
Evaluation of Platforms for
Distributed Ledger Based Trade

Finance

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Patrick Fichtinger, BSc
Matrikelnummer 01427619

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ass.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Monika di Angelo

Wien, 18. August 2021
Patrick Fichtinger Monika di Angelo

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Evaluation of Platforms for
Distributed Ledger Based Trade

Finance

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Patrick Fichtinger, BSc
Registration Number 01427619

to the Faculty of Informatics

at the TU Wien

Advisor: Ass.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Monika di Angelo

Vienna, 18th August, 2021
Patrick Fichtinger Monika di Angelo

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Patrick Fichtinger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 18. August 2021
Patrick Fichtinger

v

Kurzfassung

Die Blockchain-Technologie ermöglicht verschiedenste Anwendung die aufgrund ihres
dezentralen Charakters eine hohe Ausfallssicherheit haben, eine einheitliche, widerspruchs-
freie Transaktionshistorie bieten und deren involvierte Parteien sich nicht vollständig
vertrauen müssen, Durch diese Eigenschaften werden Blockchains unter anderem für
dezentralisiertes Finanzwesen (DeFi) interessant. Im Außenhandel schließen Unternehmen
Geschäfte mit ausländischen Unternehmen ab und verwenden zur Zahlungsabwicklung
in der Regel Banken oder sonstige Finanziers. Diese Zwischenhändler sind notwendig,
damit sich die Verkäufer nicht auf eine rechtzeitige und problemlose Zahlung der Käufer
verlassen müssen und dadurch ihr finanzielles Risiko verringern. Doch diese traditionelle
Handelsfinanzierung bringt auch einige Unannehmlichkeiten mit sich, beginnend mit
hohen Kosten, bürokratischem Aufwand, erheblicher Verzögerung bei der Abwicklung
und schließlich auch einem nicht zu vernachlässigenden Betrugsrisiko aufgrund veralteter
Systeme und manueller Bearbeitung.

In dieser Arbeit konzentrieren wir uns auf das Finanzinstrument Akkreditiv (Letter
of Credit, L/C), welches zur Absicherung von Zahlungen im internationalen Handel
eingesetzt wird. Basierend auf diesem Anwendungsfall schlagen wir eine Methode zur
Bewertung von Blockchains für DeFi vor. Nachdem wir einen Prototyp eines typischen
L/C-Workflows diskutiert und entworfen haben, implementieren wir diesen auf drei
ausgewählten Blockchain-Plattformen. Die Bewertung der drei Implementierungen und
dessen Plattformen erfolgt anhand zuvor festgelegter Kriterien. Diese Kriterien umfassen
allgemeine Plattform-Eigenschaften wie den Transaktiondurchsatz und die damit ver-
bundenen Kosten sowie entwicklungsspezifische Merkmale wie die Benutzerfreundlichkeit
im Entwicklungsprozess. Das Resultat ist eine Reihung der Plattformen anhand ihrer
Eignung in diesem Anwendungsfall.

vii

Abstract

Blockchain technology facilities multi-party applications that do not require the parties
to trust each other, that are failure-resistant due to their decentralized nature, and that
provide a consistent view on the transaction history. These properties make blockchains
attractive for decentralized finance (DeFi), and in particular for trade finance, where
parties do not necessarily trust each other and aim at reducing their financial risks.
Traditionally, intermediaries like banks or fiduciaries provide such services – along with
several inconveniences like the increased risk of fraud due to antiquated systems and
processes, considerable settlement delays, and high costs.

In this work, we focus on the financial instrument Letter of Credit (L/C), which is
used to secure payments in international trade. We propose a method for evaluating
blockchains for DeFi based on this use case. We adapt existing catalogues of criteria for
platform evaluation to fit the development and operation of DeFi applications. After
discussing and designing a prototype of a typical L/C workflow, we implement it on
selected blockchain platforms. The evaluation rates the feasibility and usability of the
development process.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 2
1.3 Expected Results . 3
1.4 Related Literature . 3
1.5 Methodological Approach . 4
1.6 Structure of the Work . 9

2 Fundamentals 11
2.1 Trade Finance . 11
2.2 Distributed Ledger Technology . 14

3 Platforms 23
3.1 Ethereum . 23
3.2 Hyperledger Fabric . 25
3.3 Corda . 29

4 Smart Contract Design 33
4.1 Methods . 35

5 Prototypes 37
5.1 Ethereum . 37
5.2 Hyperledger Fabric . 48
5.3 Corda . 59

6 Comparison 77
6.1 Platform . 77
6.2 Prototype Development . 83

xi

6.3 Result . 86

7 Conclusion 87

List of Figures 89

List of Tables 91

Acronyms 93

References 95

Appendix A - Ethereum Prototype Code 101
TradeFinanceContract.sol . 101
tradefinance.js (Tests) . 106

Appendix B - Hyperledger Fabric Prototype Code 109
index.ts . 109
order.ts . 109
trade.ts . 110
Order.java . 114
AddToWallet.java (Seller) . 118
ClientApp.java (Seller) . 120
AddToWallet.java (Freight Company) . 122
ClientApp.java (Freight Company) . 124
AddToWallet.java (Buyer) . 125
ClientApp.java (Buyer) . 127

Appendix C - Corda Prototype Code 131
OrderState.java . 131
TradeFinanceContract.java . 134
DataUtils.java . 138
CancelOrder.java . 139
CancelOrderResponder.java . 141
CheckDeliveryDate.java . 142
CheckDeliveryDateResponder.java . 145
ConfirmOrder.java . 146
ConfirmOrderResponder.java . 148
CreateOrder.java . 149
CreateOrderResponder.java . 152
ShipOrder.java . 153
ShipOrderResponder.java . 156
SignArrival.java . 157
SignArrivalResponder.java . 159
FlowTests.java (Tests) . 160

CHAPTER 1
Introduction

1.1 Motivation

According to the most recent report of the WTO [53] world merchandise exports were
valued at more than USD 19 trillions in 2018. Up to 80 percent depend on trade finance,
a very low risk form of financing for banks [6]. The term trade finance describes financial
instruments for trading partners that do not fully trust each other and try to reduce
the damage in case of misbehaviour of the opposite side. One possibility is to use
intermediates like banks or some other kind of financiers who provide guarantees or
insurances. Letter of Credit (L/C) is such a financial instrument used to secure payment
in international trade. While larger companies use L/C without much hesitation, smaller
businesses usually do not employ the experts needed for that kind of transactions and
therefore have a higher burden of entry to import or export internationally. Beside that,
banks also prefer larger and more established companies for financing than smaller ones
due the differences in numbers of transactions and amounts. [6, 22]

The involved processes are still largely paper-based and a cause of errors and inefficiency
due to combinations of manual checking and involvement of various persons from possibly
several countries [20]. An example highlighted by Capgemini Consulting [15] is the
trillion doller syndicated loan market where participants still sent more than four million
faxes in 2012. Antiquated systems and processes like this also increase the risk of fraud.
Another inconvenience with traditional financial contracts is the settlement delay which
is on average 48 days in Europe [15].

The importance and possibilities of digitalizing trade have long been recognized by banks
but previous attempts to introduce paperless trade failed to gain relevance. A typical
problem is the fragmentation into various platforms of different providers and the costs
involved to support all of them. For international companies and banks with a worldwide
presence it is economically easier to justify than for smaller independent traders or logistic

1

1. Introduction

firms. This resulted in digital islands without the ability to communicate via standard
interfaces to the outside world [15, 24]. McKinsey [11] estimates the greatest impact of
Distributed Ledger Technology (DLT) for trade finance will be in document handling for
international trades. It will help to digitize paper-based documents and contracts like
letters of credit, bills of landing or invoices.

The principle of DLT combines multiple aspects of computer science, mathematics and
economics like distributed networking, cryptography, game theory, graph theory and
stochastic [13]. One concept of DLT is the blockchain. It introduces trust-less systems
without a single point of failure that are still transparent, irreversible and maintain a
single point of truth. The blockchain enables numerous use cases in many different areas
[29, 56].

Numerous slightly different DLT and blockchain projects emerged during the last few
years. While common features like encryption, immutability and hashing are similar
across most of them, a major distinction lies in the potential participants. Among the
permission-less platforms, Bitcoin and Ethereum are the most prominent examples. As
for the permissioned platforms, Corda and Hyperledger are interesting. Corda is a
specialized distributed ledger platform created by R3 and a consortium of two hundred
global financial institutions. Hyperledger is an open-source project overseen by the Linux
Foundation with more than 270 organizations as official members. While Ethereum
introduced a new programming language with Solidity, Corda and Hyperledger support
Smart Contract (SC) written in Java. A SC is an automatically enforced program that
exists and runs directly on the distributed ledger network. It revitalises the smart contract
concepts introduced by Szabo [44]. Hyperledger uses the term chaincode interchangeably
for what other DLT designs like Ethereum and Corda call SC. The focus of this thesis
will be the usage of DLT in trade finance. [7, 14, 52, 12, 3]

1.2 Problem Definition

In summary there is a need for easier international trade finance without necessary
including banks. DLT is able to introduce new options for smaller companies. The goal
of this thesis is to provide prototypes of a typical workflow of trade finance (e.g. L/C)
implemented in the compared distributed ledger platforms. The purpose of the following
research questions is to analyse the differences and steps involved when setting up a trade
via a smart contract using the introduced platforms without the need to fully trust each
other.

RQ1 What are the differences when enforcing business agreements for trade finance
using existing distributed ledger platforms?

RQ1.1 What are the main differences in implementing a typical workflow on the
compared platforms?

2

1.3. Expected Results

RQ1.2 What are the cost differences between traditional trade financing and contracts
implemented and executed on DLT?

1.3 Expected Results

The platforms in focus all differ in how modular they are, what their major usage is,
who is able to participate, the programming languages, the consensus protocol and the
possible throughput. Regarding the implementation of a typical use case, we determine
the difference in efforts for the investigated platforms. Moreover, we provide a guide
for developing SCs on the mentioned platforms and describe typical pitfalls. This will
serve as a support for the selection of a platform. More specifically we will address if a
permission-less or permissioned DLT fits the use case better and which limitations either
have. Another interesting aspect is how hard it will be to implement the prototype with
a relatively unknown programming language compared to a common one. The main
focus thereby is on implementing prototypes. The results will be valuable to anyone
interested in the currently most researched distributed ledger platforms for trade finance
or intending to implement a similar smart contract on their own. The expected results
comprise the following three parts:

• A comparison of the platforms with respect to trade finance

• A smart contract prototype of the same workflow for each platform

• A cost analysis in comparison to trade financing with banks

1.4 Related Literature

While many articles and papers analyse different distributed ledger or blockchain plat-
forms, the comparison is mostly theoretical and none of them implement a prototype
on multiple platforms. The authors typically focus on either the use cases of different
platforms or the technical differences.

Cant et al. [15] did a quantitative analysis of smart contracts in addition to focus
interviews with selected professionals in the banking and insurance industry. They did
not focus on a specific platform and aim to highlight possible benefits of smart contracts
and what needs to happen before the financial industry is able to adopt them.

Murshudli and Loguinov [35] analysed the issues that need to be addressed when digital-
izing the international banking systems and focused on the possible economic benefits.
They mentioned the rise of FinTech companies, how they threaten the existing banking
system and how R3 (Corda) could allow to transfer the paper-based letter of credit
process to the blockchain.

3

1. Introduction

Belotti et al. [7] on the other hand published a guideline to choose which blockchain fits a
project the best. In addition to Ismail and Materwala [29] they also take into consideration
what the major usages of the described platforms are, modularity, architecture and
throughput among others. Other theoretical comparisons can be found in the works of
Saraf and Sabadra [42], Xu et al. [54] and Kim et al. [32].

Bogucharskov et al. [10] examine areas of blockchain application in trade finance and
identify major aspects for increasing the productivity of the transaction process. They
present how participants would interact with each other when using a blockchain based
L/C and what kind of improvements it brings.

The authors of Chang et al. [16] focus on the dilemma of traditional international trade
and design various blockchain based processes to digitalize it. One of the introduced
designs is a L/C smart contract. A feasibility study is done by using use-case and activity
diagrams. Furthermore a comparative analysis between the current trade process and
the described models is done.

Chang et al. [17] explored the feasibility of a blockchain based L/C smart contract from
a conceptual perspective. The goal is to increase the understanding of the DLT paradigm
shift with a multi-case study and the role of blockchain L/C in achieving numerous
targets in trade finance. The selected cases include projects on Ethereum, Hyperledger
and Corda.

Blum [9] is a master thesis about a trade finance Solidity smart contract designed and
analysed from a game theoretical point of view. In contrast to the other presented L/C
smart contracts it removes the involved intermediaries of traditional L/C. It also covers
the legal aspects in Switzerland.

In Vinayak et al. [50] the authors provide and explain the pseudo code of a European
style call option smart contract on Ethereum which could be used for collateral contract
services. The same authors describe in Vinayak et al. [51] how to set the network up and
design a collateral service smart contract on Hyperledger Fabric.

1.5 Methodological Approach

Research in information systems uses two distinct paradigms, behavioural science and
design science. Behavioural science has its roots in natural science methods. It starts
with a hypothesis, the researcher tries to either prove or disprove it with collected data
and in the end eventually evolves into a theory. The goal of design science on the other
hand is to produce an artifact which is built and evaluated to solve a problem. Going
through the process of developing and facing possible issues while doing so is a central
part for gaining knowledge to improve the artifact [27]. The primary research method
of the thesis is based on the guidelines and three cycle view proposed by Hevner et al.
[27] and furthermore the framework for evaluating methods in a design science research
project introduced by Venable et al. [49]. The main activities are:

4

1.5. Methodological Approach

• Build

– Systematic Literature Review based on Kitchenham and Charters [33] to
get an overview of the state of the art of blockchain development, to know
typical processes for trade finance, get familiar with the terminology both in
distributed ledgers and trade finance and to choose appropriate evaluation
criteria for the prototypes.

– Implementation of the same trade finance process on each of the introduced
platforms

• Evaluate the implemented artifacts in terms of functionality, reliability, usability,
costs and performance. The evaluation criteria will get more precise with each
iteration of the cycle and are described in subsection 1.5.2.

1.5.1 Build

Scientific Literature Review

To build the knowledge base of the three cycle view we use Scientific Literature Review
(SLR) as introduced by Kitchenham and Charters [33] using the electronic databases
IEEE Xplore, ScienceDirect, Scopus and SpringerLink. The Search Query was modified
to fit the different syntaxes, as shown in Table 1.1, and returns 333 results across all
databases.

1 (ethereum
2 OR corda
3 OR hyperledger
4 OR blockchain
5 OR DLT
6 OR "distributed ledger"
7 OR "smart contract")
8 AND
9 ("trade finance"

10 OR "letter of credit")

Listing 1.1: Search Query

Pruning

Stage 1: Removing duplicates and non-sense. Based on the initial set of records from the
databases we removed duplicates and obvious non-sense. Duplicates were identified by
considering the authors and title of the paper. Obvious non-sense that got removed was
for example the acronym page from Gabler Banklexikon (K – Z) (2020). This removed
about 7% and resulted in 310 studies left.

5

https://ieeexplore.ieee.org/search/searchresult.jsp?action=search&newsearch=true&matchBoolean=true&queryText=((%22Full%20Text%20.AND.%20Metadata%22:ethereum%20OR%20corda%20OR%20hyperledger%20OR%20blockchain%20OR%20%22smart%20contract%22)%20AND%20%22Full%20Text%20.AND.%20Metadata%22:%22trade%20finance%22%20OR%20%22letter%20of%20credit%22)
https://www.sciencedirect.com/search/advanced?qs=%28ethereum%20OR%20corda%20OR%20hyperledger%20OR%20blockchain%20OR%20DLT%20OR%20%22distributed%20ledger%22%20OR%20%22smart%20contract%22%29%20AND%20%28%22trade%20finance%22%20OR%20%22letter%20of%20credit%22%29
https://www.scopus.com/results/results.uri?numberOfFields=0&src=s&clickedLink=&edit=&editSaveSearch=&origin=searchbasic&authorTab=&affiliationTab=&advancedTab=&scint=1&menu=search&tablin=&searchterm1=%28+ethereum++OR++corda++OR++hyperledger++OR++blockchain++OR+DLT+OR+%22distributed+ledger%22+OR+%22smart+contract%22+%29++AND++%28+%22trade+finance%22++OR++%22letter+of+credit%22+%29&field1=ALL&dateType=Publication_Date_Type&yearFrom=Before+1960&yearTo=Present&loadDate=7&documenttype=All&accessTypes=All&resetFormLink=&st1=%28+ethereum++OR++corda++OR++hyperledger++OR++blockchain++OR+DLT+OR+%22distributed+ledger%22+OR+%22smart+contract%22+%29++AND++%28+%22trade+finance%22++OR++%22letter+of+credit%22+%29&st2=&sot=b&sdt=b&sl=163&s=ALL%28%28+ethereum++OR++corda++OR++hyperledger++OR++blockchain++OR+DLT+OR+%22distributed+ledger%22+OR+%22smart+contract%22+%29++AND++%28+%22trade+finance%22++OR++%22letter+of+credit%22+%29%29&sid=23f1b5e4ad857c1682b9b11b5fd1c17a&searchId=23f1b5e4ad857c1682b9b11b5fd1c17a&txGid=586d9f0178394b16d5d8978dbdd7bf02&sort=plf-f&originationType=b&rr=
https://link.springer.com/search?query=%28ethereum+OR+corda+OR+hyperledger+OR+blockchain+OR+DLT+OR+%22distributed+ledger%22+OR+%22smart+contract%22%29+AND+%28%22trade+finance%22+OR+%22letter+of+credit%22%29

1. Introduction

Table 1.1: Search queries executed against databases

Electronic Database Search Query Records
IEEE Xplore (("Full Text & Metadata":ethereum OR corda

OR hyperledger OR blockchain OR "smart con-
tract") AND "Full Text & Metadata":"trade fi-
nance" OR "letter of credit")

41

ScienceDirect (ethereum OR corda OR hyperledger OR
blockchain OR DLT OR "distributed ledger" OR
"smart contract") AND ("trade finance" OR "let-
ter of credit")

36

Scopus ALL ((ethereum OR corda OR hyperledger OR
blockchain OR dlt OR "distributed ledger" OR
"smart contract") AND ("trade finance" OR
"letter of credit"))

82

SpringerLink (ethereum OR corda OR hyperledger OR
blockchain OR DLT OR "distributed ledger" OR
"smart contract") AND ("trade finance" OR "let-
ter of credit")

174

Stage 2: Manual selection based on title. Studies were filtered by comparing their titles
with the inclusion and exclusion criteria. This removed about 79% and resulted in 65
studies left. The applied inclusion and exclusion criteria:

Inclusion criteria

• Studies that report on applications and future trends of the blockchain

• Studies that address the usage of DLT in financial services

• Studies that involve smart contracts and L/C

• Studies that compare at least two of the platforms in focus

Exclusion criteria

• Studies that are not written in German or English

• Studies that involve Islamic finance

• Studies that focus on crypto currencies, Bitcoin or Initial Coin Offerings (ICOs)

• Studies that address supply chain traceability

• Studies involving the maritime industry

6

1.5. Methodological Approach

Stage 3: Manual selection based on abstract. Studies were filtered by comparing their
abstract with the inclusion and exclusion criteria. This removed about 57% and resulted
in 28 studies left.

Stage 4: Manual selection based on content. In the final stage we read the few remaining
papers with the defined criteria and the goal of the thesis in mind. In the end we selected
10 relevant articles and books that are presented in Table 1.2.

Table 1.2: Selected knowledge base

Reference Type Title
Aggarwal et al. [1] Article Blockchain for smart communities: Applications,

challenges and opportunities
Bogucharskov et al. [10] Article Adoption of blockchain technology in trade fi-

nance process
Chang et al. [17] Article Blockchain-enabled trade finance innovation: A

potential paradigm shift on using letter of credit
Chang et al. [16] Article Exploring blockchain technology in international

trade: Business process re-engineering for letter
of credit

Liang [34] Article Blockchain application and outlook in the banking
industry

Vinayak et al. [51] Article Design and Implementation of Financial Smart
Contract Services on Blockchain

Travel and Mohanty [46] Book R3 Corda for Architects and Developers
Xu et al. [55] Book Architecture for Blockchain Applications
Sunyaev [43] Book Internet Computing
Bhogal and Trivedi [8] Book International Trade Finance

Implementation

Details about the implementation of the SC on the various platforms are found in
chapter 5.

1.5.2 Evaluation

The design cycle is a constant iteration of constructing and evaluating the artifact. One
purpose of evaluation is to verify if an instantiation of a designed artifact achieves its
stated goal. Another objective is how well an artifact fulfils the requirements compared to
other artifacts with similar purposes [48]. Evaluation is also used to identify weaknesses
and areas of improvement and is a key principle when developing an artifact using the
iterative build-evaluate cycle by Hevner et al. [27].

7

1. Introduction

While evaluation is quite specific to the artifact Hevner et al. [27] states that "arti-
facts can be evaluated in terms of functionality, completeness, consistency, accuracy,
performance, reliability, usability, fit with the organization, and other relevant quality
attributes". Checkland [18] on the other hand proposed five properties to evaluate:
efficiency, effectiveness, efficacy and in particular circumstances ethicality and elegance.

Different Design Science Research (DSR) authors have identified multiple methods of
evaluation. While Hevner et al. [27] describes five classes of evaluation methods, Peffers
et al. [39] splits evaluation into two parts, demonstration and evaluation. Other methods
have been identified by Nunamaker Jr et al. [38] and Venable [48]. The authors of Venable
et al. [49] developed a comprehensive framework for designing the evaluation methods
used in a particular DSR project.

The first question when choosing the DSR evaluation strategy framework based on
Venable et al. [49] is to differentiate between ex ante and ex post. The guideline states
ex ante is used to evaluate partial or full prototypes while ex post is used for full
instantiations. As we implement multiple prototypes in this thesis ex ante fits best. The
next step is to decide between naturalistic and artificial. This depends on whether the
stakeholders are real users or not and the potential conflicts emerging from that. We
choose artificial as there are no real stakeholders involved and therefore the risk is low.
The DSR evaluation method gets selected based on the properties ex ante and artificial
and results in Criteria-Based Evaluation.

The criteria used to find the platform that fits the use-case the best are separated into
two parts. The first part rates the actual platform itself while the second part focuses
on the SC development. Properties and characteristics to evaluate DLT platforms are
introduced in section 2.2, more specifically in Table 2.1 and Table 2.2.

General Platform Criteria

• Performance How long does it take to finalise a transaction? Scalability?

• Confidentiality Prevention of unauthorised information access?

• Costs What are the costs for participating in the network?

• Governance Open-source? Adoption of appropriate license necessary? How are
decisions about changes to the platform made?

Prototype Development Criteria

• Usability Comprehensive documentation of the platform available? A lot of effort
to set-up the development environment?

• Functionality Is is possible to implement all methods as specified in chapter 4?

8

1.6. Structure of the Work

• Testability How to test the correctness of a SC? Are there any official tools?

• Flexibility General-purpose or domain-specific programming language? Virtual
machines running the nodes?

A platform will get one to three points for each criteria mentioned. A more detailed
description about the reasoning and points awarded to the platforms is outlined in
chapter 6. In the end we will sum up the points and rank the platforms from the highest
to the lowest number.

1.6 Structure of the Work

The rest of this thesis is organized as follows:

Chapter 2 introduces basic terms involving international trade and DLT. L/C is the
trade finance process in focus and a comprehensive description will highlight the steps of
the participants involved and help to understand the problems of the traditional approach.
It also clarifies the difference between distributed ledger technology and blockchain.

In Chapter 3 we will have a look at promising platforms like Ethereum, Hyperledger
Fabric and Corda. This chapter will focus on the technical differences and builds a
foundation of knowledge for the smart contracts implemented later.

Chapter 4 presents a platform independent design of the L/C smart contract we will
implement with all its stakeholders and components involved.

Chapter 5 describes the steps involved to implement the introduced smart contract on
the various platforms and changes to the default design if required.

A comparison between the implemented prototypes and cost analysis is provided in
Chapter 6.

Finally, Chapter 7 summarizes the findings and closes with an outlook on future work.

9

CHAPTER 2
Fundamentals

In section 1.1 we briefly discussed the terms trade finance, DLT and SC. The goal of this
chapter is to describe the involved processes and technologies in more detail.

2.1 Trade Finance

International trade plays a crucial role in the economy of many countries. When moving
goods importers and exporters often share the same set of problems originating in the
different legislations, practises and customs of the involved countries. Each side has their
own concerns. While exporters want to be certain that they are paid after shipping their
merchandise, importers want to make sure to receive exactly what has been ordered.
Reasons for importing or exporting range profit to not enough supply or demand in the
home market but often are more complex due the following risks:

• Geographical: due geographical reasons the buyer and seller are less likely to know
each other

• Legal: often the customs and legal system is different between the involved actors

• Language: different languages require translations of the involved documents and
could be a cause of misunderstandings

• Non-Payment: domestic sales have a lower risk of non-payment than international
trade

• Money-bound: because of longer shipping times compared to local trades the money
invested is typically restricting the cash-flow of the involved companies. While
suppliers usually want payment before shipping the goods, importers prefer to be
able to inspect the received order.

11

2. Fundamentals

• Currency exchange: trading with partners in countries with volatile currency results
in a risk for both sides

• Manufacturing: the buyer modifies or cancels the order after the manufacturer has
already produced customized goods.

To fill the resulting gap of uncertainty commercial banks provide numerous products
and therefore play an important role in foreign trade. Banks usually have branches in
multiple countries or are at least partnered with a local bank. Because of a combination
of the legal knowledge of the involved countries, practical experience in international
trade and the general trustworthiness, banks are often chosen as intermediaries. There
are various payment methods like Cash in Advance (CIA), Open Account (OA), L/C
and many more. [6, 8, 22, 53]

2.1.1 Payment Methods

Cash in Advance

This payment method requires a payment made by the buyer before the goods are
received or often before a shipment is even made. CIA removes the risk of non-payment
for the seller and shifts the trade risks fully to the buyer. It also eliminates possible
liquidity problems for the seller to manufacture or buy goods them-self. CIA is often
used for customised goods as the seller would be in a disadvantaged strategic position
after starting to invest on a buyer specific item. The buyer could try to renegotiate the
price because they know the seller will not be able to sell the good with a similar price
to other parties. [8, 25]

Open Account

When both involved parties trust each other, usually based on a common trade history,
OA payment is often used. With OA the seller ships the goods and forwards documents
of title (like Bill of Lading (B/L)) to the buyer before the payment is made. The payment
is settled in the future, sometimes combining payment of regular shipments within a
given interval to pay goods received during that period. This kind of payment method
puts a lot of risk on the seller’s side as they neither have any control over the goods nor
have to trust the importer to pay. [8, 25]

Letter of Credit

L/C (also known as documentary credit) is a guarantee of payment issued by the buyer’s
bank after it got requested by the buyer and all requirements are met. Usually the

12

2.1. Trade Finance

seller also gets their bank involved in order to estimate the worthiness of the purchasers
bank guarantee and to minimize possible exchange problems or political risks. The
typical trade participants of a L/C process are sellers (exporters), buyers (importer),
shippers (logistics carrier) and banks. The three major flows are money, documents,
goods. Figure 2.1 illustrates the following steps involved in the process:

1. a sale contract between the seller and buyer is established

2. the buyer applies at their bank to issue an L/C to the seller’s bank

3. buyer’s bank issues L/C to seller’s bank

4. seller’s bank notifies seller about L/C

5. seller checks the received L/C for correctness of described goods

6. seller arranges shipment to the buyer

7. the carrier provides the seller shipping documents like the B/L

8. B/L is considered a document to claim ownership of the goods and gets sent to
seller’s bank

9. the buyer’s bank pays the seller through their bank in exchange for the B/L

10. the buyer pays their bank in exchange for the B/L to be able to claim the goods

11. the carrier ships the goods to the buyer

12. the carrier checks if the buyer has the correct B/L

Several types of L/C exist. A clean L/C for example does not require any document, like
the terms and conditions to fulfil, other than a written demand for payment by the seller.
For financial institutes it is not safe to agree to such a type of L/C as neither the goods nor
the documents of title for the goods (like B/L come into their possession. In international
trade L/C often is used as a documentary proof of trust between the involved parties
where each participant has to provide a number of logistic related documents. Another
type is the irrevocable L/C. The issuing bank is not able to alter or cancel its terms
without the consent of all participants, including the beneficiary. Payment is usually
made when the agreed terms and conditions are met. Difficulties in communication and
coordination caused by the number of involved participants in various types of cross
border business activities with unfamiliar counter parties often result in issues such as
tedious document processing, higher issuance cost and forgery. [8, 16, 17, 25]

Letter of Credit. A letter of credit is a payment mechanism used in international trade
that provides the seller a guarantee from the buyer’s bank.

1Icons made by Pixel perfect and Good Ware from www.flaticon.com

13

2. Fundamentals

Figure 2.1: L/C process (based on Chang et al. [16]) 1

2.2 Distributed Ledger Technology

This section introduces the technical background of DLT and presents innovations since
the introduction of the blockchain concept. In recent years DLT gained major attention
in the media and academic field caused by the creation of the Bitcoin blockchain in the
year 2009. It is one of the most promising innovations in the IT and has to potential
to change the economy, society and industry. The principle of DLT combines multiple
aspects of computer science, mathematics and economics like distributed networking,
cryptography, game theory, graph theory and stochastic. Together these components
enable temper-proof transactions and safeguard the data from manipulation and theft.
[13, 43]

Managing and especially storing data is an essential part of many applications. In most
of the cases relational databases are used for this purpose which defined tables and
relationships between those. Transactions handle changes to the data as a set of CRUD
(create, read, update, delete) operations and are executed in isolation to enable a rollback
in case of failure. In general there are three types of databases: centralised, decentralised

14

2.2. Distributed Ledger Technology

and distributed. In centralised databases data is stored at a single place and while easier
to maintain the drawbacks are performance and availability. Availability describes the
probability of the database to function as expected at a random time. The performance
bottleneck becomes apparent when there is a high load of requests and a single machine
is not able to handle it well enough. Distributed databases on the other hand do not
have a central storage. The data is stored on multiple connected devices, often in
different locations. The structure is hierarchical with some nodes fulfilling a coordinator
role. Another explanation is a hierarchical organisation of centralised databases. In
decentralised databases this organisational bottleneck is removed. Replications of the
data is stored across numerous independent machines and if one database fails the other
devices in the network are able to handle the request and provide a similar result. Each
decentralised database is also a distributed database. We also call the involved machines
nodes. In a decentralised database the nodes form a mesh of connected devices as no
hierarchical structure exists. In this context distributed refers to the distribution of data
across multiple devices while decentralised refers to the distribution of control of the
data. [43, 55]

Decentralised Database. A decentralised database is a type of database where data is
replicated across multiple storage devices (nodes) with equal rights.

Although physically separated, a CRUD operation on a distributed database should
always return the same result. To achieve a consistency of the stored data the nodes are
logically centralised while the architecture is distributed. The nodes are separated and
therefore some form of communication to be able to synchronise the data must exist.
Algorithms and protocols managing the synchronisation with possible unreliable nodes
in mind are called consensus mechanisms. [43, 55]

Consensus Mechanism. A consensus mechanism is designed to achieve agreement on
the respective state of replications of stored data between a distributed database’s nodes
under consideration of network failures. [43]

A special type of a distributed database is the distributed ledger. In contrast to distributed
databases the only allowed operation is to add new data, therefore deleting or updating
should not be possible. The used consensus mechanisms are designed to be able to
handle the third Byzantine failure. The term Byzantine failure takes it name from the
"Byzantine Generals Problem" and describes a situation in which actors must agree on
a joint strategy to avoid catastrophic failure of the system but some of the actors are
unreliable. The first type of Byzantine failure is a unreachable or crashed node. If a
node sends ambiguous responses and the monitoring system is not able to determine the
nodes status the second type is present. While the first two types are often technical
problems, the third one describes nodes with malicious intentions such as trying to store
incorrect data. [43, 55]

15

2. Fundamentals

Distributed Ledger. A distributed ledger is a type of distributed database that assumes
the presence of nodes with malicious intentions. A distributed ledger comprises a ledger’s
multiple replications in which data can only be appended or read. [43]

Because of the application of game theory 2 to consensus finding in distributed databases
DLT allows unknown or untrusted nodes to run the distributed ledger. One of the major
innovations of DLT is the reliable synchronisation of a distributed ledger while the set of
nodes is dynamically changing and respecting the Byzantine failures. [43, 55]

Distributed Ledger Technology. DLT enables the realization and operation of dis-
tributed ledgers, which allow benign nodes, through a shared consensus mechanism, to
agree on an (almost) immutable record of transactions despite Byzantine failures and
eventually achieving consistency. [43]

One concept of DLT is the blockchain. Introduced and implemented in 2009 with the
goal of accessible digital money transfer without the involvement of banks, Bitcoin is
often considered DLT generation 3 1.0.

Blockchain. A blockchain is a distributed ledger that is structured into a linked list
of blocks. Each block contains an ordered set of transactions. Typical solutions use
cryptographic hashes to secure the link from a block to its predecessor. [55]

Figure 2.2 shows the concept of blocks in a blockchain. The cryptographic method of
hashing guarantees that a preceding block is unchanged. If the block n gets changed, for
example someone tries to manipulate the data, the hashing algorithm returns another
value for the changed block and thus the link between the blocks n and n+1 breaks as
n+1 refers to a block with the old hash value.

Figure 2.2: Blockchain data structure (adapted from Xu et al. [55])

Blockchain System. A blockchain system consists of:

(i) a blockchain network of machines, also called nodes;
2Myerson [36] describes Game Theory as "(...) study of mathematical models of conflict and

cooperation of intelligent rational decisionmakers".
3In literature the term blockchain generation is frequently used although the blockchain is only a

concept of DLT and a more broad definition would be DLT generation.

