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Abstract

Airborne Laser Bathymetry (ALB) is an attractive technology for the measurement of shallow water bodies because of the high
acquisition rate and high point densities that can be achieved. Of special interest is the application of ALB in non-navigable
areas where the only alternatives are conventional terrestrial surveying by wading with a pole, multi-media photogrammetry, or
spectrally based depth retrieval. The challenge for laser based approaches in such very shallow waters (< 2 m) is the difficulty
of discriminating between echoes from the surface and the bottom. This work presents an algorithm for the detection of surface,
volume, and bottom (SVB) designed to meet this challenge while requiring only a single wavelength (532 nm) sensor. The accuracy
of the algorithm is cross validated against reference measurements obtained from terrestrial survey with a total station and shows
negligible bias and virtually no depth dependence for the experimental dataset.
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1. Introduction

Mapping of underwater topography is a routine task in hy-
draulic engineering. Detailed knowledge of the morphological
structure of rivers, lakes, reservoirs, and coastal areas is a pre-
requisite to developing detailed models for flood planning and
forecasting of response to catastrophic events. The additional
consideration of ecological factors, as required by the EU Wa-
ter Framework Directive, also requires cost effective monitoring
protocols (European Union, 2000). Airborne Hydro Mapping
(AHM) (Steinbacher and Aufleger, 2013; Mandlburger et al.,
2011; Mandlburger, 2017) is a method to meet such demands.
AHM is an application of airborne laser bathymetry (ALB) for
precise remote sensing of shallow water bodies as encountered
in rivers, lakes, riparian areas, and reservoirs, as well as shallow
coastal areas.

ALB is an active remote sensing technique based on light
detection and ranging (LiDAR), measuring the round trip time
of a laser pulse travelling between the sensor, in air, and the
target, in water. While it is a very important method, sev-
eral alternatives to ALB exist such as passive optical remote
sensing based on measurements of radiance reflected from a
water body (Legleiter et al., 2004), multimedia digital photo-
grammetry (Maas, 2015; Westaway et al., 2001) acoustic echo
sounding, or more traditional surveying by wading making use
of real-time-kinematic (RTK) GNSS (Global Navigation Satel-
lite System) or total station equipment. A direct comparison
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of the capabilities of hyperspectral imaging and ALB is made
by Legleiter et al. (2015). For ALB they mention the ability to
directly measure bed elevations, but report a difficulty to meas-
ure very shallow depths. Recently several additional interest-
ing ideas appeared, aiming to circumvent the costly manual ap-
proach, such as the use of unmanned surface vehicles (USV)
employing a mechanical sensing bar (Sahalan et al., 2016), or
the use of a low cost structured light sensor such as the Mi-
crosoft Kinect (Klopfer et al., 2017).

Measuring bed elevations with ALB is a more complex prob-
lem than measuring terrain elevations with topographic LiDAR
since two media, air and water, are involved. The laser beam
propagates at a much slower speed within the water body (three
quarters the speed of light in air) and changes its direction at
the air-water-interface; both effects are described by Snell’s
law. Reconstruction of the water surface therefore is an inher-
ent necessity for determining correct bed elevations. Several
approaches have been documented: Pe’eri and Philpot (2007)
investigated a two wavelength approach for shallow waters.
While laser pulses at the near infrared (NIR) will be reflected
from the surface mainly, laser pulses at the wavelength of green
light are capable of penetrating into the water column and are
eventually scattered back from the bottom. Another approach
has been described by Mitchell and Thayer (2014), who make
use of the polarization preservation effect of the water surface to
discriminate between bottom and surface returns. The authors
performed promising experiments in the laboratory, but it re-
mains to be seen how the scheme will perform under real-world
conditions in large-area airborne mapping scenarios. Another
technique combining a laser range finder operating in the NIR
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range with a green laser imaging system has been described by
Shen et al. (2017). They use a camera to observe the displaced
images of the green laser as seen when reflected from the sur-
face and the bottom. Mandlburger et al. (2017) investigated
the question of whether it is possible to reconstruct the water
surface from redundant observations of the riverbed. They con-
clude with a positive answer given a couple of preconditions
are satisfied, such as the presence of sufficient morphological
details and the ability to capture water bottom topography from
different directions.
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Figure 1: Schematic of three component green single wavelength received sig-
nal.

