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Abstract
Due to the increasing share of renewable energies the demand for power storage has been
growing significantly in recent years. This development opens a wide variety of possible
battery applications at distribution as well as at household or consumption level.
The focus of this thesis is on electricity consumers who are concerned about optimally
operating an energy storage system (ESS) to reduce their electricity costs. This is achieved
by storing self- produced photovoltaic (PV) energy and low-cost energy from the grid.
Energy consumers can dynamically adjust their electricity storage decisions in response to
randomly evolving electricity demand, unpredictable photovoltaic generation and varying
electricity prices.
To quantify the value of integrating a battery storage into the system, a multistage
stochastic programming model is formulated with the objective to minimize the expected
total electricity costs over a finite planning horizon. It provides optimal charging and
discharging decisions under uncertainty at each stage of the decision horizon.
Due to the so called ‘curse of dimensionality’, stochastic dynamic decision problems
are really challenging. The curse implies that the complexity of the problem increases
exponentially in the number of state variables, and that in general no solution algorithm
which converges towards an exact solution in polynomial time exists. To guarantee
computational tractability, the problem is solved by a combination of stochastic dual
dynamic programming (SDDP) and a quantization method which approximates the input
parameters by a discrete scenario lattice. This method is referred to as approximate dual
dynamic programming (ADDP).
The proposed method is analysed numerically via conducting a case study. Thereby,
an econometric model including actual price, PV generation and consumption data is
examined.
To assess the added value of the stochastic solution, the results obtained by the ADDP
method are compared to the results assessed by a deterministic approach, where the
stochastic part of the optimization is ignored, and the expected values of the input
parameters are used instead. Furthermore, we model different risk preferences of the
consumers by coherent acceptability functionals and determine their influence on the
optimal solution.



Kurzfassung
Aufgrund des immer größer werdenden Anteils an erneuerbaren Energien hat in den letzten
Jahren die Nachfrage nach Energiespeichern erheblich zugenommen. Diese Entwicklung
eröffnet eine Vielzahl möglicher Batterieanwendungen, sowohl auf Verteiler- als auch auf
Haushalts- bzw. Verbraucherebene.
Die vorliegende Arbeit widmet sich der Betrachtung eines Stromverbrauchers, dessen Ziel
es ist, ein Energiespeichersystem (ESS) optimal zu betreiben, um seine Stromkosten zu
minimieren. Dies wird durch die Speicherung von selbst erzeugtem Photovoltaik-(PV)
Strom und kostengünstigem Strom aus dem Netz erreicht. Es wird davon ausgegangen,
dass Energieverbraucher ihre Einspeicherentscheidungen dynamisch anpassen können, um
auf zufälligen Strombedarf, unvorhersehbare PV-Erzeugung und variierende Strompreise
zu reagieren.
Um den Wert eines in das System integrierten Batteriespeichers zu qunatifizieren, wird
ein mehrstufiges stochastisches Modell formuliert, dessen Ziel es ist, die erwarteten
Gesamtkosten über einen begrenzten Planungshorizont zu minimieren. Dieses bietet
optimale Lade- und Entladeentscheidungen unter Einbezug von Unsicherheiten in jeder
Phase des Entscheidungshorizonts.
Aufgrund des sogenannten "Fluchs der Dimensionalität" kann sich die Lösung stochastisch-
dynamischer Entscheidungsprobleme sehr herausfordernd gestalten. Grund dafür ist, dass
die Komplexität des Problems exponentiell in der Anzahl der Zustandsvariablen steigt.
Außerdem existiert im Allgemeinen kein Lösungsalgorithmus, der zu einer exakten Lösung
konvergiert. Um die numerische Lösbarkeit des behandelten Problems zu gewährleisten,
wird eine Kombination aus stochastischer dualer dynamischer Programmierung (SDDP)
und einer speziellen Quantisierungsmethode, welche die Eingangsdaten durch ein diskretes
Szenariogitter approximiert, zur Lösung des Problems verwendet. Diese Methode bezeich-
net man als approximierte dynamische duale Programmierung (ADDP). Unter anderem
werden wir feststellen, dass die so ermittelte, angenäherte Lösung gegen eine Obergrenze
der optimalen Lösung konvergiert.
Die untersuchte Vorgehensweise wird anhand einer Fallstudie numerisch analysiert. Es
wird ein ökonometrsiches Modell aufgesetzt und analysiert, das Daten zu tatsächlichen
Preisen, PV-Erzeugungen und Stromverbräuchen enthält.
Um den Mehrwert der stochastischen Lösung aufzuzeigen, werden die mit der ADDP-
Methode ermittelten Ergebnisse mit Ergebnissen verglichen, die mit einem deterministis-
chen Ansatz ermittelt wurden. Bei diesem deterministischen Ansatz wird der stochastische
Teil der Optimierung ignoriert und stattdessen werden die Erwartungswerte der Inputdaten



verwendet. Darüber hinaus werden unterschiedliche Risikopräferenzen der Verbraucher
durch koheränte Akzeptanzfunktionale modelliert und deren Einfluss auf die optimale
Lösung ermittelt.
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1 Introduction
The Paris Agreement marks a major breakthrough in international climate policy. As
it is summarized in Bundesministerium für Klimaschutz (2015), one of its major goals
is to limit the global warming to a maximum of two degrees Celsius compared to pre-
industrial values and to decrease the global greenhouse gas emissions to (net) zero by
2050. In numbers, the shared purpose of the EU member states is to cut greenhouse gas
emissions by 80-95% by 2050.

The authors of European-Comission (2011) and Directorate-General for Energy (2012)
claim that due to the possibility of reducing emissions through implementation of low-
carbon technologies and increased energy efficiency, the impact on our energy systems
will be huge. In the Austrian government program 2020-2024, the goal of increasing the
share of electricity from renewable energy sources up to 100% by 2030 is set. As outlined
by Neubarth (2020), the plan is to add an annual amount of around 27 TWh electricity
generation from renewables. In contrast to the common centralized generation structures
in large power plants, the expansion of renewable energies will tend to result in increasingly
decentralized structures. However, the decentralization of our power supply system will
not be limited to generation.

Electricity storage as well as direct on-site consumption of generated or stored electricity
in new areas of application, such as e-vehicles and heat pumps (keyword sector coupling),
will play a major role. An increasing number of individual citizens, municipalities or
commercial and industrial companies are forming a direct part of the changing new energy
system. Neubarth (2020) and numerous other authors are certain that in this context
energy communities can play an important role, as they enable the population to actively
participate in the initiation and implementation as well as in the operation of projects and
thus be able to contribute to the necessary acceptance for the expansion of renewables. A
study conducted by the authors of res (2016) found, that half of the EU citizens- including
local communities, schools and hospitals- could produce their own renewable electricity
by 2050, covering 45% of their energy needs.The European Union has also recognized the
fundamental importance of energy communities for achieving the overarching energy policy
goals and has issued a number of regulations as part of its Clean Energy Package in order
to strengthen the role of energy communities at the level of both, renewable energy and
community energy. The next step, however, is to convert the European framework into
national law in such a way that the necessary requirements for the successful establishment
of energy communities in Austria are actually created.
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The increasing share of renewable energy systems like photovoltaic systems or wind
power plants has significant consequences on the energy sector, not only in Europe but
also in the U.S., where the future power industry generation portfolio will include a strong
mix of renewable technologies as well. Mokrian and Stephen (2006) find that recent trends
in new renewable generation facilities have shown positive growth, especially in the wind
sector, where installed capacity within the U.S. has grown by over 300% over the past six
years.

The most significant drawback of renewable sources is their intermittency. Due to
their volatile, weather dependant electricity production future supplies are very difficult
to predict. The output of a solar power plant for example naturally depends on the
geographical placement of the plant. It has one component, which is depending on time
and another one which depends on the actual weather.

Those features of renewable sources are challenging to integrate in power systems
where it is important that at any time demand meets supply. Many authors, for example
Mokrian and Stephen (2006), Bhattacharya et al. (2018) or Delong et al. (2019) to name
a few, agree, that batteries could be used to mitigate the impacts of this characteristics.

A key component of a more flexible, smarter grid is the ability to store electricity and
thereby to decouple electricity generation from electricity consumption. During recent
years energy storage technologies have been rapidly evolving. Lithium-ion chemistry (Li-
ion) battery technology has advanced significantly over the past two decades. According
to Stenclik et al. (2017), Li-ion chemistry accounted for at least 97% of grid-scale battery
energy storage deployment in 2016. However, the current price of ESS is still relatively high.