16

2.2. Distributed Ledger Technology

(ii) a blockchain data structure, for the ledger that is replicated across the blockchain
network. Nodes that hold a full replica of this ledger are referred to as full nodes;

(iii) a network protocol that defines rights, responsibilities, and means of communication,
verification, validation, and consensus across the nodes in the network. This includes
ensuring authorization and authentication of new transactions, mechanisms for
appending new blocks, incentive mechanisms (if needed), and similar aspects.[55]

The incentive mechanism used in most public blockchains is proof-of-work. The so called
miners create new blocks by solving cryptographic puzzles. In case of Bitcoin by finding
a value for a field in the block header, the nonce. To keep the average time between
blocks around ten minutes the threshold is adjusted over time. As the transaction of a
mined block has no input this is also the way new BTC tokens are minted and is the
form of payment for miners. After a new block is successfully mined it gets broadcasted
over the whole network and each full node holds a replica of the most current state of
the ledger. [37]

Public Blockchain. A public blockchain is a blockchain system that has the following
characteristics:

(i) it has an open network where nodes can join and leave as they please without
requiring permission from anyone;

(ii) all full nodes in the network can verify each new piece of data added to the data
structure, including blocks, transactions, and effects of transactions; and

(iii) its protocol includes an incentive mechanism that aims to ensure the correct operation
of the blockchain system including that valid transactions are processed and included
in the ledger and that invalid transactions are rejected.[55]

People soon realised that crypto-currencies are not the only field of application of
blockchains and developed distributed ledgers with the capability of storing additional
data. As a consequence Smart Contracts got introduced as it was now possible to store
applications inside transactions. The simple scripting language of Bitcoin is not Turing
complete 4 and therefore not classified as SC capable. The Ethereum blockchain addressed
this weakness of Bitcoin and introduced the possibility of more powerful applications
with the introduction of Turing complete SCs on a distributed ledger. Ethereum is a
DLT generation 2.0 blockchain as it is not limited to the usage as a crypto currency
but also allows the distributed ledger to be utilised in other ways, for example to store
data. While Bitcoin and Ethereum offer pseudo anonymity 5 and are permission-less

4Turing completeness describes a systems ability to simulate any other Turing machine. That means
the system is able to decide other data manipulating rule sets based on the current state. The usage of
loops in programming is enabled by Turing completeness.

5Pseudo anonymity describes when persons are at first not directly identifiabl for example because
of the usage of number plates (or in the blockchain context wallet addresses) but in the end no real
anonymity is given.

17

2. Fundamentals

blockchains, some use cases require more confidentiality, increased flexibility or a higher
throughput. [43, 54]

One of the main differences between DLT designs is the question who is able to participate.
On public blockchains like Bitcoin and Ethereum the underlying network allows unknown
nodes to join and to contribute to the distributed ledger. This usually results in a large
number of nodes maintaining the network and causes a high level of availability as each
node stores a replication of the ledger. On the other hand, in private DLT designs nodes
are identifiable and such networks typically require some form of verification to be able to
join the network. Such distributed ledgers are useful when multiple companies cooperate
and the involved data should not be accessible by everyone. Caused by the difference in
number of nodes involved between the two blockchain designs the consensus mechanisms
vary. Whereas the consensus algorithms in public designs must be highly scalable, their
counterparts in private designs are often designed for a smaller number of nodes and focus
on other aspects. In addition to the distinction between public and private distributed
ledgers, the consensus finding and transaction validation can also be assigned to a subset
of nodes. DLT designs where only a subset of nodes are involved in the consensus finding
process are called permissioned. The advantage of using only a smaller known group of
nodes to validate transactions is a much higher throughput, up to multiple thousands
per second. Permissionless DLT designs do not require the identity of the node to be
known because every node has the same permissions. As nodes constantly join and
leave the network the consensus finding is much less finite and usually more probabilistic
than in permissioned networks. The large public DLT designs Bitcoin and Ethereum are
permissionless. HyperLedger Fabric introduces this functionalities and is considered DLT
generation 3.0. [14, 43, 3, 54, 55]

Figure 2.3: Schematic overview of the DLT terminology (adapted from Kannengießer
et al. [31])

Figure 2.3 provides a visualisation of various DLT terms. While Ethereum and Bitcoin
both emply the DLT concept blockchain their implementation differs because the there
is a trade-off of the characteristics applied. Characteristics have interdependencies and
can either be complementary (high level of transparency helps with audit-ability) or
contradictory (high availability needs multiple replications which decreases consistency).

18

2.2. Distributed Ledger Technology

Kannengießer et al. [31] identified six DLT properties as described in Table 2.1 and
numerous characteristics grouped by properties in Table 2.2.

Transaction. A transaction updates the state recorded on a blockchain. [55]

The state information of transactions of crypto-currency blockchains is usually about
the transfer of tokens between accounts. On blockchains such as Ethereum a transaction
possibly contains code, variables or the results of function calls. Once a transaction
reaches a mining node it is verified an possibly included in the newly mined block.

Even though the blockchain brings new possibilities, it is not practical for every usage
scenario. Many use cases do not require the decentralized and immutable aspects.
For example computation heavy programs are not the target market for blockchain
applications.

Table 2.1: DLT properties (adapted from Kannengießer et al. [31])

Property Description
Security Preservation of confidentiality, integrity, and availability of

information.
Performance The accomplishment of a given task measured against stan-

dards of accuracy, completeness, costs, and speed.
Usability The extent to which a DLT design can be used by specified

users to achieve specified goals with respect to effective-ness,
efficiency, and satisfaction in a context of use.

Development Flexibility The possibilities offered by a DLT design for maintenance
and further development.

Level of Anonymity The degree to which individuals are not identifiable within
a set of subjects.

Institutionalization The emerging embedding of concepts and artifacts (here
DLT) in social structures.

2.2.1 Smart Contracts

Instead of simply storing data, some DLT designs are able to store code and execute
it. We call those programs smart contracts. Buterin [14] describes the term DLT as
"more complex applications involving having digital assets being directly controlled by
a piece of code implementing arbitrary rules". The idea to represent contracts in soft
and hardware with pre-defined programmed conditions was introduced by Szabo [44]
about 20 years earlier but did not find much traction and just gained relevance with the
recent blockchain developments. Szabo [44] suggested to translate clauses of traditional
contracts into code and use hard- or software that is capable of self-enforcing them. The

19

2. Fundamentals

Table 2.2: Extract of DLT characteristics (adapted from Kannengießer et al. [31])

Property Characteristics

Security Availability. Availability is the probability that a system can be
accessed when needed.
Confidentiality. Prevention of unauthorised information access and
release.
Consistency. Strong consistency means that all nodes store the same
data in their ledger at the same time.
Integrity. Integrity requires that information is protected against
unauthorized modification or deletion as well as irrevo-cable,
accidental, and undesired changes by authorized users.

Performance Block Creation Interval. The time between the creation of consecutive
blocks (only in DLT designs using blocks).
Scalability. The capability of a DLT design to handle an increasing
amount of workload or its potential to be enlarged to accommodate
that growth.
Throughput. The number of transactions validated and appended
to the ledger in a given time interval.
Transaction Validation Speed. Duration required for verifying
transaction validity.

Usability Costs. Costs related to the implementation and usage of a DLT
design, including software development and operational costs.
Ease of Node Adoption. The ease of preparing a new or failed device
to be added to the DLT design in the role of a validating node or a
consuming terminal device.
Ease of Use. The ability to easily access and work with the DLT
design.

goal was to minimize the number of involved intermediaries and to remove the need of
trust. Despite using the term smart contract the applications are neither smart (as using
some form of artificial intelligence) nor legally enforceable contracts. A smart contract
acts like a self-operating computer program that automatically executes when specific
conditions are met.

Once deployed on the blockchain, smart contract code is immutable and is executed
exactly as programmed. Applications are called Decentralized Applications (DApps)

20

2.2. Distributed Ledger Technology

when its central logic is deployed as smart contracts. Smart contracts are used to
build all kind of DApps ranging from creating digital assets like crypto-curriencies to
creating uncensorable web applications to build decentralized autonomous organisations.
Details about the differences in implementing and using SCs on Ethereum, Corda and
Hyperledger Fabric will be presented in chapter 3 and chapter 5.

Smart Contract. A smart contract is an application that manipulates digital assets
based on pre-defined conditions implemented in code and stored on a DLT.

21

CHAPTER 3
Platforms

3.1 Ethereum

The smart contract platform with the highest market capitalization as of today, in terms
of capital employed, is Ethereum and was developed by Buterin [14] and Wood [52] in
2014. Ethereum is a public, Proof-of-Work (PoW)-based 1 permissionless blockchain-
based, distributed platform and offers a built-in and Turing complete smart contract
functionality, allowing everyone to write decentralized applications. As already mentioned
one difference between a first generation DLT like Bitcoin and second generation DLTs like
Ethereum is the support for programmable transactions. Smart contracts are considered
first-class elements in Ethereum and the code is executed in a decentralized virtual
machine, known as Ethereum Virtual Machine (EVM). DApps on Ethereum are written
in the high-level programming language Solidity, which is an object-oriented language
with predefined instructions and later compiled into a low-level stack-based bytecode
language. In the end, a smart contract is a series of sequentially executed instructions by
the EVM. [14, 52, 55]

Buterin [14] states five principles the design of Ethereum follows:

1. Simplicity: the Ethereum protocol should be as simple as possible, even if that
results in some inefficiencies

2. Universality: instead of having any features the platform provides a Turing-complete
language and the programmer is able to build whatever he needs

3. Modularity: the protocol should be as modular as possible to be able to change
and upgrade some parts without requiring modifications on others.

1PoW is a consensus mechanism in which the miners compete with each other to solve a mathematical
problem.

23

3. Platforms

4. Agility: details of the protocol may change in the future, for example if improvements
in scalability or security are found.

5. Non-discrimination and non-censorship: the protocol should not restrict of actively
prevent specific use cases.

3.1.1 Ethereum Protocol

To address the long delays of a Bitcoin transactions, Ethereum is designed to have
relatively short time intervals between blocks, on average around 15s. As a result the
possibility that multiple competing blocks are created concurrently is much higher. This
becomes a problem because most of the public blockchains use the Nakamoto consensus,
where processing nodes treat the longest chain of blocks as the authoritative chain, the
main chain. Blocks that were successfully created by a miner and already propagated and
verified by some nodes but eventually dismissed because another longer chain becomes
the main chain are called stale blocks. [55]

A way to settle this problem is the usage of a modified Greedy Heaviest Observed Subtree
(GHOST) protocol. With GHOST miners reference stale blocks (so called ommer blocks)
to add weight to their chain. In contrast to other protocols the decision which chain
becomes the main chain is not only based on the length but also on the weight. Referenced
ommer blocks contribute to that weight. In addition of allowing shorter inter-block times
and higher throughput by recognising concurrent work the network keeps the miners
financial interest high as the miners of ommer blocks also receive a (reduced) block
reward. [14]

In Ethereum the consensus finding and validation of transactions is combined as follows:

1. Every node builds a block containing valid transactions. Validation of transactions
is done by pre-executing them.

2. The node tries to solve the PoW puzzle.

3. If the puzzle got solved the node publicizes the block to the network.

4. Receiving nodes validate the solution of the puzzle and all transactions contained
in the block.

In the end every node in the network repeats the executions done in step 1 sequentially.

3.1.2 Smart Contract

To deploy a SC on the Ethereum blockchain a contract-creation transaction is used. The
payload of the transaction includes the code. After the contract is successfully created it
is identified by a contract address on the blockchain. Every smart contract contains:

24

3.2. Hyperledger Fabric

• executable code

• internal storage to store its state

• Ether, the token of Ethereum and therefore a balance

Smart contracts must be externally invoked and to interact with a deployed contract
users have to call the defined functions by sending contract-invoking transactions to the
contracts address. It is also possible to invoke functions of other smart contracts. An
invoke transaction contains:

1. the interface of the invoked function

2. the parameters in the data payload

3. some amount of Ether to pay for the execution

3.1.3 Gas

Each node in the network has to execute every operation within a contract and consumes
the computational resources of the miner. To compensate the miners and to limit the
use of resources the concept of Gas is used. Gas is a proportional fee. The gas has to be
paid by the Ethereum account sending the transaction. Every transaction has a fixed
gas cost and additional variable costs dependent on the data and the number bytecode
instructions executed of called functions. Gas cost is paid with Ether and the user sets
how much he is willing to pay when creating a transaction. A transaction also has a gas
limit parameter to be able to set an upper bound on how much gas can be consumed
by the transaction and acts as a safe-guard to prevent draining the whole balance due
programming errors or malicious intent. [14]

3.2 Hyperledger Fabric

Another well known open-source blockchain project is Hyperledger. It is an umbrella
project and since 2015 hosted by the Linux Foundation. The members included are
well known technology platform providers (Intel, Cisco, Red Hat, ...), finance firms (J.P.
Morgan, SWIFT, Sberbank, ...) academic institutions (Cambridge, UCLA) and other
various well known corporations (IBM, SAP, Accenture, ...). The Hyperledger project
is home to numerous frameworks with the core topic focusing on blockchain. The tools
range from programs visualising data on the blockchain to developing DApps. One of
the areas explored is Hyperledger Fabric, a business blockchain framework with the goal
of developing modular blockchain-based applications. [3]

25

3. Platforms

Based on the definitions in section 2.2 Hyperledger Fabric is classified as a private and
permissioned blockchain. In Androulaki et al. [3] the authors present some limitations of
other permissioned blockchains. In particular:

• the consensus mechanism is hard-coded although it is well established knowledge
that there is no "one-size-fits-all" consensus protocol

• a fixed, non-standard or domain-specific language is used to write smart contracts

• all transactions must be executed by all peers in sequential order which limits
performance

• every node executing every smart contract is problematic for confidential data

Fabric supports the execution of DApps written in standard general-purpose programming
languages (Go, Java, JavaScript, TypeScript) consistently across the globe and is therefore
also described as the first distributed operating system for permissioned blockchains.
Smart contracts are hosted in Docker container to isolate them from each other and
called chaincode. Maintaining and participating in the network is exclusive to members
enrolled via a trusted Membership Service Provider (MSP). In contrast to Ethereum
all nodes of a Fabric network have known identities. Hyperledger Fabric and Ethereum
use the virtual computer model which models the database as a in-memory state of a
global computer [26]. The architecture is split into the following components to keep the
modularity as high as possible [3]:

• Ordering service: broadcasts state updates and establishes consensus on the order
of transactions

• MSP: links the peers with cryptographic identities and is used to keep the blockchain
private

• Peer-to-Peer gossip service: distributes the blocks output to all peers

• Smart contract: is executed within a container environment and does not have
direct access to the ledger state.

• Ledger : maintained by each peer locally as a append-only blockchain and as a
snapshot of the most recent state in a key-value store.

Previous blockchains (e.g. Ethereum) implemented the order-execute architecture, which
means the network first orders the transactions using a consensus protocol and then
executes 2 them in the same order on all nodes sequentially. While this architecture is
conceptually simple it has various drawbacks: [3]

2the transaction execute step is often also called transaction validation

26

3.2. Hyperledger Fabric

• Sequential Execution: limits the throughput and as the throughput is inversely
proportional to the execution latency this becomes a performance bottleneck. That
kind of architecture is also prone to denial-of-service (DoS) attacks by introducing
smart contracts that slow down the whole blockchain. Ethereum solved this problem
by introducing subsection 3.1.3.

• Non-deterministic 3 code: One of the most fundamental basics in a blockchain is that
all peers hold the same state. If code execution is non-deterministic the distributed
ledger "forks". This problem is usually addressed by introducing domain-specific
programming languages that are limited to deterministic expressions.

• Confidentially: In classic permission-less, public blockchains every node has access
to the whole smart contract code, transaction data and ledger state. In some
use-cases there is a need to restrict this. Some possible solutions are cryptographic
techniques like zero-knowledge proofs but they add additional overhead to the
transaction. Another solution is to execute the code only on a small set of trusted
nodes and propagate the same state to all peers.

To solve the described problems, Fabric introduces a three-phase order-execute-validate
architecture. A crucial part in this architecture is the endorsement step. An endorsement
policy is chosen by permissioned administrators and part of the validate phase. Possible
policies are "three out of five" or "(A ∧ B) ∨ C". Transactions are sent to nodes specified
by the endorsement policy, executed and their output recorded. Unlike other blockchains,
Fabric does not order the transactions by input but instead by output combined with state
dependencies. The ordered transactions are broadcasted to all peers. Each peer validates
the state change with respect to the specified endorsement policy. The transactions are
all validated in the same order across the peers and the validation is deterministic. A
node in the Hyperledger Fabric network takes up one of three roles: client, peer, orderer.
[3, 55]

• Client: submits transaction proposals for execution and broadcasts the messages
for ordering. A client connects to peers to be able to communicate on behalf of the
end user with the blockchain.

• Peer : receive ordered state updates from the orderers and are used to execute
transaction proposals and validate the transaction. While only a subset of peers (en-
dorser peers) executes all transaction proposals, all of them maintain the blockchain
and record all transaction in form of a hash chain and a brief representation of the
latest ledger state.

• Ordering Service Nodes (OSN): establish the total order of all transactions while
being unaware of the application state. The orderers are not involved in the

3a deterministic system will always produce the same output given the same starting conditions.
Randomness is not involved in the development of the future states.

27

3. Platforms

execution or the validation of transactions. As a result of separate ordering nodes
the consensus protocol in Fabric is highly modular and easy to replace.

A transaction starts in form of a transaction proposal created and sent by a client to
specific peers. This peers are the endorsers of the transaction. Their task is to verify
the signature of the transaction initiator and execute the referenced chaincode functions.
The response of the proposal contains the signatures of the endorsers and is sent back
to the client. The client adds the endorsement into the payload of the transaction and
broadcasts it to an OSN. The OSN orders all transactions into blocks and sends the blocks
to all peers, endorsing and non-endorsing. Once a peer receives a transaction it checks if
the endorsement policy is fulfilled by checking if the attached endorsement signatures
match the specified endorsement peers. Data integrity is confirmed by controlling if the
data that was read during the chaincode execution has been changed since the time of
endorsement. If the data has been changed by another transaction the current transaction
is marked as invalid and the client is notified. After successful checks the transaction is
committed to the blockchain. [3, 55]

The interaction of the involved nodes is visualised in Figure 3.1.

Figure 3.1: Hyperledger Fabric transaction flow (adapted from Androulaki et al. [3])

Fabric also supports channels. A channel is a private layer of communication between
specific network members with a separate blockchain ledger. Only invited organisations
are able to participate. Other members of the network are not able to see channels
they are not invited in. Figure 3.2 provides an overview of the interactions between the
different actors in a Hyperledger Fabric network.

4https://www.itransition.com/blog/hyperledger-fabric-blockchain-payments-problems-and-solutions

28

3.3. Corda

Figure 3.2: Hyperledger Fabric network 4

3.3 Corda

While Hearn [26] and Travel and Mohanty [46] describe Corda as "blockchain inspired
decentralised database platform with some novel features", Valenta and Sandner [47]
categorises it as a "specialized distributed ledger platform for the financial industry".
Based on the definitions in section 2.2 the mode of operation in Corda is private and
permissioned, similar to Hyperledger Fabric. The initial design of the platform was
motivated by use cases in the financial service industry and the long term vision is a
global logical ledger where all economic partners are able to interact with each other.
[26, 12]

While the transaction data in most distributed ledger platforms is broadcasted globally,
Corda uses small multi-party sub-protocols called flows for all communications. In Corda

29

3. Platforms

peers communicate on a point-to-point basis. Flows are light-weight processes used to
coordinate the interactions peers require to reach consensus on the ledger. In a flow only
relevant parties are involved, therefore message recipients must be specified. Each flow
participant has to verify and sign the transaction. This concept is visualised in Figure 3.3.
[26, 12]

Figure 3.3: Corda flow execution (adapted from the official Corda documentation)

In contrast to Hyperledger Fabric and Ethereum, Corda uses the Unspent Transaction
Output (UTXO) model to represent the database, similar to Bitcoin. In the UTXO
model transactions contain inputs and outputs, resulting in a set of immutable rows
keyed together. The data consumed and added by transactions is called states. States are
the atomic unit of information and are either current (unspent) or consumed (spent). A
transaction reads zero or more states (inputs), consumes zero or more of the read states
and creates zero or more states (outputs). SC are responsible to either accept or reject a
transaction proposal. [26, 12]

Another significant distinction to other DLT platforms is the design choice to include
possible legal references directly in states. Beside containing the contract code used
to verify the transaction the output state could also contain a reference (hash) of a
legal document. These references do not have any legal weights by them-self but in
financial use cases it is expected to include a legal contract that takes precedence over the
software implementation. Figure 3.4 shows a cash issuance transaction and provides a
detailed view at its output state. The combination of the involved flows, smart contract,
state objects, UI components and wallet plugins is called Corda Distributed Application
(CorDapp). [26, 12]

The following components are used in the network [26, 46, 12]:

• Nodes: are application servers which load CorDapps and give them access to the
network, a relational database, key signing and a vault (called wallet in blockchains).
One unique feature of a Corda node is the direct SQL access to the ledger. Thus
CorDapps are able to e.g. query particular points in time or join company internal
data with ledger stored data using a widely understood language. Node communi-
cate with each other using serialised Java types and the binary Advanced Message
Queue Protocol (AMQP) of the Apache Artemis message broker.

30

https://docs.corda.net/docs/corda-os/4.5/key-concepts-flows.html

3.3. Corda

Figure 3.4: Corda cash issuance transaction (adapted from Hearn [26])

• Identity Service: ensures all nodes have known identity certificates and therefore is
fundamental for keeping the Corda network private. Every discussed DLT system
uses asymmetric keys in form of public and private keys to control data access.
While the keys are cryptographically secure they are often a target of phishing
attacks because they are difficult to remember. Corda’s solution to the problem
is the usage of X.509 certificates which link keys to human readable names. The
names are only used to resolve to public keys or IP addresses and are not required
for transactions. These certificates have to be signed by the network operator and
allow the node to take part in the top layer of the network.

• Network Map Service: distributes information about each node in the network
such as its IP addresses, supported protocol version and which identity certificates
are hosted. The published data is signed by the identity keys the node hosts and
therefore no trust in the network map service is required. Usually only nodes with
valid certificates are listed by the network map and by default nodes only accept
connections from other nodes included in the network map. This allows to remove
malicious actors by revoking their certificates.

• Notary Service: consists of one ore more mutually distrusting parties which use
a Byzantine Fault Tolerant (BFT) consensus algorithm to perform the role of
miners in blockchains. The notary component is pluggable and thus the consensus
algorithm exchangeable. Transactions are submitted to notaries and signed or
rejected. To avoid double spending the notary service signs a transaction only if all
input states are unconsumed. Once a transaction is signed by a notary it is final.

• Oracle Service: is used to sign transactions containing statements about the world
outside the ledger only if the statements are true. Optionally the statements them-

31

3. Platforms

self are also provided. Oracles are used to keep the network fully deterministic.
Smart contracts should use an oracle instead of fetching the data directly from the
internet because everyone must be able to compute the exact same thing, even in
the future when certain websites are no longer reachable.

3.3.1 Corda Enterprise

Corda Enterprise is an interoperable and fully compatible commercial edition of the
open-source Corda platform with enhanced features and support by R3, the company
backing the development of the platform. The core functionality of both versions are the
same. In general the enterprise edition the stability and scalability are higher because of
the support of multiple nodes for high availability and recovery compared to the single
node support of the core version. It is also possible to use Microsoft SQL Server or Oracle
as the vault database instead of just Postgres. The enterprise edition also provides a
better performance because of a multi-threaded flow state machine.

32

CHAPTER 4
Smart Contract Design

This chapter discusses a possible smart contract design for a trade finance transaction.
The result is a combination of the payment methods mentioned in subsection 2.1.1
without the involvement of banks. If the platform supports a built-in currency the smart
contract will use it. The goal of the process is to keep the interactions as simple as
possible and the number of involved stakeholders minimized while reducing the risk for
all involved parties. Our SC and process design eliminates the disadvantages of the
mentioned payment methods by using an immutable distributed ledger. Banks are not
necessary with our design as the SC itself acts as a depositary. The need to trust each
other is removed by verifiable code. Figure 4.1 illustrates the following steps:

1. The importer (buyer) places an order request and informs the exporter (seller)
which good he wants to buy, the quantity, delivery date and other data useful for
that kind of business.

2. In the next step the exporter either deploys the SC to the DLT or reuses an already
deployed SC and adds the order. The state of the order is CREATED.

3. Now the importer verifies the data of the order and deposits the agreed amount of
money if he accepts the conditions. The state of the order changes to CONFIRMED.

4. The seller is able to monitor the state of the order and forwards the goods to a
freight company after the money is deposited. In this step the freight company
gets added to the SC. The state of the order changes to SHIPPED.

5. The freight company delivers the goods to the buyer. The freight company is also
paid via the SC and therefore has a high interest in delivering the goods to the
buyer getting a signature of arrival.

33

4. Smart Contract Design

6. The importer and freight company use the SC to sign the arrival of goods. The
state of the order changes to DELIVERED.

7. Once the state is DELIVERED the deposited money is paid to the freight company
and the exporter. The state of the order changes to CLOSED.

The importer or exporter are able to cancel the order while the status is CREATED. If
the goods do not arrive within the agreed time specified in the SC conditions the order
will get cancelled automatically. Once the goods are shipped user triggered cancellation
is not possible any more. In case of cancellation the deposited money will be paid back
to the importer and the state of the order is set to CANCELLED.

Figure 4.1: Process flow of DLT based trade finance 1

1Icons made by Pixel perfect and Good Ware from www.flaticon.com

34

4.1. Methods

4.1 Methods

The algorithms in this section present the pseudo code of the smart contract. The
prototypes in the following chapters will keep the structure as close as possible to the
pseudo code.

Algorithm 4.1: addOrder method
Input: order id, address or name of the buyer, product id, quantity, price

(including shipping costs), shipping costs, shipping address, latest
possible delivery date

Result: a new order is added to the distributed ledger
1 Required: the seller called this method;
2 Required: an order with the passed id does not exist yet;
3 Required: the price must be greater or equal to the shipping costs;

Algorithm 4.2: confirmOrder method
Input: order id, order price as token value (if the distributed ledger has a

built-in crypto-currency)
Result: order state is set to CONFIRMED

1 Required: an order with the passed id does exist;
2 Required: the order state is CREATED;
3 Required: the buyer called this method;
4 Required: the order price matches the token value (if the distributed ledger has

a built-in crypto-currency);

Algorithm 4.3: cancelOrder method
Input: order id
Result: order state is set to CANCELLED, deposited funds are sent back

1 Required: either the seller or the buyer called this method;
2 Required: an order with the passed id does exist;
3 Required: the order state is either CREATED or CONFIRMED;

35

4. Smart Contract Design

Algorithm 4.4: deliveryDatePassed method
Input: order id
Result: order state is set to PASSED, deposited funds are sent back

1 Required: an order with the passed id does exist;
2 Required: the order state is either CREATED, CONFIRMED or SHIPPED;
3 Required: the delivery date specified is in the past;
4 Required: the freight company did not sign the arrival yet;

Algorithm 4.5: shipOrder method
Input: order id, address or name of the freight company, tracking code of the

shipment
Result: order state is set to SHIPPED, the freight company and tracking code

are added to the order
1 Required: an order with the passed id does exist;
2 Required: the seller called this method;
3 Required: the order state is CONFIRMED;

Algorithm 4.6: signArrival method
Input: order id
Result: order state is set to SIGNED if the freight company and the buyer

signed the arrival
1 Required: an order with the passed id does exist;
2 Required: either the buyer or freight company called this method;
3 Required: the order state is SHIPPED;
4 if method is called by the buyer then
5 set buyerSigned flag of the order to true;
6 end
7 if method is called by the freight company then
8 set freightSigned flag of the order to true;
9 end

10 if buyerSigned and freightSigned flags are true then
11 set the state of the order to DELIVERED;
12 pay the seller and freight company (if the distributed ledger has a built-in

crypto-currency);
13 end

36

CHAPTER 5
Prototypes

5.1 Ethereum

The software used to develop and test the Ethereum SC is listed in Table 5.1. The
Solidity code of the prototype is appended in Appendix 7.

Table 5.1: Software used for the Ethereum prototype

Software Version Description
Ubuntu 20.04 LTS Operating system
Truffle Suite 5.1.48 Development environment and testing framework

for Ethereum
Solidity 0.6.12 Programming language, Compiler (part of Truffle

Suite)
Node.js 12.19.0 JavaScript runtime environment
Web3.js 1.2.1 Collection of libraries that allows to interact with

an Ethereum node using HTTP, IPC or WebSocket
Ganache 2.4.0 Local blockchain and GUI hat displays the

Ethereum transaction history and chain state.
Visual Studio Code 1.47.0 Source code editor

The prototype was designed with various behavioural and security patterns in mind as
described in Fichtinger [23]. The SC acts as a state machine, which means it changes its
behaviour depending on its internal state. The functionality and possible function calls
provided to the stakeholders differ between the states. We have introduced the state
NONE as first state instead of CREATED to be able to differentiate whether an order exists.
The reasoning is because Solidity initialises every variable with 0. Thus, if we check the

37

5. Prototypes

state of an not yet created order it will always return the first state. The different states
are defined as follows:

enum States {
NONE,
CREATED,
CONFIRMED,
SHIPPED,
DELIVERED,
CLOSED,
CANCELLED,
PASSED

}

5.1.1 Relevant files

.
contracts

Migrations.sol
TradeFinanceContract.sol

migrations
1_initial_migration.js
2_trade_finance_migration.js

test
tradefinance.js

truffle-config.js

5.1.2 Functions

addOrder

This function is used by the seller to add a new order. It takes as input parameters the
order identifier, Ethereum account address of the buyer, sold product identifier, quantity,
total price with shipping, shipping address, latest delivery date and the shipping costs.
The price parameter is the total sum of items price plus shipping costs. The latest
delivery date is a date the buyer and seller agreed to, after which the deposited Ether will
be sent back to the buyer if the order did not arrive yet. The onlySeller modifier allows
only the created of the SC to call the function. As already mentioned, if an order does
not exist yet the state is NONE. Therefore the modifier atState(_orderId, States.NONE)

prevents overwriting of another order. Another check is if the price is greater or equal
to the shipping costs as this parameter is a sum of both. The SC maintains a map of
all added orders, accessible with the order ID. After the code within the function run
without problems the state of the order transitions to CREATED because of the modifier
transitionNextState(_orderId).

1 function addOrder(

38

5.1. Ethereum

2 uint256 _orderId,
3 address payable _buyer,
4 uint256 _productId,
5 uint256 _quantity,
6 uint256 _price,
7 string memory _shippingAddress,
8 uint256 _latestDeliveryDate,
9 uint256 _shippingCosts

10)
11 public
12 onlySeller
13 atState(_orderId, States.NONE)
14 transitionNextState(_orderId)
15 {
16 require(
17 orders[_orderId].orderId != _orderId,
18 "An order with this ID already exists."
19);
20 require(
21 _price >= _shippingCosts,
22 "The price must be greater or equal to the shipping costs."
23);
24
25 orders[_orderId].orderId = _orderId;
26 orders[_orderId].buyer = _buyer;
27 orders[_orderId].productId = _productId;
28 orders[_orderId].quantity = _quantity;
29 orders[_orderId].price = _price;
30 orders[_orderId].shippingCosts = _shippingCosts;
31 orders[_orderId].shippingAddress = _shippingAddress;
32 orders[_orderId].latestDeliveryDate = _latestDeliveryDate;
33 orderCount++;
34 emit Log(_orderId, "Order has been added");
35 }

confirmOrder

Only the buyer, the account the seller added when creating the order, is able to confirm
an order. The keyword payable allows the function the receive Ether and is needed
because the buyer deposits the amount specified in the order. The map balances is used
to keep an overview who owns which amount of Ether deposited.

1 function confirmOrder(uint256 _orderId)
2 public
3 payable
4 onlyBuyer(_orderId)
5 atState(_orderId, States.CREATED)
6 transitionNextState(_orderId)
7 {
8 require(
9 orders[_orderId].price == msg.value,

39

5. Prototypes

10 "Not enough Ether sent to cover the price of the order."
11);
12 balances[orders[_orderId].buyer] += orders[_orderId].price;
13 emit Log(_orderId, "Order has been confirmed and money deposited");
14 }

cancelOrder

Both, the seller and the buyer, are able to cancel the order because of the modifier
onlySellerOrBuyer(_orderId). For an order to be cancelled the state has to be either
CREATED or CONFIRMED. If the order is cancelled and the state was CONFIRMED the deposited
Ether will be sent back to the buyer.

1 function cancelOrder(uint256 _orderId) public onlySellerOrBuyer(_orderId)
{

2 require(
3 orders[_orderId].state == States.CREATED ||
4 orders[_orderId].state == States.CONFIRMED,
5 "Function cannot be called at this state."
6);
7
8 if (orders[_orderId].state == States.CONFIRMED) {
9 orders[_orderId].state = States.CANCELLED;

10 balances[orders[_orderId].buyer] -= orders[_orderId].price;
11 orders[_orderId].buyer.transfer(orders[_orderId].price);
12 } else {
13 orders[_orderId].state = States.CANCELLED;
14 }
15 emit Log(_orderId, "Order has been cancelled");
16 }

shipOrder

The seller is able to add the account of the freight company used for shipping and the
tracking code of the order after the buyer deposited Ether to cover the price of the order
and the order state successfully changed to CONFIRMED.

1 function shipOrder(
2 uint256 _orderId,
3 address payable _freightCompany,
4 string memory _trackingCode
5)
6 public
7 onlySeller
8 atState(_orderId, States.CONFIRMED)
9 transitionNextState(_orderId)

10 {
11 orders[_orderId].freightCompany = _freightCompany;
12 orders[_orderId].trackingCode = _trackingCode;

40

5.1. Ethereum

13 emit Log(_orderId, "Order has been shipped");
14 }

deliveryDatePassed

Everyone is able to invoke this function. It is used to refund the deposited money to the
buyer once the agreed delivery date is not met. The payout process is only started if
the date passed, the order state is not DELIVERED and the freight company did not sign
the arrival. The last check is to prevent fraud from the buyer by simply not signing the
arrival.

