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Abstract

The production of plates from refractory metals involves several reheating processes
that have a critical influence on the quality of the final product. This thesis deals
with the application of control engineering methods to two reheating processes
in a flat stock production line. The objective in both cases is to save time and
energy in the reheating processes, while the quality of the products should not be
compromised.

In the first part of the thesis, batch-type chamber furnaces used in a hot rolling
plant are considered. Energy saving is achieved by minimizing the residence times
for each product that is charged into the furnace. When the product is in the
furnace, its temperature cannot be measured. Therefore, a detailed process model
of the chamber furnace is derived from first principles and subsequently reduced
to a first-order nonlinear system, which is able to capture the time evolution of
the discharge temperature of the product with sufficient accuracy. The first-order
model is exploited in a learning strategy to improve the estimates of the minimum
residence times from one product to the next. Additionally, the products of the
plant are assigned to product classes according to their material and surface
properties to further improve the estimation results.

Simulation studies are performed with the validated detailed process model
and the proposed learning strategy with different product classes. The results
show a high accuracy if the product parameters are well known. Uncertainties
in the product parameters have a moderate influence on the estimation results
that can be mitigated by narrowing the definitions of the product classes. The
designed estimator is computationally inexpensive and can be applied to a wide
range of similar furnace systems.

The second part of the thesis deals with an induction heating system used in the
strip coil production. Thin sheets of refractory metals are reheated along a cutting
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line to improve the quality of the cutting edges. Flatness defects of the sheet
cause fluctuations in the air gap between the inductor and the sheet, which entail
strong temperature inhomogeneities. The goal is to bring the temperature along
each cutting line above a minimum threshold without unnecessary overheating.

The induction heating problem is formulated as a multiphysics process model,
which is subsequently simplified for the controller design. The resulting control-
oriented model consists of an advection equation and an equivalent circuit model.
Based on the control-oriented model, a cascade controller for the transmitted
heating power and a two-degrees-of-freedom temperature controller, comprising a
feedforward and a feedback part, are designed to compensate for changes in the
mean air gap.

Based on the validated detailed process model, the performance of the designed
temperature controller is tested in extensive simulation studies. The results show
that the proposed controller performs well for sufficiently homogeneous air gap
geometries. The concept allows for further improvements in several directions,
depending on the available system inputs and outputs.



Kurzzusammenfassung

Bei der Produktion von Platten aus Refraktärmetallen werden mehrere Erwärm-
prozesse durchlaufen, welche einen entscheidenden Einfluss auf die Qualität des
Endprodukts haben. Die vorliegende Arbeit befasst sich mit der Anwendung
regelungstechnischer Methoden auf zwei Erwärmprozesse in einer Flachgüterpro-
duktionslinie. Das Ziel ist in beiden Fällen die Reduktion von Zeit- und Ener-
gieverbrauch des jeweiligen Prozesses, wobei die Qualität des Produkts erhalten
bleiben soll.

Im ersten Teil der Arbeit werden die Kammeröfen einer Warmwalzanlage
betrachtet. Durch Minimierung der Liegezeit der Produkte im Ofen wird Energie
eingespart. Während des Erwärmens im Ofen kann die Produkttemperatur nicht
gemessen werden. Deshalb wird ein detailliertes Prozessmodell eines Kammerofens
erstellt und sukzessive auf ein nichtlineares Modell erster Ordnung reduziert,
welches imstande ist, den zeitlichen Verlauf der Produktentnahmetemperatur
hinreichend genau abzubilden. Das Modell erster Ordnung dient als Basis für
eine Lernstrategie, die die Schätzung der minimalen Liegezeiten von Produkt zu
Produkt verbessert. Darüber hinaus wird das Produktportfolio nach Materialei-
genschaften und Oberflächenbeschaffenheit in Produktklassen eingeteilt, um die
Genauigkeit der Schätzung weiter zu erhöhen.

Die vorgeschlagene Lernstrategie mit mehreren Produktklassen wird anhand
des validierten Prozessmodells in ausführlichen Simulationsstudien getestet. Für
den Fall, dass die Produktparameter hinreichend genau bekannt sind, weisen
die erzielten Ergebnisse eine sehr hohe Genauigkeit auf. Unsicherheiten in den
Produktparametern zeigen einen mäßigen Einfluss auf das Schätzergebnis, welcher
durch Einengung der Definitionen der Produktklassen weiter minimiert werden
kann. Der entworfene Schätzer kann ohne großen Rechenaufwand implementiert
werden und ist für eine Vielzahl von ähnlichen Öfen anwendbar.

Der zweite Teil der Arbeit beschäftigt sich mit der induktiven Erwärmung in der
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Bandrollen-Produktionsanlage. Dünne Bleche werden entlang einer Schnittspur
erwärmt, um die Qualität der Schnittkanten zu verbessern. Unebenheiten im
Blech bewirken dabei Schwankungen des Luftspalts zwischen Induktor und Blech,
welche wiederum starke Inhomogenitäten beim Erwärmen der Schnittspur nach
sich ziehen. Das Ziel ist es nun, die Temperatur entlang jeder Schnittspur über
einen vorgegebenen unteren Schwellwert zu bringen, ohne unnötig zu überheizen.

Für das induktive Erwärmproblem wird zunächst ein detailliertes Prozessmodell
erstellt und anschließend für den Reglerentwurf vereinfacht. Das resultierende
Entwurfsmodell besteht dabei aus einer Transportgleichung für das thermische
und einem Ersatzschaltbild für das elektromagnetische Teilsystem. Auf Basis des
Entwurfsmodells wird dann ein kaskadierter Reglerentwurf durchgeführt. Der
innere Kreis der Kaskade regelt die übertragene Heizleistung und über den äußeren
Kreis wird die Temperatur entlang der Schnittspur über eine Zwei-Freiheitsgrad-
Regelung, bestehend aus einem Vorsteuer- und einem Regleranteil, eingestellt und
Schwankungen des Luftspaltmittelwerts ausgeglichen.

Die Regelgüte des entworfenen Zwei-Freiheitsgrad-Reglers wird anschließend in
Simulationsstudien am validierten Prozessmodell getestet. Die Ergebnisse zeigen,
dass der Regler für einen hinreichend homogenen Luftspalt sehr gut arbeitet. Der
Regler erlaubt verschiedene Erweiterungen, je nach Vorhandensein von Stellgrößen
und Messinformationen.
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CHAPTER 1

Introduction

The production of high-quality heavy plates, sheets and strips of refractory metals
is a widely uncharted territory in control engineering. Refractory metals are a
class of elements that have melting points beyond 2200◦C and are very resistant to
mechanical wear (cf. [7, p.120]). Typical representatives of this class are niobium
(Nb), molybdenum (Mo), tantalum (Ta), tungsten (W), and rhenium (Re). Their
thermal, mechanical and electric properties make refractory metals a valuable
resource for the semiconductor industry which, in turn, has highest demands on
the purity and microstructure of these metal products.

Plansee SE is the world-leading supplier of refractory metals – both pure and
alloyed – for the semiconductor industry. Their standard way of producing flat
stock (i.e., plates, sheets and strips) from refractory metals is by powder metallurgy
(see [34]), where plates and sheets are produced from powders of refractory metal
oxides, sulfides, etc. The powders undergo chemical preprocessing and are sintered
into blocks. The blocks are subsequently formed at a hot rolling plant. Further
heating, cutting and grinding steps follow, depending on the product. For hot
rolling and strip cutting, reliable control of the involved reheating processes is
crucial to ensure a high product quality.

This thesis deals with the optimization of the performance of these reheating
systems by means of modern control engineering techniques. The reheating system
of the hot rolling plant comprises several chamber furnaces, while the reheating
prior to strip cutting is done by a number of parallel induction heating units. Both
systems are batch-type reheating systems (as opposed to continuous furnaces)
which follow the strategies of reheating by waiting and reheating by active control,
respectively.

The reheating-by-waiting strategy is applied to reheating tasks where the final
temperature of a product is relevant, but the heating trajectory itself is, at least

1



2 1 Introduction

within certain limits, arbitrary. Part I of this thesis is concerned with this strategy
to reheat the sintered blocks of refractory metals above their recrystallization
temperature in chamber furnaces before and during the rolling process. The
chamber furnaces are controlled to a predefined constant setpoint temperature
and the products are charged into the furnaces for a certain time period. The
main research question is how to determine the right discharge times of the various
products (different geometries, materials, surface properties) depending on the
desired target temperature and temperature homogeneity in the product.

Part II of this thesis deals with the inductive reheating of thin sheets of
refractory metal along a predefined cutting line before the sheet is cut into stripes.
Since the sheets are not perfectly flat, the air gaps under the inductors change
along the length of the sheet, which in turn causes large temperature fluctuations.
The main research question here is to design a temperature control concept which
systematically compensates for the varying (unmeasured) air gaps.

This research work was part of the EU project SemI40 (see also [63]). Parallel
to the investigations in this thesis, further aspects of the production line were
optimized. The related publications [1–3] deal with the optimal production
schedule in the hot rolling plant. The optimization of the production schedule is
based on optimized processing times which are the central result of Part I of this
thesis.



Part I

Reheating of Sintered Blocks in
Chamber Furnaces
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CHAPTER 2

Preliminaries

This first part of the thesis deals with the reheating process in the hot rolling
plant of Plansee SE. The hot rolling plant is shown in Fig. 2.1. Sintered blocks of
refractory metals enter the product charging station and a manipulator charges
them into one of several batch-type chamber furnaces. The blocks are reheated
above their recrystallization temperature to increase formability (i.e., ductility)
and rolled out into heavy plates at a reversing millstand in several passes.

The reheating of plates takes significantly longer than the rolling passes.
For this reason, several furnaces are used in parallel. Each furnace operates at
an individual fixed setpoint temperature. The plates charged into the furnace
asymptotically reach the furnace temperature, which corresponds to the desired
plate temperature.

With each rolling pass, the plate experiences a certain drop in temperature
due to thermal radiation and the contact of the plate with the working rolls
and the roller table. If the plate temperature is too low, both the working rolls
and the plate are at risk to be damaged. While the rolls experience increased
wear due to the decreased ductility of the plate, the deformability necessary to
non-destructively roll the plate to the desired thickness is not given. For the
plates, cracks and inhomogeneous microstructure are the consequence, and the
production yield effectively drops.

To keep the plate temperature above a certain level during rolling, it is
necessary to reheat the plate again after a few rolling passes.

5



6 2 Preliminaries

Sintered
blocks

Heavy
plates

Chamber
furnaces

Product charging
station

Lowerable
roller table

Split
roller table

Exit

Product
manipulator

Reversing
millstand

Leveler

Figure 2.1: Hot rolling plant.

2.1 Industrial Requirements

For the reheating process, the requirement is to optimize both the energy con-
sumption and the throughput of each furnace. The furnace geometry and mode
of operation cannot be changed. The required exit temperature of each plate
is specified by a desired reference value and a tolerance range, typically around
30◦C.

The furnace is controlled to a fixed operating point and dissipates a certain
amount of heating power at steady state. Additional heating power is required
only when a plate is being reheated. The ceramic walls of the furnace are around
one meter thick. Consequently, the overall wall temperature changes only slowly
compared to the plate temperature. An improvement of the control concept for
the furnace temperature is therefore not a promising option to reduce the energy
consumption or to enhance the throughput. Both the energy consumption and
the throughput can be improved if the reheating time is minimized. Therefore,
the minimization of reheating times is one of the main goals of this thesis.

The diversity of products that are processed by the hot rolling plant also entails
a logistic problem. In terms of throughput, the optimal sequence of products for
reheating and rolling is not known in advance. This problem is addressed in the
related works [1–3].
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2.2 State of the Art
The computation of the minimal reheating time for a product in the furnace
requires exact knowledge of the product temperature. In the considered case, the
product temperature is not measured and must therefore be estimated based on a
suitable mathematical model.

2.2.1 Reheating Time Optimization
In the last decades, different applications with a similar goal have been reported
in the literature, where reheating processes were analyzed in terms of residence
time and energy efficiency.

The optimal residence time for the annealing of steel coils in hydrogen-based
batch-type furnaces was investigated in [59, 60]. The heating schedule was
improved empirically with respect to the reheating time, temperature homogeneity,
and other constraints imposed on the system. A more systematic approach to the
optimization of residence times in similar furnaces was given in [11]. A validated
mathematical model of the furnace was used to calculate the optimal residence
times, with respect to the coil dimensions, off-line. Since this is a brute-force
approach, the parameter space of the products has to be sufficiently small and the
mathematical model has to be computationally inexpensive. For larger parameter
spaces, where some parameters might be unknown or uncertain, the works [61,
62] suggest the transition to an artificial neural network. As a result, the optimal
residence time for each product can be calculated on demand. However, using
a neural network comes with inherent downsides, like possible overfitting. Also,
correct results for untested data are achieved only with a certain probability,
which is not desirable in the production of refractory metal plates due to the
relatively small lot sizes and high costs of a single plate.

Similarly, the reheating of steel slabs in a walking-beam or pusher-type furnace
was investigated. In [22], five distinct modes of operation, including different
reheating times, were compared in terms of mean slab temperatures, skid marks,
and heat flux to find an optimum. The influence of a fixed process time was
investigated more thoroughly in [37], where the expected exit temperature, skid
marks, and temperature inhomogeneity for a corresponding reheating time were
reported. The findings are valuable for understanding the influence of the chosen
reheating time, however, for optimization, the inverse problem is of interest. In
[12], the optimum reheating time for a slab with respect to the slab thickness and
the admissible temperature inhomogeneity was investigated. The calculations are
done off-line for a small space of parameters.

The existing works mainly focus on a furnace operation where products are
heated in an environment which can rapidly change its temperature. This is
achieved either by moving the product from one furnace zone to the next, or by
changing the temperature of the heating media. When the furnace temperature
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can be controlled in a dynamic way, the product temperature can be actively
steered towards the desired exit temperature without the need to wait for its
asymptotic convergence.

The furnaces considered in this thesis maintain a near-constant temperature
during the reheating process, which causes an increased sensitivity of the required
reheating time with respect to the product temperature. Along with this higher
sensitivity comes the need for an accurate and computationally efficient model of
the considered reheating process. For this reason, the state of the art concerning
furnace modeling is examined next.

2.2.2 Furnace Modeling and Simulation
Different furnace models with varying detail and complexity have been reported
over the last years, where a strong focus was laid on reheating furnaces with
moving batches. Control-oriented models in one or two spatial dimensions for
the online calculation of different points of operation have been used in the steel
industry for several decades, see, e.g., [74].

Three-dimensional models of walking-beam and pusher-type furnaces were
published based on finite differences [30], tailored finite-volume methods [21, 35,
38], finite-element methods [40], and tailored Galerkin methods [68]. The models
have become more and more complex, taking into account different effects like
the radiation exchange in non-gray gaseous media. Tailored methods aim at low
computational costs and moderate accuracy. The reported stationary accuracy of
such models is up to 20◦C, which is roughly the accuracy required in the reheating
process considered in this thesis.

Computations with high accuracy were achieved in [31, 49] using the software
Ansys Fluent. Stationary errors were reported as low as 10◦C, while errors
in the transient phase were below 40◦C. Results with such a high accuracy are
desirable for the reheating process considered in this thesis. Unfortunately, they
come at relatively high computational costs, as the underlying mesh comprises
several hundred thousand nodes.

Batch-type furnaces cover a wide spectrum from reheating to heat treatment
furnaces. Depending on the application, the heating may be performed very slowly
or quickly. Accordingly, the transient accuracy of the reported simulation models
can vary in a wider range. For instance, batch-type furnaces were modeled in a
single spatial dimension using finite differences in [71]. For a metal strip annealing
furnace, a mathematical model with an accuracy of 25◦C is reported in [28]. In a
follow-up work, the model was extended to two spatial dimensions and an accuracy
of 15◦C over the whole temperature profile could be achieved. Similar accuracy in
three spatial dimensions are the results in [32, 43]. All of the above-mentioned
models of batch-type furnaces rely on tailored finite-difference schemes to achieve
a good compromise between accuracy and computational effort.

Similar results with less modeling effort can be achieved using numerical solvers
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like Ansys Fluent as in [23, 73], or bafsim in [61]. The accuracy again comes
at higher computational costs.

In view of the achievable low errors (about 10◦C), it has become state of the
art to model the furnaces with numerical solvers, like finite-element (see, e.g., [14])
or finite-volume software, and make forward predictions of the process outcome.
A comparison of different levels of detail for a model of a walking-beam furnace
is given in [65]. The results suggest to find the right balance between model
accuracy and complexity. In particular, at a certain point in the modeling process,
it is recommendable to give up a further increase of the level of detail in favor of
exploiting parameter estimation strategies to improve the model accuracy.

2.2.3 Temperature and Parameter Estimation
In order to estimate and correct the product temperature in real time, a feedback
loop with some meaningful sensor information is required. Usually, during a
reheating cycle, the product temperature is not measured directly, but the furnace
temperature is available. If the product temperature has a significant influence on
the furnace temperature, an estimator similar to [33] can be used to approximate
the product temperature. Unfortunately, in the considered furnace, the product’s
influence on the wall temperature is minor.

The product temperature can, however, be determined by forward calculation
of a mathematical model, see, e.g., [67, 68]. If the product temperature before and
after the reheating process is available, the relevant parameters of the reheating
process can be estimated and the evolution of the product temperature during
reheating can be determined with increasing accuracy. A similar idea for a
continuous furnace can be found in [69].

2.3 Motivation and Goals
The forward calculation of processing times based on pure first-principles models
exhibits limited accuracy if the model parameters are not well known. Algorithms
based on artificial intelligence (AI) and machine learning, on the other hand, show
promising accuracy (see, e.g., [6, 29]) and fast computation times, however, they
are often not reliable. Thus, it seems desirable to combine these two approaches.

Efforts from the AI perspective were made in the form of physics-informed
neural networks, see, e.g., [51]. At the core, this is still a neural network and it was
not explicitly examined how the solutions will behave if the process parameters
are uncertain or change over time.

In the present case, for the purpose of reliability, we want to have a physical
model at the center of our solution. The model parameters will be tuned with
data-driven methods that allow for continuous updates to ensure a high accuracy
even if the process parameters drift over time.
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The goal is to develop a system that gives reliable and accurate calculations
of the reheating times at minimal computational costs. In a larger context, the
calculation of the reheating times should be embedded in a continuously-updating
scheduling problem (see [3]), which explains the need for very fast computations.

2.4 Approach and Scientific Contributions
The approach pursued in this thesis can be summarized as follows:

• Design a process model with reasonable complexity and find the most
relevant uncertain parameters.

• Evaluate the model accuracy and apply appropriate model order reduction
techniques.

• Utilize discharge temperature measurements to correct the model and im-
prove the estimate of the reheating times.

Large parts of the mathematical modeling approach and the estimator design
are already published in [56, 57].

2.5 Outline of Part I
Part I of the thesis is organized as follows: Chapter 3 is concerned with the
derivation of a detailed process model. The relevant heat transfer mechanisms are
identified and modeled based on a simplified geometry. A coarse meshing strategy
is proposed, the detailed process model is discretized, and uncertain parameters
are identified.

In Chapter 4, the discretized process model is simplified by means of proper
orthogonal decomposition, and the modal dynamics are examined. Based on the
findings, a minimal model is derived to approximate the relevant parts of the
dynamics.

The real-time calculation of optimum reheating times, based on estimates of
the uncertain parameters in the process, is introduced in Chapter 5. In particular,
the minimal model is extended by an online parameter estimator, where the
estimates are driven by the measured plate exit temperatures. Similar products
are assigned to product classes and the estimated class mean values of the uncertain
parameters are used to determine the reheating times. The performance of the
designed estimator is evaluated by means of the detailed process model from
Chapter 3.

Finally, Chapter 6 contains some concluding remarks and gives an outlook on
potential follow-up work.



CHAPTER 3

Physical Modeling

As a basis for all further investigations, a detailed mathematical model of the
considered chamber furnaces is derived in this chapter. Large parts of the described
modeling process are already published in [56].

The geometry of such a furnace is outlined in Fig. 3.1. The furnace operates
at a setpoint temperature which corresponds to the desired final temperature of
the load, i.e., the metal plate. This setup prevents the load from overheating.

The furnace is charged with a plate made of sintered or rolled molybdenum
(or other refractory metals) that absorbs heat from the surrounding chamber.
The furnace chamber is divided into a number of individually controlled zones
to improve the spatial homogeneity of the furnace temperature. The atmosphere
in the chamber is pure hydrogen gas to avoid and revert oxidation on the plate
surface.

The furnace is electrically heated by resistors, which are uniformly distributed
on the ceiling of the chamber. The furnace doors are built as radiation shields
and the furnace walls consist of different layers of refractory ceramics. The walls
and the furnace entrance are enclosed by a steel framework to prevent hydrogen
leakage and to support the refractory ceramics.

Based on the manufacturing plan of each product, a human operator decides
when a plate is charged into a furnace or discharged for rolling. When the plate
is charged or discharged, a two-color pyrometer under the furnace door measures
the entry or exit temperature along a line on the bottom of the plate. This
measurement is treated as ground truth for the heating process.

The plate is required to reach its desired final temperature in minimal time.
While the plate is in the furnace, its temperature cannot be measured directly.
Thus, in order to ensure a reliable reheating of the plates and simultaneously
minimize the reheating times, an accurate online estimate of the plate temperature

11



12 3 Physical Modeling

Furnace
W

all,Ω
w

M
etalplate,Ω

p

Γ
d

Ω
p

Ω
w

Ω
p

Ω
w

O
uter

boundary,Γ
out

H
eaters,
Γ

h

Inner
boundary,Γ

in

Furnace
door,Γ

d

Zone
boundaries

Zone
boundaries

Figure
3.1:

Sketch
ofthe

considered
cham

ber
furnace

w
ith

three
zones.



3.1 Heat Transfer and Furnace Geometry 13

is required.
The goal of this chapter is therefore to derive a detailed process model based

on first principles that correctly predicts the furnace behavior and the temperature
profile in the plate, such that the calculated plate exit temperature resembles the
pyrometer measurements with high accuracy.

3.1 Heat Transfer and Furnace Geometry
In this section, a PDE model for the heat exchange in the system is derived. This
model will be the starting point for all further investigations in the subsequent
chapters.