The use of batteries in renewable energy systems has been investigated as part of the
Benchmarking project by Tselepis et al. (2004). Data from many power systems were
analysed and similar profiles of the batteries have been identified. Donnellan et al. (2015)
review the need for various forms of energy storage within power systems. They focus on
the potential applications, operation and benefits of intermediate storage.

Following for example Ghofrani et al. (2013) or Baker et al. (2017), distributed energy
storage systems can be used to enhance grid performance and reliability with services like
managing peak demand, reducing the ramping of generators, providing ancillary services
such as load following and regulation, resolving transmission and distribution upgrades
and supporting demand response resources.

Batteries are also useful in the field of electricity consumers. The offset in time between
power generation and consumption provides a clear potential for arbitrage profits as
an example. Prices determined in electricity markets are also extremely volatile and
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highly dependent on time of day and seasonal effects. By purchasing electricity during
off-peak hours (typically at night) when the price is low, storing that power, and then
selling the stored power during peak hours at a significantly higher price it is possible to
generate profit. Roberts and Sandberg (2011) propose the operation of batteries to hedge
against renewable uncertainty and shift local energy consumption from peak-demand to
low-demand periods.

To facilitate those electricity transactions numerous approaches exist, such as demand
response (DR) programs or smart home energy management systems (SHEMS).

Rahimi and Ipakchi (2010) and Chen et al. (2012) define DR as a flexible mechanism
that enables consumers to demand modulation in response to signals from the system
operator. Keerthisinghe et al. (2014) for example claim that besides the ability to reduce
the electricity consumption during periods of high energy prices, consumers are also
encouraged to reduce their loads during periods of critical network congestion. Through
special devices consumers are provided with access to near real-time information and can
benefit from technologies such as two-way communication, distributed generation and
schedulable assets.

Currently, proposed SHEMS require accurate weather forecasts and an exact knowledge
about the behavioural patterns of the inhabitants to work properly. In the real world
making such precise predictions is often very difficult. Furthermore, as explained by Pedrasa
et al. (2011), unprecise predictions can result in additional costs and may have negative
consequences on the comfort of the inhabitants. For this reason, including uncertainties
by using probabilistic models is a promising approach. As an example Keerthisinghe et al.
(2014) propose a SHEMS that assist residential energy users to schedule and coordinate
their energy demand. The stochastic nature of the household’s energy consumption and
the intermittent nature of its distributed generation are considered.

Most prevalent are models that devise optimal demand-response schemes for consumers
with elastic loads, as for example the models of Gouveia et al. (2013) and Atzeni et al.
(2012). Habib et al. (2017) propose an emery storage system optimization configuration
method to improve the reliability of consumer electricity supply in case consumers lose
their power supply. The application scenario includes consumers, PV, and energy storage.
It does not take the uncertainty into consideration, which has an important effect on the
optimal result. Kovacevic et al. (2017) investigate how batteries can provide flexibility to
a welfare or profit optimizing aggregator. Chen et al. (2012) divide the operation tasks
of appliances into three categories: interruptible and deferrable, non-interruptible and
deferrable, and non-interruptible and non-deferrable.
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There is far less literature on cases where consumers do not have the possibility to
adapt their load, as it would be the case for office buildings, for instance.

One attempt often made concerning this setting, is to optimize the charging and
discharging behavior of the electricity storage. Understanding the impact of optimal
storage management under economic and operational constraints is of practical importance
for various businesses, from consumers to system operators to investors in smart grid
technologies. There exist numerous studies on optimizing the operation of a single storage
connected to a general linear memoryless system in the presence of ramp constraints.
However, in most cases, the objective function is deterministic and known a priori. As
stated by Faghih et al. (2011) there is a strong need for development of econometric models
and characterization of the response of a storage system to real-time price signals. To start
with, Faghih et al. (2011) provide a model for optimal utilization of ramp-constrained
storage regarding stochastically varying electricity prices. The problem is formulated in a
finite- horizon dynamic programming framework.

Baker et al. (2017) propose a model predictive control method to optimize the ESS.
The errors in the prediction of the wind forecasts are taken into account and the problem
is directly solved by using stochastic optimization. van de Ven et al. (2013) examine
a demand response problem under real-time pricing uncertainty using a finite-horizon
Markov decision process (MDP) model which prescribes the amount of energy to procure,
store and discharge in each decision stage of the horizon. In contrast, Koutsopoulos et al.
(2011) use an infinite-horizon MDP model to derive an optimal threshold policy under
price and supply uncertainty.

However, none of these MDP models account for simultaneous uncertainty in demand,
supply, and pricing, and all of them use relatively few scenarios to keep the problem
dimension low.

A widespread approach to represent a stochastic problem is to consider the decision
problem as a multi- stage stochastic program. The prerequisite for the representation
as a stochastic program is that the problem has a finite number of stages and that the
parameters can be described by an exogenous stochastic process. If the stochastic processes
are discrete, it is possible to represent them by using a scenario tree. The disadvantage of
this representation is that the number of nodes increases exponentially as the number of
stages increase. This leads to the so called curse of dimensionality.

However, multistage SP models are significantly hard to solve, and are intractable for
even a moderate number of stages. To date, no reasonably fast generic solution method is
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known which is able to solve stochastic dynamic decision problems to optimality.

The stochastic dual dynamic programming (SDDP) method proposed by Pereira (1989)
became popular in many applications. This strategy can handle problems with a large
number of stages, as long as the optimization problem at each stage is convex and the
stochastic process is stagewise independent. This assures the independence of the cost-to-go
functions of the data process. Bhattacharya et al. (2018) model a microgrid assuming
that demand, renewable supply and prices are random variables and customize the SDDP
algorithm.

In many applications the data process is not completely memoryless but exhibits a
Markovian type dependence structure. Like any stochastic-dynamic decision problem
MDP’s do also have the property of getting increasingly difficult to solve as the number of
decision states increases.

Löhndorf and Wozabal (2017) developed a promising methodology to solve such prob-
lems in a scalable way and break the curse of dimensionality. This method is called
approximate dynamic dual programming (ADDP). It is used to approximately solve a
Markov decision problem by discretization of the Markov Process using optimal quantiza-
tion. To avoid a complete enumeration of the state space Monte Carlo simulation is used
to sample relevant states. In the next step the value function of the real problem is approx-
imated by a function of much lower complexity. In the same way as the SDDP approach
the decision problem is solved iteratively using forward simulation to sample potential
decisions and backward recursion to construct an approximate value function. However,
the advantage of ADDP is that the method does not require stagewise independence of
the stochastic process, instead so called scenario lattices are used.

Gorski (2017) compares the performance of tree-based models for solving stochastic
programs to the performance of lattice-based approaches. The author comes to the con-
clusion that especially for high-dimensional problems with increasing dependency between
the stages, lattice- based solution methods offer a higher expected payoff. Löhndorf et al.
(2013) use the ADDP method to optimize the operation of hydro storage systems with
multiple connected reservoirs and show that the approximate solution converges towards
an upper bound of the optimal solution.

The research focus of this thesis is to better understand the various potential bene-
fits of stochastic optimization in combination with an energy storage system. For this
reason an optimal stochastic optimization model for electricity consumers with installed
PV plants and an integrated Lithium-Ion battery is proposed. The consumers are not
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able to adopt their consumption patterns, hence it is necessary to minimize consumers’
expenditures to find an optimal charge and discharge strategy for managing the installed
storage device. Electricity prices, demand and PV output are assumed to be random. The
problem is stated as a multi-stage stochastic dynamic program and it is solved by adapting
an ADDP algorithm. Furthermore different risk preferences of the decision maker are
modeled, including risk neutral, risk averse and risk loving.

As far as we are concerned, this is the first work which simultaneously assumes random-
ness in price, demand and PV generation, as well as considering different risk measures in
the objective function.

The thesis is organized as follows. In Section 2, the underlying deterministic base case of
the problem is formulated and motivation for the stochastic approach is given. Section
3 introduces the stochastic formulation of the battery operating problem, after giving a
general overview of stochastic programs. In Section 4 the construction of scenario lattices
and their advantages over scenario trees are discussed. Furthermore an overview of different
methods for scenario construction is given. Section 5 takes a deeper look at solution
methods for stochastic programs, focusing on approximate dual dynamic programming.
In Section 6 the approach is applied to a real world case study and some computational
results are described. Section 7 concludes the thesis and gives an overview of research
questions that could be addressed in future work.
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2 The Deterministic Case
In this section, we want to introduce the deterministic base case of a battery storage
systems. Section 2.1 outlines the general motivation and setting and section 2.2 gives an
overview of the most commonly used methods to generate profit with batteries. Physical
constraints of the battery model are discussed in Section 2.3 and the mathematical model
is introduced in Section 2.4.

