 2014.

[ANvB98] Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages
and bounded fragments of predicate logic. J. Philosophical Logic, 27(3):217–
274, 1998.

[AtCG+15] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan
Olteanu, Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. Design
and implementation of the logicblox system. In Timos K. Sellis, Susan B.
Davidson, and Zachary G. Ives, editors, Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pages 1371–1382. ACM, 2015.

[Bac09] Charles W. Bachman. The origin of the integrated data store (IDS): the first
direct-access DBMS. IEEE Ann. Hist. Comput., 31(4):42–54, 2009.

[Bak87] René Ronald Bakker. Knowledge Graphs: representation and structuring of
scientific knowledge, Ph.D. Thesis, University of Twente, Enschede. Twente
University Press, 1987.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[BEP+08] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: a collaboratively created graph database for structuring
human knowledge. In Jason Tsong-Li Wang, editor, Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2008,
Vancouver, BC, Canada, June 10-12, 2008, pages 1247–1250. ACM, 2008.

[BFGS19] Luigi Bellomarini, Daniele Fakhoury, Georg Gottlob, and Emanuel Sallinger.
Knowledge graphs and enterprise AI: the promise of an enabling technology.
In 35th IEEE International Conference on Data Engineering, ICDE 2019,
Macao, China, April 8-11, 2019, pages 26–37. IEEE, 2019.

[BG87] Andreas Blass and Yuri Gurevich. Existential fixed-point logic. In Egon
Börger, editor, Computation Theory and Logic, In Memory of Dieter Rödding,
volume 270 of Lecture Notes in Computer Science, pages 20–36. Springer,
1987.

[BGPS19] Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. The
space-efficient core of vadalog. In Dan Suciu, Sebastian Skritek, and Christoph
Koch, editors, Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems, PODS 2019, Amsterdam, The
Netherlands, June 30 - July 5, 2019, pages 270–284. ACM, 2019.

70

[BL84] Ronald J. Brachman and Hector J. Levesque. The tractability of subsump-
tion in frame-based description languages. In Ronald J. Brachman, editor,
Proceedings of the National Conference on Artificial Intelligence. Austin, TX,
USA, August 6-10, 1984, pages 34–37. AAAI Press, 1984.

[BLMS11] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat.
On rules with existential variables: Walking the decidability line. Artif.
Intell., 175(9-10):1620–1654, 2011.

[BNST91] Catriel Beeri, Shamim A. Naqvi, Oded Shmueli, and Shalom Tsur. Set
constructors in a logic database language. J. Log. Program., 10(3&4):181–
232, 1991.

[BSG18] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. The vadalog
system: Datalog-based reasoning for knowledge graphs. Proc. VLDB Endow.,
11(9):975–987, 2018.

[BV81] Catriel Beeri and Moshe Y. Vardi. The implication problem for data depen-
dencies. In Shimon Even and Oded Kariv, editors, Automata, Languages
and Programming, 8th Colloquium, Acre (Akko), Israel, July 13-17, 1981,
Proceedings, volume 115 of Lecture Notes in Computer Science, pages 73–85.
Springer, 1981.

[CGK13] Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase:
Query answering under expressive relational constraints. J. Artif. Intell.
Res., 48:115–174, 2013.

[CGL09a] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. Datalog±: a unified
approach to ontologies and integrity constraints. In Ronald Fagin, editor,
Database Theory - ICDT 2009, 12th International Conference, St. Petersburg,
Russia, March 23-25, 2009, Proceedings, volume 361 of ACM International
Conference Proceeding Series, pages 14–30. ACM, 2009.

[CGL09b] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-
based framework for tractable query answering over ontologies. In Jan
Paredaens and Jianwen Su, editors, Proceedings of the Twenty-Eigth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2009, June 19 - July 1, 2009, Providence, Rhode Island, USA, pages
77–86. ACM, 2009.

[CGL+10] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette, and
Andreas Pieris. Datalog+/-: A family of logical knowledge representation
and query languages for new applications. In Proceedings of the 25th Annual
IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July
2010, Edinburgh, United Kingdom, pages 228–242. IEEE Computer Society,
2010.

71

[CGP10] Andrea Calì, Georg Gottlob, and Andreas Pieris. Advanced processing for
ontological queries. Proc. VLDB Endow., 3(1):554–565, 2010.