3.1.1 Heat Transfer
According to the furnace geometry shown in Fig. 3.1, let Ωw and Ωp be the
domains of the furnace wall and the product, such that

Ωw ⊂ R3, Ωp ⊂ R3, Ωw ∩ Ωp = ∅, ∂Ωw = Γin ∪ Γout. (3.1)

In each of these solids, heat conduction at a point x and time t is governed by

ρ(x)cp(T, x)∂tT = ∇ · (λ(T, x)∇T ), x ∈ Ωw ∪ Ωp, t > 0 (3.2a)
−λ(T, x)∂nT = q̇(T, x, u), x ∈ ∂Ωw ∪ ∂Ωp, t > 0 (3.2b)

T |t=0 = T0, x ∈ Ωw ∪ Ωp, t = 0. (3.2c)

Here, the quantities T , ρ, cp, and λ are the temperature field, density, specific
heat and thermal conductivity, respectively. The symbol u denotes the active
power supplied to each zone of the furnace, while q̇ in the boundary conditions
describes a general heat flux on the boundary of each solid. The operator ∂n

denotes the derivative in the outward surface normal direction. The symbol T0
denotes the initial temperature field. The dependence of the material parameters
on the spatial coordinate x refers to the different materials in the system. In
particular, the furnace wall is a layered structure built from different refractory
ceramics. The density ρ is independent of T , as thermal expansion is expected to
be negligible.

The heating powers u =
�
uj

�
j=1,...,Nu

are supplied by Nu separate heating
wires on the ceiling of the furnace chamber, represented by the surfaces Γh

j , with

Γh =
Nu.
j=1

Γh
j , Γh

j ∩ Γh
k = ∅ if j �= k. (3.3)

The common assumption is made that the heaters have negligible heat capacities
and thus negligible dynamics.
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The hydrogen in the furnace diffuses into the porous wall material and consider-
ably alters the thermal conductivity of the wall. To account for this phenomenon,
a factor η > 1 is used to scale the nominal values λw(T, x) accordingly, i.e.,

λ(T, x) �→ ηλw(T, x), x ∈ Ωw. (3.4)

In order to describe the plate and furnace separately, let ρw and cw
p be the (nominal)

density and specific heat capacity of the furnace wall materials. Also, let ρp, cp
p,

and λp be the respective material parameters of the plate. The PDE model (3.2)
thus becomes

ρw(x)cw
p (T, x)∂tT = ∇ · (ηλw(T, x)∇T ), x ∈ Ωw, t > 0 (3.5a)

−ηλw(T, x)∂nT = q̇w(T, x, u), x ∈ ∂Ωw, t > 0 (3.5b)
T |t=0 = T0, x ∈ Ωw, t = 0 (3.5c)

ρpcp
p(T )∂tT = ∇ · (λp(T )∇T ), x ∈ Ωp, t > 0 (3.5d)

−λp(T )∂nT = q̇p(T, x, u), x ∈ ∂Ωp, t > 0 (3.5e)
T |t=0 = T0, x ∈ Ωp, t = 0. (3.5f)

Next, the heat fluxes q̇w and q̇p at the boundaries will be formulated.

3.1.1.1 Chamber Boundary Conditions

Inside the furnace chamber, heat transfer between the solid domains can take
place mainly via radiation exchange or contact heat transfer. The convective heat
transfer in the furnace is up to two orders of magnitude smaller than the radiation
exchange and will thus be neglected in the model. For radiation exchange in the
furnace, all surfaces are assumed to be gray and Lambertian. The atmosphere in
the chamber is hydrogen and therefore considered transparent for radiation (cf. [9,
Sec. 13.6]). For contact heat transfer, the Cooper-Mikic-Yovanovich correlation
(see [8, Eq. (4.248)]) is employed.

Consider two surface elements, denoted by the index 1 and 2, respectively.
The heat flux densities q̇rad

12 due to radiation exchange and q̇ct
12 due to contact

conduction between these elements are given by

q̇rad
12 = σε12

�
T 4

1 − T 4
2

 
= σε12

�
T 3

1 + T 2
1 T2 + T1T

2
2 + T 3

2

 
(T1 − T2) (3.6a)

q̇ct
12 = 1.25 2λ1λ2

λ1 + λ2

masp
12

σasp
12

�
p12

H12

"0.95
(T1 − T2) + q̇rad

12 . (3.6b)

In (3.6a), σ is the Stefan-Boltzmann constant, ε12 is the radiation exchange factor
between the two elements, and T1, T2 denote the temperatures of the respective
surface elements. Additionally, in (3.6b), λ1 and λ2 are the thermal conductivities
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Parameter Unit Typical values Mean Source
ε12 – 0.2 – 0.8 0.5 [70]

λ1, λ2 W/(Km) 50 – 160, 2.5 – 4.7 105, 3.6 [48], data sheets
σasp

12 µm 1 – 10 5.5 [72, Chap.1]
masp

12 rad 0.1 – 0.4 0.25 [20]
H12 GPa 1.5 – 3.5 2.5 [48]
p12 Pa 245 – 22367 11306 –

T1, T2
◦C 30 – 1500, 950 – 1500 765, 1225 –

Table 3.1: Typical values for the parameters in (3.6).

of the participating solids, σasp
12 and masp

12 are the average height1 and slope of
the surface asperities (i.e., surface microstructures), H12 is the microhardness (or,
Vickers hardness) of the weaker surface, and p12 is the contact pressure. Note
that q̇rad

12 is also a part of q̇ct
12 because the thermal contact is made up of both

microstructures that are in touch with each other and the gaps in between.
Using the mean of typical parameter values, as given in Table 3.1, (3.6) yields

q̇rad
12 ≈ 239W/(Km2)(T1 − T2) (3.7a)

q̇ct
12 − q̇rad

12 ≈ 3.31W/(Km2)(T1 − T2) (3.7b)
q̇ct

12 − q̇rad
12

q̇rad
12

≈ 0.014. (3.7c)

In conclusion, it will be accepted that the radiation exchange dominates the heat
transfer inside the furnace chamber. For this reason, only radiation exchange will
be considered in the following.

Based on the considerations above, the flux terms q̇w(T, x, u) and q̇p(T, x, u)
in the boundary conditions (3.5b) and (3.5e) will be formulated. Let Γin be the
surface of the furnace walls Ωw facing inwards2 (see Fig. 3.1), with

Γin ⊂ ∂Ωw, ∂Γin = ∂Γd. (3.8)

The boundary conditions (3.5b) and (3.5e) are specified on ∂Ωp and Γin in the
form

q̇κ(T, x, u) = σεκT (x, ·)4 − σεp
�

∂Ωp
K(Ωp, εp; x, x�)T (x�, ·)4 dx�

− σεw
�

∂Γin
K(Ωp, εp; x, x�)T (x�, ·)4 dx� −

Nu)
j=1

uj

Ah
j

�
Γh

j

K(Ωp, εp; x, x�) dx�, (3.9)

1The literature mostly uses the notions of average height Ra and maximum height Rz of
asperities. In this sense, σasp

12 would be (Ra,1 + Ra,2)/2.
2The surface Γin does not include the furnace door Γd, which is considered as an adiabatic

radiation shield due to its minor influence on the heating of the plates.
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with κ = p and x ∈ ∂Ωp, or κ = w and x ∈ Γin, respectively. Here, εw and εp are
the emissivities of the wall and plate surfaces, respectively, and Ah

j is the surface
area of Γh

j . The integral kernel K(Ωp, εp; x, x�) describes the net portion of heat
emitted from x� that is absorbed at x. It depends on the geometry and properties
of the radiation enclosure and therefore changes with Ωp and εp. Moreover, due
to energy conservation, it holds that

0 ≤ K(Ωp, εp; x, x�) ≤ 1 (3.10a)�
∂Ωp∪Γin∪Γh

K(Ωp, εp; x, x�) dx = const. (3.10b)

Note that, if the heater Γh
j (currently modeled as a 2D surface) radiates to both

sides, this has to be accounted for in Ah
j , K, and the integral over Γh

j .

3.1.1.2 Outer Boundary Conditions

The outer boundary Γout of the furnace walls exchanges heat with the environment
via radiation and free convection, and is defined by

Γout = ∂Ωw\Γin. (3.11)

Accordingly, the outer boundary condition is given by

q̇w(T, x, u) = σεout
�
T 4 − (T ∞)4

 
+ αout(T − T ∞), x ∈ Γout. (3.12)

Here, T ∞ is the ambient temperature, i.e., the temperature of the production hall.
The symbols εout and αout denote the emissivity of the steel framework and the
heat transfer coefficient due to free convection, respectively. Note that the value
for αout can differ between the top, bottom and side walls of the steel framework.

3.1.2 Furnace Model Geometry
As a first step towards a simpler, computationally efficient process model, the heat
conduction in the furnace walls is examined in more detail. Assuming a linear,
homogeneous, isotropic material, the heat conduction in Ωw is governed by

ρwcw
p ∂tT = λwΔT, x ∈ Ωw. (3.13a)

Furthermore, a constant furnace temperature T in is assumed on the inner surface
Γin of the wall and the outer boundary Γout is set to the constant temperature
T out, such that

T |Γin = T in = const., x ∈ Γin (3.13b)
T |Γout = T out = const., x ∈ Γout. (3.13c)
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At steady state, i.e., ∂tT = 0, (3.13) can be normalized and rewritten in the
form

Δξ = 0, x ∈ Ωw (3.14a)
ξ|Γin = 1, x ∈ Γin (3.14b)

ξ|Γout = 0, x ∈ Γout, (3.14c)

with
T = (T in − T out)ξ + T out. (3.15)

Based on (3.14), a 2D finite-element (FE) model of the furnace cross-section
in Fig. 3.1 was implemented in Comsol Multiphysics and compared to simpler
geometries.

Figure 3.2 shows the considered geometries along with the normalized temper-
ature field ξ. The original cross-section shown in Fig. 3.2a was replaced by the
rectangle-based geometry shown in Fig. 3.2b, while the volumes of the chamber
and the furnace wall were preserved. In a second step, from Fig. 3.2b to Fig. 3.2c,
the wall was further divided into laterally isolated sections, such that each section
can be treated as a quasi-1D domain.

It can be seen that the temperature field in the lower half of the wall cross-
section changes only to a minor degree from Fig. 3.2a to Fig. 3.2c, while in the
upper half of the cross-section, a larger difference is observed. To examine this
deviation, the normalized heat flux

�
Γout ∂nξ ds out of the system is compared

in Table 3.2. Although the outward fluxes of the top, bottom, left and right
outer wall surfaces change with the geometry, the difference in the total flux
over the outer surface is quite small. The overall energy balance based on the
quasi-1D model is therefore expected to be almost identical to the one of the
original geometry.

Comparison of
�

∂nξ ds on subsets of Γout

Subset Original geom. Rectangular geom. Quasi-1D geom.
Top 1.8484 1.8959 (+2.57%) 2.1650 (+17.13%)

Bottom 3.1402 2.8762 (−8.41%) 2.9355 (−6.52%)
Left/Right 1.3207 1.4576 (+10.37%) 1.2566 (−4.85%)

Total 7.6296 7.6878 (+0.76%) 7.6139 (−0.25%)

Table 3.2: Comparison of different furnace model geometries.

From the results above, it can be concluded that a rectangle-based furnace
model geometry with quasi-1D wall sections as in Fig. 3.2c is sufficient to describe
the furnace walls.
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Figure 3.2: Comparison of furnace model geometries: Normalized temperature
field ξ ∈ [0, 1] in the wall cross-sections.
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3.2 Model Discretization
For the numerical simulation of the PDE model (3.5) with the boundary conditions
(3.9) and (3.12), the model equations can be discretized in space, using FE or
finite-volume (FV) methods.

The simplified domain Ωw shown in Fig. 3.2 is further partitioned into subdo-
mains that arise from the definition of the furnace zones and from the layered
structure of the walls. This partitioning suggests a coarse mesh that can be used
for fast computation of numerical solutions. The discretized process model is
defined separately for the charged and the uncharged furnace.

3.2.1 Meshing Strategy
The geometry simplification shown in Fig. 3.2 is now applied to the entire furnace
and the walls are further partitioned into subdomains. The result is depicted in
Fig. 3.3.

The walls on each side of the furnace are partitioned in longitudinal direction
according to the lengths of the furnace zones. This results in Nw wall sections
Ωw

i with

Ωw =
Nw.
i=1

Ωw
i , ∂Ωw

i ∩ Γin �= ∅, ∂Ωw
i ∩ Γout �= ∅. (3.16)

Each wall section Ωw
i is set adiabatic on its lateral boundaries, i.e.,

∂nT = 0, x ∈ ∂Ωw
i \∂Ωw, (3.17)

and thus describes a quasi-1D domain, in the sense that all the heat flux goes
from the chamber boundary Γin to the outer boundary Γout.

Each wall section Ωw
i is further partitioned into Nw

i subdomains, according to
the (average) layer thickness of each wall material

Ωw
i =

Nw
i.

j=1
Ωw

i,j. (3.18)

Each subdomain Ωw
i,j holds one homogeneous material with the density ρw

i,j,
the specific heat capacity cw

p,i,j , and the (nominal) thermal conductivity λw
i,j. The

temperature field in the wall is governed by
ρw

i,jc
w
p,i,j(T )∂tT = ∇ ·

�
ηλw

i,j(T )∇T
 
, x ∈ Ωw

i,j, t > 0 (3.19a)
−ηλw

i,j(T )∂nT = q̇w(T, x, u), x ∈ ∂Ωw
i,j ∩ ∂Ωw, t > 0 (3.19b)

T |∂Ωw
i,j

= T |∂Ωw
i,k

, x ∈ ∂Ωw
i,j ∩ ∂Ωw

i,k, t > 0 (3.19c)

−ηλw
i,j(T )∂nT |∂Ωw

i,j
= ηλw

i,k(T )∂nT |∂Ωw
i,k

, x ∈ ∂Ωw
i,j ∩ ∂Ωw

i,k, t > 0 (3.19d)

∂nT |∂Ωw
i,j

= 0, else, t > 0 (3.19e)

T |t=0 = T0, x ∈ Ωw
i,j, t = 0 (3.19f)
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Figure 3.3: Cross- and longitudinal sections of the furnace including the zones,
wall sections Ωw

i , and layers Ωw
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and the plate temperature is subject to

ρpcp
p∂tT = ∇ · (λp(T )∇T ), x ∈ Ωp, t > 0 (3.19g)

−λp(T )∂nT = q̇p(T, x, u), x ∈ ∂Ωp, t > 0 (3.19h)
T |t=0 = T0, x ∈ Ωp, t = 0, (3.19i)

with q̇w and q̇p according to (3.9) and (3.12).

3.2.2 Discretized Process Model
For the numerical solution of (3.19) with the boundary conditions (3.9) and (3.12),
the mesh given by Ωw

i,j , j = 1, . . . , Nw
i , i = 1, . . . , Nw, can be refined, if necessary,

and passed to an FE or FV solver. The ODE system resulting from the spatial
discretization has the structure

M(T ) d
dt

T =
A(η; T )T + R(T ) + Bu + Bdd, if Ωp = ∅ (empty)

A(η; T )T + R(εp; T ) + B(εp)u + Bdd, if Ωp �= ∅ (charged)
(3.20a)

T (0) = T0 (3.20b)

for the empty and the charged furnace, respectively. Here, T represents the system
state, i.e., in the case of FE and FV methods, the temperatures at certain control
points. Accordingly, T0 denotes the initial state at t = 0. The disturbance input
d =

�
T ∞ (T ∞)4

�T
describes the influence of the ambient temperature T ∞. To

illustrate the transition from the PDE model (3.19) to the process model (3.20),
the FV method is applied to the PDE model in Appendix A.
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3.3 Temperature Sensors and Control Loop
In addition to (3.20), if measurements y of the (discretized) temperature field T
are taken, they can be expressed in the form

y = CT . (3.21)
In this work, temperature measurements are provided by thermocouples and

two-color pyrometers. In each zone of the furnace chamber, a thermocouple is
mounted on the surface of the side walls. The measured side wall temperatures

yw = CwT (3.22)
are referred to as the furnace temperature or zone temperatures. In the considered
chamber furnace, the furnace temperature is controlled to an operating point r
by decoupled proportional-integral (PI) controllers. The furnace temperature
controller thus has the form

ew(t) = 1r(t) − yw(t) (3.23a)
d
dt

xPI(t) = KIew(t), xPI(0) = 0 (3.23b)

u(t) = max{0, xPI(t) + KP ew(t)}, (3.23c)
where the matrices KI and KP are positive definite and diagonal, since the
controllers for the furnace zones are decoupled.

During normal operation, the plate temperature can only be measured by a
two-color pyrometer when the plate is charged into or discharged from the furnace.
In the measurement process, the focal point of the pyrometer moves along a line
on the bottom surface of the plate. From this line measurement, a scalar value
yp is computed, which is referred to as the charge and discharge temperature,
respectively. The pyrometer measurement is governed by

yp = (cp)TT , (3.24)
where cp �= 0 only when the furnace switches between the charged and empty
configurations.

Finally, in order to identify and validate the process model (3.20), a test
plate was equipped with a recording box and thermocouples to measure the plate
temperature during the heating process in the furnace. In this measurement
campaign, the temperature ym in the center of the plate was captured

ym = (cm)TT . (3.25)
The output (3.21) can now be summarized as

y =

yw

yp

ym

 =

 Cw

(cp)T

(cm)T

T = CT . (3.26)

A diagram of the temperature-controlled process model is shown in Fig. 3.4.
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Figure 3.4: Temperature control loop of the chamber furnace. TC’s: Thermocou-
ples.

3.4 Model Parameter Identification
The generally unknown parameters η and εp have a significant influence on the
temperature dynamics and the heating times. The former parameter η describes
the influence of the hydrogen atmosphere and affects the heat exchange throughout
the furnace walls. The latter parameter εp directly influences the heat exchange
between the plate and the surrounding walls and may deviate significantly from
its nominal value depending on the surface condition of the plate. Therefore, both
η and εp have to be identified from measurement data.

While the value of η is specific to the respective furnace, the value of εp changes
from plate to plate. It therefore makes sense to identify η only once for the process
model, but the value of εp has to be adjusted individually for each plate.

In the following, the parameter η is identified using measurement data from
the uncharged furnace in steady-state operation. The empty process model is
subsequently validated using a recorded wall temperature profile. An experimental
identification of the parameter εp and the subsequent validation of the (charged)
process model are performed at the end of this section. The accuracy requirement
for the identified model due to the used discretization method, namely FV with
the meshing shown in Section 3.2.1, is that the maximum error between the
measurement and the model should be within a tolerance range of ±15◦C.

3.4.1 Identification of the Parameter η

Following (3.19), the steady-state wall temperature (i.e., ∂tT = 0) of the empty
furnace is determined by the parameter η and the steady-state boundary conditions.
A choice of η > 1 is in accordance with the increased thermal conductivity of the
hydrogen atmosphere in the furnace compared to air.

A set of four operating points
�
[rid

j , (uid
j )T]

000j = 1, . . . , 4
�

is used to identify η
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Figure 3.5: Measured and simulated wall temperature profiles for different values
of η and the setpoint temperature r = 1300◦C.

for the empty process model (Ωp = ∅). The respective reference temperatures
rid

j of the control loops range from 950◦C to 1500◦C and uid
j are the respective

measured steady-state power inputs. The identification problem for η reads as

min
η>1

4)
j=1

////yw
s |us=uid

j
− 1rid

j

////2

2
(3.27a)

s.t. 0 = A(η; Ts)Ts + R(Ts) + Bus + Bdd, Ωp = ∅ (empty) (3.27b)
yw

s = CwTs, (3.27c)

with the steady-state inputs us, temperatures Ts, and outputs yw
s .

The optimal value of η is η∗ = 2.08, which shows that the thermal insulation
capability of the used ceramics is halved in a hydrogen atmosphere. For comparison,
the simulated wall temperature profiles for η = 1 and η = η∗ are shown in Fig. 3.5.
Note that, due to the large heat capacity of the wall, the temperature dynamics
of the wall layers are extremely slow. Therefore, any residual temperature errors
in the outer layers of the wall only have negligible influence on the transient
dynamics of the heating process. Therefore, the identified value η∗ can also be
used for the charged process model.

The steady-state solution Ts of (3.27) can be decomposed according to

Ts =
�
T w

s

T p
s

�
, (3.28)

where T w
s represents the wall temperatures and T p

s (= 0 for the empty furnace)
represents the plate temperatures. The solution for T w

s will be used as the initial
condition for the walls when a plate is charged into the furnace.
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3.4.2 Identification of the Plate Emissivity εp

For the identification of εp and the subsequent validation of the charged furnace
model (3.20), a test plate incorporating a thermocouple measurement was heated in
the furnace. To this end, a recording box was mounted on a sintered molybdenum
plate, and a thermocouple was attached in a borehole to the plate center. In two
consecutive reheating cycles, the plate was reheated from room temperature to
two different setpoint temperatures. Table 3.3 lists the parameters of the two
reheating cycles.

Parameter Values
Name Symbol Cycle 1 Cycle 2

Setpoint temp. r 950◦C 1050◦C
Wall parameter η η∗

Plate material – Mo
Plate surface – Oxidized
Plate length lp

x 1065mm
Plate width lp

y 560mm
Plate thickness lp

z 120mm
Plate mass mp 780kg

Plate initial temp. T p
0 30◦C

Heating powers u(t) um
1 (t) um

2 (t)
Plate temp. measurement ym(t) ym

1 (t) ym
2 (t)

Table 3.3: Parameters for the identification of the plate emissivity εp and the
validation of the charged furnace model (3.20).

The recorded power inputs and sensor signals of the two cycles are denoted
by um

j (t) and ym
j (t), j = 1, 2, respectively. The total power um

j = 1 · um
j and the

sensor signal ym
j (t) are depicted in Fig. 3.6.
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The identification problem for εp reads as

min
εp∈(0;1)

� t1

t0
(em

1 )2 dt (3.29a)

s.t. M(T ) d
dt

T = A(η; T )T + R(εp; T ) + B(εp)u + Bdd (3.29b)

T (0) =
�

T w
s

1T ∞

�
(3.29c)

ym = (cm)TT (3.29d)
η = η∗ (3.29e)
u = um

1 (3.29f)
em

1 = ym − ym
1 , (3.29g)

where the previously-identified value η∗ is used for η and T w
s is the steady-state

solution for the wall temperature from (3.27) and (3.28). For the considered plate,
the emissivity value εp∗ = 0.58 was identified. Figure 3.6 compares the simulated
and the measured temperatures at the plate center, and the error between the
simulation and the measurement. The maximum error is 8.8◦C.

To validate the estimated emissivity εp∗ together with the charged furnace
model (3.20), cycle 2 of Table 3.3 was simulated in the form

M (T ) d
dt

T = A(η∗; T )T + R(εp∗; T ) + B(εp∗)um
2 + Bdd (3.30a)

T (0) =
�

T w
s

1T ∞

�
(3.30b)

ym = (cm)TT (3.30c)

and compared to the recorded measurement ym
2 by the error term

em
2 = ym − ym

2 . (3.30d)

The results of the model validation are shown in Fig. 3.6. The error between
the simulation model and the measurement data is smaller than 12◦C and thus
within the desired tolerance range of ±15◦C, which was specified at the beginning
of this section.
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Figure 3.6: Identification of εp and validation of the model (3.20).