From a complexity point of view, simpler sensor concepts are
favorable, such as those that employ a single wavelength laser
only. To understand why shallow waters (< 2 m) pose an extra
challenge for single wavelength systems, one may consider that
ALB inherently is a multi-target method because of the need
to detect both, surface and bottom. Since target discrimination
for such a single channel system is limited by laser pulse dura-
tion and receiver bandwidth (Pfennigbauer et al., 2009), a lower
bound for the sensor’s ability to measure shallow waters is to
be expected. Given this limitation, it is an open question as to
whether a standard multi-target capable sensor can be used for
bathymetry. Mandlburger et al. (2013) consider this question
based on a RIEGL VQ-820-G (λ = 532 nm) sensor. They find
that the online waveform processing (OWP) algorithm (Pfen-
nigbauer et al., 2009), implemented on the sensor to deliver
points in real time, results in a fuzzy cloud of interface echoes
with its maximum density occurring approximately 10 cm to
25 cm below the surface. In contrast, the echo points from the
bottom show a low spread in vertical direction. It is well known
that the echo return from a water body typically consists of three
contributions (Fig. 1): a return from the air-water interface (i.e.
the water surface), a return from the water column, and a re-
turn from the water bed (e.g. Guenther et al., 2001). Within the
water column, back-scattering by dissolved organic particles
with varying density causes quasi-random intermediate peaks in
the recorded return signal resulting in a large number of fuzzy
points extending below the surface. Mandlburger et al. (2013)

show that it is possible to approximate the reference water sur-
face level via statistical analysis of these responses.

When it became clear that relatively simplistic detection and
estimation schemes based on a threshold alone, would not allow
one to infer more information from the return signals, sensors
were built that employed digital signal processing to operate on
the digitized full waveforms received. This type of sensor can
also store relevant parts of the received signals for off-line data
processing, which spurred the development of full-waveform
analysis (FWA). The objective of any such FWA algorithm is to
infer the reasons for the specific form of the received waveform.
Most of these algorithms implicitly assume that the superpos-
ition principle (i.e. linearity) is valid for the echoes returned
from different scatterers. However, since it is a demanding en-
gineering task to build receivers and digitizers, that maintain
a high degree of linearity over a wide dynamic range of in-
put signals (e.g. weak bottom and strong surface), combined
with high operational speed, non-linearity cannot be avoided
entirely. Consequently, a few of these algorithms consider non-
linear receiver behavior explicitly (Pfennigbauer and Ullrich,
2010; Hartzell et al., 2015), some at least mention presence of
non-linearity in the receiver (Zhao et al., 2018; Fuchs and Tuell,
2010), but often the issue of linearity is not addressed explicitly.
Collin et al. (2008), however, were aware of the non-linear, log-
arithmic receiver behavior because they suggested that a linear
fit of the received response could be used to estimate the atten-
uation coefficient. Abady et al. (2014) employ linear segments
to approximate the water column, although they do not discuss
receiver linearity.

At this point, we want to emphasize that linearity is of partic-
ular importance when examining distributed targets such as the
water column. Wagner et al. (2006) show that the receiver out-
put can be understood as a convolution, thus implying linearity,
between the system waveform and the differential back-scatter
cross-section (dBSC), but they do not make use of the true sys-
tem waveform. Cawse-Nicholson et al. (2014) suggest using
echoes from hard targets, which are essentially equivalent to
the system waveform, for deconvolution. Schwarz et al. (2017)
went one step further and proposed an exponential decompos-
ition algorithm for bathymetric waveforms making use of an
explicit recording of the system waveform. In that work the
authors used an unlimited chain of multiple exponential seg-
ments as a model for the water surface, volume, and bottom.
One of the key features of their algorithm is that their model
of the system waveform (see also: Schwarz and Pfennigbauer,
2018) makes possible a closed form expression of the convolu-
tion of exponential dBCS models with the system waveform, a
key requirement to efficient implementation of non-linear para-
meter fits. They demonstrated the feasibility and effectiveness
of their method, but due to a lack of reference data they did not
sufficiently assess the accuracy of the method.

In the present work we extend the work of Schwarz et al.
(2017) by presenting a surface-volume-bottom (SVB) al-
gorithm based on the aforementioned exponential decompos-
ition, but restrict the unlimited chain of exponentials to a more
compact model of 10 unknown parameters with explicit provi-
sion for the surface and bottom layers. We examine questions
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regarding (a) the appropriateness and quality of the SVB al-
gorithm, (b) the accuracy of the riverbed estimate, and (c) the
degree to which it is possible to approach the theoretical limit
for target discrimination in very shallow waters. We address
these questions by empirical evaluation of the algorithm and
comparison of ALB data with terrestrially surveyed reference
points.

2. The SVB Algorithm

2.1. Design of the Algorithm

For cases of practical relevance the output signal of the re-
ceiver of a LiDAR system can be written as a convolution in-
tegral

p(t) =

∫ +∞

−∞
h(t − τ)σ(τ) dτ = h(t) ∗ σ(t) (1)

with σ(t) the differential backscatter cross-section (dBCS) and
the system waveform h(t) (see e.g. Wagner et al., 2006). The
system waveform h(t) is equal to the received signal when
pointing the sensor in a direction perpendicular to a flat exten-
ded target since in this case the dBCS equals Dirac’s delta func-
tion (Pfennigbauer et al., 2013; Cawse-Nicholson et al., 2014;
Hartzell et al., 2015). Dirac’s delta function, although strictly
speaking not a real function, is a mathematical object of zero
width and infinite height while the area of the function remains
a finite number. These properties make the delta function an
adequate model for representation of a discrete scatter event,
where the area of the function corresponds to the amount of
reflected energy.

