
Diplomarbeit
Data-Driven Reduced Models for Numerical Simulations

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Diplom-Ingenieurs (Dipl.-Ing. oder DI), eingereicht an der TU Wien, Fakultät für

Maschinenwesen und Betriebswissenschaften, von

Mark RIEGLER

Mat.Nr.: 01613683

unter der Leitung von
Univ.Prof. Dr.-Ing. Stefanie Elgeti

Jaewook Lee, M.Sc.

Institut für Leichtbau und Struktur-Biomechanik, E317

Eidesstattliche Erklärung
Ich erkläre an Eides statt, dass die vorliegende Arbeit nach den anerkannten Grund-
sätzen für wissenschaftliche Abhandlungen von mir selbstständig erstellt wurde.
Alle verwendeten Hilfsmittel, insbesondere die zugrunde gelegte Literatur, sind in
dieser Arbeit genannt und aufgelistet. Die aus den Quellen wörtlich entnommenen
Stellen, sind als solche kenntlich gemacht.
Das Thema dieser Arbeit wurde von mir bisher weder im In- noch Ausland einer
Beurteilerin/einem Beurteiler zur Begutachtung in irgendeiner Form als Prüfungsar-
beit vorgelegt. Diese Arbeit stimmt mit der von den Begutachterinnen/Begutachtern
beurteilten Arbeit überein.

Wien, Juni, 2023

Unterschrift

Master Thesis

Contents

List of Symbols I

Acronyms II

List of Figures III

List of Tables V

1. Introduction 1

2. Fundamentals 3
2.1. Incompressible flow . 3
2.2. Reduced model using neural networks . 3

3. Implementation 6
3.1. Data generation . 6

3.1.1. Skewed lid driven cavity (SLDC) 6
3.1.2. Karman vortex street . 7

3.2. Data preprocessing . 8
3.3. Network architecture and training . 10
3.4. Data inference . 12

4. Results 13
4.1. Test case evaluation . 13

4.1.1. Common occurring errors . 14
4.2. Latent space exploration . 16

4.2.1. Data interpolation . 16
4.2.2. Solution inference on unseen parameter configurations 17

5. Conclusion 22

A. Appendix 23
A.1. SLDCPE case: effects of network width 23
A.2. Karman case: effects of normalization method and latent code size . . . 23

References 26

Master Thesis I

List of Symbols

Notation Description

Greek symbols
α Incline of domain for SLDCPE case
λ Regularization constant
ν Fluid kinematic viscosity
ϕ Activation function
φ Arbitrary feature
φ Solution vector of variable φ

ϱ Fluid density
θ Neural network parameters

Latin symbols
b Bias vector of hidden layer
d1 Geometry parameter of LDC case
d2 Geometry parameter of LDC case
dmax Largest Euclidean distance to origin
f Body force acting on fluid
i Parameter configuration index
z Latent vector
J Objective function
L Number of neural network layers
h Output of neural network’s hidden layer
Ntrain Number of parameter configurations
Nsamples Number of training samples of parameter configuration
Nt Number of timesteps
o Network output vector for parameter configuration
p Fluid pressure
Nnodes Number of nodes per snapshot for parameter configura-

tion
r Cylinder radius for Karman vortex street case
t Time
u Fluid velocity component in x-direction
uin Inlet velocity for Karman vortex street case
utop Amplitude of periodic excitation at top boundary for SLD-

CPE case
v Fluid velocity component in y-direction
u Vector of fluid velocity
W Weight matrix of hidden layer

Master Thesis II

Notation Description
x Input vector to neural network
xref x-coordinate in the reference domain
ỹ Output vector of neural network
yref y-coordinate in the reference domain

Acronyms

Notation Description
CFD Computational Fluid Dynamics
DL Deep Learning
FEM Finite Element Method
LDC Lid driven cavity flow
nw Network width
PDE Partial differential equation
POD Proper orthogonal decomposition
ReLU Rectified linear unit
ROM Reduced order model
SDF Signed distance function
SLDC Skewed lid driven cavity flow
SLDCPE Skewed lid driven cavity flow with periodic excitation
t-SNE T-distributed Stochastic Neighbour Embedding

Master Thesis III

List of Figures

1. Geometry parametrization of the skewed lid driven cavity. The do-
main is obtained by taking a [0, 1] × [0, 1]-square domain, shifting the
top wall by d1 in positive x-direction and the right wall by d2 in negative
x-direction. 8

2. Geometry parametrization of the skewed lid driven cavity with periodic
excitation . 9

3. Skewed lid driven boundary conditions 9
4. Karman vortex street setup. All but the radius of the cylinder (grey) are

to scale. The triangulation inside the refinement box is finer than outside
of it. This box is a rectangular domain spanning [−0.8, 4.0]× [−1.3, 1.4]. . 10

5. Visualization of autodecoder network architecture 11
6. Relative errors of cases. nw denotes the network width. min-max and

unitsphere denote the different normalization methods. 14
7. Karman vortex case: error evolution of network widths 256 and 512 (la-

tent code size 32, unitsphere-normalization, case with u = 1.6, ϱ = 2.2,
r = 0.45) . 15

8. Karman vortex case: velocity prediction and absolute error of network
widths 256 and 512, first timestep (latent code size 32, unitsphere-normalization,
case with u = 1.6, ϱ = 2.2, r = 0.45) . 16

9. Karman vortex case: velocity prediction and absolute error of network
widths 256 and 512, timestep 750 (latent code size 32, unitsphere-normalization,
case with u = 1.6, ϱ = 2.2, r = 0.45) . 17

10. Karman vortex case: velocity prediction and absolute error of network
widths 256 and 512, last timestep (latent code size 32, unitsphere-normalization,
case with u = 1.6, ϱ = 2, r = 0.45) . 18

11. SLDCPE case: t-SNE plot of latent codes of network with width 512
and latent code size 64 trained on min-max-normalized data. The case’s
parameters are color-coded. 18

12. Karman vortex case: t-SNE plots of latent codes of network with width
512 and different latent code sizes trained on min-max-normalized data.
The latent codes are color-coded for different values of the parameters. . 19

13. SLDCPE case: inferred velocity contour plots of min-max-normalization
(latent code size 256, network width 512, cases with α = 0◦ and t = 9.0 s) 20

14. SLDCPE case: relative errors of inferred velocities at the top boundary
of both data normalization methods (network with latent code size 256,
width 512, cases with α = 0◦ and t = 9.0s) 20

15. Karman vortex street case: errors of inferred velocity (latent code size 32,
network width 512, min-max-normalization, cases with ϱ = 2.3, r = 0.45) 21

Master Thesis IV

16. Karman vortex street case: inferred velocity contour plots of min-max-
normalization at last timestep (latent code size 32, network width 512,
cases with ϱ = 2.3, r = 0.45) . 21

17. SLDCPE case: L2 velocity error evolution of network widths 256 and
512 (latent code size 64, min-max-normalization, case with α = −30◦

and utop = 3) . 23
18. SLDCPE case: velocity prediction and absolute error of network widths

256 and 512 (min-max-normalization, latent code size 64, case with α =

−30◦ and utop = 3) . 24
19. Karman vortex case: error evolution of latent codes sizes 32 and 128