2.1 Motivation and Setting

Following Breeze (2018), the history of batteries being used at different levels of the power
section dates back to the 1960s. In Japan, intensive research on Sodium Sulfur (NaS)
battery systems was conducted in order to demonstrate the use of large batteries as a tool
to manage power demand in a utility grid.

The focus of this thesis lies on economic benefits that can occur through the install-
ment of a battery at the residential level. In more detail, we will focus on a union of office
buildings, whose aim is to operate a battery storage system in an optimal way. The goal
of the union is to maximize profits from buying and selling electricity with respect to the
planning horizon of a whole year.

The existing literature on battery storage systems covers most of the application scenarios
in power systems. A reason for the popularity of optimal operation problems for batteries
is, first of all, their relation to classic inventory control problems, which have a much
longer history. Furthermore, the amount of application scenarios in the real world has
been growing rapidly in the last few years. Batteries can be found in an increasing amount
of devices, such as power grids, electronic vehicles or the residential sector. As renewable
power sources such as wind and solar do not have the natural means to control their energy
output, additional investments on storage capacity are required.

To start with, we want to introduce the term ’smart neighborhood’, which is widely
applicable. Usually it is used for a union of individual smart homes located in the same
geographical area, which are connected through electricity and communication networks.
The word ’smart’ normally refers to the fact that devices, which are able to control the
energy demand, exist in the different buildings.

The (office) buildings considered in this work are connected by direct electricity lines.
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However, it is often impossible for office buildings to adapt their load profiles because of
fixed office hours, for example. This means that the considered office buildings are not
"smart" by definition, but in the absence of a better alternative we will still refer to this
setting as smart neighborhood.

Celik et al. (2017) state that there are two main approaches for modeling residential
load. We extend these approaches for our setting:

Definition. (top-down methods)
In top-down approaches all energy consumption units are aggregated in one spot. Therefore,
the advantage of this method is that only the total energy consumption of a house needs
to be known. In most cases, this data is commonly available. The arising drawback is that
information about individual peaks, types of loads, load factors and customer behavior
are not included. Load profiles generated with top-down approaches are often dependent
on historical data.

Definition. (bottom-up methods)
In bottom-up approaches, the consumption pattern of each individual household appliance
is investigated. Then the load curve for each single home is obtained by aggregating these
different patterns. Obtaining such concrete data is still very difficult these days. The
benefit of bottom-up methods is that, by examining every device in detail, potential for
improvement is easier to detect.

To satisfy the determined electricity demand, we assume that electricity is delivered by
either a generating or a distribution company. The electricity providing company charges
a time varying price p(t) for the electricity demanded by the smart neighborhood. Prices
are known in advance and are just depending on time t and not on the purchased quantity.

Bindner et al. (2005) classify the existing battery model approaches into three categories:
First, there are so termed performance or charge models, where the focus lies on

modeling the state of charge of the battery.
The second type of models are voltage models, modeling the terminal voltage of a

battery system. Those models are often used for more detailed modeling of battery
management systems.

The last category are lifetime models. They are used for surveying the impact of a
particular operating scheme on the expected lifetime of a battery.

Each of these models has advantages and disadvantages and the nature of the system
in which the battery model is implemented is a very crucial part of the decision process.
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2.2 Generating Profit with Batteries

In this thesis, we focus on a scenario where the battery installed by the consumers is used
to minimize the total energy costs. In general, there are many ways to use electricity
storage facilities to generate profit. We will give a short introduction of a few commonly
used methods.

Arbitrage
A widely known and examined approach is generating profit through arbitrage. The idea is
to take advantage of the fluctuating electricity prices throughout the day. By purchasing
inexpensive off-peak power and selling electricity during peak hours at a higher price,
profit is generated.

Alternatively a costumer who needs to consume at peak hours, because there is no
way to shift the demand, could use a battery storage system to charge the battery at low
electricity prices and use the stored electricity during peak hours, when the price is high.

As stated by van de Ven et al. (2013), the consumer is usually not exposed to these
price fluctuations, but rather pays a fixed monthly tariff. However, there is an increasing
trend towards the use of dynamic price models, even in the consumer sector. In Austria,
there are already some providers which enable the consumer to buy electricity at an hourly
varying price (see for example aWATTar GmbH (2021)).

As to positive effects of dynamic pricing, Borenstein (2005b) predicts better reflection
of the prices on the wholesale market, lower demand peaks as well as lower and less volatile
wholesale prices.

In general, consumers have the opportunity to benefit from arbitrage even if they
have no battery installed. The drawback here surely is that consumers have to shift
their demand to off-peak hours. In practice, as has been investigated by Allcott (2011),
consumers are only willing to shift a very small part of their demand.

Application of storage in combination with renewable energy sources
Another field of interest is the application of electricity storage in combination with
intermittent renewable energy generation.

The electricity output of a renewable energy plant such as wind and solar is very
intermittent. A storage facility can be used to match generation with demand by storing
redundant energy. By operating a battery these time shifts can be used to delay the con-
sumption or generation of electrical energy by temporarily storing the electricity generated
by the power plant.
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Donnellan et al. (2015) focus their work on integrating energy storage on economic
benefits at different levels of the power network. We will adopt a few of their concepts and
use them in our consumer-sided setting. Amongst others, Roberts and Sandberg (2011),
Coppez et al. (2010) and Oudalov et al. (2006) identified the same fields of battery storage
application:

First, there is the option of using a battery for reducing the peak demand, also known
as peak shaving. In this case, the storage device stores energy when the demand is lower
than a specified threshold and the device is unloading when the demand is above a certain
threshold.

Another application is the intermittent renewable generation shift or simply time shift,
where surplus electricity from intermittent generation sources is stored and energy is pro-
vided, when electricity demand exceeds the output of the power plant. The most common
application at household level is to use the storage to time-shift the energy consumption.
The reduced costs for the households arise from the value of renewable energy used less
the income that would have been generated if this power had been supplied to the grid.
In case of a PV plant, the feed- in tariff plays an important role. In this work, we do not
discuss different types of feed- in tariffs, but merely refer to (Klein et al., 2010), where the
authors evaluate different feed-in tariff design options, mostly in an European context.

Another way to profit from time-shifting is through arbitrage where the benefit lies in
discharging the storage when the electricity price provided by the grid is higher than the
costs of providing energy from the storage.

Reliability
Furthermore, reliability is an important factor. In an end-user context reliability means
that consumers experience fewer events where electricity supply is lost. With the increasing
share of renewable power plants in the energy sector, blackout- protection is more and
more demanded by end users. It is still very difficult to put a price on reliability, as
customers do have different expectations of network dependability.

Reliability also covers the case of storage providing an opportunity for increasing the
flexibility of renewables and the widely admitted approach to improve self-reliance of
electricity consumers.

Ancillary Services
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The last point we want to list here is the option to use batteries for ancillary services such
as frequency regulation and black start capability.

Again, it is very difficult to put a price on such services, but there already exist different
ideas on how consumers could benefit, if they provided their private storage applications
for such matters.

2.3 Physical Constraints

Various physical properties can be used to store energy and in particular electricity. For
example, Schainker (2004) gives an overview of different energy storage technologies.

We agree with Coppez et al. (2010)’s claim that chemical storage or battery are the
most popular and frequently used methods of energy storage. The two most common
types within this sector are flow batteries and normal cell batteries. As maintained by
Tselepis et al. (2004), lead acid batteries are the most common used types of storage in
combination with renewable energy sources. Besides their low costs and their maturity
other advantages are their high efficiency, little self-discharge and their long life span.

As a special type of cell battery, we will have a closer look at lithium ion batteries. To
understand later discussed ageing phenomena inside such a battery cell, it is important to
gain knowledge about the cell performance in general.

Major components of a Li-Ion battery cell are an anode, cathode, separator, electrolyte
and two current collectors (positive and negative). The anode and cathode are used
to store the lithium and the electrolyte carries positively charged lithium ions from the
anode to the cathode through the separator and vice versa. During discharge, Li-Ions
de-intercalate from the negative electrode to the positive electrode. At the same time,
electrons travel in the same direction through the external circuit. The opposite reactions
take place during charging process, as provided schematically in Figure 1.

In order to get a precise representation of the reality, development of physically correct
models and characterization of the associated operational policies are of very high im-
portance. Mokrian and Stephen (2006) as well as Tan et al. (2013) claim that all energy
storage systems can be modeled in the same way, using some essential physical criteria:

• Power rating, which corresponds to the maximum rate at which the battery can be
charged or discharged.