1 function deliveryDatePassed(uint256 _orderId) public {
2 require(
3 block.timestamp >= orders[_orderId].latestDeliveryDate,
4 "Delivery date did not pass yet."
5);
6 require(
7 orders[_orderId].state < States.DELIVERED,
8 "Order got already delivered."
9);

10 require(
11 orders[_orderId].freightSigned == false,
12 "Refund not possible as the freight company already signed the

arrival."
13);
14
15 orders[_orderId].state = States.PASSED;
16 if (orders[_orderId].state >= States.CONFIRMED) {
17 balances[orders[_orderId].buyer] -= orders[_orderId].price;
18 orders[_orderId].buyer.transfer(orders[_orderId].price);
19 }
20 emit Log(
21 _orderId,
22 "Order has been cancelled due passed delivery date."
23);
24 }

signArrival

The freight company and buyer must sign the arrival of the shipment. This prevents
malicious intent of either side. Due to the physical contact during delivery it is part of
the duty of the freight company to get the buyer to sign the arrival. Singing the arrival
is of great interest to the freight company as otherwise they will not get paid. After both
parties signed the arrival the order transitions into the state DELIVERED and the function
payout is called.

1 function signArrival(uint256 _orderId)
2 public

41

5. Prototypes

3 onlyFreightCompanyOrBuyer(_orderId)
4 atState(_orderId, States.SHIPPED)
5 {
6 if (msg.sender == orders[_orderId].buyer) {
7 orders[_orderId].buyersigned = true;
8 emit Log(_orderId, "Order arrival has been signed by the buyer");
9 }

10
11 if (msg.sender == orders[_orderId].freightCompany) {
12 orders[_orderId].freightSigned = true;
13 emit Log(
14 _orderId,
15 "Order arrival has been signed by the freight company"
16);
17 }
18
19 if (orders[_orderId].buyersigned && orders[_orderId].freightSigned) {
20 nextState(_orderId);
21 emit Log(
22 _orderId,
23 "Order arrival has been signed by the buyer and freight

company"
24);
25 payout(_orderId);
26 }
27 }

payout

This function is called automatically after the buyer and freight company signed the
arrival of the shipment. It transfers the amount of Ether specified in the order as shipping
costs to the freight company and the price minus shipping cost to the seller. Finally, the
order transitions into the state CLOSED.

1 function payout(uint256 _orderId)
2 private
3 atState(_orderId, States.DELIVERED)
4 transitionNextState(_orderId)
5 {
6 balances[orders[_orderId].buyer] -= orders[_orderId].price;
7 balances[seller] =
8 balances[seller] +
9 orders[_orderId].price -

10 orders[_orderId].shippingCosts;
11 balances[orders[_orderId].freightCompany] += orders[_orderId]
12 .shippingCosts;
13
14 seller.transfer(
15 orders[_orderId].price - orders[_orderId].shippingCosts
16);
17 orders[_orderId].freightCompany.transfer(

42

5.1. Ethereum

18 orders[_orderId].shippingCosts
19);
20
21 emit Log(_orderId, "Payout finished.");
22 }

5.1.3 Testing

Steps to set-up the working environment after installing the software mentioned in
Table 5.1:

• Create an empty project directory and run truffle init to initialize a new
truffle project.

• Start Ganache, create a new workspace and link it with the previously created
Truffle project.

• Place the code of Appendix 7 in the sub directory contracts of the project directory
and name it TradeFinanceContract.sol.

• In the project directory run truffle compile to compile the .sol file.

• The next step is to deploy the smart contract to the Ethereum network. We are
using a local blockchain while developing, thus the default settings of truffle do not
need to be changed. The output of truffle migrate -reset should look like
this:

1 Compiling your contracts...
2 ===========================
3 Fetching solc version list from solc-bin. Attempt #1
4 > Compiling ./contracts/TradeFinanceContract.sol
5 Fetching solc version list from solc-bin. Attempt #1
6 > Artifacts written to /media/fichtinger/Data/GoogleDrive/github/code/

ethereum/build/contracts
7 > Compiled successfully using:
8 - solc: 0.6.12+commit.27d51765.Emscripten.clang
9

10
11
12 Starting migrations...
13 ======================
14 > Network name: ’ganache’
15 > Network id: 5777
16 > Block gas limit: 6721975 (0x6691b7)
17
18
19 1_initial_migration.js
20 ======================
21

43

5. Prototypes

22 Replacing ’Migrations’
23 ----------------------
24 > transaction hash: 0

x5af68fa21d4330f9e0b1a5ec823cd3e2390cee4db948c051f145a737cd9b34c8
25 > Blocks: 0 Seconds: 0
26 > contract address: 0xe072EE78056437801299a856d4bd58e5334A4C0a
27 > block number: 77
28 > block timestamp: 1602778993
29 > account: 0xb72c72b67aBFA77f20077873862C175F71cd2a07
30 > balance: 107.57062826000000019
31 > gas used: 159195 (0x26ddb)
32 > gas price: 20 gwei
33 > value sent: 0 ETH
34 > total cost: 0.0031839 ETH
35
36
37 > Saving migration to chain.
38 > Saving artifacts
39 -------------------------------------
40 > Total cost: 0.0031839 ETH
41
42
43 2_trade_finance_migration.js
44 ============================
45
46 Replacing ’TradeFinanceContract’
47 --------------------------------
48 > transaction hash: 0

xd5028b516327a4907ac875751d938d227955a0bb699577bcf0f00a23c2febbaa
49 > Blocks: 0 Seconds: 0
50 > contract address: 0x939fe49a52b9Be9ED00d9E2d1CA2DfcC15389C88
51 > block number: 79
52 > block timestamp: 1602778993
53 > account: 0xb72c72b67aBFA77f20077873862C175F71cd2a07
54 > balance: 107.52649324000000019
55 > gas used: 2164413 (0x2106bd)
56 > gas price: 20 gwei
57 > value sent: 0 ETH
58 > total cost: 0.04328826 ETH
59
60
61 > Saving migration to chain.
62 > Saving artifacts
63 -------------------------------------
64 > Total cost: 0.04328826 ETH
65
66
67 Summary
68 =======
69 > Total deployments: 2
70 > Final cost: 0.04647216 ETH

44

5.1. Ethereum

Manual

Once the smart contract is deployed to the Ethereum network we are able to interact
with it. For this we have to open a console via truffle console.

• Before we start we link the default accounts to our seller, buyer and freight company.
let accounts = await web3.eth.getAccounts()
let seller = accounts[0]
let buyer = accounts[1]
let freightCompany = accounts[2]

• We initialise an instance variable to be able to call the functions more easily.
TradeFinanceContract.deployed().then(inst => {instance = inst})

• Then we add a new order.
instance.addOrder(1, buyer, 100, 2, web3.utils.toWei("10", "ether"), "

Karlsplatz 13, 1040 Wien", 1594771200, web3.utils.toWei("2", "ether"
), {from: seller})

• Now the buyer has to confirm the order and send enough ether to cover the costs.
instance.confirmOrder(1, {from: buyer, value: web3.utils.toWei("10", "

ether")})

• After that the seller is able to ship the order and adds the freight company used
and tracking code to the contract.
instance.shipOrder(1, freightCompany, "1AXCAW311", {from: seller})

• The last step of the buyer and freight company is to sign the arrival of the goods.
After both parties signed the payout process will be invoked.
instance.signArrival(1, {from: buyer})
instance.signArrival(1, {from: freightCompany})

• It is possible to cancel the order using the following command. Cancellation is
possible if the state of the order is either CREATED or CONFIRMED.
instance.cancelOrder(1, {from: seller})

Automated

Truffle also supports the execution of tests written in either Solidity or JavaScript.
For JavaScript testing the Mocha1 framework is used. The following code snippet
demonstrates the addOrder test.

1https://mochajs.org/

45

https://mochajs.org/
https://mochajs.org/

5. Prototypes

1 ...
2 it("add order test", () => {
3 let instance;
4
5 return TradeFinanceContract.deployed()
6 .then(inst => {
7 instance = inst;
8 return instance.addOrder(1, buyer, 100, 2, web3.utils.toWei("

10", "ether"), "Karlsplatz 13, 1040 Wien", 1594771200, web3.utils.toWei("
2", "ether"), { from: seller });

9 })
10 .then(() => instance.getOrderCount())
11 .then(orderCount => {
12 assert.equal(
13 orderCount.toNumber(),
14 1,
15 "the order count after adding an order was not 1"
16);
17 })
18 .then(() => instance.getOrderState(1))
19 .then(orderState => {
20 assert.equal(
21 orderState.toNumber(),
22 1,
23 "the order state after adding was not CREATED (1)."
24);
25 })
26 });
27 ...

To start all defined tests we simply execute truffle test in the terminal. We have
also extened the Mocha test framework with the ETH Gas Reporter2 to be able to
estimate the costs of the method calls. The output should look like this:

1 Using network ’test’.
2
3 Compiling your contracts...
4 ===========================
5 Fetching solc version list from solc-bin. Attempt #1
6 > Everything is up to date, there is nothing to compile.
7
8 Contract: TradeFinanceContract
9 check test environment

10 create order test (215094 gas)
11 confirm order test (256442 gas)
12 sign arrival test (493366 gas)
13 delivery date passed test (367840 gas)
14
15 <Table 5.2>
16
17 5 passing (4s)

2https://www.npmjs.com/package/eth-gas-reporter

46

https://www.npmjs.com/package/eth-gas-reporter
https://www.npmjs.com/package/eth-gas-reporter

5.1. Ethereum
Ta

bl
e

5.
2:

D
ep

lo
ym

en
t

an
d

ex
ec

ut
io

n
co

st
s

of
ou

r
Et

he
re

um
pr

ot
ot

yp
e

So
lc

ve
rs

io
n:

0.
6.

12
O

pt
im

iz
er

en
ab

le
d:

fa
lse

Ru
ns

:
20

0
Bl

oc
k

lim
it:

67
18

94
6

ga
s

M
et

ho
ds

20
gw

ei
/g

as
32

7.
74

eu
r/

et
h

C
on

tr
ac

t
M

et
ho

d
M

in
M

ax
A

vg
#

ca
lls

eu
r

(a
vg

)
M

ig
ra

tio
ns

se
tC

om
pl

et
ed

-
-

27
33

8
2

0.
18

Tr
ad

eF
in

an
ce

C
on

tr
ac

t
ad

dO
rd

er
20

00
94

21
50

94
20

61
13

5
1.

35
Tr

ad
eF

in
an

ce
C

on
tr

ac
t

co
nfi

rm
O

rd
er

41
34

8
56

34
8

48
84

8
4

0.
32

Tr
ad

eF
in

an
ce

C
on

tr
ac

t
de

liv
er

yD
at

eP
as

se
d

-
-

50
67

9
1

0.
33

Tr
ad

eF
in

an
ce

C
on

tr
ac

t
sh

ip
O

rd
er

-
-

75
67

1
2

0.
50

Tr
ad

eF
in

an
ce

C
on

tr
ac

t
sig

nA
rr

iv
al

51
47

0
12

47
35

10
03

13
3

0.
66

D
ep

lo
ym

en
ts

%
of

lim
it

M
ig

ra
tio

ns
-

-
15

91
95

2.
4

%
1.

04
Tr

ad
eF

in
an

ce
C

on
tr

ac
t

-
-

21
64

41
3

32
.2

%
14

.1
9

47

5. Prototypes

5.2 Hyperledger Fabric

In contrast to the Ethereum blockchain, Hyperledger Fabric does not require a token for
transactions. It does not have a built-in native crypto-currency like Ethereum’s token
Ether. Therefore a solution based on Fabric only simplifies the process and is not able to
remove the involvement of banks. In general, assets on a Hyperledger blockchain are useful
because they are redeemable for something with real world value. The redeemability is
usually agreed on in a traditional paper contract. An example is a contract where all
involved parties agree that the outcome of commiting to pay on a certain chaincode is a
legally binding debt. As a result the SC design has to be adapted. The software used to
develop and test the Hyperledger Fabric SC is listed in Table 5.3.

Table 5.3: Software used for the Hyperledger Fabric prototype

Software Version Description
Ubuntu 20.04 LTS Operating system
cURL 7.68.0 Tool for transferring data using various network

protocols
Docker 19.03.12 OS-level virtualisation to deliver software in

packages called containers
Docker Compose 1.26.2 Tool for defining and running multi-container

Docker applications
Hyperledger Fabric 2.2.0 DLT platform
Hyperledger Fabric CA 1.4.8 Certificate Authority for Fabric
Node.js 12.8.1 TypeScript runtime environment
Visual Studio Code 1.47.0 Source code editor

5.2.1 Installation

Before we are able to deploy the SC we have to set-up the test network.

• The first step is to clone the Hyperledger Fabric samples repository which comes
with an already pre-configured test-network.
git clone https://github.com/hyperledger/fabric-samples.git

• To install the docker images of the latest production release of the Fabric plat-
form the following command is used. After everything has been downloaded the
executables have to be added to the environment path.
curl -sSL https://bit.ly/2ysbOFE | bash -s

Alternatively, to install exactly the same versions as mentioned in Table 5.3:

48

https://github.com/hyperledger/fabric-samples

5.2. Hyperledger Fabric

curl -sSL https://bit.ly/2ysbOFE | bash -s -- 2.2.0 1.4.8

• Now we are able to create a new channel within the network. This channel is only
usable by our three organisations, the seller, buyer and freight company. We will
be operating from the root of the test-network subdirectory in our local clone
of the fabric-samples. Using the following script brings the network up with
one channel named mychannel.
./network.sh up createChannel

• The default test-network contains a channel with two organisations, Org1 and
Org2. Our SC design involves three different parties and therefore we have
to add a third organisation to the channel. The file startFabric.sh in our
code/fabric/trade-finance directory provides an all-in-one solution for cre-
ating the network with three organisations (named seller, buyer and freight),
creating a channel, adding all three parties to the channel and deploying our SC to
the peers.

5.2.2 Relevant files

Based on the fabric-samples the following files have to be added or changed
(as shown in our github repository) for the script to work properly:
.

test-network
configtx

configtx.yaml
docker

docker-compose-ca.yaml
docker-compose-couch.yaml
docker-compose-test-net.yaml

network.sh
organizations

ccp-generate.sh
ccp-template.json
ccp-template.yaml
cryptogen

crypto-config-buyer.yaml
crypto-config-freight.yaml
crypto-config-orderer.yaml
crypto-config-seller.yaml

fabric-ca
registerEnroll.sh

scripts
createChannel.sh
deployCC.sh
envVar.sh

trade-finance
application

49

5. Prototypes

buyer
java

pom.xml
src

main
java

org
example

AddToWallet.java
ClientApp.java
Order.java

test
java

org
example

ClientTest.java
freight

java
pom.xml
src

main
java

org
example

AddToWallet.java
ClientApp.java
Order.java

test
java

org
example

ClientTest.java
seller

java
pom.xml
src

main
java

org
example

AddToWallet.java
ClientApp.java
Order.java

test
java

org
example

ClientTest.java
chaincode

typescript
package.json
src

index.ts

50

5.2. Hyperledger Fabric

order.ts
trade.ts

tsconfig.json
tslint.json

networkDown.sh
startFabric.sh

• The file registerEnroll.sh generates the certificates of the users based on
the specified Certificate Authority (CA) of each organisation. To be able to
restrict access to certain methods we use the Attribute-Based Access Control 3

in Hyperledger Fabric. Two things have to be changed in the script. First, we
have to add an affiliation called seller. We could get a finer restriction based on
departments and for example add seller.sales to have even more control about the
function calls.
fabric-ca-client affiliation add seller --tls.certfiles ${PWD}/

organizations/fabric-ca/seller/tls-cert.pem

The second step is to define which department a user is part of when registering
them at the CA.
fabric-ca-client register --caname ca-seller --id.name user1 --id.secret

user1pw --id.type client --id.affiliation seller --tls.certfiles ${
PWD}/organizations/fabric-ca/seller/tls-cert.pem

• The created test-network runs locally with several docker containers. The peers,
CA, and applications communicate via DNS, therefore we have to edit the hosts
file of our operating system to redirect the calls correctly:
127.0.0.1 peer0.seller.example.com
127.0.0.1 peer0.freight.example.com
127.0.0.1 peer0.buyer.example.com
127.0.0.1 orderer.example.com

After executing the listed steps the test-network contains one peer of each organisation,
one CA of each organisation, one SC instance deployed to each organisation and one
orderer.

5.2.3 Functions

We first describe the most important functions of our chaincode (SC), written in Type-
Script and found in trade-finance/chaincode/typescript/src/trade.ts in
our repository. The structure of most methods is similar to the ones we’ve implemented
in Solidity. Later we comment on the application which does not run on the DLT and is
written in Java.

3https://medium.com/coinmonks/attribute-based-access-control-abac-in-hyperledger-fabric-
1eb81330f67a

51

5. Prototypes

restrictedCall

For our Ethereum smart contract we used modifiers to restrict the possible function calls
for certain users. In Hyperledger Fabric modifiers do not exist but the concept to restrict
the calls is still similar. As already mentioned in subsection 5.2.1 the certificate of the
user contains the attribute affiliation. We are able to check the value of the certificate of
the user within our chaincode and determine if he is allowed to call this function or not.

1 private restrictedCall(ctx: Context, allowedAffiliation: string) {
2 if (!ctx.clientIdentity.assertAttributeValue("hf.Affiliation",

allowedAffiliation)) {
3 throw new Error("Only users with affiliation " + allowedAffiliation + "

are allowed to call this function");
4 }
5 }
6
7 private restrictedCall2(ctx: Context, allowedAffiliation1: string,

allowedAffiliation2: string) {
8 if (!ctx.clientIdentity.assertAttributeValue("hf.Affiliation",

allowedAffiliation1) && !ctx.clientIdentity.assertAttributeValue("hf.
Affiliation", allowedAffiliation2)) {

9 throw new Error("Only users with affiliation " + allowedAffiliation1 + "
or " + allowedAffiliation2 + " are allowed to call this function.");

10 }
11 }

createOrder

Despite allowing different data types as parameters, the arguments passed are always of
the data type string and have to be manually converted. That kind of conversion is done
in lines 17-20. Line 11 calls our restrictedCall method and allows only users with
affiliation seller. In lines 12-15 we use ctx.stub.getState to query the ledger and
check if an order with the passed orderId is already stored. After parsing the date and
creating the Order object we finally store it at the ledger in line 45.

1 public async createOrder(ctx: Context,
2 _orderId: string,
3 _productId: number,
4 _quantity: number,
5 _price: number,
6 _shippingCosts: number,
7 _shippingAddress: string,
8 _latestDeliveryDate: string) {
9 console.info("============= START : Create Order ===========");

10
11 this.restrictedCall(ctx, "seller");
12 const orderAsBytes = await ctx.stub.getState(_orderId);
13 if (orderAsBytes.length > 0) {
14 throw new Error("An order with ID " + _orderId + " does already exist");
15 }

52

5.2. Hyperledger Fabric

16
17 _productId = Number(_productId);
18 _quantity = Number(_quantity);
19 _price = Number(_price);
20 _shippingCosts = Number(_shippingCosts);
21
22 if (_price < _shippingCosts) {
23 throw new Error("The price must be greater or equal to the shipping costs.

");
24 }
25
26 var splittedDate = _latestDeliveryDate.split("-"); // date given in yyyy-mm

-dd format
27 var parsedDate = new Date(parseInt(splittedDate[0]), parseInt(splittedDate

[1]) - 1, parseInt(splittedDate[2]));
28 //console.info("parsedDate:" + parsedDate.toLocaleString());
29
30 const order: Order = {
31 docType: "order",
32 state: State.CREATED,
33 orderId: _orderId,
34 productId: _productId,
35 quantity: _quantity,
36 price: _price,
37 shippingCosts: _shippingCosts,
38 shippingAddress: _shippingAddress,
39 latestDeliveryDate: parsedDate,
40 trackingCode: undefined,
41 buyerSigned: undefined,
42 freightSigned: undefined
43 };
44
45 await ctx.stub.putState(_orderId, Buffer.from(JSON.stringify(order)));
46 console.info("============= END : Create Order ===========");
47 }
48

cancelOrder

The method to cancel the order is again very short, it only contains two checks. We first
restrict the calls to only allow users from the organisations seller and buyer. Then we
verify that the state of the order is either CREATED or CONFIRMED. If both conditions
are met we set the state to CANCELLED and put the order back onto the ledger.

1 public async cancelOrder(ctx: Context, _orderId: string) {
2 console.info("============= START : cancelOrder ===========");
3
4 this.restrictedCall2(ctx, "seller", "buyer");
5 const order = await this.getOrder(ctx, _orderId);
6

53

5. Prototypes

7 if (order.state == State.DELIVERED || order.state == State.SHIPPED || order.
state == State.CANCELLED || order.state == State.PASSED) {

8 throw new Error("The state of order " + _orderId + " does not allow this
action");

9 }
10
11 order.state = State.CANCELLED;
12
13 await ctx.stub.putState(_orderId, Buffer.from(JSON.stringify(order)));
14 console.info("Order " + _orderId + " has been cancelled.");
15 console.info("============= END : cancelOrder ===========");
16 }
17

deliveryDatePassed

This method does not contain any affiliation check as we allow everyone in the channel
to test if the delivery of the order is on time. The tricky part is in line 12 as the order
is stored as a JSON on the ledger. To be able to compare the current date with the
delivery date specified in the order we first have to parse the string to a Date. Otherwise
the check does not work as intended because we would use a string compare instead of
comparing two dates.

1 public async deliveryDatePassed(ctx: Context, _orderId: string): Promise<
boolean> {

2 console.info("============= START : deliveryDatePassed ===========");
3 var passed = false;
4
5 const order = await this.getOrder(ctx, _orderId);
6
7 if (order.state >= State.DELIVERED) {
8 throw new Error("The state of order " + _orderId + " does not allow this

action");
9 }

10
11 var currentDate = new Date();
12 if (currentDate > new Date(order.latestDeliveryDate)) {
13 order.state = State.PASSED;
14 await ctx.stub.putState(_orderId, Buffer.from(JSON.stringify(order)));
15 passed = true;
16 console.info("Order " + _orderId + " has been cancelled due passed

delivery date.");
17 }
18
19 console.info("============= END : deliveryDatePassed ===========");
20 return passed;
21 }
22

54

5.2. Hyperledger Fabric

confirmOrder

Only a user of the organisation buyer is authorised to confirm an order. We throw an
error if the state of the order is anything else than CREATED.

1 public async confirmOrder(ctx: Context, _orderId: string) {
2 console.info("============= START : confirmOrder ===========");
3
4 this.restrictedCall(ctx, "buyer");
5 const order = await this.getOrder(ctx, _orderId);
6
7 if (order.state != State.CREATED) {
8 throw new Error("The state of order " + _orderId + " does not allow this

action");
9 }

10
11 order.state = State.CONFIRMED;
12
13 await ctx.stub.putState(_orderId, Buffer.from(JSON.stringify(order)));
14 console.info("Order " + _orderId + " has been confirmed.");
15 console.info("============= END : confirmOrder ===========");
16 }
17

shipOrder

The ship order method is similar to the other methods previously described but restricts
the calls to users from seller and only continues if the state of the order is CONFIRMED.
In addition to the order id it also takes the tracking code of the shipment as another
parameter. The value of this parameter gets added to the order and the order finally put
onto the ledger again.

1 public async shipOrder(ctx: Context, _orderId: string, _trackingCode: string)
{

2 console.info("============= START : shipOrder ===========");
3
4 this.restrictedCall(ctx, "seller");
5 const order = await this.getOrder(ctx, _orderId);
6
7 if (order.state != State.CONFIRMED) {
8 throw new Error("The state of order " + _orderId + " does not allow this

action");
9 }

10
11 order.state = State.SHIPPED;
12 order.trackingCode = _trackingCode;
13
14 await ctx.stub.putState(_orderId, Buffer.from(JSON.stringify(order)));
15 console.info("Order " + _orderId + " has been shipped.");
16 console.info("============= END : shipOrder ===========");
17 }

55

5. Prototypes

18

signArrival

Signing the arrival is the second method that is allowed to be called by users of two
different organisations, freight and buyer. Depending on which organisation the user
is part of either the freightSigned or buyerSigned variable gets set to true. After both
organisations signed the arrival the state of the order transitions into its final state
DELIVERED.

1 public async signArrival(ctx: Context, _orderId: string) {
2 console.info("============= START : signArrival ===========");
3
4 this.restrictedCall2(ctx, "freight", "buyer");
5 const order = await this.getOrder(ctx, _orderId);
6
7 if (order.state != State.SHIPPED) {
8 throw new Error("The state of order " + _orderId + " does not allow this

action");
9 }

10
11 if (ctx.clientIdentity.assertAttributeValue("hf.Affiliation", "buyer")) {
12 order.buyerSigned = true;
13 console.info("Order " + _orderId + " arrival has been signed by the buyer.

");
14 }
15
16 if (ctx.clientIdentity.assertAttributeValue("hf.Affiliation", "freight")) {
17 order.freightSigned = true;
18 console.info("Order " + _orderId + " arrival has been signed by the

freight company.");
19 }
20
21 if (order.buyerSigned && order.freightSigned) {
22 order.state = State.DELIVERED;
23 console.info("Order " + _orderId + " has been delivered.");
24 }
25
26 await ctx.stub.putState(_orderId, Buffer.from(JSON.stringify(order)));
27 console.info("============= END : signArrival ===========");
28 }
29

5.2.4 Testing

After running the script startFabric.sh the distributed ledger is set up and the
chaincode deployed. Our repository contains three slightly different Java applications
that interact with the SC in the directory fabric/trade-finance/application.

56

5.2. Hyperledger Fabric

To test different scenarios we will open three terminals, one in each of the seller, freight
and buyer sub directories and run mvn test.

The seller test will invoke the sample ClientApp and perform the following:

• Enroll User1.seller and import it into the wallet (if it does not already exist there)

• Query all orders

• Add three new orders

• Output the added orders

• Wait until the order with id 2 is confirmed and ship it

The buyer test will invoke the sample ClientApp and perform the following:

• Enroll User1.buyer and import it into the wallet (if it does not already exist there)

• Query all orders

• Cancel the order with id 1

• Confirm the order with id 2

• Check if the delivery date of the order with id 3 passed

• Sign the arrival of the order with id 2

The freight test will invoke the sample ClientApp and perform the following:

• Enroll User1.freight and import it into the wallet (if it does not already exist there)

• Query all orders

• Sign the arrival of the order with id 2

The basic structure of the ClientApp is the same for all three organisations. The first
step is to select the user. To be able to connect to the network we have to use the
connection configuration file of the organisation. This file is automatically generated by
our startFabric.sh script and can be found in a sub directory of test-network.
After establishing a connection to the gateway we will select the channel in line 18 and
the SC in line 19.

The code in the following lines interacts with the SC, either via evaluateTransaction
or submitTransaction. The difference is that submitTransaction submits the returned
proposal results from invoking the smart contract and waits until the transaction is

57

5. Prototypes

committed. As a consequence the proposal results will be ordered, delivered to the
peers for validating and later committed to the blockchain. The general consensus is
to use submitTransaction for transactions that change the ledger (world state) and
evaluateTransaction for transactions that only query the ledger. The parameters of either
variant are of data type string. The first parameter is always the name of the called
method. Relevant code of ClientApp.java:

1 // A wallet stores a collection of identities
2 final Path walletPath = Paths.get(".", "wallet");
3 final Wallet wallet = Wallets.newFileSystemWallet(walletPath);
4 System.out.println("Read wallet info from: " + walletPath);
5
6 final String userName = "user1";
7
8 final Path connectionProfile = Paths.get("..", "..", "..", "..", "test-

network", "organizations",
9 "peerOrganizations", "seller.example.com", "connection-seller.yaml");

10
11 // Set connection options on the gateway builder
12 builder.identity(wallet, userName).networkConfig(connectionProfile).discovery

(false);
13
14 // Connect to gateway using application specified parameters
15 try (Gateway gateway = builder.connect()) {
16
17 // get the network and contract
18 final Network network = gateway.getNetwork(channelName);
19 final Contract contract = network.getContract(contractName);
20
21 byte[] result;
22
23 result = contract.evaluateTransaction("queryAllOrders");
24 System.out.println("List of all orders:");
25 System.out.println(new String(result));
26 System.out.println("------------------------------------");
27 contract.submitTransaction("createOrder", "1", "100", "2", "10", "2", "

Karlsplatz 13, 1040 Wien",
28 "2020-09-20");
29 contract.submitTransaction("createOrder", "2", "123587", "5", "750", "4", "

Ballhausplatz 2, 1010 Wien",
30 "2020-12-01");
31 contract.submitTransaction("createOrder", "3", "68754", "1", "1337", "2", "

Michaelerkuppel, 1010 Wien",
32 "2020-08-15");
33
34 result = contract.evaluateTransaction("queryAllOrders");
35 System.out.println("List of all orders:");
36 System.out.println(new String(result));
37 System.out.println("------------------------------------");
38 System.out.println("Wait until order with id 2 is set to state CONFIRMED");
39 result = contract.evaluateTransaction("queryOrder", "2");
40 Order order = Order.deserialize(result);
41 System.out.println(Order.deserialize(result));

58

5.3. Corda

42 while (order.getState() != Order.State.CONFIRMED) {
43 System.out.println("order 2 state is:" + order.getState());
44 Thread.sleep(5000);
45 result = contract.evaluateTransaction("queryOrder", "2");
46 order = Order.deserialize(result);
47 }
48
49 contract.submitTransaction("shipOrder", "2", "1AXCAW311");
50 System.out.println("shipped order 2");
51 result = contract.evaluateTransaction("queryOrder", "2");
52 System.out.println(Order.deserialize(result));
53 System.out.println("------------------------------------");
54
55 }

5.3 Corda

In section 3.3 we have described the platform differences between Corda and the other
introduced platforms. As a result of the UTXO transaction model and the missing
currency token the SC design has to be adapted. The software used to develop and test
the Corda SC is listed in Table 5.4.

Table 5.4: Software used for the Corda prototype

Software Version Description
Ubuntu 20.04 LTS Operating system
Docker 19.03.12 OS-level virtualisation to deliver software in pack-

ages called containers
Docker Compose 1.26.2 Tool for defining and running multi-container

Docker applications
Java 1.8.0_265 Java Development Kit
IntelliJ 2020.2 Integrated development environment (IDE)
Corda 4.5 DLT platform
JUnit 4.12 Java testing framework
Corda Node Explorer 0.1.1 Stand alone desktop app for connecting to a

Corda node, examine transactions, run flows and
view node and network properties.

5.3.1 Installation

The installation process is simpler than the one of the Hyperledger Fabric prototype.
While we had to edit a lot of scripts in subsection 5.2.1, the Corda set-up does not involve
any action like that.

59

5. Prototypes

• We will start again with a template project provided by the developers of the DLT
platform.
git clone https://github.com/corda/cordapp-template-java.git

• The nodes configurations are found in the projects build.grade in the deployNodes
and prepareDockerNodes tasks. Our CorDapp contains definitions of the no-
tary node that is running the network map service and the three nodes involved in
our smart contract, the seller, buyer and freight company. The name of the node
contains the organistaions name, the location, the country and is internally parsed
as a CordaX500Name4 to create the certificates. It is also possible to restrict the
access of the users connecting via Remote Procedure Call (RPC) to a certain set of
flows. In our case we allow the user to execute all flows.

• One way to build the Corda project is via ./gradlew clean deployNodes.
This task will package the projects source files into a CorDapp JAR and create
a new node in build/nodes with our CorDapp already installed. To start the
nodes we execute the command build/nodes/runnodes from the projects root
directory. This will start a terminal window for each node and allows the user to
interact with the deployed CorDapp. An extract of the task definition:
task deployNodes(type: net.corda.plugins.Cordform, dependsOn: [’jar’]) {
...
node {

name "O=Notary,L=London,C=GB"
notary = [validating: false]
p2pPort 10002
rpcSettings {

address("localhost:10003")
adminAddress("localhost:10043")

}
}
node {

name "O=Seller,L=Berlin,C=DE"
p2pPort 10005
rpcSettings {

address("localhost:10006")
adminAddress("localhost:10046")

}
rpcUsers = [[user: "user1", "password": "test", "permissions": [

"ALL"]]]
}
...

}

• Another possibilty is the usage of Docker containers via ./gradlew clean
prepareDockerNodes. The gradle task is more or less the same, the only

4https://api.corda.net/api/corda-os/4.5/html/api/javadoc/net/corda/core/
identity/CordaX500Name.html

60

https://api.corda.net/api/corda-os/4.5/html/api/javadoc/net/corda/core/identity/CordaX500Name.html
https://api.corda.net/api/corda-os/4.5/html/api/javadoc/net/corda/core/identity/CordaX500Name.html
https://api.corda.net/api/corda-os/4.5/html/api/javadoc/net/corda/core/identity/CordaX500Name.html

5.3. Corda

difference is the type of it. Instead of Cordform we are using Dockerform. The
result of the task is also similar to the non-Docker version but also contains the
file docker-compose.yml. To start the nodes we simply open a terminal in the
directory of the YML file and run the command docker-compose up -d.
task prepareDockerNodes(type: net.corda.plugins.Dockerform, dependsOn: [

’jar’]) {
...
node {

name "O=Notary,L=London,C=GB"
notary = [validating: false]
p2pPort 10002
rpcSettings {

address("localhost:10003")
adminAddress("localhost:10043")

}
projectCordapp {

deploy = false
}
cordapps.clear()
sshdPort 2222

}
node {

name "O=Seller,L=Berlin,C=DE"
p2pPort 10005
rpcSettings {

address("localhost:10006")
adminAddress("localhost:10046")

}
rpcUsers = [[user: "user1", "password": "test", "permissions": [

"ALL"]]]
sshdPort 2223

}
...
dockerImage = "corda/corda-zulu-java1.8-4.5"

}

• Each node directory has the following structure:
. nodeName

additional-node-infos
certificates
corda.jar // The Corda node runtime
cordapps // The node’s CorDapps

config
accounts-contracts-1.0.jar // Corda accounts contracts
accounts-workflows-1.0.jar // Corda accounts workflows
ci-workflows-1.0.jar
contracts-0.1.jar // Our contract
workflows-0.1.jar // Our workflows

djvm
drivers
logs

61

5. Prototypes

network-parameters
node.conf // The node’s configuration file
nodeInfo-<HASH> // The hash will be different each time you
generate a node
persistence.mv.db // The node’s database
persistence.trace.db // The node’s database

We first describe the basic structure of our SC and how the parts interact with each
other. Then we examine the functions to implement the work-flow designed in chapter 4
and finally review the testing. While the other prototypes involve a mix of different
programming languages every part of our CorDapp is written in Java.

