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Kurzfassung

Jüngste Trends in Computer Vision ermöglichen zunehmend eine verbesserte räumliche
Wahrnehmung einer gegebenen Umgebung und ihrer Objekte. Das Erlernen erschei-
nungsbasierter Darstellungen aus RGB-Bildern ist Gegenstand intensiver Forschung. Das
Thema der Interpretation von Tiefendaten in Bezug auf gelernte Modelle umfasst jedoch
noch viele offene Forschungsfragen. In dieser Studie führen wir ein Encoder-Decoder
basiertes Lernverfahren ein, um Objektposen aus Tiefenbildern und den entsprechenden
Oberflächennormalen zu schätzen. Unsere Zielobjekte sind mehrere Instanzen von qua-
derförmigen Primitiven unbekannter Größe. In unseren Experimenten verwenden wir
monokulare Tiefenschätzung und lernbasierte Stereo-Matching-Methoden, um Tiefen-
bilder zu erzeugen. Die Neuartigkeit unseres Ansatzes besteht in dem vorgeschlagenen
geometriebasierten Erkennungsschema, das ausschließlich anhand von synthetischen Bil-
dern trainiert werden kann und in der Lage ist, parametrische (orientierte) Objektteile
zu schätzen. Die Ergebnisse zeigen eine genaue räumliche Lokalisierung von generischen
Quadermodellen in realen Szenarien. Wir zeigen auch, dass das vorgeschlagene generische
Schema leicht für andere Geometrietypen umkonfiguriert werden kann. Wir präsentieren
Ergebnisse für Paletten bekannter Größe, bei denen die Kanten zwischen einer Reihe von
ko-planaren Punkten unser geschätztes Strukturmodell darstellen.
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Abstract

Recent trends in computer vision increasingly allow for an enhanced spatial perception
of a given environment and its objects. Learning appearance-based representations from
RGB images is the subject of intense research. However, the topic of interpreting depth
data in terms of learned models still encompasses many open research questions. In
this study, we introduce an encoder-decoder-type learning scheme to estimate object
poses from depth images and its corresponding surface normals. Our targeted objects are
multiple instances of cuboid primitives of unknown size. In our experiments, we employ
monocular depth estimation and learning-based stereo-matching methods to generate
depth images. The novelty of our approach is given by the proposed geometry-aware
detection scheme, which can be trained solely from synthetic images and can estimate
parametric (oriented) object parts. Results demonstrate accurate spatial localization of
generic cuboid models in real scenarios. We also demonstrate that the proposed generic
scheme can be easily re-configured for other geometry types. We show results for pallets
of known size, where edges between a set of co-planar points represent our estimated
structural model.
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CHAPTER 1
Introduction and Motivation

Object detection and pose estimation are well-known tasks in Computer Vision, substan-
tially contributing to model a perceived environment in terms of a set of pre-defined
entities. Robotics and autonomous driving are example task domains, where such repre-
sentational traits are needed. In recent years, appearance-based scene interpretation has
demonstrated significant progress, where appearance variations within targeted classes
are often learned in an exhaustive manner. However, learning schemes focusing on the
scene geometry and spatial relations therein still hold many open research perspectives.
Most importantly, instead of learning all possible object appearances, learning geometric
representations discards photometric and appearance variations and it captures a simpler
innate object property. This reduced representational space implies less data needed
for learning. Furthermore, a rich set of shapes can be defined as parametric structures,
implying opportunities to formulate learning as a direct regression task.

1.1 Problem Statement
Our goal is to algorithmically construct the pose of cuboid-shaped objects of unknown size
and appearance from single-camera RGB and stereo-camera input (Fig. 1.1). Additionally,
we compare the influence of the geometric representations on the pose estimation results.
The class of cuboid-like objects ranges from boxes to cargo containers. Since the number
of target size and appearance configurations is practically unlimited, this scenario can
be called a semi-open world. Therefore the detector should not be influenced by the
object’s appearance, size, or texture and instead focus on their uniting property, the
geometry. Additionally, we train our model solely on synthetic data to overcome the
necessity of labor-intensive manual annotation, which is the main cost factor and a
limitation of modern learning-based object detection and pose estimation methods. The
geometry-driven detection scheme is a step towards a more general-purpose robotic vision
since it enables an intelligent robotic agent to operate in an environment without specific
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1. Introduction and Motivation

knowledge about every single object within this scene. Our approach resembles the
interaction of a human with its environment. People rely on a geometric interpretation
of a scene to navigate within.

Figure 1.1: Illustration of the overall geometric-aware pose estimation method, with a
real world inference example of the final framework

1.2 Challenges
We have to design a data synthesis framework to create a vast training data set with
corresponding ground truth. The data set has to have a close synth-to-real gap to allow
our trained pose estimation model to generalize to real-world scenarios. The training data
set has to reflect reality to enable the detector to deal with occlusions, different views,
and object textures of real-world images. Moreover, we need to construct a geometric
representation of the images to overcome object appearance configurations and reduce
the gap between synthetic and real-world domains.
Further, we present a methodology for cuboid shapes, but the method is not limited to
this geometry class. We have to design a robust pose estimation model, which allows
us to capture the relevant cuboid key points to create a wire-frame representation of
the objects. This includes initial detection and additional algorithmic refinement steps.
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1.3. Contributions

Lastly, we have to test the detection pipeline on annotated real-world samples and choose
an appropriate metric to evaluate those results.
The main challenge of this thesis is to deal with the endless variety of different cuboid
shapes, appearances, and textures in such a way that the pose of those can be estimated,
without any additional prior knowledge about the objects, besides their cuboid shape.
State-of-the-art methods for pose estimation usually have a closed world assumption
where they only detect objects which are known beforehand. This is not the case in our
scenario since we want to detect every cuboid-shaped object, which can have all kinds of
different sizes and appearances. In other words, it should not matter if the cuboid is a
shipping container or a matchbox.

1.3 Contributions

The presented method in this thesis combines data synthesis and geometric representation
of the data. To estimate the pixel-wise disparity, we use a pre-trained monocular
depth estimation network (MiDaS [RLH+19]) and a deep learning-based stereo-matching
model (AANET [XZ20]). From the disparity maps, we can calculate the surface normal
representation of the data. Due to this procedure, we exclude the appearance information
of the original input images. This geometrical representation is less complex and therefore
reduces training time.
For the pose estimation, we use a single-stage encoder-decoder backbone with multiple
heads, closely related to CenterNet framework [ZWK19]. The output heads allow us to
detect the object corners and regress from their orientations and corresponding edge
lengths. With those oriented corners we can construct the cuboid poses in a bottom-up
manner via a from us designed so-called cuboid construction algorithm.
The two key contributions of this thesis are:

• demonstrating that geometry-based detection and pose estimation from purely
synthetic data is feasible in real-world scenarios

• an extensible representational concept towards other geometries

The main contribution from a scientific point of view is the geometry-based learning
strategy. This approach stands in stark contrast to the widely used appearance-based
learning strategies. Additionally, our bottom-up strategy is a step towards a more
general-purpose pose estimation without prior knowledge of the objects themselves.
From an applied point of view, the main contribution depends on our ability to overcome
the necessity of large amounts of hand-annotated real-world training data. Our approach
allows us to train pose estimation models for real-world robotic tasks without labor and
cost-intensive manual data-set collection. This method can be used in a wide range of
automation scenarios and in particular in the case of an autonomous forklift, as indicated
by our palette detection results.
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1. Introduction and Motivation

1.4 Results Preview
The results show the feasibility of our semi-open-world cuboid detection and pose
estimation method on real-world data. Since the monocular depth estimation is not
suitable for 3D pose recovery, we rely on estimating the 2D planar projection of the
3D pose. Thus, we can quantitatively compare the stereoscopic and monocular data
representations. To evaluate the pose estimation results, we choose the Intersection
over Union (IoU) metric. The test data set includes different viewpoints, object sizes as
well as occlusions and clutter. Since there was no appropriate cuboid-pose-estimation
benchmark set, which fits our purpose, we decided to collect our internal test dataset
and annotated it.
Additionally, we show qualitative pose estimation results for a practically highly relevant
object in the domain of warehouse logistics, namely the palette. Those results indicate
the generality of our geometric-aware pose estimation method. We can learn all kinds
of geometrically distinct objects. In all experiments, we solely trained on synthetic
data, which we generated with our Blender pipeline. This procedure and the ability to
generalize to real-world scenarios make our approach beneficial for practical applications.