CHAPTER 4

Model Reduction and Analysis

In order to calculate the optimal reheating time for a product in real time, in this
chapter, the process model (3.20) is reduced to a minimal model that features
very low computational costs. To this end, a representative reheating trajectory
is simulated and analyzed by means of Proper Orthogonal Decomposition (POD),
see, e.g., [36]. It is shown that the evolution of yp(t) is well represented by the
dominant POD mode of the plate. Based on this observation, a very simple yet
accurate model of first order is derived.

The model reduction based on POD is already published in [56]. Large parts
of the derivation of the simple first-order model are published in [57].

4.1 Proper Orthogonal Decomposition

In order to reduce the order of (3.20), a POD is performed on the charged process
model and the contributions of each POD mode to the pyrometer output (3.24)
are analyzed.

27
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Chamber furnace
Parameter Value Unit

r 1300 ◦C
η η∗ –

Heavy plate
Parameter Value Unit
Material Mo –

lp
x 1065 mm

lp
y 560 mm

lp
z 120 mm

mp 780 kg
T p

0 30 ◦C
εp 0.25 –

Table 4.1: Parameters for a representative reheating trajectory.

4.1.1 Computation of the POD Modes
Consider the charged process model with temperature control (cf. Fig. 3.4),

M(T ) d
dt

T = A(η; T )T + R(εp; T ) + B(εp)u + Bdd, (charged) (4.1a)

T (0) =
�

T w
s

1T p
0

�
(4.1b)

yp = (cp)TT (4.1c)
yw = CwT (4.1d)
ew = 1r − yw (4.1e)

d
dt

xPI = KIew (4.1f)

u = xPI + KP ew, (4.1g)

with the known parameter values η and εp. The steady-state solutions T 0
s and

yp,0
s of (4.1a) and (4.1c) for zero input (u ≡ 0) are calculated from1

0 = A(η; T 0
s )T 0

s + R(εp; T 0
s ) + Bdd, (charged) (4.2a)

yp,0
s = (cp)TT 0

s . (4.2b)

In the following, the system dynamics relative to T 0
s will be examined based on

a representative reheating trajectory. The parameters for this reheating trajectory
are listed in Table 4.1. Using the temperature-controlled process model (4.1), T (t)
is simulated and snapshots are taken at a sampling time τ , which results in the
data matrix

D =
�
T (0) − T 0

s T (τ) − T 0
s T (2τ) − T 0

s . . .
�

=
�
Dw

Dp

�
. (4.3)

1In the simplest case, T 0
s = 1T ∞ and yp,0

s = T ∞.
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A decomposition of D into the submatrices Dw and Dp is assumed, which
refer to the wall and plate temperatures, respectively. From the recorded snapshot
data in Dw (and Dp), the POD modes vw

j (and vp
j ) are derived by a singular

value decomposition. If the number of columns of each data matrix exceeds the
number of rows, the POD modes of the furnace wall and plate result from2

Dw(Dw)Tvw
j = vw

j µw
j , vw

i · vw
j =

�
1, i = j

0, else,
µw

1 ≥ µw
2 ≥ · · · ≥ 0 (4.4a)

Dp(Dp)Tvp
j = vp

j µp
j , vp

i · vp
j =

�
1, i = j

0, else,
µp

1 ≥ µp
2 ≥ · · · ≥ 0. (4.4b)

For the plate subsystem, the POD modes vp
1, . . . , vp

5 are shown as plate temperature
profiles in Fig. 4.1. The state vector T can now be approximated according to

T ≈ ,V +T + T 0
s , ,V =

�,V w ,V p
�
, ,V w =

�+vw
1 +vw

2 . . .
�
, +vw

j =
�
vw

j

0

�
(4.5a)

,V p =
�+vp

1 +vp
2 . . .

�
, +vp

j =
�

0
vp

j

�
, (4.5b)

where the columns +vw
j and +vp

j of ,V describe the POD modes of the wall and plate,
and ,V T,V = I. The reduced state +T denotes the mode weights.

4.1.2 Reduced-Order Model
The POD-reduced model is given by

-M( +T ) d
dt

+T = ,A( +T ) +T + ,A�( +T )T 0
s + ,R( +T ) + ,Bu (4.6a)

+T (0) = ,V T(T (0) − T 0
s ) (4.6b)

+yp = yp − yp,0
s ≈ (cp)T,V +T , (4.6c)

with

-M( +T ) = ,V TM(,V +T + T 0
s ),V (4.6d),A( +T ) = ,V TA(η; ,V +T + T 0

s ),V (4.6e),A�( +T ) = ,V T
�
A(η; ,V +T + T 0

s ) − A(η; T 0
s )

 
(4.6f),R( +T ) = ,V TR(εp; ,V +T + T 0

s ) − ,V TR(εp; T 0
s ) (4.6g),B = ,V TB(εp). (4.6h)

2Otherwise, if the number of rows of the data matrix exceeds the number of columns, the
POD modes have to be computed like in [66].
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Figure 4.2: Comparison of the (reduced) pyrometer signal +yp(t) and contributions+yp,j(t) of the distinct POD modes.

The knowledge of η and εp is necessary to calculate T 0
s and ,V . Additionally, ,V

can change depending on the geometry of the plate. In the real production plant,
the plate dimensions can vary greatly.

A pre-calculation of all possible values for T 0
s and ,V would entail a large

computational effort. The reduced model (4.6) will therefore not be used directly.
The plate exit temperature is determined using the pyrometer output (3.24).
Thus, it makes sense to further analyze the contributions of the POD modes vp

j

to the signal +yp(t) according to (4.6c).

4.1.3 Contributions to the Pyrometer Output
The output +yp from (4.6c) can be decomposed into the contributions +yp,j of each
POD mode,

+yp(t) = +yp,1(t) + +yp,2(t) + . . . (4.7a)+yp,j(t) = (cp)T +vp
j (+vp

j )T(T (t) − T 0
s ), j = 1, 2, . . . (4.7b)

For the recorded trajectory in (4.3), the signal +yp(t) and the modal contributions+yp,j(t) are shown in Fig. 4.2. It can be seen that +yp,1(t) resembles the signal +yp(t)
with high quality throughout the heating process. In fact, the error between



32 4 Model Reduction and Analysis

Controller

r

T w

u

−

Wall

Chamber

Plate, T p

Q̇p

Q̇w

Heaters, T h

Ambient
environment,

T ∞

Figure 4.3: Batch-type reheating furnace with temperature control loop.

+yp,1(t) and +yp(t) does not exceed 14◦C during the transient phase and is within
±5◦C at steady state. Based on this, we will derive a minimal model that directly
describes the plate dynamics in the mode vp

1 (for any combination of parameter
values).

4.2 Minimal Model
In the previous section, it was pointed out that the model order reduction by
POD entails a high computational effort, because the system parameters vary on
a large scale and affect the POD mode shapes. On the other hand, the simulation
study in Fig. 4.2 shows that the plate temperature yp(t) is well approximated by
the dominant plate mode vp

1. Therefore, a radically simplified system model is
introduced in this section to approximate the behavior of yp(t) with a first-order
model.

Consider the abstract furnace schematic shown in Fig. 4.3. The chamber is
enclosed by a wall with the interior temperature T w. It contains the plate with the
assumed homogeneous temperature T p and a hydrogen gas atmosphere. Radiative
heat exchange takes place between the wall, the plate, and the heaters mounted
on the ceiling of the chamber. The interior temperature T w is measured and held
at the reference value r(= const.) by a control loop that sets the total input power
u. The symbols Q̇p and Q̇w represent the radiative heat flows from the heaters
(temperature T h) to the plate and to the wall, respectively. Convection and contact
heat transfer are neglected due to their small contributions (cf. Section 3.1.2).
The ambient environment has the homogeneous temperature T ∞. A two-color
pyrometer measures the plate temperature yin before the plate is charged into the
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furnace (at time tin) and yout after its discharge (at time tout).
In this section, a lumped-parameter model of the heat transfer between the

furnace wall, the heaters, and the plate will be derived using the state variables
T w and T p. The model will be further reduced to a first-order model under the
assumption of an ideally controlled interior wall temperature T w.

4.2.1 Radiation Equivalent Circuit
For the radiation enclosure formed by the furnace chamber assume (cf. [5,
Sec. 5.5.3])

• isothermal wall, plate and heater surfaces,

• gray Lambertian radiators,

• the hemispherical total emissivities εw, εp, and εh of the wall, the plate, and
the heater, respectively, characterize the entire surface,

• the respective absorptivities are aw = εw, ap = εp, and ah = εh,

• the respective reflectivities are rw = 1 − εw, rp = 1 − εp, and rh = 1 − εh,

• purely diffuse emission and reflection, and that

• Lambert’s cosine law is applicable, i.e., the view factors F wp, F wh, and F ph

can be used to describe the radiation exchange.

The hydrogen atmosphere in the chamber is transparent for radiation. Thus, the
net-radiation method can be applied to describe the radiation exchange.

Let σ be the Stefan-Boltzmann constant, and Aw, Ap, and Ah the surface areas
of the wall, the plate, and the heater, respectively. According to [5, Sec. 5.5.3.1],
the net-radiation method can be applied to a radiative enclosure with three
surfaces using the equivalent circuit shown in Fig. 4.4a. This representation is
advantageous because the emissivities εp, εw, and εh only influence their respective
branches of the equivalent circuit. The circuit can be simplified by means of the
Δ to Y transform, which yields Fig. 4.4b, with the parameters

Ep = 1 − εp

Apεp
+

1
(Ap)2F phF pw

1
ApF ph + 1

ApF pw + 1
AwF wh

(4.8a)

Ew = 1 − εw

Awεw
+

1
ApAwF pwF wh

1
ApF ph + 1

ApF pw + 1
AwF wh

. (4.8b)
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Figure 4.4: Equivalent circuit of the radiation enclosure, according to the net-
radiation method.

The parameter Eh is defined in a similar way, but will not be used any further.
With the heat input u, the heat flows to the wall and the plate follow as

Q̇p = Ew

Ep + Ew
u + 1

Ep + Ew

�
σ(T w)4 − σ(T p)4

 
(4.9a)

Q̇w = Ep

Ep + Ew
u + 1

Ep + Ew

�
σ(T p)4 − σ(T w)4

 
. (4.9b)

4.2.2 Dynamics

The plate and the wall in Fig. 4.3 are represented by lumped heat capacities
Cp(T p) and Cw(T w), respectively. Let R∞ be the heat resistance between the
furnace interior wall and the ambient environment. The temperatures of the plate
and the wall evolve according to

Cp(T p) d
dt

T p = Q̇p (4.10a)

Cw(T w) d
dt

T w = Q̇w − 1
R∞ (T w − T ∞). (4.10b)

At the charge and discharge times tin and tout of the plate, its temperatures
are measured as

yin = T p(tin) (4.11a)
yout = T p(tout). (4.11b)
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4.2.3 Model Reduction
Assuming ideal temperature control, i.e., T w ≡ r = const., the model equations
(4.9) and (4.10) reduce to

Q̇p = Ew

Ep + Ew
u + 1

Ep + Ew

�
σr4 − σ(T p)4

 
(4.12a)

Q̇w
s = Ep

Ep + Ew
u + 1

Ep + Ew

�
σ(T p)4 − σr4

 
(4.12b)

Cp(T p) d
dt

T p = Q̇p (4.12c)

0 = Q̇w
s − 1

R∞ (r − T ∞), (4.12d)

where Q̇w
s is the (constant) heat flow from the wall to the ambient environment.

Eliminating u and Q̇p in (4.12), we get the reduced model

Cp(T p) d
dt

T p = Ew

Ep
Q̇w

s + 1
Ep

(σr4 − σ(T p)4) (4.13a)

yin = T p(tin) (4.13b)
yout = T p(tout). (4.13c)

Equations (4.12d) and (4.13) serve as the starting point for real-time optimiza-
tion of the reheating times. Note that Cp(T p) and r are well known, while Ew,
Ep, and Q̇w

s have to be determined. In the next chapter, the unknown parameters
of the minimal model (4.13) will be tuned to best approximate the measurements
of yout and to find optimal reheating times for future plates.





CHAPTER 5

Calculation of Optimum Reheating Times

In the previous chapters, a detailed process model of the considered chamber
furnaces was formulated and drastically simplified to a first-order minimal model.
The unknown parameters of the minimal model will be adapted, based on mea-
surements of previously reheated plates, so that the minimal model is able to
approximate the output of the detailed process model with sufficiently high accu-
racy. The minimal model can then be used to compute optimal reheating times
for future products at very low computational costs.

In this chapter, a learning system is designed which comprises a parameter
estimator and an optimizer for the reheating times. The designed estimator-
optimizer structure will then be tested with the detailed process model representing
the real plant. The design process and some of the numerical results are already
published in [57].

5.1 Parameter Estimation and Calculation of Op-
timal Reheating Times

Based on the model equations (4.12d) and (4.13), the first goal is to determine the
unknown parameters. From (4.12d), it can be seen that Q̇w

s depends only on the
heat resistance R∞, the ambient temperature T ∞, and the reference temperature
r. It is thus independent of the plate. According to (4.8), Ew and Ep change with
the geometry of the radiation enclosure, including the dimensions of the plate.
Additionally, εp, which influences Ep, can vary from product to product.

The basic idea is to estimate Ew and Ep based on similar plates that were
reheated in the past and to reuse the estimated values to calculate the optimal

37
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Figure 5.1: Proposed estimator-optimizer structure.

reheating times of similar products in the future. Therefore, the plates are grouped
in product classes.

The parameter estimation and calculation of optimal reheating times proceed
as follows:

• Identify Q̇w
s for the furnace (Section 5.1.1).

• Define product classes for the expected product mix (Section 5.1.2).

• Estimate Ew for each class (Section 5.1.3).

• Estimate Ep for each class (Section 5.1.4).

• Calculate optimal reheating times for future products (Section 5.1.5).

Let c and k be the indices of the class and the product, respectively. For
each plate, let tin

c,k and tout
c,k be the charge and discharge times, yin

c,k and yout
c,k the

measured charge and discharge temperatures, and Êw
c,k and Êp

c,k the corresponding
parameter estimates of Ew and Ep, respectively. Additionally, let Δt̂c,k be the
calculated optimal reheating times. In the following, the estimator-optimizer
structure shown in Fig. 5.1 will be designed.

5.1.1 Heat Flow through Furnace Wall
At steady state ( d

dt
T p ≡ 0, T p ≡ T p

s , u ≡ us), (4.12) yields

Q̇w
s = us. (5.1)

Hence, Q̇w
s can be directly obtained by measurement of the input u(t) = us at

steady state. This can be done at charged or empty state.
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Product
class c Material

Previous
rolling
passes

Length
(mm)

Width
(mm)

Thickness
(mm)

1 Mo 0 500 – 1500 0 – 1000 60 – 120
2 Mo 0 500 – 1500 1000 – 2000 10 – 120
3 W 0 0 – 1000 0 – 1000 10 – 60
4 Mo 1 1000 – 2500 0 – 1000 10 – 60
... ... ... ... ... ...

Table 5.1: Examples of product classes.

5.1.2 Product Classes
Products are grouped in product classes because the parameters Ew and Ep depend
on the geometry of the radiation enclosure and thus on the geometric dimensions
of the plates. Moreover, the parameter Ep is also influenced by the emissivity εp of
the plate, which in turn depends on its material and surface condition. Therefore,
for the estimation of Ew and Ep, plates with similar dimensions, material, and
surface conditions are combined into one class.

In the considered rolling plant, the surface conditions of the plates depend
mainly on the number of previous rolling passes. Table 5.1 shows some examples
of typical product classes.

5.1.3 Estimation of Ew

To identify the parameter Ew
c , which represents Ew for the product class c, consider

(4.13a) for the plate k from the product class c,

Cp
c,k(T p

c,k) d
dt

T p
c,k = 1

Ep
c,k

σ

�
1 +

Ew
c,kQ̇w

s

σr4

!
� �� �

β4
c,k

r4 − σ(T p
c,k)4

, (5.2)

where Cp
c,k, T p

c,k, Ew
c,k and Ep

c,k are the respective parameters Cp, T p, Ew, and Ep

corresponding to that plate. While a change in Ew
c,k does not change the qualitative

evolution of the trajectory T p
c,k(t), it shifts the steady-state plate temperature

T p
c,k,s in the form

T p
c,k,s = βc,kr, βc,k = 4

%
1 +

Ew
c,kQ̇w

s

σr4 . (5.3)

Let βc refer to the mean value of βc,k in the product class c. The ratio βc is
specific to the design and control of the considered furnace and can be determined
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based on previous measurements yout
c,k in the respective class. For the considered

system, βc ≈ 1 is assumed, i.e., the steady-state plate temperature T p
c,k,s does not

significantly exceed the reference furnace temperature r. It is therefore expected
that Ew

c will have relatively small values. The validity of this assumption is
checked in Section 5.2. As initial estimate, Êw

c,0 = 0 is used, and the first product
(k = 1) of each product class is overheated on purpose to find a representative
estimate Êw

c,1. Section 5.1.4 contains more details on this intentional overheating.

For the estimation of Ew
c consider (4.13a) at steady state. At the time tout

c,k ,
the plate is discharged from the furnace and the temperature yout

c,k is measured
according to (4.13c). In this case, Ew

c,k calculates to

Ew
c,k =

σ(yout
c,k )4 − σr4

Q̇w
s

. (5.4)

A weighted recursive least-squares (RLS) algorithm, see, e.g., [41], can be used
to estimate the mean value Ew

c of the product class c in the form

κw
c,k =

����
κw

c,k−1

q + κw
c,k−1

, if yout
c,k > r

κw
c,k−1, else,

0 � q < 1 � κw
c,0

(5.5a)

Êw
c,k =

����
(1 − κw

c,k)Êw
c,k−1 + κw

c,k

σ(yout
c,k )4 − σr4

Q̇w
s

, if yout
c,k > r

Êw
c,k, else,

Êw
c,0 = 0 (5.5b)

Here, it makes sense to only iterate the estimate if yout
c,k > r, because this is a

necessary condition for the steady state. The initial value κw
c,0 is chosen very large,

such that the first iteration (Êw
c,1) of the RLS algorithm is already close to the

first measurement. The parameter q is an exponential forgetting factor.

Remark 1. If the condition βc ≈ 1 is not satisfied, it is necessary to determine the
mean value Ew

c with higher accuracy. In this case, several intentional overheating
cycles must be performed to get a better estimate Êw

c,k.
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5.1.4 Estimation of Ep

The parameter Ep
c , which refers to Ep for the product class c, is estimated based

on (4.13). For a single plate, the estimate Êp
c,k is obtained from

min
Êp

c,k

1
2(ŷout

c,k − yout
c,k )2 + 1

2γ
(Êp

c,k)2 (5.6a)

s.t. Cp
c,k(T̂ p

c,k) d
dt

T̂ p
c,k =

Êw
c,k

Êp
c,k

Q̇w
s + 1

Êp
c,k

(σr4 − σ(T̂ p
c,k)4) (5.6b)

T̂ p
c,k(tin

c,k) = yin
c,k (5.6c)

T̂ p
c,k(tout

c,k ) = ŷout
c,k , (5.6d)

where γ > 0 is a weighting parameter to regularize the optimization problem.
To use the estimate Êp

c,k for future plates with different dimensions, consider
(4.8a). The parameter Ep can be rewritten in the form

Ep = 1
Ap

1 − εp

εp
+ 1

F pw + F ph + ApF phF pw

AwF wh

. (5.7)

Because the plates are convex, F pp = 0 and F pw +F ph = 1, see, e.g., [5]. Moreover,
the reciprocity theorem for view factors implies ApF pw = AwF wp and thus

Ep = 1
Ap

1 − εp

εp
+ 1

1 + F wpF ph

F wh


� �� �

1/ηp

. (5.8)

If the ratio (F wpF ph)/F wh of the view factors is known, εp can be directly computed
from (5.8). In this work, however, the view factors are assumed to be unknown.
The value

ηp = 1
ApEp

(5.9)

is therefore used as a substitute parameter and will be estimated instead of εp.
Remark 2. The substitute parameter ηp depends on the view factors and therefore
on the plate geometry. However, the range for the values of ηp can be reduced by
making the product classes more specific with respect to the geometric dimensions.

Let Ap
c,k be the surface area of the plate k from the product class c. Similar to

(5.5), a weighted RLS algorithm of the form

κp
c,k =

κp
c,k−1

q + κp
c,k−1

, 0 � q < 1 � κp
c,0 (5.10a)

η̂p
c,k = (1 − κp

c,k)η̂p
c,k−1 + κp

c,k

1
Ap

c,kÊp
c,k

, 0 < η̂p
c,0 � 1 (5.10b)
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can be employed to approximate the mean value ηp
c of the product class c. The

initial value η̂p
c,0 is chosen close to zero. This is an intentional underestimation to

ensure that the first product in a certain class c is overheated. This intentional
overheating cycle is used to trigger the estimator (5.5) for Êw

c,1.

5.1.5 Calculation of Optimum Reheating Times
The estimates Êw

c,k−1 and η̂p
c,k−1 from the previous plates are used in a prediction

model to determine the optimal reheating time of the next plate from the same
class c. The reheating times are computed by solving

Cp
c,k(T̂ p

c,k(t)) d
dt

T̂ p
c,k(t) = Ap

c,kη̂p
c,k−1

�
Êw

c,k−1Q̇
w
s + σr4 − σ(T̂ p

c,k(t))4
 

(5.11a)

T̂ p
c,k(0) = yin

c,k (5.11b)
T̂ p

c,k(Δt̂c,k) = yout
d (5.11c)

for the unknown Δt̂c,k by means of an ODE solver and linear interpolation of the
solution. Here, yout

d is the desired discharge temperature.

5.2 Proof of Concept
The developed strategy is tested in a simulation environment. The validated
detailed process model (3.20) with the sensor outputs (3.22) and (3.24) and
the temperature controller (3.23), see also Fig. 3.4, represents the considered
batch-type furnace. The temperature-controlled process model was embedded in
Matlab/Simulink and connected to the proposed estimator-optimizer structure.
The interfaces to the estimator-optimizer system are

u(t) = 1Tu(t) (5.12a)
yin

c,k = yp(tin
c,k) (5.12b)

yout
c,k = yp(tout

c,k ), (5.12c)

and the steady-state power input Q̇w
s is obtained according to (5.1).

5.2.1 Plant Analysis
The temperature-controlled process model exhibits the following properties:

• The temperature controller (3.23) keeps the wall temperatures yw close to
the desired setpoint r. The assumption of an ideal temperature controller is
therefore satisfied.

• The parameter Q̇w
s can be computed directly in a steady-state simulation

(cf. Section 5.1.1).
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Productno.
Length
(mm)

Width
(mm)

Thickness
(mm) εp

c,k
yin

c,k

(◦C)
yout

d

(◦C)
c k

1 1240 610 120 0.25 30 1270 1 1
2 1220 600 68 0.25 30 1270 1 2
3 1270 610 120 0.25 30 1270 1 3
4 1150 1370 26 0.25 30 1270 2 1
5 840 580 68 0.25 30 1270 1 4
6 640 1520 13 0.25 30 1270 2 2
7 1260 630 120 0.25 30 1270 1 5
8 840 580 68 0.25 30 1270 1 6
9 1160 580 120 0.25 30 1270 1 7
10 1200 610 80 0.25 30 1270 1 8

Table 5.2: Product parameters for the test scenario.