5.3.2 Relevant files

.
build.gradle
contracts

src
main

java
com

template
contracts

TradeFinanceContract.java
states

OrderState.java
workflows

src
main

java
com

template
flows

CancelOrder.java
CancelOrderResponder.java
CheckDeliveryDate.java
CheckDeliveryDateResponder.java
ConfirmOrder.java
ConfirmOrderResponder.java
CreateOrder.java
CreateOrderResponder.java
ShipOrder.java
ShipOrderResponder.java
SignArrival.java
SignArrivalResponder.java

utils
DataUtils.java

test
java

com

62

5.3. Corda

template
FlowTests.java

5.3.3 OrderState

As already mentioned Corda uses the UTXO transaction model. This means transactions
either have to consume or produce (or both) a state. In our case the state contains all the
order information. The OrderState class itself implements the class LinearState.
A LinearState is used to store states that "evolve by superseding itself" 5. This means
when the state is updated the original state should be included as the transaction input
and the updated one as transaction output. The state included as transaction input
will now be marked as CONSUMED while the output is UNCONSUMED. Therefore a vault
query to get the UNCONSUMED OrderState with a certain ID will always result in the
most recent data.

The method getParticipants() returns a list of involved parties. This list is later
used as the list of required signers in a Command. The involved parties need to verify
and sign the transaction and change depending on the state of the order. If an order is
not shipped yet the freight company does not need to sign the transactions as it is not
involved in the order process for now. The signers also store a copy of the state in their
vault. If we would exclude the buyer from this list he would not be able to view any of
the order data.

5.3.4 TradeFinanceContract

A transaction is valid if the verify() function of the contract does not throw an
exception. In simple terms the verify function is a checklist and validates if the required
conditions are met. The input parameter of the verify function is the transaction, which
itself contains the Command. A command indicates the transaction’s intent. If we want to
create a new order we will create a transaction with a Create command. The following
code snippet shows the Commands class:

1 public abstract static class Commands implements CommandData {
2 private Party initiator;
3
4 public Commands(Party initiator) {
5 this.initiator = initiator;
6 }
7
8 public Party getInitiator() {
9 return initiator;

10 }
11

5https://api.corda.net/api/corda-os/4.5/html/api/kotlin/corda/net.corda.core.contracts/-linear-
state/index.html

63

5. Prototypes

12 public static class Create extends Commands {
13 public Create(Party initiator) {
14 super(initiator);
15 }
16 }
17
18 public static class Cancel extends Commands {
19 public Cancel(Party initiator) {
20 super(initiator);
21 }
22 }
23 ...

In the verify method we get the data of the command and use our custom logic to decide
if the transaction is valid or invalid. Based on the given command the logic differs. The
following code snippet shows the validation logic of the Create and Cancel commands.
Using the Corda DSL function requireThat allows for easier readable conditions. Our
Create command is only valid if there is no input state to consume, the flow is initiated
by the seller and if the price of the order is greater or equal to the shipping costs.

The Cancel command on the other hand requires exactly one input (because of the
LinearState) and checks if the current state of the order is either CREATED or CONFIRMED.
A cancel transaction is also only valid if either the seller or buyer started the flow.

1 public void verify(LedgerTransaction tx) {
2 ...
3 if (command.getValue() instanceof Commands.Create) {
4 requireThat(require -> {
5 require.using("No inputs should be consumed when adding a new order.",

tx.getInputStates().size() == 0);
6 require.using("Only the seller is allowed to start this flow.", command

.getValue().getInitiator().getOwningKey().equals(output.getSeller()

.getOwningKey()));
7 require.using("The price must be greater or equal to the shipping costs

.", output.getPrice().compareTo(output.getShippingCosts()) >= 0);
8 return null;
9 });

10 } else if (command.getValue() instanceof Commands.Cancel) {
11 requireThat(require -> {
12 require.using("Exactly one input should be consumed when cancelling an

order.", tx.getInputStates().size() == 1);
13 require.using("Function cannot be called at this state: " + input.

getOrderState(), Stream.of(input.getOrderState()).anyMatch(Arrays.
asList(OrderState.State.CREATED, OrderState.State.CONFIRMED)::
contains));

14 require.using("Only the the seller or the buyer are allowed to start
this flow.", Arrays.asList(output.getSeller().getOwningKey(),
output.getBuyer().getOwningKey()).contains(command.getValue().
getInitiator().getOwningKey()));

15 return null;
16 });
17 }

64

5.3. Corda

18 ...
19 }

5.3.5 Flows

The purpose of a flow is to create a transaction which either creates or updates an
order. A flow session is a channel across the Corda network involving the signers of the
Command. Each flow contains a constructor class which is used to specify and parse
the flow input parameters. When a flow is started its call() method is executed. The
differences between the different flows are usually in step three and step five and will be
clarified on their own. All our flows use the same structure to build a transaction.

1. Check if an order with the given ID already exists (if we want to create a new oder)
or if an order with the given ID does not exist (all other cases).
QueryCriteria.LinearStateQueryCriteria queryCriteria = new QueryCriteria

.LinearStateQueryCriteria().withExternalId(Collections.singletonList
(this.orderId));

List<StateAndRef<OrderState>> results = getServiceHub().getVaultService
().queryBy(OrderState.class, queryCriteria).getStates();

if (results.size() != 0) {
throw new IllegalArgumentException("An order with ID " + this.orderId

+ " already exists.");
}

2. Get a reference to the notary service on our network and our key pair. In this
case we know our test network only contains one notary and therefore we have no
problem by choosing the first entry. For real world cases it is better to either select
a notary randomly or one specific notary by name oder key.
final Party notary = getServiceHub().getNetworkMapCache().

getNotaryIdentities().get(0);

3. Compose the State that carries the order data

4. Create a new TransactionBuilder object.
final TransactionBuilder builder = new TransactionBuilder(notary);

5. Add the order as an output state, as well as a command to the transaction builder.

6. Verify and sign it with our KeyPair.
builder.verify(getServiceHub());
final SignedTransaction ptx = getServiceHub().signInitialTransaction(

builder);

7. Collect the other party’s signature using the SignTransactionFlow.

65

5. Prototypes

List<Party> otherParties = outputOrderState.getParticipants().stream().
map(el -> (Party) el).collect(Collectors.toList());

otherParties.remove(getOurIdentity());
List<FlowSession> sessions = otherParties.stream().map(this::

initiateFlow).collect(Collectors.toList());

SignedTransaction stx = subFlow(new CollectSignaturesFlow(ptx, sessions)
);

8. Assuming no exceptions, we can now finalise the transaction
subFlow(new FinalityFlow(stx, sessions));

createOrder

Because of the usage of the data type Amount<Currency> for the variables price and
shippingCosts we are able to pass strings like "€10" and "10 EUR" to the flow. The
date format of the latestDeliveryDate is ’YYYY-MM-DD’, all the other parameters are
standard strings, double or integers.

3. Compose the State that carries the order data.
Party buyerParty = getServiceHub().getIdentityService().partiesFromName(

this.buyer, true).stream().findFirst().get();
final OrderState output = new OrderState(this.seller, buyerParty, this.

orderId, this.productId, this.quantity, this.price, this.
shippingCosts, this.shippingAddress, this.latestDeliveryDate);

5. Add the order as an output state, as well as a command to the transaction builder.
builder.addOutputState(output, TradeFinanceContract.ID);
builder.addCommand(new TradeFinanceContract.Commands.Create(

getOurIdentity()), output.getParticipants().stream().map(
AbstractParty::getOwningKey).collect(Collectors.toList()));

cancelOrder

This flow only has one parameter, the orderId as a string.

3. Compose the State that carries the order data.
OrderState outputOrderState = inputOrderState.copy();
outputOrderState.setOrderState(OrderState.State.CANCELLED);

5. Add the order as an output state, as well as a command to the transaction builder.

66

5.3. Corda

builder.addInputState(inputOrderStateAndRef);
builder.addOutputState(outputOrderState);
builder.addCommand(new TradeFinanceContract.Commands.Cancel(

getOurIdentity()), outputOrderState.getParticipants().stream().map(
AbstractParty::getOwningKey).collect(Collectors.toList()));

deliveryDatePassed

This flow only has one parameter, the orderId as a string.

3. Compose the State that carries the order data.
OrderState outputOrderState = inputOrderState.copy();
outputOrderState.setOrderState(OrderState.State.PASSED);

5. Add the order as an output state, as well as a command to the transaction builder.
builder.addInputState(inputOrderStateAndRef);
builder.addOutputState(outputOrderState);
builder.addCommand(new TradeFinanceContract.Commands.CheckDate(

getOurIdentity()), outputOrderState.getParticipants().stream().map(
AbstractParty::getOwningKey).collect(Collectors.toList()));

confirmOrder

This flow only has one parameter, the orderId as a string.

3. Compose the State that carries the order data.
OrderState outputOrderState = inputOrderState.copy();
outputOrderState.setOrderState(OrderState.State.CONFIRMED);

5. Add the order as an output state, as well as a command to the transaction builder.
builder.addInputState(inputOrderStateAndRef);
builder.addOutputState(outputOrderState);
builder.addCommand(new TradeFinanceContract.Commands.Confirm(

getOurIdentity()), outputOrderState.getParticipants().stream().map(
AbstractParty::getOwningKey).collect(Collectors.toList()));

shipOrder

This flow has three parameters, the orderId, the trackingCode and name of the freight
company. All of them are strings.

67

5. Prototypes

3. Compose the State that carries the order data.
final Party freightParty = getServiceHub().getIdentityService().

partiesFromName(this.freightCompany, true).stream().findFirst().get
();

OrderState outputOrderState = inputOrderState.copy();
outputOrderState.setOrderState(OrderState.State.SHIPPED);
outputOrderState.setFreightCompany(freightParty);
outputOrderState.setTrackingCode(this.trackingCode);

5. Add the order as an output state, as well as a command to the transaction builder.
builder.addInputState(inputOrderStateAndRef);
builder.addOutputState(outputOrderState);
builder.addCommand(new TradeFinanceContract.Commands.Ship(getOurIdentity

()), outputOrderState.getParticipants().stream().map(AbstractParty::
getOwningKey).collect(Collectors.toList()));

signArrival

This flow only has one parameter, the orderId as a string.

3. Compose the State that carries the order data.
OrderState outputOrderState = inputOrderState.copy();
if (getOurIdentity().getOwningKey().equals(outputOrderState.getBuyer().

getOwningKey())) {
outputOrderState.setBuyerSigned(true);
signer = outputOrderState.getBuyer().getName().toString();

} else if (getOurIdentity().getOwningKey().equals(outputOrderState.
getFreightCompany().getOwningKey())) {

outputOrderState.setFreightSigned(true);
signer = outputOrderState.getFreightCompany().getName().toString();

}

if (outputOrderState.isBuyerSigned() && outputOrderState.isFreightSigned
()) {

outputOrderState.setOrderState(OrderState.State.DELIVERED);
}

5. Add the order as an output state, as well as a command to the transaction builder.
builder.addInputState(inputOrderStateAndRef);
builder.addOutputState(outputOrderState);
builder.addCommand(new TradeFinanceContract.Commands.Sign(getOurIdentity

()), outputOrderState.getParticipants().stream().map(AbstractParty::
getOwningKey).collect(Collectors.toList()));

68

5.3. Corda

5.3.6 Testing

Manual

To manually test a flow we have to start the nodes as described in subsection 5.3.1.

• To create a new order we switch into the seller terminal and execute the following
command:

flow start CreateOrder buyer: Buyer, orderId: 1, productId: 100,
quantity: 2, price: "10 EUR", shippingCosts: "2 EUR, shippingAddress
: "Karlsplatz 13, 1040 Wien", latestDeliveryDate: "2020-09-30"

• Now we could switch to the buyer terminal and execute:

flow start ConfirmOrder orderId: 1

• Once the order is confirmed the seller is able to ship it using:

flow start ShipOrder orderId: 1, trackingCode: XAFDWEQ, freightCompany:
’Freight Company’

• To finish the trade the buyer and freight company both have to sign the arrival of
the order:

flow start SignArrival orderId: 1

Once the nodes are running we are also able to connect via RPC. for example with the
Corda Node Explorer6. The Node Explorer is a user interface that allows to inspect the
nodes vault, to look-up the transaction history and to start flows.

• We have started the nodes as Docker containers. To be able to connect to the
seller we put as hostname ’localhost’ and as port ’32809’. The command ’docker ps’
shows us the ports associated with each node.

6https://github.com/corda/node-explorer

69

https://github.com/corda/node-explorer
https://github.com/corda/node-explorer

5. Prototypes

Figure 5.1: Corda Node Explorer: Login

• To create a new order we first have to select ’Transactions’ on the left side tab and
then click the button ’New Transaction’. We are able to select the ’CreateOrder’
flow and enter some parameters.

70

5.3. Corda

Figure 5.2: Corda Node Explorer: Create a new order

• Once the transaction was successful we see the return value of the flow in the lower
left corner.

71

5. Prototypes

Figure 5.3: Corda Node Explorer: Successfully created a new order

• The transactions tab gives an overview of passed transactions but also offers the
ability to get a detailed look at the transaction data.

Figure 5.4: Corda Node Explorer: Overview of valid transactions

• In this case we see the ’CreateOrder’ transaction does not have any input state but

72

5.3. Corda

produces an output state.

Figure 5.5: Corda Node Explorer: Create order transaction

• Once the seller ships the order the output state contains two more variables, the
tracking code and the CordaX500Name of the freight company. Another change is
the freight company is now included in the list of neccessary signers to confirm the
transaction.

73

5. Prototypes

Figure 5.6: Corda Node Explorer: Ship order transaction

• The Node Explorer also provides the user a comfortable way to check the content of
the nodes vault. In our case we are able to filter for UNCONSOMED entries because
of the usage of LinearState in our OrderState class. This way we always get
the most recent data of an order.

Figure 5.7: Corda Node Explorer: Vault content

74

5.3. Corda

Automated

Corda also supports JUnit tests. We are able to mock a network as shown in the following
code snippet. First we have to add the package of the SC and flows to be able to create
the mocked network. The tests do not rely on the build.gradle file. Therefore we
need to define the details of the nodes of the network again.

@Before
public void setup() {
network = new MockNetwork(new MockNetworkParameters().

withCordappsForAllNodes(ImmutableList.of(
TestCordapp.findCordapp("com.template.contracts"),
TestCordapp.findCordapp("com.template.flows"))));

sellerNode = network.createPartyNode(new CordaX500Name("Seller", "Berlin",
"DE"));

buyerNode = network.createPartyNode(new CordaX500Name("Buyer", "Vienna", "
AT"));

freightNode = network.createPartyNode(new CordaX500Name("Freight Company",
"New York", "US"));

// For real nodes this happens automatically, but we have to manually
register the flow for tests.

for (StartedMockNode node : ImmutableList.of(sellerNode, buyerNode,
freightNode)) {

node.registerInitiatedFlow(CancelOrderResponder.class);
node.registerInitiatedFlow(CheckDeliveryDateResponder.class);
node.registerInitiatedFlow(ConfirmOrderResponder.class);
node.registerInitiatedFlow(CreateOrderResponder.class);
node.registerInitiatedFlow(ShipOrderResponder.class);
node.registerInitiatedFlow(SignArrivalResponder.class);

}
network.runNetwork();

}

To create a flow we first have to call its constructor. A flow gets started by a node after
it got created. All our flows return a string in case of a successful execution. We use
the existence of such a string to check if the flow executed correct. Testing the whole
standard process of our SC could be implemented like this:

1 @Test
2 public void signArrivalTest() throws ExecutionException, InterruptedException

{
3 FlowLogic<String> flow = new CreateOrder("Buyer", "2", 123587, 5.0, "750

EUR", "4 EUR", "Ballhausplatz 2, 1010 Wien", "2020-12-01");
4 CordaFuture<String> future = sellerNode.startFlow(flow);
5 network.runNetwork();
6 assert future.get().contains("Order with ID ’2’ of buyer ’" + buyerNode.

getInfo().getLegalIdentities().get(0).getName() + "’ added.");
7
8 flow = new ConfirmOrder("2");
9 future = buyerNode.startFlow(flow);

10 network.runNetwork();

75

5. Prototypes

11 assert future.get().contains("Confirm order flow for order with ID ’2’ of
buyer ’" + buyerNode.getInfo().getLegalIdentities().get(0).getName() +
"’ executed.");

12
13 flow = new ShipOrder("2", "Freight Company", "XAFDWEQ");
14 future = sellerNode.startFlow(flow);
15 network.runNetwork();
16 assert future.get().contains("Ship order flow for order with ID ’2’ of

buyer ’" + buyerNode.getInfo().getLegalIdentities().get(0).getName() +
"’ executed.");

17
18 flow = new SignArrival("2");
19 future = buyerNode.startFlow(flow);
20 network.runNetwork();
21 assert future.get().contains("The arrival of the order with ID ’2’ has been

signed by ’" + buyerNode.getInfo().getLegalIdentities().get(0).getName
() + "’");

22
23 flow = new SignArrival("2");
24 future = freightNode.startFlow(flow);
25 network.runNetwork();
26 assert future.get().contains("The arrival of the order with ID ’2’ has been

signed by ’" + freightNode.getInfo().getLegalIdentities().get(0).
getName() + "’");

27
28 // We check the recorded order in all three vaults.
29 for (StartedMockNode node : ImmutableList.of(sellerNode, buyerNode,

freightNode)) {
30 node.transaction(() -> {
31 List<StateAndRef<OrderState>> orders = node.getServices().

getVaultService().queryBy(OrderState.class).getStates();
32 assertEquals(1, orders.size());
33 OrderState recordedState = orders.get(0).getState().getData();
34 assertEquals(recordedState.getOrderState(), OrderState.State.DELIVERED)

;
35 return null;
36 });
37 }
38 }

76

CHAPTER 6
Comparison

In this chapter we will evaluate the DLT platforms and prototype development based on
the criteria established in subsection 1.5.2. A platform will get one to three points for
each criterion while three points are the best possible result. In the end we will sum up
the distributed points and rank the platforms from the highest to the lowest number.

6.1 Platform

The platform evaluation section will for the most part be based on theoretical con-
siderations given the platform architectures. Detailed performance measurements and
experiments are beyond the scope of this work.

6.1.1 Performance

How long does it take to finalise a transaction? Scalability?

Based on the architectural differences between private-permissioned (Hyperledger Fabric,
Corda) and public-permissionless (Ethereum) DLT platforms a difference in performance
and scalability is evident. "Assessment shows that Hyper-ledger Fabric achieves higher
throughput and lower latency compared to Ethereum when the workloads are varied upto
10,000 transactions. Also, differences between these two platforms in respect to execution
time and average latency become more significant as the number of transactions grow."
[40]

For Corda we were not able to find academic literature on performance measurements.
In theory the performance of Corda Enterprise should be faster than Ethereum and

77

6. Comparison

similar to Hyperledger Fabric. This assumption is supported by a1 number2 of blog posts
of Corda developers. The open-source Corda version does not contain all performance
enhancements but is theoretically still faster than Ethereum because of the limited
number of transaction validators needed. Performance should not be the highest priority
when developing a SC on the Ethereum platform.

Table 6.1: Performance rating

Platform Points
Hyperledger Fabric 3
Corda 2
Ethereum 1

6.1.2 Confidentiality

Prevention of unauthorised information access?

All information stored on the Ethereum blockchain is public. This includes all order
data our SC processed. To prevent unauthorised access the developer would have to
implement a solution on their own. One possible solution would be to hash confidential
data. This would need an off-chain database to be able to compare the hashes with the
hidden values.

Hyperledger Fabric and Corda both use private channels between the involved parties.
This design concept eliminates possible problems with confidentiality of stored information
and does not need any extra work of the developers.

Table 6.2: Confidentiality rating

Platform Points
Corda 3
Hyperledger Fabric 3
Ethereum 1

6.1.3 Costs

What are the costs for participating in the network?

Deploying a SC or executing a transaction on Hyperledger Fabric and Corda does not
cost extra. On Ethereum transaction costs are based on their complexity and paid with

1https://medium.com/corda/transactions-per-second-tps-de3fb55d60e3
2https://www.corda.net/blog/performance-improvements-in-corda-enterprise-4-4-and-4-5/

78

https://medium.com/corda/transactions-per-second-tps-de3fb55d60e3
https://www.corda.net/blog/performance-improvements-in-corda-enterprise-4-4-and-4-5/
https://medium.com/corda/transactions-per-second-tps-de3fb55d60e3
https://www.corda.net/blog/performance-improvements-in-corda-enterprise-4-4-and-4-5/

6.1. Platform

the platform token Ether (ETH). A typical contract creation transaction includes the
base costs for any transaction (Ctx), the costs for allocating a new address (Caddr), the
contract payload (Cpayload, contract bytecode size multiplied by gas per byte) and any
extra gas used up by the opcodes in the function definition (Cfndef

). The formula is
shown in Equation 6.2. All costs follow a fixed pricing table as specified in Wood [52].
[55]

Cpayload = payload (in bytes) · Cgas/byte (6.1)

Ccreate = Ctx + Caddr + Cpayload + Cfndef
(6.2)

The output of the truffle migrate command in subsection 5.1.3 estimates the expected
costs. Depending on how much gas we are willing to pay the faster the deploy transaction
will get confirmed by the miners. Truffle uses 20 gwei as default value, one gwei is 10−9

Ether. According to ETH Gas Station3 the median confirmation time when using 20
gwei is 0.6 minutes when deployed at 2020-10-28 17:42. The exchange rate of 1 ETH is
327.74 EUR at the time of writing as per Coinmarketcap4. This results in costs of about
15 EUR to publish our smart contract for worldwide usage.

In addition each transaction (confirming the order, shipping, et cetera) will cost some
amount of gas based on the default transaction costs (Ctx), the costs of the data payload
(Cpayload) and the gas consumed by the opcodes during the function execution (Cfnexec).
Each method call costs about 0.50 EUR. The foundation of our cost calculation is as
also shown in Table 5.2.

Cexec = Ctx + Cpayload + Cfnexec (6.3)

A convenient approach to set-up and run the platforms is the usage of a cloud environment.
IBM and Amazon both offer flexible pricing to deploy Hyperledger Fabric 1.4 as a Software
as a Service (SaaS). Hyperledger Fabric 1.4 is the first long time support version and was
released in January 2019. Unfortunately our prototype builds on the most recent version,
2.2. The IBM Cloud deployment option costs $0.29 per hour[28], Amazon Managed
Blockchain costs $0.676 per hour [2].

Another option could be the Amazon Web Services (AWS) Marketplace. Various sellers
offer an AWS backed solution for Ethereum ($0.17/hr)5, Hyperledger Fabric ($0.063/hr)6

3https://ethgasstation.info/
4https://coinmarketcap.com/currencies/ethereum/
5https://aws.amazon.com/marketplace/pp/B07KWH13Y8
6https://aws.amazon.com/marketplace/pp/B07S8CBV65

79

https://ethgasstation.info/
https://coinmarketcap.com/currencies/ethereum/
https://aws.amazon.com/marketplace/pp/B07KWH13Y8
https://aws.amazon.com/marketplace/pp/B07S8CBV65
https://ethgasstation.info/
https://coinmarketcap.com/currencies/ethereum/
https://aws.amazon.com/marketplace/pp/B07KWH13Y8
https://aws.amazon.com/marketplace/pp/B07S8CBV65

6. Comparison

and Corda ($0.096/hr)7. A Corda Enterprise license has to be acquired to be able to
use the marketplace offer. The pricing information is not published. In our opinion
Hyperledger Fabric is the most cost efficient option. The ongoing costs of Ethereum
transactions coupled with the volatile exchange rate (97€-410€ within the last year8) are
problematic for cost estimations.

Table 6.5 lists the costs of a number of steps involved in the traditional, bank-based
L/C. The least expensive bank charges at least 675 EUR per L/Cand does not include
any amendments or additional expenses as shown in Table 6.4. If we take the costs of a
professionally managed Hyperledger Fabric environment by IBM or Amazon and multiple
the hourly rate with 8760 to get the operational costs of one common Gregorian calendar
year we get fixed costs between 2000 EUR and 5000 EUR, as shown in Table 6.3.

Such an environment lets us perform an unlimited number of trades as long as our partner
also participates within the Hyperledger Fabric network. Therefore the gain from the
investment would be within a few trades. We think the labour costs of administrating
and developing the DLT platform are similar to the costs of a person handling the L/C
process with the banks. The hourly costs of the IT employee is probably higher but the
number of hours in total is lower as the steps of each single L/C application take much
longer.

Table 6.3: Hyperledger Fabric yearly costs

Type USD / hour USD / year
IBM Cloud [28] 0.29 2540.4
Amazon Managed Blockchain [2] 0.676 5921.76

Table 6.4: Additional expenses of traditional Letter of Credit [41]

Type Costs
Letter, fax, e-mail 10 EUR
SWIFT 15 EUR
Shipping (EMS) 25 EUR
Shipping (DHL) 50 EUR

7https://aws.amazon.com/marketplace/pp/B07RLRDXL8
8https://coinmarketcap.com/currencies/ethereum/

80

https://aws.amazon.com/marketplace/pp/B07RLRDXL8
https://coinmarketcap.com/currencies/ethereum/
https://aws.amazon.com/marketplace/pp/B07RLRDXL8
https://coinmarketcap.com/currencies/ethereum/

6.1. Platform
Ta

bl
e

6.
5:

Tr
ad

iti
on

al
Le

tt
er

of
C

re
di

t
co

st
s

(e
xp

or
t)

A
ct

iv
it

y
R

ai
ffe

is
en

B
an

k
O

Ö
[4

1]
B

an
k

A
us

tr
ia

[5
]

C
om

m
er

zb
an

k[
19

]
Pr

e-
ad

vi
sin

g
do

cu
m

en
ta

ry
cr

ed
its

-
-

50
EU

R

A
dv

isi
ng

of
do

cu
m

en
ta

ry
cr

ed
its

75
EU

R
80

EU
R

0.
15

%
;a

t
le

as
t

20
0

EU
R

C
on

fir
m

at
io

n
of

do
cu

m
en

-
ta

ry
cr

ed
its

25
0

EU
R

0.
1%

pe
r3

0
da

ys
;a

tl
ea

st
15

0
EU

R
at

le
as

t
1.

2%
pe

r
ye

ar
;

at
le

as
t

14
0

EU
R

pe
r

90
da

ys
Co

nfi
rm

at
io

n
co

m
m

iss
io

n
fo

r
th

e
de

fe
rr

ed
pa

ym
en

t
pe

rio
d

or
ac

ce
pt

an
ce

co
m

m
iss

io
n

as
fr

om
th

e
ta

ki
ng

up
of

do
cu

-
m

en
ts

0.
15

%
;a

t
le

as
t

75
EU

R
at

le
as

t
0.

1%
pe

r
30

da
ys

;a
t

le
as

t
15

0
EU

R
1.

8%
pe

r
ye

ar
,

at
le

as
t

14
0

EU
R

pe
r

90
da

ys

Ta
ki

ng
up

of
do

cu
m

en
ts

0.
25

%
,a

t
le

as
t

75
EU

R
15

0
EU

R
0.

2%
;a

t
le

as
t

25
0

EU
R

A
m

en
dm

en
t

co
m

m
iss

io
n

75
EU

R
80

EU
R

15
0

EU
R

Tr
an

sf
er

en
ce

of
Le

tt
er

of
C

re
di

t
0.

4%
;a

t
le

as
t

20
0

EU
R

0.
4%

;a
t

le
as

t
20

0
EU

R
0.

3%
;a

t
le

as
t

20
0

EU
R

81

6. Comparison

Table 6.6: Costs rating

Platform Points
Hyperledger Fabric 3
Corda 2
Ethereum 1

6.1.4 Governance

Open-source? Adoption of appropriate license necessary? How are decisions about changes
to the platform made?

Ethereum is an open-source project and releasing a SC or running a node by yourself does
not require any licence. In theory everyone is able to contribute changes to the platform
via so called Ethereum Improvement Proposals (EIPs). In practise the process is not
that open to changes of everyone. In the end the "All Core Devs" will either accept or
reject an EIP after a discussion. Participants of the All Core Devs meeting are members
of a number of projects who play a major role in the Ethereum ecosystem. The meeting
itself is more of a technical nature. The GNU Lesser General Public License (LGPL)
is used which allows developers to integrate Ethereum into their own software without
being required to release the source code of their own components. [4, 30]

Hyperledger Fabric is also managed under an open governance model. Everyone is able to
contribute by adding feature proposals9, reporting bugs, updating translations and helping
the development. A contributor may become a maintainer after a majority approval by
existing maintainers. Projects and sub-projects are lead by a set of maintainers. All
Hyperledger Fabric business and marketing matters are overseen by the Governing Board,
which consists of up to twenty-one premier members [45]. A premier membership and
therefore representation in the Governing Board can be purchased and has a cost of
250,000 USD10. The Apache License Version 2.0 is used which allows developers to use
the software for any purpose, modify it and distribute it.

R3 governed by default the Corda Network (along with Corda) and was accountable
for key decisions. However, the Corda Network Foundation was established to be able
to provide more transparent decisions moving forward [21]. The structure is similar to
Hyperledger Fabric and includes a Governing Board with elected members. Members of
the Governing Board are two employees of R3 and seven external members11 from various
financial services and blockchain technology companies. Users are able to contribute
code12 comparable to the other platforms. Corda is also using the Apache License Version

9https://hyperledger-fabric.readthedocs.io/en/latest/CONTRIBUTING.html
10https://www.hyperledger.org/about/join
11https://corda.network/governance/board-election/
12https://docs.corda.net/docs/corda-os/4.5/contributing.html

82

https://hyperledger-fabric.readthedocs.io/en/latest/CONTRIBUTING.html
https://www.hyperledger.org/about/join
https://corda.network/governance/board-election/
https://docs.corda.net/docs/corda-os/4.5/contributing.html
https://docs.corda.net/docs/corda-os/4.5/contributing.html
https://hyperledger-fabric.readthedocs.io/en/latest/CONTRIBUTING.html
https://www.hyperledger.org/about/join
https://corda.network/governance/board-election/
https://docs.corda.net/docs/corda-os/4.5/contributing.html

6.2. Prototype Development

2.0 but in addition R3 provides a Corda Enterprise license which adds professional support
among other features.

Table 6.7: Governance rating

Platform Points
Ethereum 3
Hyperledger Fabric 2
Corda 1

6.2 Prototype Development

The prototype development evaluation section will be rated based on the experiences we
have made while developing the three prototypes.

6.2.1 Usability

Comprehensive documentation of the platform available? A lot of effort to set-up the
development environment?

The documentation of all three platforms is comprehensive enough for developers without
any DLT background to dive into the matter fast. Each platform has in-depth descriptions
about the components involved and provides code examples. The most user friendly way
to start programming is the Remix IDE13 for Ethereum. Remix is an officialy supported,
browser-based compiler and IDE and allows the user to build Solidity SC without any
local set-up.

With Hyperledger Fabric on the other hand it was not that simple to start the development,
especially not our proposed use-case with three participants sharing a channel. The steps
to get a test-network up and running involved cloning the samples github repository,
installing the correct docker images of the latest production release of the platform,
adding the executables to the environment path and editing a lot scripts. Compared
with the other two platforms Fabric needed the most time and effort to get started.

Corda does not offer any browser-based IDE like Ethereum but the set-up process is very
simple and nothing compared to Hyperledger Fabric. The first step was to clone the
template github repository. Inside this project are gradle tasks in which the test-network
is defined. Adding the third party for our trade finance process was completed with
adding a few new lines in this single file.

13https://github.com/ethereum/remix-project

83

https://github.com/ethereum/remix-project
https://github.com/ethereum/remix-project

6. Comparison

Table 6.8: Usability rating

Platform Points
Ethereum 3
Corda 2
Hyperledger Fabric 1

6.2.2 Functionality

Is is possible to implement all methods as specified in chapter 4?

Our original vision was to remove intermediaries and allow companies to go on with their
business without much overhead. All three platforms help to avoid unnecessary expenses
like sending documents to confirm details and manual processing. But only Ethereum
also allows to complete the payment between the stakeholders with the built-in token.
The token itself may be rather volatile compared to the Dollar or Euro and therefore an
unwanted risk for the companies involved. This problem is solved by so called stable-coins
but adds administrative overhead itself. When using Hyperledger Fabric14 or Corda15

the developers have to include a token on their own. Such a custom token does not have
any real world value without agreements stating otherwise. One advantage of a custom
token is the possibility to move the agreed value from one party to another without any
proprietary functions.

Table 6.9: Functionality rating

Platform Points
Ethereum 3
Hyperledger Fabric 2
Corda 2

6.2.3 Testability

How to test the correctness of a SC? Are there any official tools?

We have used the Truffle Suite to develop the trade finance SC for the Ethereum platform.
This framework also allows automated testing with either JavaScript or Solidity. While
Truffle is not officially supported by Ethereum, the testing process is straight forward
and easy to use.