1.5 Thesis Outline
The following two chapters present the state-of-the-art section of this thesis. The first
chapter discusses learning-based pose estimation methods, which are usually appearance-
based.
The second chapter focuses on depth measuring and estimation techniques. Here we
explain state-of-the-art methods for monocular depth estimation and learning-based
stereo-matching methods.
The fourth chapter outlines the details of the geometric aware pose estimation method.
The section includes the data generation process, the detection methodology, and the
algorithmic cuboid refinement procedure for capturing the 8-corner structure of a generic
cuboid.
The fifth chapter is the result section, where we discuss the experiment setup, the
evaluation, and the summary of the cuboid and palette experiments.
The last chapter gives an overall conclusion of the thesis and outlines potential future
experiments.

4



CHAPTER 2
Pose estimation using End-to-end

Learning

In this section, we discuss state-of-the-art learning methods for performing 2D and
3D pose estimation. So far, data from depth-sensing (such as stereo, ToF, LiDAR)
methods have been the standard to estimate the spatial parameters. However, the recent
emergence of modern End-to-end learning, as so-called "universal function approximators"
increasingly allows the estimation of pose parameters directly from images. Therein,
important representational aspects are how to describe and model ambiguities involving
the sought object-pose parameters.

2.1 Definition of Main Concepts and Paradigms
In this section, we discuss the architectural prerequisites to perform state-of-the-art pose
estimation. Thus, we examine convolutional neural networks (CNN), residual layers, the
incorporation of feature representations from all scales, and multi-task learning.

2.1.1 CNNs for Object Detection and Pose Estimation
Since the rise of convolutional neural networks (CNNs) in the domain of computer vision,
due to its breakthrough results in the ImageNet classification challenge [KSH12] in 2012,
this architecture dominates most applications in this area of research. The ImageNet
dataset [DDS+09] consists of around 15 million images with 22000 different categories,
which makes it a hard object classification task. Compared to fully connected neural
networks the main advantage of convolution depends on their much lower amount of
learn-able parameters/weights, which makes them significantly easier to train. We achieve
the parameter reduction by learning a single convolution matrix for every channel. Those
channels are feature maps, where every channel encodes a characteristic of the input
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2. Pose estimation using End-to-end Learning

image. An example of such a map would be encoding the edges, corners, colors, and so
on. After a convolution layer typically follows a max-pooling layer, which extracts the
maximum value of a predefined size pixel square. The standard building block of a CNN
is visualized in figure 2.1.

Figure 2.1: Illustration of a convolution and max pooling layer

An important configuration of the CNN building block is the size of the sliding window
and the offset from one window to another, also known as the stride. Figure 2.2 illustrates
the sliding window for a max-pooling layer.

Figure 2.2: Max pooling with a 2x2 window size and a stride of 2.

An additional difficulty when designing a neural network is choosing an appropriate
amount of hidden layers, often also referred as depth. Networks with a high amount of
layers tend to be very hard to train. Often it is not even possible to train an identity
function on such deep structures. To overcome this issue, He and Zhang [HZRS16]
proposed a deep residual learning strategy, which allowed them to train deep networks
also on relatively simple tasks with moderate amounts of training data. Their architecture
called ResNet won the ImageNet [DDS+09] challenge and is widely used as the backbone
for many tasks in computer vision. The main idea of the ResNet architecture is the
introduction of so-called skip or residual layers (Fig. 2.3).

These skip layers serve as shortcut connections for one or more layers. The idea is to add
the identity x from the first layer to the last layer of the residual block. With this scheme
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2.1. Definition of Main Concepts and Paradigms

Figure 2.3: Illustration of a residual block [HZRS16]

the authors [HZRS16] were able to tackle the so-called degradation problem, which means
that with increasing network depth the accuracy saturates and then degrades. This is
not the case for architectures that use residual blocks. However, we still face the problem
that stacked convolutional layers, especially if decreasing by size, tend to allow only
considerations of global features and lack more region-specific details. This common issue
is the theme of the next section.

2.1.2 Incorporating Feature Representations from Different Scales
In this section we describe, the representational strategies evolved from multi-scale
detection approaches towards encoder-decoder type networks simultaneously estimating
multiple parameters or tasks. Most modern computer vision detectors use a CNN
backbone due to their ability to generate and learn feature representations from training
data. Noteworthy examples for such detectors are R-CNN [GDDM14], Fast R-CNN
[Gir15] and Yolo [RDGF16]. The problem with a simple convolutional encoder backbone
is its lack of capability to incorporate information of different scales. For example,
if we use a pyramid-like structure consisting of convolutional layers, we construct a
representation of the overall image features at the final encoder layer. However, such a
representation loses a lot of the regional-specific feature information, which is part of
earlier convolutional stages. This issue leads to approaches wherein a first step generates
regional proposals, which are classified via a convolutional neural network, like in the
case of R-CNN [GDDM14]. Those two-stage detectors come with the drawback that
they lack end-to-end trainability. Further, they tend to be computational very expensive
due to the exhaustive region proposal process. A much more elegant way to tackle this
problem is aggregating information of different convolutional stages to a more generalized
representation of the original input. One way to achieve this is the usage of the so-called
Deep Layer Aggregation [YWSD18], which is an architectural solution to build a one-stage
detector for feature incorporation on different scales. Yu and Wang propose two strategies
to achieve this behavior. The first method is the iterative deep layer aggregation (IDA).
The second is the hierarchical deep layer aggregation (HDA) (Fig. 2.4 & 2.5).

The IDA method resembles the concept of the skip layer but expands the scheme to a
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2. Pose estimation using End-to-end Learning

Figure 2.4: Illustration of the iterative deep layer aggregation [YWSD18]

Figure 2.5: Illustration of the hierarchical deep layer aggregation [YWSD18]

more systematic methodology. The idea to aggregate feature maps of early convolutional
stages into the final network output was already explored in earlier works ([KKS+18] &
[LSD15]). But those methods cannot incorporate the feature maps on different stages,
which results in a less generalized representation. Those last stage feature compounding
architectures are called shallow aggregation networks. On the other hand, the iterative
method allows compounding the convolutional representations on every stage. However,
the IDA has its drawbacks, the architecture cannot fuse more than one block of the
network, since it still works sequentially. To overcome this Yu and Wang [YWSD18] also
designed a tree-like hierarchical aggregation strategy (HDA). The HDA merges blocks
of feature channels on different stages and feeds them into the backbone as input for
the next tree block. With this approach, the feature representation propagates from all
previous blocks and not only from the preceding block of the network. Those aggregation
strategies allowed Yu and Wang [YWSD18] to produce a new state-of-the-art benchmark
in many computer vision tasks. Throw out the thesis we will use a DLA backbone for
our experiments due to their performance and end-to-end train-ability.

Another promising method to incorporate feature representations from different scales
throw out the network is so-called encoder-decoder architecture. Newell, Yang, and
Deng [NYD16] introduced such an encoder-decoder network for pose estimation. Their
hourglass architecture (Fig. 2.6) achieves a similar behavior as the HDA but without
the necessity to explicitly design an aggregation tree structure, where you have to define
on which stages information gets compounded. The hourglass was designed for human
pose estimation and is closely related to other encoder-decoder architectures, which show
promising results in numerous computer vision tasks like image segmentation [BKC17],
capturing material reflectance [RRF+16] and classification [ZMGL15]. The concept of
the hourglass is consecutive down and up-sampling, where intermediate feature maps
from the down-sampling get combined with their up-sampling counterpart in a residual
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2.1. Definition of Main Concepts and Paradigms

skip connection manner.