• Energy capacity, which means the amount of energy that can be stored within the
system.
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Figure 1: Generalized schematic of a Li-Ion cell

• Efficiency, which equals the ratio of energy that can be drawn from the battery to
the energy supplied. Efficiency can be split into conversion efficiency, which refers to
losses occurring when converting power input into a storage, and storage efficiency.
This term refers to time-based losses during storage.

Based on a Figure in (Mokrian and Stephen, 2006), Figure 2 shows the basic components
of power input, the storage medium and power output.

Figure 2: Generalized schematic of a storage system

2.4 The Deterministic Battery Model

In the deterministic base case we follow the approach of Borenstein (2005b) and study a
finite horizon model where electricity prices are known in advance. We base our model on
the work of Haunschmied et al. (2016) and Tan et al. (2013). Keep in mind that for -now
all- relevant parameters are deterministic and known in advance.
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The battery operator, which in our case is the consumer, decides on the amount of
electricity that is charged or discharged in each time period. We consider the decision
is made periodically over a finite time horizon, denoted by T = {0, 1, . . . T}. t ∈ T de-
notes the discrete time index corresponding to the decision period for time interval (t, t+1].

In the model, C(t) ≥ 0 [kW] denotes the amount of electricity which the operator
charges into the battery at timestep t and D(t) ≥ 0 [kW] denotes the amount of energy
the operator discharges. If both those variables are Zero the battery is referred to as idle.
Due to operating costs and efficiencies we will introduce later on, it will never be optimal
to charge and discharge the battery at the same time.

The first physical constraints we include are power rating constraints. Those are of-
ten referred to as ramping constraints. We assume that with C and D the upper bounds
for the possible amount of kW which can at most be charged or discharged are given. This
results in the following constraints on the amount of electricity that can be charged or
discharged at time t:

0 ≤ C(t) ≤ C

0 ≤ D(t) ≤ D
(2.1)

By q(t) we denote the consumers electricity demand. This demand has to be fulfilled for
every timestep t ∈ [0, T ] and for now it is assumed to be known in advance. Operating
a battery implies that discharged electricity reduces the necessary amount of electricity
which has to be bought from the grid, whereas charged electricity increases the demand.
Considering those properties, the electricity demand can be modeled as

Q(t) = q(t) + C(t) − D(t). (2.2)

In case Q(t) is negative, the battery operator feeds power to the grid, whereas positive
Q(t) accounts for buying electricity from the grid in order to fulfill the demand.

By B(t), we denote the battery’s charge level, or state of charge in kWh at time t.
B(t) is limited by the upper and lower bound of electricity that can be stored in the
battery. We refer to those bounds as B(t) and B(t):

B(t) ≤ B(t) ≤ B(t) (2.3)
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Based on the charging and discharging behavior {C(t), D(t)}, we can describe the charge
level of the battery through the following storage dynamics:

B(t + 1) = B(t) + C(t) − D(t)
B(0) = B0

(2.4)

2.4.1 Battery Efficiencies and Self-discharge

Following Mokrian and Stephen (2006), important physical parameters we have to consider
are the charge and discharge efficiencies ηC , ηD ∈ [0, 1]. By including separate variables for
charging and discharging, as well as the regarding efficiencies, it is possible to incorporate
conversion losses into the model. Therefore, we extend the battery model by including the
effects of efficiencies and self-discharge. Following Sun (2010), the efficiency of a battery
can be calculated as the amount of power discharged by the battery divided by the amount
of power delivered to the battery. These losses can be explained by the loss of energy
through heat, which warms up the battery.

Hence, we assume that in every charging or discharging process, a fraction ηC or ηD of
the energy dissipates.

Self-discharge refers to a chemical reaction in batteries, in which the stored electric-
ity is reduced without external influence. To capture this phenomenon, we introduce a
variable κ ∈ [0, 1] which accounts for storage losses other than charging or discharging losses.

Including efficiencies and self-discharge in our model, we have to replace equation 2.4 with

B(t + 1) = (B(t) + ηC · C(t) − 1
ηD

· D(t)) · κ (2.5)

2.4.2 Battery Lifetime

The conditions under which a battery is operated influence the so called state of health
(SOH) of the battery. All types of batteries suffer from a varying amount of damage
mechanisms, but to different extents. In the Benchmark project examined by Bindner et al.
(2005), a clear distinction between damage mechanisms of ageing processes, which the
authors defined as irreversible changes of the components of the battery or the material,
and stress factors, which are defined as characteristic features of the operating conditions
of the battery that alter the rate of action of the damage mechanisms, is made. The most
important damage mechanisms Bindner et al. (2005) identified are:
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• Corrosion of positive grid
This phenomenon influences the internal resistance and available capacity of the
battery. As the corrosion layer increases due to the reduced conductivity of the
corroded material and the reduced cross section of the grid, the internal resistance
increases. The reduction in capacity results from the fact that, as part of the grid
corrodes, some of the active mass has reduced electrical connection to the terminals.

• Hard/irreversible sulphation
The fundamental chemical reaction in the battery implies the production of sulphate
crystals at both electrodes when the battery is discharged. During charging, those
crystals dissolve. If the battery is left at low SoC for a long time, those cristals grow
and lead to hard or irreversible sulphation, which implies a loss of capacity.

• Shedding
Shedding is a process influenced by sulphation or overcharging of the battery, whereby
some of the active material detaches from the electrodes and falls to the bottom of
the battery.

• Active mass degradation
Also known as softening of the electrodes, this phenomenon primarily is a change in
the mechanical structure of the electrodes and the active material. This leads to a
decrease in porosity and surface area of the electrolyte and active material boundary.

By those four mechanisms, the main ageing processes of a battery are listed. All these
factors lead to a reduction of the battery’s capacity.

Furthermore, recognized stress-factors are:

• Discharge rate

• Time at low state of charge

• Ah-throughput

• Charge factor

• Time between full charge

• Partial cycling

• Temperature
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Due to high replacement costs of a battery storage system, it is important to preserve the
battery life time where possible.

Ways of doing so are for example ensuring that the battery always remains within the
maximum and minimum boundaries of the battery charge level, not allowing the battery
to stay at low charge level for long periods or avoiding high frequencies of partial charging
and discharging.

Following Bindner et al. (2005), there exist two main types of lifetime models for lead acid
batteries, which can be generalized for Li-Ion batteries:

• Post-processing models

• Performance degradation models

Post processing models are pure lifetime models, when in contrast, performance degradation
models combine a performance model with a lifetime model, thereby the aspect of battery
degradation depending on the utilization of the battery is captured.

Tselepis et al. (2004) claim that the lifetime of a battery in cycling applications is mostly
determined by its cycle life, which means the number of cycles a battery can undergo before
the end of its life. To proceed on this assumption that battery capacity decreases with
cycles, the end of life of a battery is mostly assumed to be reached when the capacity falls
below a given value, usually 80% of the initial capacity (see 2.4.3). For more information
on different Li-ion battery degradation models and their advantages and disadvantages
consult Jafari et al. (2018) for example.

Following Tan et al. (2013) and Haunschmied et al. (2016), we now formulate the battery
model as a lifetime-constrained model. The widespread approach of the Ah-throughput
Model, which is explained in detail in Bindner et al. (2005) is used to connect the lifetime
of the battery to its charge and discharge policy.

The Ah-throughput model pursues the approach of simply counting the amount of
electricity cycled through the battery. It assumes that there exists a fixed amount of
energy which can be cycled through the battery before it has to be replaced. This fixed
amount is assumed to be independent of the way the battery is operated, concerning depth
of the cycles or any other mentioned before stress factors.

By θmax, we denote the amount of energy that can be charged or discharged over the
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lifetime of the battery. Consequently we have

θmax =
τ�

t=0
ηC · C(t) + 1

ηD

· D(t) (2.6)

with stopping time τ = inf{t : 	t
t=0 ηC · C(t) + 1

ηD

· D(t) > θmax} when the battery has to
be replaced. Following the Ah-throughput approach, we assume that θmax is given and
does not depend on the operations.

Because the planning horizon of the battery operator is much shorter than the whole
lifetime of the battery, we simply ignore the stopping time problem proposed in Bindner
et al. (2005). The interested reader is referred to Tan et al. (2013) where the solution of
the stopping-time problem was computed.

2.4.3 Battery Decaying

The capacity of the battery will decay over time. To model the decaying process, we
assume that the battery starts with an initial capacity B̂. This state is dependent on time
t. We assume that at the beginning of the planning horizon the battery is new and we
have B̂(0) = B̂. At the end of the battery’s lifetime, B̂(T ) = ρ · B̂ of the batteries’ original
capacity will be left. ρ is a constant and in most case studies it equals 80%.

