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Abstract 10 

Rainfall monitoring is fundamental in many hydrological applications such as flood and landslide forecasting 11 

and water resources management. In-situ measurements are the traditional data source of rainfall, but the 12 

worldwide declining number of stations, their low spatial representativeness and the data access problem 13 

limit their use. Satellite products are being widely used as an alternative data source. Among them, SM2RAIN-14 

based products, which exploit the inversion of the water balance equation to derive rainfall from soil 15 

moisture observations, have shown relatively good skills for hydrological applications. However, the need of 16 

calibrating the SM2RAIN parameter values against a reference represents one important limitation, 17 

particularly over data scarce regions. 18 

In this study, we explore the possibility to self-calibrate SM2RAIN and thus to obtain rainfall estimates from 19 

the Advanced SCATterometer (ASCAT) soil moisture independently from any reference rainfall dataset. Four 20 

parametric relationships relating SM2RAIN parameter values to static descriptors (average rainfall, 21 

topography, soil moisture noise) are developed. To develop such relationships, a sample of 1009 points 22 

uniformly distributed over the areas covered by rain gauges in Australia, India, Italy and the United States is 23 

selected. A global validation of the methodology is conducted by comparing the performances of the 24 
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parameterized product with the classical product in which the parameter values are estimated by calibration 25 

against a reference rainfall dataset. The Final Run of the Integrated Multi-Satellite Retrievals for Global 26 

Precipitation Measurement (IMERG) precipitation dataset is used for performance assessment, together with 27 

the triple collocation techniques by using the gauge-based Global Precipitation Climatology Center (GPCC) 28 

product and the Late Run of IMERG. 29 

The aim of the analysis is to obtain an uncalibrated SM2RAIN methodology to retrieve rainfall whose 30 

performance are similar to those obtained with calibration. The results at 1009 points show that the 31 

performances of the parameterized SM2RAIN product are in line with those of the calibrated one, with an 32 

increased capability in the detection of intense rainfall events and an acceptable reduction of the 33 

performance according to both Pearson Correlation and Root Mean Square Error indexes. The application of 34 

triple collocation confirms these findings on a global scale, showing that the SM2RAIN product outperforms 35 

both GPCC and IMERG - Late run estimations in areas characterized by low density of rain gauges and good 36 

quality of ASCAT soil moisture retrievals (i.e., Africa and South America). 37 
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1. Introduction 39 

Floods, drought and landslides are the water related natural hazards that cause the most serious damage to 40 

the environment, people and properties. The occurrence of those events is related to climate: wet soil 41 

moisture (SM) conditions and intense rainfall are often the drivers of flood and landslide events (CIABATTA ET 42 

AL., 2016). According to International Panel on Climate Change (IPCC) 5th report, climate change is expected 43 

to aggravate the occurrence of those phenomena since extreme weather and climate events will step up 44 

(IPCC, 2013). 45 

The knowledge of the triggering conditions of hydroclimatic hazards can be used in prediction models in 46 

order to help the authorities to prevent or mitigate them (HANNAH ET AL., 2011; PONZIANI ET AL., 2012). The 47 

presence of an adequate monitoring network capable of providing accurate precipitation estimation is 48 



therefore fundamental not only for water resources management or agricultural planning, but also to reduce 49 

the loss of lives and economic damages. However, the rain gauge coverage is declining worldwide and 50 

unequally distributed, being concentrated in developed countries (KIDD ET AL., 2017; VÖRÖSMARTY ET AL., 51 

2001). Moreover, despite being highly accurate, rain gauge stations are not free from errors (PETERSON ET 52 

AL., 1998; VILLARINI ET AL., 2008). 53 

Remote sensing techniques are currently the only valuable alternative to ground-based networks, as they 54 

have demonstrated their potential in the estimation of rainfall at relevant spatial and temporal scales globally 55 

(KIDD AND LEVIZZANI, 2011). The classical remote sensing-based technique to estimate rainfall is the “top-56 

down” approach (BROCCA ET AL., 2014A), where the upwelling radiation or backscatter from clouds measured 57 

by satellite sensors are used to estimate the surface instantaneous precipitation rate. One distinguished 58 

example of this type of product is the Integrated Multi-satellitE Retrievals for Global Precipitation 59 

Measurement (IMERG) product of the Global Precipitation Measurement (GPM) mission (HOU ET AL., 2014), 60 

characterized by relatively high spatial and temporal resolutions compared to its predecessors (0.1 degree 61 

and 30 minutes, respectively) and global coverage. This was achieved using a new Dual-frequency 62 

Precipitation Radar (DPR) and an accurate radiometer, both fundamental to calibrate infrared and microwave 63 

data from multiple polar and geostationary satellites. Despite the good level of accuracy achieved, the 64 

difficulties in obtaining and inter-calibrating near-real time observations from multiple agencies and the 65 

overall high cost for operation and maintenance of the whole satellite constellation are obstacles still to be 66 

overcome in order to guarantee the data continuity. Moreover, additional rainfall datasets are still needed 67 

to understand residual uncertainties and errors (MASSARI ET AL, 2017; CHEN ET AL., 2020) like e.g. seasonal 68 

and local bias (MAGGIONI AND MASSARI, 2018). The integration of IMERG with alternative rainfall products 69 

can be also carried out to reduce uncertainties, as in MASSARI ET AL. (2020).  70 

The recently introduced “bottom-up” approach points toward addressing these problems by inferring or 71 

correcting rainfall estimation over land using SM observations from satellite or gauges. This method provides 72 

accumulated rainfall estimates (CROW ET AL., 2009; BROCCA ET AL., 2013; PELLARIN ET AL., 2013) instead than 73 

the instantaneous rate, as for the “top-down” products. Many methods based on this approach share the 74 



same limitations, linked to the limits of measuring SM from space: rainfall estimated only over land, low 75 

accuracy in presence of dense vegetation or complex topography and difficulties in estimating rainfall in case 76 

of soil saturation. Among the “bottom-up” approaches, SM2RAIN (BROCCA ET AL., 2014A) was applied to 77 

different satellite SM products over different regions worldwide with satisfying results. Through the inversion 78 

of the soil water balance equation, it is capable to obtain the accumulated rainfall occurred between two SM 79 

measurements. The method has already been applied to different SM products for local (BROCCA ET AL. 2015; 80 

TARPANELLI ET AL., 2017) and global (BROCCA ET AL., 2019; MASSARI ET AL., 2020) analysis. Three global rainfall 81 

products based on SM2RAIN were developed: two of them were derived from the use of SM2RAIN alone 82 

(SM2RAIN-CCI, CIABATTA ET AL., 2018; SM2RAIN-ASCAT, BROCCA ET AL., 2019) while the third one was derived 83 

from the integration with a “top-down” product, i.e., IMERG Late Run (GPM-SM2RAIN, MASSARI ET AL., 2020). 84 

Different studies have shown the usefulness of these products for hydrological application such as flood and 85 

landslide prediction (BRUNETTI ET AL., 2018; CAMICI ET AL., 2018; BROCCA ET AL., 2020). In order to obtain 86 

accurate rainfall estimates, SM2RAIN parameter values need to be calibrated against a reference rainfall 87 

dataset (e.g., gauge-based) with spatial and temporal resolution comparable with those of the SM dataset. 88 