Figure 2.6: Illustration of an hourglass module, which is a typical encoder-decoder
structure [NYD16]

The bottleneck of the encoder-decoder architecture allows capturing global information of
the whole input image. The shallow layers allow consideration of more local features. The
network design enables the effective processing of multiple resolutions and combines those
features at later stages in the network. A single hourglass module produces a heatmap-
type output (2D multi-modal Gaussian distributions), including the key points of interest.
To push this methodology even further, Newell, Yang, and Deng [NYD16] stacked multiple
hourglass modules on each other (Fig. 2.7) to enable feature reconsideration for even
more robust detection results and reevaluation of initial estimates.

Figure 2.7: Visualization of stacked hourglass modules

In conclusion, the Deep Layer Aggregation [YWSD18] as well as the hourglass architecture
[NYD16] can incorporate features of different scales and allow using all information at the
final stage of the network. These properties qualify such architectures as an appropriate
backbone for state-of-the-art image processing networks. Such a representation can be
applied to many different computer vision tasks, but we have only considered single task
networks.
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2. Pose estimation using End-to-end Learning

One common backbone is not limited to a single task, it can fulfill many purposes at the
same time, which leads us to the next topic, namely multi-task-learning.

2.1.3 Multi-task Learning

The idea of multi-task learning is to build multiple heads on a common backbone. All
output heads are trained simultaneously via a composite loss function, which is a weighted
linear combination of losses. Where each loss represents one output head of the detector.
An example is the CornerNet [LD18], which predicts heatmaps (heads) with the left-upper
and right-lower bounding box anchor for objects of interest. In this case, the hourglass
network outputs an additional 1-dimensional embedding map to group the bounding box
anchors with each other (Fig. 2.8).

Figure 2.8: Visualization of the multiple heads of the CornerNet [LD18]

An even more elegant solution for object detection is the CenterNet [ZWK19], which
directly estimates the center of an object and regresses from their additional key points
for bounding box creation. The main output of the CenterNet detector is a heatmap with
the object centers. Additional properties like bounding box size, orientation, or object-
associated key points are the output of secondary heads. The CenterNet concept is very
flexible and can be easily modified to other object detection and pose estimation tasks and
provides robust detection results in many computer vision applications. Throughout this
thesis, we will extend the CenterNet detection methodology towards the incorporation
of geometric knowledge to evolve detection to overcome appearance-based information
dependency.
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2.2. State-of-the-art in Pose Estimation

2.2 State-of-the-art in Pose Estimation

Detecting the pose in a 2D projection is a common task in computer vision and gives the
possibility to combine the ambiguous appearance of 2D projection with learned priors
from data to perform 6DoF estimation tasks. However, to enable robots and autonomous
agents to simultaneously map and locate (SLAM) in an unknown environment, a 3D
representation is required. The 3D object pose often also referred as 6D pose or 6 DoF
(degrees of freedom) consists of 3 Cartesian coordinates x = (x, y, z) and the 3 Eulerian
angles θ = (θr, θp, θy) roll, pitch and yaw. The object translation in a scene is described
by the x and the corresponding rotation of the object by θ. Those measures are relative
to the camera, where the scene is projected onto an image plane.

Peng and Liu [PLH+19] propose a Pixel-wise Voting Network (PVNet) to achieve a 6D
object pose recovery (Fig. 2.9). The PVNet is a two-stage process, where during the
first stage the 2D keypoints are detected. In a second stage, the 6D pose parameters
are computed via Perspective-n-Point (PnP) algorithm [WH06]. To detect the key
points, Peng and Liu use a voting-based keypoint localization on RGB images. They
create a vector field where each pixel represents the direction to the closest key point.
Additionally, they add a segmentation head that classifies each pixel as a background or
target object. This technique forces the model to focus on local information, which shows
robust results concerning occlusions. The spatial probability for a keypoint location is
calculated via a RANSAC-like voting scheme. The downside of this approach is its closed
world assumption, which means that only beforehand known objects can be detected and
reconstructed in a 6D pose.

Figure 2.9: Visualization of the PVNet 6D pose estimation scheme [PLH+19]
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2. Pose estimation using End-to-end Learning

Another quite similar method to achieve pose estimation for known objects is PoseCNN
[XSNF17]. Xiang also uses a pixel-wise vector-field representation, but instead of detecting
the object keypoints, they directly detect the object centers. Since they also depend on a
closed world assumption, they can calculate the translation matrix T from the center
and the object size. An additional output head for 3D rotation regression estimates
the rotational matrix R with a Quaternion representation. The PoseCNN approach is
a mixture between a top-down and a bottom-up methodology. They use a pixel-wise
labeling step, which is bottom-up. Afterward, they regress the pose from those labeled
pixels, which once more only works for known objects and therefore is a top-down
approach.

Lepetit and Pitteri [PIL19] use a different strategy to recover the 6D object pose from
RGB-D images, which is much more related to the methodology we discuss in this thesis.
The method relies on object geometries and does not require re-training for every object
which they want to detect. Thus, this provides significant practical advantages, due to
the avoidance of resource-intensive re-training procedures.

Figure 2.10: Visualization the 2D corner detection and corresponding 3D bounding box
[PIL19]

The world of industrial objects is very rectangular and consists of a lot of geometric
primitives. Lepetit and his group make use of this fact in their detection method. They
use a Faster R-CNN [RHGS15] backbone to detect regions of interest and estimate 2D
corners within those regions. Those 2D object corners get matched with a 3D CAD model
in a RANSAC-like fashion. The 2D corners are the basis for estimating the 3D position
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2.3. Summary

of the object, then those corners are projected back on the plane for verification (Fig.
2.10). Just by switching to another CAD object model, the same detector can estimate
the 3D pose of another object type. Lepetit and Pitteri achieve state-of-the-art results
on the T-LESS dataset [HHO+17], which includes a white range of symmetric objects,
which are typically quite challenging for pose estimation, due to symmetry-dependent
ambiguities.

2.3 Summary
Most modern pose estimation methods are dependent on closed world assumptions and
often use a vector-field representation to regress the necessary key points for object
pose recovery. The detectors commonly use RGB appearance information as input and
therefore neglect the geometric properties of the objects of interest. Recently, the trend is
moving away from closed-world assumptions, and the availability of accurate and cheap
depth sensors is emerging. This thesis proposes a methodology to leverage these trends
since we focus on incorporating geometric information for pose estimation purposes.
Depending on a first stage depth estimation procedure to get ride-off the vast amount
of possible object appearances. Additionally, we detect geometric primitives, namely
cuboids, of unknown size in a bottom-up manner. The bigger picture of this methodology
is to construct the environment and included objects as cuboid composites.