Taking into account the decaying process over time, maximal and minimal battery levels
are now related to the capacity and can be written as

B(t) = ω1B̂(t)
B(t) = ω2B̂(t).

(2.7)

Coefficients ω1, ω2 are dependent on the depth of charge and discharge of the battery.
Therefore, equation 2.3 can be rewritten as

ω1B̂(t) ≤ B(t) ≤ ω2B̂(t). (2.8)

Assumption 2.1. The battery’s capacity will degrade when the battery is either charging
or discharging. It will remain unchanged in idle mode.
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Following Haunschmied et al. (2016), under assumption 2.1 and a linear relationship
between the accumulated use of the battery and the capacity, the dynamics of capacity
decaying is given by

B̂(t) = B̂ · (1 − 1 − ρ

θmax

[ηCC(t) + 1
ηD

D(t)]) (2.9)

.

2.4.4 Battery Costs

When considering buying a battery storage system, another important aspect to study are
its costs. The potential economic value and the capital costs vary depending on size and
different types of models.

We consider the following types of costs for operating a battery: First, considering fixed
costs M , which are directly related to the battery, like initial investments, it is possible to
derive the costs per kWh charged or discharged as

α = M

θmax

. (2.10)

Furthermore, we include investment costs for investments whose amortization period
extends beyond the life of an individual battery, such as housing, wiring or replacement of
general equipment. Therefore, we add depreciated costs δ in period t. Thus, the overall
costs for operating a battery over the planning horizon T can be summarized as

CB =
T�

t=0
α[ηCC(t) + 1

ηD

D(t)] + δT (2.11)

2.4.5 Photovoltaic Production

Solar generation is one of the key technologies in de-carbonizing and decentralizing the
energy system. The demand for photovoltaic power is constantly increasing. Therefore,
it is a obvious choice to extend the model introduced by Haunschmied et al. (2016) and
Tan et al. (2013) by including the possibility for end users to produce electricity via a PV
plant. We denote the amount of electricity produced by the PV plant by pv(t) and for
now we assume that the amount of provided electricity is known in advance.

As a result of the demand and generation fluctuations over the day, batteries in combi-
nation with PV systems often operate on a daily cyclic basis. Therefore, to restrict battery
degradation to a low level, batteries with good cycling performances are required.
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When we adapt our model, we have to consider different possibilities for the electric-
ity demand, resulting from operating PV panels. In general, there are two options for the
system; First, it is possible that produced electricity exceeds demand at a certain timestep
t. In this case, either the surplus electricity is fed to the grid, or the battery (if it is not
already fully loaded) is charged.

Second, the situation of demand exceeding the electricity provided by the PV system
might occur. Then, we have to decide whether the lacking electricity should be bought
from the grid or be discharged from the battery (if it is not empty already).

The consumer, now called prosumer, has three different possibilities concerning the
use of the produced energy. The energy can either be used to satisfy demand, stored in
the battery or sold back into the main grid.

After including PV production, the electricity demand given in equation 2.2 extends
to

Q(t) = q(t) + C(t) − D(t) − pv(t). (2.12)

2.4.6 The Objective Function

The objective of the battery operator is to minimize the costs arising from buying electricity
from the grid at price p(t). This means that our goal is to determine an optimal policy for
storing, selling and buying electricity. These components can be combined in the objective
function in the following way:

J = CB +
T�

t=0
Q(t) · p(t) (2.13)

where Q(t) is derived from equation 2.12 and CB are the battery costs obtained from
2.11.

The overall battery charging model we have derived step by step in this section can
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be summarized as

minC,D J = CB +
T�

t=0
Q(t) · p(t) (2.14)

s.t. Q(t) = q(t) + C(t) − D(t) − pv(t)

CB =
T�

t=0
α[ηCC(t) + 1

ηD

D(t)] + δT

B(t + 1) = (B(t) + ηC · C(t) − 1
ηD

· D(t))κ

B(0) = 0
B ≤ B(t) ≤ B

0 ≤ C(t) ≤ C

0 ≤ D(t) ≤ D

B̂(t) = B̂ · (1 − 1 − ρ

θmax

[ηCC(t) + 1
ηD

D(t)])

B̂(0) = B̂

(2.15)

The model proposed above will accompany us in the rest of this thesis. As far as we are
concerned, it is unique in its structure and absolutely applicable on real-world battery
storage problems.

In the next chapter, we will extend the battery model to its stochastic counterpart.
Naturally, the final goal is to propose a solution and in order to do so, we will develop the
necessary tools step by step.
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3 The Stochastic Case
The goal of this chapter is to introduce the basic concepts of stochastic optimization. It is
structured as follows.

Section 3.1 outlines the general motivation about why stochastic optimization is used
to model real-world problems. In Sections 3.2 and 3.3, a general introduction of stochastic
programs is given. We define the classic two-stage and multi-stage model and introduce the
stochastic version of our battery model. Then we take a closer look at stochastic-dynamic
programming, especially Markov decision problems. This knowledge is further used to
embed the battery model from 2.4 in a stochastic-dynamic programming framework.
Afterwards, different measures for evaluating stochastic solutions are introduced and the
risk formulation of the battery model is given. At the end of this chapter, the reasons for
undergoing the effort of performing stochastic optimization are explained.

3.1 Motivation and Setting

In general, deterministic decision problems like the one we introduced in Chapter 2 are
widely used in the field of optimization. However, a wide range of real-world problems
occurring for example in finance, marketing, operations or industrial engineering, involve
uncertainty. If a statistical model can be used to describe this uncertainty, the decision
problem can be modeled as stochastic optimization problem. In the case of our battery
charging problem, there are in fact several parameters which cannot be predicted with
absolute certainty.

First and most obviously there is electricity output of PV-panels. The significant draw-
backs of PV technology is the intermittency and variability of the electricity generation.
Currently, most of the proposed software used to optimize the charging behavior of a
battery, for instance in smart home energy management systems (SHEMS), requires exact
weather forecasts. The problem is that weather predictions are not always accurate and if
appearing uncertainties are not taken into account when solving an optimization problem,
those forecasting errors can lead to substantial losses. This fact was, for example, verified
by Pedrasa et al. (2011). To give an example of the variability of PV production, Figure 3
shows the PV-production profile of Germany in 2012 and Figure 4 visualizes the day/night
discrepancies which occur in solar production.

Another variable one must consider when operating a battery in an optimal way is
the exact behavioral pattern of the electricity consumers. Despite the difficulty of accurate
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Figure 4: PV production data, Germany,
first week of January 2012

prediction of different load profiles, consumption patterns evolve due to a strong periodicity.
If we think for example at an office building, electricity demand is much lower at weekends
or at night than it is during regular office hours.

The third uncertain variable we must deal with is the development of electricity prices.
Uncertainty of the electricity price is the most studied uncertain variable in the respective
literature. This is due to the significant volatility of electricity prices and their great
impact on different existing market structures. It is nearly impossible to predict the prices
accurately. A typical development of the day-ahead market price in Germany is shown in
Figure 5.

The solution of stochastic problems is usually aimed at making cost-optimized deci-
sions which are robust to the effect of chance. In most cases, this is done by minimizing
the total costs over a certain number of scenarios, while accounting for various outliers
which might occur. The existence of an optimal solution depends on either a known or at
least a reasonably well estimated probability distribution of the random variables.

Generally speaking, a decision maker has the ability of influencing the behavior of a
probabilistic system, either by making decisions or by choosing actions. When making
decisions, the goal is to choose a sequence of actions in an optimal way, which in most
cases implies maximizing or minimizing a given function. Since the system which is
modeled is ongoing it is important to keep in mind that a decision made today affects the
opportunities and costs associated with future system states.

The benefits of stochastic optimization were studied in great detail and are versatile.

28



€

h

Figure 5: day ahead electricity price, Germany, 2012

It has been proven that stochastic decision-making can improve the decision in various
areas. Hereinafter, a few applications are given:

Mokrian and Stephen (2006) examined a probabilistic model for the derivation of the
arbitrage value of a storage over a 24 hours period. They used the deterministic approach
in a scenario setting, representing the prices by their expected value and found a lower
bound on profits. Moreover, they also proposed multi-stage stochastic programming, and
a dynamic programming approach.

van de Ven et al. (2013) addressed the problem of organizing energy storage purchases
in order to minimize long-term energy costs under variable demands and prices. They
modeled the problem as a Markov decision process.

Keerthisinghe et al. (2014) analysed PV output depending on uncertain weather
patterns in combination with electrical demand, which is assumed to be directly related to
the number of occupants in the household at a given time. In their study, they included
probabilities for occupancy transitions (i.e. all home, some home, all away).