The SVB algorithm essentially minimizes the squared sum
of differences

E(ϕ) =

N∑

n=1

(pm(tn, ϕ) − p(tn))2 (2)

between a continuous model of the received signal pm(t, ϕ),
sampled at t = tn, and the waveform samples p(tn) by find-
ing the optimum parameter vector ϕ = ϕopt where tn are the
sampling time instances of the sample set of size N. The model
pm is defined by the convolution

pm(t, ϕ) = hm(t) ∗ σm(t, ϕ) (3)

of the two sub models hm for the system waveform and σm for
the dBCS.

A basic model of the dBCS for a water body can be given
as two Dirac’s delta functions, one for the surface, and one for
the bottom, plus one exponential function segment for the water
column (Guenther, 1985). However, this model is only appro-
priate for laser beams hitting both the water surface and bottom
at zero-degree incidence angle. For a non-zero angle of incid-
ence the returned pulse is subject to broadening and is not de-
scribed properly by a Dirac’s delta function. Typical ALB sys-
tems employ conical scanning (i.e. Palmer scanner) with typical
off-nadir angles of approximately 20◦. Thus, neither the surface

nor the bottom fulfill the zero-degree incidence angle require-
ment and therefore require a different dBCS model. Pfennig-
bauer et al. (2013) show that pulse broadening can be described
by a convolution of a Gaussian-shaped system waveform with
the lateral intensity shape of a Gaussian-shaped beam, result-
ing in another Gaussian-shaped, but wider, pulse. For reasons
of mathematical tractability, we use a simplified model to de-
scribe the broadening effect, namely the convolution of a box-
car shaped function with the model hm of the system waveform.

2.2. Implementation Details of the Algorithm
For an efficient implementation of the minimization explicit

knowledge of the partial derivatives of E(ϕ) is desirable. For
this reason, we make use of a model of hm(t) defined as the real
part of a sum of exponentials

hm(t) = Re

t
0
+

I∑

i=1

αieβit

 (4)

where αi and βi are the complex valued model parameters, I
is the model order (the number of components), and t0

+ is the
Heaviside step function which is 0 for t < 0 and 1 elsewhere.
The parameters αi and βi are determined by a parameter fit
to match the model hm with a recording of the system wave-
form and are stored in the sensor as part of the calibration
data (Schwarz et al., 2017). In Fig. 2, a typical model of the
system waveform of a RIEGL VQ-880-G topobathymetric air-
borne laser scanner can be seen.

t

h
m
(t
)

Figure 2: Exponential components (dashed) and sum of components of the
sensor’s system waveform model (solid) as a function of time.

Fig. 3, displays the refined SVB model of the dBCS where
the two Dirac’s delta function elements have been replaced by
boxcar shaped functions and a second exponential has been ad-
ded. The boxcars represent the pulse broadening effect and the
second exponential is allowed to extend below the bottom to
take care of late echoes, likely caused by multiple scattering.
Near the surface and near the bottom the echoes from the inter-
face layers and the column are overlapping. This is modeled by
the analogous overlap of boxcar and exponential segments. The
exponential decay of the dBCS is described by the parameter γ
which is restricted to be the same for both exponentials.
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Figure 3: SVB model with 10 parameters E0...E3, τ0...τ4 and γ. Surface and
bottom are modelled by boxcars to account for beam spreading caused by off

nadir incidence. Effects from the water volume are modelled by two expo-
nential segments. The tail below the bottom takes care of late echoes, likely
caused by multiple scattering. τcog is the center of gravity of the bottom and
tail segments with respect to τ2.

The 10 elements of the parameter vector

ϕ = (E0, E1, E2, E3, τ0, τ1, τ2, τ3, τ4, γ) (5)

are bound by the inequalities:

Ei > 0 i = 0...3
τ j+1 > τ j j = 0...3
γ > 0 . (6)