• The maximum final plate temperatures were found to be in the range
T p

s ≈ 1.03r. Hence β ≈ 1 holds for β from (5.3). The parameter Ew can
therefore be estimated according to the procedure presented in Section 5.1.3.

• The parameter ηp according to (5.9) will be used instead of εp (cf. Sec-
tion 5.1.4).

• The ratio of the view factors according to (5.8) is (F wpF ph/F wh) ≈ 0.2 for
the considered plates. Therefore, the estimate η̂p

c,k will converge to a value
close to εp.

5.2.2 Test Scenario
As a test scenario, products for a 12-hour shift were randomly generated. They
are all reheated for the same setpoint r = 1300◦C and the same desired product
temperature yout

d = 1270◦C. The product data are given in Table 5.2. Following
the definitions of the product classes from Table 5.1, the products are allocated
to the classes c = 1 and c = 2.

For the open-loop configuration, the plant operator chooses reheating times
Δtman

c,k according to the existing manufacturing plans, which are provided by an
expert system based on experience and analogies. For the closed-loop configuration,
the operator uses the calculated optimum reheating times Δt̂c,k. The designed
system will be tested with the following simulation scenarios.

1. Open loop with fixed parameter values to analyze the estimator performance
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2. Closed loop and fixed parameter values to analyze the performance limit of
the designed system

3. Closed loop and uncertain parameter values to analyze the robustness of
the designed system with respect to unknown variations of the parameters

The goal is to show that the proposed concept, demonstrated in the simulations
2 and 3, is able to reduce the reheating times compared to the expert system,
demonstrated by simulation 1. Moreover, the exit temperatures yout

c,k (cf. (5.12c))
should be within a range of ±15◦C of the desired temperature yout

d .

5.2.3 Simulation Results
Simulation 1: Open loop, fixed parameters Figure 5.2 depicts the sim-
ulation results for the reheating times Δtman

c,k according to the manufacturing
plan.

The input heating powers u(t) behave differently in each zone of the furnace,
depending on how much heat the plate draws from the respective zones. The
plates of product classes c = 1 and c = 2 (see Table 5.1) are not so long that
they extend into the last furnace zone (cf. Fig. 3.1). Therefore, u3(t) is almost
constant.

The wall surface temperatures yw experience short-time disturbances between
3◦C and 10◦C. The relative error (yw

i − r)/r (i = 1, 2, 3) is below 1%. The
assumption of ideal wall temperature control is therefore well justified.

The chosen reheating times Δtman
c,k are plotted and compared to the optimum

reheating times Δt̂c,k. The total processing time is 591min.
Figure 5.2 shows that most products are heated beyond the desired value

yout
d ± 15◦C, while a few even leave the furnace too cold.

The objective of this simulation scenario is mainly to analyze the performance
of the estimator. The estimates Êw

c,k and η̂p
c,k are depicted in the bottom plots

of Fig. 5.2 and η̂p
c,k converges to a value close to the actual plate emissivities

εp
c,k = 0.25.

Simulation 2: Closed loop, fixed parameters For the simulation 2, the
calculated optimum reheating times Δt̂c,k from (5.11) are used. The results for
the closed-loop configuration with fixed parameters are shown in Fig. 5.3. The
time evolutions of the input powers u(t) and the wall temperatures yw(t) are
similar to simulation 1.

The first product of each product class is intentionally overheated to perform
the estimation of Ew

c . Then the error (yout
c,k − yout

d ) quickly decays to the tolerance
band yout

d ± 15◦C.
The chosen reheating times Δt̂c,k are plotted and compared to the reheating

times Δtman
c,k from the manufacturing plan. The total processing time amounts to
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Product no. 1 2 3 4 5
εp

c,k 0.2555 0.2357 0.2759 0.2091 0.2637
Product no. 6 7 8 9 10

εp
c,k 0.2245 0.2400 0.2666 0.2812 0.2165

Table 5.3: Perturbed parameters for simulation 3.

535min. This is an improvement of 9.5% compared to simulation 1, despite the
time loss during the intentional overheating of the first product in both product
classes.

The estimated values Êw
c,k and η̂p

c,k differ from the open-loop estimates due to
different (measurement) values of yout

c,k . Notice especially the improved estimate of
Ew

1 , which was obtained through intentional overheating.

Simulation 3: Closed loop, uncertain parameters For simulation 3, the
parameters εp

c,k are perturbed with Gaussian noise (standard deviation 10% of the
base value) and the calculated optimum reheating times Δt̂c,k from (5.11) are used.
The perturbed parameter values are given in Table 5.3. The corresponding sample
standard deviation is 0.0254, i.e., approximately 10% of the base value. The
results for the closed-loop configuration with uncertain parameters are depicted
in Fig. 5.4.

The input powers u(t) and the wall temperatures yw(t) are similar to simula-
tions 1 and 2. The estimates Êw

c,k and η̂p
c,k are close to the values of simulation 2,

which implies that they are robust with respect to the (zero-mean) parameter
perturbations.

In the considered case, the perturbation of εp
c,k with Gaussian noise according

to Table 5.3 increases the temperature error of most products by approximately
15◦C. As a result, with the used sample products, the product parameters are
required to deviate no more than 10% from their nominal value.

The exit temperatures yout
c,k of most of the products stay within the tolerance

band of yout
d ± 15◦C.

The total processing time is 532min and thus only slightly differs from simula-
tion 2 due to the perturbation of εp

c,k.

5.3 Long-Term Tests
The results of the previous section prove the working principle of the designed
estimator-optimizer structure for reheating time optimization. It is concluded that
the upstream manufacturing process is required to specify product parameters
with a total deviation of no more than 10% from their nominal value in order
to keep the exit temperatures yout

c,k of the products within the tolerance band of
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Testno.
Material Length

(mm)
Width
(mm)

Thickness
(mm) εp

c,k
yin

c,k

(◦C)
yout

d

(◦C)

1 Mo 500–1500 500 60 0.25 30 1270
2 Mo 1000 100–1000 60 0.25 30 1270
3 Mo 1000 500 2.5–120 0.25 30 1270

Table 5.4: Product parameters for the long-term tests.

±15◦C of the desired value yout
d . In the following, the choice of product class

boundaries is investigated in long-term tests.

5.3.1 Varying Plate Dimensions
In a set of long-term tests, the sensitivity of the designed estimator-predictor
system with respect to the plate dimensions is examined. To this end, three
long-term tests with 100 randomly generated products according to Table 5.4
are performed. The products are generated by a uniformly-distributed random
variable. All products are allocated to the same product class. The long-term
tests described in Table 5.4 demonstrate the sensitivity of the optimizer results
with respect to variations in the plate dimension, that is, with respect to the
product class boundaries.

Figure 5.5 shows histograms of the output temperatures yout
c,k from each long-

term test. It can be seen that variations of the length (long-term test 1) and
thickness (long-term test 3) of the plate have only minor influence on the output
temperature. This is due to the geometries of the furnace chamber and plate.
The chamber is designed as a long tube, where the door end acts as a mirror and
the back end is relatively far away from the plate. Therefore, the heating of the
plate depends only weakly on the longitudinal dimension. The robustness of the
optimization result with respect to the plate thickness is due to the high thermal
conductivity of molybdenum. As can be checked with the so-called Biot number
(cf. [39]), the plate temperature is very close to its mean value along the thickness
direction.

The sensitivity of the plate exit temperatures with respect to the plate width
(long-term test 2) is higher compared to the other dimensions. In order to keep
the exit temperatures within the tolerance band, it is necessary to narrow the
width bounds of the considered product class.

5.3.2 Effects of Narrowing the Product Classes
The effects of subdividing a product class into several classes with restricted plate
widths are examined in the following. Table 5.5 contains the parameters of four
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Product
classes

Material Length
(mm)

Width
(mm)

Thickness
(mm) εp

c,k

yin
c,k

(◦C)
yout

d

(◦C)

1 Mo 500–1500 100–1000 60–120 0.25 30 1270
9 Mo 500–1500 100–200,...1000 60–120 0.25 30 1270
1 Mo 500–1500 100–1000 60–120 0.225–0.275 30 1270
9 Mo 500–1500 100–200,...1000 60–120 0.225–0.275 30 1270

Table 5.5: Product parameters of the long-term tests.

long-term tests.
In the first test, products are randomly generated from a single large product

class with plate widths ranging from 100mm to 1000mm. In the second test, the
simulation is repeated using nine narrower class definitions, with plate widths
from 100mm to 200mm, from 200mm to 300mm and so forth.

In the third and fourth test, the tests are repeated with added uncertainty in
the plate emissivity. Here, the emissivities are uniformly distributed between 90%
and 110% of their nominal value (cf. Table 5.5).

The histograms of the performed tests are shown in Fig. 5.6. It can be seen
that narrowing the plate widths of a class clearly reduces the standard deviation
of the product exit temperatures. In the considered case, the standard deviation
is approximately halved. The outliers between 1305◦C and 1310◦C are caused by
intentional overheating, as discussed in Section 5.1.4. In the tests with varying
emissivities, the use of one large product class results in 13 underheated products,
while the use of nine product classes results in only two underheated products.
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Figure 5.2: Result of simulation 1; fixed parameters, open loop.
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Figure 5.3: Result of simulation 2; fixed parameters, closed loop.
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Figure 5.5: Results of the long-term tests.
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CHAPTER 6

Conclusions and Outlook

In the first part of this thesis, the reheating of heavy plates of refractory metals
in a batch-type chamber furnace was investigated. The goal was to determine the
minimal reheating times for a given mode of operation where the plate temperature
cannot be measured while the plate resides in the furnace. Due to the asymptotic
evolution of the plate temperature towards its desired value, the required heating
time for a given discharge temperature is highly sensitive with respect to the
system parameters.

6.1 Summary
A detailed process model was developed based on first principles. This model
captures the heat transfer by both radiation and conduction. Unknown material
parameters of the furnace wall were identified based on measurement data.

Subsequently, a model order reduction was performed using the Proper Orthog-
onal Decomposition (POD) method with mode shapes derived from simulations.
The reduced-order model was further examined and it was found that the desired
model output, i.e., the discharge temperature, can be accurately described by a
single POD mode. Based on this observation, a minimal model of order one was
developed which has significantly lower computational costs.

The products of the plant may vary in size, material, surface properties,
and rolling passes and are clustered according to these parameters. For each
product class, some model parameters are estimated from the reheating of previous
products in this class. Based on these estimates, the optimum reheating times of
future products are calculated.

The solution based on the first-order mathematical model exhibits a high
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accuracy even for uncertain model parameters. The performance of the proposed
approach was investigated by simulation studies on the validated process model.
For the considered test scenarios, a reduction of the total processing time by
approximately 9.5% compared to the current operating practice can be achieved.
Long-term tests were conducted to show the performance for properly chosen
product classes and limited parameter uncertainties.

6.2 Conclusions
The considered system serves as an example for a reheating-by-waiting process.
Since the reheating process is asymptotically stable and converges to the desired
discharge temperature, the goal of this work was not to control the temperatures,
but rather to accurately compute the optimum reheating time for a product. For
this reason, it is sufficient that the model accurately captures the input-output
relations of the process. The introduction of product classes allows to estimate
representative product parameters and efficiently optimize the reheating times.

The designed estimator-optimizer structure can be easily transferred to other
batch-type furnace systems and is a good example of a combination of first-
principles models and data-driven methods.

6.3 Outlook
The considered furnaces are part of a production plant for heavy plates. The
results of the optimizer may be used to change and adapt the production schedule
of the heavy-plate mill. To this end, the designed estimator-optimizer structure
can be embedded in a scheduling algorithm like [3].
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Induction Reheating of Thin
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CHAPTER 7

Preliminaries

This second part of the thesis deals with the reheating process in the coil production
plant of Plansee SE. The coil production plant is shown in Fig. 7.1. A thin sheet
of refractory metal enters over the entry roller table and is fixed by a clamping
roll. The sheet then passes under a number of electromagnetic inductors, where it
is heated along the cutting lines in longitudinal direction. Finally, the sheet is cut
into stripes and the stripes are wound up by a coiler. The produced coils undergo
further manufacturing steps downstream.

The reheating of the sheet is caused by Joule losses from electromagnetically
induced eddy currents. The induced eddy currents in the sheet diminish rapidly
when the air gap between the inductor coil and the sheet is increased. The
inductors are arranged in such a way that a mutual coupling is avoided.

The sheet is produced by the same rolling plant as described in Part I and
the leveler used in the plant is designed for heavy plates rather than thin sheets.
Therefore, the sheet retains some flatness defects. These flatness defects cause
large temperature fluctuations during the reheating along the cutting line, which in
turn compromise the quality of the cutting edges. Coils with inferior edge quality
have to undergo additional manufacturing steps, or even have to be discarded.

7.1 Industrial Requirements
The necessity to post-process or discard badly-cut coils should be avoided. To
this end, the induction heating (IH) process must be improved. For the cutting
edge to be of good quality, the sheet should be heated above 250◦C. On the other
hand, unnecessary overheating of the sheet is a waste of energy.

Induction heating systems typically consist of power electronics, magnetic
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Figure 7.1: Coil production plant.

components including the workpiece, and a control system (cf. [42]). The geometry
and power electronics of the considered IH system are already given. Consequently,
a control system is required that mitigates the temperature fluctuations at the
exit of each inductor.

In a first step, the total heating power transmitted from each inductor to the
sheet should be controlled. This way, the correct amount of enthalpy can be
supplied to the sheet. In a second step, the (unmeasured) air gap fluctuations
should be compensated as accurately as possible by a temperature controller.

7.2 State of the Art
Most published control solutions focus on the power supplied to the inductor.
The power can be controlled by the (complex) amplitude of the supply current,
which was done in [15–17, 46]. Additionally, [44] contains a method to eliminate
parasitic coupling effects between multiple inductors. For a single inductor system,
a controller that tracks the resonance frequency and thus minimizes the reactive
load for the power supply is designed in [75]. Controlling the (active) power
supplied to the inductor does not guarantee that the desired heating power enters
the workpiece. For this reason, the literature on this subject can only be the
starting point for the problem at hand.

One option to capture the difference between the supply power and the actual
heating power are electromagnetic field calculations, which are typically performed
by finite-element (FE) software. FE simulations are used, for instance, in [24,
45, 47] to pre-calculate the distribution of induced currents. The results of [45,
47] are subsequently used for feedforward (FF) control. These works focus on
domestic stoves, where the main objective is homogeneous heating rather than
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temperature control.
Optimal FF temperature control was considered in [52–54]. The drawback of

this approach is that the necessary FE calculations cannot be performed in real
time.

With the exception of [19], the literature lacks reports on feedback (FB)
temperature control for industrial IH systems. In [19], a nonlinear model predictive
controller is designed based on a finite-difference model of a cylindrical rod with
a surrounding coil. Unlike in the FE-based works, the geometry is simple enough
for online calculations. Also, changes of the air gap geometry due to an excentric
rod position are practically negligible.

The problem considered in this thesis differs from the works discussed above
insofar as the uncertain and unmeasured air gap geometry has a major influence
on the resulting sheet temperature. Nonetheless, the techniques used in these
works serve as a good starting point for the investigations in this thesis.

7.3 Motivation
Usually, the field geometries in IH are supposed to be well known, or equivalently,
uncertainties need to have only a negligible effect. This is the case in the reported
applications from the literature. In longitudinal field applications, where the coil
winds around the heating subject, a homogeneous distribution of the magnetic
field and flux density can be assumed and small displacements of the load have
no effect. In transversal field applications such as domestic stoves, the heating
subject is supposed to be within a known distance to the coil winding.

In the present case, the variations of the air gap are neither known in advance
nor measured and thus have to be compensated. Such configurations of induction
heating are rather uncommon and require the design of new control concepts.

7.4 Approach and Scientific Contributions
The approach pursued in this thesis can be summarized as follows:

• Formulate a 3D FE model with a constant air gap and verify it with recorded
plant data.

• Reduce to a control-oriented 1D model which systematically incorporates
the air gap changes.

• Design a temperature controller to compensate for the variations of the air
gap and test it in simulations.

Large parts of the designed air gap compensation and temperature controller
presented in this thesis are already published in [55].
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7.5 Outline of Part II
Part II of the thesis is organized as follows: Chapter 8 is dedicated to the
formulation of the mathematical models. First, a 3D process model is derived
from first principles and validated using recorded plant measurement data. The
process model is then simplified to a control-oriented model, which consists of a
1D thermal model and an equivalent circuit for the elecromagnetic subsystem. In
Chapter 9, a cascade controller is designed for the control-oriented model. The
controller design is tested based on the detailed process model in Chapter 10 and
some concluding remarks are given in Chapter 11.



CHAPTER 8

Physical Modeling

In the following, a mathematical model of the considered IH system is derived.
Figure 8.1a shows the essential parts of the system. A thin molybdenum sheet
moves under a longitudinal inductor coil winding and a narrow stripe of the sheet
is reheated. Along this reheated stripe, a downstream slitting shear cuts the strip.
The quality of the cutting edge strongly depends on the strip temperature T .

The metal sheet occupies the domain Ωp ⊂ R3. The sheet is fixed between an
upstream clamping roll and the downstream slitting shear and exhibits uncertain
flatness defects, which are caused by residual mechanical stresses that were
introduced during the upstream rolling process. Additional thermal stresses are
insignificant due to the low heat expansion of molybdenum.

A spatially fixed Cartesian coordinate system is used, where the sheet moves
along the x direction below the inductor coil, i.e., Ωp = Ωp(t), with the time
coordinate t. The strip temperature depends on the spatial coordinates x, y, z,
and the time t, i.e.,

T = T (x, y, z, t). (8.1)

The inductor reaches from x = Δl to x = lx − Δl. The copper winding occupies
the domain Ωc ⊂ R3 and has the entry and exit faces Γc,in and Γc,out, respectively.
The winding is a hollow conductor with rectangular cross-section and internal
water cooling. Magnetic cores, so-called concentrators, of width lz enclose the
conductor and guide the magnetic flux. The field domain for the IH process model
will be denoted by Ω. Consider the domains

Ωp(t), Ωc ⊂ Ω ⊂ R3, Ωp(t) ∩ Ωc = ∅ (8.2a)
Γc,in, Γc,out ⊂ ∂Ωc ∩ ∂Ω �= ∅ (8.2b)
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and the sheet cross-sections (cf. Fig. 8.1b)

Γp(x, t) = {[x�, y�, z�] ∈ Ωp(t) | x� = x}. (8.3)

The sheet Ωp(t) has a thickness of ly and moves with the (piecewise) constant
velocity vx along the direction x. The movement of the sheet entails an uncertain
and time-variant air gap width between Ωp(t) and Ωc. In the upstream rolling
process, the sheet is rolled in the direction x. Let us assume that the air gap

ag(x, t) = dist(Γp(x, t), Ωc), Δl < x < lx − Δl (8.4)

is independent of y and z, where dist(·, ·) is the Euclidean distance between two
sets.

The strip surface temperature T |∂Ωp(t) is measured by two pyrometers on the
upper surface of the sheet. At the measurement positions

xp,in(t) =
�
0 yp,in(t) 0

�T
(8.5a)

xp,out(t) =
�
lx yp,out(t) 0

�T
, (8.5b)

where yp,in(t) and yp,out(t) are the corresponding y coordinates of the upper strip
surface, the pyrometers measure the temperatures

T in(t) = T |xp,in(t) (8.6a)
T out(t) = T |xp,out(t). (8.6b)

Remark 3. The positions xp,in and xp,out are only defined if the plate domain Ωp(t)
has yet reached the corresponding coordinates x = 0 and x = lx, respectively.

The inductor is part of a parallel resonant circuit with a capacitor Cr. The
capacitor and the inductor are coupled by an ideal transformer with the ratio
1 : atr. The resonant circuit is driven by an AC voltage source with adjustable
RMS voltage U s and angular frequency ω. The RMS voltage U s and the RMS
current Is at the voltage source, and the RMS current I through the inductor are
known from measurements.

The goal of the temperature controller is to heat the metal sheet to the desired
value T out

d (t) at the pyrometer position xp,out(t). The time-varying air gap is
considered as an unknown disturbance since it neither can be measured nor is
it known in advance. The main result of this chapter will be a control-oriented
model of the IH process. It serves as a basis for the observer and controller design
in Chapter 9.

8.1 Process Model
In a first step, a 3D FE model of the magnetic field is formulated and implemented
in Comsol Multiphysics.
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8.1.1 Electromagnetic Field
Consider Maxwell’s equations for the dominant-magnetic case (see [27]), i.e.,
electrostatic charges and changes of the electric displacement field are neglected.
With the magnetic field H , the magnetic flux density B, the electric field E, and
the current density J , Maxwell’s equations have the form

∇ × H = J , in Ω (8.7a)
∇ × E = −∂tB, in Ω (8.7b)
∇ · B = 0, in Ω. (8.7c)

Additionally, if surface currents are absent, the interface conditions on any surface
Γ12 between two domains are

n12 × (H2 − H1) = 0, on Γ12 (8.8a)
n12 · (B2 − B1) = 0, on Γ12. (8.8b)

The symbols H1, H2, B1, and B2 are the magnetic fields and flux densities on
either side of the surface, while n12 denotes the normal direction from the first to
the second domain. The constitutive equations read as

B = µH , in Ω (8.9a)
J = σE, in Ω (8.9b)

where µ and σ are the magnetic permeability and the electric conductivity,
respectively.

Using the magnetic vector potential A defined in the form

B = ∇ × A, in Ω, (8.10)

Maxwell’s equations (8.7) can be reduced to

∇ ×
�
µ−1∇ × A

 
= J , in Ω (8.11a)

∇ × E = ∇ × (−∂tA), in Ω. (8.11b)

According to (8.9b) and (8.11b) the current J can be partitioned into

J = σE = −σ∂tA + J ext, in Ω, (8.12)

where the term −σ∂tA represents the induced current density and J ext comprises
those currents which are impressed on the system. Due to (8.11b), J ext is curl-free.
Also, from (8.7a), it follows that J is divergence-free. If additionally the Coulomb
gauge (∇ · A = 0, cf. [27]) is applied, J ext is divergence-free. The divergence-free
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J ext represents the current that enters and leaves the field domain Ω and must
sum up to the global current Jext entering the inductor coil, i.e.,

Jext = −
�

Γc,in
n · J ext ds =

�
Γc,out

n · J ext ds. (8.13)

The system equations (8.11) thus take the form

∇ × (µ−1∇ × A) = −σ∂tA + J ext, in Ω (8.14a)

−
�

Γc,in
n · J ext ds = Jext. (8.14b)

8.1.1.1 Time-Harmonic Formulation

For IH, it is sufficient to consider time-harmonic solutions of the electromagnetic
system. Therefore, the time-harmonic formulations

A = Re
�
Âeiωt

 
, in Ω (8.15a)

J ext = Re
�
Ĵ exteiωt

 
, in Ω, (8.15b)

with the imaginary unit i and the complex amplitudes Â and Ĵ ext, are used.
Furthermore, with the RMS value I of the current Jext, the steady-state version
of (8.14) reads as

∇ × (µ−1∇ × Â) = −iωσÂ + Ĵ ext, in Ω (8.16a)0000�Γc,in
n · Ĵ ext ds

0000 = I
√

2. (8.16b)

The PDE (8.16a) has to be complemented by appropriate boundary conditions.