Rahmani-andebili and Shen (2017) investigated a distributed energy resources schedul-
ing problem of a set of smart homes. Their stochastic approach included forecasting
solar irradiances and modeling the uncertainty of predictions by defining some effective
scenarios.

Löhndorf and Wozabal (2017) examined the indifferent pricing of natural gas storage.
The authors formulated the problem of future trading and storage operation as a Markov
decision process, modeling risk preferences using the nested conditional value-at-risk.
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Delong et al. (2019) proposed a stochastic optimization method based on an expected
value model for electricity consumers with a PV plant. A method for storage sizing based
on the expected value model is proposed, which considers the uncertainty of load and PV.

We are not aware of any existing battery charging model including all three of the
above stated stochastic variables, namely electricity demand, electricity price and PV-
production. However, before we adapt our model to the stochastic setting, we have to
introduce a few basic definitions of stochastic programs.

3.2 Stochastic Programming

Usually, the components of a decision problem are the objective function, decision variables,
constraints and problem data. As has been claimed before, in many cases, several
parameters of a problem can be considered uncertain and are thus represented as random
variables. Then the goal is to find optimal decisions with respect to this uncertainty.

3.2.1 Two-stage Problems

The most common way to represent stochastic programs is formulating the problem as
a two-stage program. For such programs one has to divide the set of decisions into two
groups:

• first-stage decisions, which have to be made before the random event realizes and

• second-stage decisions which can be used to react to the outcome of the first-stage
decision, i.e. they have to be made after the realization of the random event.

There is plenty of literature on solving two-stage problems in low dimensions (see for
example Birge and Louveaux (2011) or Shapiro et al. (2009)). The most common approach
is to consider the so-called deterministic equivalent of the problem and to then solve it
using standard LP-methods. The part of finding an appropriate deterministic equivalent
is not always expedient, hence, there are other approaches to solving stochastic problems
which avoid the given issue. One prominent approach is, for example, the L-shaped method,
based on finding an outer linearisation of the recourse function. Then, one optimizes the
given objective function with respect to a first-stage solution (see for example Birge and
Louveaux (2011)).

Following Shapiro et al. (2009), a two-stage stochastic program can be defined as follows:
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Definition. (Two-stage stochastic program)

minx∈Rn cT x + E[Q(x, ξ)] (3.1)
s.t. Ax = b, x ≥ 0

where Q(x, ξ) is the optimal value of the second-stage problem

miny∈Rm qT y (3.2)
s.t. Tx + Wy = h, y ≥ 0.

The vector x represents the first stage decision and y or y(ω) or even y(ω, x) the second stage
decision. The vector c represents the weights of first-stage decisions x. ξ := (q, h, T, W ) is
the data of the second-stage problem. We assume that some or all elements of vector ξ as
random and the expectation operator at the first-stage problem 3.1 is taken with respect
to the probability distribution of ξ. To increase readability we often use the notation ξ for
both, the random vector and its particular realization. However, the meaning will be clear
from the context. If there is doubt, we write ξ = ξ(ω) to stress that ξ is a random vector
defined on a corresponding probability space. By Ξ ⊂ Rd, we denote the support of the
probability distribution of ξ.

If for some x and ξ ⊂ Ξ the second-stage problem 3.2 is infeasible, then Q(x, ξ) = +∞
by definition. Another special case occurs if the second-stage problem is unbounded from
below, hence Q(x, ξ) = −∞. We try to avoid models with such properties.

Often Q(x) = Eξ(Q(x, ξ(x)) is referred to as expected second-stage value function of
the problem.

Considering the notation of the definition, we can summarize the sequence of events as
follows:

x → ξ(ω) → y(ω, x)

Note that the definitions of first and second stage problems are only related to before and
after the random experiment and may contain sequences of decisions and events.

3.2.2 Multi-stage Problems

Multi-stage problems are a natural extension of the already discussed two-stage models.
In multi-stage models, the decision maker has the problem of making a whole sequence of
decisions, instead of one. The uncertain data ξ1, . . . , ξT is revealed gradually over time in
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T periods and the decisions should be adapted to this process. In a multi-stage decision
problem, the sequence of events can be displayed as

x1 → ξ2 → x2 → · · · → ξT → xT .

Following the notation of Shapiro et al. (2009), we view the sequence ξt ∈ Rdt , t = 1, . . . , T

of data vectors as a stochastic process. With ξ[t] := (ξ1, . . . , ξt) we denote the history of
the process up to time t.

Definition. (Nonanticipativity)
The values of the decision vector xt, chosen at stage t may depend on the information ξ[t],
available up to time t, but not on future observations.

remark. Note that, as xt may depend on ξ[t], the sequence of decisions is also a stochastic
process.

Definition. (Stagewise Independence)
The process {ξt} is stagewise independent if ξt is stochastically independent of ξ[t−1], t =
2, . . . , T .

Definition. (Markov Process)
If for every t = 2, . . . , T the conditional distribution of ξt given ξ[t−1] is the same as the
conditional distribution of ξt given ξt−1 the process is called Markovian.

remark. If the process is stagewise independent, then it is Markovian.

Following Shapiro et al. (2009) a T-stage stochastic programming problem can be
defined as follows.

Definition. (Multi-stage Stochastic Program- Nested Formulation)

minx1∈X1f1(x1) + E[ inf
x2∈X2(x1,ξ2)

f2(x2, ξ2) + E[· · · + E[ inf
xT ∈XT (xT −1,ξT )

fT (xT , ξT )]]] (3.3)

where ξ1, ξ2, . . . , ξT is the random data process. xt ∈ Rnt , t = 1, . . . , T are decision
variables, ft : Rnt × Rdt → R are continuous functions and Xt : Rnt−1 × Rdt ⇒ Rnt , t =
2, . . . , T are measurable closed valued multifunctions. The first-stage data, ξ1, the function
f1 : Rn1 → R and the set X1 ⊂ Rn1 are deterministic.

The multistage problem is called linear, if the objective functions and the constrain
functions are linear. A typical formulation would be

ft(xt, ξt) := cT
t xt, X1 := {x1 : A1x1 = b1, x1 ≥ 0},
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Xt(xt−1, ξt) := {xt : Btxt−1 + Atxt = bt, xt ≥ 0}, t = 2, . . . , T.

ξ1 := (c1, A1, b1) is the non-random first stage and ξt := (ct, Bt, At, bt) ∈ Rdt , t = 2, . . . , T

are data vectors including random elements.

To make this formulation precise, we need to consider the following definition:

Definition. (Policy)
A sequence of measurable mappings xt : Rd1 × · · · × Rdt → Rnt , t = 1, . . . , T , where
xt = xt(ξ[t]), t = 1, . . . , T is understood as function of the data process ξ[t] up to time t, is
called an implementable policy or just policy.

An implementable policy is called feasible if it satisfies the feasibility constraints, i.e.

xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T, w.p. 1. (3.4)

Now, we can formulate the multistage problem 3.3 in the form

minx1,x2,...,xT
E[f1(x1) + f2(x2(ξ[2]), ξ2) + · · · + fT (xT (ξ[T ]), ξT )]

s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T (3.5)

remark. The optimization in 3.5 is performed over implementable and feasible policies.
Policies x2, . . . , xT are functions of the data process, hence are elements of appropriate func-
tional spaces, while x1 ∈ Rn1 is a deterministic vector. Unless the data process ξ1, . . . , ξT

has a finite number of realizations, 3.5 results in an infinite dimensional optimization
problem.

3.2.3 The Stochastic Battery Model

With the tools of stochastic programming at hand, we will now embed our battery charging
model from Section 2.4 into a stochastic framework.

As in the deterministic case the battery charging problem involves the optimal cost
minimizing policy depending on state variables which can be influenced by the decision-
maker, such as the battery’s current storage level. Further, there are stochastic variables
evolving independently from the decision. In our case, the stochastic variables are realized
electricity price level, PV-output and actual electricity load throughout day-time hours. If
we want to optimize over the time horizon T , we deal with a T-stage, 4-dimensional model.
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The state space includes every possible charge, PV-production, price and consumption
level. The action space is the amount of electricity that can be charged or discharged and
this space is bounded by the capacity constraints introduced in Section 2.4.

To start with, we define a probability space (Ω, Σ,P), with Σ representing some filtration
and P a probability measure.