14https://medium.com/@blockchain_simplified/creating-tokens-on-hyperledger-fabric-2-0-using-fabtoken-management-system-3c9689c0a99d
15https://github.com/corda/token-sdk

84

https://medium.com/@blockchain_simplified/creating-tokens-on-hyperledger-fabric-2-0-using-fabtoken-management-system-3c9689c0a99d
https://github.com/corda/token-sdk
https://medium.com/@blockchain_simplified/creating-tokens-on-hyperledger-fabric-2-0-using-fabtoken-management-system-3c9689c0a99d
https://github.com/corda/token-sdk

6.2. Prototype Development

For Hyperledger Fabric we had to first deploy the chaincode to some docker containers
and then start the client applications manually. For the client applications themselves
we had to specify some configuration paths and again had to invest more time to get
it working as intended compared to the other two platforms. In the end the platform
allows testing without any problems.

The Corda template project already has some pre-configured JUnit tests and integrating
our three nodes test network was completed within a few lines of code. A difference with
testing the Corda SC compared to the other two platforms is that we do not call the
methods directly as the programming logic is split into the transaction validation and
flow. Instead we instantiate flow objects and execute them. This difference is architecture
based and in the end does not really affect the outcome of the testing.

Table 6.10: Testability rating

Platform Points
Corda 3
Ethereum 2
Hyperledger Fabric 2

6.2.4 Flexibility

General-purpose or domain-specific programming language? Introducing new trading
partners into the network?

With Solidity Ethereum introduced a domain-specific language to develop SC on its
platform. There are multiple problems with domain-specific languages. It slows down
the innovative process as the programmers have to study the language first and are not
able to instantly produce SCs to solve problems. Another aspect is the possibility of
security issues because the developer is not used to possible pitfalls and introduces some
vulnerabilities, as it happened with the DAO attack16 in 2016. With Ethereum we deploy
the SC only once and are able to use the deployment with multiple different trading
partners.

Hyperledger Fabric and Corda both allow SCs written in general-purpose languages like
Go, Java, TypeScript, Kotlin and so on. Therefore we classify them as more beginner
friendly. Corda and Fabric also provide Docker support out of the box to isolate the
nodes and SC execution environment from the operating system. The virtualisation based
on Docker also enables fast deployment to new physical machines. With Hyperledger
Fabric and Corda we would have to create a new channel for each trading partner and
deploy the SC again to be able to use our process with different partners.

16https://en.wikipedia.org/wiki/The_DAO_(organization)

85

https://en.wikipedia.org/wiki/The_DAO_(organization)
https://en.wikipedia.org/wiki/The_DAO_(organization)

6. Comparison

Table 6.11: Flexibility rating

Platform Points
Corda 3
Hyperledger Fabric 3
Ethereum 1

6.3 Result

Based on our findings the recommended DLT platform is Hyperledger Fabric. The main
advantages over Ethereum are caused by the different platform architecture which result
in massive performance differences and easier cost estimations. Ethereum would be the
pick if the transactions per second or average time for block confirmation measurements
are less relevant for the user than an easy set-up procedure or the possibility to remove
banks completely from the process. In many areas Corda is similar to Hyperledger Fabric
but it lacked transparency at the start of the project and as the Governing Board always
includes two employees of R3 the platform decisions are to some extend within the control
of R3. In addition, to reach a comparable performance to Hyperledger Fabric a purchase
of the closed-source commercial Corda Enterprise version is necessary. Corda provides an
excellent out-of-the-box testing support with JUnit integration and the ability to mock a
complete network within a few lines of code.

Table 6.12: Evaluation results

Criteria Ethereum Hyperledger Fabric Corda
Performance 1 3 2
Confidentiality 1 3 3
Costs 1 3 2
Governance 3 2 1
Usability 3 1 2
Functionality 3 2 2
Testability 2 2 3
Flexibility 1 3 3
Result 15 19 18

86

CHAPTER 7
Conclusion

In this work, we analysed the challenges and trade-offs in developing financial instruments
on a blockchain. In particular, we compared the process of implementing a relevant
application, Letter of Credit (L/C), on three prominent blockchains. We relied on an
assortment of criteria from existing catalogues selected according to relevance to our use
case.

All considered platforms provide the technological means to develop L/C workflows with
reasonable effort. Ethereum, due to its large user base and its age, has the most mature
tools and the most comprehensive documentation. Hyperledger Fabric and Corda offer
modularity, e.g. regarding the choice of programming language and consensus mechanism.

Major differences surface in regards to performance, costs, confidentiality, and governance
due to the different nature of private and public blockchains. Ethereum as a highly
distributed public blockchain is transparent both in daily operation as well as in its
governance structures. Moreover, it provides an established crypto-currency for the
exchange of values. Private blockchains like Hyperledger Fabric and Corda benefit from
low transaction costs and high transaction rates. However, structures have to be built on
a case-by-case basis and are as strong as the parties involved.

None of the three platforms supports a L/C implementation without any drawbacks.
While only Ethereum with its crypto-currency fulfils the requirement of removing the
banks from the process and therefore helps to decentralise trade-finance, the gap in
performance to private-permissioned blockchain platforms is evident.

In contrast to Ethereum, deploying code or executing a transaction on Hyperledger Fabric
and Corda does not incur any costs. Despite this difference, based on our analysis, a
cost saving within a low number of trades compared to a traditional L/C process can be
achieved.

87

7. Conclusion

It would be interesting to extend our comparison both in breadth and depth. On the
one hand, new platforms keep emerging that aim at overcoming known limitations. On
the other hand, financial instruments on the blockchain should strive for support of
aspects that are not purely technical but involve incentives and governance, like dispute
resolution.

88

List of Figures

2.1 L/C process (based on Chang et al. [16]) 1 14
2.2 Blockchain data structure (adapted from Xu et al. [55]) 16
2.3 Schematic overview of the DLT terminology (adapted from Kannengießer

et al. [31]) . 18

3.1 Hyperledger Fabric transaction flow (adapted from Androulaki et al. [3]) . 28
3.2 Hyperledger Fabric network 2 . 29
3.3 Corda flow execution (adapted from the official Corda documentation) . . 30
3.4 Corda cash issuance transaction (adapted from Hearn [26]) 31

4.1 Process flow of DLT based trade finance 3 34

5.1 Corda Node Explorer: Login . 70
5.2 Corda Node Explorer: Create a new order 71
5.3 Corda Node Explorer: Successfully created a new order 72
5.4 Corda Node Explorer: Overview of valid transactions 72
5.5 Corda Node Explorer: Create order transaction 73
5.6 Corda Node Explorer: Ship order transaction 74
5.7 Corda Node Explorer: Vault content . 74

89

https://docs.corda.net/docs/corda-os/4.5/key-concepts-flows.html

List of Tables

1.1 Search queries executed against databases 6
1.2 Selected knowledge base . 7

2.1 DLT properties (adapted from Kannengießer et al. [31]) 19
2.2 Extract of DLT characteristics (adapted from Kannengießer et al. [31]) . . 20

5.1 Software used for the Ethereum prototype 37
5.2 Deployment and execution costs of our Ethereum prototype 47
5.3 Software used for the Hyperledger Fabric prototype 48
5.4 Software used for the Corda prototype . 59

6.1 Performance rating . 78
6.2 Confidentiality rating . 78
6.3 Hyperledger Fabric yearly costs . 80
6.4 Additional expenses of traditional Letter of Credit [41] 80
6.5 Traditional Letter of Credit costs (export) 81
6.6 Costs rating . 82
6.7 Governance rating . 83
6.8 Usability rating . 84
6.9 Functionality rating . 84
6.10 Testability rating . 85
6.11 Flexibility rating . 86
6.12 Evaluation results . 86

91

Acronyms

AMQP Advanced Message Queue Protocol. 30

AWS Amazon Web Services. 79

B/L Bill of Lading. 12, 13

BFT Byzantine Fault Tolerant. 31

CA Certificate Authority. 51

CIA Cash in Advance. 12

CorDapp Corda Distributed Application. 30

DApps Decentralized Applications. 20, 21, 23, 25, 26

DLT Distributed Ledger Technology. 2–4, 6, 8, 9, 11, 14, 16–21, 23, 30, 31, 33, 48, 51,
59, 60, 77, 80, 83, 86, 89, 91

DoS denial-of-service. 27

DSR Design Science Research. 8

EIP Ethereum Improvement Proposal. 82

EVM Ethereum Virtual Machine. 23

GHOST Greedy Heaviest Observed Subtree. 24

ICO Initial Coin Offering. 6

L/C Letter of Credit. 1, 2, 4, 6, 9, 12–14, 80, 87, 89

LGPL GNU Lesser General Public License. 82

MSP Membership Service Provider. 26

93

OA Open Account. 12

OSN Ordering Service Nodes. 27, 28

PoW Proof-of-Work. 23, 24

RPC Remote Procedure Call. 60, 69

SaaS Software as a Service. 79

SC Smart Contract. 2, 3, 7–9, 11, 17, 21, 24, 30, 33, 34, 37, 38, 48, 49, 51, 56, 57, 59,
62, 75, 78, 82–85

SLR Scientific Literature Review. 5

UTXO Unspent Transaction Output. 30, 59, 63

94

References

[1] S. Aggarwal, R. Chaudhary, G. S. Aujla, N. Kumar, K.-K. R. Choo, and A. Y.
Zomaya. Blockchain for smart communities: Applications, challenges and oppor-
tunities. Journal of Network and Computer Applications, 144:13 – 48, 2019. ISSN
1084-8045. doi: https://doi.org/10.1016/j.jnca.2019.06.018. URL http://www.
sciencedirect.com/science/article/pii/S1084804519302231.

[2] Amazon. Amazon managed blockchain pricing. https://aws.amazon.com/
managed-blockchain/pricing/, 2020. Accessed: 2020-11-01.

[3] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al. Hyperledger fabric: a
distributed operating system for permissioned blockchains. In Proceedings of the
Thirteenth EuroSys Conference, pages 1–15, 2018.

[4] A. M. Antonopoulos and G. Wood. Mastering ethereum: building smart contracts
and dapps. O’reilly Media, 2018.

[5] Bank Austria. Konditionen für Dokumenten-Akkreditive. https://www.
bankaustria.at/files/PB_Konditionen_Dok.PDF, 2009. Accessed: 2020-
11-05.

[6] S. Beck, R. Bunting, and C. Sutken. Effective practices in trade finance examina-
tions. Asian Development Bank, 2019. URL: http://dx.doi.org/10.22617/
BRF190582-2, Accessed on 2020-11-24.

[7] M. Belotti, N. Božić, G. Pujolle, and S. Secci. A vademecum on blockchain tech-
nologies: When, which, and how. IEEE Communications Surveys & Tutorials, 21
(4):3796–3838, 2019.

[8] T. Bhogal and A. Trivedi. Blockchain technology and trade finance. In International
Trade Finance, pages 303–312. Springer, 2019.

[9] A. Blum. Blockchain and trade finance: A smart contract-based so-
lution. University of Basel, 2019. Master Thesis, URL: https:
//wwz.unibas.ch/fileadmin/user_upload/wwz/00_Professuren/
Schaer_DLTFintech/Lehre/Blum_2019.pdf, Accessed on 2020-11-24.

95

http://www.sciencedirect.com/science/article/pii/S1084804519302231
http://www.sciencedirect.com/science/article/pii/S1084804519302231
https://aws.amazon.com/managed-blockchain/pricing/
https://aws.amazon.com/managed-blockchain/pricing/
https://www.bankaustria.at/files/PB_Konditionen_Dok.PDF
https://www.bankaustria.at/files/PB_Konditionen_Dok.PDF
http://dx.doi.org/10.22617/BRF190582-2
http://dx.doi.org/10.22617/BRF190582-2
https://wwz.unibas.ch/fileadmin/user_upload/wwz/00_Professuren/Schaer_DLTFintech/Lehre/Blum_2019.pdf
https://wwz.unibas.ch/fileadmin/user_upload/wwz/00_Professuren/Schaer_DLTFintech/Lehre/Blum_2019.pdf
https://wwz.unibas.ch/fileadmin/user_upload/wwz/00_Professuren/Schaer_DLTFintech/Lehre/Blum_2019.pdf

[10] A. Bogucharskov, I. Pokamestov, K. Adamova, and Z. Tropina. Adoption of
blockchain technology in trade finance process. Journal of Reviews on Global
Economics, 7, 2018.

[11] A. Botta, N. Digiacomo, and R. Ritter. Technology innovations driv-
ing change in transaction banking. 2016. URL: https://www.
mckinsey.com/industries/financial-services/our-insights/
technology-innovations-driving-change-in-transaction-banking#,
Accessed on 2020-04-25.

[12] R. G. Brown. The corda platform: An introduction. R3 CEV,
2018. URL: https://www.r3.com/wp-content/uploads/2019/06/
corda-platform-whitepaper.pdf, Accessed: 2020-04-15.

[13] D. Burkhardt, M. Werling, and H. Lasi. Distributed ledger. In 2018 IEEE inter-
national conference on engineering, technology and innovation (ICE/ITMC), pages
1–9. IEEE, 2018.

[14] V. Buterin. Ethereum: A next-generation smart contract and decentralized ap-
plication platform. https://ethereum.org/whitepaper/, 2014. Accessed:
2020-04-15.

[15] B. Cant, A. Khadikar, A. Ruiter, J. B. Bronebakk, J. Coumaros, J. Buvat, and
A. Gupta. Smart contracts in financial services: Getting from hype to reality.
Capgemini consulting, pages 1–24, 2016.

[16] S. Chang, Y.-C. Chen, and T.-C. Wu. Exploring blockchain technology in in-
ternational trade: Business process re-engineering for letter of credit. Industrial
Management and Data Systems, 119, 2019.

[17] S. Chang, H. Luo, and Y. Chen. Blockchain-enabled trade finance innovation: A
potential paradigm shift on using letter of credit. Sustainability (Switzerland), 12,
2020.

[18] P. B. Checkland. Soft systems methodology. Human systems management, 8(4):
273–289, 1989.

[19] Commerzbank. Konditionsliste für Firmenkunden der Commerzbank
Zrt. https://www.firmenkunden.commerzbank.de/portal/media/
corporatebanking/auslandsseiten/ungarn-informationen/news-3/
DE_Commerzbank_Standard_Konditionliste_20190401.pdf, 2019.
Accessed: 2020-11-05.

[20] L. W. Cong and Z. He. Blockchain disruption and smart contracts. The Review of
Financial Studies, 32(5):1754–1797, 2019.

[21] Corda Network Foundation. Governance guidelines. https://corda.network/
governance/governance-guidelines/, 2020. Accessed: 2020-10-17.

96

https://www.mckinsey.com/industries/financial-services/our-insights/technology-innovations-driving-change-in-transaction-banking#
https://www.mckinsey.com/industries/financial-services/our-insights/technology-innovations-driving-change-in-transaction-banking#
https://www.mckinsey.com/industries/financial-services/our-insights/technology-innovations-driving-change-in-transaction-banking#
https://www.r3.com/wp-content/uploads/2019/06/corda-platform-whitepaper.pdf
https://www.r3.com/wp-content/uploads/2019/06/corda-platform-whitepaper.pdf
https://ethereum.org/whitepaper/
https://www.firmenkunden.commerzbank.de/portal/media/corporatebanking/auslandsseiten/ungarn-informationen/news-3/DE_Commerzbank_Standard_Konditionliste_20190401.pdf
https://www.firmenkunden.commerzbank.de/portal/media/corporatebanking/auslandsseiten/ungarn-informationen/news-3/DE_Commerzbank_Standard_Konditionliste_20190401.pdf
https://www.firmenkunden.commerzbank.de/portal/media/corporatebanking/auslandsseiten/ungarn-informationen/news-3/DE_Commerzbank_Standard_Konditionliste_20190401.pdf
https://corda.network/governance/governance-guidelines/
https://corda.network/governance/governance-guidelines/

[22] V. A. Ermakov, E. M. Burmistrova, N. B. Bodin, A. A. Chursin, and E. A. Shevereva.
A letter of credit as an instrument to mitigate risks and improve the efficiency of
foreign trade transaction. Espacios, 39, 2018.

[23] P. Fichtinger. Solidity design patterns. TU Wien, 2018. Bachelor Thesis.

[24] S. Ganesh, T. Olsen, J. Kroeker, and V. P. Rebooting a digital solu-
tion to trade finance. 2018. URL: https://www.bain.com/insights/
rebooting-a-digital-solution-to-trade-finance/, Accessed on 2020-
04-25.

[25] A. Grath. The handbook of international trade and finance: the complete guide to
risk management, international payments and currency management, bonds and
guarantees, credit insurance and trade finance. Kogan Page Publishers, 2011.

[26] M. Hearn. Corda: A distributed ledger. Corda Technical White Pa-
per, 2016. URL: https://www.r3.com/wp-content/uploads/2019/08/
corda-technical-whitepaper-August-29-2019.pdf, Accessed: 2020-04-
15.

[27] A. Hevner, S. T. March, J. Park, S. Ram, et al. Design science research in information
systems. MIS quarterly, 28(1):75–105, 2004.

[28] IBM. Ibm blockchain platform – pricing. https://www.ibm.com/cloud/
blockchain-platform/pricing, 2020. Accessed: 2020-11-01.

[29] L. Ismail and H. Materwala. A review of blockchain architecture and consensus
protocols: Use cases, challenges, and solutions. Symmetry, 11(10):1198, 2019.

[30] H. Jameson. Ethereum protocol development governance and
network upgrade coordination. https://hudsonjameson.com/
2020-03-23-ethereum-protocol-development-governance-and-network-upgrade-coordination/,
2020. Accessed: 2020-10-20.

[31] N. Kannengießer, S. Lins, T. Dehling, and A. Sunyaev. What does not fit can be
made to fit! trade-offs in distributed ledger technology designs. In Proceedings of
the 52nd Hawaii International Conference on System Sciences, 2019.

[32] S. Kim, S. Park, Y. B. Park, J. A. Kim, Y. Cho, J. Choi, and C. Kim. A feature based
content analysis of blockchain platforms. In 2018 Tenth International Conference
on Ubiquitous and Future Networks (ICUFN), pages 791–793, 2018.

[33] B. Kitchenham and S. Charters. Guidelines for performing systematic literature
reviews in software engineering. EBSE Technical Report, 2007.

[34] Y. G. Liang. Blockchain application and outlook in the banking industry. Financial
Innovation, 2, 2016.

97

https://www.bain.com/insights/rebooting-a-digital-solution-to-trade-finance/
https://www.bain.com/insights/rebooting-a-digital-solution-to-trade-finance/
https://www.r3.com/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://www.r3.com/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://www.ibm.com/cloud/blockchain-platform/pricing
https://www.ibm.com/cloud/blockchain-platform/pricing
https://hudsonjameson.com/2020-03-23-ethereum-protocol-development-governance-and-network-upgrade-coordination/
https://hudsonjameson.com/2020-03-23-ethereum-protocol-development-governance-and-network-upgrade-coordination/

[35] F. Murshudli and B. Loguinov. Digitalization challenges to global banking industry.
Economic and Social Development: Book of Proceedings, pages 786–794, 2019.

[36] R. B. Myerson. Game theory: Analysis of conflict (6. print ed.). Harvard Univ.
Press, Cambridge, Mass, 2004.

[37] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. May 2009. URL
http://www.bitcoin.org/bitcoin.pdf.

[38] J. F. Nunamaker Jr, M. Chen, and T. D. Purdin. Systems development in information
systems research. Journal of management information systems, 7(3):89–106, 1990.

[39] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. A design science
research methodology for information systems research. Journal of management
information systems, 24(3):45–77, 2007.

[40] S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong. Performance analysis
of private blockchain platforms in varying workloads. In 2017 26th International
Conference on Computer Communication and Networks (ICCCN), pages 1–6, 2017.
doi: 10.1109/ICCCN.2017.8038517.

[41] Raiffeisen Bank Oberösterreich. Preisaushang 01.10.2020. https://www.
raiffeisen.at/ooe/gampern/de/meine-bank/schalteraushang/
_jcr_content/root/responsivegrid/tabaccordioncontaine/
tabAccordionElements/tabaccordionelement_2086307275/items/
downloadlist.download.html/0/Preisaushang.pdf, 2020. Accessed:
2020-11-05.

[42] C. Saraf and S. Sabadra. Blockchain platforms: A compendium. In 2018 IEEE
International Conference on Innovative Research and Development (ICIRD), pages
1–6, 2018.

[43] A. Sunyaev. Distributed ledger technology. In Internet Computing, pages 265–299.
Springer, 2020.

[44] N. Szabo. Formalizing and securing relationships on public networks. First Monday
– Peer-reviewed Journal on the Internet, 2(9), September 1997.

[45] The Linux Foundation. Hyperledger project charter. https://www.
hyperledger.org/about/charter, 2019. Accessed: 2020-10-17.

[46] T. Travel and D. Mohanty. R3 corda for architects and developers.

[47] M. Valenta and P. Sandner. Comparison of ethereum, hyperledger fabric and corda.
no. June, pages 1–8, 2017. Accessed: 2020-04-15.

98

http://www.bitcoin.org/bitcoin.pdf
https://www.raiffeisen.at/ooe/gampern/de/meine-bank/schalteraushang/_jcr_content/root/responsivegrid/tabaccordioncontaine/tabAccordionElements/tabaccordionelement_2086307275/items/downloadlist.download.html/0/Preisaushang.pdf
https://www.raiffeisen.at/ooe/gampern/de/meine-bank/schalteraushang/_jcr_content/root/responsivegrid/tabaccordioncontaine/tabAccordionElements/tabaccordionelement_2086307275/items/downloadlist.download.html/0/Preisaushang.pdf
https://www.raiffeisen.at/ooe/gampern/de/meine-bank/schalteraushang/_jcr_content/root/responsivegrid/tabaccordioncontaine/tabAccordionElements/tabaccordionelement_2086307275/items/downloadlist.download.html/0/Preisaushang.pdf
https://www.raiffeisen.at/ooe/gampern/de/meine-bank/schalteraushang/_jcr_content/root/responsivegrid/tabaccordioncontaine/tabAccordionElements/tabaccordionelement_2086307275/items/downloadlist.download.html/0/Preisaushang.pdf
https://www.raiffeisen.at/ooe/gampern/de/meine-bank/schalteraushang/_jcr_content/root/responsivegrid/tabaccordioncontaine/tabAccordionElements/tabaccordionelement_2086307275/items/downloadlist.download.html/0/Preisaushang.pdf
https://www.hyperledger.org/about/charter
https://www.hyperledger.org/about/charter

[48] J. Venable. A framework for design science research activities. In Emerging Trends
and Challenges in Information Technology Management: Proceedings of the 2006
Information Resource Management Association Conference, pages 184–187. Idea
Group Publishing, 2006.

[49] J. Venable, J. Pries-Heje, and R. Baskerville. A comprehensive framework for
evaluation in design science research. In International Conference on Design Science
Research in Information Systems, pages 423–438. Springer, 2012.

[50] M. Vinayak, H. A. P. S. Panesar, S. dos Santos, R. K. Thulasiram, P. Thulasiraman,
and S. Appadoo. Analyzing financial smart contracts for blockchain. In 2018
IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), pages 1701–1706. IEEE,
2018.

[51] M. Vinayak, S. Santos, R. Thulasiram, P. Thulasiraman, and S. Appadoo. Design and
implementation of financial smart contract services on blockchain. 2019 IEEE 10th
Annual Information Technology, Electronics and Mobile Communication Conference,
IEMCON 2019, 2019.

[52] G. Wood. Ethereum: A secure decentralised generalised transaction ledger. https:
//ethereum.github.io/yellowpaper/paper.pdf, 2017. Accessed: 2020-04-
15.

[53] World Trade Organization. World trade statistical review 2019. 2019. URL:
https://www.wto.org/english/res_e/statis_e/wts2019_e/wts19_
toc_e.htm, Accessed on 2020-04-25.

[54] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, and P. Rimba.
A taxonomy of blockchain-based systems for architecture design. In 2017 IEEE
International Conference on Software Architecture (ICSA), pages 243–252. IEEE,
2017.

[55] X. Xu, I. Weber, and M. Staples. Architecture for blockchain applications. Springer,
2019.

[56] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang. Blockchain challenges and
opportunities: A survey. International Journal of Web and Grid Services, 14(4):
352–375, 2018.

99

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://www.wto.org/english/res_e/statis_e/wts2019_e/wts19_toc_e.htm
https://www.wto.org/english/res_e/statis_e/wts2019_e/wts19_toc_e.htm

Appendix A - Ethereum
Prototype Code

TradeFinanceContract.sol

1 // SPDX-License-Identifier: UNLICENSED
2 pragma solidity ^0.6.0;
3
4 contract TradeFinanceContract {
5 enum States {
6 NONE,
7 CREATED,
8 CONFIRMED,
9 SHIPPED,

10 DELIVERED,
11 CLOSED,
12 CANCELLED,
13 PASSED
14 }
15
16 address payable internal seller;
17
18 struct Order {
19 States state;
20 address payable buyer;
21 uint256 orderId;
22 uint256 productId;
23 uint256 quantity;
24 uint256 price;
25 string shippingAddress;
26 uint256 latestDeliveryDate;
27 address payable freightCompany;
28 uint256 shippingCosts;
29 string trackingCode;
30 bool buyerSigned;
31 bool freightSigned;
32 }
33
34 uint256 orderCount;
35 mapping(uint256 => Order) public orders;

101

36 mapping(address => uint256) public balances;
37
38 event Log(uint256 orderId, string text);
39
40 constructor() public {
41 seller = msg.sender;
42 }
43
44 modifier onlySeller() {
45 require(
46 msg.sender == seller,
47 "Only the seller is allowed to call this function."
48);
49 _;
50 }
51
52 modifier onlyBuyer(uint256 orderId) {
53 require(
54 msg.sender == orders[orderId].buyer,
55 "Only the buyer is allowed to call this function."
56);
57 _;
58 }
59
60 modifier onlySellerOrBuyer(uint256 orderId) {
61 require(
62 msg.sender == seller || msg.sender == orders[orderId].buyer,
63 "Only the buyer and seller are allowed to call this function."
64);
65 _;
66 }
67
68 modifier onlyFreightCompanyOrBuyer(uint256 _orderId) {
69 require(
70 msg.sender == orders[_orderId].freightCompany ||
71 msg.sender == orders[_orderId].buyer,
72 "Only the buyer and freight company are allowed to call this

function."
73);
74 _;
75 }
76
77 modifier atState(uint256 _orderId, States _state) {
78 require(
79 orders[_orderId].state == _state,
80 "Function cannot be called at this state."
81);
82 _;
83 }
84
85 modifier transitionNextState(uint256 _orderId) {
86 _;
87 nextState(_orderId);

102

88 }
89
90 function nextState(uint256 _orderId) internal {
91 orders[_orderId].state = States(uint256(orders[_orderId].state) + 1);
92 }
93
94 function getOrderCount() public view returns (uint256) {
95 return orderCount;
96 }
97
98 function getOrderState(uint256 _orderId) public view returns (States) {
99 return orders[_orderId].state;

100 }
101
102 function addOrder(
103 uint256 _orderId,
104 address payable _buyer,
105 uint256 _productId,
106 uint256 _quantity,
107 uint256 _price,
108 string memory _shippingAddress,
109 uint256 _latestDeliveryDate,
110 uint256 _shippingCosts
111)
112 public
113 onlySeller
114 atState(_orderId, States.NONE)
115 transitionNextState(_orderId)
116 {
117 require(
118 orders[_orderId].orderId != _orderId,
119 "An order with this ID already exists."
120);
121 require(
122 _price >= _shippingCosts,
123 "The price must be greater or equal to the shipping costs."
124);
125
126 orders[_orderId].orderId = _orderId;
127 orders[_orderId].buyer = _buyer;
128 orders[_orderId].productId = _productId;
129 orders[_orderId].quantity = _quantity;
130 orders[_orderId].price = _price;
131 orders[_orderId].shippingCosts = _shippingCosts;
132 orders[_orderId].shippingAddress = _shippingAddress;
133 orders[_orderId].latestDeliveryDate = _latestDeliveryDate;
134 orderCount++;
135 emit Log(_orderId, "Order has been added");
136 }
137
138 function cancelOrder(uint256 _orderId) public onlySellerOrBuyer(_orderId)

{
139 require(

103

140 orders[_orderId].state == States.CREATED ||
141 orders[_orderId].state == States.CONFIRMED,
142 "Function cannot be called at this state."
143);
144
145 if (orders[_orderId].state == States.CONFIRMED) {
146 orders[_orderId].state = States.CANCELLED;
147 balances[orders[_orderId].buyer] -= orders[_orderId].price;
148 orders[_orderId].buyer.transfer(orders[_orderId].price);
149 } else {
150 orders[_orderId].state = States.CANCELLED;
151 }
152 emit Log(_orderId, "Order has been cancelled");
153 }
154
155 function deliveryDatePassed(uint256 _orderId) public {
156 require(
157 block.timestamp >= orders[_orderId].latestDeliveryDate,
158 "Delivery date did not pass yet."
159);
160 require(
161 orders[_orderId].state < States.DELIVERED,
162 "Order got already delivered."
163);
164 require(
165 orders[_orderId].freightSigned == false,
166 "Refund not possible as the freight company already signed the

arrival."
167);
168
169 orders[_orderId].state = States.PASSED;
170 if (orders[_orderId].state >= States.CONFIRMED) {
171 balances[orders[_orderId].buyer] -= orders[_orderId].price;
172 orders[_orderId].buyer.transfer(orders[_orderId].price);
173 }
174 emit Log(
175 _orderId,
176 "Order has been cancelled due passed delivery date."
177);
178 }
179
180 function confirmOrder(uint256 _orderId)
181 public
182 payable
183 onlyBuyer(_orderId)
184 atState(_orderId, States.CREATED)
185 transitionNextState(_orderId)
186 {
187 require(
188 orders[_orderId].price == msg.value,
189 "Not enough Ether sent to cover the price of the order."
190);
191 balances[orders[_orderId].buyer] += orders[_orderId].price;

104

192 emit Log(_orderId, "Order has been confirmed and money deposited");
193 }
194
195 function shipOrder(
196 uint256 _orderId,
197 address payable _freightCompany,
198 string memory _trackingCode
199)
200 public
201 onlySeller
202 atState(_orderId, States.CONFIRMED)
203 transitionNextState(_orderId)
204 {
205 orders[_orderId].freightCompany = _freightCompany;
206 orders[_orderId].trackingCode = _trackingCode;
207 emit Log(_orderId, "Order has been shipped");
208 }
209
210 function signArrival(uint256 _orderId)
211 public
212 onlyFreightCompanyOrBuyer(_orderId)
213 atState(_orderId, States.SHIPPED)
214 {
215 if (msg.sender == orders[_orderId].buyer) {
216 orders[_orderId].buyerSigned = true;
217 emit Log(_orderId, "Order arrival has been signed by the buyer");
218 }
219
220 if (msg.sender == orders[_orderId].freightCompany) {
221 orders[_orderId].freightSigned = true;
222 emit Log(
223 _orderId,
224 "Order arrival has been signed by the freight company"
225);
226 }
227
228 if (orders[_orderId].buyerSigned && orders[_orderId].freightSigned) {
229 nextState(_orderId);
230 emit Log(
231 _orderId,
232 "Order arrival has been signed by the buyer and freight

company"
233);
234 payout(_orderId);
235 }
236 }
237
238 function payout(uint256 _orderId)
239 private
240 atState(_orderId, States.DELIVERED)
241 transitionNextState(_orderId)
242 {
243 balances[orders[_orderId].buyer] -= orders[_orderId].price;

105

244 balances[seller] =
245 balances[seller] +
246 orders[_orderId].price -
247 orders[_orderId].shippingCosts;
248 balances[orders[_orderId].freightCompany] += orders[_orderId]
249 .shippingCosts;
250
251 seller.transfer(
252 orders[_orderId].price - orders[_orderId].shippingCosts
253);
254 orders[_orderId].freightCompany.transfer(
255 orders[_orderId].shippingCosts
256);
257
258 emit Log(_orderId, "Payout finished.");
259 }
260 }

tradefinance.js (Tests)

1 const TradeFinanceContract = artifacts.require("TradeFinanceContract");
2
3 contract("TradeFinanceContract", accounts => {
4 let seller = accounts[0];
5 let buyer = accounts[1];
6 let freightCompany = accounts[2];
7
8 it("check test environment", () => {
9 TradeFinanceContract.deployed()

10 .then(instance => instance.getOrderCount())
11 .then(orderCount => {
12 assert.equal(
13 orderCount.toNumber(),
14 0,
15 "the order count after adding an order was not 0"
16);
17 });
18 });
19
20 it("create order test", () => {
21 let instance;
22
23 return TradeFinanceContract.deployed()
24 .then(inst => {
25 instance = inst;
26 return instance.addOrder(1, buyer, 100, 2, web3.utils.toWei("

10", "ether"), "Karlsplatz 13, 1040 Wien", 1594771200, web3.utils.toWei("
2", "ether"), { from: seller });

27 })
28 .then(() => instance.getOrderCount())
29 .then(orderCount => {
30 assert.equal(

106

31 orderCount.toNumber(),
32 1,
33 "the order count after adding an order was not 1"
34);
35 })
36 .then(() => instance.getOrderState(1))
37 .then(orderState => {
38 assert.equal(
39 orderState.toNumber(),
40 1,
41 "the order state after adding was not CREATED (1)."
42);
43 })
44 });
45
46 it("confirm order test", () => {
47 let instance;
48
49 return TradeFinanceContract.deployed()
50 .then(inst => {
51 instance = inst;
52 return instance.addOrder(2, buyer, 100, 2, web3.utils.toWei("

10", "ether"), "Karlsplatz 13, 1040 Wien", 1594771200, web3.utils.toWei("
2", "ether"), { from: seller });

53 })
54 .then(() => instance.getOrderCount())
55 .then(orderCount => {
56 assert.equal(
57 orderCount.toNumber(),
58 2,
59 "the order count after adding an order was not 1"
60);
61 })
62 .then(() => instance.confirmOrder(2, { from: buyer, value: web3.

utils.toWei("10", "ether") }))
63 .then(() => instance.getOrderState(2))
64 .then(orderState => {
65 assert.equal(
66 orderState.toNumber(),
67 2,
68 "the order state after confirming was not CONFIRMED (2)."
69);
70 })
71 });
72
73 it("sign arrival test", () => {
74 let instance;
75
76 return TradeFinanceContract.deployed()
77 .then(inst => {
78 instance = inst;
79 return instance.addOrder(3, buyer, 123587, 5.0, web3.utils.

toWei("15", "ether"), "Ballhausplatz 2, 1010 Wien", 1594771200, web3.