In this paper, we propose a methodology to estimate the SM2RAIN parameter values independently from a 89 

reference, i.e., a self-calibrated SM2RAIN product. Four parametric relationships are obtained starting from 90 

climatic and land descriptors (e.g. observed mean annual rainfall, topography, soil moisture error) to obtain 91 

the four SM2RAIN parameter values. Understanding the relationships of the parameters with these 92 

descriptors is a step forward for a better physical understanding of SM2RAIN and the possibility: 1) to obtain 93 

an independent rainfall product, i.e. without the need of calibration against a reference dataset, and 2) to 94 

apply the method at high resolution (e.g., 1 km as obtained from Sentinel-1 mission, BAUER-95 

MARSCHALLINGER ET AL.,2018; 2019). The methodology is tested, firstly, at 1009 points uniformly 96 

distributed (regular grid with a space resolution of 0.25 degrees) over the areas covered by rain gauges in 97 

Australia, India, Italy and United States (US). Several datasets globally available including soil texture, 98 

evapotranspiration, soil temperature, satellite SM and observed rainfall climatology are collected to be used 99 

as predictors. A qualitative and quantitative analysis of the data collected is carried out to identify the 100 



descriptors better related to each parameter of SM2RAIN algorithm and to obtain parametric relationships 101 

linking SM2RAIN parameter values to the selected predictors. Secondly, the parametric relationships are 102 

applied on a global scale for the period 2013-2019 and the performances of the parameterized SM2RAIN 103 

product are compared with those resulting from the calibration of SM2RAIN in the same period. Different 104 

global rainfall products (GPM IMERG Final Run, GPM IMERG Late Run and GPCC) are considered for 105 

performance evaluation, through classical performance metrics computation and Triple Collocation analysis 106 

(MASSARI ET AL., 2017). We finally aim to assess whether the self-calibrated SM2RAIN product performances 107 

are in line with those of the calibrated product. 108 

2. Data 109 

Multiple descriptors are considered for the estimation of SM2RAIN algorithm parameter values through a 110 

regression-based regionalization approach (JAKEMAN ET AL., 1992; POST ET AL., 1998; SEFTON AND HOWARTH, 111 

1998; SEIBERT, 1999; WAGENER ET AL., 2004): several datasets are selected describing climatic (rainfall and 112 

evapotranspiration) and land (soil texture and soil type, SM, soil temperature, topography and vegetation 113 

cover) characteristics. The datasets have been selected for different reasons, including their relation with soil 114 

state and their availability worldwide. In the following, the datasets description is provided (see Table 1). 115 

2.1. Climatic data 116 

Regional rainfall datasets 117 

Regional gauge-derived rainfall datasets were collected for the 1009 points uniformly distributed (0.25-118 

degree resolution) over the areas covered by rain gauges in Australia, Italy, US and India. The regional rainfall 119 

datasets are used as reference for SM2RAIN calibration at the points for which the parametric relationships 120 

are developed. For each region of the study area, the data are collected for the period 2013-2017. In 121 

particular: 122 

• The Australian Water Availability Project (AWAP) rainfall product was downloaded for the Australia 123 

region. This gridded dataset is obtained from the interpolation of daily measurements of the 124 



Australian Bureau of Meteorology raingauge network, performed by using an optimized Barnes 125 

successive correction technique. Its spatial resolution is about 5 km (0.05-degree) with a daily 126 

temporal resolution.  127 

• The rainfall dataset of the Italian Civil Protection Department (ITA - DPC) is an interpolation of more 128 

than 3000 rain gauges distributed over the Italian territory. The interpolation is carried out using the 129 

Random Generator of Space Interpolations from Uncertain Observations (GRISO, PIGNONE ET AL., 130 

2010) algorithm to spatially interpolate the measurements on a grid with about 10 km (0.1-degree) 131 

spatial resolution and aggregating the hourly data to the daily time step. 132 

• For the US region, the National Oceanic and Atmospheric Administration Climate Prediction Center 133 

(NOAA CPC) Daily US UNIFIED Precipitation was downloaded. This rainfall product is characterized by 134 

an improved quality obtained by combining all information sources available at CPC and by taking 135 

advantage of the optimal interpolation (OI) objective analysis technique (XIE ET AL., 2007). Its spatial 136 

resolution is about 25 km (0.25-degree) with a daily temporal resolution. 137 

• India region daily rainfall was obtained by downloading the India Meteorological Department (IMD) 138 

gridded dataset. This product combines daily rainfall data from 6955 gauges, using the Shepard 139 

method (PAI ET AL., 2014) to interpolate them, and it is characterized by a spatial resolution of about 140 

25 km (0.25-degree). 141 

The mentioned datasets were all temporally interpolated from their local time to 00:00 UTC, accepting the 142 

resulting uncertainty to obtain regular time spacing, in order to simplify the intercomparison with satellite-143 

derived products (available at 00:00 UTC). 144 

Global Rainfall datasets 145 

Different global rainfall datasets were downloaded to obtain and validate the new SM2RAIN-ASCAT 146 

parameterized rainfall product, for the period 2013-2019: 147 



• Global Precipitation Climatology Centre (GPCC) rainfall product (First Guess) is obtained from ~7000 148 

quality controlled stations all over the world (SCHAMM ET AL., 2014). Its spatial resolution is 1 degree, 149 

with a daily temporal resolution. Since it is based on ground observation, the accuracy of the dataset 150 

is greater over region with high gauge density, i.e., Europe and US. 151 

• The IMERG algorithm estimates precipitation over the majority of Earth's surface by inter-calibrating 152 

the available Passive Microwave (PMW) satellite precipitation estimates to the Combined Radar-153 

Radiometer precipitation estimates from the GPM mission Core Observatory (GPM-CO) and then by 154 

merging and interpolating together these estimates with other precipitation estimates from infrared 155 

geostationary sensors (HUFFMAN ET AL., 2020). Morphing and Kalman filtering interpolation are used 156 

to provide the precipitation estimate if no valid microwave data are available. The resulting product 157 

spatial resolution is 0.1-degrees, and the temporal resolution is 30 minutes. Three Runs of IMERG 158 

are available to the users, based on increasing latency and accuracy: Early Run (IMERG-ER; latency of 159 

4–6 h after observation), Late Run (IMERG-LR; latency 12–18 h) and Final Run (IMERG-FR; latency of 160 

about 3 months). Final Run V06 product, with a monthly adjustment based on GPCC, and Late Run 161 

V06 product, are used here. In this study, the 30 minutes rainfall data were accumulated to obtain 162 

daily precipitation estimates. 163 

• European Centre for Medium-Range Weather Forecasts, ECMWF, Reanalysis 5th Generation (ERA5) 164 

provide hourly data of various global atmosphere, land surface and sea-state variables, combining 165 

models with observations. It was developed within the Copernicus Climate Change Service (C3S) and 166 

it replaces the previous ERA-interim reanalysis product. Its spatial resolution is around 36 km, 167 

resampled on a regular 0.25-degree grid, and the temporal resolution is 1-hour (HERSBACH ET AL., 168 



2020). The hourly rainfall was calculated by subtracting the snowfall fraction to the total 169 

precipitation and accumulated to daily scale in this study. 170 

Evapotranspiration 171 

Hourly evapotranspiration data from ERA5 were obtained for each point of the study area. The hourly data 172 

were accumulated on windows of 12 hours centred at 00:00 UTC and 12:00 UTC, to obtain a temporal 173 

resolution aligned with the SM datasets (12 hours spacing). 174 

2.2. Land data 175 

Satellite Soil Moisture and Soil Moisture Noise 176 

Advanced SCATterometer (ASCAT) is an active microwave sensor onboard of MetOp-A (launched 177 