We refer to the stochastic processes in the following way: For each sample path ω ∈ Ω,
p(t, ω) denotes the electricity price at time t, pv(t, ω) the PV-production at time t and
q(t, ω) the electricity demand at time t. The filtration Σ = Σ(t)t∈T is generated by the
random vector (p(t), pv(t), q(t)), i.e. Σ(t) = σ((p(t), pv(t), q(t)), t ∈ {0, 1, . . . , T}). The
decision {C(t), D(t)} related to time t has to be Σ(t)-measurable.

In order to shorten the notation, we will not mention the dependence of random
variables on states ω from now on. It is important to keep in mind that every equations
has to hold almost surely in a stochastic setting. Furthermore, the optimal value of J has
to be Σ(T ) measurable random variable at the end of the planning horizon.

Taking over the notation introduced in chapter 2, the stochastic version of the problem
can be written as

minC,D = E(CB +
T�

t=0
(Q(t) · p(t)) (3.6)

s.t. 2.15

where every equation from 2.15 has to hold w.p. 1. The above problem is linear at stage T ,
since all constraints as well as the objective function are linear. Furthermore, the problem
is a convex optimization problem.

The stochastic programming models considered in this section illustrate the general
form of a stochastic program. There are certain characteristics which can be used to
typify them, and in the course of time many special forms have developed. Another very
important way of precising the formulation of 3.3 is through the corresponding dynamic
programming equations. We will introduce this approach in the next section.

3.3 Stochastic-Dynamic Programming

In general, the core idea in dynamic programming (DP) is to decompose a multistage,
dynamic decision problem into a sequence of simpler, single-stage problems. Thereby, the
most essential part is to discretize the problem’s state space.
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Afterwards, backwards recursion can be used to derive the optimal value and the
optimal policy at every state. The state variable, which describes the problem at a certain
point in time, is defined in such ways that it completely describes the process. The state
of the process at the beginning of a stage is known and a decision is made at every stage
allowing that the process is transformed to the ending state, once the planning horizon is
reached. In general, the objective is to maximize or minimize the expected objective over
all states.

The concept of system states is central to DP and one needs a mathematical model
representing its evolution over time, as a function of decisions and additional external
inputs. In the context of a stochastic setting, those external inputs simply correspond
to random risk factors. To be able to apply DP to a problem, a specific structure of the
system model is required. Following Brandimarte (2021), the state of the system at time
t + 1 should depend on the state observed at time t, the decision made at time t after ob-
serving the state, and the realization of external inputs during the subsequent time interval.

As has already been mentioned, we now want to specify problem 3.3 through the corre-
sponding dynamic programming equations. Therefore we follow Shapiro et al. (2009) and
consider the last-stage problem

minxT ∈XT (xT −1,ξT )fT (xT , ξT ).

We denote the optimal value of this problem as QT (xT −1, ξT ), which is dependent on the
decision vector xT −1 and data ξT . At stage t = 2, . . . , T − 1 we formulate the problem

minxtft(xt, ξt) + E{Qt+1(xt, ξ[t+1])|ξ[t]} (3.7)
s.t. xt ∈ Xt(xt−1, ξt),

where E[·|ξ[t]] denotes the conditional expectation. The problem’s optimal value depends
on the decision xt−1 at the previous stage and the realization of the data process ξ[t],
which we will denote by Qt(xt−1, ξ[t]). Now, we want to calculate the cost-to-go functions
Qt(xt−1, ξ[t]) recursively. At the fist stage, we therefore need to solve

minx1∈X1f1(x1) + E[Q2(x1, ξ2)].
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The corresponding dynamic programming equations are

Qt(xt−1, ξ[t]) = infxt∈Xt(xt−1,ξt){ft(xt, ξt) + Qt+1(xt, ξ[t])}, (3.8)

where
Qt+1(xt, ξ[t]) := E{Qt+1(xt, ξ[t+1])|ξ[t]}.

Definition. (Optimal Policy)
An implementable policy x̄t(ξ[t]) is optimal iff for t = 1, . . . , T ,

x̄t(ξ[t]) ∈ arg min
xt∈Xt(x̄t−1(ξ[t−1]),ξt)

{ft(xt, ξt) + Qt+1(xt, ξ[t])}, w.p. 1, (3.9)

where for t = T the term QT +1 is omitted and for t = 1 and the set X1 depends only on
ξ1.

In the dynamic programming formulation, the problem is reduced to solving a family
of finite dimensional problems, indexed by t and ξ[T ]. A main drawback of most of the
dynamic programming algorithms, which are developed until today, is that there are
often limitations in their application due to the so-called "curse of dimensionality". This
phenomenon refers to the rapid expansion of the size of the model with a growing number
of states. For the problem to stay tractable, the dimension of the state space must stay
small (according to Mokrian and Stephen (2006) no more than 3 or 4 dimensions) and
the individual discretization of each dimension must be relatively coarse. This limits the
ability of a DP to properly address continuous state and action spaces without great
computational expenses.

Another problem which can occur using DP methods is due to the necessary discretization
of the environmental-, resource- and the action space. Mokrian and Stephen (2006) mention
that the discretization can be problematic, if storage and conversion inefficiencies are
included in a battery model, because it is often necessary to round to the nearest state.
The problem therein is that the algorithm which is used to solve the optimization model
optimizes over this rounding process. In extreme cases, situations in which the profit of
the dynamic program exceeds the profit of the deterministic problem can occur. This
is clearly problematic because, as we will see in Section 3.6, the deterministic problem
should provide an upper bound for the stochastic solution.
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Nonetheless, solving a DP can be quite useful. The solution provides an optimal policy for
every realizable state of the system. Another advantage is that many decision stages can
be considered, as the problem grows linearly in the number of stages.

The stochastic-dynamic decision problem is to select a policy such that the sequence
of rewards is optimized. In the following, we take a closer look at a special type of
stochastic-dynamic problems, the so called Markov Decision Problems (MDPs). Unless the
evolution of the stochastic process depends on the complete sequence of previous states
and actions, many stochastic-dynamic decision problems arising in real world scenarios
can be modeled as MDPs.

3.3.1 Markov Decision Problems

The term "Markov", which we already introduced in Section 3.2.2, is used to highlight
the characteristic of a stochastic process that transition probability and reward functions
depend on the past, only through current state of the system and action selected by the
decision maker in that state.

Markov decision theory, like all other types of optimization problems, is concerned about
finding an optimal policy with the largest (or smallest) expected total reward (or loss).

A main characteristic of Markov decision problems is that they can be formulated as
recursive functions, which relate the value of currently being in a state at the beginning of
a decision epoch to the value of the states that might occur during subsequent periods.
Under this property, problem 3.7 simplifies to

minxtft(xt, ξt) + E{Qt+1(xt, ξ[t+1])|ξt} (3.10)
s.t. xt ∈ Xt(xt−1, ξt).

3.3.2 The Stochastic-Dynamic Battery Model

The goal in this section is to model the decision process of the battery storage problem as
a finite horizon Markov decision process. Therefore, we define a discrete stochastic process
on a probability space (Ω, Σ,P), including the variables PV-production, electricity price
and consumption and denote it by (St)T

t=1. We refer to St ∈ St as environmental state,
where St is the set of environmental states in t. Furthermore, assume that St is adapted
to the filtration Σ1.
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The objective of the decision maker is again to minimize the expected costs for fulfilling
the electricity demand for a given environmental state St and an initial storage state
Bt−1 ∈ B at stage t ∈ {1, . . . , T}. B denotes the set of all possible storage states. Let
P(St+1|St) be the state transition probability of the Markov process, xt for t = 1, . . . , T a
decision policy, ft(St, Bt−1, xt) denotes the random profit. Additionally, we introduce a
discount factor γ. By introducing a fixed storage state B0 and VT +1, the value of being in
state St with initial reservoir states Bt−1 is given by the following optimality equations:

Vt(St, Bt−1) = min
xt

{E[ft(St, Bt−1, xt) + γ
�

St+1∈St+1

P(St+1|St)Vt+1(St+1, Bt(xt))]}, (3.11)

for St ∈ St, Bt−1 ∈ B and t = 1, . . . T . Note that xt assigns a decision to every pos-
sible realization of the environmental state. This results in random reservoir states
Bt(xt). Equation 3.11 can be interpreted in the following way: An optimal decision
policy minimizes the sum of expected immediate and expected future costs. Those future
costs are dependent on the state transitions from St to St+1 and the final storage state
BT = Bt(xT ). In other words: At each stage of the planning horizon the system generates
an immediate income or loss and the storage level gets updated. If we follow the stochastic-
dynamic programming approach to calculate the expected profit of each action, one has
to consider the sum of the immediate profit or loss and the expected value of the next state.