107

utils.toWei("3", "ether"), { from: seller });
80 })
81 .then(() => instance.confirmOrder(3, { from: buyer, value: web3.

utils.toWei("15", "ether") }))
82 .then(() => instance.shipOrder(3, freightCompany, "1AXCAW311", {

from: seller }))
83 .then(() => instance.signArrival(3, { from: buyer }))
84 .then(() => instance.signArrival(3, { from: freightCompany }))
85 .then(() => instance.getOrderState(3))
86 .then(orderState => {
87 assert.equal(
88 orderState.toNumber(),
89 5,
90 "the order state after confirming was not CLOSED (5)."
91);
92 })
93 });
94
95 it("delivery date passed test", () => {
96 let instance;
97
98 return TradeFinanceContract.deployed()
99 .then(inst => {

100 instance = inst;
101 return instance.addOrder(4, buyer, 123587, 5.0, web3.utils.

toWei("15", "ether"), "Ballhausplatz 2, 1010 Wien", 1594771200, web3.
utils.toWei("3", "ether"), { from: seller });

102 })
103 .then(() => instance.confirmOrder(4, { from: buyer, value: web3.

utils.toWei("15", "ether") }))
104 .then(() => instance.shipOrder(4, freightCompany, "1AXCAW311", {

from: seller }))
105 .then(() => instance.deliveryDatePassed(4, { from: buyer }))
106 .then(() => instance.getOrderState(4))
107 .then(orderState => {
108 assert.equal(
109 orderState.toNumber(),
110 7,
111 "the order state after confirming was not PASSED (7)."
112);
113 })
114 });
115
116 });

108

Appendix B - Hyperledger Fabric
Prototype Code

index.ts

1 /*
2 * SPDX-License-Identifier: Apache-2.0
3 */
4
5 import { TradeFinance } from "./trade";
6 export { TradeFinance } from "./trade";
7
8 export const contracts: any[] = [TradeFinance];

order.ts

1 /*
2 * SPDX-License-Identifier: Apache-2.0
3 */
4
5 export enum State {
6 CREATED,
7 CONFIRMED,
8 SHIPPED,
9 DELIVERED,

10 CANCELLED,
11 PASSED
12 }
13
14 export class Order {
15 public docType?: string;
16 public state: State;
17 public orderId: string;
18 public productId: number;
19 public quantity: number;
20 public price: number;
21 public shippingCosts: number;
22 public shippingAddress: string;

109

23 public latestDeliveryDate: Date;
24 public trackingCode: string;
25 public buyerSigned: boolean;
26 public freightSigned: boolean;
27 }

trade.ts

1 /*
2 * SPDX-License-Identifier: Apache-2.0
3 */
4
5 import { Context, Contract } from "fabric-contract-api";
6 import { Order, State } from "./order";
7
8 export class TradeFinance extends Contract {
9

10 private restrictedCall(ctx: Context, allowedAffiliation: string) {
11 if (!ctx.clientIdentity.assertAttributeValue("hf.Affiliation",

allowedAffiliation)) {
12 throw new Error("Only users with affiliation " +

allowedAffiliation + " are allowed to call this function");
13 }
14 }
15
16 private restrictedCall2(ctx: Context, allowedAffiliation1: string,

allowedAffiliation2: string) {
17 if (!ctx.clientIdentity.assertAttributeValue("hf.Affiliation",

allowedAffiliation1) && !ctx.clientIdentity.assertAttributeValue("hf.
Affiliation", allowedAffiliation2)) {

18 throw new Error("Only users with affiliation " +
allowedAffiliation1 + " or " + allowedAffiliation2 + " are allowed to
call this function.");

19 }
20 }
21
22 private async getOrder(ctx: Context, _orderId: string): Promise<Order> {
23 const orderAsBytes = await ctx.stub.getState(_orderId);
24 if (orderAsBytes.length === 0) {
25 throw new Error("An order with ID " + _orderId + " does not exist

");
26 }
27 const order: Order = JSON.parse(orderAsBytes.toString());
28 return order;
29 }
30
31 public async queryOrder(ctx: Context, _orderId: string): Promise<string>

{
32 const order = await this.getOrder(ctx, _orderId);
33 //console.log(order.toString());
34 return JSON.stringify(order);
35 }

110

36
37 public async queryAllOrders(ctx: Context): Promise<string> {
38 const startKey = "";
39 const endKey = "";
40 const allResults = [];
41 for await (const { key, value } of ctx.stub.getStateByRange(startKey,

endKey)) {
42 const strValue = Buffer.from(value).toString("utf8");
43 let record;
44 try {
45 record = JSON.parse(strValue);
46 } catch (err) {
47 console.log(err);
48 record = strValue;
49 }
50 allResults.push({ Key: key, Record: record });
51 }
52 //console.info(allResults);
53 return JSON.stringify(allResults);
54 }
55
56 public async createOrder(ctx: Context,
57 _orderId: string,
58 _productId: number,
59 _quantity: number,
60 _price: number,
61 _shippingCosts: number,
62 _shippingAddress: string,
63 _latestDeliveryDate: string) {
64 console.info("============= START : Create Order ===========");
65
66 this.restrictedCall(ctx, "seller");
67 const orderAsBytes = await ctx.stub.getState(_orderId);
68 if (orderAsBytes.length > 0) {
69 throw new Error("An order with ID " + _orderId + " does already

exist");
70 }
71
72 _productId = Number(_productId);
73 _quantity = Number(_quantity);
74 _price = Number(_price);
75 _shippingCosts = Number(_shippingCosts);
76
77 if (_price < _shippingCosts) {
78 throw new Error("The price must be greater or equal to the

shipping costs.");
79 }
80
81 var splittedDate = _latestDeliveryDate.split("-"); // date given in

yyyy-mm-dd format
82 var parsedDate = new Date(parseInt(splittedDate[0]), parseInt(

splittedDate[1]) - 1, parseInt(splittedDate[2]));
83 //console.info("parsedDate:" + parsedDate.toLocaleString());

111

84
85 const order: Order = {
86 docType: "order",
87 state: State.CREATED,
88 orderId: _orderId,
89 productId: _productId,
90 quantity: _quantity,
91 price: _price,
92 shippingCosts: _shippingCosts,
93 shippingAddress: _shippingAddress,
94 latestDeliveryDate: parsedDate,
95 trackingCode: undefined,
96 buyerSigned: undefined,
97 freightSigned: undefined
98 };
99

100 await ctx.stub.putState(_orderId, Buffer.from(JSON.stringify(order)))
;

101 console.info("============= END : Create Order ===========");
102 }
103
104 public async cancelOrder(ctx: Context, _orderId: string) {
105 console.info("============= START : cancelOrder ===========");
106
107 this.restrictedCall2(ctx, "seller", "buyer");
108 const order = await this.getOrder(ctx, _orderId);
109
110 if (order.state == State.DELIVERED || order.state == State.SHIPPED ||

order.state == State.CANCELLED || order.state == State.PASSED) {
111 throw new Error("The state of order " + _orderId + " does not

allow this action");
112 }
113
114 order.state = State.CANCELLED;
115
116 await ctx.stub.putState(_orderId, Buffer.from(JSON.stringify(order)))

;
117 console.info("Order " + _orderId + " has been cancelled.");
118 console.info("============= END : cancelOrder ===========");
119 }
120
121 public async deliveryDatePassed(ctx: Context, _orderId: string): Promise<

boolean> {
122 console.info("============= START : deliveryDatePassed ===========");
123 var passed = false;
124
125 const order = await this.getOrder(ctx, _orderId);
126
127 if (order.state >= State.DELIVERED) {
128 throw new Error("The state of order " + _orderId + " does not

allow this action");
129 }
130

112

131 var currentDate = new Date();
132 if (currentDate > new Date(order.latestDeliveryDate)) {
133 order.state = State.PASSED;
134 await ctx.stub.putState(_orderId, Buffer.from(JSON.stringify(

order)));
135 passed = true;
136 console.info("Order " + _orderId + " has been cancelled due

passed delivery date.");
137 }
138
139 console.info("============= END : deliveryDatePassed ===========");
140 return passed;
141 }
142
143 public async confirmOrder(ctx: Context, _orderId: string) {
144 console.info("============= START : confirmOrder ===========");
145
146 this.restrictedCall(ctx, "buyer");
147 const order = await this.getOrder(ctx, _orderId);
148
149 if (order.state != State.CREATED) {
150 throw new Error("The state of order " + _orderId + " does not

allow this action");
151 }
152
153 order.state = State.CONFIRMED;
154
155 await ctx.stub.putState(_orderId, Buffer.from(JSON.stringify(order)))

;
156 console.info("Order " + _orderId + " has been confirmed.");
157 console.info("============= END : confirmOrder ===========");
158 }
159
160 public async shipOrder(ctx: Context, _orderId: string, _trackingCode:

string) {
161 console.info("============= START : shipOrder ===========");
162
163 this.restrictedCall(ctx, "seller");
164 const order = await this.getOrder(ctx, _orderId);
165
166 if (order.state != State.CONFIRMED) {
167 throw new Error("The state of order " + _orderId + " does not

allow this action");
168 }
169
170 order.state = State.SHIPPED;
171 order.trackingCode = _trackingCode;
172
173 await ctx.stub.putState(_orderId, Buffer.from(JSON.stringify(order)))

;
174 console.info("Order " + _orderId + " has been shipped.");
175 console.info("============= END : shipOrder ===========");
176 }

113

177
178 public async signArrival(ctx: Context, _orderId: string) {
179 console.info("============= START : signArrival ===========");
180
181 this.restrictedCall2(ctx, "freight", "buyer");
182 const order = await this.getOrder(ctx, _orderId);
183
184 if (order.state != State.SHIPPED) {
185 throw new Error("The state of order " + _orderId + " does not

allow this action");
186 }
187
188 if (ctx.clientIdentity.assertAttributeValue("hf.Affiliation", "buyer"

)) {
189 order.buyerSigned = true;
190 console.info("Order " + _orderId + " arrival has been signed by

the buyer.");
191 }
192
193 if (ctx.clientIdentity.assertAttributeValue("hf.Affiliation", "

freight")) {
194 order.freightSigned = true;
195 console.info("Order " + _orderId + " arrival has been signed by

the freight company.");
196 }
197
198 if (order.buyerSigned && order.freightSigned) {
199 order.state = State.DELIVERED;
200 console.info("Order " + _orderId + " has been delivered.");
201 }
202
203 await ctx.stub.putState(_orderId, Buffer.from(JSON.stringify(order)))

;
204 console.info("============= END : signArrival ===========");
205 }
206 }

Order.java

1 package org.example;
2
3 import java.text.SimpleDateFormat;
4 import java.util.Date;
5
6 import com.google.gson.Gson;
7 import com.google.gson.GsonBuilder;
8 import com.google.gson.annotations.SerializedName;
9

10 import org.bouncycastle.util.Strings;
11
12 public class Order implements java.io.Serializable {
13 /**

114

14 *
15 */
16 private static final long serialVersionUID = -1774134125317583092L;
17 private static SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd’T’

HH:mm:ss.SSSZ");
18 private static Gson gson = new GsonBuilder().setPrettyPrinting().

setDateFormat("yyyy-MM-dd’T’HH:mm:ss.SSSZ")
19 .create();
20
21 public enum State {
22 @SerializedName("0")
23 CREATED,
24
25 @SerializedName("1")
26 CONFIRMED,
27
28 @SerializedName("2")
29 SHIPPED,
30
31 @SerializedName("3")
32 DELIVERED,
33
34 @SerializedName("4")
35 CANCELLED,
36
37 @SerializedName("5")
38 PASSED
39 }
40
41 private State state;
42 private String orderId;
43 private int productId;
44 private double quantity;
45 private double price;
46 private double shippingCosts;
47 private String shippingAddress;
48 private Date latestDeliveryDate;
49 private String trackingCode;
50 private boolean buyerSigned;
51 private boolean freightSigned;
52
53 public State getState() {
54 return this.state;
55 }
56
57 public void setState(State state) {
58 this.state = state;
59 }
60
61 public String getOrderId() {
62 return this.orderId;
63 }
64

115

65 public void setOrderId(String orderId) {
66 this.orderId = orderId;
67 }
68
69 public int getProductId() {
70 return this.productId;
71 }
72
73 public void setProductId(int productId) {
74 this.productId = productId;
75 }
76
77 public double getQuantity() {
78 return this.quantity;
79 }
80
81 public void setQuantity(double quantity) {
82 this.quantity = quantity;
83 }
84
85 public double getPrice() {
86 return this.price;
87 }
88
89 public void setPrice(double price) {
90 this.price = price;
91 }
92
93 public double getShippingCosts() {
94 return this.shippingCosts;
95 }
96
97 public void setShippingCosts(double shippingCosts) {
98 this.shippingCosts = shippingCosts;
99 }

100
101 public String getShippingAddress() {
102 return this.shippingAddress;
103 }
104
105 public void setShippingAddress(String shippingAddress) {
106 this.shippingAddress = shippingAddress;
107 }
108
109 public Date getLatestDeliveryDate() {
110 return this.latestDeliveryDate;
111 }
112
113 public void setLatestDeliveryDate(Date latestDeliveryDate) {
114 this.latestDeliveryDate = latestDeliveryDate;
115 }
116
117 public String getTrackingCode() {

116

118 return this.trackingCode;
119 }
120
121 public void setTrackingCode(String trackingCode) {
122 this.trackingCode = trackingCode;
123 }
124
125 public boolean isBuyerSigned() {
126 return this.buyerSigned;
127 }
128
129 public boolean getBuyerSigned() {
130 return this.buyerSigned;
131 }
132
133 public void setBuyerSigned(boolean buyerSigned) {
134 this.buyerSigned = buyerSigned;
135 }
136
137 public boolean isFreightSigned() {
138 return this.freightSigned;
139 }
140
141 public boolean getFreightSigned() {
142 return this.freightSigned;
143 }
144
145 public void setFreightSigned(boolean freightSigned) {
146 this.freightSigned = freightSigned;
147 }
148
149 /**
150 * Deserialize a string to order object
151 *
152 * @param data data to form back into the object
153 */
154 public static Order deserialize(String data) {
155 return Order.gson.fromJson(data, Order.class);
156 }
157
158 public static Order deserialize(byte[] data) {
159 return Order.gson.fromJson(Strings.fromByteArray(data), Order.class);
160 }
161
162 /**
163 * Serialize an order object to string
164 *
165 * @param order data to form back into the object
166 */
167 public static String serialize(Order order) {
168 return Order.gson.toJson(order);
169 }
170

117

171 @Override
172 public String toString() {
173 return "{" + " state=’" + getState() + "’" + ", orderId=’" +

getOrderId() + "’" + ", productId=’"
174 + getProductId() + "’" + ", quantity=’" + getQuantity() + "’"

+ ", price=’" + getPrice() + "’"
175 + ", shippingCosts=’" + getShippingCosts() + "’" + ",

shippingAddress=’" + getShippingAddress() + "’"
176 + ", latestDeliveryDate=’" + sdf.format(getLatestDeliveryDate

()) + "’" + ", trackingCode=’"
177 + getTrackingCode() + "’" + ", buyerSigned=’" + isBuyerSigned

() + "’" + ", freightSigned=’"
178 + isFreightSigned() + "’" + "}";
179 }
180
181 }

AddToWallet.java (Seller)

1 package org.example;
2
3 import java.io.IOException;
4 import java.io.Reader;
5 import java.nio.charset.StandardCharsets;
6 import java.nio.file.Files;
7 import java.nio.file.Path;
8 import java.nio.file.Paths;
9 import java.security.InvalidKeyException;

10 import java.security.PrivateKey;
11 import java.security.cert.CertificateException;
12 import java.security.cert.X509Certificate;
13 import java.util.stream.Stream;
14
15 import javax.naming.InvalidNameException;
16 import javax.naming.ldap.LdapName;
17
18 import org.hyperledger.fabric.gateway.Identities;
19 import org.hyperledger.fabric.gateway.Identity;
20 import org.hyperledger.fabric.gateway.Wallet;
21 import org.hyperledger.fabric.gateway.Wallets;
22
23 public class AddToWallet {
24
25 private static X509Certificate readX509Certificate(final Path

certificatePath)
26 throws IOException, CertificateException {
27 try (Reader certificateReader = Files.newBufferedReader(certificatePath,

StandardCharsets.UTF_8)) {
28 return Identities.readX509Certificate(certificateReader);
29 }
30 }
31

118

32 private static PrivateKey getPrivateKey(final Path privateKeyPath) throws
IOException, InvalidKeyException {

33 try (Reader privateKeyReader = Files.newBufferedReader(privateKeyPath,
StandardCharsets.UTF_8)) {

34 return Identities.readPrivateKey(privateKeyReader);
35 }
36 }
37
38 public static void main(final String[] args) {
39 try {
40 // A wallet stores a collection of identities
41 final Path walletPath = Paths.get(".", "wallet");
42 final Wallet wallet = Wallets.newFileSystemWallet(walletPath);
43
44 final Path credentialPath = Paths.get("..", "..", "..", "..", "test-

network", "organizations",
45 "peerOrganizations", "seller.example.com", "users", "User1@seller.

example.com", "msp");
46 System.out.println("credentialPath: " + credentialPath.toString());
47 final Path certificatePath = credentialPath.resolve(Paths.get("

signcerts", "cert.pem"));
48 System.out.println("certificatePem: " + certificatePath.toString());
49
50 Path privateKeyPath = null;
51 try (Stream<Path> paths = Files.find(credentialPath.resolve(Paths.get("

keystore")), Integer.MAX_VALUE,
52 (path, attrs) -> attrs.isRegularFile() && path.toString().endsWith(

"_sk"))) {
53 privateKeyPath = paths.findAny().get();
54 }
55
56 final X509Certificate certificate = readX509Certificate(certificatePath

);
57
58 final String identityLabel = new LdapName(certificate.

getSubjectX500Principal().getName()).getRdns().stream()
59 .filter(i -> i.getType().equalsIgnoreCase("CN")).findFirst().get().

getValue().toString();
60
61 final PrivateKey privateKey = getPrivateKey(privateKeyPath);
62 final Identity identity = Identities.newX509Identity("SellerMSP",

certificate, privateKey);
63
64 wallet.put(identityLabel, identity);
65
66 System.out.println("Write wallet info into " + walletPath.toString() +

" successfully.");
67
68 } catch (IOException | CertificateException | InvalidKeyException |

InvalidNameException e) {
69 System.err.println("Error adding to wallet");
70 e.printStackTrace();
71 }

119

72 }
73
74 }

ClientApp.java (Seller)

1 package org.example;
2
3 import java.io.IOException;
4 import java.nio.file.Path;
5 import java.nio.file.Paths;
6 import java.util.Map;
7 import java.util.concurrent.TimeoutException;
8
9 import org.hyperledger.fabric.gateway.Contract;

10 import org.hyperledger.fabric.gateway.Gateway;
11 import org.hyperledger.fabric.gateway.GatewayException;
12 import org.hyperledger.fabric.gateway.Network;
13 import org.hyperledger.fabric.gateway.Wallet;
14 import org.hyperledger.fabric.gateway.Wallets;
15
16 public class ClientApp {
17 private static final String CONTRACT = "CONTRACT_NAME";
18 private static final String CHANNEL = "CHANNEL_NAME";
19
20 public static void main(final String[] args) {
21 final Gateway.Builder builder = Gateway.createBuilder();
22
23 String contractName = "trade-finance";
24 String channelName = "mychannel";
25 // get the name of the contract, in case it is overridden
26 final Map<String, String> envvar = System.getenv();
27 if (envvar.containsKey(CONTRACT)) {
28 contractName = envvar.get(CONTRACT);
29 }
30 if (envvar.containsKey(CHANNEL)) {
31 channelName = envvar.get(CHANNEL);
32 }
33
34 try {
35 // A wallet stores a collection of identities
36 final Path walletPath = Paths.get(".", "wallet");
37 final Wallet wallet = Wallets.newFileSystemWallet(walletPath);
38 System.out.println("Read wallet info from: " + walletPath);
39
40 final String userName = "user1";
41
42 final Path connectionProfile = Paths.get("..", "..", "..", "..", "test-

network", "organizations",
43 "peerOrganizations", "seller.example.com", "connection-seller.yaml"

);
44

120

45 // Set connection options on the gateway builder
46 builder.identity(wallet, userName).networkConfig(connectionProfile).

discovery(false);
47
48 // Connect to gateway using application specified parameters
49 try (Gateway gateway = builder.connect()) {
50
51 // get the network and contract
52 final Network network = gateway.getNetwork(channelName);
53 final Contract contract = network.getContract(contractName);
54
55 byte[] result;
56
57 result = contract.evaluateTransaction("queryAllOrders");
58 System.out.println("List of all orders:");
59 System.out.println(new String(result));
60 System.out.println("------------------------------------");
61 // if (false) {
62 contract.submitTransaction("createOrder", "1", "100", "2", "10", "2",

"Karlsplatz 13, 1040 Wien",
63 "2020-09-20");
64 contract.submitTransaction("createOrder", "2", "123587", "5", "750",

"4", "Ballhausplatz 2, 1010 Wien",
65 "2020-12-01");
66 contract.submitTransaction("createOrder", "3", "68754", "1", "1337",

"2", "Michaelerkuppel, 1010 Wien",
67 "2020-08-15");
68
69 result = contract.evaluateTransaction("queryAllOrders");
70 System.out.println("List of all orders:");
71 System.out.println(new String(result));
72 System.out.println("------------------------------------");
73 // }
74 System.out.println("Wait until order with id 2 is set to state

CONFIRMED");
75 result = contract.evaluateTransaction("queryOrder", "2");
76 Order order = Order.deserialize(result);
77 System.out.println(Order.deserialize(result));
78 while (order.getState() != Order.State.CONFIRMED) {
79 System.out.println("order 2 state is:" + order.getState());
80 Thread.sleep(5000);
81 result = contract.evaluateTransaction("queryOrder", "2");
82 order = Order.deserialize(result);
83 }
84
85 contract.submitTransaction("shipOrder", "2", "1AXCAW311");
86 System.out.println("shipped order 2");
87 result = contract.evaluateTransaction("queryOrder", "2");
88 System.out.println(Order.deserialize(result));
89 System.out.println("------------------------------------");
90
91 }
92 } catch (GatewayException | IOException | TimeoutException |

121

InterruptedException e) {
93 e.printStackTrace();
94 System.exit(-1);
95 }
96 }
97
98 }

AddToWallet.java (Freight Company)

1 package org.example;
2
3 import java.io.IOException;
4 import java.io.Reader;
5 import java.nio.charset.StandardCharsets;
6 import java.nio.file.Files;
7 import java.nio.file.Path;
8 import java.nio.file.Paths;
9 import java.security.InvalidKeyException;

10 import java.security.PrivateKey;
11 import java.security.cert.CertificateException;
12 import java.security.cert.X509Certificate;
13 import java.util.stream.Stream;
14
15 import javax.naming.InvalidNameException;
16 import javax.naming.ldap.LdapName;
17
18 import org.hyperledger.fabric.gateway.Identities;
19 import org.hyperledger.fabric.gateway.Identity;
20 import org.hyperledger.fabric.gateway.Wallet;
21 import org.hyperledger.fabric.gateway.Wallets;
22
23 public class AddToWallet {
24
25 private static X509Certificate readX509Certificate(final Path

certificatePath)
26 throws IOException, CertificateException {
27 try (Reader certificateReader = Files.newBufferedReader(certificatePath,

StandardCharsets.UTF_8)) {
28 return Identities.readX509Certificate(certificateReader);
29 }
30 }
31
32 private static PrivateKey getPrivateKey(final Path privateKeyPath) throws

IOException, InvalidKeyException {
33 try (Reader privateKeyReader = Files.newBufferedReader(privateKeyPath,

StandardCharsets.UTF_8)) {
34 return Identities.readPrivateKey(privateKeyReader);
35 }
36 }
37
38 public static void main(String[] args) {

122

39 try {
40 // A wallet stores a collection of identities
41 final Path walletPath = Paths.get(".", "wallet");
42 final Wallet wallet = Wallets.newFileSystemWallet(walletPath);
43
44 final Path credentialPath = Paths.get("..", "..", "..", "..", "test-

network", "organizations",
45 "peerOrganizations", "freight.example.com", "users", "User1@freight

.example.com", "msp");
46 System.out.println("credentialPath: " + credentialPath.toString());
47 // final Path certificatePath = credentialPath.resolve(Paths.get("

signcerts",
48 // "User1@freight.example.com-cert.pem"));
49 final Path certificatePath = credentialPath.resolve(Paths.get("

signcerts", "cert.pem"));
50 System.out.println("certificatePem: " + certificatePath.toString());
51
52 Path privateKeyPath = null;
53 try (Stream<Path> paths = Files.find(credentialPath.resolve(Paths.get("

keystore")), Integer.MAX_VALUE,
54 (path, attrs) -> attrs.isRegularFile() && path.toString().endsWith(

"_sk"))) {
55 privateKeyPath = paths.findAny().get();
56 }
57
58 // final Path privateKeyPath = credentialPath.resolve(Paths.get("

keystore",
59 // "priv_sk"));
60
61 final X509Certificate certificate = readX509Certificate(certificatePath

);
62
63 final String identityLabel = new LdapName(certificate.

getSubjectX500Principal().getName()).getRdns().stream()
64 .filter(i -> i.getType().equalsIgnoreCase("CN")).findFirst().get().

getValue().toString();
65
66 final PrivateKey privateKey = getPrivateKey(privateKeyPath);
67 final Identity identity = Identities.newX509Identity("FreightMSP",

certificate, privateKey);
68
69 wallet.put(identityLabel, identity);
70
71 System.out.println("Write wallet info into " + walletPath.toString() +

" successfully.");
72
73 } catch (IOException | CertificateException | InvalidKeyException |

InvalidNameException e) {
74 System.err.println("Error adding to wallet");
75 e.printStackTrace();
76 }
77 }
78

123

79 }

ClientApp.java (Freight Company)

1 package org.example;
2
3 import java.io.IOException;
4 import java.nio.file.Path;
5 import java.nio.file.Paths;
6 import java.util.Map;
7 import java.util.concurrent.TimeoutException;
8
9 import org.hyperledger.fabric.gateway.Contract;

10 import org.hyperledger.fabric.gateway.Gateway;
11 import org.hyperledger.fabric.gateway.GatewayException;
12 import org.hyperledger.fabric.gateway.Network;
13 import org.hyperledger.fabric.gateway.Wallet;
14 import org.hyperledger.fabric.gateway.Wallets;
15
16 public class ClientApp {
17 private static final String CONTRACT = "CONTRACT_NAME";
18 private static final String CHANNEL = "CHANNEL_NAME";
19
20 public static void main(final String[] args) {
21 final Gateway.Builder builder = Gateway.createBuilder();
22
23 String contractName = "trade-finance";
24 String channelName = "mychannel";
25 // get the name of the contract, in case it is overridden
26 final Map<String, String> envvar = System.getenv();
27 if (envvar.containsKey(CONTRACT)) {
28 contractName = envvar.get(CONTRACT);
29 }
30 if (envvar.containsKey(CHANNEL)) {
31 channelName = envvar.get(CHANNEL);
32 }
33
34 try {
35 // A wallet stores a collection of identities
36 final Path walletPath = Paths.get(".", "wallet");
37 final Wallet wallet = Wallets.newFileSystemWallet(walletPath);
38 System.out.println("Read wallet info from: " + walletPath);
39
40 final String userName = "user1";
41
42 final Path connectionProfile = Paths.get("..", "..", "..", "..", "test-

network", "organizations",
43 "peerOrganizations", "freight.example.com", "connection-freight.

yaml");
44
45 // Set connection options on the gateway builder

124

46 builder.identity(wallet, userName).networkConfig(connectionProfile).
discovery(false);

47
48 // Connect to gateway using application specified parameters
49 try (Gateway gateway = builder.connect()) {
50
51 // get the network and contract
52 final Network network = gateway.getNetwork(channelName);
53 final Contract contract = network.getContract(contractName);
54
55 byte[] result;
56
57 result = contract.evaluateTransaction("queryAllOrders");
58 System.out.println("List of all orders:");
59 System.out.println(new String(result));
60 System.out.println("------------------------------------");
61
62 System.out.println("Wait until order with id 2 is set to state

SHIPPED");
63 result = contract.evaluateTransaction("queryOrder", "2");
64 Order order = Order.deserialize(result);
65 System.out.println(Order.deserialize(result));
66 while (order.getState() != Order.State.SHIPPED) {
67 System.out.println("order 2 state is:" + order.getState());
68 Thread.sleep(5000);
69 result = contract.evaluateTransaction("queryOrder", "2");
70 order = Order.deserialize(result);
71 }
72
73 contract.submitTransaction("signArrival", "2");
74 System.out.println("Signed arrival of order 2");
75 result = contract.evaluateTransaction("queryOrder", "2");
76 System.out.println(new String(result));
77 System.out.println("------------------------------------");
78 }
79 } catch (GatewayException | IOException | TimeoutException |

InterruptedException e) {
80 e.printStackTrace();
81 System.exit(-1);
82 }
83 }
84
85 }

AddToWallet.java (Buyer)

1 package org.example;
2
3 import java.io.IOException;
4 import java.io.Reader;
5 import java.nio.charset.StandardCharsets;
6 import java.nio.file.Files;

125

7 import java.nio.file.Path;
8 import java.nio.file.Paths;
9 import java.security.InvalidKeyException;

10 import java.security.PrivateKey;
11 import java.security.cert.CertificateException;
12 import java.security.cert.X509Certificate;
13 import java.util.stream.Stream;
14
15 import javax.naming.InvalidNameException;
16 import javax.naming.ldap.LdapName;
17
18 import org.hyperledger.fabric.gateway.Identities;
19 import org.hyperledger.fabric.gateway.Identity;
20 import org.hyperledger.fabric.gateway.Wallet;
21 import org.hyperledger.fabric.gateway.Wallets;
22
23 public class AddToWallet {
24
25 private static X509Certificate readX509Certificate(final Path

certificatePath)
26 throws IOException, CertificateException {
27 try (Reader certificateReader = Files.newBufferedReader(certificatePath,

StandardCharsets.UTF_8)) {
28 return Identities.readX509Certificate(certificateReader);
29 }
30 }
31
32 private static PrivateKey getPrivateKey(final Path privateKeyPath) throws

IOException, InvalidKeyException {
33 try (Reader privateKeyReader = Files.newBufferedReader(privateKeyPath,

StandardCharsets.UTF_8)) {
34 return Identities.readPrivateKey(privateKeyReader);
35 }
36 }
37
38 public static void main(String[] args) {
39 try {
40 // A wallet stores a collection of identities
41 final Path walletPath = Paths.get(".", "wallet");
42 final Wallet wallet = Wallets.newFileSystemWallet(walletPath);
43
44 final Path credentialPath = Paths.get("..", "..", "..", "..", "test-

network", "organizations",
45 "peerOrganizations", "buyer.example.com", "users", "User1@buyer.

example.com", "msp");
46 System.out.println("credentialPath: " + credentialPath.toString());
47 // final Path certificatePath = credentialPath.resolve(Paths.get("

signcerts",
48 // "User1@buyer.example.com-cert.pem"));
49 final Path certificatePath = credentialPath.resolve(Paths.get("

signcerts", "cert.pem"));
50 System.out.println("certificatePem: " + certificatePath.toString());
51

126

52 Path privateKeyPath = null;
53 try (Stream<Path> paths = Files.find(credentialPath.resolve(Paths.get("

keystore")), Integer.MAX_VALUE,
54 (path, attrs) -> attrs.isRegularFile() && path.toString().endsWith(

"_sk"))) {
55 privateKeyPath = paths.findAny().get();
56 }
57
58 // final Path privateKeyPath = credentialPath.resolve(Paths.get("

keystore",
59 // "priv_sk"));
60
61 final X509Certificate certificate = readX509Certificate(certificatePath

);
62
63 final String identityLabel = new LdapName(certificate.

getSubjectX500Principal().getName()).getRdns().stream()
64 .filter(i -> i.getType().equalsIgnoreCase("CN")).findFirst().get().

getValue().toString();
65
66 final PrivateKey privateKey = getPrivateKey(privateKeyPath);
67 final Identity identity = Identities.newX509Identity("BuyerMSP",

certificate, privateKey);
68
69 wallet.put(identityLabel, identity);
70
71 System.out.println("Write wallet info into " + walletPath.toString() +

" successfully.");
72
73 } catch (IOException | CertificateException | InvalidKeyException |

InvalidNameException e) {
74 System.err.println("Error adding to wallet");
75 e.printStackTrace();
76 }
77 }
78
79 }

ClientApp.java (Buyer)

1 package org.example;
2
3 import java.io.IOException;
4 import java.nio.file.Path;
5 import java.nio.file.Paths;
6 import java.util.Map;
7 import java.util.concurrent.TimeoutException;
8
9 import org.hyperledger.fabric.gateway.Contract;

10 import org.hyperledger.fabric.gateway.Gateway;
11 import org.hyperledger.fabric.gateway.GatewayException;
12 import org.hyperledger.fabric.gateway.Network;

127

13 import org.hyperledger.fabric.gateway.Wallet;
14 import org.hyperledger.fabric.gateway.Wallets;
15
16 public class ClientApp {
17 private static final String CONTRACT = "CONTRACT_NAME";
18 private static final String CHANNEL = "CHANNEL_NAME";
19
20 public static void main(final String[] args) {
21 final Gateway.Builder builder = Gateway.createBuilder();
22
23 String contractName = "trade-finance";
24 String channelName = "mychannel";
25 // get the name of the contract, in case it is overridden
26 final Map<String, String> envvar = System.getenv();
27 if (envvar.containsKey(CONTRACT)) {
28 contractName = envvar.get(CONTRACT);
29 }
30 if (envvar.containsKey(CHANNEL)) {
31 channelName = envvar.get(CHANNEL);
32 }
33
34 try {
35 // A wallet stores a collection of identities
36 final Path walletPath = Paths.get(".", "wallet");
37 final Wallet wallet = Wallets.newFileSystemWallet(walletPath);
38 System.out.println("Read wallet info from: " + walletPath);
39
40 final String userName = "user1";
41
42 final Path connectionProfile = Paths.get("..", "..", "..", "..", "test-

network", "organizations",
43 "peerOrganizations", "buyer.example.com", "connection-buyer.yaml");
44
45 // Set connection options on the gateway builder
46 builder.identity(wallet, userName).networkConfig(connectionProfile).