8.1.1.2 Joule Heating

The Joule losses in a conductor are defined as

Q = J · E, in Ω. (8.17)

In the domain of the metal sheet, it holds that

J = −σ∂tA, in Ωp (8.18a)
Q = σ�∂tA�2

2, in Ωp. (8.18b)

From this, the average heating power during one time period 2π/ω follows in the
form

ω

2π

� t

t−2π/ω
Q dt� = σω2

2 �Â�2
2, in Ωp. (8.19)
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This term will be used to describe the heat sources in the heat transfer model. In
this work, the time scale of the electromagnetic field problem is several orders of
magnitude faster than the heat transfer dynamics. The transient behavior of the
electromagnetic field will therefore be neglected. Instead, all time dependencies of
the electromagnetic quantities Â, Ĵ ext and I are considered on the slower time
scale of the heat transfer problem.

8.1.2 Heat Transfer
The hollow conductor Ωc has an internal water cooling that keeps the inductor
at low temperatures. It is thus assumed that the temperature of the inductor
is constant (at room temperature) and heat transfer is only considered in the
domain Ωp. For this domain, the heat conduction equation with advection due to
the strip movement with the velocity vx along the direction x and the heating
due to the IH reads as (cf. [26])

ρcp(∂tT + vx∂xT ) = ∇ · (λ∇T ) + σω2

2 �Â�2
2, in Ωp. (8.20)

Here, T , ρ, cp, and λ denote the temperature, mass density, specific heat capacity,
and thermal conductivity of the strip, respectively.

Each material point of the strip stays in the magnetic field domain only for
a few seconds. Due to this short time span, the losses due to radiative and
convective cooling on ∂Ωp are neglected. Using the surface normal derivative
operator ∂n, (8.20) is complemented by the boundary and initial conditions

T = T in, on Γp(0) (8.21a)
−λ∂nT = 0, on ∂Γp(x)|x∈(0,lx] (8.21b)

T |t=0 = T0, in Ωp. (8.21c)

8.1.3 Model Summary
In summary, the IH process model consists of the equations (8.16) with the
interface conditions (8.8) combined with (8.9a) and (8.10)

∇ × (µ−1∇ × Â) = −iωσÂ + Ĵ ext, in Ω (8.22a)
n12 ×

�
µ−1

2 ∇ × A2 − µ−1
1 ∇ × A1

 
= 0, on any Γ12 (8.22b)

n12 · (∇ × A2 − ∇ × A1) = 0, on any Γ12 (8.22c)0000�Γc,in
n · Ĵ ext ds

0000 = I
√

2 (8.22d)
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for the electromagnetic subsystem and equations (8.20), (8.21) and (8.6b)

ρcp(∂tT + vx∂xT ) = ∇ · (λ∇T ) + σω2

2 �Â�2
2, in Ωp (8.23a)

T = T in, on Γp(0) (8.23b)
−λ∂nT = 0, on ∂Γp(x)|x∈(0,lx] (8.23c)

T |t=0 = T0 (8.23d)
T out = T |xp,out , (8.23e)

for the heat transfer subsystem. This process model is solved with the finite-
element (FE) software Comsol Multiphysics. An experimental validation of
the FE model along with a sensitivity analysis is given in the next section. It is
shown that the exit temperature T out = T |xp,out is highly sensitive to variations
of the (unmeasured) air gap ag.

8.1.4 Validation of the Process Model
For validation of the process model, a heating experiment was conducted at the
industrial plant. The time-averaged measurement values are compared to the
results of the process model for a quasi-stationary scenario.

8.1.4.1 Experiment

The signals ω, U s, Is, T in, T out, ag, and vx were recorded and their time averages
calculated, see Table 8.1 and Fig. 8.2. The mean air gap ag

meas and velocity

Quantity Measurement Max. uncertainty Time avg. Avg. value
ω ωmeas ±2π × 10rad/s ωmeas 2π × 7746rad/s
U s U s

meas ±0.5V U
s
meas 679.5V

Is Is
meas ±0.1A I

s
meas 94.2A

T in T in
meas ±5◦C T

in
meas 30◦C

T out T out
meas ±5◦C T

out
meas 268◦C

ag ag
meas ±0.5mm ag

meas 8.4mm
vx vx,meas ±0.01m/s vx,meas 0.1m/s

Table 8.1: Data from the heating experiment.

vx,meas were extracted from video data using the canny algorithm (see [10]). In
these experiments, the current I entering the inductor (cf. Fig. 8.1a) and the
phase angle φs between U s and Is were not measured. The transformer ratio
1 : atr is also not known exactly. These missing quantities have to be estimated
before the simulation model is evaluated. For this purpose, the following inverse
problem is solved.
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8.1.4.2 Inverse Problem

The complex power Ss supplied by the voltage source is distributed to the capacitor
and the inductor, i.e., Ss = S(I) − iωCr(U s)2. Here, S(I) denotes the complex
power related to the inductor, which can be computed by the FE model. The
inductor current I is obtained by solving the inverse problem

I∗ = arg min
I

�
U

s
measI

s
meas −

000S(I) − iωCr(U s
meas)2

000 2
(8.24a)

s.t. ω = ωmeas, T in = T
in
meas, ag = ag

meas, vx = vx,meas (8.24b)

using the algorithm snopt (see [18]).

8.1.4.3 Validation

In steady state, the process model yields the exit temperature

T out
000
I=I∗ = 290◦C. (8.25)

Based on the solution of (8.24), the sensitivity

∂ T out|I=I∗

∂ag

00000
ag=ag

meas

≈ −86
◦C

mm (8.26)

of T out with respect to ag was calculated by finite differences. With the given
uncertainty of 0.5mm for ag

meas, it holds that00000 T out
000
I=I∗� �� �

(8.25)

− T
out
meas� �� �

Table 8.1

00000 = 22◦C < 43◦C = 86
◦C

mm� �� �
(8.26)

× 0.5mm� �� �
Table 8.1

. (8.27)

This implies that the FE model is within the uncertainties of the given measurement
data and thus conforms to the recorded measurements. The simulated temperature
profile is depicted in Fig. 8.3.

8.2 Control-Oriented Model
Based on the detailed process model (8.22) and (8.23), a reduced model suitable
for real-time control is derived in this section.

8.2.1 Transition to Advection Equation
Using the specific enthalpy

h(x, y, z, t) =
� T (x,y,z,t)

0
ρcp(T �) dT �, (8.28)
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the differential operations in (8.23) become

∂th = ρcp(T )∂tT (8.29a)
vx∂xh = vxρcp(T )∂xT (8.29b)

∇h = ρcp(T )∇T. (8.29c)

The thermal subsystem (8.23) can therefore be reformulated as

∂th + vx∂xh = ∇ ·
�

λ

ρcp

∇h

!
+ σω2

2 �Â�2
2, in Ωp (8.30a)

h = hin(t), on Γp(0) (8.30b)
∂nh = 0, on ∂Γp(x)|x∈(0,lx] (8.30c)

h|t=0 = h0 (8.30d)
hout(t) = h|xout . (8.30e)

Based on the simulation results in Section 8.1.4 (cf. Fig. 8.3), it is assumed
that on the stripe |z| < lz/2 it is sufficient to consider the mean value of the
temperature field (in the directions y and z). Moreover, the transport velocity vx

is high enough that the heat transfer by advection along the direction x clearly
outweighs the effect of diffusion. It is therefore sufficient to consider the mean
values h of h over a cross-section of this stripe. So let

+Γp(x) = {[x�, y�, z�] ∈ Ωp | x� = x, |z�| < lz/2} (8.31)
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and also

h(x, t) = 1
lylz

�
+Γp(x)

h(x, y, z, t) ds (8.32)

q(x, t) = 1
lylz

�
+Γp(x)

∇ ·
�

λ

ρcp

∇h

!
+ σω2

2 �Â�2
2 ds. (8.33)

The thermal subsystem (8.30) can thus be reduced to the one-dimensional advec-
tion equation

∂th(x, t) + vx∂xh(x, t) = q(x, t), x ∈ (0, lx) (8.34a)
h(0, t) = h

in(t) (8.34b)
h(x, 0) = h0(x) (8.34c)
h

out(t) = h(lx, t). (8.34d)

The source term q includes the coupling between the thermal and the electromag-
netic subsystems and will be investigated next.

8.2.2 Equivalent Circuit Formulation
Consider the total heating power

P p(t) =
� lx

0

�
+Γp(x)

σω2

2 �Â�2
2 ds dx, (8.35)

the losses due to lateral diffusion

P d(t) =
� lx

0

�
+Γp(x)

∇ ·
�

− λ

ρcp

∇h

!
ds dx ≥ 0, (8.36)

and the net heating power

P h(t) =
� lx

0
lylzq(x, t) dx = P p(t) − P d(t). (8.37)

Furthermore, consider a function b(x, t) that describes the spatial distribution of
P h(t) in the form

q(x, t) = b(x, t)P h(t),
� lx

0
lylzb(x, t) dx ≡ 1. (8.38)

The function b(x, t) strongly depends on the air gap ag(x, t) (see (8.4)). If
the air gap increases or decreases locally, then the qualitative shape of b(x, t)
changes accordingly. With the notions P p(t), P d(t), and P h(t) and the power
distribution b(x, t), the coupling of the thermal and electromagnetic subsystems
can be described as follows.
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U s(t)
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1 : atr
I(t) Rc Lc

σ Lp
σ

Figure 8.4: Equivalent circuit diagram of the IH system.

Consider the equivalent circuit diagram for the electromagnetic problem, shown
in Fig. 8.4. The circuit represents the electromagnetic field configuration as a
transformer with weak coupling. The ohmic losses in the conductor Ωc and the
sheet Ωp (cf. Fig. 8.1a) are represented by the resistors Rc and Rp, respectively.
The inductances Lc

σ and Lp
σ describe the magnetic stray fields, while Lcp

h refers to
the coupling between the coil and the sheet. The resistor RFe accounts for losses
in the magnetic concentrators and dissipates the power P Fe(t).
Remark 4. Note that the powers P (t), P p(t), P d(t), P h(t), and P Fe(t), as well
as the terms I(t), Is(t), and U s(t) are RMS values. Their time-dependence is
understood on the slower time scale of the thermal subsystem (cf. Section 8.1.1).

The electric power P (t) supplied to the coil can only be dissipated by the
resistors. Hence, P (t) can be split into

P (t) = Rc|I(t)|2 + P p(t) + P Fe(t)
= Rc|I(t)|2 + P h(t) + P d(t) + P Fe(t)� �� �

P l(t)

. (8.39)

The losses in the magnetic concentrators P Fe(t) and due to lateral heat diffusion
P d(t) are summarized in the term P l(t).

Insertion of (8.38) into (8.34a) and consideration of (8.39) yields

∂th(x, t) + vx∂xh(x, t) = b(x, t)
�
P (t) − Rc|I(t)|2 − P l(t)

 
. (8.40)

The system input can be summarized as

u(t) = P (t) − Rc|I(t)|2. (8.41)

The spatial power distribution b(x, t) and the power P l(t) have to be calculated
or estimated. For P l, the disturbance model

d
dt

P l(t) = w(t), P l(0) = P l
0, (8.42)

with the process noise w(t) is assumed. Furthermore, the output equation (8.34d)
is extended by the measurement noise n(t) of the pyrometers, such that

h
out(t) = h(lx, t) + n(t). (8.43)
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8.2.3 Continuous-Time Model Summary
Finally, the control-oriented model takes the form

∂th(x, t) + vx∂xh(x, t) = b(x, t)
�
u(t) − P l(t)

 
, x ∈ (0, lx) (8.44a)

d
dt

P l(t) = w(t) (8.44b)

h(0, t) = h
in(t) (8.44c)

h(x, 0) = h0(x) (8.44d)
P l(0) = P l

0 (8.44e)
h

out(t) = h(lx, t) + n(t). (8.44f)

The model (8.44) does not contain any material parameters of the sheet. Trans-
formations between the mean specific enthalpy h and the temperature T based on
(8.28) can be performed outside of the control loop. Thus, the system dynamics
simplifies to a linear time-varying PDE-ODE system.

The implementation of the virtual input u(t) according to (8.41) requires a
cascade controller. The design of such a controller, along with some stability
considerations is presented in Appendix B.

8.2.4 Discrete-Time Model
The control-oriented model (8.44) is discretized in space and time using the finite
volume method and the upwind scheme. Let the uniform spatial step size be
Δx = lx/N and the constant sampling time Δt. For numerical stability, they have
to satisfy the Courant-Friedrichs-Lewy condition (cf. [13])

C = vxΔt

Δx
≤ 1. (8.45)

This yields the discrete-time model
�
hk+1
P l

k+1

�
=

�
Φ −Γk

0T 1

��
hk

P l
k

�
+

�
Γk Γin

0 0

��
uk

hin
k

�
+

�
0

Δt

�
wk (8.46a)

yk = cThk + nk, (8.46b)

with the state vector

hk = [h(jΔx, kΔt)]j=1,...,N , k > 0 (8.47a)
h0 = [h0(jΔx)]j=1,...,N , (8.47b)
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the system matrices

Φ =


1 − C 0 0 . . .

C 1 − C 0 . . .
0 C 1 − C . . .
... ... ... . . .

 (8.47c)

Γk =
�

Δt

Δx

� jΔx

(j−1)Δx
b(x, kΔt) dx

�
j=1,...,N

(8.47d)

Γin =
�
C 0 0 . . .

�T
(8.47e)

c =
�
0 . . . 0 1

�T
, (8.47f)

and the signals

P l
k = P l(kΔt), uk = u(kΔt), hin

k = h
in(kΔt), yk = h

out(kΔt),
wk = w(kΔt), nk = n(kΔt).

(8.47g)

A validation of the discretized control-oriented model (8.46) is performed next.

8.2.5 Validation of the Control-Oriented Model
To validate the discrete-time control-oriented model, the output of (8.46) is
compared to the output of the detailed process model (8.22) and (8.23).

First, the responses P (t) and T out(t) to a step change of I(t) are simulated
in the process model. The parameters for the simulation are listed in Table 8.2.
Additionally, the value Rc was determined from (8.22), with no sheet present in
the field domain and the input uk = u(kΔt) of the control-oriented model was
calculated according to (8.41).

The control-oriented model (8.46) was then simulated with different values of
the Courant number C and the (constant) disturbance input P l

k was tuned such
that the exit temperature T out in the control-oriented model corresponds to the
process model at steady state.

The results are depicted in Fig. 8.5. Note that the input power P (t) experiences
a slight drift due to the material parameters changing with the sheet temperature.
In the case of C = 0.1, the effects of numerical diffusion are visible around t = 5s.
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Figure 8.5: Validation of the control-oriented model (8.44): Comparison of the
process model (FE) according to (8.22) and (8.23) and the control-oriented model
(COM) according to (8.46).
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Parameter Symbol Value
Sheet material – Mo
Sheet velocity vx 0.1m/s

Entry temperature T in 30◦C
Source angluar frequency ω 2π × 7746rad/s

Input current (RMS) I(t), t > 0 3.32kA
Air gap ag 8.4mm

Courant number, see (8.45) C {0.1, 1}
Disturbance input P l

k, k > 0 2kW
Input vector Γk Γ, see (9.3)

Sampling time Δt 125ms

Table 8.2: Parameters for the validation of the control-oriented model (8.46) using
the detailed process model (8.22) and (8.23).



CHAPTER 9

Controller Design

In this chapter, a 2-degrees-of-freedom (2DOF) controller is designed for the
control-oriented model (8.46). To this end, the model is decomposed into a
forward model, containing the known parts of the model, and an error model,
containing the uncertain parts of the model. Then, a feedforward controller is
designed for the forward model and a feedback controller for the error model. A
first version of this control concept is already published in [55]. Additionally, an
equivalent continuous-time flatness-based design of the feedforward controller can
be found in Appendix C.

9.1 Decomposition

The model (8.46) is decomposed into a forward model that contains the known
parts of the dynamics and an error model that contains the uncertain parts.
Exploiting the linearity of (8.46), consider

hk = hff
k + hfb

k (9.1a)
uk = uff

k + ufb
k (9.1b)

yk = yff
k + yfb

k . (9.1c)

77
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Moreover, assume time-independent approximations b0(x) and Γ of b(x, t) and
Γk, respectively, in the form

b(x, t) = b0(x) + +b(x, t) (9.2a)

b0(x) =
((lx − 2Δl)lylz)−1, Δl < x < lx − Δl

0, else
(9.2b)

1 ≡
� lx

0
lylzb(x, t) dx =

� lx

0
lylzb0(x) dx� �� �

=1

+lylz

� lx

0
+b(x, t) dx� �� �

=0

(9.2c)

and

Γk = Γ + +Γk (9.3a)

Γ =
�

Δt

Δx

� jΔx

(j−1)Δx
b0(x) dx

�
j=1,...,N

(9.3b)

+Γk =
�

Δt

Δx

� jΔx

(j−1)Δx

+b(x, kΔt) dx

�
j=1,...,N

(9.3c)

1 = Δxlylz
Δt

1 · Γk = Δxlylz
Δt

1 · Γ� �� �
=1

+Δxlylz
Δt

1 · +Γk� �� �
=0

. (9.3d)

Using (9.1) and (9.3), (8.46) can be rewritten as�
hff

k+1 + hfb
k+1

P l
k+1

�
=

�
Φ −Γ − +Γk

0T 1

��
hff

k + hfb
k

P l
k

�
+

+
�
Γ + +Γk Γin

0 0

��
uff

k + ufb
k

hin
k

�
+

�
0

Δt

�
wk (9.4a)

and
yff

k + yfb
k = cT

�
hff

k + hfb
k

 
+ nk. (9.4b)

Now, define the forward system

hff
k+1 = Φhff

k + Γuff
k + Γinhin

k , hff
0 = h0 (9.5a)

yff
k = cThff

k . (9.5b)

Subtraction of (9.5) from (9.4) yields the error system�
hfb

k+1
P l

k+1

�
=

�
Φ −Γk

0T 1

��
hfb

k

P l
k

�
+

�+Γk Γk

0 0

��
uff

k

ufb
k

�
+

�
0

Δt

�
wk, hfb

0 = 0 (9.6a)

yfb
k = cThfb

k + nk, (9.6b)

which contains the unknown parts of (8.46). Note that the term +Γkuff
k in (9.6)

represents a coupling to the forward system. In the next section, feedforward (FF)
and feedback (FB) controllers will be designed for the forward system and the
error system, respectively, to control the exit temperature of the sheet.
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hin
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yd,k+m
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−

y0
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k
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Feedforward ctrl.
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Figure 9.1: 2DOF control structure for the control-oriented model (COM) of the
IH system.

9.2 Temperature Control
For output tracking control of (8.46), the 2DOF controller structure shown in
Fig. 9.1 is designed in this section.

9.2.1 Feedforward Controller
The forward system (9.5) is a disturbance-free LTI system. Its input-output
representation can be written as

yff
k = Guy(δ)uff

k + cT(δI − Φ)−1
�
h0δk+1 + Γinhin

k

 
� �� �

=y0
k

, (9.7)

with the forward time shift operator δ for one sampling interval, i.e.,

δyk = yk+1, (9.8)

the discrete-time impulse

δk =
1 if k = 0

0 else,
(9.9)

the identity matrix I, and the transfer function operator from uff
k to yff

k

Guy(δ) = cT(δI − Φ)−1Γ. (9.10)

Choosing yff
k equal to the desired output yd,k yields the FF control law

uff
k = G−1

uy (δ)
�
yd,k − y0

k

 
, (9.11)
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which is generally not proper (i.e., not causal)1 because there is a delay of m (≥ 1)
time steps between the input uff

k and the response yff
k at the output of the system.

Still, the FF controller (9.11) can be realized because the future reference input
yd,k is known in advance and also the zero-input solution y0

k can be obtained up to
N (> m) time steps earlier. The FF control law (9.11) can hence be reformulated
as

uff
k =

�
δ−mG−1

uy (δ)
 �

yd,k+m − y0
k+m

 
(9.12)

where δ−mG−1
uy (δ) is proper. Likewise, y0

k+m is obtained in the form

y0
k+m = δmcT(δI − Φ)−1

�
h0δk+1 + Γinhin

k

 
. (9.13)

The error yfb
k = yk − yd,k is passed to a FB controller, which is designed in the

following.

9.2.2 Feedback Controller
The error system (9.6) can be rewritten in the form�

hfb
k+1

P l
k+1

�
=

�
Φ −Γ
0T 1

��
hfb

k

P l
k

�
+

�
Γ
0

�
ufb

k +
�+Γk

0

�
(uff

k + ufb
k� �� �

uk

−P l
k) +

�
0

Δt

�
wk, hfb

0 = 0

(9.14a)
yfb

k = cThfb
k + nk, (9.14b)

with the unknown disturbance input +Γk(uk − P l
k). Two possible options to handle

the disturbance are:

1. Assume that +Γk(uk − P l
k) has only a minor influence on the evolution of hfb

k

and consider (cf. [55])�
hfb

k+1
P l

k+1

�
=

�
Φ −Γ
0T 1

��
hfb

k

P l
k

�
+

�
Γ
0

�
ufb

k +
�

0
Δt

�
wk, hfb

0 = 0 (9.15a)

yfb
k = cThfb

k + nk. (9.15b)

2. Regard +Γk(uk − P l
k) as process noise and consider�

hfb
k+1

P l
k+1

�
=

�
Φ −Γ
0T 1

��
hfb

k

P l
k

�
+

�
Γ
0

�
ufb

k + Δtwe
k, hfb

0 = 0 (9.16a)

yfb
k = cThfb

k + nk, (9.16b)

with the extended process noise term we
k.

1Due to the distance Δl from the coil to the output temperature pyrometer at the position
xp,out, see Fig. 8.1a, the output is delayed by a dead time of mΔt, with m = �Δl/(vxΔt)
 + 1
and the floor operator �·
.
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Here, option 1 is a special case of option 2. Therefore, option 2 will be pursued
in the following and a FB controller will be designed for (9.16). The task for the
FB controller is now to control the output yfb

k of the simplified error system (9.16).
In order to estimate and compensate P l

k in (9.16), a linear-quadratic-Gaussian
(LQG) controller consisting of a Kalman filter and a linear-quadratic regulator
(LQR) will be designed.