(network width 512, min-max-normalization, case with uin = 1.6, ϱ =

2.2, r = 0.45) . 24
20. Karman vortex case: error evolution of min-max- and unitsphere-normalization,

denoted as normalized and unitsphere respectively in the legend (latent
code size 32, network width 512, case with uin = 1.6, ϱ = 2.2, r = 0.45) . 25

Master Thesis V

List of Tables

3. Parameter values for stationary SLDC simulations. 7
4. Parameter values for SLDCPE simulations. 7
5. Parameter values for von-Karman vortex street simulations. 8
6. Coordinate mapping from reference to physical domain for all three cases. 12

Master Thesis 1

1. Introduction

In modern engineering, simulations are an indispensable tool for product design. Many
engineering problems are concerned with mathematical models where a set of param-
eters may characterize its behavior. These parameters include, but are not limited to,
geometric features, boundary conditions or material properties [19]. One application
for simulations is shape optimization. The goal is to find a shape which is optimal with
regards to a certain quantity of interest, e.g. optimizing the shape of an airfoil for drag
reduction or attaining a target pressure distribution [44]. The optimality of a shape is
evaluated by its corresponding value of an objective function. Typically, the shape is
parametrized so that different shapes are obtained by tuning a set of geometry param-
eters. In the course of the optimization process, forward simulations are run with a set
of parameters to yield a corresponding objective function value. The aim is to find a
set of parameters whose corresponding objective function value is optimal [16].

In the course of the optimization process the solution to a large number of parame-
ters is sought after. Because performing high-fidelity simulations for this would be
prohibitively expensive, other methods have been introduced. Therefore, one needs
an efficient and accurate way to produce these solutions. One such method is called
reduced modeling, where the goal is to build a simplified model of the high-fidelity
system, which can be evaluated magnitudes faster than the original simulation [4, 18].
This reduced model has to be built, which involves an initial one-time computational
investment. For this reduced model, there is a trade off between accuracy and evalua-
tion speed [19].

Within reduced order modeling, one can distinguish between model-based and data-
based methods. The former uses the underlying model for building a reduced model
while the latter builds a reduced model solely from data, for example from simulations
of the high-fidelity model [3, 5]. This thesis only discusses the data-driven methods.
Readers interested in model-based methods are referred to [28, 18].

The field of machine learning and big data has had success in modeling many spa-
tiotemporal systems and many different methods have emerged for this use case [13,
11, 24]. In particular, deep learning (DL) methods have been developed to alleviate the
problems arising from classical methods like the Finite Element Method (FEM). One
application is the forward problem, where the solution to a PDE for a set of parameters
is sought after. In classical methods, performing a simulation from scratch is needed
to yield the solution for this set of parameters. Neural networks have been employed
to build and efficiently evaluate such a parameter-to-solution mapping [37].

One of the most widely used reduced order modeling techniques in Computational
Fluid Dynamics (CFD) is the Proper Orthogonal Decomposition (POD) [33]. POD as a
linear model reduction technique belongs to the projection-based methods, where a set
of appropriate basis vectors span an intrinsic solution subspace, which approximates

Master Thesis 2

the full order model’s most important features. Thus, linearity for this subspace is
assumed. In contrast, deep learning has the capability for nonlinear model reduction
where the solution is embedded in a nonlinear manifold rather than a linear subspace
[42]. The advantages of nonlinear reduction techniques over its linear counterpart lie
in the decreased number of parameters needed and thus a lower storage cost for a
given desired accuracy [8, 6, 26, 22].

This work aims to develop a deep learning architecture which can be used as a reduced
model for fluid flows. In particular, methods for learning the velocity field are investi-
gated. The goal is to study the effectiveness of these methods and the influence of data
preprocessing and network size. In Section 2, the fundamentals of fluid dynamics and
the reduced models with neural networks are presented. Section 3 shows the imple-
mentation details of the neural network and the data preprocessing. In Section 4, the
results of the experiments are discussed. Finally, Section 5 discusses the findings of the
experiments and possible improvements of the network.

Master Thesis 3

2. Fundamentals

2.1. Incompressible flow

The problems considered in this thesis comprise incompressible fluid dynamics. This
means that the density and the viscosity of the fluid are considered constant. In that
case, a fluid’s behaviour may be modeled by the following set of partial differential
equations (PDEs):

∇ · u = 0 (1a)
∂u

∂t
+∇ · (uu) = −∇p

ϱ
+ ν∇2u+ f (1b)

with u being the fluid velocity, t the time, ϱ the fluid density, p the presssure, ν the
kinematic viscosity, and f the body force acting on the fluid [21].

In practice, these equations are solved numerically. Therefore, one relies on discretiza-
tion methods in time and space. In our simulations, we used the Space-Time Finite Ele-
ment Method as the discretization method. The interested reader is referred to [38, 39].

2.2. Reduced model using neural networks

Model reduction with neural networks is typically done in two phases: in the first
phase, the so-called offline phase, a large number of numerical simulations are per-
formed over a set of parameter samples. The aim is to create a dataset with the results
of these simulations. Subsequently, a network is trained to predict the results of the
performed flow simulations. In the second phase, the online phase, the trained net-
work can then be used to predict the results of a new flow simulation with, e.g., given
input values which were not in the training data. This prediction by evaluating the
network is typically magnitudes faster than performing a simulation from scratch and
should yield similar results [43].

An artificial neural network is a chain of functions applied to an input vector x. One
of the most prominent examples of a neural network is a fully-connected feedforward
network, where an input vector x is passed through a chain of functions f (l) with l =

1, . . . , L one after the other to yield an output ỹ:

ỹ = f (L) ◦ f (L−1) ◦ · · · ◦ f (1) (x), (2)

Master Thesis 4

where L as the number of "layers" is called the network’s depth1. In particular, the
functions f (i) for i = 1, . . . , L consist of a linear mapping and a subsequent application
of a nonlinear function. Let h0 = x denote the input of the neural network. In a fully-
connected feedforward network, for k > 0, hk is the output of the k-th hidden layer,
which is computed:

hk = ϕ bk +W khk−1 , (3)

where hk−1 ∈ Rdk−1 and hk ∈ Rdk are called hidden layers, ϕ is called the activation
function, a nonlinear function which is applied element-wise, bk ∈ Rdk the bias vector
and W k ∈ Rdk×dk−1 the weight matrix. The dimension of a hidden layer hk is called
the width of the layer and the values of bk and W k the network parameters θ. Thus,
the output of the network ỹ = hL can be written as the output of the L-th hidden layer
[14, 42].

Neural networks are used to approximate a function which maps a set of input vectors
x to corresponding output vectors y. The goal is to find optimal network parameters
θ such that the function is most closely approximated. This is done my minimizing
an objective function J(θ) which penalizes any deviation from the network’s output to
the ground truth output. [14].

Using a method called backpropagation, the gradient of the objective function with
respect to the network parameters (weights and biases) can be efficiently calculated. It
makes use of the chain rule of differentiation by computing the gradient starting from
the last layer and successively moving backwards to the first layer [42]. The interested
reader is referred to [17].