19/10/2006), MetOp-B (launched 17/09/2012) and MetOp-C (launched 07/11/2018) satellites. It uses two 178 

sets of three vertically polarized antennae, one on each side of the satellite ground track, and it senses 179 

backscatter radiation at 5.255 GHz (C-band). The sensor was originally developed to sense wind speed over 180 

oceans, but it turned out to be also sensitive to the amount of water in the soil, leading to the development 181 

of one of the longest satellite SM product available nowadays (from 2007 onward). ASCAT retrievals have a 182 

spatial resolution of 25 km, sampled at 12.5 km (~0.125°). Relative SM estimates and their related noise were 183 

downloaded from EUropean organisation for the exploitation of METeorological SATellites (EUMETSAT) 184 

Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF) H115 and 185 

H116 products for the period 2013-2019. In these years, the contemporary availability of the satellites 186 

MetOp-A and B permitted a sub-daily temporal resolution over most of the Earth (WAGNER ET AL., 2013). 187 

When the surface state was indicated as frozen, SM estimates were discarded. ASCAT measurements were 188 

linearly interpolated every 12 hours, to obtain regular time spacing. If no data were found within 5 days, each 189 

datum in the interval was set to Not a Number (NaN). 190 



Modelled Soil Moisture 191 

Hourly SM in the first soil layer (0 - 7 cm) of the ECMWF Integrated Forecasting System data from ERA5-Land 192 

were downloaded for the analysis period. ERA5-Land was produced by regridding the land component of the 193 

ECMWF ERA5 climate reanalysis with a finer spatial resolution (0.1-degree). SM was subsampled every 12 194 

hours to obtain the same temporal resolution of ASCAT data. 195 

Topographic data 196 

Elevation data from Earth topography 5 arc minute (ETOPO5) were downloaded. Although the product is 197 

available on a regular grid of 5 -minutes (~0.08°), the resolution of the source data base varies from 5-minute 198 

for the ocean floors, USA, Europe, Japan and Australia to 1 degree in data-deficient parts of Asia, South 199 

America, northern Canada and Africa. 200 

Soil Temperature  201 

Soil Temperature data in the first soil layer (0 - 7 cm) of the ECMWF Integrated Forecasting System data from 202 

ERA5-Land were downloaded for the analysis period. The hourly data were subsampled every 12 hours to 203 

match the temporal resolution of ASCAT data. 204 

Soil Composition Data 205 

The Harmonized World Soil Database v1.2 (WIEDER ET AL., 2014) contains worldwide soil composition 206 

information derived from regional and national data. Several soil parameters were downloaded for this 207 

analysis for the nominal year of 2000, including soil depth, sand-silt-clay fraction, reference soil depth, carbon 208 

content and bulk density, at a spatial resolution of 5 minutes (~0.08°). 209 

Vegetation Continuous field 210 

Global fractional vegetation cover data VCF5KYRv001 was downloaded from NASA Making Earth System Data 211 

Records for Use in Research Environments (MEaSUREs). The dataset relative to the nominal year of 2015 was 212 

downloaded, containing information of tree cover vegetation, bare ground and non-tree cover vegetation 213 

area percentage, with a spatial resolution of 0.05°. 214 



3. Methods 215 

3.1. SM2RAIN 216 

SM2RAIN is an algorithm developed by BROCCA ET AL. (2013; 2014A) to estimate the accumulated rainfall 217 

between two SM measurements. This result can be achieved by inverting the soil water balance equation. It 218 

was successfully applied to different satellite and in situ SM dataset (CIABATTA ET AL., 2018; BROCCA ET AL., 219 

2019; FILIPPUCCI ET AL., 2020) offering good results, especially in poorly gauged regions (MASSARI ET AL, 2020). 220 

Considering a layer characterized by a soil depth 𝑍 [mm] and a soil porosity 𝑛 [m3/m3], the soil water balance 221 

equation can be written as: 222 

 𝑍𝑛 𝑑𝑆𝑀(𝑡)
𝑑𝑡

⁄ = 𝑝(𝑡) − 𝑟(𝑡) − 𝑒(𝑡) − 𝑔(𝑡) (1) 223 

where 𝑆𝑀(𝑡) is the relative SM [-], i.e. the soil moisture saturation fraction, 𝑝(𝑡) is the rainfall rate [mm/d], 224 

𝑟(𝑡) is the surface runoff rate [mm/d], 𝑒(𝑡) the evaporation rate [mm/d] and 𝑔(𝑡) the drainage rate [mm/d]. 225 

During rainfall events and unsaturated conditions, evaporation and surface runoff rates can be considered 226 

negligible (BROCCA ET AL., 2015). Equation (1) can therefore be rewritten, by using FAMIGLIETTI AND WOOD 227 

(1994) relationship to express the drainage rate, as: 228 

 𝑝(𝑡) = 𝑍∗ 𝑑𝑆𝑀(𝑡)
𝑑𝑡

⁄  +  𝑎 𝑆𝑀(𝑡)𝑏 (2) 229 

with 𝑍∗ = 𝑍𝑛, a [mm/d] is the saturated hydraulic conductivity and b [-] is the exponent of Famiglietti and 230 

Wood equation. Remotely sensed SM tends to be noisy and it is sensitive to a thin topsoil layer (few 231 

centimetres). Therefore, the exponential filter approach (WAGNER ET AL., 1999; ALBERGEL ET AL., 2008) is 232 

applied to satellite SM observations before their use in equation (2). The estimation of rainfall is therefore 233 

obtained by the knowledge of two consecutive SM measurements together with 4 parameters: 𝑍∗, 𝑎, 𝑏 and 234 

𝑇, the time constant of the exponential filter. In its standard application, the parameter values are estimated 235 

by calibrating SM2RAIN against reference rainfall data with similar spatial and temporal resolution, with the 236 

objective of minimizing the Root Mean Square Error (RMSE). 237 



3.2. Procedure for the parametric relationship 238 

The methodology used to obtain the four parametric relationships is described here. As a first step, 1009 239 

points uniformly distributed over the areas covered by rain gauges in Australia, India, Italy and US were 240 

selected (see Figure 1 and BROCCA ET AL., 2019). Each point is representative of an area of 25 x 25 km2, and 241 

the spacing between the points is around 1 degree. 242 

Secondly, the climatic and land descriptors were spatially interpolated to the 1009 points. The chosen 243 

interpolation methods consists in the nearest neighbour technique for evapotranspiration data, weighted 244 

average of the overlapping areas for datasets with a spatial resolution finer than 25 km and weighted average 245 

of the four nearest pixels for the remaining datasets. For the time-varying quantities (e.g., rainfall and soil 246 

moisture), different statistics were computed for each point to obtain the descriptors. Specifically, the daily 247 

annual average and the average number of rainy days per year was calculated for rainfall, therefore obtaining 248 

information about the climatology of each point. To obtain them, first the percentage of rainy days 249 