13





CHAPTER 3
Depth Estimation as the Basis of

Geometric Representation

In this thesis, we target pose estimation via geometric cues. Therefore depth estimation
is crucial, as it encodes spatial relationships in a scene. Estimating the depth of a scene
is a ubiquitous task for humans to navigate and operate in any environment. We achieve
these tasks with visual input, depending on two separate images, one image per eye. The
image pairs parallaxes properties are exploited to estimate distances. This seemingly
effortless ability of humans is difficult for machines and crucial for various tasks in the
reign of robotics.
In contrast to humans, artificial agents use a greater variety of different sensing modalities
to measure the depth of the environment. The most widely used are:

1. active depth sensing, such as LIDAR

2. depth estimation from a stereo image pair (passive sensing)

3. monocular depth estimation

LIDAR (Light detection and ranging) sensors determine distances, via sending a laser and
measuring the time for the reflected light to return to the receiver. This method is widely
used in the domain of autonomous driving [YTO+14], due to its capability to measure the
distance on long ranges accurately. Kashani [KOPW15] gives a comprehensive overview
of different LIDAR systems. However, a disadvantage of LIDAR systems is that they
are costly and provide only a spatially sparse depth representation. Therefore, we will
focus on stereo vision and monocular depth estimation methods. Those methods are
cost-effective and capable of estimating accurate depth on short distances, which meets
our expectations in this thesis.
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3. Depth Estimation as the Basis of Geometric Representation

3.1 Monocular Depth Sensing and Learning-based
Methods in Particular

To some extent, monocular depth estimation resembles the intuitive geometric awareness
of a human due to its dependence on knowledge of the world. Object properties, shadows,
and geometric distortion are taken into consideration to estimate the depth of scenes. It
is very similar to closing one eye and estimate which objects are further away than others.
In most scenarios, it is still possible to give a reasonable estimate, but only because of
the observer’s general knowledge of the world.
A possibility to incorporate geometric understanding into the depth estimation process is
to create hand-crafted features combined with statistical modeling. An example for such a
methodology would be [HEH05a] [HEH05b], where simple assumptions like the existence
of a ground floor, rectangular areas that stand on this ground, and a background sky
is assumed. These methods are studied extensively and lead to useful results in some
scenarios. However, they tend to do not generalize well since it is hard to construct a
representation that is applicable in a broad range of scenarios.
An alternative to this concept is the nowadays dominating method to algorithmically
extracting the feature representation from the data itself. Since the rise of CNNs
(convolutional neural networks) [KSH12], these approaches dominate in the reign of
image classification and steadily widen their rule to related topics like object detection,
image segmentation, pose estimation (as discussed before) as well as depth estimation.
In this thesis, we focus on learning-based approaches to estimate the depth of images.
Zhao [ZSZ+20] gives a concise overview of different deep learning-based depth estimation
techniques.
However, this mapping between a 3D world and its 2D projection also comes with
challenges like choosing an adequate network architecture, acquiring a sufficient training
dataset, and composing an appropriate loss function to converge to a robust model that
generalizes well. Ranftl and Lasinger [RLH+19] take a novel approach to deal with
these problems. They use a so-called Zero-shot Cross-dataset transfer method, which
means training on a completely different dataset than testing. They argue that the
biggest challenge in deep learning-based depth estimation is the generalization of the
model, which is crucially dependent on the universality of the training data. There
are already existing depth datasets like MegaDepth [LS18], Kitti [GLU12] and TUM
[SEE+12] available, but all have their own intrinsic biases, are small, or only contain
images from a particular scenario (for example only indoor images [KJMS18]). Ranftl
and Lasinger [RLH+19] combine 6 of those benchmark datasets and further incorporate
data from 3D movies to a vast mixed depth dataset.
The difficulty of mixing different data sources relies on the scale and shift inconsistency
between the corresponding ground truths. Sometimes the ground truth is accumulated by
stereo cameras (with known calibration or unknown), via laser scanners (which measure
the absolute depth), or by a structured light sensor, like in the case of a Kinect [Zha12]
camera. To overcome this cross dataset shift and scale ambiguity, they developed a novel
scale- and shift-invariant loss (Eq.3.2). The first step of their method is normalizing the

16



3.1. Monocular Depth Sensing and Learning-based Methods in Particular

disparity information for the ground truth d and the predicted disparity d∗ for each pixel.

t(d) = median(d), s(d) = 1
M

M

i=1
|d − t(d)|

d̂ = d − t(d)
s(d) , d̂∗ = d∗ − t(d∗)

s(d∗)

(3.1)

Then they formulate a composite loss 3.2 which ensures to minimize the disparity
difference between prediction and ground truth, this behaviour is ensured by the Lssi

loss (Eq.3.2). Additionally, they introduce a regularization loss term Lreg, with the aim
of minimizing the gradient of Ri = d̂i − d̂∗

i for different scale levels k. That ensures a
continuous depth estimation map, exhibiting smooth spatial variations.

Ll = 1
Nl

Nl

n=1
Lssi(d̂n, (d̂∗)n) + αLreg(d̂n, (d̂∗)n)

Lreg(d̂, d̂∗) = 1
M

K

k=1

M

i=1
(|∇xRk

i | + |∇yRk
i |),

Lssi(d̂, d̂∗) = 1
2M

M

i=1
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i )2

(3.2)

Lastly, they separate the training procedure from testing, which means that their reported
testing results are from datasets that were not part of any training step. The monocular
depth estimation methodology of Ranftl and Lasinger [RLH+19] produces state-of-the-
art on many benchmarks, such as Kitti [GLU12], which was not part of any training
procedure. Therefore, we employ their MiDaS model as the first step in our geometric
aware detection pipeline, for estimating the depth of a scene.

Figure 3.1 gives an impression of the quality of the depth estimation results from the
MiDaS model for quantitative analysis of their model performance [RLH+19]. For all
depth estimation steps later in this thesis, we use the pre-trained MiDaS model from
Ranftl and Lasinger [RLH+19].
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3. Depth Estimation as the Basis of Geometric Representation

Figure 3.1: Qualitative results from MiDaS monodepth estimation [RLH+19]

3.2 Stereo Vision

Classical stereo vision is a well-established method for depth estimation, where you
calculate the depth of objects from synchronous image pairs [BF82].
To achieve this, at least one known distance is required. In the case of stereo vision, this
is typically the baseline between the two cameras. Additionally, the focal length for a
camera setup is known, which allows us to compute the distance by simple trigonometry.
Image 3.2 illustrates this setup, which is more commonly known as parallaxes.

To calculate the distance Z to the point of interest P , we first have to obtain the
interocular distance b, which is known in the case of a stereo camera. Additionally, we
have to calculate the shift d between the two images from the synchronous cameras 3.3.

d = |xl − xr|,

b = |C1 − C2|
(3.3)

After deriving b and d, we can use the property of similar triangles to obtain the distance
to point P by transforming the equation 3.4.
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3.3. Learning-based Stereo-matching Methods

Figure 3.2: Illustration of the parallaxes for depth estimation in stereo vision

b − d

Z − f
= b

Z
,

=⇒ Z = bf

d

(3.4)

This methodology allows us to estimate the depth of objects but runs into difficulties when
scenes include reflective surfaces, thin structures, or texture-less components. However,
a disadvantage of the stereo vision approach is that the quality of depth estimates
deteriorates with increasing target distance.
Modern binocular stereo algorithms successfully enrich the trigonometric approach with
representational knowledge due to deep learning enhanced matching quality. These
enhanced stereo-matching methods are the subject of the next section.

3.3 Learning-based Stereo-matching Methods
Learning-based methods for estimating pixel-wise disparity use deep neural networks to
learn representations from data. Thus, machine learning enhanced stereo vision methods
achieve better results, in situations where thin structures and textureless areas appear.
The first end-to-end trainable architecture for disparity estimation from stereo images
was DispNetC [MIH+16a]. They use a correlation layer to measure the similarity between
left and right images.
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3. Depth Estimation as the Basis of Geometric Representation

Another common approach is 3D convolution, where the left and right feature represen-
tations are concatenated and afterward aggregated via a convolution operation. GC-Net
[KMD+17] is an early example of the 3D convolution methodology. A more recent candi-
date of the 3D convolution approach is PSMNET [CC18], where they additionally use
convolution for cost aggregation, which leads to state-of-the-art performance in disparity
estimation. However, the 3D convolution methods come with the drawback of being
computationally expensive, which leads to high deployment costs and being slow.
Therefore, Xu and Zhang [XZ20] propose a learning-based stereo-matching method with-
out 3D convolution. Their so-called Adaptive Aggregation Network (AANet) uses a
sparse point-based representation for intra-scale cost aggregation (Fig. 3.3).

Figure 3.3: Illustration of sampled locations from the left image of a stereo pair (a). The
middle image (b) shows classical convolution for aggregation. The right image (c) shows
adaptive sampling locations via deformable convolution like in the case of the AANET
[XZ20].