The optimization of the network’s parameters with regards to the objective function
J(θ) is called training and usually gradient-based optimization algorithms are applied
where backpropagation is used to calculate this gradient. In practice, a method called
Adam is often used [27, 37, 26]. The interested reader is referred to [23].

In practice, the ReLU-function is a common choice for the activation function [11, 24,
27]. The function is ReLU(x) = max{0, x}. Its strengths lie in its simplicity, effec-
tiveness and computational speed, which stems from the fact that there is no need to
compute exponentials or divisions. [14, 31]

One of the most appealing properties of deep neural networks is that they are universal
approximators: they can approximate any finite-dimensional function up to arbitrary
accuracy [20, 34, 36].

Autodecoder Here, we describe the autodecoder network proposed in [27].

1Although there is no unified definition of a network’s depth [42], for simplicity’s sake, we
define depth as the number of layers.

Master Thesis 5

The autodecoder is a fully connected feedforward neural network used for generative
modeling. In the paper, a neural network is trained to learn signed distance functions2

(SDFs) of a family of similar 3D-shapes (e.g. cars). The desired outcome is a model
which can embed common properties of a set of shapes in a low dimensional latent
space, where a specific shape is encoded as a latent vector z in this low dimensional
space. Specifically, a function fθ should be learned which takes a latent code zi corre-
sponding to some shape i and in addition a queried 3D location x and approximates
the shape’s SDF:

fθ(zi,x) ≈ SDF i(x) (4)

The network is trained by trying to minimize a cost function consisting of a sum of re-
construction errors and a regularization term for the latent codes. This yields a single
model which is capable of representing multiple shapes in a low-dimensional sub-
space. Thus, this property can be used for reduced modeling. Furthermore, the net-
work is resolution independent, because any arbitrary query location x can be used as
an input to the network.

Because the latent codes zi and the network parameters θ are arguments of the cost
function, the network parameters and the latent vector can be optimized during train-
ing by using backpropagation. Thus, this network does not require a dedicated net-
work to embed the high-dimensional data into a low-dimensional latent space.

2The signed distance function is used for implicitly describing a watertight surface. For a
given spatial point, the signed distance function yields the distance to the nearest surface.
If the point lies inside the surface, it yields a negative value and if it lies outside, it has a
positive value.

Master Thesis 6

3. Implementation

3.1. Data generation

To generate data, we performed two-dimensional stationary and instationary fluid
flow simulations governed by the incompressible Navier-Stokes equations (Equation 1).
We used the space-time method as the time-discretization method. After the simula-
tions were run, the data was taken by extracting the values from the lower time level.

The simulations were performed using XNS, an in-house CFD code developed by the
Chair for Computational Analysis of Technical Systems of the RWTH Aachen Univer-
sity.

The meshes were generated using an in-house mesh generator. For each geometry
parametrization , we meshed from scratch in order to keep the reduced model inde-
pendent of the triangulation.

3.1.1. Skewed lid driven cavity (SLDC)

This fluid flow is based on the single lid driven cavity (LDC) flow. It consists of a fluid
in a rectangular container where the fluid at the top wall moves with constant velocity
in positive x-direction. The velocity at the other boundaries are zero [25].

The skewed lid driven cavity flow (SLDC) [7, 9] is a variant of the standard LDC flow
where the geometry is slanted to form a parallelogram.

For the generation of the dataset, we run 1323 simulations, each of which is charac-
terized by two geometry and one flow parameters. The chosen parameter values are
displayed in Table 3. The density of 1 kg/m3 and the constant velocity magnitude of 1
m/s at the top wall is the same for all simulations. The boundary conditions are dis-
played in Figure 3. We start with zero velocity and pressure everywhere but at the top
boundary. Each simulation was run for 500 timesteps with a timestep size of 0.1 s to
achieve a quasi-stationary flow.

For the flow parametrization we change the viscosity ν3. For the domain, we take a
[0, 1] × [0, 1] square domain and change its width and inclination with two geometry
parameters d1 and d2 (see Figure 1). The number of nodes is between 4704 and 7966
and the number of elements between 4892 and 8224.

Case with periodic boundary conditions In this case, we apply a periodic velocity
boundary condition on the top wall. This results in a more dynamic behavior of the

3The viscosities were not equidistantly sampled. If we define the Reynolds number as Re =
u·L
ν with u = 1 as the velocity at the top boundary and L = 1 − d2 as the length of the top

boundary, the sampled Reynolds numbers are [200, 400, 800, 1000, 1200, 1500, 2000].

Master Thesis 7

fluid. We denote this case as skewed lid driven cavity flow with periodic excitation
(SLDCPE). We simulated for 10 s which corresponds to 2 full cycles of this excitation.

The dataset consists of the results of 637 simulations. We keep the fluid properties den-
sity and viscosity the same for all configurations: ϱ = 1 kg/m3 and ν = 2.5·10−3 Ns/m2.
The boundary conditions are the same as the previous case with the sole exception of
the velocity at the top boundary, where we prescribe a dynamic boundary condition of

u(t) = utop · 1− cos
2πt

5
. (5)

The amplitude utop of the periodic excitation is parametrized with values shown in
Table 4.

For the geometry parametrization (see Figure 2) we again start with a [0, 1] × [0, 1]-
square domain and change the incline angle α whose values are shown in Table 4. For
the mesh, the number of nodes ranges from 8074 to 8312 and the number of elements
from 7420 to 7664.

Parameter Unit Sample values

ν Ns/m2 0.0003 to 0.005
d1 m -1.0 to 1.0 in increments of 0.1
d2 m 0.0 to 0.4 in increments of 0.05

Table 3: Parameter values for stationary SLDC simulations.

Parameter Unit Sample values

α ◦ -45 to 45 in increments of 1
utop m/s {0.5, 0.7, 1.0, 1.2, 1.5, 2.0, 3.0}

Table 4: Parameter values for SLDCPE simulations.

3.1.2. Karman vortex street

The Karman vortex street is a case where fluid flows past a cylinder inducing periodic
vortex shedding downstream of the cylinder [2].

We performed 726 simulations for 50 seconds with a timestep size of 0.05 s. The end
time is chosen so that all parameter configurations exhibit periodic vortex shedding.
For all configurations of this case, we kept a constant dynamic viscosity of 0.02 Ns/m2.
The domain and the boundary conditions for our simulations are displayed in Figure 4.
The prescribed boundary conditions are an inlet velocity uin and zero velocity at the
cylinder. The initial conditions are zero velocity and pressure everywhere but the inelt
velocity at the left boundary.

Master Thesis 8

x

y

d1 d2

1

1

Figure 1: Geometry parametrization of the skewed lid driven cavity. The domain is
obtained by taking a [0, 1] × [0, 1]-square domain, shifting the top wall by d1
in positive x-direction and the right wall by d2 in negative x-direction.

For flow parametrization, we changed the inlet velocity uin and the fluid density ϱ. For
geometry parametrization we changed the cylinder radius r. The sampled parameter
values are displayed in Table 5.

The number of nodes ranges from 12960 to 13526 and the number of elements from
12737 to 13305. We have a rectangular box (see Figure 4) around the cylinder where
the triangulation of the mesh is finer than outside of it. For the data extraction we only
used the values in that box, consisting of 5030 to 5364 nodes, and ignored the other
ones.