(precipitation > 0) and the average precipitation were calculated for each day of the year (DOY) using the 250 

available years, then the average values were calculated to obtain the annual average values. For SM, SM 251 

noise, soil temperature and evapotranspiration, the mean, median, maximum, minimum, standard deviation 252 

and coefficient of variation were computed in each point of the selected area. The temporal difference of 253 

consecutive SM and SM noise measurements was also considered, since the variation of SM is exploited in 254 

SM2RAIN to obtain rainfall. The mean, median, maximum, minimum, standard deviation and coefficient of 255 

variation were therefore calculated also over these differences, considering both the actual and the absolute 256 

values, and just the positive and negative variations, since these should be related to different mechanisms 257 

of wetting and drying of the soil (e.g., the average value of the positive variation of SM, or the maximum of 258 

the absolute variation of SM noise). For the elevation, the mean and the standard deviation within each pixel 259 

was computed; particularly the standard deviation of elevation is an indicator of topographic complexity. The 260 

latter decreases the accuracy of soil moisture retrievals, due to shadowing effects and layover (a distortion 261 



that occurs in radar imaging when the signal reflected from the top of a tall feature is received by the emitter 262 

before the one of the base, ULABY ET AL., 1981). 263 

Thirdly, the potential relationship between the descriptors and SM2RAIN parameter values was analysed 264 

through the Spearman correlation index. Spearman correlation index was calculated between each 265 

parameter and each descriptor. In order to obtain the parametric relationships, only the descriptors who 266 

showed a high absolute value of Spearman correlation (greater than 0.6) with the related parameter were 267 

considered. 268 

SM2RAIN parametric relationships were finally obtained through a stepwise non-linear backward approach: 269 

all the possible additive and multiplicative combinations between the selected descriptors were initially used 270 

in a multilinear regression algorithm to obtain a first estimation of the relationship. An exemplary formula 271 

for the combination of n descriptors is here reported: 272 

 𝑝𝑎𝑟 = 𝛼0 + ∑ 𝛽𝑖𝑑𝑖
𝑛
𝑖=1 + ∑ ∑ 𝛾𝑖𝑑𝑖𝑑𝑗 + ⋯+ 𝜔 ∏ 𝑑𝑖

𝑛
𝑖=1

𝑛−{𝑖}
𝑗=1

𝑛
𝑖=1  (3) 273 

where i, i, i, and  are the coefficients to be estimated and 𝑑i is a descriptor. The procedure was repeated 274 

iteratively by eliminating, at each step, the less significant factor, until an optimal combination of limited 275 

number of coefficients (minor or equal to 3) and good performance (drops in Spearman correlation in 276 

comparison with the previous step < 0.015) was reached. It was also verified that the Spearman correlations 277 

between each factor used in the relationship were below 0.2, in order to avoid the cross-correlation between 278 

the factors used in the parametric relationships. 279 

3.3. Validation 280 

In order to assess the goodness of the parametric relationships, the parameterized SM2RAIN rainfall product 281 

was compared with the SM2RAIN-ASCAT rainfall product obtained by calibrating SM2RAIN with the standard 282 

approach using ERA5 rainfall as reference. SM2RAIN-ASCAT was calibrated in the full available period 2013-283 

2019, in order to compare the parameterized product with the best possible SM2RAIN version. It has to be 284 

noted that the standard calibration results presented in this paper are different from those obtained in 285 



BROCCA ET AL. (2019) who applied a different filtering approach and the climatology correction based on 286 

ERA5 (not considered here). Both the SM2RAIN derived rainfall products were compared with a benchmark 287 

dataset (section 3.3.1) and by using triple collocation (section 3.3.2). All the products involved in the 288 

validation were re-gridded to ASCAT grid (12.5km spacing), using the same weighted average procedure 289 

applied before (paragraph 3.2). SM2RAIN method is applicable everywhere, but the reliability of the 290 

estimated rainfall depends on the reliability of the estimated SM. This excludes all the areas with high 291 

vegetation regime, where C-band microwave measurements cannot reach the soil, coastal areas, wetlands, 292 

topographically complex areas, region characterized by subsurface scattering (MORRISON ET AL., 2019), and 293 

frozen or snow cover terrains (HAHN ET AL., 2018). It was therefore defined a committed area with high 294 

confidence in the successful retrieval of surface soil moisture from MetOp ASCAT by excluding the 295 

aforementioned categories. The committed area is obtained from the EUMETSAT H SAF product validation 296 

report (HAHN ET AL., 2018). Two different methodologies were then used to assess rainfall products accuracy: 297 

classical performance scores and triple collocation. 298 

3.3.1. Classical performance scores 299 

Continuous metrics were applied to compare the daily rainfall estimates with the dataset taken as the 300 

'standard', GPM-FR. In particular: 301 

Linear Pearson Correlation (R): Pearson Correlation is the most common way to characterize statistical 302 

dependency between two datasets. It can be obtained from the ratio between the covariance of two 303 

dataset and the product of their standard deviation. It varies between -1 and +1, where -1 means negative 304 

linear relationship, +1 means positive linear relationship and 0 means no statistical dependency. 305 

Relative BIAS (BIASr): Relative BIAS index can be calculated as the mean difference between two datasets, 306 

divided by the mean value of the reference dataset. It describes whether there is a systematic over or 307 

under-estimation with respect to the reference data. In this paper the difference is performed between 308 

the estimated and the observed rainfall. Therefore, negative BIAS values mean that the product 309 

underestimates the rainfall, while positive BIAS values indicate overestimation. 310 



Relative Root Mean Square Error (RMSEr): Root mean square error (RMSE) can be calculated as the 311 

average deviation between single measurements of two dataset. It comprehends three sources of error: 312 

decorrelation, BIAS and random error. It should be noted that, since there is no “true” measure of a 313 

quantity, RMSE reliability strongly depends from the reference dataset accuracy. Relative RMSE (RMSEr) 314 

is obtained dividing RMSE by the mean value of the reference dataset. 315 

Categorical indices were also computed to measure the performances in detecting rainfall for different 316 

precipitation classes. Five classes were selected, dividing the rainfall events in those greater than the 10th, 317 

the 30th, the 50th, the 70th and the 90th percentile for each point of the grid. The categorical indices were 318 

calculated for each of those classes. Naming 𝐻 the number of successfully predicted events, 𝐹 the number 319 

of falsely detected events and 𝑀 the number of missed events, we can define: 320 

False Alarm Ratio (FAR) refers to the fraction of erroneously detected events for each class. The optimum 321 

value is 0.  322 

𝐹𝐴𝑅 = 𝐹
𝐻 + 𝐹⁄  (4) 323 

Probability Of Detection (POD) refers to the fraction of correctly predicted events for each class. The 324 

optimum value is 1. 325 

𝑃𝑂𝐷 = 𝐻
𝐻 + 𝑀⁄  (5) 326 

Threat Score (TS) is an integrated measure of the overall performances, giving the fraction of successfully 327 

detected events over the total missed and detected events for each class. The optimum value is 1. 328 

𝑇𝑆 = 𝐻
𝐻 + 𝐹 + 𝑀⁄  (6) 329 

3.3.2. Triple collocation 330 

The classical methods described above permit to assess the similarities between the analysed dataset and a 331 

reference one. Therefore, the performances reliability is dependent on the accuracy of the reference, but 332 

since no dataset has zero-error measurement (VILLARINI ET AL., 2008), not even gauges (PETERSON ET AL., 333 