Since the parameter optimization will not reliably converge
from random start values, τ0 andτ2 must be initialized with val-
ues close to surface and bottom positions. The algorithm starts
by identifying the two peaks of highest significance at position
tms for the most significant and tss for the second most signific-
ant peak. Instead of using a simple threshold trigger to find
these locations a method inspired by topographic considera-
tions (Kirmse and de Ferranti, 2017) has been used. First for
every sample point Pi = (ti, p(ti)) isolation and prominence are
calculated. (An optimization is possible by considering only
points of local maxima.) Isolation of a point P at some amp-
litude is defined as the smallest distance to a point at the same
amplitude when connecting the points by a straight line that is
entirely contained in the upper half of the graph (Fig. 4). Prom-
inence is defined as the difference between the amplitude of the
point P and the absolute minimum of the segment of the graph
constituted by the isolation line. The significance of a point
P then is defined as the product of prominence, isolation, and
amplitude. Finally from the positions of the two most signi-
ficant peaks the initialization of τ0 and τ2 is calculated: Con-
sidering that the convolution of a function f (t) (e.g. the dBCS
model) with another function g(t) (e.g. the system wave) will
shift the center of gravity (COG) of the first function by the
COG of the second,

COG( f (t) ∗ g(t)) = COG( f (t)) + COG(g(t)) , (7)

with the COG of a function f (t) defined as

COG( f ) =

∫ ∞
−∞ τ f (τ)dτ
∫ ∞
−∞ f (τ)dτ

, (8)

the COG(hm) of the system wave is subtracted from the most
significant positions and used to initialize τ0 and τ2.

τ0 = tms − COG(hm(t)), τ2 = tss − COG(hm(t)) . (9)

The above assumes that the peak positions of the waveform are
close, at least approximately, to the COG defined by a surround-
ing of the peaks. The widths of the boxcars τ1 − τ0 and τ3 − τ2
are initially set equal to the width of the system waveform. The
width of the second exponential τ4 − τ2 is initially equal to
τ3 − τ2. The sample values at the both most significant posi-
tions are used to initialize the amplitudes Ei of the boxcars and
the exponentials:

E0 = E1 = 0.5p(tms), E2 = E3 = 0.5p(tss) . (10)

The damping γ is initialized with

γ =
1

τ2 − τ0
. (11)

Since, in the case of very shallow waters, the second most sig-
nificant peak might not represent an interface layer (surface
or bottom), due to severe overlapping of the echo waveforms,
other alternative start values in addition to the most prominent
peak are used. These alternatives are 1) the third prominent
peak, 2) a position tzc defined by the first zero crossing before
the most prominent peak, and 3) a position tcog offset by the
COG of the system wave in the front of tms. All four sets of
start parameters are tried and the fit with the lowest residual
error is taken as the result.

Fig. 5 shows the result of a parameter fit. The thick black
line is the result pm(t, ϕ) of the convolution of the dBCS, drawn
in red, and the system waveform. For comparison, the OWP
echo locations are drawn in green. These locations, which rep-
resent the round trip times between the sensor and the targets,
are drawn at the positions of the waveform peaks. However,
this is only by convention, the locations could have been drawn
at the fronts of the waves or at points on their leading edges as
well. For a ranging unit that is based on peak detection, the con-
vention for visualization of the ranging results is to identify the
target locations with the positions of the peaks. The visualiza-
tion of the OWP, a correlation based algorithm, adheres to this
convention by applying a constant offset to align the ranging
results with the peak positions. Now the dBCS, drawn in red,
follows a similar convention: Since the thick black line is the
result of a convolution of the system waveform and the dBCS it
cannot be nonzero where the dBCS is zero. On the other hand
we need to align the front τ0 with the echo location given by
the position of the OWP points to get the same range. This
is done by applying a sensor dependent offset which has to be
determined once during sensor calibration.

Finally the SVB parameters require a mapping to the water
surface and the bottom points. From the set of parameters τ0 is
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Figure 4: Isolation, prominence, and amplitude of a point P. Significance of P
then is the product of isolation, prominence, and amplitude. Black line: wave-
form data; red line: calculated significance rescaled to the maximum of the data
for better display. The most significant peak is at location tms, the second most
is at tss, and the closest zero crossing before tms is at tzc.

used to give the distance to the water-surface and τ2+0.5τcog−τ0
is used to give the (uncorrected) length of the laser beam in wa-
ter. Here τcog is the COG of the second boxcar and exponential.
The given mapping has been determined by experiment and has
been chosen because it minimizes the systematic errors.
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Figure 5: Received signal; sensor height: about 704 m; water depth: about 1 m;
gray dots: waveform samples; green: OWP position results; red: fitted SVB
model; black solid: SVB model convolved with system waveform.

3. Study Area and Datasets

The Pielach River (Fig. 6) is a medium-sized, gravel bed
tributary of the Danube River with a gradient of 0.2 % within

Figure 6: Study area Neubacher Au (Pielach River, Austria); orthophoto:
basemap.at; water surface: raster map with color coded water level heights;
TPS: GNSS and tachymetric reference points. The arrow points to the profile
shown in Fig. 13.

the study area, located in the Neubacher Au in Lower Aus-
tria (48◦12′50′′N, 15◦22′30′′E; WGS 84) about 100 km west
of Vienna, the capital city of Austria. The area is routinely
used for instrument calibration flights by the sensor manufac-
turer RIEGL and has been repeatedly used as a site for scientific
studies. For more details about the site see Mandlburger et al.
(2015). Data acquisition for the study at hand was carried out in
the course of a RIEGL VQ-880-G-IR sensor calibration flight
on June, 16, 2016 (full leaf-on). For validation purposes 730
checkpoints were simultaneously measured by means of con-
ventional surveying with a total station, while wading with a
pole. Position and orientation of the total station via free sta-
tioning was based on a local reference point network measured
by RTK GNSS.