The main idea of the AANET [XZ20] depends on the combination of two complementary
modules, an adaptive intra-scale cost aggregation (ISA) and an adaptive cross-scale cost
aggregation (CSA).
The ISA module leverages a sparse point-based representation for flexible cost aggregation,
closely related to deformable convolution to tackle the common issue of edge-fattening.
On the other hand, the CSA module deals with low-texture regions, where aggregating
information from different scales can be beneficial for estimating disparities.
These two modules combined result in a final aggregation module (AAModule), which
is stacked on each other. The overall architecture of the AANET (Fig. 3.4) consists
of two feature pyramids with shared weights to extract the features from the rectified
stereo image pair. Afterward, those representations are correlated on corresponding
scales to construct the multi-scale cost volumes. Further, the cost volumes are fed into
the consecutive AAModules to calculate the final disparity prediction.
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3.3. Learning-based Stereo-matching Methods

Figure 3.4: Illustration of the learning-based stereo-matching procedure of the AANET
[XZ20]. Consisting of convolution-based shared feature extraction and subsequent corre-
lation to construct the Multi-Scale Cost Volumes. Afterward, the cost volumes are used
to estimate the pixel-wise disparity via the consecutive AAModules.

The ANNet is trained in an end-to-end manner and achieved state-of-art results on
KITTI [GLU12] and, Scene Flow dataset [MIH+16b] while having a significantly lower
runtime. Additionally, the AANET predicts a dense disparity map. Therefore, we employ
a pretrained AANET as an alternative to the MiDaS-based monocular depth estimation
to compare the influence of the different geometric representations.
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CHAPTER 4
Proposed Methodology

In this section, we discuss the proposed method for geometric-aware pose estimation in
the case of general geometric primitives, namely cuboids and their real-world pendants.
Examples of such are containers, boxes, cupboards, and much more.
In the first section, we walk through the data synthesis process. This includes constructing
the geometric representation via monocular depth estimation as well as learning-based
stereo-matching methods. From the resulting dense depth maps, we calculate the
surface normal representations. Afterward, the advantages of this procedure compared
to standard appearance-based learning will be outlied.
In the next section, we compare the two different pose estimation strategies. The first
strategy is an object-centered top-down approach, which means we directly detect the
cuboid centers and regress the necessary attributes for pose construction. The second
strategy is a bottom-up or part-based scheme, where we detect corners and construct
the cuboid pose from those. In the case of the part-based approach, this includes an
algorithmic cuboid construction post-processing step. Additionally, we will show the
feasibility of our method for a palette. This entity is more interesting from an application-
related point of view. Overall the cuboids and palettes are industry-relevant on their
own, since detecting and estimating the pose of those is crucial in the scenario of an
autonomous forklift, see Figure 4.1. The forklift is only one example, there are many
more scenarios where cuboid shapes play a role in applications.
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4. Proposed Methodology

Figure 4.1: Visualization of an application scenario for the geometry based pose estimation

4.1 Data Generation and Employed Representations
In the domain of supervised learning, the task of collecting data and annotating the
corresponding ground truth is crucial for success. The role of the data in such machine
learning and particular deep-learning-driven experiments is at least equally important to
the choice of the algorithm or the network architecture.
A key complexity of this matter is collecting and annotating a vast data-set, which is very
labor-intensive and subsequent also cost-intensive. This approach is often only feasible
for big institutions and especially for big internet companies.
Synthetic data is a more and more used alternative to real-world data since the cor-
responding ground truth is generated in an automated manner. To built a synthesis
framework for generating the necessary training data, we use the open-source 3D anima-
tion software blender (https://www.blender.org/), which comes with an interface
for python scripting. Blender allows us to write python scripts to procedurally generate
training data, where we randomly alternate the conditions of the renderings.
Following properties are varied to generate a diverse set of appearance, view geometry,
and scene photometric conditions:

• the number of objects
• the size and shape of the objects (in case of the cuboid)
• the object textures
• the positioning of the objects
• the camera angle
• the distance of the camera to the objects
• the positioning of the light source

The randomization of those factors is necessary to mimic the diversity of real-world
situations. Figure 4.2 shows a few synthetic training samples from the blender pipeline.
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4.1. Data Generation and Employed Representations

Figure 4.2: A few examples of the procedural generated training data for cuboid detection
and pose estimation

However also the usage of synthetic data comes with its drawbacks. The synthetic data
can reduce the generalization ability of a model on real-world domains. The issue depends
on the vast amount of different appearance configurations a real-world object could have
(Fig. 4.3).

Figure 4.3: The same object can exhibit a large space of appearance variations, but can
also be described by one distinct geometry

If we want to train a model on the raw renderings, we have to consider every possible
appearance configuration during data synthesis. In simple terms, if the training set
only includes green and blue cuboids, the detector could not detect red cuboids during
inference mode. Since to resolve this issue, we have to know all possible appearance
configurations beforehand, which would lead us to a closed-world assumption. In our
general-purpose cuboid detection scenario, considering all appearance modalities is not
feasible. The number of possible cuboid colors and textures in the real world is practically
spoken unlimited. We deal with this issue by focusing on the geometric object properties
instead of the appearances. We achieve this via the representation of the data. Thus,
we use pre-trained depth estimation networks to estimate the disparity of each pixel
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in the rendered images. We apply MiDaS [RLH+19] for monocular depth estimation
and AANET [XZ20] for stereoscopic depth estimation. Afterward, we calculate with
the Sobel operator the surface normal representation from the predicted relative depth
maps. We map the surface normals to RGB channels to simplify learning on established
appearance-based concepts. In this way, we get rid of the appearance information, which
forces the model to focus on geometric properties for decision-making during training.

Figure 4.4: The left image shows the left part of the rectified stereo image pair from the
synthetically generated training samples. The image in the middle shows the via MiDaS
[RLH+19] estimated monocular surface normals. The right image shows the via AANET
[XZ20] estimated stereoscopic surface normals.

From Figure 4.4 we can obtain that the estimated surface normals contain less complexity
compared to RGB images. The less complex input data simplifies the detection task and
leads to faster convergence of the loss. Therefore, we reduce the number of necessary
training samples. Another advantage of the geometric transformation of the renderings is
the containment of imperfections and noise due to depth estimation errors. The roughness
of the depth estimation helps to narrow the gap between the synthetic and real-world
images. Figure 4.5 illustrates the geometric-representation induced convergence between
artificial and real-world domains.

We can clearly distinguish the real from the synthetic scene on the right (Fig. 4.5).
However, after the geometric transformation, this is not the case anymore. It is barely
possible to decide which picture is a real-world sample and which is not. The visual
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4.1. Data Generation and Employed Representations

Figure 4.5: The upper RGB image is a synthetic sample from the blender pipeline, with
the corresponding estimated surface normal representations from MiDaS [RLH+19] in
the middle and AANET [XZ20] at the right. The lower image is a real-world image, with
the corresponding surface normal estimations.

convergence of the images is highly promising for generalization. A detector that is built
on such synthetic geometric data should be able to work also on real-world images. Due
to this data synthesis pipeline, we can generate the corresponding ground truth in an
automated manner and store it in YAML files. The ground truth information consists of:

• cuboid center position
• cuboid corner positions
• an integer to store the matching between corners and center

The data generation Blender pipeline allowed us to create a vast training set with around
70.000 annotated samples. It would not have been feasible for us to collect and annotate
such a big data set from real-world samples.
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4. Proposed Methodology

4.2 Detection and Pose Estimation
In this section, we discuss two complementary approaches to construct cuboid poses from
synthetic surface normal images with corresponding ground truth data. Figure 4.6 gives
an overview of the experiments.