[CH85] Ashok K. Chandra and David Harel. Horn clauses queries and generalizations.
J. Log. Program., 2(1):1–15, 1985.

[Che76] Peter P. Chen. The entity-relationship model - toward a unified view of data.
ACM Trans. Database Syst., 1(1):9–36, 1976.

[CM90] Mariano P. Consens and Alberto O. Mendelzon. Low complexity aggregation
in graphlog and datalog. In Serge Abiteboul and Paris C. Kanellakis, editors,
ICDT’90, Third International Conference on Database Theory, Paris, France,
December 12-14, 1990, Proceedings, volume 470 of Lecture Notes in Computer
Science, pages 379–394. Springer, 1990.

[CMA+12] Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and
David Maier. Logic and lattices for distributed programming. In Michael J.
Carey and Steven Hand, editors, ACM Symposium on Cloud Computing,
SOCC ’12, San Jose, CA, USA, October 14-17, 2012, page 1. ACM, 2012.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

[DBS77] Randall Davis, Bruce G. Buchanan, and Edward H. Shortliffe. Production
rules as a representation for a knowledge-based consultation program. Artif.
Intell., 8(1):15–45, 1977.

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Com-
plexity and expressive power of logic programming. ACM Comput. Surv.,
33(3):374–425, 2001.

[EGM97] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog.
ACM Trans. Database Syst., 22(3):364–418, 1997.

[EW16] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs.
In Michael Martin, Martí Cuquet, and Erwin Folmer, editors, Joint Proceed-
ings of the Posters and Demos Track of the 12th International Conference on
Semantic Systems - SEMANTiCS2016 and the 1st International Workshop
on Semantic Change & Evolving Semantics (SuCCESS’16) co-located with
the 12th International Conference on Semantic Systems (SEMANTiCS 2016),
Leipzig, Germany, September 12-15, 2016, volume 1695 of CEUR Workshop
Proceedings. CEUR-WS.org, 2016.

[Fag74] Ronald Fagin. Generalized first-order spectra and polynomial-time recogniz-
able sets. Complexity of computation, 7:43–73, 1974.

72

[FGNS16] Tim Furche, Georg Gottlob, Bernd Neumayr, and Emanuel Sallinger. Data
wrangling for big data: Towards a lingua franca for data wrangling. In
Reinhard Pichler and Altigran Soares da Silva, editors, Proceedings of the
10th Alberto Mendelzon International Workshop on Foundations of Data
Management, Panama City, Panama, May 8-10, 2016, volume 1644 of
CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: semantics and query answering. Theor. Comput. Sci., 336(1):89–
124, 2005.

[FPL11] Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. Semantics and complexity
of recursive aggregates in answer set programming. Artif. Intell., 175(1):278–
298, 2011.

[Fuh95] Norbert Fuhr. Probabilistic datalog - A logic for powerful retrieval methods.
In Edward A. Fox, Peter Ingwersen, and Raya Fidel, editors, SIGIR’95,
Proceedings of the 18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. Seattle, Washington,
USA, July 9-13, 1995 (Special Issue of the SIGIR Forum), pages 282–290.
ACM Press, 1995.

[Gar69] Stephen J Garland. C. spector. inductively defined sets of natural numbers.
infinitistic methods, proceedings of the symposium on foundations of math-
ematics, warsaw, 2-9 september 1959, państwowe wydawnictwo naukowe,
warsaw, and pergamon press, oxford-london-new york-paris, 1961, pp. 97–102.
The Journal of Symbolic Logic, 34(2):295–296, 1969.

[Gel92] Allen Van Gelder. The well-founded semantics of aggregation. In Moshe Y.
Vardi and Paris C. Kanellakis, editors, Proceedings of the Eleventh ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
June 2-4, 1992, San Diego, California, USA, pages 127–138. ACM Press,
1992.

[Gel93] Allen Van Gelder. Foundations of aggregation in deductive databases. In Ste-
fano Ceri, Katsumi Tanaka, and Shalom Tsur, editors, Deductive and Object-
Oriented Databases, Third International Conference, DOOD’93, Phoenix,
Arizona, USA, December 6-8, 1993, Proceedings, volume 760 of Lecture Notes
in Computer Science, pages 13–34. Springer, 1993.