The VQ-880-G-IR is a dual wavelength sensor operating
with a 532 nm green and 1064 nm NIR (near infra-red) laser
with a nominal pulse repetition rate of 500 kHz. The per pulse
energy of the green laser is 10 µJ and the pulse width is 2 ns.
The pulse returns are amplified in two independent parallel re-
ceiving channels of different gain, each sampled at a rate of
1.5 GHz with a depth of 12 bits. Depending on trigger condi-
tions, the waveform data are evaluated on-line and additionally
stored to disk for post processing. The scan mechanism for the
green laser creates a circular pattern on the ground, yielding
a constant 20◦ off nadir angle, while the NIR laser echoes are
aligned in parallel scan lines perpendicular to the flight direc-
tion. The beam divergence of the green laser was set to 1.1 mrad
resulting in a footprint diameter of approximately 80 cm on the
ground.

The area of interest is covered by 4 overlapping flight lines.
For the green laser channel, the scan data of each flight strip
are separated into a forward and backward looking semicircle,
resulting in 8 distinct datasets. The effective point density over
the study area making use of all four flight lines is about 60 m−2.

Since laser pulses in the infra-red are not penetrating below
the water surface, these data points have been used as a refer-
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ence for evaluating the accuracy of estimates of the water sur-
face elevation inferred from the green laser. The number of
points returned from the water surface is largest when the flight
trajectory is exactly over the river axis because NIR echoes
from the water surface can only be detected at small off-nadir
angles. The flight plan has been adjusted accordingly to max-
imize the usable laser echoes from the water surface yielding
about 3 m−2 to 5 m−2.

4. Methods

Data processing was carried out using the sensor manufactur-
ers software RiPROCESS (RIEGL, 2018). In addition to stand-
ard processing steps like multiple time-around resolution, dir-
ect georeferencing, strip adjustment, refraction correction, etc.,
the SVB algorithm was also implemented in RiPROCESS. Dis-
tance calculations and raster map creation was completed with
CloudCompare (Girardeau-Montaut, 2018). The IR-Density
map was created with the software package OPALS (Mandlbur-
ger et al., 2009). For all the following steps, only points and
waveforms from the water body have been subjected to pro-
cessing.

In order to asses the performance of the SVB algorithm, spe-
cific point cloud datasets have been generated. One consists of
points from the SVB algorithm (i.e. the result of the full wave-
form analysis), the other consists of OWP points only. In the
SVB set, the point at τ0 classifies as surface and the point at
τ2 + 0.5τcog classifies as bottom (see Fig. 3). For the OWP-set,
points were classified into surface and bottom using the follow-
ing ad-hoc algorithm: OWP multi-target points (i.e., multiple
points from the same laser shot) have been grouped into first,
intermediate, and last targets. The first targets were then clas-
sified as surface and the last targets classified as bottom of the
water body. Manual data cleaning was employed to remove
outliers like first echoes in the riparian vegetation or last echoes
below the water bottom. The SVB and OWP point clouds were
independently processed.

First, separate water surface models were calculated from the
respective points of the OWP and SVB dataset and used for
refraction correction of the bottom points by means of RiHydro,
a software module of RiPROCESS.

Next, triangle meshes were generated for the set of water
surface points and the set of bottom points using the Delauny
2.5D option of CloudCompare. Finally, for each terrestrially
surveyed reference point the signed distance to the respective
bottom mesh was calculated. Analogous processing steps were
applied to the water surface reference points from the NIR laser
channel and the water surface meshes.

Additionally, for the point cloud of the SVB bottom points
statistical information about the SVB algorithm output was
evaluated for each point: the Pearson correlation coefficient

r =

∑
n(xn − x̄)(yn − ȳ)√∑

n(xn − x̄)2
√∑

n(yn − ȳ)2
(12)

between the measured waveform and the model, the root mean

squared error (RMSE)

RMSE =

√
(
∑

n(yn − xn)2)
N

(13)

between waveform and model, and γ the decay parameter. In
Eq. 12 and Eq. 13, yn are the data samples and xn are the
samples of the model for n = 1...N, with N the number of the
samples of the waveform.

For assessing any dependency on depth, a depth measurent
was derived for each SVB bottom point as the smallest distance
of the point to the SVB surface mesh.