1998; KIDD ET AL., 2017) the obtained performances are subjected to error. Triple collocation (TC) method, 334 

instead, permits the assessment of uncertainties of three different products against an unknown true 335 

reference. Here a brief explanation of the theory behind the method is presented. For further information, 336 

the reader is referred to MASSARI ET AL. (2017) and STOFFELEN (1998). 337 

Each measure related to a quantity is characterized by both a random and a systematic error: 338 

𝑋 = 𝛼𝑋 + 𝛽𝑋𝜃 + 𝜀𝑋 (7) 339 

where 𝑋 is the measure, 𝜃 is the unknown truth, 𝜀𝑋 the random error and 𝛼𝑋 and 𝛽𝑋 are respectively the 340 

additive and multiplicative component of the systematic error. Taking into consideration three different 341 

datasets whose errors are uncorrelated, the random error of each dataset can be considered Gaussian 342 

distributed with zero mean. The error variance of each dataset can therefore be written as (MCCOLL ET AL., 343 

2014): 344 

𝜎𝜀 =

[
 
 
 
 
 
 √𝑄11 −

𝑄12𝑄13
𝑄23

⁄   

√𝑄22 −
𝑄12𝑄23

𝑄13
⁄   

√𝑄33 −
𝑄13𝑄23

𝑄12
⁄   

]
 
 
 
 
 
 

  (8) 345 

where 𝑄𝑖𝑗  is the covariance between the dataset 𝑖 and 𝑗. McColl underlined that, although Gaussianity 346 

ensures that the RMSE is well descripted and assists in the interpretation, Gaussian data are not required for 347 



the TC, as it is often applied to non-Gaussian data such as SM. By using the definitions of correlation and 348 

covariance, it can be derived: 349 

𝑅𝑇𝐶 =

[
 
 
 
 
 
 √

𝑄12𝑄13
𝑄11𝑄23

⁄   

√
𝑄12𝑄23

𝑄22𝑄13
⁄   

√𝑄13𝑄23
𝑄33𝑄12

⁄   
]
 
 
 
 
 
 

 (9) 350 

𝑅𝑇𝐶  is the TC correlation against the unknown truth. This measure should not be taken as an absolute 351 

measure but as a relative measure between the three datasets.  352 

In this study, TC was used for the global analysis validation of SM2RAIN: the three products selected were 353 

therefore SM2RAIN itself (first the parameterized and then the calibrated product) and two other global 354 

rainfall datasets: GPCC and GPM_LR, chosen over GPM_FR because the latter is corrected using GPCC 355 

monthly rainfall, and therefore it does not satisfy the condition of uncorrelated error. 356 

4. Results and Discussion 357 

4.1. Local Analysis 358 

The objective of this paper is to find and validate four parametric relationships to estimate the SM2RAIN 359 

algorithm parameter values from climatic and land descriptors readily available worldwide. Through these 360 

relationships, SM2RAIN can be easily applied without the need of a reference rainfall dataset. By using the 361 

1009 points, a local analysis was performed to find the parametric relationships. 362 

4.1.1. Descriptors selection 363 

The number of potential descriptors obtained from soil data, vegetation continuous field, topography data 364 

and the statistic of time-varying quantities, exceed 50. Spearman correlation values between each of them 365 

and SM2RAIN parameters were therefore calculated, in order to reduce the number of descriptors, by 366 

selecting for each parameter the quantities that are better related to it. An example of the procedure can be 367 



found in Figure 2, where three scatter density plots between the parameter Z* and three representative 368 

descriptors are shown. In the example, it can be seen how the soil water storage capacity values, obtained 369 

from the Harmonized World Soil Database, does not show significant correlation with the Z* parameter 370 

(Figure 2c), contrary to the expectation. Greater absolute values of Spearman correlation were obtained 371 

from the annual average daily rainfall (Figure 2a) and the standard deviation of the soil temperature (Figure 372 

2b), with the latter showing an inverse relationship with the analysed parameter. These two descriptors were 373 

therefore selected to be used in the multilinear regression algorithm, while the soil water storage capacity 374 

was discarded (note that the standard deviation of soil temperature was discarded in the successive step). 375 

For the sake of brevity, neither the details of the descriptors selection, nor every iteration of the stepwise 376 

non-linear backward regression is described here, but the final relationships are directly shown. At the end 377 

of the procedure, most of the analysed descriptors were discarded: the descriptors who resulted more 378 

significant for SM2RAIN parameters estimation were only those related to SM, SM noise, precipitation and 379 

topography. 380 

4.1.2. T parameter 381 

The first obtained relationship was the one relative to the exponential filter parameter 𝑇. This parameter 382 

was the first to be calculated in order to obtain reduced-noise SM from satellite SM estimates. The reduced-383 

noise SM estimates are used in equation (2) and in the calculation of the SM descriptors for the successive 384 

SM2RAIN parameters relationships. The reference values for 𝑇 parameter were obtained by applying the 385 

exponential filter to ASCAT SM data maximizing R between the filtered SM and the modelled SM from ERA5 386 

(first soil layer 0-7cm). Afterward, the points with R values greater than a fixed threshold of 0.6 were retained 387 

and used as reference T-values to be compared with the climatic and land descriptors (see paragraph 3.2). 388 

The selection of points with correlation greater than 0.6 was done to avoid fitting the parametric relationship 389 

to not representative data. Visual inspection and Spearman correlation were used to identify which 390 

descriptors were better correlated with the reference T-values. A non-linear regression model was then 391 



iteratively applied to the selected descriptors in order to find the best parametric relationship. The optimal 392 

relationship can be written as: 393 

𝑇 = 0.8788 + 1.7020 𝑆𝑀𝑛𝑜𝑖𝑠𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   𝑠𝑡𝑑(|𝑆𝑀𝑑|) + 0.3555  
𝑠𝑡𝑑(|𝑆𝑀𝑑|)

𝑃̅
⁄   𝑡𝑜𝑝𝐶 (10) 394 

where 𝑆𝑀𝑛𝑜𝑖𝑠𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the temporal mean value of the SM noise relative to ASCAT estimates, 𝑠𝑡𝑑(|𝑆𝑀𝑑|) is the 395 

temporal standard deviation of the absolute values of ASCAT SM temporal variations, 𝑃̅ is the annual average 396 

of daily rainfall, and 𝑡𝑜𝑝𝐶 is the topographic complexity (spatial standard deviation of elevation values within 397 

each pixel). 398 

4.1.3. b parameter 399 

According to Famiglietti and Wood (1994), 𝑏 can be considered equal to: 400 

𝑏 = 3 + 2
𝜆⁄  (11) 401 

where 𝜆 is the pore size distribution index. A parametric relationship to estimate 𝜆 as a function of a 402 

parameter was proposed by BROCCA ET AL. (2014B): 403 

𝜆 = 0.085  log 𝑎 + 0.1574 (12) 404 

The same relationship was adopted in this study, but the two coefficients were recalibrated using the 405 

following procedure. 𝑇-values from equation (10) were used to obtain filtered ASCAT SM series to which 406 

apply SM2RAIN. The three parameters of the balance equation were then calibrated against reference 407 

regional rainfall observations (1009 points). The points with R between the observed and estimated rainfall 408 

greater than the fixed threshold of 0.6 and with 𝑇-value less than a threshold fixed to 6, were then selected 409 