9.2.2.1 Observer

The observability of (9.16) can be easily proven, e.g., by an eigenvector test. For
the design of a Kalman filter for (9.16), let x̂e

k =
�
(ĥfb

k )T P̂ l
k

�T
be the estimated

values of hfb
k and P l

k. With

Φe =
�

Φ −Γ
0T 1

�
, Γe =

�
Γ
0

�
, Ge =

�
IΔt 0
0T Δt

�
, ce =

�
c
0

�
,

Qe = cov we
k =

�
IQe

1 0
0T Qe

2

�
, Re = cov nk,

(9.17)

the steady-state Kalman filter reads as
x̂e

k+1 = Φex̂e
k + Γeufb

k + K̂e(yfb
k − (ce)Tx̂e

k), x̂e
0 = 0. (9.18)

The gain vector K̂e follows from the algebraic Riccati equation
P e = ΦeP e(Φe)T+GeQe(Ge)T−K̂e(ce)TP e(Φe)T (9.19a)

K̂e = ΦeP ece
�
(ce)TP ece+Re

 −1
. (9.19b)

The positive parameters Qe
1, Qe

2 and Re serve as tuning factors for the Kalman
filter.

9.2.2.2 Controller

For the feedback (FB) controller design, consider the disturbance-free reduced
error system

hfb
k+1 = Φhfb

k + Γufb
k (9.20a)

yfb
k = cThfb

k . (9.20b)
A steady-state LQR with disturbance feedforward

ufb
k = KTĥfb

k + P̂ l
k (9.21)

is designed, where the FB gain K satisfies the algebraic Riccati equation

P = cQcT+ΦTP Φ−
�
ΓTP Φ

 T
KT (9.22a)

KT = −
�
R+ΓTP Γ

 −1
ΓTP Φ, (9.22b)

with the positive tuning factors Q and R.
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Figure 9.2: Bode plots of the designed LQG FB controller (LQG) for different
values of Qe

1 and the first-order approximation (PI); vx = 0.1m/s, N = 40,
Δt = 0.125s, Qe

2 = 1W2, Re = 109(J/m3)2, Q = 1(m3/s)2, R = 109.

9.2.2.3 Controller Order Reduction

The designed LQG controller (9.18) and (9.21) is a dynamic system of dimension
N + 1, see (8.46). Since the controller is an LTI system, it is worth examining the
bode plot from the input yfb

k to the output ufb
k and look for possible simplifications.

A standard method for linear model-order reduction, in terms of the input-
output behavior, is balanced truncation. Figure 9.2 shows the bode plot of the
LQG controller ((9.18) and (9.21)) for different values of the tuning parameter
Qe

1 along with a first-order approximation for Qe
1 = 0 calculated by balanced

truncation.
It can be seen that the full-order LQG controller consists of an integral part

and resonance peaks to compensate for the typical harmonic zeros of a delay
system. With increasing value of Qe

1, the resonant peaks and the overall gain of
the LQG controller decreases. Likewise, the small phase lead around the inverse
of the transport time (2πvx/lx) gets smaller when Qe

1 increases.
The first-order approximation adopts the integral behavior and exerts a con-

stant proportional gain at higher frequencies, evening out the resonant peaks. The
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2DOF-LQG controller and the first-order approximation for Qe
1 = 0, i.e., a 2DOF

proportional-integral (PI) controller, will be compared in Chapter 10. We choose
the value Qe

1 = 0 to best illustrate the qualitative behavior of the FB controller.

9.3 Controller Extension for Charge and Exit
In the considered IH process, thin sheets of refractory metal with leading and
trailing ends are reheated. It can therefore be the case that

1. there is no sheet in the field domain,

2. there is a sheet entering the field domain and the leading edge is somewhere
under the inductor,

3. there is a sheet covering the entire field domain, or

4. there is a sheet leaving the field domain and the trailing edge is somewhere
under the inductor.

So far, the designed 2DOF controller only deals with Item 3 of this list. In the
following, the necessary extensions of the controller for plate position estimation
and temperature control during charge (Item 2) and exit (Item 4) are discussed.

9.3.1 Estimation of the Sheet Position
In a first step, the sheet position will be estimated. To this end, a nonlinear
integrator is implemented for the positions xh

k and xt
k of the leading and trailing

edges, respectively. Using the definition (8.3) of spatially fixed sheet cross-sections
Γp(x, t), let

δin
k =

�
0, if Γp(0, kΔt) = ∅
1, else

(9.23a)

δout
k =

�
0, if Γp(lx, kΔt) = ∅
1, else

(9.23b)

be flags to indicate if the sheet is visible for either of the pyrometers at x ∈ {0, lx}.
The estimated position x̂h

k of the leading edge then follows from the difference
equation

x̂h
k+1 =

x̂h
0 , if δin

k = 0 ∧ δout
k = 0

min{x̂h
k + vxΔt, lx}, else

(9.24a)

x̂h
0 = 0. (9.24b)



84 9 Controller Design

Likewise, for the estimated position x̂t
k of the trailing edge, define

x̂t
k+1 =

�
min{x̂t

k + vxΔt, lx}, if δin
k = 0 ∧ δout

k = 1
x̂t

0, else
(9.25a)

x̂t
0 = 0. (9.25b)

The ramp-shaped signals x̂h
k and x̂t

k are used to calculate the part κk of the
inductor that currently covers the sheet. This part reads as

κk = sat
�

x̂h
k − Δl

lx − 2Δl

!
− sat

�
x̂t

k − Δl

lx − 2Δl

!
, sat(ξ) =

����
0, if ξ < 0
ξ, if 0 ≤ ξ < 1
1, if 1 ≤ ξ.

(9.26)

In the next step, the signals δin
k , δout

k , and κk will serve for a switching criterion
between normal operation when the sheet covers the entire field domain, charge,
exit, and idle operation.

9.3.2 Temperature Controller Extension
The 2DOF temperature controller is based on the model of a sheet that covers the
entire field domain. If there is no sheet at the exit of the IH system, the output
signal yk is not valid and the FB controller cannot be used. If the sheet is not
covering the whole inductor, the FF signal uff

k must be appropriately scaled.
A simple yet effective adaption of the 2DOF controller to the varying coverage

of the sheet in the field domain is shown in Fig. 9.3. The feedforward input uff
k is

scaled with κk, which makes sense because Γ was chosen to be uniform along the
inductor coil (cf. (9.3)). Additionally, the FB controller is enabled as soon as the
leading edge of the plate reaches the exit pyrometer, i.e., δout

k = 1 and is disabled
when the plate has left the field domain, i.e., κk = 0.
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CHAPTER 10

Results and Performance

For the purpose of evaluation, the validated finite-element (FE) model from
Section 8.1.3 was embedded in a Matlab/Simulink model and connected to the
designed temperature controller according to Fig. 9.3. To save computation time,
a 2D implementation in the xy-plane was used instead of a 3D implementation.
Following the considerations of Section 8.2.1, this approach should be sufficiently
accurate for testing the performance of the closed-loop system.

In the current chapter, the proposed 2-degrees-of-freedom (2DOF) controller
is compared to other control concepts in different simulation experiments based
on a specific test scenario. The test scenario is defined based on the assumptions
made for the controller design and the performance is evaluated for different sets
of parameter values.

10.1 Test Scenario and Experiments
For the FB controller design in Section 9.2.2, the influence of the unknown power
distribution +b(x, t), see (9.2), or its discretized counterpart +Γk, see (9.3), was
regarded as process noise. It is expected that this assumption will be the major
source of disturbance for the control concept. Therefore, the following test scenario
aims at generating significant process disturbances via +b(x, t), or +Γk, by varying
the air gap ag(x, t).

The air gap ag(x, t) used in the FE model can vary in space and time. The
special case ag(t), where the air gap is only time dependent, corresponds to a
perfectly homogeneous air gap. In this case, +b depends only on t, and due to (9.2)
reduces to zero.

Likewise, if the air gap varies only in space, i.e., ag(x), the profile +b depends
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only on x. In this special case, every material point of the metal sheet experiences
the same evolution of ag over time. A situation like this is easily controlled by
the integral part of the designed 2DOF controller.

In conclusion, the coupled space-time-dependence of +b plays an important role
in testing the performance of the proposed controller. Therefore, let

ag(x, t) = ag
0 − âg cos(kg(x − vxt) + φg). (10.1)

The parameters kg and âg will be varied in the simulation scenario. Thereby, it
has to be considered that âg is limited by the geometry of the surrounding parts,
i.e., the gap between the inductor and the roller table for the sheet.

Five experiments are defined to test the controller performance. The parame-
ters are given in Table 10.1.

Parameter Experiments
Name Symbol Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Inductor length lx 0.5m
Sheet length – 8.5m

Entry/exit dist. Δl 27.5mm
Mean air gap ag

0 7.5mm
Air gap amplitude âg 0 5.0mm

Angular wavenumber kg 0m−1 2π/4m 2π/2m 2π/1m 2π/2m
Phase offset φg 0° 54° 108° 216° 108°

Sheet velocity vx 0.1m/s
Sampling time Δt 0.125s

Courant number C 1
Output noise variance cov T out

k 0 (15◦C)2

Table 10.1: Simulation parameters for the test runs.

Measurement noise is expected to be relevant only at the exit of the inductors.
The measurement noise is expected to be white Gaussian noise. The variance
is derived from the specification of the used pyrometer. At the entrance, a
homogeneous temperature is expected, which can be averaged and should be well
known due to previous temperature measurements in the upstream rolling process.
Remaining measurement offsets will be compensated by the integral controller.

Other disturbances due to parameter uncertainties are not an issue, because
all necessary parameters, i.e., ρp, cp

p, and vx are well known. Also, constraints on
the input power are not regarded, since the considered inductors are designed for
input powers up to 120kW, which by far exceeds the required heating power.
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10.2 Simulation Results and Evaluation
The designed 2DOF linear-quadratic-Gaussian (LQG) controller from Section 9.2.2
is compared to two proportional-integral (PI) controllers. The first one is a simple
1DOF PI controller tuned for the system (9.5) with Rc = 0 (i.e., uk = Pk). The
second one is the 2DOF PI controller derived in Section 9.2.2.3.

Experiment 1: Perfectly flat sheet The results for all three controllers are
shown in Fig. 10.1. Since the considered sheet is perfectly flat, the integral
parts of each controller asymptotically stabilize the error (T out

k − T out
d,k ) in the

exit temperature. The overheating of the leading and trailing ends is typical for
so-called edge- or end effects of induction heating.

The 2DOF controllers utilize a cascade controller to implement Pk = uk + RcI2
k

(see Appendix B), while the 1DOF-PI controller uses Pk = uk. Accordingly, the
values of uk differ between the 1DOF and 2DOF controllers.

The contribution uff
k of the feedforward branch of the 2DOF controllers is

shown separately in the plots of uk. The 1DOF-PI controller integrates freely
while the leading edge of the sheet travels through the field domain from t = 1s
to t = 6s. Due to the temperature peaks caused by end effects, the feedback
controllers produce negative steps when the sheet edges pass the exit pyrometer
at t = 6s and t = 91s.

Experiment 2: Wavelength 4m The results are shown in Fig. 10.2. The
proposed 2DOF controller keeps the output error T out

k − T out
d,k within a tolerance of

±10◦C after a short settling time. Also, the reduced 2DOF PI controller provides
very similar results. The 1DOF PI controller performs significantly worse, because
it can only react to temperature control errors when they are measured by the
exit pyrometer.

The maxima of the input power Pk are synchronized with the maxima of the
(mean) air gap ag. This implies that the underlying power controller of the 2DOF
controllers, which transforms the virtual input uk into the input power Pk, is able
to compensate for variations in the mean value of the air gap ag.

The feedback controllers can only compensate for static or slowly-varying
output errors. In the case of the 1DOF PI controller, this leads to a delay
of (lx − Δl)/vx (≈ 5s) in the supplied heating power Pk. This shows that the
feedforward part of the proposed 2DOF controller and the introduction of the
virtual input uk are key components of this approach.

Experiment 3: Wavelength 2m Figure 10.3 shows the results of this experi-
ment for all three controllers. The qualitative behavior of all tested controllers is
the same as in experiment 3. However, since the design of the feedback controllers
was based on the assumption of a homogeneous air gap ag, the error T out

k − T out
d,k
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Figure 10.1: Experiment 1: Comparison of a 1DOF PI controller to the proposed
2DOF LQG and a 2DOF PI controller with the parameters from Table 10.1
(âg = 0).
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Figure 10.2: Experiment 2: Comparison of a 1DOF PI controller to the proposed
2DOF LQG and a 2DOF PI controller with the parameters from Table 10.1
(kg = 2π/4m).



92 10 Results and Performance

now oscillates with an amplitude of 20◦C for both 2DOF controllers. The 1DOF
PI controller yields unacceptable results in this experiment.
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Figure 10.3: Experiment 3: Comparison of a 1DOF PI controller to the proposed
2DOF LQG and a 2DOF PI controller with the parameters from Table 10.1
(kg = 2π/2m).
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Experiment 4: Wavelength 1m The results are shown in Fig. 10.4. If the
wavelength is further reduced, also the 2DOF controllers reach their performance
limits. The assumption of a homogeneous air gap, which was used for the controller
design, is no longer valid in this case.

From the simulation results, two conclusions can be drawn regarding the
performance limits of the 2DOF controller. First, the inductor needs to be
significantly shorter than the wavelength of the sheet (cf. Table 10.1). Secondly,
the gap between the inductor and the roller table, which effectively limits âg,
should be as small as possible. The applicability of the control approach can thus
be evaluated based on the geometric parameters of the IH system.

Experiment 5: Wavelength 2m, output measurement noise For the final
test, experiment 3 was repeated with added measurement noise. The results are
shown in Fig. 10.5.

It can be seen that all three controllers are robust to noise in the measured exit
temperature T out

k . This is because the integral parts of the feedback controllers
filter the high-frequency components of the measurement noise and only the
proportional feedback is affected. Due to the integrating behavior of the plant
itself, i.e., the sheet, this additional noise from the feedback controller is again
averaged. The feedforward branch of the 2DOF controllers is not affected by the
output noise. Overall, the measured exit temperature with added noise is still
within the required ±50◦C tolerance range.
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Figure 10.4: Experiment 4: Comparison of a 1DOF PI controller to the proposed
2DOF LQG and a 2DOF PI controller with the parameters from Table 10.1
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Figure 10.5: Experiment 5: Comparison of a 1DOF PI controller to the proposed
2DOF LQG and a 2DOF PI controller with the parameters from Table 10.1
(kg = 2π/2m, measurement noise).



CHAPTER 11

Conclusions and Outlook

In this second part of the thesis, the process of induction heating of thin molyb-
denum sheets in translational motion was examined. The goal was to control
the exit temperature of the sheet with minimum tolerance, in order to optimize
the results of a downstream cutting process. The main challenge in this part
was to compensate for the time-varying air gap between the sheet and the induc-
tion heater. For this, a real-time capable 2-degrees-of-freedom (2DOF) cascade
controller was designed and tested in simulations. The results give qualitative
information about the performance of the controller and how to further optimize
the process.

11.1 Summary
First, a finite-element process model of the electromagnetic field problem was
formulated and solved numerically as a reference. The model was validated
experimentally, and the sensitivity of the exit temperature towards the air gap
was examined.

The process model was then simplified to a one-dimensional transport system
with an uncertain input function. A computationally expensive calculation of
the electromagnetic field was avoided by employing an equivalent circuit model
and the energy balance. Difficulties arising from nonlinear material parameters
were circumvented by using the specific enthalpy as a system state instead of the
temperature. The model inputs were changed from current to active power and a
cascade control loop for the transmitted heating power was applied. The reduced
model was validated by comparison with the process model. By tuning of the
unknown disturbance input, the models can be brought to very good agreement.
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The reduced model is a linear time-varying advection equation with unknown
input disturbances and an uncertain input function. The input function was
approximated by a time-invariant profile, and a 2DOF controller was designed
for the resulting linear time-invariant system. The feedforward branch of the
controller is a flatness-based inversion of the known parts of the reduced system
model, while the feedback branch was designed as a linear-quadratic-Gaussian
controller and later reduced to a proportional-integral controller. Finally, since
the reduced model only describes a state of operation where the sheet covers the
entire field domain, some additions were made to deal with the remaining cases.

The designed controller was tested in a representative test scenario, which is
focused on evaluation of the design assumptions of the controller. The numerical
results show that the controller is able to compensate for air gap fluctuations,
depending on the spatial homogeneity of the air gap.

11.2 Conclusions
In conclusion, the designed control concept can be applied to a number of similar
systems due to the generality of the reduced model. The application of an
equivalent circuit model for the electromagnetic subsystem and a generic input
function for the thermal subsystem allows for a transition from a multiphysics
problem to the well-understood transport equation. Similar transitions are possible
for any physical domains, as long as a conservation law – like in this case, the
energy balance – is available.

For uncertain air gap geometries, it was found that the heating problem
reduces to an identification problem for the unknown input function. To solve the
identification problem, it is desirable to either employ additional sensors, or to
reduce the length of the inductor as far as possible.

11.3 Outlook
From the results at hand, further steps can be taken to investigate and mitigate
the effect of fluctuating air gaps. If, for a given inductor, the air gap fluctuations
have shorter wavelengths, it is worthwhile to examine the form of the air gap
and take it into account in the feedforward controller. This would lead to an
identification problem and requires additional sensors, either for temperatures
along the field domain or for the air gap width in the field domain.

Alternatively, the inductor design could be revisited. Since the ratio between
the inductor length and the dominant wavelength of the sheet decides the quality of
the heating process, it may be enough to design shorter inductor coils. Shortening
of the inductor can, in turn, result in a large temperature gradient over a shorter
distance. To mitigate this effect, the relative motion between the sheet and the
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inductor can be altered and optimized. This idea is pursued in the related work
[50] and follow-up publications for radiative heating.

Finally, the modeling and design concepts can be generalized to higher spatial
dimensions. In this case, the inductor and pyrometers would move along the surface
of a 2D or 3D object and simultaneously observe and control the temperature
profile. Challenges include the estimation of a higher-dimensional input function
and optimal path planning for sensors and actuators.
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APPENDIX A

Finite Volume Method

To illustrate the transition from (3.19) to (3.20), the finite volume (FV) method
is applied in the following. Let the state vector T in (3.20) be the vector of mean
temperatures in each subdivision Ωw

i,j of the wall and Ωp
i of the plate, i.e.,

T =
�

T
w
1,1 T

w
1,2 . . . T

w
Nw,Nw

Nw
T

p
1 . . . T

p
Np

�T
. (A.1)

A.1 Left-Hand Side
The FV discretization of (3.19) is done by approximation of the integral over
the respective domains Ωw

i,j and Ωp
i . Integration of the left-hand sides of (3.19a)

and (3.19g) yields�
Ωw

i,j

ρw
i,jc

w
p,i,j(T )∂tT dx ≈

�
Ωw

i,j

ρw
i,jc

w
p,i,j(T

w
i,j) dx

d
dt

T
w
i,j = Cw

i,j(T
w
i,j)

d
dt

T
w
i,j (A.2a)

�
Ωp

i

ρpcp
p(T )∂tT dx ≈

�
Ωp

i

ρpcp
p(T p

i ) dx
d
dt

T
p

i = Cp
i (T p

i ) d
dt

T
p

i . (A.2b)

The resulting heat capacities Cw
i,j and Cp

i are used in the mass matrix M(T ) of
(3.20)

M(T ) =



Cw
1,1 0 . . .
0 Cw

1,2 . . .
... ... . . .

0

0
Cp

1 0 . . .
0 Cp

2 . . .
... ... . . .


. (A.3)
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A.2 Right-Hand Side
Integration of the right-hand sides of (3.19a) and (3.19g) and application of the
divergence theorem leads to�

Ωw
i,j

∇ ·
�
ηλw

i,j(T )∇T
 

dx =
�

∂Ωw
i,j

ηλw
i,j(T )∂nT dx =

)
k

Q̇w
i,j,k + Q̇w,in

i,j + Q̇w,out
i,j

(A.4)

and �
Ωp

i

∇ · (λp(T )∇T ) dx =
�

∂Ωp
i

λp(T )∂nT dx =
)

j

Q̇p
i,j + Q̇p,rad

i . (A.5)

The flux terms Q̇w
i,j,k, Q̇w,in

i,j , Q̇w,out
i,j , Q̇p

i,j, and Q̇p,rad
i incorporate the boundary

conditions of (3.19). These flux terms are derived by integrating the boundary
conditions of (3.19) together with (3.9) and (3.12) over the respective boundary
surfaces.

A.2.1 Heat Conduction in Solids
The conductive heat transfer Q̇w

i,j,k between the wall elements Ωw
i,j and Ωw

i,k is
approximated by

Q̇w
i,j,k ≈ Gw

i,j,k

�
T

w
i,k − T

w
i,j

 
, Gw

i,j,k = ηλw
i,j,k

Aw
i,j,k

lw
i,j,k

. (A.6)

The interface area Aw
i,j,k between the wall elements is defined as

Aw
i,j,k =

�
∂Ωw

i,j∩∂Ωw
i,k

ds (A.7)

and the distance lw
i,j,k connects the centers of mass

lw
i,j,k =

//////
�

Ωw
i,k

x dx�
Ωw

i,k
dx

−
�

Ωw
i,j

x dx�
Ωw

i,j
dx

//////. (A.8)

The thermal conductivity λw
i,j,k is composed from

λw
i,j,k = 1

δi,j,k/λw
i,j + (1 − δi,j,k)/λw

i,k

, 0 ≤ δi,j,k ≤ 1. (A.9)

The parameter δi,j,k is chosen based on the portion of lw
i,j,k that is covered by either

of the domains Ωw
i,j and Ωw

i,k.
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The heat conduction between the plate elements Ωp
i is derived in a similar way,

resulting in

Q̇p
i,j ≈ Gp

i,j

�
T

p

j − T
p

i

 
(A.10a)

Gp
i,j = λp Ap

i,j
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(A.10b)

Ap
i,j =

�
∂Ωp

i ∩∂Ωp
k

dx (A.10c)
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−
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j
dx

//////. (A.10d)

A.2.2 Outer Boundary
The heat flux on the outer boundary of the furnace wall depends on the ambient
temperature T ∞ and the respective boundary temperatures T w,out

i,j . Integration of
(3.12) yields

Q̇w,out
i,j =

�
∂Ωw

i,j∩Γout
αout(T ∞ − T ) + σεout

�
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, (A.11)

where
Aw,out

i,j =
�

∂Ωw
i,j∩Γout

dx. (A.12)

Using the distance

lw,out
i,j =

������
//////
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//////, if Ωw
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0, otherwise
(A.13)

from the center of mass of the element Ωw
i,j to the outer boundary, the surface

temperatures T w,out
i,j can, in the simplest case, be determined by extrapolation in

the form
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����������
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����������
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i,j )TT (A.14)

with the extrapolation operator (sw
i,j)T.
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For a more compact notation, the convective and radiative parts of (A.11) are
split up into�

Gw,out
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such that
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A.2.3 Radiation Enclosure
On the interior furnace walls, let

Aw,in
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dx (A.17)

and
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The interior wall surface temperatures are
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with the extrapolation operator (sw,in
i,j )T and the plate surface temperatures are

computed in a similar way, using T p,in
i = (sp

i )TT , with the three-dimensional
extrapolation operator (sp

i )T.
From (3.9) it follows that
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)

k

�
∂Ωw

i,j∩Γin

�
∂Ωp

k
∩∂Ωp

σεpK(x, x�) dx� dxT p,in
k (A.21)
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and

bw
i,j =

 1
Ah

1

�
∂Ωw

i,j∩Γin
�

Γh
1

K(x, x�) dx� dx
...