Figure 4.6: Overview of the proposed methodologies for object pose estimation

Both methods are closely related to the CenterNet [ZWK19] detection scheme. We
use a single encoder-decoder backbone, with multiple output heads. The main head
outputs a heatmap with Gaussian probabilities for the object centers. However, the
output could also be the center of an object part, leading to a part-based bottom-up
proposal generation scheme. Additional heads allow us to regress key-point attributes
corresponding to the centers. To obtain the associated key-point attribute we take the
value from the secondary head at the same position as the maximum of the corresponding
main head. This is visualized in Figure 4.7.
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Figure 4.7: Illustration of the multiple head based detection

The model is trained end-to-end and does not need any intermediary steps. The training
loss is composite L, which is calculated like:

L =
H

h

whLh (4.1)

It is a weighted sum of separate loss terms for each output head Lh. This linear
combination allows emphasizing the attributes on which the detector focuses during
training. For example, if you increase the weight for an attribute type, the corresponding
loss term will be more influential on the overall loss. The two complementary detection
schemes are:

• top-down object-centered method

• bottom-up part-based method

In the case of the top-down object-centered detection scheme, we define the cuboid or
palette centers as the output of the main head. From there we regress the corner locations
which is the output of a second head.
The second method is a bottom-up part-based detection scheme, where we represent
the individual cuboid corner location as centers and encode neighboring corner location
vectors as regressed attributes. So instead of cuboids, we detect corners from which we
construct the cuboid poses. Both methodologies are discussed in detail in the following
sections.
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4.2.1 Object-centered Detection Scheme
In the case of the object-centered approach, we focus on detecting the cuboid centers
and regress from their corresponding cuboid corners as key-points (Fig. 4.8).

Figure 4.8: Illustration of object centered detection method

This method is a top-down detection process since we know beforehand the type of
objects we are looking for, namely cuboids and palettes. This procedure resembles the
human pose estimation method of Law [ZWK19]. They detect the centers of humans
and regress from their joints to construct the pose of the human skeleton. Figure 4.9
illustrates the output heads of the CenterNet human pose estimation.

Figure 4.9: Output heatmaps for appearance-based human pose estimation from [ZWK19]

In the case of Law [ZWK19] the main head shows the Gaussian probability distributions
for the human center and the secondary heads show the additional joints and offsets to
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construct the pose.
For the cuboids, the output heads reduce to two, the main head for the cuboid center
probability density and the second head for the corner coordinates. In conclusion, the
weighted composite loss formulates like the following:

L = αLcent + βLcorn (4.2)

Where Lcent is a focal loss term for the cuboid centers and Lcorn is an euclidean L2 norm
loss. For the object-centered experiment we chose to weight α = β = 1.0

4.2.2 Part-based Detection Scheme
The idea of the part-based detection methodology is to divide the cuboids into their basic
geometric units and detect those. We chose to train the detector on the cuboid corners
since those are easily identifiable in the image surface normal representation and are an
even more general geometric primitive than the cuboid itself. The corner representation
consists of the actual location which is encoded in the main heatmap. In the additional
heatmaps, we regress the corresponding edge vectors. Each edge vector is defined as
(sin θ,cos θ,|e|), where |e| represents the length of the edge in the 2D image. θ denotes
the edge orientation with respect to the horizontal direction. The edge vector indices
are sorted according to increasing orientation angles. The sorting step is necessary to
unambiguously compare and score possible matching edge structures during training.
The corner representation with corresponding edges is visualized in figure 4.10.

Figure 4.10: Illustration of the cuboid corner representation. Green-, red-, blue-colored
edges represent edge orientations with increasing θ values

We train the model with a composite loss consisting of three terms. The main part is
a focal loss term Lk, which ensures that the corner positioning is right. Additionally,
we use an angular loss La, which is simply a regularized L1 norm of the sin θ and cos θ
terms. We also introduce a length-loss term Ll, in form of a regularized L1 norm of the
edge length difference. The overall loss term is the following:

L = αLk + βLa + γLl (4.3)
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Those composite loss terms are balanced by weighting factors α, β, and γ to ensure
an optimal learning objective. Our experiments lead to α = 1.0, β = 0.8 and γ = 0.6
to achieve the best detection results. We use this parameter setting throughout the
part-based experiments in this thesis.
In a post-processing step, we construct the cuboids from the detected corners and edges.
To achieve this we designed a center-voting based cuboid construction algorithm (Alg.
4.1). The algorithm starts with the output of the detector, which consists of the corner
locations det_corn, the angle representation ang_kps, the edge lengths len_kps, and
the detection confidence scores scores_kps. With those measures we can construct the
hypothetical corners est_corn, this happens in line 1 of the algorithm. Afterward, we
calculate the euclidean distance between the detected and the estimated corners dist_m
and keep track of the edge distance correspondence edge_m. Then we initialize lists
for the final constructed cubes, the center coordinates, and the scores (line 3 of the
pseudo-code). The main loop runs until the Euclidean distance between the position
of the closest corner estimate and corner detection dist reaches the hyper-parameter
dist_max. Based on image structural co-linearity, we hypothesize a possible linked
corner pair (line 7 of the pseudo-code) and set the distance between the chosen corners to
infinity in the adjacency matrix dist_m. Two associated corners are enough to generate
six image points, which are used in a camera re-sectioning step to estimate object centers
in the 3D space. Those coordinates are projected back into the 2D plane and allow us to
obtain eight cuboid corners and the center (line 8 of the pseudo-code). The corner pair
cuboid hypothesizing is visualized in figure 4.11.

Figure 4.11: Illustration of the center-voting-based cuboid construction algorithm

Afterward, we check if the cuboid was already proposed (line 8), we achieve this by
calculating the euclidean distance between the new center position with the proposed
center coordinates. We choose the closest if the distance is lower than the threshold
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center_thresh. In that case, we sum 1
dist to the score for this particular cuboid.

If the center does not coincide with an already counted one, we append the cube to the
cubes list. Additionally, we append the center and initialize a corresponding detection
score (lines 14, 15, and 16). The detection score is inverse to the distance between
detected and estimated corner, which resembles the confidence of the detection in the
score.

33



4. Proposed Methodology

Lastly, we check for all proposed cuboids if their score reaches the final threshold thresh.

Algorithm 4.1: cuboid center voting algorithm
Input: det_corn, ang_kps, len_kps, scores_kps from the detector and the

additional hyper-parameters det_thresh, dist_max, center_thresh,
thresh

Output: cubes which is a list of ordered coordinates for the eight cuboid corners
and the corresponding center coordinates center

1 est_corn ←
calc_est_corners(det_corn, ang_kps, len_kps, scores_kps, det_thresh);

2 dist_m, edge_m ← calc_dist_det_est(det_corn, est_corn);

3 centers, cubes, scores ← ∅;

4 dist ← 0;

5 while dist < dist_max do
6 dist ← min(dist_m);

7 cube_est, inpindx, dist_m ←
create_cube_est(det_corn, est_corn, dist_m, edge_m);

8 cube_2D, center_2D ← construct_and_project(cube_est, inpindx);

9 is_counted, idx ←
check_if_cuboid_counted(centers, center_2D, center_thresh);

10 if is_counted then
11 scores[idx]+ = 1

dist ;

12 end

13 else
14 cubes.append(cube_2D);

15 centers.append(center_2D);

16 scores.append( 1
dist);

17 end

18 end

19 for cube, score in zip(cubes, scores) do
20 if score > thresh then
21 keep cube;

22 end

23 else
24 reject cube;

25 end

26 end

Result: cubes,centers
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The threshold parameter allows configuring the sensitivity of the detector without re-
training the model. So a low threshold results in a high recall, which means most cuboids
will be detected, but there will also happen wrong detections (False Positives). On the
other hand, a high threshold will result in high precision, which means that detected
objects will be most likely cuboids (low False Positive rate), but the detector will also
tend to miss some True Positives.
Overall the part-based detection combined with the center-voting cuboid construction
algorithm allows us to construct the 2D projected pose of the highly symmetric cuboids.
Figure 4.12 gives some qualitative impressions of the predicted poses on real-world images.