(as before to avoid fitting the parametric relationship to not representative data) and the two coefficients of 410 

equation (12) were calculated by fitting the relationship between the calibrated a and b parameter values, 411 

thus obtaining: 412 

𝑏 = 3 + 2
( 0.5928 ∗ log 𝑎 + 0.3022 )⁄  (13) 413 



4.1.4. Z* and a parameter 414 

By using equations (10) and (13), the SM2RAIN algorithm was re-applied to ASCAT SM estimates at 1009 415 

points by only calibrating 𝑍∗ and 𝑎 parameters. Again, the points with R between estimated and observed 416 

rainfall greater than the fixed threshold of 0.6, and with 𝑇-value less than 6, were selected to be compared 417 

with the climatic and land descriptors. Visual inspection and Spearman correlation were used to identify 418 

which quantities were better related with 𝑍∗ parameter, then a linear regression model was applied to them 419 

in order to find the 𝑍∗ parametric relationship: 420 

𝑍∗ = 10.3124 + 0.5186  𝑃̅
|𝑆𝑀𝑑|̅̅ ̅̅ ̅̅ ̅̅⁄  (14) 421 

The same procedure was adopted to find 𝑎 parametric relationship after recalibrating the SM2RAIN 422 

algorithm for only the a parameter and fixing the others through equations (10), (13), and (14). The obtained 423 

equations for a was: 424 

𝑎 = −1.5748 + 13.0324   𝑍∗  |𝑆𝑀𝑑|̅̅ ̅̅ ̅̅ ̅̅  (15) 425 

where 𝑃̅ is the annual average of daily rainfall and |𝑆𝑀𝑑|̅̅ ̅̅ ̅̅ ̅̅  is the temporal mean of the absolute values of 426 

ASCAT SM temporal variations. 427 

4.1.5. Test of parametric relationships 428 

By using equations (10), (13), (14) and (15), the four SM2RAIN parameters can be obtained from knowing the 429 

ASCAT SM timeseries and its noise, the topographic complexity and the mean annual rainfall. To avoid non-430 

physical values for the parameters, the boundaries reported in Table 2 were applied, fixing all the parameters 431 

that exceed limits to the boundary itself. 432 

We note that the parametric relationships, obtained through a statistical regression-based approach, show 433 

physical reasoning in the expected correlation between SM2RAIN algorithm parameters and climatic and 434 

land descriptors. Indeed, equation (10) indicates that the exponential filter T parameter is directly 435 



proportional to the mean value of SM noise, to standard deviation of absolute SM variation, to the ratio 436 

between the latter and the annual average daily rainfall and to the topographic complexity. All these 437 

descriptors increase with either SM measurement error (i.e., SM noise and topographic complexity) or 438 

temporal SM variability (i.e., 𝑠𝑡𝑑(|𝑆𝑀𝑑|) and 1/𝑃̅); in both cases higher T-values are expected, since a higher 439 

value of T increases the filtering capacities. Equations (14) and (15) link the estimation of 𝑍∗ and 𝑎 to the 440 

value of |𝑆𝑀𝑑|̅̅ ̅̅ ̅̅ ̅̅  and 𝑃̅. Indeed 𝑍∗ increases with the ratio between 𝑃̅ and |𝑆𝑀𝑑|̅̅ ̅̅ ̅̅ ̅̅  because it is a measure of 441 

the amount of water stored in the soil, while 𝑎 is directly correlated with 𝑃̅. 442 

As mentioned above, to obtain the parametric relationships, SM2RAIN was applied to ASCAT SM for the 1009 443 

points for 5 times, after and before the definition of each parameter relationship, by using the available 444 

equations and by calibrating the remaining parameters with the standard approach (i.e., minimization of 445 

RMSE). The performances of the obtained rainfall, in terms of R and RMSE are shown in Table 3. 446 

A few insights can be deduced from these results. The overall drop in performances is limited, thus 447 

demonstrating that the obtained parametric relationships are well suited to estimate the SM2RAIN 448 

parameter values. The major drop in correlation can be ascribed to the parameter 𝑇. This can be easily 449 

explained as the parameter 𝑇 is the only one related to rainfall occurrence, to which the correlation is highly 450 

sensitive, while the others parameters are more related to rainfall amount and, hence, to RMSE. A possible 451 

reason for the correlation deterioration could be due to error in modelled SM from ERA5. However, different 452 

tests with the other soil layers of ERA5 and other modelling approaches were carried out and worse results 453 

were obtained (not shown for the sake of brevity). The parametric relationship for a is the one that caused 454 

the greatest increase in RMSE (see Table 3). Finally, we underline that soil and vegetation descriptors were 455 

found not fundamental for obtaining the parametric relationships likely due to the limited accuracy of these 456 

datasets at the considered spatial resolution, particularly for soil information, and the limited influence of 457 

vegetation on the analysed parameters, confirming the findings of SEHGAL ET AL. (2020). 458 



4.2. Global Analysis 459 

The good results obtained at 1009 points led to the application of the parametric relationships on a global 460 

scale. The parameters maps obtained using the parametric relationships on a quasi-global scale (60° S – 60° 461 

N) are shown in Figure 3. As expected, exponential filter T parameter is greater over desert, forest and 462 

mountain areas (Figure 3d), where SM quality is lower, while the distributions of Z* and a (Figure 3a and 3b) 463 

reflect the known areas where the average rainfall rate is high (equatorial region). ERA5 rainfall was used to 464 

obtain the annual average daily rainfall for the parametric relationships and also to calibrate SM2RAIN ASCAT 465 

with the standard methodology to verify that the uncalibrated product performances are in line with those 466 

of the calibrated SM2RAIN. The performance of the two rainfall datasets were then assessed against the 467 

GPM-FR precipitation product, in terms of the categorical indices False Alarm Ratio (FAR), Probability of 468 

Detection (POD) and Threat Score (TS), and the continuous indices R, BIASr and RMSEr. It should be noticed 469 

that the GPM product contains both the solid and liquid fraction of the precipitation, while SM2RAIN is able 470 

to estimate only the liquid fraction. The masking of frozen condition for SM ASCAT product should be able to 471 

remove the days of solid precipitation from the comparison, but in case of failure of frozen condition 472 

detection, this issue could be a source of error, in particular over high elevation and high latitude regions. 473 

From IMERG V05B, full coverage is provided for the latitudes of 60°N-60°S, while the remaining upper and 474 

lower latitudes extending to 90° are considered "partial coverage". The current analysis was restrained to 475 

the full coverage area (60°N-60°S) to increase the accuracy of the results. From now on, the product obtained 476 

from the use of the parametric relationships will be labelled as “parameterized”, while the one obtained 477 

using the standard calibration method will be named as “calibrated”. 478 

The distribution of the categorical indices is shown in Figure 4 as boxplots. The indices were calculated for 479 

five rainfall classes, respectively the 10th, the 30th, the 50th, the 70th and the 90th percentile of the precipitation 480 

for every point. Regarding the FAR, the two products show similar performances for the first two classes, 481 

while the parameterized product has a higher percentage of false alarms for the last three classes. Different 482 

observations can be done for the POD index: the calibrated product performs slightly better than the 483 



parameterized for the first three classes, while it is true the opposite for the others two. From this 484 

information, it can be inferred that the parameterized product has greater capability in estimating the major 485 

rainfall events. However, the performances of the parameterized product are slightly worse than those of 486 

the calibration product for lower percentiles (<50th), due to a greater number of false alarms and to a lower 487 

detection ability. These results are confirmed by the TS scores, which indicates a slightly better performance 488 

of the calibrated product for the first four classes, while for the fifth class the parameterized product 489 

performs better. 490 

The differences in the performance are due to the different parameter values adopted by the two products. 491 