. (A.22)

Similarly, for the plate radiation exchange, it holds

Q̇p,rad
i =

�
∂Ωp

i ∩∂Ωp
q̇p(T, x, u) dx ≈ Rp

i (T ) + (bp
i )Tu. (A.23)

The double integrals of K(x, x�) are approximated by exchange factor calculations,
usually based on Hemicube or Monte Carlo methods.

A.3 System Matrices
From (A.6), (A.10a) and (A.16), the matrices A(T ) and Bd in (3.20) follow as

A(T ) = −



*
k Gw

1,1,k −Gw
1,1,2 . . .

−Gw
1,2,1

*
k Gw

1,2,k . . .
...

... . . .
0

0
− *

j Gp
1,j Gp

1,2 . . .

Gp
2,1 − *

j Gp
2,j . . .

...
... . . .


� �� �

A0(T )

−


Gw,out

1,1,1 Gw,out
1,1,2 . . .

Gw,out
1,2,1 Gw,out

1,2,2 . . .
... ... . . .

0

0 0


� �� �

=A1(T )

(A.24)

and

Bd =


Gw,out

1,1 Ew,out
1,1

... ...
0

. (A.25)

Furthermore, with the definitions in (A.20) and (A.23), the remaining terms
of (3.20) become

R(T ) =


Rw,in

1,1 (T ) − Rw,out
1,1 (T )

...
Rp

1(T )
...

 (A.26)
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and

B =


(bw

1,1)T

...
(bp

1)T

...

. (A.27)

A.4 ODE System Analysis
The resulting ODE system takes the form

M(T ) d
dt

T = A(T )T + R(T ) + Bu + Bdd. (A.28)

If the furnace is not charged, the plate domain is Ωp = ∅ and the terms Gp
i,j, Rp

i

as well as any integral over Ωp become zero. Hence, (3.20) includes the empty
and the charged furnace model.

The system matrices M (T ) and A(T ) defined in (A.3) and (A.24), respectively,
and the radiation nonlinearity R(T ) defined in (A.26) exhibit useful properties
for qualitative analysis. Some examples are given in the following:

• The mass matrix M(T ) is symmetric and positive definite.

• The matrix A(T ), according to (A.24), is the negative sum of a symmetric,
weakly diagonally dominant matrix A0 and a weakly diagonally dominant
matrix A1. The diagonal elements of both A0 and A1 are non-negative.
The matrix A0 describes the in-domain heat conduction and the matrix A1
describes the losses due to convection on the outer system boundary.
If the state vector T is ordered as shown in (A.1), A0 has the form of a block
diagonal matrix. Each diagonal block of A0 represents one solid, i.e., Ωw

i or
Ωp, that is isolated from the others in terms of conduction and convection.
The diagonal blocks are weakly diagonally dominant and describe strongly
connected graphs (see, e.g., [25, “property SC”]). The diagonal elements
are non-negative. Therefore, A0 is positive semidefinite.
The matrix A1 has the same block-diagonal structure as A0. For each
diagonal block of A0, the matrix A1 can have one or more rows that are
stricly diagonally dominant. If this is the case, then the respective diagonal
block in A(T ) is a so-called weakly chained diagonally dominant matrix
and therefore non-singular, see, e.g., [4, 64].
The structure of A0 and A1 ensures

1TA(T )T = −1TA1(T )T ≤ 0.

That is, each solid on its own can only store or leak heat.
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• The function R(T ) represents the radiation exchange in the furnace chamber
and the radiation losses on the outer boundary. It exhibits a polynomial
nonlinearity of order 4 due to the appearance of T 4 in (3.9) and (3.12). Due
to energy conservation, it holds that 1TR(T ) ≤ 0. Moreover, structural
properties similar to A(T ) were proven in [58].

• The evolution of the total heat or enthalpy H in the system is described by

d
dt

H = 1TM(T ) d
dt

T = 1TA(T )T + 1TR(T )� �� �
≤0

+1TBu + 1TBdd,

where 1TBu + 1TBdd ≥ 0 because the heating powers u and the ambient
temperatures d (in K) have to be non-negative. It can be expected that,
similar to the findings in [58], the discretized system (A.28) is asymptotically
stable. For the practical implementation, this implies that instabilities in
the solution can only be caused by numerical effects.





APPENDIX B

Cascade Power Controller for Induction Heating

The virtual system input u(t) defined in (8.41) describes the power that dissipates
in the plate and the magnetic concentrators. For precise control of u(t), a cascade
control concept is required and will be derived in the following. To this end,
consider

u(t) = P (t) − Rc|I(t)|2 = P p(t) + P Fe(t) (B.1)

and, since I(t) is real and non-negative,

|I(t)|2 = I2(t), (B.2)

with the RMS input current I(t) to the inductor, the RMS heating power P p

transmitted to the plate, and the RMS power P Fe dissipated in the magnetic
cores. The power P results from

P (t) = U s(t)Is(t) cos(φs(t)). (B.3)

The RMS source voltage U s can be controlled externally, while the RMS source
current Is, the phase angle φs, I, and P depend on U s.

Note that the time dependence of all signals in this appendix is understood
on a time scale that is significantly slower than the electromagnetic system and
significantly faster than the 2-degrees-of-freedom temperature control system.
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B.1 Estimation of Rc during Idle Operation
If no sheet is present in the field domain, i.e., P p = 0, assume

u(t) = P Fe(t) (B.4a)
P Fe(t) � RcI2(t) (B.4b)

P (t) = P Fe(t) + RcI2(t) ≈ RcI2(t). (B.4c)

This implies that only the inductor coil is heated, which is not desirable. However,
the control law (B.1) requires knowledge of the resistance Rc. The idle times
(when no sheet is present) can be used to determine the value of Rc.

The RMS values U s(t), Is(t), and I(t) are measured and also the power factor
cos(φs(t)) of the power supply is known. The supplied active power P (t) and the
total resistance R(t) of the inductor system read as

P (t) = U s(t)Is(t) cos(φs(t)) (B.5a)
R(t) = P (t)/I2(t) = U s(t)Is(t) cos(φs(t))/I2(t). (B.5b)

From (B.4), it follows that
Rc ≈ R(t), (B.6)

if no sheet is present. Therefore, in idle operation, Rc can be estimated by a
recursive least-squares method in the form

µk = µk−1

q + µk−1
, 0 � q < 1 � µ−1 (B.7a)

R̂c
k = (1 − µk)R̂c

k−1 + µkR(kΔt), R̂c
−1 = 0, (B.7b)

and, while a sheet is present, the values µk = µk−1 and R̂c
k = R̂c

k−1 are held
constant.
Remark 5. The exact value of Rc varies with the active cross-section of the coil,
which can change due to proximity effects. This effect is expected to be minor
and is not considered in the estimation.

B.2 Heating Power Controller
A controller for u(t) is designed in the following. Consider the error

x(t) = u(t) − ud

= P (t) − RcI2(t) − ud

= (R(t) − Rc)I2(t) − ud. (B.8)
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The dynamics of x(t) reads as

d
dt

x(t) = d
dt

u(t)

= d
dt

R(t)I2(t) + (R(t) − Rc)2I(t) d
dt

I(t). (B.9)

Assuming that I(t) directly serves as (sufficiently smooth) control input, a control
law of the form

d
dt

I(t) = 1
2I(t)(R(t) − Rc)

�
− d

dt
R(t)I2(t) − 1

γ
x(t)

!

= 1
2I(t)(R(t) − Rc)

�
− d

dt
R(t)I2(t) − 1

γ

�
(R(t) − Rc)I2(t) − ud

 !
(B.10)

can be chosen to stabilize x(t). The design parameter γ > 0 is the desired time
constant for the decay of x(t). The time evolutions of I(t), R(t), P (t) and ud are
accessible by measurement and calculation. The expression dR

dt
can be obtained

by approximate differentiation. The value of Rc is approximated by R̂c
k, according

to (B.7).
The denominator in (B.10) is strictly positive, as long as there is a sheet

present in the field domain, i.e., R(t) > Rc. To prevent a division by zero in the
case that the estimate R̂c

k of Rc is too large, the denominator can be approximated
by max{Umin, 2I(t)(R(t) − R̂c

k)} with an appropriate value for Umin.
The exponential stability of x(t) can be shown by the Lyapunov function

V (t) = 1
2x2(t) (B.11)

and its time derivative
d
dt

V (t) = −1
γ

x2(t) = −2
γ

V (t). (B.12)

Thus, if Rc, R(t), and dR
dt

(t) are known, x(t) is exponentially stable.
If the estimates of Rc, R(t), or dR

dt
(t) are not exact, minor oscillations of x(t),

and hence P (t), can be expected. Such oscillations can be seen in Fig. 10.2
between t = 25s and t = 30s and between t = 65s and t = 70s. During these
time intervals, the air gap between the coil and the sheet is very large and still
increasing. As soon as the air gap reaches its maximum value around t = 30s and
t = 70s, the oscillations diminish again.

B.2.1 Practical Implementation of the Power Controller
The control law (B.10) was used in the Comsol Multiphysics implementation
of the detailed process model. However, for the real plant, it is necessary to
translate (B.10) into a control law for the source voltage U s(t).
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Let the complex impedance of the inductor and the electromagnetic field
system be R(t) + iX(t). Hence, the source voltage can be expressed by

U s(t) = 1
atr |R(t) + iX(t)|I(t). (B.13)

The reactance X(t) can be computed in the form

X(t) =

'((&�
atrU s(t)

I(t)

!2

− (R(t))2 ≥ 0 (B.14)

and the time derivative of (B.13) together with (B.10) yields the control law

d
dt

U s(t) = 1
atr

 1
|R(t) + iX(t)|

�
R(t) d

dt
R(t) + X(t) d

dt
X(t)

!
I(t)+

+ |R(t) + iX(t)|
2I(t)(R(t) − Rc)

�
− d

dt
R(t)I2(t) − 1

γ

�
(R(t) − Rc)I2(t) − ud

 !. (B.15)

Remark 6. Alternatively, if atr is not available, a cascade current controller
for I(t) can be implemented and (B.10) can be used directly. In this case,
cascade controllers are used for I(t), u(t) and the sheet exit temperature T out(t).
Consequently, if the inductor is driven with AC voltage at 10kHz, the I(t)-
controller works at 1kHz, the u(t)-controller works at 100Hz, and finally, the
operation of the T out-controller is limited to 10Hz.



APPENDIX C

Alternative Temperature Controller Design for Induction
Heating

In this appendix, a flatness-based feedforward controller is designed for the control-
oriented PDE model (8.44). The design is different from the one presented in
Chapter 9 as it is based on a late-lumping approach. The resulting controller will
exhibit the same behavior as the discrete-time feedforward controller without nu-
merical diffusion. Both approaches have distinct (and complementary) advantages
and drawbacks, as will be discussed at the end of this appendix.

C.1 Decomposition into Forward Model and Er-
ror Model

For the state variable h, the input u, the output y and the function b, the following
decompositions

h(x, t) = h
f (x, t) + h

e(x, t) (C.1a)
u(t) = uf (t) + ue(t) (C.1b)

h
out(t) = yf (t) + ye(t) (C.1c)

b(x, t) = b0(x) + +b(x, t),
� lx

0
lxly+b(x, t) dx ≡ 0 (C.1d)

115



116 C Alternative Temperature Controller Design for Induction Heating

are made. Note especially that b0 and +b are defined similar to (9.2). Insertion of
(C.1) into (8.44) results in�

∂th
f (x, t) + vx∂xh

f (x, t)
 
+

�
∂th

e(x, t) + vx∂xh
e(x, t)

 
=

=
�
b0(x) + +b(x, t)

 �
uf (t) + ue(t) − P l(t)

 
(C.2a)

d
dt

P l(t) = w(t) (C.2b)

h
f (0, t) + h

e(0, t) = h
in(t) (C.2c)

h
f (x, 0) + h

e(x, 0) = h0(x) (C.2d)
P l(0) = P l

0 (C.2e)
yf (t) + ye(t) = h

f (lx, t) + h
e(lx, t) + n(t). (C.2f)

Let b0(x) be the known part of b(x, t). With this, a forward model can be
defined as

∂th
f (x, t) + vx∂xh

f (x, t) = b0(x)uf (t) (C.3a)
h

f (0, t) = h
in(t) (C.3b)

h
f (x, 0) = h0(x) (C.3c)

yf (t) = h
f (lx, t). (C.3d)

where h
f is the forward state variable and uf is the feedforward control input.

Note that all parameters of the forward model are known. Subtracting (C.3) from
(C.2) results in the error model

∂th
e(x, t) + vx∂xh

e(x, t) = b0(x)
�
ue(t) − P l(t)

 
+ +b(x, t)

�
uf (t) + ue(t) − P l(t)

 
(C.4a)

d
dt

P l(t) = w(t) (C.4b)

h
e(0, t) = 0 (C.4c)

h
e(x, 0) = 0 (C.4d)
P l(0) = P l

0 (C.4e)
ye(t) = h

e(lx, t) + n(t), (C.4f)

where the forward and error models are interconnected by the coupling term+b(x, t)uf(t). The continuous-time forward and error models (C.3) and (C.4)
correspond directly to the discrete-time forward and error models (9.5) and (9.6).
In analogy to Section 9.2.1, a feedforward controller for the forward model is
designed in the following.
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C.2 Feedforward Temperature Control
In the following, a flatness-based inversion of the forward model (C.3) will be
derived in order to obtain a continuous-time feedforward control law. The solution
of (C.3) can be expressed as

h
f (x, t) =

������
h0(x − vxt) +

� t

0
uf (t�)b0(x − vx(t − t�)) dt�, t <

x

vx

h
in(t − x

vx
) +

� t

t− x
vx

uf (t�)b0(x − vx(t − t�)) dt�,
x

vx

≤ t

(C.5a)
yf (t) = h

f (lx, t). (C.5b)

For the known part b0 of b, let (cf. (9.2))

b0 =
�

β, Δl < x < lx − Δl

0, else,
β = 1

(lx − 2Δl)lylz
. (C.6)

Using this definition for b0, the output of the forward system results in

yf (t) =

������������������������������

h0(lx − vxt), t <
Δl

vx

,

h0(lx − vxt) + β
� t− Δl

vx

0
uf (t�) dt�,

Δl

vx

≤ t <
lx − Δl

vx

,

h0(lx − vxt) + β
� t− Δl

vx

t− lx−Δl
vx

uf (t�) dt�,
lx − Δl

vx

≤ t <
lx
vx

,

h
in(t − lx

vx
) + β

� t− Δl
vx

t− lx−Δl
vx

uf (t�) dt�,
lx
vx

≤ t,

(C.7)

with the (formal) time derivative

ẏf (t) =

��������������������

− vxh
�
0(lx − vxt), t <

Δl

vx
,

− vxh
�
0(lx − vxt) + βuf (t − Δl

vx
), Δl

vx
< t <

lx − Δl

vx
,

− vxh
�
0(lx − vxt) + β

�
uf (t − Δl

vx
) − uf (t − lx−Δl

vx
)
 

,
lx − Δl

vx
< t <

lx
vx

,

ḣ
in

(t − lx

vx
) + β

�
uf (t − Δl

vx
) − uf (t − lx−Δl

vx
)
 

,
lx
vx

< t.

(C.8)
Note that yf is only controllable after a time Δl

vx
. This is due to the spatial distance

Δl between the end of the coil and the measurement point of the exit temperature.
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Using the desired values yd(t) in place of yf (t), the feedforward control law is
now computed from (C.8) in the form

uf (t) =

��������������

1
β

�
ẏd(t + Δl

vx
) + vxh

�
0(lx − Δl − vxt)

 
, t <

lx − 2Δl

vx

1
β

�
ẏd(t + Δl

vx
) + vxh

�
0(lx − Δl − vxt)

 
+ uf (t − lx−2Δl

vx
), lx − 2Δl

vx
< t <

lx − Δl

vx

1
β

�
ẏd(t + Δl

vx
) − ḣ

in
(t − lx−Δl

vx
)
"

+ uf (t − lx−2Δl
vx

), lx − Δl

vx
< t.

(C.9)
Note that uf(t) is defined recursively. This implies that uf(t) will be a quasi-
periodic function with the period lx−2Δl

vx
.

C.3 Comparison to the Early-Lumping Design
The continuous-time feedforward comtroller (C.9) will now be compared to the
discrete-time feedforward controller according to (9.12). The initial condition and
entry temperatures are set to 30◦C, which corresponds to

h
in(t) = h0(x) = 780MJ

m3 , ḣ
in

(t) = h
�
0(x) = 0. (C.10)

The responses of both feedforward controllers to a ramp in yd(t) and yd,k = yd(kΔt),
respectively, are shown in Fig. C.1. The parameter C of the discrete-time controller
(see (8.45)) was chosen as C = 1 to avoid numerical diffusion. In this case, it can
be seen that both feedforward controllers exhibit almost the same behavior.

The continuous-time controller does not require a spatial step size and therefore
the CFL condition (8.45) does not apply in this case. Instead, a memory of the
past values of uf (t), h

in(t), and yd(t) is required.
Depending on the application, it may be more advantageous to use either the

continuous-time or the discrete-time implementation. The inverse of the plate
velocity vx determines the required length of memory of uf (t), h

in(t), and yd(t) in
(C.9). Therefore, the continuous-time implementation is more suitable for higher
values of vx.

Conversely, the discrete-time controller works properly for small plate velocities
vx. If, however, vx is too large for the CFL condition to hold, then the discrete-time
implementation is no longer valid.

In conclusion, if no bounds on vx are given, it may be necessary to implement
both feedforward controllers (9.12) and (C.9) and switch between them, depending
on vx or the CFL condition (8.45).
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Figure C.1: Comparison of the continuous-time and discrete-time feedforward
controllers.





Bibliography

[1] A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, “An Efficient Al-
gorithm for Scheduling a Flexible Job Shop with Blocking and No-Wait
Constraints”, IFAC-PapersOnLine, 20th IFAC World Congress, vol. 50,
no. 1, pp. 12 490–12 495, 2017. doi: 10.1016/j.ifacol.2017.08.2056.

[2] ——, “Scheduling of a Flexible Job Shop with Multiple Constraints”, IFAC-
PapersOnLine, 16th IFAC Symposium on Information Control Problems
in Manufacturing INCOM 2018, vol. 51, no. 11, pp. 1293–1298, 2018. doi:
10.1016/j.ifacol.2018.08.354.

[3] ——, “Efficient Scheduling of a Stochastic No-Wait Job Shop with Con-
trollable Processing Times”, Expert Systems with Applications, vol. 162,
p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879.

[4] P. Azimzadeh and P. A. Forsyth, “Weakly Chained Matrices, Policy Iteration,
and Impulse Control”, SIAM Journal on Numerical Analysis, vol. 54, no. 3,
pp. 1341–1364, 2016. doi: 10.1137/15M1043431.

[5] H. D. Baehr and K. Stephan, Wärme- und Stoffübertragung, 7th ed. Berlin
Heidelberg: Springer, 2010. doi: 10.1007/978-3-642-10194-6.

[6] A. M. Bahman and S. A. Ebrahim, “Prediction of the minimum film boil-
ing temperature using artificial neural network”, International Journal
of Heat and Mass Transfer, vol. 155, p. 119 834, 2020. doi: 10.1016/j.
ijheatmasstransfer.2020.119834.

[7] M. Bauccio, ASM Metals Reference Book, 3rd Edition. Materials Park, OH:
ASM International, 1993.

[8] A. Bejan and A. D. Kraus, Heat Transfer Handbook. Hoboken, NJ: John
Wiley & Sons, 2003.

121

https://doi.org/10.1016/j.ifacol.2017.08.2056
https://doi.org/10.1016/j.ifacol.2018.08.354
https://doi.org/10.1016/j.eswa.2020.113879
https://doi.org/10.1137/15M1043431
https://doi.org/10.1007/978-3-642-10194-6
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119834
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119834


122 BIBLIOGRAPHY

[9] T. L. Bergman, Ed., Introduction to Heat Transfer, 6th ed. Hoboken, NJ:
Wiley, 2011.

[10] J. Canny, “A Computational Approach To Edge Detection”, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6,
pp. 679–698, 1986. doi: 10.1109/TPAMI.1986.4767851.

[11] G. Chen and M. Gu, “Simulation of Steel Coil Heat Transfer in a High
Performance Hydrogen Furnace”, Heat Transfer Engineering, vol. 28, no. 1,
pp. 25–30, 2007. doi: 10.1080/01457630600985568.

[12] W.-H. Chen, M.-R. Lin, and T.-S. Leu, “Optimal Heating and Energy
Management for Slabs in a Reheating Furnace”, Journal of Marine Science
and Technology, vol. 18, no. 1, pp. 24–31, 2010.

[13] R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen Differenzen-
gleichungen der mathematischen Physik”, Mathematische Annalen, vol. 100,
no. 1, pp. 32–74, 1928. doi: 10.1007/BF01448839.

[14] N. Depree, J. Sneyd, S. Taylor, M. Taylor, J. Chen, S. Wang, and M.
O’Connor, “Development and Validation of Models for Annealing Furnace
Control from Heat Transfer Fundamentals”, Computers & Chemical Engi-
neering, vol. 34, no. 11, pp. 1849–1853, 2010. doi: 10.1016/j.compchemeng.
2010.01.012.

[15] J. Egalon, S. Caux, P. Maussion, and O. Pateau, “Eigenvector Placement
in State Space Control of Induction Heating Device”, IFAC Proceedings
Volumes, 8th Power Plant and Power System Control Symposium, vol. 45,
no. 21, pp. 578–583, 2012. doi: 10.3182/20120902-4-FR-2032.00101.

[16] J. Egalon, S. Caux, P. Maussion, M. Souley, and O. Pateau, “Multiphase Sys-
tem for Metal Disc Induction Heating: Modeling and RMS Current Control”,
IEEE Transactions on Industry Applications, vol. 48, no. 5, pp. 1692–1699,
2012. doi: 10.1109/TIA.2012.2210176.