discovery(false);
47
48 // Connect to gateway using application specified parameters
49 try (Gateway gateway = builder.connect()) {
50
51 // get the network and contract
52 final Network network = gateway.getNetwork(channelName);
53 final Contract contract = network.getContract(contractName);
54
55 byte[] result;
56
57 result = contract.evaluateTransaction("queryAllOrders");
58 System.out.println("List of all orders:");
59 System.out.println(new String(result));
60 System.out.println("------------------------------------");
61
62 result = contract.evaluateTransaction("queryAllOrders");
63 System.out.println("Result of 1st transaction:");

128

64 System.out.println(new String(result));
65 System.out.println("------------------------------------");
66
67 contract.submitTransaction("cancelOrder", "1");
68 System.out.println("Cancelled order 1");
69 result = contract.evaluateTransaction("queryOrder", "1");
70 System.out.println(new String(result));
71 System.out.println("------------------------------------");
72
73 contract.submitTransaction("confirmOrder", "2");
74 System.out.println("Confirmed order 2");
75 result = contract.evaluateTransaction("queryOrder", "2");
76 System.out.println(new String(result));
77 System.out.println("------------------------------------");
78
79 System.out.println("Check if delivery date of order 3 has passed");
80 result = contract.submitTransaction("deliveryDatePassed", "3");
81 System.out.println(new String(result));
82 result = contract.evaluateTransaction("queryOrder", "3");
83 System.out.println(new String(result));
84 System.out.println("------------------------------------");
85
86 System.out.println("Wait until order with id 2 is set to state

SHIPPED");
87 result = contract.evaluateTransaction("queryOrder", "2");
88 Order order = Order.deserialize(result);
89 System.out.println(Order.deserialize(result));
90 while (order.getState() != Order.State.SHIPPED) {
91 System.out.println("order 2 state is:" + order.getState());
92 Thread.sleep(5000);
93 result = contract.evaluateTransaction("queryOrder", "2");
94 order = Order.deserialize(result);
95 }
96
97 contract.submitTransaction("signArrival", "2");
98 System.out.println("Signed arrival of order 2");
99 result = contract.evaluateTransaction("queryOrder", "2");

100 System.out.println(new String(result));
101 System.out.println("------------------------------------");
102 }
103 } catch (GatewayException | IOException | TimeoutException |

InterruptedException e) {
104 e.printStackTrace();
105 System.exit(-1);
106 }
107 }
108
109 }

129

Appendix C - Corda Prototype
Code

OrderState.java

1 package com.template.states;
2
3 import com.template.contracts.TradeFinanceContract;
4 import net.corda.core.contracts.*;
5 import net.corda.core.identity.AbstractParty;
6 import net.corda.core.identity.Party;
7 import net.corda.core.serialization.ConstructorForDeserialization;
8 import net.corda.core.serialization.CordaSerializable;
9 import org.jetbrains.annotations.NotNull;

10
11 import java.time.Instant;
12 import java.util.Arrays;
13 import java.util.Currency;
14 import java.util.List;
15 import java.util.Objects;
16 import java.util.stream.Collectors;
17 import java.util.stream.Stream;
18
19 // *********
20 // * State *
21 // *********
22 @BelongsToContract(TradeFinanceContract.class)
23 public class OrderState implements LinearState {
24
25 @NotNull
26 @Override
27 public UniqueIdentifier getLinearId() {
28 return this.orderId;
29 }
30
31 @CordaSerializable
32 public enum State {
33 CREATED,
34 CONFIRMED,
35 SHIPPED,

131

36 DELIVERED,
37 CANCELLED,
38 PASSED
39 }
40
41 //private variables
42 private Party seller;
43 private State orderState;
44 private Party buyer;
45 private UniqueIdentifier orderId;
46 private int productId;
47 private double quantity;
48 private Amount<Currency> price;
49 private Amount<Currency> shippingCosts;
50 private String shippingAddress;
51 private Instant latestDeliveryDate;
52 private Party freightCompany;
53 private String trackingCode;
54 private boolean buyerSigned;
55 private boolean freightSigned;
56
57 /* Constructor of your Corda state */
58 @ConstructorForDeserialization
59 public OrderState(Party seller, State orderState, Party buyer,

UniqueIdentifier orderId, int productId, double quantity, Amount<
Currency> price, Amount<Currency> shippingCosts, String
shippingAddress, Instant latestDeliveryDate, Party freightCompany,
String trackingCode, boolean buyerSigned, boolean freightSigned) {

60 this.seller = seller;
61 this.orderState = orderState;
62 this.buyer = buyer;
63 this.orderId = orderId;
64 this.productId = productId;
65 this.quantity = quantity;
66 this.price = price;
67 this.shippingCosts = shippingCosts;
68 this.shippingAddress = shippingAddress;
69 this.latestDeliveryDate = latestDeliveryDate;
70 this.freightCompany = freightCompany;
71 this.trackingCode = trackingCode;
72 this.buyerSigned = buyerSigned;
73 this.freightSigned = freightSigned;
74 }
75
76 public OrderState(Party seller, Party buyer, String orderId, int

productId, double quantity, Amount<Currency> price, Amount<Currency>
shippingCosts, String shippingAddress, Instant latestDeliveryDate) {

77 this.seller = seller;
78 this.buyer = buyer;
79 this.orderId = new UniqueIdentifier(orderId);
80 this.productId = productId;
81 this.quantity = quantity;
82 this.price = price;

132

83 this.shippingCosts = shippingCosts;
84 this.shippingAddress = shippingAddress;
85 this.latestDeliveryDate = latestDeliveryDate;
86 this.orderState = State.CREATED;
87 }
88
89 //getters
90 public Party getSeller() {
91 return seller;
92 }
93
94 public State getOrderState() {
95 return orderState;
96 }
97
98 public void setOrderState(State orderState) {
99 this.orderState = orderState;

100 }
101
102 public Party getBuyer() {
103 return buyer;
104 }
105
106 public UniqueIdentifier getOrderId() {
107 return orderId;
108 }
109
110 public int getProductId() {
111 return productId;
112 }
113
114 public double getQuantity() {
115 return quantity;
116 }
117
118 public Amount<Currency> getPrice() {
119 return price;
120 }
121
122 public String getShippingAddress() {
123 return shippingAddress;
124 }
125
126 public Instant getLatestDeliveryDate() {
127 return latestDeliveryDate;
128 }
129
130 public Party getFreightCompany() {
131 return freightCompany;
132 }
133
134 public void setFreightCompany(Party freightCompany) {
135 this.freightCompany = freightCompany;

133

136 }
137
138 public Amount<Currency> getShippingCosts() {
139 return shippingCosts;
140 }
141
142 public String getTrackingCode() {
143 return trackingCode;
144 }
145
146 public void setTrackingCode(String trackingCode) {
147 this.trackingCode = trackingCode;
148 }
149
150 public boolean isBuyerSigned() {
151 return buyerSigned;
152 }
153
154 public void setBuyerSigned(boolean buyerSigned) {
155 this.buyerSigned = buyerSigned;
156 }
157
158 public boolean isFreightSigned() {
159 return freightSigned;
160 }
161
162 public void setFreightSigned(boolean freightSigned) {
163 this.freightSigned = freightSigned;
164 }
165
166 /* This method will indicate who are the participants and required

signers when
167 * this state is used in a transaction. */
168 @NotNull
169 @Override
170 public List<AbstractParty> getParticipants() {
171 return Stream.of(this.seller, this.buyer, this.freightCompany).filter

(Objects::nonNull).collect(Collectors.toList());
172 }
173
174 public OrderState copy() {
175 return new OrderState(this.seller, this.orderState, this.buyer, this.

orderId, this.productId, this.quantity, this.price, this.
shippingCosts, this.shippingAddress, this.latestDeliveryDate,
this.freightCompany, this.trackingCode, this.buyerSigned, this.
freightSigned);

176 }
177 }

TradeFinanceContract.java

1 package com.template.contracts;

134

2
3 import com.template.states.OrderState;
4 import net.corda.core.contracts.CommandData;
5 import net.corda.core.contracts.CommandWithParties;
6 import net.corda.core.contracts.Contract;
7 import net.corda.core.identity.AbstractParty;
8 import net.corda.core.identity.Party;
9 import net.corda.core.transactions.LedgerTransaction;

10
11 import java.time.Instant;
12 import java.util.Arrays;
13 import java.util.stream.Collectors;
14 import java.util.stream.Stream;
15
16 import static net.corda.core.contracts.ContractsDSL.requireSingleCommand;
17 import static net.corda.core.contracts.ContractsDSL.requireThat;
18
19 // ************
20 // * Contract *
21 // ************
22 public class TradeFinanceContract implements Contract {
23 // This is used to identify our contract when building a transaction.
24 public static final String ID = "com.template.contracts.

TradeFinanceContract";
25
26 // A transaction is valid if the verify() function of the contract of all

the transaction’s input and output states
27 // does not throw an exception.
28 @Override
29 public void verify(LedgerTransaction tx) {
30
31 /* We can use the requireSingleCommand function to extract command

data from a transaction.
32 * However, it is possible to have multiple commands in a single

transaction.*/
33 final CommandWithParties<Commands> command = requireSingleCommand(tx.

getCommands(), Commands.class);
34
35 //Retrieve the input and output states of the transaction
36 OrderState input = tx.getInputs().size() != 0 ? tx.inputsOfType(

OrderState.class).get(0) : null;
37 OrderState output = tx.outputsOfType(OrderState.class).get(0);
38 if (command.getValue() instanceof Commands.Create) {
39 //Using Corda DSL function requireThat to replicate conditions-

checks
40 requireThat(require -> {
41 require.using("No inputs should be consumed when adding a new

order.", tx.getInputStates().size() == 0);
42 require.using("Only the seller is allowed to start this flow.

", command.getValue().getInitiator().getOwningKey().
equals(output.getSeller().getOwningKey()));

43 require.using("The price must be greater or equal to the
shipping costs.", output.getPrice().compareTo(output.

135

getShippingCosts()) >= 0);
44 return null;
45 });
46 } else if (command.getValue() instanceof Commands.Cancel) {
47 //Using Corda DSL function requireThat to replicate conditions-

checks
48 requireThat(require -> {
49 require.using("Exactly one input should be consumed when

cancelling an order.", tx.getInputStates().size() == 1);
50 require.using("Function cannot be called at this state: " +

input.getOrderState(), Stream.of(input.getOrderState()).
anyMatch(Arrays.asList(OrderState.State.CREATED,
OrderState.State.CONFIRMED)::contains));

51 require.using("Only the the seller or the buyer are allowed
to start this flow.", Arrays.asList(output.getSeller().
getOwningKey(), output.getBuyer().getOwningKey()).
contains(command.getValue().getInitiator().getOwningKey()
));

52 return null;
53 });
54 } else if (command.getValue() instanceof Commands.CheckDate) {
55 //Using Corda DSL function requireThat to replicate conditions-

checks
56 requireThat(require -> {
57 require.using("Exactly one input should be consumed when

checking the order delivery date.", tx.getInputStates().
size() == 1);

58 require.using("Function cannot be called at this state: " +
input.getOrderState(), input.getOrderState() !=
OrderState.State.DELIVERED);

59 require.using("Delivery date did not pass yet.", Instant.now
().isAfter(input.getLatestDeliveryDate()));

60 require.using("Refund not possible as the freight company
already signed the arrival.", !input.isFreightSigned());

61 return null;
62 });
63 } else if (command.getValue() instanceof Commands.Confirm) {
64 //Using Corda DSL function requireThat to replicate conditions-

checks
65 requireThat(require -> {
66 require.using("Exactly one input should be consumed when

confirming an order.", tx.getInputStates().size() == 1);
67 require.using("Function cannot be called at this state: " +

input.getOrderState(), input.getOrderState() ==
OrderState.State.CREATED);

68 require.using("Only the buyer is allowed to start this flow."
, command.getValue().getInitiator().getOwningKey().equals
(output.getBuyer().getOwningKey()));

69 return null;
70 });
71 } else if (command.getValue() instanceof Commands.Ship) {
72 //Using Corda DSL function requireThat to replicate conditions-

checks

136

73 requireThat(require -> {
74 require.using("Exactly one input should be consumed when

shipping an order.", tx.getInputStates().size() == 1);
75 require.using("Function cannot be called at this state: " +

input.getOrderState(), input.getOrderState() ==
OrderState.State.CONFIRMED);

76 require.using("Only the seller is allowed to start this flow.
", command.getValue().getInitiator().getOwningKey().
equals(output.getSeller().getOwningKey()));

77 return null;
78 });
79 } else if (command.getValue() instanceof Commands.Sign) {
80 //Using Corda DSL function requireThat to replicate conditions-

checks
81 requireThat(require -> {
82 require.using("Exactly one input should be consumed when

signing an order.", tx.getInputStates().size() == 1);
83 require.using("Function cannot be called at this state: " +

input.getOrderState(), input.getOrderState() ==
OrderState.State.SHIPPED);

84 require.using("Only the buyer and freight company are allowed
to start this flow.", Arrays.asList(output.getBuyer().
getOwningKey(), output.getFreightCompany().getOwningKey()
).contains(command.getValue().getInitiator().getOwningKey
()));

85 return null;
86 });
87 }
88 }
89
90 // Used to indicate the transaction’s intent.
91 public abstract static class Commands implements CommandData {
92 private Party initiator;
93
94 public Commands(Party initiator) {
95 this.initiator = initiator;
96 }
97
98 public Party getInitiator() {
99 return initiator;

100 }
101
102 public static class Create extends Commands {
103 public Create(Party initiator) {
104 super(initiator);
105 }
106 }
107
108 public static class CheckDate extends Commands {
109 public CheckDate(Party initiator) {
110 super(initiator);
111 }
112 }

137

113
114 public static class Cancel extends Commands {
115 public Cancel(Party initiator) {
116 super(initiator);
117 }
118 }
119
120 public static class Confirm extends Commands {
121 public Confirm(Party initiator) {
122 super(initiator);
123 }
124 }
125
126 public static class Ship extends Commands {
127 public Ship(Party initiator) {
128 super(initiator);
129 }
130 }
131
132 public static class Sign extends Commands {
133 public Sign(Party initiator) {
134 super(initiator);
135 }
136 }
137 }
138 }

DataUtils.java

1 package com.template.utils;
2
3 import com.template.states.OrderState;
4 import net.corda.core.contracts.StateAndRef;
5 import net.corda.core.node.ServiceHub;
6 import net.corda.core.node.services.Vault;
7 import net.corda.core.node.services.vault.QueryCriteria;
8
9 import java.util.Collections;

10 import java.util.List;
11
12 public class DataUtils {
13
14 public static StateAndRef<OrderState> getOrder(ServiceHub serviceHub,

String orderId) {
15 //Check if an order with this ID already exists
16 QueryCriteria.LinearStateQueryCriteria queryCriteria = new

QueryCriteria.LinearStateQueryCriteria()
17 .withExternalId(Collections.singletonList(orderId)).

withStatus(Vault.StateStatus.UNCONSUMED);
18 List<StateAndRef<OrderState>> results = serviceHub.getVaultService().

queryBy(OrderState.class, queryCriteria).getStates();
19 if (results.isEmpty()) {

138

20 throw new IllegalArgumentException("An order with ID " + orderId
+ " does not exist or is already consumed.");

21 }
22 return results.get(0);
23 }
24
25 }

CancelOrder.java

1 package com.template.flows;
2
3 import co.paralleluniverse.fibers.Suspendable;
4 import com.template.contracts.TradeFinanceContract;
5 import com.template.states.OrderState;
6 import com.template.utils.DataUtils;
7 import net.corda.core.contracts.StateAndRef;
8 import net.corda.core.flows.*;
9 import net.corda.core.identity.AbstractParty;

10 import net.corda.core.identity.Party;
11 import net.corda.core.transactions.SignedTransaction;
12 import net.corda.core.transactions.TransactionBuilder;
13 import net.corda.core.utilities.ProgressTracker;
14
15 import java.util.List;
16 import java.util.stream.Collectors;
17
18 // ******************
19 // * Initiator flow *
20 // ******************
21 @InitiatingFlow
22 @StartableByRPC
23 public class CancelOrder extends FlowLogic<String> {
24 private final ProgressTracker progressTracker = tracker();
25
26 private static final ProgressTracker.Step GENERATING_TRANSACTION = new

ProgressTracker.Step("Generating a CancelOrder transaction");
27 private static final ProgressTracker.Step SIGNING_TRANSACTION = new

ProgressTracker.Step("Signing transaction with our private key.");
28 private static final ProgressTracker.Step COLLECTING_SIGNATURES = new

ProgressTracker.Step("Collecting the signatures of the other parties.
");

29 private static final ProgressTracker.Step FINALISING_TRANSACTION = new
ProgressTracker.Step("Recording transaction") {

30 @Override
31 public ProgressTracker childProgressTracker() {
32 return FinalityFlow.tracker();
33 }
34 };
35
36 private static ProgressTracker tracker() {
37 return new ProgressTracker(

139

38 GENERATING_TRANSACTION,
39 SIGNING_TRANSACTION,
40 COLLECTING_SIGNATURES,
41 FINALISING_TRANSACTION
42);
43 }
44
45 @Override
46 public ProgressTracker getProgressTracker() {
47 return progressTracker;
48 }
49
50 //private variables
51 private final String orderId;
52
53 //public constructor
54 public CancelOrder(String orderId) {
55 this.orderId = orderId;
56 }
57
58 @Suspendable
59 @Override
60 public String call() throws FlowException {
61 // Step 1. Get the order data from the vault
62 StateAndRef<OrderState> inputOrderStateAndRef = DataUtils.getOrder(

getServiceHub(), this.orderId);
63 OrderState inputOrderState = inputOrderStateAndRef.getState().getData

();
64
65 // Generate State for transfer
66 // Step 2. Get a reference to the notary service on our network and

our key pair.
67 final Party notary = getServiceHub().getNetworkMapCache().

getNotaryIdentities().get(0);
68
69 // Step 3. Compose the State that carries the order data
70 progressTracker.setCurrentStep(GENERATING_TRANSACTION);
71 OrderState outputOrderState = inputOrderState.copy();
72 outputOrderState.setOrderState(OrderState.State.CANCELLED);
73
74 // Step 4. Create a new TransactionBuilder object.
75 final TransactionBuilder builder = new TransactionBuilder(notary);
76
77 // Step 5. Add the order as an output state, as well as a command to

the transaction builder.
78 builder.addInputState(inputOrderStateAndRef);
79 builder.addOutputState(outputOrderState);
80 builder.addCommand(new TradeFinanceContract.Commands.Cancel(

getOurIdentity()), outputOrderState.getParticipants().stream().
map(AbstractParty::getOwningKey).collect(Collectors.toList()));

81
82 // Step 6. Verify and sign it with our KeyPair.
83 progressTracker.setCurrentStep(SIGNING_TRANSACTION);

140

84 builder.verify(getServiceHub());
85 final SignedTransaction ptx = getServiceHub().signInitialTransaction(

builder);
86
87 // Step 7. Collect the other party’s signature using the

SignTransactionFlow.
88 progressTracker.setCurrentStep(COLLECTING_SIGNATURES);
89 List<Party> otherParties = outputOrderState.getParticipants().stream

().map(el -> (Party) el).collect(Collectors.toList());
90 otherParties.remove(getOurIdentity());
91 List<FlowSession> sessions = otherParties.stream().map(this::

initiateFlow).collect(Collectors.toList());
92
93 SignedTransaction stx = subFlow(new CollectSignaturesFlow(ptx,

sessions));
94
95 // Step 8. Assuming no exceptions, we can now finalise the

transaction
96 progressTracker.setCurrentStep(FINALISING_TRANSACTION);
97 subFlow(new FinalityFlow(stx, sessions));
98
99 return "Cancel flow for order with ID ’" + this.orderId + "’ of buyer

’" + outputOrderState.getBuyer().getName() + "’ executed.";
100 }
101 }

CancelOrderResponder.java

1 package com.template.flows;
2
3 import co.paralleluniverse.fibers.Suspendable;
4 import net.corda.core.flows.*;
5 import net.corda.core.transactions.SignedTransaction;
6
7 // ******************
8 // * Responder flow *
9 // ******************

10 @InitiatedBy(CancelOrder.class)
11 public class CancelOrderResponder extends FlowLogic<Void> {
12
13 //private variable
14 private FlowSession counterpartySession;
15
16 //Constructor
17 public CancelOrderResponder(FlowSession counterpartySession) {
18 this.counterpartySession = counterpartySession;
19 }
20
21 @Suspendable
22 @Override
23 public Void call() throws FlowException {

141

24 SignedTransaction signedTransaction = subFlow(new SignTransactionFlow
(counterpartySession) {

25 @Suspendable
26 @Override
27 protected void checkTransaction(SignedTransaction stx) throws

FlowException {
28 /*
29 * SignTransactionFlow will automatically verify the

transaction and its signatures before signing it.
30 * However, just because a transaction is contractually valid

doesn’t mean we necessarily want to sign.
31 * What if we don’t want to deal with the counterparty in

question, or the value is too high,
32 * or we’re not happy with the transaction’s structure?

checkTransaction
33 * allows us to define these additional checks. If any of

these conditions are not met,
34 * we will not sign the transaction - even if the transaction

and its signatures are contractually valid.
35 * ----------
36 * For this cordapp, we will not implement any additional

checks.
37 * */
38 }
39 });
40 //Stored the transaction into data base.
41 subFlow(new ReceiveFinalityFlow(counterpartySession,

signedTransaction.getId()));
42 return null;
43 }
44 }

CheckDeliveryDate.java

1 package com.template.flows;
2
3 import co.paralleluniverse.fibers.Suspendable;
4 import com.template.contracts.TradeFinanceContract;
5 import com.template.states.OrderState;
6 import com.template.utils.DataUtils;
7 import net.corda.core.contracts.StateAndRef;
8 import net.corda.core.flows.*;
9 import net.corda.core.identity.AbstractParty;

10 import net.corda.core.identity.Party;
11 import net.corda.core.transactions.SignedTransaction;
12 import net.corda.core.transactions.TransactionBuilder;
13 import net.corda.core.utilities.ProgressTracker;
14
15 import java.util.List;
16 import java.util.stream.Collectors;
17
18 // ******************

142

19 // * Initiator flow *
20 // ******************
21 @InitiatingFlow
22 @StartableByRPC
23 public class CheckDeliveryDate extends FlowLogic<String> {
24 private final ProgressTracker progressTracker = tracker();
25
26 private static final ProgressTracker.Step GENERATING_TRANSACTION = new

ProgressTracker.Step("Generating a CheckDeliveryDate transaction");
27 private static final ProgressTracker.Step SIGNING_TRANSACTION = new

ProgressTracker.Step("Signing transaction with our private key.");
28 private static final ProgressTracker.Step COLLECTING_SIGNATURES = new

ProgressTracker.Step("Collecting the signatures of the other parties.
");

29 private static final ProgressTracker.Step FINALISING_TRANSACTION = new
ProgressTracker.Step("Recording transaction") {

30 @Override
31 public ProgressTracker childProgressTracker() {
32 return FinalityFlow.tracker();
33 }
34 };
35
36 private static ProgressTracker tracker() {
37 return new ProgressTracker(
38 GENERATING_TRANSACTION,
39 SIGNING_TRANSACTION,
40 COLLECTING_SIGNATURES,
41 FINALISING_TRANSACTION
42);
43 }
44
45 @Override
46 public ProgressTracker getProgressTracker() {
47 return progressTracker;
48 }
49
50 //private variables
51 private final String orderId;
52
53 //public constructor
54 public CheckDeliveryDate(String orderId) {
55 this.orderId = orderId;
56 }
57
58 @Suspendable
59 @Override
60 public String call() throws FlowException {
61 // Step 1. Check if an order with this ID already exists
62 StateAndRef<OrderState> inputOrderStateAndRef = DataUtils.getOrder(

getServiceHub(), this.orderId);
63 OrderState inputOrderState = inputOrderStateAndRef.getState().getData

();
64

143

65 // Generate State for transfer
66 // Step 2. Get a reference to the notary service on our network and

our key pair.
67 final Party notary = getServiceHub().getNetworkMapCache().

getNotaryIdentities().get(0);
68
69 // Step 3. Compose the State that carries the order data
70 progressTracker.setCurrentStep(GENERATING_TRANSACTION);
71 OrderState outputOrderState = inputOrderState.copy();
72 outputOrderState.setOrderState(OrderState.State.PASSED);
73
74 // Step 4. Create a new TransactionBuilder object.
75 final TransactionBuilder builder = new TransactionBuilder(notary);
76
77 // Step 5. Add the order as an output state, as well as a command to

the transaction builder.
78 builder.addInputState(inputOrderStateAndRef);
79 builder.addOutputState(outputOrderState);
80 builder.addCommand(new TradeFinanceContract.Commands.CheckDate(

getOurIdentity()), outputOrderState.getParticipants().stream().
map(AbstractParty::getOwningKey).collect(Collectors.toList()));

81
82 // Step 6. Verify and sign it with our KeyPair.
83 progressTracker.setCurrentStep(SIGNING_TRANSACTION);
84 builder.verify(getServiceHub());
85 final SignedTransaction ptx = getServiceHub().signInitialTransaction(

builder);
86
87 // Step 7. Collect the other party’s signature using the

SignTransactionFlow.
88 progressTracker.setCurrentStep(COLLECTING_SIGNATURES);
89 List<Party> otherParties = outputOrderState.getParticipants().stream

().map(el -> (Party) el).collect(Collectors.toList());
90 otherParties.remove(getOurIdentity());
91 List<FlowSession> sessions = otherParties.stream().map(this::

initiateFlow).collect(Collectors.toList());
92
93 SignedTransaction stx = subFlow(new CollectSignaturesFlow(ptx,

sessions));
94
95 // Step 8. Assuming no exceptions, we can now finalise the

transaction
96 progressTracker.setCurrentStep(FINALISING_TRANSACTION);
97 subFlow(new FinalityFlow(stx, sessions));
98
99 return "Check delivery date flow for order with ID ’" + this.orderId

+ "’ of buyer ’" + outputOrderState.getBuyer().getName() + "’
executed.";

100 }
101 }

144

CheckDeliveryDateResponder.java

1 package com.template.flows;
2
3 import co.paralleluniverse.fibers.Suspendable;
4 import net.corda.core.flows.*;
5 import net.corda.core.transactions.SignedTransaction;
6
7 // ******************
8 // * Responder flow *
9 // ******************

10 @InitiatedBy(CheckDeliveryDate.class)
11 public class CheckDeliveryDateResponder extends FlowLogic<Void> {
12
13 //private variable
14 private FlowSession counterpartySession;
15
16 //Constructor
17 public CheckDeliveryDateResponder(FlowSession counterpartySession) {
18 this.counterpartySession = counterpartySession;
19 }
20
21 @Suspendable
22 @Override
23 public Void call() throws FlowException {
24 SignedTransaction signedTransaction = subFlow(new SignTransactionFlow

(counterpartySession) {
25 @Suspendable
26 @Override
27 protected void checkTransaction(SignedTransaction stx) throws

FlowException {
28 /*
29 * SignTransactionFlow will automatically verify the

transaction and its signatures before signing it.
30 * However, just because a transaction is contractually valid

doesn’t mean we necessarily want to sign.
31 * What if we don’t want to deal with the counterparty in

question, or the value is too high,
32 * or we’re not happy with the transaction’s structure?

checkTransaction
33 * allows us to define these additional checks. If any of

these conditions are not met,
34 * we will not sign the transaction - even if the transaction

and its signatures are contractually valid.
35 * ----------
36 * For this cordapp, we will not implement any additional

checks.
37 * */
38 }
39 });
40 //Stored the transaction into data base.
41 subFlow(new ReceiveFinalityFlow(counterpartySession,

145

signedTransaction.getId()));
42 return null;
43 }
44 }

ConfirmOrder.java

1 package com.template.flows;
2
3 import co.paralleluniverse.fibers.Suspendable;
4 import com.template.contracts.TradeFinanceContract;
5 import com.template.states.OrderState;
6 import com.template.utils.DataUtils;
7 import net.corda.core.contracts.StateAndRef;
8 import net.corda.core.flows.*;
9 import net.corda.core.identity.AbstractParty;

10 import net.corda.core.identity.Party;
11 import net.corda.core.transactions.SignedTransaction;
12 import net.corda.core.transactions.TransactionBuilder;
13 import net.corda.core.utilities.ProgressTracker;
14
15 import java.util.List;
16 import java.util.stream.Collectors;
17
18 // ******************
19 // * Initiator flow *
20 // ******************
21 @InitiatingFlow
22 @StartableByRPC
23 public class ConfirmOrder extends FlowLogic<String> {
24 private final ProgressTracker progressTracker = tracker();
25
26 private static final ProgressTracker.Step GENERATING_TRANSACTION = new

ProgressTracker.Step("Generating a ConfirmOrder transaction");
27 private static final ProgressTracker.Step SIGNING_TRANSACTION = new

ProgressTracker.Step("Signing transaction with our private key.");
28 private static final ProgressTracker.Step COLLECTING_SIGNATURES = new

ProgressTracker.Step("Collecting the signatures of the other parties.
");

29 private static final ProgressTracker.Step FINALISING_TRANSACTION = new
ProgressTracker.Step("Recording transaction") {

30 @Override
31 public ProgressTracker childProgressTracker() {
32 return FinalityFlow.tracker();
33 }
34 };
35
36 private static ProgressTracker tracker() {
37 return new ProgressTracker(
38 GENERATING_TRANSACTION,
39 SIGNING_TRANSACTION,
40 COLLECTING_SIGNATURES,

146

41 FINALISING_TRANSACTION
42);
43 }
44
45 @Override
46 public ProgressTracker getProgressTracker() {
47 return progressTracker;
48 }
49
50 //private variables
51 private final String orderId;
52
53 //public constructor
54 public ConfirmOrder(String orderId) {
55 this.orderId = orderId;
56 }
57
58 @Suspendable
59 @Override
60 public String call() throws FlowException {
61 // Step 1. Check if an order with this ID already exists
62 StateAndRef<OrderState> inputOrderStateAndRef = DataUtils.getOrder(

getServiceHub(), this.orderId);
63 OrderState inputOrderState = inputOrderStateAndRef.getState().getData

();
64
65 // Generate State for transfer
66 // Step 2. Get a reference to the notary service on our network and

our key pair.
67 final Party notary = getServiceHub().getNetworkMapCache().

getNotaryIdentities().get(0);
68
69 // Step 3. Compose the State that carries the order data
70 progressTracker.setCurrentStep(GENERATING_TRANSACTION);
71 OrderState outputOrderState = inputOrderState.copy();
72 outputOrderState.setOrderState(OrderState.State.CONFIRMED);
73
74 // Step 4. Create a new TransactionBuilder object.
75 final TransactionBuilder builder = new TransactionBuilder(notary);
76
77 // Step 5. Add the order as an output state, as well as a command to

the transaction builder.
78 builder.addInputState(inputOrderStateAndRef);
79 builder.addOutputState(outputOrderState);
80 builder.addCommand(new TradeFinanceContract.Commands.Confirm(

getOurIdentity()), outputOrderState.getParticipants().stream().
map(AbstractParty::getOwningKey).collect(Collectors.toList()));

81
82 // Step 6. Verify and sign it with our KeyPair.
83 progressTracker.setCurrentStep(SIGNING_TRANSACTION);
84 builder.verify(getServiceHub());
85 final SignedTransaction ptx = getServiceHub().signInitialTransaction(

builder);

147

86
87 // Step 7. Collect the other party’s signature using the

SignTransactionFlow.
88 progressTracker.setCurrentStep(COLLECTING_SIGNATURES);
89 List<Party> otherParties = outputOrderState.getParticipants().stream

().map(el -> (Party) el).collect(Collectors.toList());
90 otherParties.remove(getOurIdentity());
91 List<FlowSession> sessions = otherParties.stream().map(this::

initiateFlow).collect(Collectors.toList());
92
93 SignedTransaction stx = subFlow(new CollectSignaturesFlow(ptx,

sessions));
94
95 // Step 8. Assuming no exceptions, we can now finalise the

transaction
96 progressTracker.setCurrentStep(FINALISING_TRANSACTION);
97 subFlow(new FinalityFlow(stx, sessions));
98
99 return "Confirm order flow for order with ID ’" + this.orderId + "’

of buyer ’" + outputOrderState.getBuyer().getName() + "’ executed
.";

100 }
101 }

ConfirmOrderResponder.java

1 package com.template.flows;
2
3 import co.paralleluniverse.fibers.Suspendable;
4 import net.corda.core.flows.*;
5 import net.corda.core.transactions.SignedTransaction;
6
7 // ******************
8 // * Responder flow *
9 // ******************

10 @InitiatedBy(ConfirmOrder.class)
11 public class ConfirmOrderResponder extends FlowLogic<Void> {
12
13 //private variable
14 private FlowSession counterpartySession;
15
16 //Constructor
17 public ConfirmOrderResponder(FlowSession counterpartySession) {
18 this.counterpartySession = counterpartySession;
19 }
20
21 @Suspendable
22 @Override
23 public Void call() throws FlowException {
24 SignedTransaction signedTransaction = subFlow(new SignTransactionFlow

(counterpartySession) {
25 @Suspendable

148

26 @Override
27 protected void checkTransaction(SignedTransaction stx) throws

FlowException {
28 /*
29 * SignTransactionFlow will automatically verify the

transaction and its signatures before signing it.
30 * However, just because a transaction is contractually valid

doesn’t mean we necessarily want to sign.
31 * What if we don’t want to deal with the counterparty in

question, or the value is too high,
32 * or we’re not happy with the transaction’s structure?