Parameter Unit Sample values

uin m/s 1.0 to 2.0 in increments of 0.1
ϱ kg/m3 2.0 to 4.0 in increments of 0.2
r m 0.25 to 0.5 in increments of 0.05

Table 5: Parameter values for von-Karman vortex street simulations.

3.2. Data preprocessing

Min-max-normalization This method is used to scale the values of each feature in
the dataset to a range of [-1,1]. For an arbitrary feature φ, firstly, we search for the
maximum φmax and minimum value φmin in the whole dataset. Finally, a data entry φi

is scaled as follows:

φ̂i =
φi − φmin

φmax − φmin

· 2− 1, (6)

Master Thesis 9

x

y

1

1

α

Figure 2: Geometry parametrization of the skewed lid driven cavity with periodic ex-
citation

u ̸= 0, v = 0

u = 0p = 0

u = 0

u = 0

Figure 3: Skewed lid driven boundary conditions

where φ̂i is the normalized value of φi.

Min-max normalization allows gradient-based optimization methods a better conver-
gence rate [1].

Here, we apply min-max-normalization to all input- and output variables.

Unitsphere normalization This method is used in [27]. Here, we try to preserve the
proportions of the data to each other the same while still scaling to a range of [−1, 1].
Suppose the data has m features and n samples. Firstly, mean-centering is applied to
to each of the features. For an arbitrary dataset entry φi (for i = 1, . . . , n), we denote
the mean-centered value as φ∗

i . Then, each of the n samples is treated as a coordinate in
Rm. In those n samples, we search for the highest Euclidean distance to the origin dmax.
Finally, scaling is applied such that all of those coordinates lie within the unitsphere in
Rm which yields the final value:

Master Thesis 10

10 m

6 m
r2 m

u ̸= 0,
v = 0

Refinement
box

x

y

4.8 m

2.7 m

3 m

Figure 4: Karman vortex street setup. All but the radius of the cylinder (grey) are to
scale. The triangulation inside the refinement box is finer than outside of it.
This box is a rectangular domain spanning [−0.8, 4.0]× [−1.3, 1.4].

φ̂i =
φ∗
i

dmax

. (7)

For our experiments, we apply min-max-normalization on the input variables xref ,
yref , and t. For the output variables u and v, we apply unitsphere-normalization on
a configuration per configuration basis such that each parameter configuration has its
own scaling.

3.3. Network architecture and training

We closely followed the network setup of [27] to predict two-dimensional flow fields.
An overview of the adapted network is shown in Figure 5. The input is a latent code
and input variables which are the x- and y-coordinates in a reference domain and a
given time t. For a stationary flow, we only pass the latent code and the reference coor-
dinates into the network. Since we are only interested in predicting the flow velocities,
the output is a 2-dimensional vector consisting of u and v: the fluid velocities in x- and
y-direction respectively. In particular, we want to learn the following mapping:

fθ : [zi, xref , yref , t] → oi, (8)

where zi is a latent vector representing a fluid flow which is determined by a param-
eter configuration i and oi the output of the network. For our implementation, it is
important to note that the latent code size must be smaller than the network width

Master Thesis 11

because the latent code and the input variables are injected into the fourth layer and
the number of values must not exceed the network width. In all our experiments the
number of hidden layers is 8. All the layers consist of a fully-connected layer and a
ReLU-activation function. However, we replace the ReLU-activation function at the
last layer with a tanh-activation function so that negative values are possible for the
output.

The loss function consists of the prediction error and a regularization term for the latent
codes:

L =

Ntrain

i=0

1

Nsamples,i

Nsamples,i

j=0

∥fθ (zi, xref , yref , t)− oorig,j∥L1 + λ∥zi∥L2

 , (9)

where Ntrain is the number of flow field configurations, Nsamples,i the number of train-
ing samples of configuration i, oorig the vector of original values and λ a regularization
constant.

Latent code
Input variables

Fully connected layer
Hidden layer + ReLU activation

tanh activation
Output variables

in
pu

t

l(1) l(2) l(3) l(4) l(5) l(6) l(7) l(8)

ou
tp

ut

Figure 5: Visualization of autodecoder network architecture. The latent code and the
input variables are injected into layer l(4) and concatenated with the output
of layer l(3). Note that the output of layer l(3) has less values than that of most
other layers so that the network has the same width in every layer.

Similarly to [27], we apply dropout [35] with a dropout probability of 0.2 and weight
normalization [32] at all hidden layers. For the optimization of network parameters

Master Thesis 12

and the latent vector, we use the Adam optimizer [23] with a stepwise-decreasing
learning rate similar to [27]: after every 250 epochs, the learning rate was halved. We
have separate initial values of the learning rate: 0.0005 for optimizing the network pa-
rameters and 0.001 for the optimization of the latent code. Every training was run for
2000 epochs. The latent code regularization parameter λ in Equation 9 for all trainings
is 0.0001.

For detailed information about the network architecture and training, the reader is
referred to [27].

3.4. Data inference

In order to obtain field values, a concatenated vector of a latent code z, coordinates
xref , yref of a point in the reference domain and a given time t, which needs to be
normalized, has to be passed through the trained network. Because the output is nor-
malized, the values have to be scaled back by reversing the preprocessing step. Note
that the output of the network is in the range [−1, 1]. Therefore, the predicted velocities
are bounded by the minimum and maximum value found in the training dataset.

Coordinate mapping from reference to physical domain For all three fluid flow
cases, the mappings from the reference to the physical domain can be described by a
known function which is determined by a set of geometry parameters. The mappings
are shown in Table 6.

Case xref → xphys yref → yphys

SLDC xref+1

2
· (1− d2) +

yref+1

2
· d1 yref+1

2

SLDCPE xref+1

2
+

yref+1

2
· tan(α) yref+1

2

Karman −0.8 + 4.8 · xref+1

2
−1.3 + 2.7 · yref+1

2

Table 6: Coordinate mapping from reference to physical domain for all three cases.

In order to predict the flow field for a set of parameters which are not in the training
dataset, a suitable latent code has to be generated. This can be done by latent space
interpolation: the values of the resulting latent code are obtained by performing in-
terpolation of the latent codes obtained from the training where their corresponding
parameter values are used as the variables. If the parameter space is bigger than 1,
then multivariate interpolation has to be applied. Here, we apply linear multivariate
interpolation. This is done by triangulating the parameter samples in parameter space
and performing interpolation within the respective triangulation element.

Master Thesis 13

4. Results

4.1. Test case evaluation

Here, the reduced models are applied to the three test cases described in subsection 3.1.

To quantify the accuracy of the reduced models, we adopted the metric from [10],
which is defined as:

εrel (φ) =
1

Ntrain

Ntrain

i=1

Nt

k=1

∥φk(µi)− φ̃k(µi)∥22
Nt

k=1

∥φk(µi)∥22

 . (10)

where Ntrain denotes the number of parameter configurations which were simulated,
Nt the number of timesteps, φk is the solution vector of variable φ at timestep tk for
k = 1, . . . , Nt, µi the parameter configuration vector for case i and φ̃ is the predicted
solution vector from the autoencoder.