[17] H. Fujita and H. Akagi, “Pulse-Density-Modulated Power Control of a 4
kW, 450 kHz Voltage-Source Inverter for Induction Melting Applications”,
IEEE Transactions on Industry Applications, vol. 32, no. 2, pp. 279–286,
1996. doi: 10.1109/28.491475.

[18] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP Algorithm
for Large-Scale Constrained Optimization”, SIAM Review, vol. 47, no. 1,
pp. 99–131, 2005. doi: 10.1137/S0036144504446096.

[19] G. Goodwin, R. Middleton, M. Seron, and B. Campos, “Application of
Nonlinear Model Predictive Control to an Industrial Induction Heating
Furnace”, Annual Reviews in Control, vol. 37, no. 2, pp. 271–277, 2013. doi:
10.1016/j.arcontrol.2013.09.006.

https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1080/01457630600985568
https://doi.org/10.1007/BF01448839
https://doi.org/10.1016/j.compchemeng.2010.01.012
https://doi.org/10.1016/j.compchemeng.2010.01.012
https://doi.org/10.3182/20120902-4-FR-2032.00101
https://doi.org/10.1109/TIA.2012.2210176
https://doi.org/10.1109/28.491475
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1016/j.arcontrol.2013.09.006


BIBLIOGRAPHY 123

[20] A. Y. Grigoriev, “Slope Angles of Rough Surface Asperities after Machining”,
Journal of Friction and Wear, vol. 36, no. 3, pp. 197–199, 2015. doi: 10.
3103/S106836661503006X.

[21] S. H. Han, S. W. Baek, S. H. Kang, and C. Y. Kim, “Numerical Analysis
of Heating Characteristics of a Slab in a Bench Scale Reheating Furnace”,
International Journal of Heat and Mass Transfer, vol. 50, no. 9-10, pp. 2019–
2023, 2007. doi: 10.1016/j.ijheatmasstransfer.2006.10.048.

[22] S. H. Han and D. Chang, “Optimum Residence Time Analysis for a Walk-
ing Beam Type Reheating Furnace”, International Journal of Heat and
Mass Transfer, vol. 55, no. 15, pp. 4079–4087, 2012. doi: 10.1016/j.
ijheatmasstransfer.2012.03.049.

[23] X. Hao, J. Gu, N. Chen, W. Zhang, and X. Zuo, “3-D Numerical Analysis
on Heating Process of Loads within Vacuum Heat Treatment Furnace”,
Applied Thermal Engineering, vol. 28, no. 14-15, pp. 1925–1931, 2008. doi:
10.1016/j.applthermaleng.2007.12.007.

[24] D. Hömberg, T. Petzold, and E. Rocca, “Analysis and Simulations of
Multifrequency Induction Hardening”, Nonlinear Analysis: Real World Ap-
plications, vol. 22, pp. 84–97, 2015. doi: 10.1016/j.nonrwa.2014.07.007.

[25] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge: Cam-
bridge University Press, 2012. doi: 10.1017/9781139020411.

[26] F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Funda-
mentals of Heat and Mass Transfer, 6th ed. Hoboken, NJ: John Wiley &
Sons, 2006.

[27] J. D. Jackson, Klassische Elektrodynamik, 5th ed. Berlin Boston: De Gruyter,
2014.

[28] L. Jadachowski, A. Steinboeck, and A. Kugi, “Heat Transfer with Specular
Reflections in an Experimental Annealing Device”, IFAC-PapersOnLine,
8th Vienna International Conference on Mathematical Modelling, vol. 48,
no. 1, pp. 494–499, 2015. doi: 10.1016/j.ifacol.2015.05.069.

[29] P. Jafari, S. Sarmadi, S. Tasoujian, and H. Ghasemi, “Predictive AI platform
on thin film evaporation in hierarchical structures”, International Journal
of Heat and Mass Transfer, vol. 171, p. 121 116, 2021. doi: 10.1016/j.
ijheatmasstransfer.2021.121116.

[30] A. Jaklič, F. Vode, and T. Kolenko, “Online Simulation Model of the Slab-
Reheating Process in a Pusher-Type Furnace”, Applied Thermal Engineering,
vol. 27, no. 5, pp. 1105–1114, 2007. doi: 10.1016/j.applthermaleng.2006.
07.033.

https://doi.org/10.3103/S106836661503006X
https://doi.org/10.3103/S106836661503006X
https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.048
https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.049
https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.049
https://doi.org/10.1016/j.applthermaleng.2007.12.007
https://doi.org/10.1016/j.nonrwa.2014.07.007
https://doi.org/10.1017/9781139020411
https://doi.org/10.1016/j.ifacol.2015.05.069
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121116
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121116
https://doi.org/10.1016/j.applthermaleng.2006.07.033
https://doi.org/10.1016/j.applthermaleng.2006.07.033


124 BIBLIOGRAPHY

[31] J.-Y. Jang and J.-B. Huang, “Optimisation of a Slab Heating Pattern
with Various Skid Button Heights in a Walking-Beam-Type Reheating
Furnace”, Ironmaking & Steelmaking, vol. 45, no. 9, pp. 793–804, 2018. doi:
10.1080/03019233.2017.1338386.

[32] J. Kang and Y. Rong, “Modeling and Simulation of Load Heating in Heat
Treatment Furnaces”, Journal of Materials Processing Technology, vol. 174,
no. 1-3, pp. 109–114, 2006. doi: 10.1016/j.jmatprotec.2005.03.037.

[33] A. I. Khan, M. M. Billah, C. Ying, J. Liu, and P. Dutta, “Bayesian Method for
Parameter Estimation in Transient Heat Transfer Problem”, International
Journal of Heat and Mass Transfer, vol. 166, p. 120 746, 2021. doi: 10.
1016/j.ijheatmasstransfer.2020.120746.

[34] R. Kieffer and W. Hotop, Pulvermetallurgie und Sinterwerkstoffe. Berlin
Heidelberg: Springer, 2013. doi: 10.1007/978-3-642-94557-1.

[35] M. Y. Kim, “A Heat Transfer Model for the Analysis of Transient Heating
of the Slab in a Direct-Fired Walking Beam Type Reheating Furnace”,
International Journal of Heat and Mass Transfer, vol. 50, no. 19, pp. 3740–
3748, 2007. doi: 10.1016/j.ijheatmasstransfer.2007.02.023.

[36] K. Kunisch and S. Volkwein, “Galerkin Proper Orthogonal Decomposition
Methods for a General Equation in Fluid Dynamics”, SIAM Journal on
Numerical Analysis, vol. 40, no. 2, pp. 492–515, 2002. doi: 10 . 1137 /
S0036142900382612.

[37] D. E. Lee and M. Y. Kim, “Optimum Residence Time for Steel Produc-
tivity and Energy Saving in a Hot Rolled Reheating Furnace”, Journal of
Mechanical Science and Technology, vol. 27, no. 9, pp. 2869–2877, 2013. doi:
10.1007/s12206-013-0735-1.

[38] G. W. Lee and M. Y. Kim, “On the Thermal Behavior of the Slab in a
Reheating Furnace with Radiation”, International Journal of Mechanical,
Aerospace, Industrial, Mechatronic and Manufacturing Engineering, vol. 8,
no. 5, pp. 922–927, 2014. doi: 10.5281/zenodo.1092544.

[39] J. H. Lienhard and J. H. Lienhard, A heat transfer textbook, Fifth Edition.
Mineola, New York: Dover Publications, Inc, 2019.

[40] D. Lindholm, “A Finite Element Method for Solution of the Three-Dimensional
Time-Dependent Heat-Conduction Equation with Application for Heating
of Steels in Reheating Furnaces”, Numerical Heat Transfer, Part A: Appli-
cations, vol. 35, no. 2, pp. 155–172, 1999. doi: 10.1080/104077899275308.

[41] L. Ljung, System Identification: Theory for the User, 2nd ed. Upper Saddle
River, NJ: Prentice Hall PTR, 1999.

https://doi.org/10.1080/03019233.2017.1338386
https://doi.org/10.1016/j.jmatprotec.2005.03.037
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120746
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120746
https://doi.org/10.1007/978-3-642-94557-1
https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.023
https://doi.org/10.1137/S0036142900382612
https://doi.org/10.1137/S0036142900382612
https://doi.org/10.1007/s12206-013-0735-1
https://doi.org/10.5281/zenodo.1092544
https://doi.org/10.1080/104077899275308


BIBLIOGRAPHY 125

[42] O. Lucia, P. Maussion, E. Dede, and J. Burdio, “Induction Heating Tech-
nology and Its Applications: Past Developments, Current Technology, and
Future Challenges”, IEEE Transactions on Industrial Electronics, vol. 61,
no. 5, pp. 2509–2520, 2014. doi: 10.1109/TIE.2013.2281162.

[43] A. Mochida, K. Kudo, Y. Mizutani, M. Hattori, and Y. Nakamura, “Tran-
sient Heat Transfer Analysis in Vacuum Furnaces Heated by Radiant Tube
Burners”, Energy Conversion and Management, vol. 38, no. 10, pp. 1169–
1176, 1997. doi: 10.1016/S0196-8904(96)00146-X.

[44] H. P. Ngoc, H. Fujita, K. Ozaki, and N. Uchida, “Phase Angle Control
of High-Frequency Resonant Currents in a Multiple Inverter System for
Zone-Control Induction Heating”, IEEE Transactions on Power Electronics,
vol. 26, no. 11, pp. 3357–3366, 2011. doi: 10.1109/TPEL.2011.2146278.

[45] K. L. Nguyen, S. Caux, X. Kestelyn, O. Pateau, and P. Maussion, “Resonant
Control of Multi-Phase Induction Heating Systems”, in IECON 2012 - 38th
Annual Conference on IEEE Industrial Electronics Society, Montreal, QC,
Canada, 2012, pp. 3293–3298. doi: 10.1109/IECON.2012.6389371.

[46] N.-J. Park, D.-Y. Lee, and D.-S. Hyun, “A Power-Control Scheme With
Constant Switching Frequency in Class-D Inverter for Induction-Heating Jar
Application”, IEEE Transactions on Industrial Electronics, vol. 54, no. 3,
pp. 1252–1260, 2007. doi: 10.1109/TIE.2007.892741.

[47] H. N. Pham, H. Fujita, K. Ozaki, and N. Uchida, “Estimating Method of
Heat Distribution Using 3-D Resistance Matrix for Zone-Control Induction
Heating Systems”, IEEE Transactions on Power Electronics, vol. 27, no. 7,
pp. 3374–3382, 2012. doi: 10.1109/TPEL.2011.2179984.

[48] Plansee SE, Molybdenum, tungsten, tantalum, niobium, chromium. Strong
metals make strong products. | Plansee. [Online]. Available: https://www.
plansee.com (visited on 12/21/2020).

[49] R. Prieler, B. Mayr, M. Demuth, B. Holleis, and C. Hochenauer, “Prediction
of the Heating Characteristic of Billets in a Walking Hearth Type Reheating
Furnace Using CFD”, International Journal of Heat and Mass Transfer,
vol. 92, pp. 675–688, 2016. doi: 10.1016/j.ijheatmasstransfer.2015.
08.056.

[50] L. Pyta, A. Deutschmann, F. Rötzer, D. Abel, and A. Kugi, “Reduced-
Order Modeling of a Radiative Heating Process with Movable Radiators”,
IFAC-PapersOnLine, 11th IFAC Symposium on Nonlinear Control Systems
NOLCOS 2019, vol. 52, no. 16, pp. 346–351, 2019. doi: 10.1016/j.ifacol.
2019.11.804.

https://doi.org/10.1109/TIE.2013.2281162
https://doi.org/10.1016/S0196-8904(96)00146-X
https://doi.org/10.1109/TPEL.2011.2146278
https://doi.org/10.1109/IECON.2012.6389371
https://doi.org/10.1109/TIE.2007.892741
https://doi.org/10.1109/TPEL.2011.2179984
https://www.plansee.com
https://www.plansee.com
https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.056
https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.056
https://doi.org/10.1016/j.ifacol.2019.11.804
https://doi.org/10.1016/j.ifacol.2019.11.804


126 BIBLIOGRAPHY

[51] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations”, Journal of Com-
putational Physics, vol. 378, pp. 686–707, 2019. doi: 10.1016/j.jcp.2018.
10.045.

[52] S. Rhein and K. Graichen, “Dynamic Optimization of Induction Heat-Up
and Surface Hardening Processes on Complex Spatial Domains”, in 2015
IEEE Conference on Control Applications (CCA), Sydney, NSW, Australia,
2015, pp. 1829–1834. doi: 10.1109/CCA.2015.7320875.

[53] S. Rhein, T. Utz, and K. Graichen, “Dynamische Optimierung von Multiphysik-
Problemen am Beispiel induktiver Heizvorgänge”, at - Automatisierung-
stechnik, vol. 63, no. 9, pp. 713–726, 2015. doi: 10.1515/auto-2015-0029.

[54] ——, “Optimal Control of Induction Heating Processes Using FEM Soft-
ware”, in 2015 European Control Conference (ECC), Linz, Austria, 2015,
pp. 515–520. doi: 10.1109/ECC.2015.7330595.

[55] F. Roetzer, A. Aschauer, L. Jadachowski, A. Steinboeck, and A. Kugi, “Tem-
perature Control for Induction Heating of Thin Strips”, IFAC-PapersOnLine,
21st IFAC World Congress, vol. 53, no. 2, pp. 11 968–11 973, 2020. doi:
10.1016/j.ifacol.2020.12.722.

[56] F. Roetzer, A. Aschauer, A. Steinboeck, and A. Kugi, “A Computation-
ally Efficient 3D Mathematical Model of a Molybdenum Batch-Reheating
Furnace”, IFAC-PapersOnLine, 9th Vienna International Conference on
Mathematical Modelling, vol. 51, no. 2, pp. 819–824, 2018. doi: 10.1016/j.
ifacol.2018.04.015.

[57] ——, “Reheating Time Optimization for Metal Products in Batch-Type
Furnaces”, International Journal of Heat and Mass Transfer, 2021, submit-
ted.

[58] H. H. Rosenbrock, “A Lyapunov Function with Applications to Some Non-
linear Physical Systems”, Automatica, vol. 1, no. 1, pp. 31–53, 1963. doi:
10.1016/0005-1098(63)90005-0.

[59] A. Saboonchi, S. Hassanpour, and S. Abbasi, “New Heating Schedule in
Hydrogen Annealing Furnace Based on Process Simulation for Less En-
ergy Consumption”, Energy Conversion and Management, vol. 49, no. 11,
pp. 3211–3216, 2008. doi: 10.1016/j.enconman.2008.05.024.

[60] A. Saboonchi, S. Hassanpour, and F. Bayati, “Design of Heating Cycle in
Hydrogen Annealing Furnaces”, Materials and Manufacturing Processes,
vol. 24, no. 12, pp. 1453–1458, 2009. doi: 10.1080/10426910903124837.

[61] S. S. Sahay and A. M. Kumar, “Applications of Integrated Batch Annealing
Furnace Simulator”, Materials and Manufacturing Processes, vol. 17, no. 4,
pp. 439–453, 2002. doi: 10.1081/AMP-120014227.

https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1109/CCA.2015.7320875
https://doi.org/10.1515/auto-2015-0029
https://doi.org/10.1109/ECC.2015.7330595
https://doi.org/10.1016/j.ifacol.2020.12.722
https://doi.org/10.1016/j.ifacol.2018.04.015
https://doi.org/10.1016/j.ifacol.2018.04.015
https://doi.org/10.1016/0005-1098(63)90005-0
https://doi.org/10.1016/j.enconman.2008.05.024
https://doi.org/10.1080/10426910903124837
https://doi.org/10.1081/AMP-120014227


BIBLIOGRAPHY 127

[62] S. S. Sahay, R. Mehta, S. Raghavan, R. Roshan, and S. J. Dey, “Process
Analytics, Modeling, and Optimization of an Industrial Batch Annealing
Operation”, Materials and Manufacturing Processes, vol. 24, no. 12, pp. 1459–
1466, 2009. doi: 10.1080/10426910903179922.

[63] SemI40 - Power Semiconductor and Electronics Manufacturing 4.0. [Online].
Available: http://www.semi40.eu/ (visited on 12/15/2020).

[64] P. N. Shivakumar and K. H. Chew, “A Sufficient Condition for Nonvanishing
of Determinants”, Proceedings of the American Mathematical Society, vol. 43,
no. 1, pp. 63–66, 1974. doi: 10.2307/2039326.

[65] V. K. Singh and P. Talukdar, “Comparisons of Different Heat Transfer
Models of a Walking Beam Type Reheat Furnace”, International Com-
munications in Heat and Mass Transfer, vol. 47, pp. 20–26, 2013. doi:
10.1016/j.icheatmasstransfer.2013.06.004.

[66] L. Sirovich, “Turbulence and the Dynamics of Coherent Structures Part III:
Dynamics and Scaling”, Quarterly of Applied Mathematics, vol. 45, no. 3,
pp. 583–590, 1987. doi: 10.1090/qam/910464.

[67] D. Staalman and A. Kusters, “On-Line Slab Temperature Calculation and
-Control”, in International Mechanical Engineering Congress and Exposition,
Atlanta, GA, USA, 1996, pp. 1–8.

[68] A. Steinboeck, D. Wild, T. Kiefer, and A. Kugi, “A Mathematical Model of a
Slab Reheating Furnace with Radiative Heat Transfer and Non-Participating
Gaseous Media”, International Journal of Heat and Mass Transfer, vol. 53,
no. 25-26, pp. 5933–5946, 2010. doi: 10.1016/j.ijheatmasstransfer.
2010.07.029.

[69] S. Strommer, M. Niederer, A. Steinboeck, L. Jadachowski, and A. Kugi,
“Nonlinear Observer for Temperatures and Emissivities in a Strip Anneal-
ing Furnace”, IEEE Transactions on Industry Applications, vol. 53, no. 3,
pp. 2578–2586, 2017. doi: 10.1109/TIA.2017.2669327.

[70] Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties: Metallic
Elements and Alloys. Boston, MA: Springer, 1970.

[71] R. Wallis and J. Ward, “The Thermal Performance of an Electrical Resis-
tance Furnace for Heating Steel Slabs”, in XII International Congress on
Electroheat, Montreal, Canada, 1992, pp. 977–986.

[72] D. Whitehouse, Surfaces and Their Measurement. Amsterdam: Elsevier,
2002. doi: 10.1016/B978-1-903996-01-0.X5000-2.

https://doi.org/10.1080/10426910903179922
http://www.semi40.eu/
https://doi.org/10.2307/2039326
https://doi.org/10.1016/j.icheatmasstransfer.2013.06.004
https://doi.org/10.1090/qam/910464
https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.029
https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.029
https://doi.org/10.1109/TIA.2017.2669327
https://doi.org/10.1016/B978-1-903996-01-0.X5000-2


128 BIBLIOGRAPHY

[73] B. Wu, A. M. Arnold, E. Arnold, G. Downey, and C. Q. Zhou, “CFD
Analysis of Batch-Type Reheating Furnace”, in International Mechanical
Engineering Congress and Exposition, Volume 6: Energy Systems: Analy-
sis, Thermodynamics and Sustainability, Seattle, Washington, USA, 2007,
pp. 753–759. doi: 10.1115/IMECE2007-42454.

[74] Y.-Y. Yang and Y.-Z. Lu, “Development of a Computer Control Model for
Slab Reheating Furnaces”, Computers in Industry, vol. 7, no. 2, pp. 145–154,
1986. doi: 10.1016/0166-3615(86)90036-9.

[75] J. Zerad, S. Riachy, P. Toussaint, and J.-P. Barbot, “A Nonlinear Controller
for Parallel Induction Heating Systems”, IFAC-PapersOnLine, 19th IFAC
World Congress, vol. 47, no. 3, pp. 11 617–11 622, 2014. doi: 10.3182/
20140824-6-ZA-1003.00311.

https://doi.org/10.1115/IMECE2007-42454
https://doi.org/10.1016/0166-3615(86)90036-9
https://doi.org/10.3182/20140824-6-ZA-1003.00311
https://doi.org/10.3182/20140824-6-ZA-1003.00311

	Contents
	List of Symbols
	Introduction
	I Reheating of Sintered Blocks in Chamber Furnaces
	Preliminaries
	Industrial Requirements
	State of the Art
	Reheating Time Optimization
	Furnace Modeling and Simulation
	Temperature and Parameter Estimation

	Motivation and Goals
	Approach and Scientific Contributions
	Outline of Part I

	Physical Modeling
	Heat Transfer and Furnace Geometry
	Heat Transfer
	Furnace Model Geometry

	Model Discretization
	Meshing Strategy
	Discretized Process Model

	Temperature Sensors and Control Loop
	Model Parameter Identification
	Identification of the Parameter eta
	Identification of the Plate Emissivity epsilonp


	Model Reduction and Analysis
	Proper Orthogonal Decomposition
	Computation of the POD Modes
	Reduced-Order Model
	Contributions to the Pyrometer Output

	Minimal Model
	Radiation Equivalent Circuit
	Dynamics
	Model Reduction


	Calculation of Optimum Reheating Times
	Parameter Estimation and Calculation of Optimal Reheating Times
	Heat Flow through Furnace Wall
	Product Classes
	Estimation of Ew
	Estimation of Ep
	Calculation of Optimum Reheating Times

	Proof of Concept
	Plant Analysis
	Test Scenario
	Simulation Results

	Long-Term Tests
	Varying Plate Dimensions
	Effects of Narrowing the Product Classes


	Conclusions and Outlook
	Summary
	Conclusions
	Outlook


	II Induction Reheating of Thin Metal Sheets
	Preliminaries
	Industrial Requirements
	State of the Art
	Motivation
	Approach and Scientific Contributions
	Outline of Part II

	Physical Modeling
	Process Model
	Electromagnetic Field
	Heat Transfer
	Model Summary
	Validation of the Process Model

	Control-Oriented Model
	Transition to Advection Equation
	Equivalent Circuit Formulation
	Continuous-Time Model Summary
	Discrete-Time Model
	Validation of the Control-Oriented Model


	Controller Design
	Decomposition
	Temperature Control
	Feedforward Controller
	Feedback Controller

	Controller Extension for Charge and Exit
	Estimation of the Sheet Position
	Temperature Controller Extension


	Results and Performance
	Test Scenario and Experiments
	Simulation Results and Evaluation

	Conclusions and Outlook
	Summary
	Conclusions
	Outlook
	Appendices
	Finite Volume Method
	Left-Hand Side
	Right-Hand Side
	Heat Conduction in Solids
	Outer Boundary
	Radiation Enclosure

	System Matrices
	ODE System Analysis

	Cascade Power Controller for Induction Heating
	Estimation of Rc during Idle Operation
	Heating Power Controller
	Practical Implementation of the Power Controller


	Alternative Temperature Controller Design for Induction Heating
	Decomposition into Forward Model and Error Model
	Feedforward Temperature Control
	Comparison to the Early-Lumping Design

	Bibliography