Figure 5a shows the 𝑇 parameter distribution for the whole area: there are clear differences between the 492 

calibrated and parameterized values, in both the median and the range of values. This is probably a 493 

consequence of the strategy used to estimate 𝑇, comparing the satellite SM with a modelled SM, instead of 494 

calibrating the T-values with respect to reference rainfall. The parameterized product tends therefore to filter 495 

the SM data less than the calibrated product (i.e., lower T-values), thus increasing the average SM variation, 496 

that in turn increase the overall estimated rainfall. This is the cause of the increase of both the FAR and POD 497 

indices. 𝑍∗ and 𝑎 (Figure 5b and 5c) show instead similar behaviour between the two products. The values 498 

for the parameterized product are slightly greater than the calibrated product that is the reason of the 499 

overestimation tendency noted above. Finally, Figure 5d shows the distributions of 𝑏 parameter, which has 500 

similar median value but a very different variability range, due to the relationship, equation (13), used for 501 

relating a and b parameters. 502 

R, BIASr and RMSEr were also calculated for the global analysis. The distribution boxplots of these 503 

performance indices are shown in Figure 6. The obtained results confirm the outcomes of the categorical 504 

indices analysis: in terms of R the calibrated product is slightly better than the parameterized (0.4866 vs 505 

0.4777 in the committed area); the range of R-values is also comparable (Figure 6a). BIASr for the 506 

parameterized product is around 0.2, confirming the tendency to overestimate rainfall, whereas the 507 

calibrated product has a tendency to underestimation. RMSEr values (Figure 6c) are very similar between 508 

the parameterized and the calibrated product, with differences lower than 5%. 509 



The global map of R and RMSEr difference between parameterized and calibrated products are shown in 510 

Figure 7 and 8, respectively. In the figures, red colour indicates that the parameterized product is better 511 

than the calibrated one, while the blue colour indicates the opposite. An overall increase in Pearson 512 

correlation is noticeable in the tropical area, while many mountainous areas show a decrement in R values. 513 

The relative error increase in forest, desert and mountainous areas, likely due to the lower filtering of SM 514 

values in the parameterized product. One possible cause of the performance deterioration in topographically 515 

complex zones could be related to the low spatial resolution of the selected DEM, ETOPO5. A different 516 

product with higher resolution will be tested in future studies. The mean Pearson correlation values shown 517 

in Figure 6a are around 0.5 for the committed area and 0.4 globally. These correlation values are likely due 518 

to the differences between the dataset used to calibrate SM2RAIN and to obtain the climatology for the 519 

parametric relationships, i.e., ERA5, and the product considered as benchmark, i.e., GPM-FR. ERA5 and GPM-520 

FR are indeed not highly correlated by each other; the mean value of R between them equals to 0.5604 in 521 

the committed area (0.5412 globally). 522 

Due to the difficulty to have a reliable rainfall benchmark on a global scale, a TC analysis was performed to 523 

assess the capability of SM2RAIN products in rainfall estimation against an unknown true reference. Since TC 524 

requires three different products whose errors are uncorrelated, two other global rainfall datasets were 525 

selected to be compared with the parameterized and the calibrated products, separately: GPCC and GPM-526 

LR, chosen over GPM-FR as the latter is corrected using GPCC monthly rainfall, and therefore it does not 527 

satisfy the condition of uncorrelated error with GPCC. Since GPCC has a low spatial resolution (1-degree), it 528 

was interpolated over ASCAT grid using a weighted average, where the weights are the relative inverse of 529 

the distance between each ASCAT pixel and the four nearest GPCC points. Figure 9 shows the boxplot of the 530 

obtained 𝑅𝑇𝐶. SM2RAIN rainfall products have mean values comparable with those of the other products for 531 

the committed area, with a slight deterioration when the parametric relationships are used instead of the 532 

standard calibration. Moreover, the areas where the parameterized product performs better than the other 533 

two is large (red areas in Figure 10): GPCC is the best performing product over most of Europe and Asia, half 534 

of North America and half of Australia, where there is a high density of gauge stations. GPM-LR performs 535 



better over forest and desert areas, where ASCAT SM has large errors (green areas in Figure 10). In most of 536 

the remaining zones (red areas in Figure 10), SM2RAIN ASCAT derived from the parametric relationships 537 

performs better than the other products, confirming the capacity of SM2RAIN in estimating rainfall over 538 

Africa and South America (BROCCA ET AL., 2020; MASSARI ET AL., 2020) also when the parameterized product 539 

is considered. For further information about the mutual correlation between the products, the individual 540 

maps of TC correlation have been added in the appendix. As mentioned above, the TC correlation values 541 

should not be taken as absolute measures of accuracy but rather as relative measures between the three 542 

datasets. 543 

5. Conclusions 544 

In this paper, four parametric relationships were developed to estimate SM2RAIN parameter values from 545 

climatic and land descriptors. A local analysis was performed over a regular grid of 1009 points uniformly 546 

distributed over the areas covered by rain gauges in Australia, India, Italy and US, for which high quality 547 

observed rainfall data were available. Several climatic and land descriptor datasets were analysed to obtain 548 

an inclusive description of each point and to find the descriptors related to the four SM2RAIN parameters. 549 

The four parametric relationships were finally developed, obtaining the parameter values estimation from 550 

the knowledge of the SM timeseries and its noise, the topographic complexity and the mean annual rainfall. 551 

The major drops in correlation due the use of the parametric relationships, instead of the calibration against 552 

a reference, is caused by the 𝑇 parameter, while the major increase in RMSE is caused by the 𝑎 parameter. 553 

Possible causes of these behaviours could be attributed to the accuracy of the selected datasets for obtaining 554 

the descriptors, and these problems will be investigated in future studies. 555 

To validate the obtained results, a global application of SM2RAIN on ASCAT SM was performed using the 556 

parametric relationships (parameterized SM2RAIN-ASCAT) and the standard calibration methodology 557 

(calibrated SM2RAIN-ASCAT). ERA5 rainfall was used to assess mean annual rainfall and as calibration 558 

dataset; while GPM-FR rainfall was used as benchmark to calculate performance indices. From the analysis 559 

of the categorical and continuous scores, an overall similar capacity in rainfall estimation between the 560 



calibrated and parameterized product is found. In particular, even if the calibrated product has slightly better 561 

performances both in terms of correlation and bias, the parameterized product resulted more capable in the 562 

detection of larger rainfall events. 563 

Finally, a triple collocation analysis was performed by using GPM-LR, GPCC and the two SM2RAIN-ASCAT 564 

products. The analysis revealed that, even if the parameterized version of SM2RAIN-ASCAT has slightly lower 565 

correlations than the others in the committed area, there are several regions (e.g., in Africa and South 566 

America) in which its performance is better than both GPM-LR and GPCC, suggesting the utility of this product 567 

for rainfall estimation. 568 

In future studies, the addition of new descriptors to estimate SM2RAIN parameters will be investigated (e.g. 569 