For the stationary SLDC case, we introduce the following error metric:

εRMSE,mean(φ) =
1

Ntrain

Ntrain

i=1

Nnodes,i

j

φj(µi)− φ̃j(µi)
2

2

Nnodes,i

 , (11)

where Ntrain is the number of parameter configurations, Nnodes,i is the number of nodes
for parameter configuration i, φ a fluid flow variable or a vector of those parameters
(e.g. [u, v], where the vectors u and v are stacked horizontally), φj(µi) the value of
variable(s) φ at node j for configuration i, µi the parameter configuration vector for
configuration i and φ̃j

i the value obtained from the reduced model.

These measures are used to determine the mean accuracy of a reduced model for a
whole dataset of simulation results. Both are based on a relative error. We chose these
metrics because different dimensions of the solution vectors and also zero values in the
solution vectors are allowed.

Here, the effects of the normalization method, the network width and the size of the
latent code are investigated. For each of the three cases, we trained networks with the
same training setups but with different values of the aforementioned network param-
eters. For the stationary SLDC case, we trained smaller networks than the ones of the
transient cases, because the stationary case has less training samples simply due to the

Master Thesis 14

fact that time is an additional input dimension for instationary cases. Additionally, the
latent code sizes and the network widths are powers of 2.

Figure 6: Relative errors of cases. nw denotes the network width. min-max and unit-
sphere denote the different normalization methods.

The relative errors (Equation 11, Equation 10) of the absolute velocity for all trained
networks and cases are displayed in Figure 6.

The effects of the latent code size on the accuracy depend on the fluid flow case. For
the cases SLDC and SLDCPE, increasing the latent code size leads to a smaller error
for the most part. In the Karman vortex street case however, the increased latent code
size attributes to a larger error, especially for networks with greater width. This may
be due to the latent injection, where the layer at which the latent code and the input is
injected has less incoming full connections than the other layers (see Figure 5). When
the latent code is bigger, then the number of incoming full connections is less. The
error becoming bigger with greater latent code sizes thus indicates that having more
full connections between layers has a greater ability to capture this type of flow.

The type of data normalization also shows different results. While the min-max-nor-
malization in the SLDC case generally performs better, the unitsphere-normalization
is more accurate in the transient cases. Especially in the Karman case, the effects on
accuracy are more pronounced: the errors of the min-max-normalized data is approxi-
mately double the ones of the unitsphere-normalized data for almost all training con-
figurations.

In all cases, an increase in network width leads to a smaller error. This can be at-
tributed to a wider network having more parameters and hence being able to model
more complex behaviour.

4.1.1. Common occurring errors

One of the factors most contributing to the error is the failure to correctly predict flow
structures like the vortex shedding in the Karman vortex street case or the vortex in the

Master Thesis 15

SLDCPE case. To demonstrate this, we are concentrating on a representative example:
the Karman vortex street case with uin = 1.6, ϱ = 1.6, r = 0.45.

Effects of network width For this, we compare the network widths of 256 and 512
for unitsphere-normalization and a latent code size of 32.

Figure 7: Karman vortex case: error evolution of network widths 256 and 512 (latent
code size 32, unitsphere-normalization, case with u = 1.6, ϱ = 2.2, r = 0.45)

Figure 7 displays how the errors of the velocities evolve with time. One noticeable
large error occurs at the first timestep, where the initial values are mainly zero. The
initial snapshot and the corresponding field predictions and errors are displayed in
Figure 8.

The plot also demonstrates that the network with width 256 exhibits larger errors than
the one with the larger network width. Both networks show a large increase in error
at some time step, where the network with the lower width exhibits this spike at an
earlier timestep.

The effects of choosing different network widths are displayed in Figure 9 and Fig-
ure 10: both networks capture the motion of vortex shedding while the network with
width 256 exhibits larger errors, which mainly stem from the inaccuracies of the pre-
dicted vortex shedding. This can be seen in Figure 9 in the absolute error. In Figure 10,
the network with width 256 fails to capture the vortex shedding motion and instead
outputs a stationary flow. On the other hand, the network with width 512 can still
capture the motion of the vortex shedding.

The effects of the latent size and the data normalization type for this parameter config-
uration are discussed in subsection A.2.

SLDCPE case In subsection A.1, the effects of the network width on the predictions’
accuracy of the vortex in the SLDCPE case is presented.

Master Thesis 16

Figure 8: Karman vortex case: velocity prediction and absolute error of network widths
256 and 512, first timestep (latent code size 32, unitsphere-normalization, case
with u = 1.6, ϱ = 2.2, r = 0.45)

4.2. Latent space exploration

4.2.1. Data interpolation

To visualize the latent space, which for all our experiments has more than 3 dimen-
sions, we are applying t-distributed Stochastic Neighbor Embedding (t-SNE) [40], a
nonlinear unsupervised reduction method used for visualization of high-dimensional
data. It attempts to embed high-dimensional data into a lower dimension while pre-
serving the global structure of the data. Interested readers may be referred to [40, 41,
12]. Here, the method is applied to the latent code space to display patterns of the data
on a 2D-embedded space. Values of a parameter are marked with different colors to
better display the separability.

SLDCPE case Figure 11 displays the application of t-SNE to the 64-dimensional la-
tent vectors obtained for the training of the network with width 512 where the col-
orization groups the parameters for the flow field together. For both parameters, the
separation between the values is clearly visible.

Karman vortex street For the Karman vortex street, we are comparing the network
with the lowest error (latent code size of 32 (see 12a) and network width 512) with
the network with the same width but with latent code size 256 (see 12b). The latter
shows a clear grouping of the parameters’ values and a clear structure, especially for

Master Thesis 17

Figure 9: Karman vortex case: velocity prediction and absolute error of network widths
256 and 512, timestep 750 (latent code size 32, unitsphere-normalization, case
with u = 1.6, ϱ = 2.2, r = 0.45)

the velocity and the radius, is noticeable. The network with width 32 on the other hand
still shows some separability of the clusters but especially for the density, the clusters
cannot be easily distinguished.

4.2.2. Solution inference on unseen parameter configurations

SLDCPE case Inference is tested on a square domain (α = 0◦) and the time step
t = 9.0 s for the following top boundary velocities: utop ∈ {0.6, 0.8, 1.3, 1.6, 2.2, 2.6}.
These velocity values are not in the training data set and hence interpolation has to be
applied. The time step is chosen so that the vortex in the flow is fully developed. The
network width is 512 and the latent code size is 256.

Figure 13 shows the inferred field values of the min-max-normalization method. We
omitted displaying the inferred velocity field of the unitsphere-normalized data, be-
cause there is little to no visible difference.

For the parameter samples used in Figure 13, we compare the effects of the data nor-
malization on the accuracy of the velocity at the top boundary. The comparison of
relative errors is displayed in Figure 14. The ground truth is computed using Equa-
tion 5 where the values at the left and right boundary are omitted because they are
zero.