Figure 4.12: The left images show the output of the detector, with the detected corners
and edges drawn on the surface normal representation. The right images show the
back-projected 3D pose of the center-voting post processing algorithm on real world
images
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4.3 Summary
In summary, the object-centered top-down and the part-based bottom-up detection
schemes complement each other. The object-centered approach starts with detecting
the object and regresses the associated key points from the center. To some extent,
this is the most obvious way to tackle the detection problem. On the other hand, the
bottom-up part-based approach localizes the object corners with their corresponding edge
orientations. This is an even more general detection approach, which can be applied to
all kinds of rectangular and boxy objects. However, the part-based approach requires a
post-processing step to associate the corners for constructing the object poses. We achieve
this via the center-voting cuboid construction algorithm, but this is only applicable for
cuboids. Therefore the post-processing limits the generality of the part-based detection
scheme and requires a redesign of the construction algorithm for other rectangular objects.
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CHAPTER 5
Results and Discussion

In this section, we discuss the results of the object-centered and the part-based experiments.
We focus on evaluating the geometric aware cuboid detection since the cuboids are
geometric primitives with many real-world pendants and all kinds of possible appearance
configurations. Further, the cuboids have a clear and distinct geometry, which makes
them easy to recognize in the surface normal images. Additionally, many objects from
the man-made world are cuboids, or cuboid composites, which increases the practical
relevance of detecting those. In conclusion, cuboids are the optimal target for testing
the detectors’ ability to overcome appearance dependency and focusing on the geometric
object properties. Lastly, we will also show qualitative results for a palette, to illustrate
the feasibility and the generality of the geometric aware pose estimation.

5.1 Overview of Experiments
We start with the object-centered experiment results and conclude with the part-based
experiment results.
To evaluate the estimated cuboid poses we choose the Intersection over Union (IoU)
metric. This is a common metric for evaluating 2D detectors, where we calculate the
ratio between overlap and the union of the convex hulls (Fig. 5.1).
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Figure 5.1: Visualization of the Intersection of Union score

The IoU is not a 3D object detection metric, which would be desirable, especially in
robotic scenarios. However, we only have relative depth information due to the monocular
depth estimation, so we can not calculate the distance to the objects. Additionally, we do
not have any prior knowledge about the size of the cuboids, since we tackle a semi-open
world scenario. We want to detect all cuboid-like objects, which makes the 3D detection
significantly more difficult than detecting a static set of prior known specific objects. In
the case of the stereoscopy-based depth estimations, we have access to absolute distance
measurements. However, to achieve comparability between the detection results from
both geometric representations, we rely on the 2D projection of the 3D poses. All models
are trained solely on synthetic data from our blender synthesis pipeline. The training
data-set consists of around 70.000 annotated cuboid samples. On the other hand, we test
our pose estimation pipelines on real-world images. Since we are not aware of a cuboid
detection benchmark data set with IoU ground truth metric, we decided to create our
own test sets. One set consists of 50 single camera RGB images of real-world boxes in
occluded and cluttered scenarios. We use this set to test and fine-tune the monocular
depth estimation pipeline. Additionally, we took 28 images with a ZED-2 stereo camera
(https://www.stereolabs.com/zed-2/) to compare the pose estimation results
from both, the stereoscopy-based and the monocular-based geometric representations. In
both cases, we took the images our-self, and also the annotation of the ground truth was
done by us (Fig. 5.2).
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Figure 5.2: A few samples of the hand annotated real world test data set

5.2 Object-centered Experiment
Figure 5.3 visualizes the overall pipeline for the object-centered experiment. It consists of
a pre-processing step, where we estimate the disparity via the pre-trained monocular depth
estimation model [RLH+19]. Afterward, we calculate the surface normal representation,
which serves as the input for the pose estimation model. The detector outputs the object
center heatmap in the main head and the corresponding corners in the secondary head.
During the post-processing, we construct the wire-frame model from the object center
and the corresponding key points.
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Figure 5.3: Visualization of the object centered detection pipeline

The simplicity of this method comes with significant drawbacks since the key-point
regression process demands distinguishable and therefore uniquely identifiable key-point
attributes. However, for the cuboid-shaped objects, this is not the case, their corners
are not uniquely identifiable. We tried to come up with a feasible enumeration strategy
for the corners. For example, we ranked the corners by the Euclidean distance from the
left upper image border. But the highly symmetric cuboids are not suitable for this
kind of approach. Figure 5.4 shows some inference result of the trained object-centered
detector. On the right side of the images are the output heatmaps of the multiple detector
heads. The upper heatmap with the red dots indicates the Gaussian probabilities for
the object center positions, which appear promising. The right lower heatmap shows the
probabilities for the positions of the distinct corners. Every color indicates one kind of
corner.

Since the enumeration of the corners is not coherent enough for the detector, the training
gets stuck in a local minimum where the corner positions are grouped in the middle or at
one of the sites for lengthy shaped boxes.
For the less symmetric palettes, the detection scheme works, since the key points are
distinguishable. Thus, we do not encounter wrong penalizations during training. The
palette results (Fig. 5.5) qualitatively underline this claims.

Overall the object-centered results are surprising since we thought that the pose estimation
should be easier for cuboids compared to more geometrically complicated structures, like
the pallet. The opposite is the case. However, the detection of the palette indicates the
potential feasibility for this geometric-aware center-focused pose estimation scheme for all
kinds of application relevant objects. Still, in the case of cuboids we have to consider a
different strategy for estimating the pose, this is part of the next experiment subsection.
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Figure 5.4: The left images show the surface normal representations of real-world input
images, with estimated bounding boxes and corresponding key points. The left upper
heatmaps visualize the cuboid center estimates. The left lower heatmaps show the cuboid
key point estimates.

Figure 5.5: The left image shows a real-world input image, with the estimated bounding
boxes and corresponding palette key points. The left upper heatmap visualizes the palette
center estimate. The left lower heatmap shows the palette key point estimates.
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5.3 Part-based Experiment
In this section, we discuss the part-based experiments for geometric-aware cuboid detec-
tion. Figure 5.6 illustrates the part-based detection pipeline. We compare monocular and
stereoscopic depth estimation methods to construct the surface normals. The resulting
geometric representations of the data serve as input for the encoder-decoder-based pose
estimation network.

Figure 5.6: Overview of the part-based cuboid detection pipeline. The geometric
representation is created via monocular or stereoscopic depth estimation.

The detector has three output heads, the main head shows the corner position probability-
density heatmap. The secondary two heads give us the edge representation (sin θ, cos θ,
|e|). Those outputs serve as inputs for the center-voting cuboid construction algorithm
(Alg. 4.1). The depth estimation steps simplify the training procedure due to the reduced
complexity of the detector input. Figure 5.9 support this claim since the loss converges
after only six epochs for both experiments.

We train the monocular depth-based detector and the stereoscopic depth-based detector
on the same composite loss weighting terms. The corner positioning gets a weighting of
α = 1.0, the angular representation of the corresponding edges β = 0.8, and the edge
length associated loss term γ = 0.6.
After the detection, we have to choose adequate hyperparameters for the cuboid con-
struction post-processing. Therefore, we perform a grid search on a separate real-world
test set consisting of 50 hand-annotated images. We measure the influence of each
cuboid-construction parameter on the overall IoU score (Fig. 5.14).