[GGZ95] Sumit Ganguly, Sergio Greco, and Carlo Zaniolo. Extrema predicates in
deductive databases. J. Comput. Syst. Sci., 51(2):244–259, 1995.

[GHK+13] Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke,
Despoina Magka, Boris Motik, and Zhe Wang. Acyclicity notions for exis-
tential rules and their application to query answering in ontologies. J. Artif.
Intell. Res., 47:741–808, 2013.

73

[GHK+19] Bernardo Cuenca Grau, Ian Horrocks, Mark Kaminski, Egor V. Kostylev,
and Boris Motik. Limit datalog: A declarative query language for data
analysis. SIGMOD Rec., 48(4):6–17, 2019.

[GOH+13] Birte Glimm, Chimezie Ogbuji, S Hawke, I Herman, B Parisa, A Polleres,
and A Seaborne. Sparql 1.1 entailment regimes, 2013. W3C Recommendation
21 March 2013.

[GOP11] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Ontological queries: Rewrit-
ing and optimization. In Serge Abiteboul, Klemens Böhm, Christoph Koch,
and Kian-Lee Tan, editors, Proceedings of the 27th International Conference
on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany,
pages 2–13. IEEE Computer Society, 2011.

[GPL] Georg Gottlob, Norman Paton, and Leonid Libkin. Value added data systems
– principles and architecture. http://vada.org.uk/. Online; accessed
2020-05-06.

[GPS19] Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. Vadalog: Recent
advances and applications. In Francesco Calimeri, Nicola Leone, and Marco
Manna, editors, Logics in Artificial Intelligence - 16th European Conference,
JELIA 2019, Rende, Italy, May 7-11, 2019, Proceedings, volume 11468 of
Lecture Notes in Computer Science, pages 21–37. Springer, 2019.

[GR68] C. Cordell Green and Bertram Raphael. The use of theorem-proving tech-
niques in question-answering systems. In Richard B. Blue Sr. and Arthur M.
Rosenberg, editors, Proceedings of the 23rd ACM national conference, ACM
1968, USA, 1968, pages 169–181. ACM, 1968.

[GS21] Claudio Gutiérrez and Juan F. Sequeda. Knowledge graphs. Commun. ACM,
64(3):96–104, 2021.

[Hay77] Patrick J. Hayes. In defense of logic. In Raj Reddy, editor, Proceedings of
the 5th International Joint Conference on Artificial Intelligence. Cambridge,
MA, USA, August 22-25, 1977, pages 559–565. William Kaufmann, 1977.

[Hel10] Joseph M. Hellerstein. Datalog redux: experience and conjecture. In Jan
Paredaens and Dirk Van Gucht, editors, Proceedings of the Twenty-Ninth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA, pages
1–2. ACM, 2010.

[Hil02] David Hilbert. Mathematical problems. Bulletin of the American Mathemat-
ical Society, 8(10):437–479, 1902.

[Imm80] Neil Immerman. Upper and lower bounds for first order expressibility. In
21st Annual Symposium on Foundations of Computer Science, Syracuse, New
York, USA, 13-15 October 1980, pages 74–82. IEEE Computer Society, 1980.

74

http://vada.org.uk/

[Imm86] Neil Immerman. Relational queries computable in polynomial time. Inf.
Control., 68(1-3):86–104, 1986.

[Imm99] Neil Immerman. Descriptive complexity. Graduate texts in computer science.
Springer, 1999.

[JK82] David S. Johnson and Anthony C. Klug. Testing containment of conjunctive
queries under functional and inclusion dependencies. In Jeffrey D. Ullman and
Alfred V. Aho, editors, Proceedings of the ACM Symposium on Principles of
Database Systems, March 29-31, 1982, Los Angeles, California, USA, pages
164–169. ACM, 1982.

[KGK+17] Mark Kaminski, Bernardo Cuenca Grau, Egor V. Kostylev, Boris Motik,
and Ian Horrocks. Foundations of declarative data analysis using limit
datalog programs. In Carles Sierra, editor, Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, pages 1123–1130. ijcai.org, 2017.

[KGK+18] Mark Kaminski, Bernardo Cuenca Grau, Egor V. Kostylev, Boris Motik, and
Ian Horrocks. Stratified negation in limit datalog programs. In Jérôme Lang,
editor, Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
pages 1875–1881. ijcai.org, 2018.