Figure 7: Density map of the infrared channel. The yellow arrow marks an area
of poor NIR coverage of the water surface due to the larger incidence angle of
the laser beam. Unfortunately this also is where the profiles of larger depths are
located. White lines: sensor trajectories; orthophoto: basemap.at

The reference points for the water surface ideally would have
been used as a (continuous) water surface model derived from
the air-water interface echoes of the NIR laser channel. Al-
though the NIR water surface point density was about 3 m−2 to
5 m−2 for most parts of the study reach, poor coverage of the
areas where the profiles of larger depths were located preven-
ted the interpolation of an accurate water surface model for the
entire river section, see Fig. 7. It is worth mentioning that the
observed void is caused by the larger incidence angle of the in-
frared beam and not by the larger water depths. Instead of a true
NIR water surface model, we calculated the mean difference of
the available NIR points to the respective surface meshes and
used them as an offset between the SVB and OWP surface es-
timates and the NIR surface.

5. Results and Discussion

5.1. Performance of SVB Algorithm

The most important attribute of any full waveform algorithm
is the accuracy of its results, such as ranging and intensity of
the reflected signal. However, if the algorithm makes use of
an explicit model as in our case, good agreement of the model
and the measured data is important as well. For this reason,
we evaluated the Pearson correlation coefficient and the root
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mean squared error between the recorded data samples and the
modeled waveforms.

In Fig. 8 the results of the SVB decomposition are presented.
Panel (a) shows a visible depth dependence of the Pearson r
coefficient but at a high degree of correlation of larger than 0.99.
Fig. 8 panel (c) shows the RMSE which does not exhibit depth
dependence. The histogram of r in Fig. 8 (b) highlights the
high correlation between the model and the data and Fig. 8 (d)
gives the mean value of the distribution of the RMSE as µ = 7.7
digitization units, which is less than 0.2% of the range of the
12-bit digitizer.

The histogram of the decay parameter γ as seen in Fig. 8
(f) is highly peaked at zero and there is also a peak near 120.
The first peak near zero indicates presence of a large number of
exponentials which are almost shaped like a boxcar, meaning
the exponential segment between τ0 and τ2 (and between τ2
and τ4) in Fig. 3 becomes

σm(t) = ((t − τ0)0
+ − (t − τ2)0

+)E1e−γ(t−τ0)|γ=0 . (14)

Considering that a high value of the decay parameter makes an
exponential look more like a Dirac delta function, the second
peak of the distribution of Fig. 8 (f) indicates the presence of
numerous Dirac delta-like exponentials. The numerical value
of 120 bears no significance beyond being large. The value
is related to an (arbitrarily chosen) upper bound that has been
forced on the γ parameter during the optimization step to avoid
runaway. This has been validated by changing the upper bound
and observing a corresponding change of the position of the
second peak. The presence of the both peaks suggests a modi-
fication of the model by changing the γ near zero to real box-
cars and the γ near 120 to real Dirac delta functions and ex-
clude them from the statistics. The suggested changes to the
model might be worth considering because γ could be used for
the estimation of turbidity. However for the present study this
approach was not pursued.

The SVB algorithm will always attempt to identify exactly
two boundary layers and characterize the medium in between.
Looking at it in another way, this means that if the bottom echo
is not strong enough the algorithm may infer the presence of
some targets below the surface which are not the bottom but
will erroneously be classified as such. We expect that a better
understanding of the back-scatter behavior of the water column
will allow an extension of the SVB algorithm to also reliably
work in a SV (surface volume) mode. However, in the present
dataset this issue was not of concern, because the good visibility
conditions allowed to see the bottom through the water for the
entire study reach.

Fig. 9 and 10 show the spatial distribution of a few para-
meters to further illustrate the performance of the algorithm.
Fig. 9 compares the surface coverage of the detected water sur-
face points of the SVB with respect to the OWP algorithm. The
very shallow areas near the river banks while covered by surface
points derived by the SVB algorithm are not available from the
OWP algorithm. Fig. 10 is a map of the waterdepths derived
by the SVB algorithm. Such depth distribution maps are not
only of interest for building hydrological and erosion models

but might also be of relevance for the biology of rivers (e.g.,
Maddock, 1999).

5.2. Accuracy of Depth Estimation
Depth is defined as the difference of the elevations of the

water surface and the water bottom. As was expected, the wa-
ter surface levels estimated by the SVB and OWP are slightly
different with respect to the NIR surface. The SVB surface is
2.9 cm and the OWP surface 14 cm below the NIR surface, as
can be seen by the dashed lines of Fig. 11 (b) and (d).