Radio Frequency Interference indicators, Land Cover, high resolution topography). These relationships could 570 

be very important for estimating rainfall from high resolution SM, since calibration data with high spatial and 571 

temporal resolution are often unavailable. Therefore, the methodology will be applied to SM timeseries from 572 

Sentinel-1 in order to assess their validity and to provide a self-calibrated high resolution (<1km) rainfall 573 

product from remote sensing. 574 
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Tables 751 



Table 1: description of the dataset downloaded and processed but not selected for the derivation of SM2RAIN 752 

parametric relationships 753 

VARIABLE SOURCE 
TEMPORAL 

RESOLUTION 
SPATIAL 

SAMPLING 
ADDITIONAL INFORMATION 

Soil Temperature 
(0-7 cm) 

ERA5 Land 1 h 0.1° https://www.ecmwf.int/en/era5-land 

Evapotranspiration ERA5 1 h 0.25° https://www.ecmwf.int/en/era5 

Rainfall ERA5 1 h 0.25° https://www.ecmwf.int/en/era5 

Rainfall 
IMERG 

Late Run 
0.5 h 0.1° https://gpm.nasa.gov/data/directory 

Rainfall 
IMERG 

Final Run 
0.5 h 0.1° https://gpm.nasa.gov/data/directory 

Rainfall GPCC 1 d 1° Schamm et al. (2014) 

Rainfall AWAP 1 d 0.05° 
http://www.bom.gov.au/jsp/awap/rain/ 

index.jsp 

Rainfall IMD 1 d 0.25° 
http://www.imd.gov.in/pages/service_ 

hydromet.php 

Rainfall CPC 1 d 0.25° 
https://psl.noaa.gov/data/gridded/data. 

unified.daily.conus.html 

Rainfall ITA-DPC 1 d 0.1° Ciabatta et al. (2017) 

Soil Composition 
Data 

HWSD / ~0.008° 
http://www.fao.org/land-water/databases-

and-software/hwsd/en/ 

Soil Moisture ASCAT ~12 h ~0.125° Wagner et al. (2013) 

Soil Moisture (0-7 
cm) 

ERA5 Land 1 h 0.1° https://www.ecmwf.int/en/era5-land 

Topography ETOPO5 / ~0.08° 
https://www.ngdc.noaa.gov/mgg/global/et

opo5.HTML 

Vegetation 
Continuous Fields 

VCF5KYR / 0.05° 
https://lpdaac.usgs.gov/products/vcf5kyrv0

01/ 

 754 

Table 2: Upper and Lower boundaries for SM2RAIN parameters 755 

Boundaries 𝒁∗ [mm] 𝒂 [mm/d] 𝒃 [-] 𝑻 [d] 

Lower 20 0.1 1 0 

Upper 800 200 50 8 

 756 

Table 3: Mean value and variation of Pearson Correlation (R) and Root Mean Square Error (RMSE) for local 757 

analysis points, calculated after and before the establishment of each parametric relationship  758 



 
Mean R 

[-] 

ΔR  

[-] 

Mean RMSE 

[mm/d] 

ΔRMSE 

[mm/d] 

Calibrated SM2RAIN 0.5951  4.4126  

T fixed 0.5757 -0.0194 4.4909 0.0783 

T, b fixed 0.5712 -0.0045 4.5226 0.0317 

T, b, Z fixed 0.5631 -0.0081 4.6142 0.0916 

Parameterized 

SM2RAIN 
0.5567 -0.0064 4.7915 0.1773 

  759 



Figures 760 

 761 

Figure 1: 1009 points grid for the local analysis, uniformly distributed over the areas covered by rain gauges 762 

in Australia, India, Italy and USA. 763 

 764 



 765 

Figure 2: Example of the descriptors selection procedure. In the three panels is shown a scatter density plot 766 

of Z* parameter distribution with respect to the annual average daily rainfall (a), the standard deviation of 767 

the soil temperature (b) and the soil water storage capacity (c) for the analysed area. Spearman correlation 768 

is shown on top of each panel. 769 

 770 



 771 

Figure 3: Global Map of SM2RAIN parameter values as obtained from the parametric relationships. Each 772 

panel shows: a) parameter Z*, b) parameter a, c) parameter b, d) parameter T. 773 

 774 

 775 
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Figure 4: Distribution of False Alarm Ratio, FAR, Probability of Detection, POD and Threat Score, TS categorical 777 

indices of the parameterized and calibrated SM2RAIN rainfall products, respectively in dark and light blue, 778 

against the benchmark dataset GPM - Final Run, related to the committed area.  The indices are calculated 779 

for five rainfall classes, according to the intensity of the observed rainfall events being greater than the 10th, 780 

the 30th, the 50th, the 70th and the 90th percentiles.  781 

 782 

 783 

Figure 5: distribution of SM2RAIN parameters 𝑇, 𝑍∗, 𝑎 and 𝑏 over the whole area for the parameterized, 784 

dark blue, and the calibrated, light blue, SM2RAIN rainfall products 785 

 786 

 787 

Figure 6: Distribution of Pearson Correlation, relative BIAS (BIASr) and relative Root Mean Square Error 788 

(RMSEr) indices of the parameterized and calibrated SM2RAIN rainfall products, respectively in dark and light 789 



blue, against the benchmark dataset GPM - Final Run. In each panel, the results related to the committed 790 

area are on the left and those related to the global area are on the right.   791 

 792 

 793 

Figure 7: Global map of differences between the parameterized and calibrated SM2RAIN rainfall products for 794 

the Pearson correlation score calculated against GPM – Final Run product. Red areas mean that the 795 

parameterized product outperforms the calibrated one, the opposite for blue areas. The parameterized 796 

product shows an increase of correlation over dense forest and frozen areas. 797 



 798 

Figure 8: Global map of differences between the parameterized and calibrated SM2RAIN rainfall products 799 

for the relative Root Mean Square Error score calculated against GPM – Final Run product. Red areas mean 800 

that the parameterized product outperforms the calibrated one, the opposite for blue areas. 801 

 802 

 803 

Figure 9: Distribution of the Triple Collocation correlation obtained from the rainfall products triplets 804 

composed from SM2RAIN, GPM – Late Run and GPCC, over the committed area. The results of the 805 

parameterized products are shown in dark blue, while those of the calibrated product are in light blue.  806 

 807 



   808 

Figure 10: Map of best performing products based on the results of Triple Collocation of the rainfall 809 

products triplet SM2RAIN parameterized (red), GPM – Late Run (green) and GPCC (blue). The 810 

parameterized SM2RAIN-ASCAT product outperforms the others in those areas characterized by low 811 

density of gauge and good quality of the SM retrievals. 812 

813 



Appendix 814 

 815 

Figure A-1: Map of TC correlation of the parameterized SM2RAIN-ASCAT based on the results of Triple Collocation of the rainfall 816 
products triplet SM2RAIN parameterized, GPM – Late Run and GPCC.  817 

 818 

Figure A-2: Map of TC correlation of the GPM – Late Run based on the results of Triple Collocation of the rainfall products triplet 819 
SM2RAIN parameterized, GPM – Late Run and GPCC. 820 



 821 

Figure A-3: Map of TC correlation of the GPCC based on the results of Triple Collocation of the rainfall products triplet SM2RAIN 822 
parameterized, GPM – Late Run and GPCC. 823 
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