The results indicate that 0.4 is optimum for the detection_thresh. This parameter
influences the sensitivity of the detector. If the detection_thresh is high, we only accept
corners where the model assigned a high probability. Further, we can obtain that 0.2 is
optimum for the center-voting threshold. The center-voting parameter controls how many
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Figure 5.7: train and validation loss of the
monocular-based experiment

Figure 5.8: train and validation loss of the
stereoscopy-based experiment

Figure 5.9: The turquoise lines are the training losses and the purple lines are the
validation losses, in the monocular and the stereoscopy-based experiments the loss
converges after around 6 training epochs.

corner pairs have to vote for a center. Six cuboid points from a corner pair take part in
a camera resectioning process to estimate a center. Camera resectioning is a geometric
camera calibration process, where we estimate the camera matrix via 2D projection and
3D model correspondence. The optimal value for the other two hyperparameters is not
that obvious. Therefore we choose the overall best parameter settings from the grid
search (tab. 5.1).

thresh_detection thresh_dist voting_thresh same_center_thresh IoU
0.4 10.0 0.2 0.20 0.695
0.4 15.0 0.2 0.25 0.692
0.4 10.0 0.2 0.25 0.690
0.4 10.0 0.2 0.30 0.689
0.4 15.0 0.2 0.20 0.689

Table 5.1: Results of the grid search for tuning the threshold hyperparameters of the
center-voting cuboid construction algorithm

Figure 5.15 shows the results of the best parameter setting for the monocular depth-based
bottom-up cuboid pose estimation pipeline. From figure 5.15 we can obtain that the
detector sometimes hallucinates corners that are not there, like in the case of the paper
roll at the bottom image. But the cuboid construction algorithm, with the center-voting
threshold, prevents the system from constructing a wrong cuboid wire-frame. The first
image also shows that the detection framework is in principle able to deal with partial
occlusions, but this does not always work like for the white box at the back.
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Figure 5.10: Detection threshold Figure 5.11: Cuboid distance threshold

Figure 5.12: Center voting threshold Figure 5.13: Same center threshold

Figure 5.14: Fine tuning results of the center-voting cuboid construction algorithm
hyperparameters
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Figure 5.15: A few samples from the final tests for the part-based detection scheme,
with detector output left, constructed cuboids in the middle and the convex hulls with
corresponding IoU on the right
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For the final evaluation, we use the via grid search obtained parameter settings. The
test set consists of 28 real-world stereo image pairs, which we took with a ZED-2
stereo camera (https://www.stereolabs.com/zed-2/). We use the left image as
input for the monocular cuboid pose estimation pipeline and the image pair for the
stereoscopic cuboid pose estimation pipeline. Figures 5.16, 5.17 & 5.18 show the outputs
of both experiments. The upper images show the monocular, and the lower images the
stereoscopic results. Both pipelines construct similar cuboid poses, independent of the
underlying geometric representation. Figure 5.17(a) is an example of the importance
of the center-voting post-processing, since also corners of the chair and background are
detected, but still do not lead to wrong cuboid proposals. Figure 5.17(c) shows that
the part-based detection scheme also detects corners of the room. Further experiments
could allow the construction of a geometric representation of the room itself. The overall
IoU scores of both experiments (tab.5.2) show that the stereoscopy-based cuboid pose
estimation pipeline is more accurate than the monocular based. On the other hand, the
monocular counterpart has a significant run time advantage and does not require a stereo
camera as an input device.

depth estimation method IoU runtime [ s
image ]

monocular depth estimation 0.69 0.73
stereoscopic depth estimation 0.74 0.97

Table 5.2: Results of the part-based detection pipeline for monocular and stereoscopic
surface normal representation
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(a)

(b)

(c)

Figure 5.16: Real-world inference results of the cuboid detection framework. The upper
left images show the detector output on monocular estimated surface normals. The lower
left images show the detector output on stereoscopic estimated surface normals. The
middle images show the corresponding outputs of the cuboid-construction post-processing
step. The right images show the convex hulls of the ground truth and the prediction,
with subsequent IoU score.
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(d)

(e)

(f)

Figure 5.17: Real-world inference results of the cuboid detection framework. The upper
left images show the detector output on monocular estimated surface normals. The lower
left images show the detector output on stereoscopic estimated surface normals. The
middle images show the corresponding outputs of the cuboid-construction post-processing
step. The right images show the convex hulls of the ground truth and the prediction,
with subsequent IoU score.
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(g)

(h)

(i)

Figure 5.18: Real-world inference results of the cuboid detection framework. The upper
left images show the detector output on monocular estimated surface normals. The lower
left images show the detector output on stereoscopic estimated surface normals. The
middle images show the corresponding outputs of the cuboid-construction post-processing
step. The right images show the convex hulls of the ground truth and the prediction,
with subsequent IoU score.
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5.4 Summary and Discussion
In summary, the object-centered detection pipeline does not work for the highly symmetric
cuboids. The regressed corners have to be distinguishable, which is not the case. On
the other hand, for palettes, the object-centered detection scheme works fine. Thus,
the top-down detection approach has a lot of potential applications in robotics and
autonomous systems. The part-based detection pipeline allows us to construct the 2D
embedding of the cuboid poses. We achieve this by focusing on the corners that are
even more basic geometric entities than the cuboids. Further, the monocular and the
stereoscopic surface normal representations serve as adequate geometric representations
for the part-based pose estimation approach. The monocular depth estimation comes with
the benefits of a better run-time and less expensive camera requirements. On the other
hand, the stereo-matching-based depth estimations lead to slightly more accurate results
and offer absolute depth measurements, which is necessary for full 3D pose recovery. The
most important insight of the experiments is that we can construct the object poses with
a detector that has never seen a real cuboid during training. Further, the geometric
representation allows the model to overcome appearance dependency and focuses on the
geometric properties. Another benefit of the geometric representation is the less complex
input for the training, which leads to fast convergence of the loss.
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CHAPTER 6
Conclusion and Future Work

In this section, we give a conclusion for the geometric-aware detection schemes. Further,
we discuss the advantages and drawbacks of this methodology compared to the widely-used
appearance-based detection strategies. We compare the part-based and object-centered
methods and argue the benefits of each technique in different scenarios.
Lastly, we give an outlook for future experiments and potential new branches of research
in the domain of geometric-aware detection and pose estimation.

6.1 Conclusions
The experiments show that the learning-based geometric-aware detection works and
can serve as an alternative to appearance-based detection strategies. The geometric
representation helps to narrow the gap between synthetic and real-world domains. The
renderings of the synthesis pipeline look artificial and are distinguishable from the real-
world test images. However, after the surface normal transformation, there is barely
a difference between synthetic and real-world images. Additionally, we do not have
to consider all possible object color and texture configurations, during data synthesis.
Thus, geometric-aware detection schemes have a clear advantage over appearance-based
detection if training on synthetic data is required. On the other hand, we can apply
geometric-aware detection strategies only if the objects are solely identifiable by their
geometry, which is a limitation and a disadvantage of our method.
From the perspective of 3D detection, monocular depth estimation is not a suitable way to
construct the geometric representation, due to the lack of precise distance measurements.
In the case of the stereoscopic depth estimations, we have access to absolute distance
measurements, which makes it the desirable representation for 3D pose estimation.
Another way to deal with the absence of absolute depth measurements is restricting the
class of detectable objects to a set where you know the size of each. We do not follow
this research-path, since it stands in contrast to the semi-open cuboid world, which we
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assumed for our experiments.
The palette experiment shows qualitatively promising results and indicates the feasibility
of many real-world tasks, where geometric-aware detection can be applied.
The part-based detection experiments show promising results from a qualitative and
quantitative perspective. It allowed us to construct the 2D projected poses of cuboids
from all sizes in scenes with occlusion and clutter. This method of interpreting the
geometric data could be beneficial for geometric scene understanding, which is a step
towards general robotic perception.

6.2 Future Work
Future experiments should investigate full 3D pose recovery based on the stereoscopic
geometric representation and the subsequential provided absolute depth measurements.
Therefore, we could widen the detection framework by 3D pose estimation and bird’s eye
view estimation. An additional potential experiment path would be to develop further the
part-based detection towards a geometric scene interpretation. Such a geometry-based
scene representation could be beneficial for all kinds of robotic tasks and be a step
towards a more human-like perception.
Additionally, it would be beneficial to train the model to detect some entities from a pose
estimation benchmark data set, like T-Less [HHO+17]. Thus, we could quantitatively
compare the geometric-aware detection scheme with appearance-based methods. Further,
we could enrich the detection framework with other geometric primitives, like cylinders
or cones.
In conclusion, the area of geometric-aware pose estimation opens many research directions,
with lots of potential applications in robotics and autonomous systems.
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