In the OWP case, the comparison of bottom points against
the ground truth exhibits the existence of a small bias which is
depth dependent (Fig. 11 b) at a ratio of 3.6 cm m−1. For the
SVB case there is virtually no dependence on depth (Fig. 11 d).
Elimination of this depth dependence is the result of the choice
of the bottom point as τ2 +0.5τcog. This result, although encour-
aging, should be interpreted with caution since we cannot give
a theoretical reasoning for the factor of 0.5. On the other hand
the correlation coefficient for the regression is only about 0.2
for both methods, so depth dependence is not very prominent
anyways.

The statistics of the bottom elevation error (Fig. 11 a and c)
both show negligible bias for the both cases of SVB and OWP.
Variances of the OWP and SVB histogram are comparable in
magnitude. The OWP histogram exhibits bi-modality, which
may be explained by the distortion of the pulse positions due to
overlapping of the pulses. The dependence on depth (Fig. 11 b)
displays a second cluster of errors around a depth of 0.5 m,
a depth where severe overlapping already is taking place, see
Fig. 12 (a).

Validation of ALB for very shallow waters in the regime of
one meter and below is not found very often in the literature.
Allouis et al. (2010) addressed this question for water depths
below two metres. They used a two wavelength sensor with
5 mJ pulse energy at a repetition rate of 1 kHz and a footprint
diameter of 1.5 m, compared to a pulse energy of 10 µJ at a
rate of 500 kHz and a footprint diameter of 0.8 m in our case.
They find a bias growth of about 40 cm per meter which is a
factor of 40 greater than the SVB results. However, they note
that improvements might be possible by implementing a decon-
volution of the physical model of the receiver, taking into ac-
count the back-scatter of the water column, and implementing
proper refraction correction. Our results seem to substantiate
these presumptions. Kinzel et al. (2007) investigated a riverine
environment and asserted that a specialized algorithm is neces-
sary for shallow water processing. In a later work Kinzel et al.
(2012) undertook a thorough analysis of ALB for three rivers
by making use of the ALPS (Airborne Lidar Processing Sys-
tem) bathymetry algorithm. Similar to our findings they report
no considerable dependence on depth of the residual elevation
error but find a somewhat larger standard deviation.

Fig. 13 shows an example profile taken at the position indic-
ated by the yellow arrow of Fig. 6. The blue points marking
the water surface are slightly below the red points, which de-
lineate the reference surface defined by the NIR echoes. The
green points, marking the reference points at the bottom, coin-
cide well with the refracted bottom points in maroon.
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Figure 8: Statistics of SVB algorithm: (a) depth dependency of Pearson correlation coefficient r; (b) histogram of Pearson correlation coefficient r; (c) depth
dependency of RMSE; (d) histogram of RMSE; (e) depth dependency of decay parameter; (f) histogram of decay parameter.

5.3. Smallest Resolvable Depth

The ability of a sensor to discriminate between two closely
spaced targets is determined by the laser pulse width, the re-
ceiver bandwidth, and the sampling rate (Pfennigbauer et al.,
2009). Legleiter et al. (2015) give a formula for the smallest
resolvable depth

∆h =
1
2

cw∆t cos(θw) (15)

with cw the speed of light in water, ∆t the width of the system
waveform, and θw the nadir angle of the laser beam. (The re-
ceivers bandwidth causes the width of the system waveform to
be larger than the laser pulse width.) Assuming ∆t = 2.81 ns,
cw = c0/1.33, and θw = 20◦, ∆h evaluates to approximately

30 cm. However, equation (15) does not consider the effect of
pulse broadening due to the off nadir incidence angle and foot-
print size of the laser beam. The results calculated by equation
(15) therefore should be interpreted as an order of magnitude
only.

Figure 12 displays two prototype waveforms from the very
shallow regime. Fig. 12 (a) depicts the bottom at a depth of
0.5 m and Fig. 12 (b) the bottom at a depth of 0.25 m. The
green vertical bars mark the positions of the results of the OWP
method. Although the trigger mechanism in the OWP case
for closely spaced targets is able to resolve only one target
(Fig. 12 b), the SVB modeling approach still is able to deliver
two distinct target positions despite the substantial overlap of
the pulses. It is worth mentioning that the SVB algorithm in
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Figure 9: Surface coverage comparison of SVB and OWP algorithms: The SVB
algorithm works even in the very shallow areas at the river banks; orthophoto:
basemap.at.

Figure 10: SVB Algorithm: Waterdepth map; orthophoto: basemap.at.

the case of shallow depths does not deliver exponential com-
ponents. This is in contrast to Fig. 5 where at larger depths the
exponential segment is properly modeled. Fig. 14 shows the
profile from where the waveform in Fig. 12 (b) has been taken.
The black line marks the laser beam direction of the waveform.
The blue points of the surface as well as the maroon points from
the bottom each describe a well defined layer. The points also
can be seen to agree with the red and green reference points.
The given example suggests that the SVB algorithm is able to
resolve targets below the conventional limit given by Eq. 15.