For both data normalization methods, the velocity profile is captured. Regarding the
relative error, the unitsphere-normalized data exhibited approximately the same rela-
tive errors across all six cases. The min-max-normalized data on the other hand shows

Master Thesis 18

Figure 10: Karman vortex case: velocity prediction and absolute error of net-
work widths 256 and 512, last timestep (latent code size 32, unitsphere-
normalization, case with u = 1.6, ϱ = 2, r = 0.45)

Figure 11: SLDCPE case: t-SNE plot of latent codes of network with width 512 and
latent code size 64 trained on min-max-normalized data. The case’s param-
eters are color-coded.

different error behaviour for the cases. While the relative errors of utop = 2.2 and es-
pecially 0.6 are noticeably higher than the other ones, the other cases, especially for
utop ∈ {1.3, 1.6} are noticeably lower than the rest.

Karman vortex street To test the inference capabilities, we test for a density ϱ = 2.3,
which is not in the training parameter samples, a radius r = 0.45, which is taken from
the training parameter samples, and input velocities uin of [1.5, 1.52, 1.54, 1.56, 1.58, 1.6],
where all but the first and last velocity value are not in the training parameter samples.
The corresponding latent codes are obtained by performing interpolation. Again, we
choose the network with the lowest relative error: network width 512 and latent code
size 32.

Master Thesis 19

(a) Latent code size 32

(b) Latent code size 256

Figure 12: Karman vortex case: t-SNE plots of latent codes of network with width 512
and different latent code sizes trained on min-max-normalized data. The
latent codes are color-coded for different values of the parameters.

Figure 15 shows the errors of the inferred velocities in x-direction where the inlet ve-
locity uin is changed. For an error comparison, we compare the error with the results
shown in Figure 7 because they share the same radius r, a similar density ϱ and the in-
put velocity of uin = 1.6 appear in both. When comparing the errors of the velocity u,
the ones from the inferred parameter configurations are approximately one magnitude
higher than the one from the training dataset.

Figure 16 shows the inferred velocities at the last timestep. In all cases, the vortex
shedding behavior is reproduced.

Master Thesis 20

Figure 13: SLDCPE case: inferred velocity contour plots of min-max-normalization (la-
tent code size 256, network width 512, cases with α = 0◦ and t = 9.0 s)

Figure 14: SLDCPE case: relative errors of inferred velocities at the top boundary of
both data normalization methods (network with latent code size 256, width
512, cases with α = 0◦ and t = 9.0s)

Master Thesis 21

Figure 15: Karman vortex street case: errors of inferred velocity (latent code size 32,
network width 512, min-max-normalization, cases with ϱ = 2.3, r = 0.45)

Figure 16: Karman vortex street case: inferred velocity contour plots of min-max-
normalization at last timestep (latent code size 32, network width 512, cases
with ϱ = 2.3, r = 0.45)

Master Thesis 22

5. Conclusion

In this work, the application of feedforward neural networks for building reduced
models of fluid flows was studied. A particular focus was put on the effects of flow
and geometry parametrization on the accuracy of velocity prediction. The results of
the numerical experiments show that the type of data normalization and the network
width have the largest impact on the the prediction errors of the autodecoder. The
type of data normalization shows different results: while the min-max-normalization
performs better in the stationary LDC-case, the unitsphere-normalization displayed
a lower error on the SLDCPE-case and the Karman vortex street-case. Especially in
the Karman vortex street-case, unitsphere-normalization performs considerably better.
Despite the lower error, it poses a challenge in practice: for unseen parameter config-
uration, not only does the interpolation have to be performed for the latent codes, it
also has to be performed for the scaling values, which are different for each parameter
configuration run. This may lead to scaling errors.

Increasing the latent code size also showed different results. While in the LDC- and the
SLDCPE-case increasing the latent code size mainly decreases the error, the Karman
vortex-case showed a contrary behaviour, where it mainly led to greater errors. In all
cases, the data normalization method and the network width had a greater impact on
the accuracy than the latent size.

In all cases, the autodecoder was able to represent the main flow features (e.g. vortex
shedding), albeit with varying accuracy. The main errors in the simulations come from
inaccuracies or even failures of predicting the geometry of the main flow structures
(e.g. the vortex in the SLDCPE-case and the vortex shedding in the Karman vortex
street), especially the outline of those vortices, contributed a substantial amount to the
error measure.

Furthermore, we presented a way of the autoencoder network to yield solutions to
unseen parameters. This feature can then be used for applications of reduced models,
e.g. shape optimization.

Since the output dimension of the network can arbitrarily be expanded, it is also pos-
sible to predict the pressure. Especially in the absence of pressure singularities, this
network should be applicable. Furthermore, one can expand the output dimensions
to additionally predict the geometry, which might change in time. This could be used
to learn the flow field in fluid-structure interactions (see [15] for example) where the
fluid domain moves with time. Another possible extension is changing the input di-
mensions, where parameters like the input velocity for e.g. the Karman-vortex-street
are an additional input.

Finally, one has the option to include physical laws by modifying the objective function
such that any deviation from the physical law is penalized, similar to [29, 30].

Master Thesis 23

A. Appendix

A.1. SLDCPE case: effects of network width

In the following we present results for the case of α = −30◦ and utop = 3. For this we
look at the effects of the network widths using the min-max-normalization and a latent
code size of 64.

Figure 17 shows the L2-error evolution of the velocities. The network with a lower
width exhibits higher errors due less network parameters being available and thus the
network loses some ability to predict more complex interactions.

Figure 17: SLDCPE case: L2 velocity error evolution of network widths 256 and 512
(latent code size 64, min-max-normalization, case with α = −30◦ and utop =

3)

Figure 18 shows the flow field at the first peak. The network with width of 256 has a
lower velocity at the top than the one with a width of 512. Furthermore, there is also
a visual distinction between the networks’ outputs and the ground truth: the vortex in
the predictions for the wider network is captured whereas the network with the lower
width mainly exhibits errors in the outline of the swirl. However, both display an error
in the right upper corner where the velocity is discontinuous.

A.2. Karman case: effects of normalization method and latent
code size

Here the case with uin = 1.6, ϱ = 2.2, r = 0.45 is investigated.

Figure 19 and Figure 20 display the velocity error evolution over time. In the former,
we compare latent code sizes 32 and 128 for a min-max-normalized dataset with net-
work width 512 and in the latter we compare the normalization methods for a network
with width 512 and latent code size 32.

Master Thesis 24

Figure 18: SLDCPE case: velocity prediction and absolute error of network widths 256
and 512 (min-max-normalization, latent code size 64, case with α = −30◦

and utop = 3)

In both figures, the networks cannot sufficiently predict the shedding behaviour and
show a big error increase. Both figures support the observations in Figure 6 in that the
unitsphere-normalization and the smaller latent code sizes lead to smaller prediction
errors.

Figure 19: Karman vortex case: error evolution of latent codes sizes 32 and 128 (net-
work width 512, min-max-normalization, case with uin = 1.6, ϱ = 2.2,
r = 0.45)

Master Thesis 25

Figure 20: Karman vortex case: error evolution of min-max- and unitsphere-
normalization, denoted as normalized and unitsphere respectively in the leg-
end (latent code size 32, network width 512, case with uin = 1.6, ϱ = 2.2,
r = 0.45)

Master Thesis 26

References

[1] Charu C. Aggarwal. Linear Algebra and Optimization for Machine Learning.
Springer Nature Switzerland AG, 1 edition, 2020. doi: https://doi.org/10.1007/
978-3-030-40344-7.