[KGKH20] Mark Kaminski, Bernardo Cuenca Grau, Egor V. Kostylev, and Ian Horrocks.
Complexity and expressive power of disjunction and negation in limit datalog.
In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 2862–2869. AAAI Press, 2020.

[KKA+17] Nikolaos Konstantinou, Martin Koehler, Edward Abel, Cristina Civili, Bernd
Neumayr, Emanuel Sallinger, Alvaro A. A. Fernandes, Georg Gottlob, John A.
Keane, Leonid Libkin, and Norman W. Paton. The VADA architecture for
cost-effective data wrangling. In Semih Salihoglu, Wenchao Zhou, Rada
Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, pages 1599–1602. ACM, 2017.

[Kle55] Stephen C Kleene. Arithmetical predicates and function quantifiers. Trans-
actions of the American Mathematical Society, 79(2):312–340, 1955.

[Kol07] Phokion G Kolaitis. On the expressive power of logics on finite models. In
Finite model theory and its applications, pages 27–123. Springer, 2007.

75

[Kos20] Egor V. Kostylev. Declarative data analysis using limit datalog programs.
In Marco Manna and Andreas Pieris, editors, Reasoning Web. Declarative
Artificial Intelligence - 16th International Summer School 2020, Oslo, Nor-
way, June 24-26, 2020, Tutorial Lectures, volume 12258 of Lecture Notes in
Computer Science, pages 186–222. Springer, 2020.

[KS91] David B. Kemp and Peter J. Stuckey. Semantics of logic programs with
aggregates. In Vijay A. Saraswat and Kazunori Ueda, editors, Logic Pro-
gramming, Proceedings of the 1991 International Symposium, San Diego,
California, USA, Oct. 28 - Nov 1, 1991, pages 387–401. MIT Press, 1991.

[KV96] Phokion G. Kolaitis and Moshe Y. Vardi. On the expressive power of variable-
confined logics. In Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996,
pages 348–359. IEEE Computer Society, 1996.

[Llo87] John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer,
1987.

[Mar09] Bruno Marnette. Generalized schema-mappings: from termination to
tractability. In Jan Paredaens and Jianwen Su, editors, Proceedings of
the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, PODS 2009, June 19 - July 1, 2009, Providence,
Rhode Island, USA, pages 13–22. ACM, 2009.

[Mar14] Volker Markl. Breaking the chains: On declarative data analysis and data
independence in the big data era. Proc. VLDB Endow., 7(13):1730–1733,
2014.

[Min19] Marvin Minsky. A framework for representing knowledge. de Gruyter, 2019.

[MMS79] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing impli-
cations of data dependencies. ACM Trans. Database Syst., 4(4):455–469,
1979.

[MPR90] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The
magic of duplicates and aggregates. In Dennis McLeod, Ron Sacks-Davis, and
Hans-Jörg Schek, editors, 16th International Conference on Very Large Data
Bases, August 13-16, 1990, Brisbane, Queensland, Australia, Proceedings,
pages 264–277. Morgan Kaufmann, 1990.

[MS95] Inderpal Singh Mumick and Oded Shmueli. How expressive is stratified
aggregation? Ann. Math. Artif. Intell., 15(3-4):407–434, 1995.

[MSZ13a] Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. A declarative extension
of horn clauses, and its significance for datalog and its applications. Theory
Pract. Log. Program., 13(4-5):609–623, 2013.

76

[MSZ13b] Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. Extending the power
of datalog recursion. VLDB J., 22(4):471–493, 2013.

[Naq86] Shamim A. Naqvi. A logic for negation in database systems. In Henry F.
Korth, editor, XP / 7.52 Workshop on Database Theory, University of Texas
at Austin, TX, USA, August 13-15, 1986, 1986.

[NSS59] Allen Newell, J. C. Shaw, and Herbert A. Simon. Report on a general
problem-solving program. In Information Processing, Proceedings of the 1st
International Conference on Information Processing, UNESCO, Paris 15-20
June 1959, pages 256–264. UNESCO (Paris), 1959.

[Pap85] Christos H. Papadimitriou. A note the expressive power of prolog. Bulletin
of the EATCS, 26(21-23):61, 1985.