checkTransaction
33 * allows us to define these additional checks. If any of

these conditions are not met,
34 * we will not sign the transaction - even if the transaction

and its signatures are contractually valid.
35 * ----------
36 * For this cordapp, we will not implement any additional

checks.
37 * */
38 }
39 });
40 //Stored the transaction into data base.
41 subFlow(new ReceiveFinalityFlow(counterpartySession,

signedTransaction.getId()));
42 return null;
43 }
44 }

CreateOrder.java

1 package com.template.flows;
2
3 import co.paralleluniverse.fibers.Suspendable;
4 import com.template.contracts.TradeFinanceContract;
5 import com.template.states.OrderState;
6 import net.corda.core.contracts.Amount;
7 import net.corda.core.contracts.StateAndRef;
8 import net.corda.core.flows.*;
9 import net.corda.core.identity.AbstractParty;

10 import net.corda.core.identity.Party;
11 import net.corda.core.node.services.Vault;
12 import net.corda.core.node.services.vault.QueryCriteria;
13 import net.corda.core.transactions.SignedTransaction;
14 import net.corda.core.transactions.TransactionBuilder;
15 import net.corda.core.utilities.ProgressTracker;
16
17 import java.time.Instant;
18 import java.time.LocalDate;
19 import java.time.ZoneId;
20 import java.util.*;
21 import java.util.stream.Collectors;

149

22
23 // ******************
24 // * Initiator flow *
25 // ******************
26 @InitiatingFlow
27 @StartableByRPC
28 public class CreateOrder extends FlowLogic<String> {
29 private final ProgressTracker progressTracker = tracker();
30
31 private static final ProgressTracker.Step GENERATING_TRANSACTION = new

ProgressTracker.Step("Generating a CreateOrder transaction");
32 private static final ProgressTracker.Step SIGNING_TRANSACTION = new

ProgressTracker.Step("Signing transaction with our private key.");
33 private static final ProgressTracker.Step COLLECTING_SIGNATURES = new

ProgressTracker.Step("Collecting the signatures of the other parties.
");

34 private static final ProgressTracker.Step FINALISING_TRANSACTION = new
ProgressTracker.Step("Recording transaction") {

35 @Override
36 public ProgressTracker childProgressTracker() {
37 return FinalityFlow.tracker();
38 }
39 };
40
41 private static ProgressTracker tracker() {
42 return new ProgressTracker(
43 GENERATING_TRANSACTION,
44 SIGNING_TRANSACTION,
45 COLLECTING_SIGNATURES,
46 FINALISING_TRANSACTION
47);
48 }
49
50 @Override
51 public ProgressTracker getProgressTracker() {
52 return progressTracker;
53 }
54
55 //private variables
56 private Party seller;
57 private String buyer;
58 private String orderId;
59 private int productId;
60 private double quantity;
61 private Amount<Currency> price;
62 private Amount<Currency> shippingCosts;
63 private String shippingAddress;
64 private Instant latestDeliveryDate;
65
66 //public constructor
67 public CreateOrder(String buyer, String orderId, int productId, double

quantity, String price, String shippingCosts, String shippingAddress,
String latestDeliveryDate) {

150

68 this.buyer = buyer;
69 this.orderId = orderId;
70 this.productId = productId;
71 this.quantity = quantity;
72 this.price = Amount.parseCurrency(price);
73 this.shippingCosts = Amount.parseCurrency(shippingCosts);
74 this.shippingAddress = shippingAddress;
75 this.latestDeliveryDate = LocalDate.parse(latestDeliveryDate).

atStartOfDay(ZoneId.systemDefault()).toInstant();
76 }
77
78 @Suspendable
79 @Override
80 public String call() throws FlowException {
81 this.seller = getOurIdentity();
82
83 // Step 1. Check if an order with this ID already exists
84 QueryCriteria.LinearStateQueryCriteria queryCriteria = new

QueryCriteria.LinearStateQueryCriteria().withExternalId(
Collections.singletonList(this.orderId));

85 List<StateAndRef<OrderState>> results = getServiceHub().
getVaultService().queryBy(OrderState.class, queryCriteria).
getStates();

86 if (results.size() != 0) {
87 throw new IllegalArgumentException("An order with ID " + this.

orderId + " already exists.");
88 }
89
90 // Step 2. Get a reference to the notary service on our network and

our key pair.
91 final Party notary = getServiceHub().getNetworkMapCache().

getNotaryIdentities().get(0);
92
93 // Step 3. Compose the State that carries the order data.
94 progressTracker.setCurrentStep(GENERATING_TRANSACTION);
95 Party buyerParty = getServiceHub().getIdentityService().

partiesFromName(this.buyer, true).stream().findFirst().get();
96 final OrderState output = new OrderState(this.seller, buyerParty,

this.orderId, this.productId, this.quantity, this.price, this.
shippingCosts, this.shippingAddress, this.latestDeliveryDate);

97
98 // Step 4. Create a new TransactionBuilder object.
99 final TransactionBuilder builder = new TransactionBuilder(notary);

100
101 // Step 5. Add the order as an output state, as well as a command to

the transaction builder.
102 builder.addOutputState(output, TradeFinanceContract.ID);
103 builder.addCommand(new TradeFinanceContract.Commands.Create(

getOurIdentity()), output.getParticipants().stream().map(
AbstractParty::getOwningKey).collect(Collectors.toList()));

104
105 // Step 6. Verify and sign it with our KeyPair.
106 progressTracker.setCurrentStep(SIGNING_TRANSACTION);

151

107 builder.verify(getServiceHub());
108 final SignedTransaction ptx = getServiceHub().signInitialTransaction(

builder);
109
110 // Step 7. Collect the other party’s signature using the

SignTransactionFlow.
111 progressTracker.setCurrentStep(COLLECTING_SIGNATURES);
112 List<Party> otherParties = output.getParticipants().stream().map(el

-> (Party) el).collect(Collectors.toList());
113 otherParties.remove(getOurIdentity());
114 List<FlowSession> sessions = otherParties.stream().map(this::

initiateFlow).collect(Collectors.toList());
115
116 SignedTransaction stx = subFlow(new CollectSignaturesFlow(ptx,

sessions));
117
118 // Step 8. Assuming no exceptions, we can now finalise the

transaction
119 progressTracker.setCurrentStep(FINALISING_TRANSACTION);
120 subFlow(new FinalityFlow(stx, sessions));
121
122 return "Order with ID ’" + this.orderId + "’ of buyer ’" + buyerParty

.getName() + "’ added.";
123 }
124 }

CreateOrderResponder.java

1 package com.template.flows;
2
3 import co.paralleluniverse.fibers.Suspendable;
4 import net.corda.core.flows.*;
5 import net.corda.core.transactions.SignedTransaction;
6
7 // ******************
8 // * Responder flow *
9 // ******************

10 @InitiatedBy(CreateOrder.class)
11 public class CreateOrderResponder extends FlowLogic<Void> {
12
13 //private variable
14 private FlowSession counterpartySession;
15
16 //Constructor
17 public CreateOrderResponder(FlowSession counterpartySession) {
18 this.counterpartySession = counterpartySession;
19 }
20
21 @Suspendable
22 @Override
23 public Void call() throws FlowException {

152

24 SignedTransaction signedTransaction = subFlow(new SignTransactionFlow
(counterpartySession) {

25 @Suspendable
26 @Override
27 protected void checkTransaction(SignedTransaction stx) throws

FlowException {
28 /*
29 * SignTransactionFlow will automatically verify the

transaction and its signatures before signing it.
30 * However, just because a transaction is contractually valid

doesn’t mean we necessarily want to sign.
31 * What if we don’t want to deal with the counterparty in

question, or the value is too high,
32 * or we’re not happy with the transaction’s structure?

checkTransaction
33 * allows us to define these additional checks. If any of

these conditions are not met,
34 * we will not sign the transaction - even if the transaction

and its signatures are contractually valid.
35 * ----------
36 * For this cordapp, we will not implement any additional

checks.
37 * */
38 }
39 });
40 //Stored the transaction into data base.
41 subFlow(new ReceiveFinalityFlow(counterpartySession,

signedTransaction.getId()));
42 return null;
43 }
44 }

ShipOrder.java

1 package com.template.flows;
2
3 import co.paralleluniverse.fibers.Suspendable;
4 import com.template.contracts.TradeFinanceContract;
5 import com.template.states.OrderState;
6 import com.template.utils.DataUtils;
7 import net.corda.core.contracts.StateAndRef;
8 import net.corda.core.flows.*;
9 import net.corda.core.identity.AbstractParty;

10 import net.corda.core.identity.Party;
11 import net.corda.core.transactions.SignedTransaction;
12 import net.corda.core.transactions.TransactionBuilder;
13 import net.corda.core.utilities.ProgressTracker;
14
15 import java.util.List;
16 import java.util.stream.Collectors;
17
18 // ******************

153

19 // * Initiator flow *
20 // ******************
21 @InitiatingFlow
22 @StartableByRPC
23 public class ShipOrder extends FlowLogic<String> {
24 private final ProgressTracker progressTracker = tracker();
25
26 private static final ProgressTracker.Step GENERATING_TRANSACTION = new

ProgressTracker.Step("Generating a ShipOrder transaction");
27 private static final ProgressTracker.Step SIGNING_TRANSACTION = new

ProgressTracker.Step("Signing transaction with our private key.");
28 private static final ProgressTracker.Step COLLECTING_SIGNATURES = new

ProgressTracker.Step("Collecting the signatures of the other parties.
");

29 private static final ProgressTracker.Step FINALISING_TRANSACTION = new
ProgressTracker.Step("Recording transaction") {

30 @Override
31 public ProgressTracker childProgressTracker() {
32 return FinalityFlow.tracker();
33 }
34 };
35
36 private static ProgressTracker tracker() {
37 return new ProgressTracker(
38 GENERATING_TRANSACTION,
39 SIGNING_TRANSACTION,
40 COLLECTING_SIGNATURES,
41 FINALISING_TRANSACTION
42);
43 }
44
45 @Override
46 public ProgressTracker getProgressTracker() {
47 return progressTracker;
48 }
49
50 //private variables
51 private final String orderId;
52 private final String freightCompany;
53 private final String trackingCode;
54
55 //public constructor
56 public ShipOrder(String orderId, String freightCompany, String

trackingCode) {
57 this.orderId = orderId;
58 this.freightCompany = freightCompany;
59 this.trackingCode = trackingCode;
60 }
61
62 @Suspendable
63 @Override
64 public String call() throws FlowException {
65 // Step 1. Check if an order with this ID already exists

154

66 StateAndRef<OrderState> inputOrderStateAndRef = DataUtils.getOrder(
getServiceHub(), this.orderId);

67 OrderState inputOrderState = inputOrderStateAndRef.getState().getData
();

68
69 // Generate State for transfer
70 // Step 2. Get a reference to the notary service on our network and

our key pair.
71 final Party notary = getServiceHub().getNetworkMapCache().

getNotaryIdentities().get(0);
72
73 // Step 3. Compose the State that carries the order data
74 progressTracker.setCurrentStep(GENERATING_TRANSACTION);
75 final Party freightParty = getServiceHub().getIdentityService().

partiesFromName(this.freightCompany, true).stream().findFirst().
get();

76 OrderState outputOrderState = inputOrderState.copy();
77 outputOrderState.setOrderState(OrderState.State.SHIPPED);
78 outputOrderState.setFreightCompany(freightParty);
79 outputOrderState.setTrackingCode(this.trackingCode);
80
81 // Step 4. Create a new TransactionBuilder object.
82 final TransactionBuilder builder = new TransactionBuilder(notary);
83
84 // Step 5. Add the order as an output state, as well as a command to

the transaction builder.
85 builder.addInputState(inputOrderStateAndRef);
86 builder.addOutputState(outputOrderState);
87 builder.addCommand(new TradeFinanceContract.Commands.Ship(

getOurIdentity()), outputOrderState.getParticipants().stream().
map(AbstractParty::getOwningKey).collect(Collectors.toList()));

88
89 // Step 6. Verify and sign it with our KeyPair.
90 progressTracker.setCurrentStep(SIGNING_TRANSACTION);
91 builder.verify(getServiceHub());
92 final SignedTransaction ptx = getServiceHub().signInitialTransaction(

builder);
93
94 // Step 7. Collect the other party’s signature using the

SignTransactionFlow.
95 progressTracker.setCurrentStep(COLLECTING_SIGNATURES);
96 List<Party> otherParties = outputOrderState.getParticipants().stream

().map(el -> (Party) el).collect(Collectors.toList());
97 otherParties.remove(getOurIdentity());
98 List<FlowSession> sessions = otherParties.stream().map(this::

initiateFlow).collect(Collectors.toList());
99

100 SignedTransaction stx = subFlow(new CollectSignaturesFlow(ptx,
sessions));

101
102 // Step 8. Assuming no exceptions, we can now finalise the

transaction
103 progressTracker.setCurrentStep(FINALISING_TRANSACTION);

155

104 subFlow(new FinalityFlow(stx, sessions));
105
106 return "Ship order flow for order with ID ’" + this.orderId + "’ of

buyer ’" + outputOrderState.getBuyer().getName() + "’ executed.";
107 }
108 }

ShipOrderResponder.java

1 package com.template.flows;
2
3 import co.paralleluniverse.fibers.Suspendable;
4 import net.corda.core.flows.*;
5 import net.corda.core.transactions.SignedTransaction;
6
7 // ******************
8 // * Responder flow *
9 // ******************

10 @InitiatedBy(ShipOrder.class)
11 public class ShipOrderResponder extends FlowLogic<Void> {
12
13 //private variable
14 private FlowSession counterpartySession;
15
16 //Constructor
17 public ShipOrderResponder(FlowSession counterpartySession) {
18 this.counterpartySession = counterpartySession;
19 }
20
21 @Suspendable
22 @Override
23 public Void call() throws FlowException {
24 SignedTransaction signedTransaction = subFlow(new SignTransactionFlow

(counterpartySession) {
25 @Suspendable
26 @Override
27 protected void checkTransaction(SignedTransaction stx) throws

FlowException {
28 /*
29 * SignTransactionFlow will automatically verify the

transaction and its signatures before signing it.
30 * However, just because a transaction is contractually valid

doesn’t mean we necessarily want to sign.
31 * What if we don’t want to deal with the counterparty in

question, or the value is too high,
32 * or we’re not happy with the transaction’s structure?

checkTransaction
33 * allows us to define these additional checks. If any of

these conditions are not met,
34 * we will not sign the transaction - even if the transaction

and its signatures are contractually valid.
35 * ----------

156

36 * For this cordapp, we will not implement any additional
checks.

37 * */
38 }
39 });
40 //Stored the transaction into data base.
41 subFlow(new ReceiveFinalityFlow(counterpartySession,

signedTransaction.getId()));
42 return null;
43 }
44 }

SignArrival.java

1 package com.template.flows;
2
3 import co.paralleluniverse.fibers.Suspendable;
4 import com.template.contracts.TradeFinanceContract;
5 import com.template.states.OrderState;
6 import com.template.utils.DataUtils;
7 import net.corda.core.contracts.StateAndRef;
8 import net.corda.core.flows.*;
9 import net.corda.core.identity.AbstractParty;

10 import net.corda.core.identity.Party;
11 import net.corda.core.transactions.SignedTransaction;
12 import net.corda.core.transactions.TransactionBuilder;
13 import net.corda.core.utilities.ProgressTracker;
14
15 import java.util.List;
16 import java.util.stream.Collectors;
17
18 // ******************
19 // * Initiator flow *
20 // ******************
21 @InitiatingFlow
22 @StartableByRPC
23 public class SignArrival extends FlowLogic<String> {
24 private final ProgressTracker progressTracker = tracker();
25
26 private static final ProgressTracker.Step GENERATING_TRANSACTION = new

ProgressTracker.Step("Generating a SignArrival transaction");
27 private static final ProgressTracker.Step SIGNING_TRANSACTION = new

ProgressTracker.Step("Signing transaction with our private key.");
28 private static final ProgressTracker.Step COLLECTING_SIGNATURES = new

ProgressTracker.Step("Collecting the signatures of the other parties.
");

29 private static final ProgressTracker.Step FINALISING_TRANSACTION = new
ProgressTracker.Step("Recording transaction") {

30 @Override
31 public ProgressTracker childProgressTracker() {
32 return FinalityFlow.tracker();
33 }

157

34 };
35
36 private static ProgressTracker tracker() {
37 return new ProgressTracker(
38 GENERATING_TRANSACTION,
39 SIGNING_TRANSACTION,
40 COLLECTING_SIGNATURES,
41 FINALISING_TRANSACTION
42);
43 }
44
45 @Override
46 public ProgressTracker getProgressTracker() {
47 return progressTracker;
48 }
49
50 //private variables
51 private final String orderId;
52
53 //public constructor
54 public SignArrival(String orderId) {
55 this.orderId = orderId;
56 }
57
58 @Suspendable
59 @Override
60 public String call() throws FlowException {
61 String signer = "";
62 // Step 1. Check if an order with this ID already exists
63 StateAndRef<OrderState> inputOrderStateAndRef = DataUtils.getOrder(

getServiceHub(), this.orderId);
64 OrderState inputOrderState = inputOrderStateAndRef.getState().getData

();
65
66 // Generate State for transfer
67 // Step 2. Get a reference to the notary service on our network and

our key pair.
68 final Party notary = getServiceHub().getNetworkMapCache().

getNotaryIdentities().get(0);
69
70 // Step 3. Compose the State that carries the order data
71 progressTracker.setCurrentStep(GENERATING_TRANSACTION);
72 OrderState outputOrderState = inputOrderState.copy();
73 if (getOurIdentity().getOwningKey().equals(outputOrderState.getBuyer

().getOwningKey())) {
74 outputOrderState.setBuyerSigned(true);
75 signer = outputOrderState.getBuyer().getName().toString();
76 } else if (getOurIdentity().getOwningKey().equals(outputOrderState.

getFreightCompany().getOwningKey())) {
77 outputOrderState.setFreightSigned(true);
78 signer = outputOrderState.getFreightCompany().getName().toString

();
79 }

158

80
81 if (outputOrderState.isBuyerSigned() && outputOrderState.

isFreightSigned()) {
82 outputOrderState.setOrderState(OrderState.State.DELIVERED);
83 }
84
85 // Step 4. Create a new TransactionBuilder object.
86 final TransactionBuilder builder = new TransactionBuilder(notary);
87
88 // Step 5. Add the order as an output state, as well as a command to

the transaction builder.
89 builder.addInputState(inputOrderStateAndRef);
90 builder.addOutputState(outputOrderState);
91 builder.addCommand(new TradeFinanceContract.Commands.Sign(

getOurIdentity()), outputOrderState.getParticipants().stream().
map(AbstractParty::getOwningKey).collect(Collectors.toList()));

92
93 // Step 6. Verify and sign it with our KeyPair.
94 progressTracker.setCurrentStep(SIGNING_TRANSACTION);
95 builder.verify(getServiceHub());
96 final SignedTransaction ptx = getServiceHub().signInitialTransaction(

builder);
97
98 // Step 7. Collect the other party’s signature using the

SignTransactionFlow.
99 progressTracker.setCurrentStep(COLLECTING_SIGNATURES);

100 List<Party> otherParties = outputOrderState.getParticipants().stream
().map(el -> (Party) el).collect(Collectors.toList());

101 otherParties.remove(getOurIdentity());
102 List<FlowSession> sessions = otherParties.stream().map(this::

initiateFlow).collect(Collectors.toList());
103
104 SignedTransaction stx = subFlow(new CollectSignaturesFlow(ptx,

sessions));
105
106 // Step 8. Assuming no exceptions, we can now finalise the

transaction
107 progressTracker.setCurrentStep(FINALISING_TRANSACTION);
108 subFlow(new FinalityFlow(stx, sessions));
109
110 return "The arrival of the order with ID ’" + this.orderId + "’ has

been signed by ’" + signer + "’";
111 }
112 }

SignArrivalResponder.java

1 package com.template.flows;
2
3 import co.paralleluniverse.fibers.Suspendable;
4 import net.corda.core.flows.*;
5 import net.corda.core.transactions.SignedTransaction;

159

6
7 // ******************
8 // * Responder flow *
9 // ******************

10 @InitiatedBy(SignArrival.class)
11 public class SignArrivalResponder extends FlowLogic<Void> {
12
13 //private variable
14 private FlowSession counterpartySession;
15
16 //Constructor
17 public SignArrivalResponder(FlowSession counterpartySession) {
18 this.counterpartySession = counterpartySession;
19 }
20
21 @Suspendable
22 @Override
23 public Void call() throws FlowException {
24 SignedTransaction signedTransaction = subFlow(new SignTransactionFlow

(counterpartySession) {
25 @Suspendable
26 @Override
27 protected void checkTransaction(SignedTransaction stx) throws

FlowException {
28 /*
29 * SignTransactionFlow will automatically verify the

transaction and its signatures before signing it.
30 * However, just because a transaction is contractually valid

doesn’t mean we necessarily want to sign.
31 * What if we don’t want to deal with the counterparty in

question, or the value is too high,
32 * or we’re not happy with the transaction’s structure?

checkTransaction
33 * allows us to define these additional checks. If any of

these conditions are not met,
34 * we will not sign the transaction - even if the transaction

and its signatures are contractually valid.
35 * ----------
36 * For this cordapp, we will not implement any additional

checks.
37 * */
38 }
39 });
40 //Stored the transaction into data base.
41 subFlow(new ReceiveFinalityFlow(counterpartySession,

signedTransaction.getId()));
42 return null;
43 }
44 }

FlowTests.java (Tests)

160

1 package com.template;
2
3 import com.google.common.collect.ImmutableList;
4 import com.template.flows.*;
5 import com.template.states.OrderState;
6 import net.corda.core.concurrent.CordaFuture;
7 import net.corda.core.contracts.StateAndRef;
8 import net.corda.core.contracts.TransactionVerificationException;
9 import net.corda.core.flows.FlowLogic;

10 import net.corda.core.identity.CordaX500Name;
11 import net.corda.testing.node.MockNetwork;
12 import net.corda.testing.node.MockNetworkParameters;
13 import net.corda.testing.node.StartedMockNode;
14 import net.corda.testing.node.TestCordapp;
15 import org.junit.After;
16 import org.junit.Before;
17 import org.junit.Test;
18
19 import java.util.List;
20 import java.util.concurrent.ExecutionException;
21
22 import static org.junit.Assert.assertEquals;
23
24 public class FlowTests {
25 private MockNetwork network;
26 private StartedMockNode sellerNode;
27 private StartedMockNode buyerNode;
28 private StartedMockNode freightNode;
29
30 @Before
31 public void setup() {
32 network = new MockNetwork(new MockNetworkParameters().

withCordappsForAllNodes(ImmutableList.of(
33 TestCordapp.findCordapp("com.template.contracts"),
34 TestCordapp.findCordapp("com.template.flows"))));
35 sellerNode = network.createPartyNode(new CordaX500Name("Seller", "

Berlin", "DE"));
36 buyerNode = network.createPartyNode(new CordaX500Name("Buyer", "

Vienna", "AT"));
37 freightNode = network.createPartyNode(new CordaX500Name("Freight

Company", "New York", "US"));
38 // For real nodes this happens automatically, but we have to manually

register the flow for tests.
39 for (StartedMockNode node : ImmutableList.of(sellerNode, buyerNode,

freightNode)) {
40 node.registerInitiatedFlow(CancelOrderResponder.class);
41 node.registerInitiatedFlow(CheckDeliveryDateResponder.class);
42 node.registerInitiatedFlow(ConfirmOrderResponder.class);
43 node.registerInitiatedFlow(CreateOrderResponder.class);
44 node.registerInitiatedFlow(ShipOrderResponder.class);
45 node.registerInitiatedFlow(SignArrivalResponder.class);
46 }
47 network.runNetwork();

161

48 }
49
50 @After
51 public void tearDown() {
52 network.stopNodes();
53 }
54
55 @Test
56 public void createOrderTest() throws ExecutionException,

InterruptedException {
57 CreateOrder flow = new CreateOrder("Buyer", "1", 100, 2.0, "10 EUR",

"2 EUR", "Karlsplatz 13, 1040 Wien", "2020-09-30");
58 CordaFuture<String> future = sellerNode.startFlow(flow);
59 network.runNetwork();
60 assert future.get().contains("Order with ID ’1’ of buyer ’" +

buyerNode.getInfo().getLegalIdentities().get(0).getName() + "’
added.");

61 }
62
63 @Test
64 public void cancelOrderTest() throws ExecutionException,

InterruptedException {
65 FlowLogic<String> flow = new CreateOrder("Buyer", "1", 100, 2.0, "10

EUR", "2 EUR", "Karlsplatz 13, 1040 Wien", "2020-09-30");
66 CordaFuture<String> future = sellerNode.startFlow(flow);
67 network.runNetwork();
68 assert future.get().contains("Order with ID ’1’ of buyer ’" +

buyerNode.getInfo().getLegalIdentities().get(0).getName() + "’
added.");

69
70 flow = new CancelOrder("1");
71 future = buyerNode.startFlow(flow);
72 network.runNetwork();
73 assert future.get().contains("Cancel flow for order with ID ’1’ of

buyer ’" + buyerNode.getInfo().getLegalIdentities().get(0).
getName() + "’ executed.");

74 }
75
76 @Test
77 public void confirmOrderTest() throws ExecutionException,

InterruptedException {
78 FlowLogic<String> flow = new CreateOrder("Buyer", "2", 123587, 5.0, "

750 EUR", "4 EUR", "Ballhausplatz 2, 1010 Wien", "2020-12-01");
79 CordaFuture<String> future = sellerNode.startFlow(flow);
80 network.runNetwork();
81 assert future.get().contains("Order with ID ’2’ of buyer ’" +

buyerNode.getInfo().getLegalIdentities().get(0).getName() + "’
added.");

82
83 flow = new ConfirmOrder("2");
84 future = buyerNode.startFlow(flow);
85 network.runNetwork();
86 assert future.get().contains("Confirm order flow for order with ID

162

’2’ of buyer ’" + buyerNode.getInfo().getLegalIdentities().get(0)
.getName() + "’ executed.");

87 }
88
89 @Test
90 public void shipOrderTest() throws ExecutionException,

InterruptedException {
91 FlowLogic<String> flow = new CreateOrder("Buyer", "2", 123587, 5.0, "

750 EUR", "4 EUR", "Ballhausplatz 2, 1010 Wien", "2020-12-01");
92 CordaFuture<String> future = sellerNode.startFlow(flow);
93 network.runNetwork();
94 assert future.get().contains("Order with ID ’2’ of buyer ’" +

buyerNode.getInfo().getLegalIdentities().get(0).getName() + "’
added.");

95
96 flow = new ConfirmOrder("2");
97 future = buyerNode.startFlow(flow);
98 network.runNetwork();
99 assert future.get().contains("Confirm order flow for order with ID

’2’ of buyer ’" + buyerNode.getInfo().getLegalIdentities().get(0)
.getName() + "’ executed.");

100
101 flow = new ShipOrder("2", "Freight Company", "XAFDWEQ");
102 future = sellerNode.startFlow(flow);
103 network.runNetwork();
104 assert future.get().contains("Ship order flow for order with ID ’2’

of buyer ’" + buyerNode.getInfo().getLegalIdentities().get(0).
getName() + "’ executed.");

105 }
106
107 @Test
108 public void signArrivalTest() throws ExecutionException,

InterruptedException {
109 FlowLogic<String> flow = new CreateOrder("Buyer", "2", 123587, 5.0, "

750 EUR", "4 EUR", "Ballhausplatz 2, 1010 Wien", "2020-12-01");
110 CordaFuture<String> future = sellerNode.startFlow(flow);
111 network.runNetwork();
112 assert future.get().contains("Order with ID ’2’ of buyer ’" +

buyerNode.getInfo().getLegalIdentities().get(0).getName() + "’
added.");

113
114 flow = new ConfirmOrder("2");
115 future = buyerNode.startFlow(flow);
116 network.runNetwork();
117 assert future.get().contains("Confirm order flow for order with ID

’2’ of buyer ’" + buyerNode.getInfo().getLegalIdentities().get(0)
.getName() + "’ executed.");

118
119 flow = new ShipOrder("2", "Freight Company", "XAFDWEQ");
120 future = sellerNode.startFlow(flow);
121 network.runNetwork();
122 assert future.get().contains("Ship order flow for order with ID ’2’

of buyer ’" + buyerNode.getInfo().getLegalIdentities().get(0).

163

getName() + "’ executed.");
123
124 flow = new SignArrival("2");
125 future = buyerNode.startFlow(flow);
126 network.runNetwork();
127 assert future.get().contains("The arrival of the order with ID ’2’

has been signed by ’" + buyerNode.getInfo().getLegalIdentities().
get(0).getName() + "’");

128
129 flow = new SignArrival("2");
130 future = freightNode.startFlow(flow);
131 network.runNetwork();
132 assert future.get().contains("The arrival of the order with ID ’2’

has been signed by ’" + freightNode.getInfo().getLegalIdentities
().get(0).getName() + "’");

133
134 // We check the recorded order in all three vaults.
135 for (StartedMockNode node : ImmutableList.of(sellerNode, buyerNode,

freightNode)) {
136 node.transaction(() -> {
137 List<StateAndRef<OrderState>> orders = node.getServices().

getVaultService().queryBy(OrderState.class).getStates();
138 assertEquals(1, orders.size());
139 OrderState recordedState = orders.get(0).getState().getData()

;
140 assertEquals(recordedState.getOrderState(), OrderState.State.

DELIVERED);
141 return null;
142 });
143 }
144 }
145
146 @Test
147 public void checkDeliveryDateTest() throws ExecutionException,

InterruptedException {
148 FlowLogic<String> flow = new CreateOrder("Buyer", "3", 68754, 1.0, "

1337 EUR", "2 EUR", "Michaelerkuppel, 1010 Wien", "2020-08-15");
149 CordaFuture<String> future = sellerNode.startFlow(flow);
150 network.runNetwork();
151 assert future.get().contains("Order with ID ’3’ of buyer ’" +

buyerNode.getInfo().getLegalIdentities().get(0).getName() + "’
added.");

152
153 flow = new CheckDeliveryDate("3");
154 future = buyerNode.startFlow(flow);
155 network.runNetwork();
156 assert future.get().contains("Check delivery date flow for order with

ID ’3’ of buyer ’" + buyerNode.getInfo().getLegalIdentities().
get(0).getName() + "’ executed.");

157
158 // We check the recorded order in all three vaults.
159 for (StartedMockNode node : ImmutableList.of(sellerNode, buyerNode))

{

164

160 node.transaction(() -> {
161 List<StateAndRef<OrderState>> orders = node.getServices().

getVaultService().queryBy(OrderState.class).getStates();
162 assertEquals(1, orders.size());
163 OrderState recordedState = orders.get(0).getState().getData()

;
164 assertEquals(OrderState.State.PASSED, recordedState.

getOrderState());
165 return null;
166 });
167 }
168 }
169
170 @Test(expected = Exception.class)
171 public void confirmCancelledOrderTest() throws ExecutionException,

InterruptedException {
172 FlowLogic<String> flow = new CreateOrder("Buyer", "1", 100, 2.0, "10

EUR", "2 EUR", "Karlsplatz 13, 1040 Wien", "2020-09-30");
173 CordaFuture<String> future = sellerNode.startFlow(flow);
174 network.runNetwork();
175 assert future.get().contains("Order with ID ’1’ of buyer ’" +

buyerNode.getInfo().getLegalIdentities().get(0).getName() + "’
added.");

176
177 flow = new CancelOrder("1");
178 future = buyerNode.startFlow(flow);
179 network.runNetwork();
180 assert future.get().contains("Cancel flow for order with ID ’1’ of

buyer ’" + buyerNode.getInfo().getLegalIdentities().get(0).
getName() + "’ executed.");

181
182 flow = new ConfirmOrder("1");
183 future = buyerNode.startFlow(flow);
184 network.runNetwork();
185 future.get();
186 }
187
188 @Test(expected = Exception.class)
189 public void createOrderHighShippingTest() throws ExecutionException,

InterruptedException {
190 CreateOrder flow = new CreateOrder("Buyer", "1", 100, 2.0, "10 EUR",

"2 EUR0", "Karlsplatz 13, 1040 Wien", "2020-09-30");
191 CordaFuture<String> future = sellerNode.startFlow(flow);
192 network.runNetwork();
193 future.get();
194 }
195 }

165

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Definition
	Expected Results
	Related Literature
	Methodological Approach
	Structure of the Work

	Fundamentals
	Trade Finance
	Distributed Ledger Technology

	Platforms
	Ethereum
	Hyperledger Fabric
	Corda

	Smart Contract Design
	Methods

	Prototypes
	Ethereum
	Hyperledger Fabric
	Corda

	Comparison
	Platform
	Prototype Development
	Result

	Conclusion
	List of Figures
	List of Tables
	Acronyms
	References
	Appendix A - Ethereum Prototype Code
	TradeFinanceContract.sol
	tradefinance.js (Tests)

	Appendix B - Hyperledger Fabric Prototype Code
	index.ts
	order.ts
	trade.ts
	Order.java
	AddToWallet.java (Seller)
	ClientApp.java (Seller)
	AddToWallet.java (Freight Company)
	ClientApp.java (Freight Company)
	AddToWallet.java (Buyer)
	ClientApp.java (Buyer)

	Appendix C - Corda Prototype Code
	OrderState.java
	TradeFinanceContract.java
	DataUtils.java
	CancelOrder.java
	CancelOrderResponder.java
	CheckDeliveryDate.java
	CheckDeliveryDateResponder.java
	ConfirmOrder.java
	ConfirmOrderResponder.java
	CreateOrder.java
	CreateOrderResponder.java
	ShipOrder.java
	ShipOrderResponder.java
	SignArrival.java
	SignArrivalResponder.java
	FlowTests.java (Tests)