In an attempt to estimate the smallest resolvable depth we use
the following reasoning: For a natural river it is plausible that
the distribution of small depths will be continuous. This should
be in contrast to regulated rivers where the steep riverbanks will
cause a under representation of small depths. A sample dis-
tribution of depth values therefore should exhibit a continuous
behavior towards zero in the case of a natural river.

Fig. 15 depicts such flow depth statistics, where panel (a) is
made from OWP points, and panel (b) from SVB points. For

the generation of these graphs an extended 2.0 km reach was
used, surrounding the 400 m section covered by the reference
points. The number N gives the population size, after outliers
(below zero and larger than 3 m) have been removed. The shape
of the histogram for the OWP method shows a lack of values for
depths below 30 cm. This lack of depth values between 0 cm to
50 cm for the OWP method also is visible in Fig. 11 (b), it is
explained by the fact that the trigger mechanism of the OWP
method needs to see a peak, and is consistent with the limit for
the minimum resolvable depth of about 30 cm given by Eq. 15.
Kinzel et al. (2012) present a similar figure with the same lack
of data for depths <0.5 m.

On the other hand, the shape of the flow-depth histogram
generated from the SVB method exhibits a consistent approach
towards zero. It is this continuous behavior for small values of
the sample distribution that we interpret as an indication of the
ability of the SVB method to resolve depths down to zero. This
is a very encouraging result, but additional experiments will be
necessary to explore the effects of parameters such as the re-
flectivity, structure, and roughness of the riverbed, as well as
the influence of the state of the surface and optical properties
of the water column, such as turbidity. In summary, the SVB
method in the very shallow regime needs only a single wave-
form to deliver a water surface and a bottom point while the
OWP method applied to the same waveform will only deliver
the bottom point.

Smith et al. (2011) propose a gamma distribution model for
the distribution of overland flow depths. Legleiter (2016) used
empirical and theoretical models, the gamma function being a
prominent representative of the latter, for calibrating the image-
to-depth quantile transformation for inferring bathymtery form
multi- or hyperspectral image data. It is interesting to see that
the gamma distribution is a good fit for our data set as well.
The red line in Fig. 15 (b) shows a two parameter gamma func-
tion obtained by a least squares parameter fit, which is in good
agreement with the underlying sample depth distribution of the
SVB method.

6. Conclusions

We have presented a new SVB (surface, volume, and bot-
tom) algorithm for single wavelength airborne laser bathymetry
and demonstrated that it is capable of inferring depth down to
approximately one centimeter with very high fidelity. The al-
gorithm is based on the method of exponential decomposition
(Schwarz et al., 2017).

By comparison with GNSS reference points for the bottom,
we showed that the resulting point cloud is an unbiased meas-
ure of river bed geometry with a variance of 3 cm with respect
to the GNSS reference. Goodness of fit metrics comparing the
measured and modeled waveforms (Pearson r coefficient and
the RMSE) do not exhibit depth dependence. Also the river bed
elevation error does not exhibit depth dependence. Based on the
given dataset we were able to show that the SVB algorithm is
able to resolve depths smaller than predicted theoretically (Leg-
leiter et al., 2015).
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Figure 11: Statistics of elevation error. NIR depth has been offset corrected to reference the water surface defined by the NIR channel; the dashed horizontal lines
indicate the mean values of the OWP (b) and SVB (d) surfaces. Panel (a) shows the OWP elevation error histogram, (b) shows the OWP depth dependent elevation
error, i.e., OWP bottom minus reference, (c) shows the SVB elevation error histogram, and (d) shows the SVB depth dependent elevation error, i.e., SVB bottom
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Figure 12: Waveforms in very shallow water: (a) at a depth of 0.5 m; (b) at a depth of 0.25 m; both cases exhibit severe pulse overlapping. Dots: waveform samples;
green: point positions detected by OWP method; red: the SVB model; black solid: SVB model convolved with system waveform.

Figure 13: Example profile showing the water surface and refracted bottom points estimated by the SVB algorithm. Blue: the surface points; maroon: refracted
bottom points; green: GNSS bottom reference points; red: NIR surface reference points.
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Figure 15: Histograms of flow depth h after outlier removal (0.0 < h < 3.0): OWP method (a) and SVB method (b), red: fitted gamma distributions.

The decay parameter of the exponentially damped back-
scatter from the water column, although required for the mod-
eling, was not further investigated in this study. This would
have required waters of varying turbidity as well as water bod-
ies of larger depths. Nevertheless a refinement of the SVB
model is suggested, comprising the replacement of exponen-
tials with boxcars or Dirac delta shaped functions in degenerate
cases. The authors expect these refinements to be useful in fu-
ture experiments with the prospect to use the decay parameter
for turbidity assessment.
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