[2] E Amalia, M A Moelyadi, and M Ihsan. Effects of turbulence model and nu-
merical time steps on von karman flow behavior and drag accuracy of circu-
lar cylinder. Journal of Physics: Conference Series, 1005(1):012012, apr 2018. doi:
10.1088/1742-6596/1005/1/012012. URL https://dx.doi.org/10.1088/

1742-6596/1005/1/012012.

[3] Peter Benner, Stefano Grivet-Talocia, Alfio Quarteroni, Rozza Gianluigi, Wil
Schilders, and Luis Miguel Silveira. Model Order Reduction: Volume 1 System-
and Data-Driven Methods and Algorithms. De Gruyter, Berlin, Boston, 2021. ISBN
9783110498967. doi: doi:10.1515/9783110498967. URL https://doi.org/10.

1515/9783110498967.

[4] Peter Benner, Stefano Grivet-Talocia, Alfio Quarteroni, Rozza Gianluigi, Wil
Schilders, and Luis Miguel Silveira. Model Order Reduction: Volume 2 Snapshot-
Based Methods and Algorithms. De Gruyter, Berlin, Boston, 2021. ISBN
9783110671490. doi: doi:10.1515/9783110671490. URL https://doi.org/10.

1515/9783110671490.

[5] Peter Benner, Stefano Grivet-Talocia, Alfio Quarteroni, Rozza Gianluigi, Wil
Schilders, and Luis Miguel Silveira. Model Order Reduction: Volume 3 Aplica-
tions. De Gruyter, Berlin, Boston, 2021. ISBN 9783110499001. doi: doi:10.1515/
9783110499001. URL https://doi.org/10.1515/9783110671490.

[6] Andrea Bonito, Albert Cohen, Ronald DeVore, Diane Guignard, Peter Jantsch,
and Guergana Petrova. Nonlinear methods for model reduction. arXiv preprint
arXiv:2005.02565, 2020.

[7] I. Demirdžić, Ž. Lilek, and M. Perić. Fluid flow and heat transfer test prob-
lems for non-orthogonal grids: Bench-mark solutions. International Journal for
Numerical Methods in Fluids, 15(3):329–354, 1992. doi: https://doi.org/10.1002/
fld.1650150306. URL https://onlinelibrary.wiley.com/doi/abs/10.

1002/fld.1650150306.

[8] Ronald A. DeVore. Nonlinear approximation. Acta Numerica, 7:51–150, 1998. doi:
10.1017/S0962492900002816.

[9] E. Erturk and B. Dursun. Numerical solutions of 2-d steady incompressible flow
in a driven skewed cavity. ZAMM - Journal of Applied Mathematics and Mechanics
/ Zeitschrift für Angewandte Mathematik und Mechanik, 87(5):377–392, 2007. doi:

https://dx.doi.org/10.1088/1742-6596/1005/1/012012
https://dx.doi.org/10.1088/1742-6596/1005/1/012012
https://doi.org/10.1515/9783110498967
https://doi.org/10.1515/9783110498967
https://doi.org/10.1515/9783110671490
https://doi.org/10.1515/9783110671490
https://doi.org/10.1515/9783110671490
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650150306
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650150306

Master Thesis 27

https://doi.org/10.1002/zamm.200610322. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/zamm.200610322.

[10] Stefania Fresca and Andrea Manzoni. POD-DL-ROM: Enhancing deep learning-
based reduced order models for nonlinear parametrized PDEs by proper orthog-
onal decomposition. Computer Methods in Applied Mechanics and Engineering, 388:
114181, jan 2022. doi: 10.1016/j.cma.2021.114181. URL https://doi.org/10.

1016%2Fj.cma.2021.114181.

[11] Kai Fukami, Kazuto Hasegawa, Taichi Nakamura, Masaki Morimoto, and Koji
Fukagata. Model order reduction with neural networks: Application to laminar
and turbulent flows. SN Computer Science, 2, 2021. ISSN 2661-8907. doi: https:
//doi.org/10.1007/s42979-021-00867-3.

[12] Benyamin Ghojogh, Mark Crowley, Fakhri Karray, and Ghods Ali. Elements of
Dimensionality Reduction and Manifold Learning. Springer Nature Switzerland AG,
2023. ISBN 978-3-031-10602-6. doi: https://doi.org/10.1007/978-3-031-10602-6.

[13] Francisco J. Gonzalez and Maciej Balajewicz. Deep convolutional recurrent au-
toencoders for learning low-dimensional feature dynamics of fluid systems. arXiv
preprint arXiv:1808.01346, 2018. doi: https://doi.org/10.48550/arXiv.1808.01346.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[15] Renkun Han, Yixing Wang, Weiqi Qian, Wenzheng Wang, Miao Zhang, and
Gang Chen. Deep neural network based reduced-order model for fluid-structure
interaction system. Physics of Fluids, 34(7), 07 2022. ISSN 1070-6631. doi:
10.1063/5.0096432. URL https://doi.org/10.1063/5.0096432.

[16] J. Haslinger and R. A. E. Mäkinen. Introduction to Shape Optimization. Society for
Industrial and Applied Mathematics, 2003. doi: 10.1137/1.9780898718690. URL
https://epubs.siam.org/doi/abs/10.1137/1.9780898718690.

[17] Hecht-Nielsen. Theory of the backpropagation neural network. In International
1989 Joint Conference on Neural Networks, pages 593–605 vol.1, 1989. doi: 10.1109/
IJCNN.1989.118638.

[18] Jan S. Hesthaven, Gianluigi Rozza, and Benjamin Stamm. Certified Reduced Basis
Methods for Parametrized Partial Differential Equations. Springer Cham, 2016. ISBN
978-3-319-22470-1. doi: https://doi.org/10.1007/978-3-319-22470-1.

[19] J.S. Hesthaven and S. Ubbiali. Non-intrusive reduced order modeling of nonlinear
problems using neural networks. Journal of Computational Physics, 363:55–78, 2018.
ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.02.037. URL https://

www.sciencedirect.com/science/article/pii/S0021999118301190.

https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.200610322
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.200610322
https://doi.org/10.1016%2Fj.cma.2021.114181
https://doi.org/10.1016%2Fj.cma.2021.114181
http://www.deeplearningbook.org
https://doi.org/10.1063/5.0096432
https://epubs.siam.org/doi/abs/10.1137/1.9780898718690
https://www.sciencedirect.com/science/article/pii/S0021999118301190
https://www.sciencedirect.com/science/article/pii/S0021999118301190

Master Thesis 28

[20] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, 1989. ISSN
0893-6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8. URL https://

www.sciencedirect.com/science/article/pii/0893608089900208.

[21] Takeo Kajishima and Kunihiko Taira. Computational Fluid Dynamics: Incompressible
Turbulent Flows. Springer Cham, 2016. ISBN 978-3-319-45304-0. doi: https://doi.
org/10.1007/978-3-319-45304-0.