[Prz88] Teodor C. Przymusinski. On the declarative semantics of deductive databases
and logic programs. In Jack Minker, editor, Foundations of Deductive
Databases and Logic Programming, pages 193–216. Morgan Kaufmann, 1988.

[Ric79] Wayne Richter. Yiannis n. moschovakis. elementary induction on abstract
structures. studies in logic and the foundations of mathematics, vol. 77.
north-holland publishing company, amsterdam and london, and american
elsevier publishing company, inc., new york, 1974, x 218 pp. Journal of
Symbolic Logic, 44(1):124–125, 1979.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution
principle. J. ACM, 12(1):23–41, 1965.

[RS92] Kenneth A. Ross and Yehoshua Sagiv. Monotonic aggregation in deductive
databases. In Moshe Y. Vardi and Paris C. Kanellakis, editors, Proceedings
of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 2-4, 1992, San Diego, California, USA, pages
114–126. ACM Press, 1992.

[SGL15] Jiwon Seo, Stephen Guo, and Monica S. Lam. Socialite: An efficient graph
query language based on datalog. IEEE Trans. Knowl. Data Eng., 27(7):1824–
1837, 2015.

[Sin12] Amit Singhal. Introducing the knowledge graph: things, not strings. Official
google blog, 5:16, 2012.

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core
of semantic knowledge. In Carey L. Williamson, Mary Ellen Zurko, Peter F.
Patel-Schneider, and Prashant J. Shenoy, editors, Proceedings of the 16th
International Conference on World Wide Web, WWW 2007, Banff, Alberta,
Canada, May 8-12, 2007, pages 697–706. ACM, 2007.

77

[SYI+16] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson
Condie, and Carlo Zaniolo. Big data analytics with datalog queries on spark.
In Fatma Özcan, Georgia Koutrika, and Sam Madden, editors, Proceedings
of the 2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages
1135–1149. ACM, 2016.

[SYZ15] Alexander Shkapsky, Mohan Yang, and Carlo Zaniolo. Optimizing recursive
queries with monotonic aggregates in deals. In Johannes Gehrke, Wolfgang
Lehner, Kyuseok Shim, Sang Kyun Cha, and Guy M. Lohman, editors, 31st
IEEE International Conference on Data Engineering, ICDE 2015, Seoul,
South Korea, April 13-17, 2015, pages 867–878. IEEE Computer Society,
2015.

[TZ86] Shalom Tsur and Carlo Zaniolo. LDL: A logic-based data language. In
Wesley W. Chu, Georges Gardarin, Setsuo Ohsuga, and Yahiko Kambayashi,
editors, VLDB’86 Twelfth International Conference on Very Large Data
Bases, August 25-28, 1986, Kyoto, Japan, Proceedings, pages 33–41. Morgan
Kaufmann, 1986.

[Var95] Moshe Y. Vardi. On the complexity of bounded-variable queries. In Mihalis
Yannakakis and Serge Abiteboul, editors, Proceedings of the Fourteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
May 22-25, 1995, San Jose, California, USA, pages 266–276. ACM Press,
1995.

[WBH15] Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. Asynchronous
and fault-tolerant recursive datalog evaluation in shared-nothing engines.
Proc. VLDB Endow., 8(12):1542–1553, 2015.

[Wei07] Scott Weinstein. Unifying themes in finite model theory. In Finite Model
Theory and Its Applications, pages 1–25. Springer, 2007.

[ZYD+17] Carlo Zaniolo, Mohan Yang, Ariyam Das, Alexander Shkapsky, Tyson Condie,
and Matteo Interlandi. Fixpoint semantics and optimization of recursive
datalog programs with aggregates. Theory Pract. Log. Program., 17(5-6):1048–
1065, 2017.

78

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Formulation
	Research Questions
	Results
	Organization

	Preliminaries
	Notation
	Computational Complexity
	Datalog Foundations
	Database-theoretic Notions
	Logical Core of Vadalog
	Limit DatalogZ

	Related Work
	Background on Knowledge Graphs
	Datalog
	Arithmetic and Aggregation in Datalog
	Descriptive Complexity Theory

	Main Contributions
	Negative Results
	A Syntactic Fragment of DatalogZ
	Descriptive Complexity Results
	Towards Reasoning in KGs: Existentials in Rule Heads
	Discussion

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