[22] Youngkyu Kim, Youngsoo Choi, David Widemann, and Tarek Zohdi. A fast and
accurate physics-informed neural network reduced order model with shallow
masked autoencoder. Journal of Computational Physics, 451:110841, 2022. ISSN
0021-9991. doi: https://doi.org/10.1016/j.jcp.2021.110841. URL https://www.

sciencedirect.com/science/article/pii/S0021999121007361.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2017.

[24] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural operator: Learn-
ing maps between function spaces. arXiv preprint arXiv: 2108.08481, 2023.

[25] Hendrik C. Kuhlmann and Francesco Romanò. The Lid-Driven Cavity, pages
233–309. Springer International Publishing, Cham, 2019. ISBN 978-3-319-91494-
7. doi: 10.1007/978-3-319-91494-7_8. URL https://doi.org/10.1007/

978-3-319-91494-7_8.

[26] Kookjin Lee and Kevin T. Carlberg. Model reduction of dynamical systems on
nonlinear manifolds using deep convolutional autoencoders. Journal of Com-
putational Physics, 404:108973, 2020. ISSN 0021-9991. doi: https://doi.org/10.
1016/j.jcp.2019.108973. URL https://www.sciencedirect.com/science/

article/pii/S0021999119306783.

[27] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. Deepsdf: Learning continuous signed distance functions for shape
representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[28] Alfio Quarteroni, Andrea Manzoni, and Federico Negri. Reduced Basis Methods for
Partial Differential Equations. Springer International Publishing Switzerland, 2015.
ISBN 978-3-319-15431-2. doi: https://doi.org/10.1007/978-3-319-15431-2.

[29] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed
deep learning (part i): Data-driven solutions of nonlinear partial differential equa-
tions. arXiv preprint arXiv:1711.10561, 2017.

https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/S0021999121007361
https://www.sciencedirect.com/science/article/pii/S0021999121007361
https://doi.org/10.1007/978-3-319-91494-7_8
https://doi.org/10.1007/978-3-319-91494-7_8
https://www.sciencedirect.com/science/article/pii/S0021999119306783
https://www.sciencedirect.com/science/article/pii/S0021999119306783

Master Thesis 29

[30] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse prob-
lems involving nonlinear partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

[31] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation func-
tions. arXiv preprint arXiv:1710.05941, 2017.

[32] Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparame-
terization to accelerate training of deep neural networks. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, NIPS’16, pages
901–909, Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN 9781510838819.

[33] Peng Shengfang, Zhang Junjie, and Zhang Chunyu. Efficient aerodynamic shape
optimization through reduced order cfd modeling. Optimization and Engineer-
ing, 21:1599–1611, 2020. ISSN 1573-2924. doi: 10.1007/s11081-020-09489-9. URL
https://doi.org/10.1007/s11081-020-09489-9.

[34] Sho Sonoda and Noboru Murata. Neural network with unbounded activation
functions is universal approximator. Applied and Computational Harmonic Analysis,
43(2):233–268, 2017. ISSN 1063-5203. doi: https://doi.org/10.1016/j.acha.2015.
12.005. URL https://www.sciencedirect.com/science/article/pii/

S1063520315001748.

[35] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014. URL
http://jmlr.org/papers/v15/srivastava14a.html.

[36] Shaoqiang Tang and Yang Yang. Why neural networks apply to scientific com-
puting? Theoretical and Applied Mechanics Letters, 11(3):100242, 2021. ISSN 2095-
0349. doi: https://doi.org/10.1016/j.taml.2021.100242. URL https://www.

sciencedirect.com/science/article/pii/S2095034921000490.

[37] Derick Nganyu Tanyu, Jianfeng Ning, Tom Freudenberg, Nick Heilenkötter, An-
dreas Rademacher, Uwe Iben, and Peter Maass. Deep learning methods for par-
tial differential equations and related parameter identification problems. arXiv
preprint arXiv:2212.03130, 2023.

[38] Tayfun Tezduyar, Marek Behr, and James Liou. A new strategy for finite ele-
ment computations involving moving boundaries and interfaces—the deforming-
spatial-domain/space-time procedure: I. the concept and the preliminary numer-
ical tests. Computer Methods in Applied Mechanics and Engineering, 94:339–351, 02
1992. doi: 10.1016/0045-7825(92)90059-S.

https://doi.org/10.1007/s11081-020-09489-9
https://www.sciencedirect.com/science/article/pii/S1063520315001748
https://www.sciencedirect.com/science/article/pii/S1063520315001748
http://jmlr.org/papers/v15/srivastava14a.html
https://www.sciencedirect.com/science/article/pii/S2095034921000490
https://www.sciencedirect.com/science/article/pii/S2095034921000490

Master Thesis 30

[39] Tayfun Tezduyar, Marek Behr, Sanjay Mittal, and James Liou. A new strategy
for finite element computations involving moving boundaries and interfaces—the
deforming-spatial-domain/space-time procedure: Ii. computation of free-surface
flows, two-liquid flows, and flows with drifting cylinders. Computer Methods in
Applied Mechanics and Engineering, 94:353–371, 02 1992. doi: 10.1016/0045-7825(92)
90060-W.

[40] Laurens van der Maaten. Learning a parametric embedding by preserving lo-
cal structure. In David van Dyk and Max Welling, editors, Proceedings of the
Twelth International Conference on Artificial Intelligence and Statistics, volume 5 of
Proceedings of Machine Learning Research, pages 384–391, Hilton Clearwater Beach
Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR. URL https:

//proceedings.mlr.press/v5/maaten09a.html.

[41] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Jour-
nal of machine learning research, 9(11), 2008.

[42] Loc Vu-Quoc and Alexander Humer. Deep learning applied to computational me-
chanics: A comprehensive review, state of the art, and the classics. arXiv preprint
arXiv:2212.08989, 2022. doi: https://doi.org/10.48550/arXiv.2212.03130.

[43] Genki Yagawa and Atsuya Oishi. Computational Mechanics with Deep Learning.
Springer Nature Switzerland AG, 2023. ISBN 978-3-031-11847-0. doi: https://
doi.org/10.1007/978-3-031-11847-0.

[44] Weigang Yao, Simao Marques, Trevor Robinson, Cecil Armstrong, and Liang
Sun. A reduced-order model for gradient-based aerodynamic shape optimisation.
Aerospace Science and Technology, 106:106120, 2020. ISSN 1270-9638. doi: https://
doi.org/10.1016/j.ast.2020.106120. URL https://www.sciencedirect.com/

science/article/pii/S1270963820308026.

https://proceedings.mlr.press/v5/maaten09a.html
https://proceedings.mlr.press/v5/maaten09a.html
https://www.sciencedirect.com/science/article/pii/S1270963820308026
https://www.sciencedirect.com/science/article/pii/S1270963820308026

	List of Symbols
	Acronyms
	List of Figures
	List of Tables
	Introduction
	Fundamentals
	Incompressible flow
	Reduced model using neural networks

	Implementation
	Data generation
	Skewed lid driven cavity (SLDC)
	Karman vortex street

	Data preprocessing
	Network architecture and training
	Data inference

	Results
	Test case evaluation
	Common occurring errors

	Latent space exploration
	Data interpolation
	Solution inference on unseen parameter configurations

	Conclusion
	Appendix
	SLDCPE case: effects of network width
	Karman case: effects of normalization method and latent code size

	References