After introducing the stochastic and the stochastic-dynamic version of the battery charging
model, we take the model a little bit further. In the real world, most people do not behave
in a totally risk neutral way. There are people who like to speculate in stock exchange
and those, who take an umbrella to their trip to the Sahara desert. Mathematicians try to
capture this aspect of the human behavior by dealing with risk measures.

3.4 Measures for Evaluating Solutions

The mathematical programming models introduced in sections 3.2 and 3.3 maximize the
expected value of the objective function and are therefore called the expected value models.
Expected value models are the mostly used models in approaches to minimize expected
costs, maximize the expected value, etc. In general, especially when considering financial
decisions, one has to consider two dimensions. The value dimension which in most cases
measures the expected return and the risk dimension which is measured by a risk parameter.

As further extension to the existing literature on battery modeling, we will include risk
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preferences of the battery operator which we model by coherent acceptability functionals.
Therefore, we introduce different types of decision makers.

Hence, by following Fichtinger (2010) we give the following definition:

Definition. (Risk)
Let Π be a random variable, where the utility u(Π) is monotone in the realization of Π. We
define the term ’risk’ as a measure ρ(Π) on Π of one-sided deviations from an arbitrarily
chosen value m.

Furthermore, we say a decision maker is

(i). risk-neutral, if he or she does not take risk into account,

(ii). risk-averse, if his or her objective is the minimization of undesirable deviations from
m, and

(iii). risk-seeking, if his or her objective is the maximization of desirable deviations from
m.

3.4.1 Risk functionals

For the subsequent observations we follow Pflug and Romisch (2007) and consider a
probability space (Ω, Σ,P). Additionally, defined on this space is a linear space of real-
valued random variables, namely either the space Y of all real functions on (Ω, Σ) or a
subset of integrable functions as the Lp-spaces.

Definition. (Deviation risk functional)
A real-valued mapping D defined on a linear space Y of random variables on (Ω, Σ,P) is
called deviation risk functional, if it exhibits the following properties (D1)-(D3) for all
Y ∈ Y:

(D1) Translation invariance
D(Y + c) = D(Y)

for constant c.

(D2) Convexity

D(λY (1) + (1 − λ)Y (2)) ≤ λD(Y (1)) + (1 − λ)D(Y (2))

for 0 ≤ λ ≤ 1.
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(D3) Monotonicity

X ≤ Y implies that E(X) − D(X) ≤ E(Y ) − D.

The following definition of coherent risk functionals was first introduced by Artzner
et al. (1999):

Definition. (Coherent measure of risk)
A mapping ρ defined on some linear space Y of real valued random varibales on (Ω, Σ,P)
is called coherent risk functional, if the following properties (R1)-(R4) are satisfied for all
Y ∈ Y.

(R1) Translation antivariance

ρ(Y + c) = ρ(Y ) − c

for constant c.

(R2) Convexity

ρ(λY (1) + (1 − λ)Y (2)) ≤ λρ(Y (1)) + (1 − λ)ρ(Y (2))

for 0 ≤ λ ≤ 1.

(R3) Positive homogenity
ρ(λY ) = λρ(Y )

for λ ≥ 0.

(R4) Pointwise antimonotonicity

Y (1) ≤ Y (2) ⇒ ρ(Y (1) ≥ ρ(Y (2))

In the following, we describe the use of particular risk measures such as the Value-at-
Risk and the conditional Value-at-Risk.

Value-at-Risk (VaR)
The Value-at-Risk, VaR in short, is a very popular risk measure which has even achieved
the status of being written into industry regulations (see for example Jorion (2000)). It is
used to consider one-sided deviations from the expectation.
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Originally, the VaR was developed by JP Morgan (1994) to answer the following
questions:

• How much one can expect to lose in one day, week, year, ... with a given probability?

• What is the percentage of the value of the investment that is at risk?

We took the following definition from Rockafellar and Uryasev (2000) and adapted it to
loss distributions.

Definition. (Value-at-Risk)
The V aR1−α associated with a given random variable Π is

V aR1−α(Π) = inf
u

{u : P(Π ≤ u)} ≥ 1 − α (3.12)

where α is typically chosen to be some small probability, e.g. 0.05.

Statistically, V aR1−α is the left-side 1 − α-percentile of the random variables loss
distribution. In other words, V aR1−α is simply the minimum outcome of a random
variable within a certain confidence interval α. Thereby, the width of the confidence
interval reflects the level of risk aversion, meaning that a larger confidence interval -
implying a smaller α - refers to higher levels of risk aversion.

Following Rockafellar and Uryasev (2000), a main drawback is that the measure is
unstable and difficult to work with numerically, when losses are not normally distributed.
Moreover, VaR fails to be coherent. Another major point is the definition of V aR1−α as a
single point in the value distribution. In general, the definition as the worst outcome of a
certain confidence interval sounds helpful, but it implies a necessity to consider the best
possible outcome for describing the risk associated with the worst cases of a distribution
as well. This means that there is no account for all other losses, regardless of how serious
they are. Rockafellar and Uryasev (2000) state that "[i]t is incapable of distinguishing
between situations where losses that are worse may be deemed only a little bit worse, and
those where they could well be overwhelming.".

Especially for value distribution with fat (left) tails this characteristic is very problem-
atic.

A natural extension of the VaR including the property of being able to quantify for
losses that might occur in the tail is the conditional value-at-risk (CVaR).

Conditional Value-at-Risk (CVaR)
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In contrast to the V aR1−α, the CV aR1−α represents not only the 1 − α-quantile itself,
but rather describes the expected value of the realizations of a quantity at risk that is
above the 1 − α-quantile. Thus, the CV aR1−α corresponds to the average loss triggered
by exceeding the V aR1−α. While the VaR represents the maximum loss that will not be
exceeded with a certainty of 1 − α, the CV aR1−α implies the average loss outside the
safety level, i.e. in all other α · 100% bad cases. Figure 6 shows the connection between
V aR1−α and CV aR1−α.

Figure 6: Connection between VaR and CVaR

First introduced by Rockafellar and Uryasev (2000), one can interpret the CV aR1−α

as response to the conceptual problems of V aR1−α. Following Fichtinger (2010) the
conditional Value-at-Risk has several advantages over the Value-at-Risk:

• It is coherent in the sense of the Definition in Section 3.4.1 (see Pflug (2001) for
proof).

• It takes events below F −1
Π (α) into account.

• It can be formulated as a maximization problem and allows for incorporation into
optimization problems on decision y affecting the random variable of outcome Π(y).

Definition. (Conditional Value-at-Risk)
The conditional Value-at-Risk for a given confidence level α is defined as

CV aR1−α(Π) = inf
u

{u + α−1E[(Π − u)+])}. (3.13)

where (·)+) means max{0, ·}.

remark. The use of CV aR1−α as an objective function implies sensitivity towards lower
values of profit. If we consider α = 0, the problem is identical to the risk-neutral problem.
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However, for any 0 < α < 1 only a lower fraction of the sample space is considered. For
example, if we consider α = 5%, this implies that the decision maker only takes the 5%
worst outcomes of the sample space and bases his or her decisions on these events.

remark. If we assume that the random variable has a continuous, strictly monotone
increasing cdf, the following equation holds true:

CV aR1−α(Π) = E(Π|Π ≤ V aR1−α(Π)).

Corollar 3.1. (Convexity of CVaR)
If Π(y) is convex w.r.t. y, then CV aR1−α(Π(y)) is convex w.r.t. y as well. Indeed, in this
case Γ(y, ψ) is jointly concave in (y, ψ).

Proof. See Rockafellar and Uryasev (2002) for a proof.

3.5 The Risk Formulation of the Battery Problem

In contrast to sections 3.2 and 3.3 we now want to define the objective value as a mixture
of expectation and conditional value at risk. Therefore, we have

min
C,D

λ · E(CB +
T�

t=0
Q(t) · p(t)) + (1 − λ) · CV aR1−α(CB +

T�
t=0

Q(t) · p(t)) (3.14)

s.t. 2.15

C(t), D(t) � Σ (3.15)

where 0 ≤ λ ≤ 1 is the corresponding weighting factor. The constraint 3.15 means that
the decision process has to be adapted to the underlying filtration Σ, i.e. that decisions at
time t are only based on information available up to time t.

3.6 The Value of the Stochastic Solution

Stochastic programs have the reputation of being computationally difficult to solve, so
people often try to solve simplified versions. In many cases, people ignore the stochas-
tic part of the problem and instead, they solve the deterministic problem obtained by
replacing all random variables with their expected values. The question arising is whether
this approach can be accurate or not. Trying to answer this question, we follow Pflug
and Romisch (2007) and Birge (1982) to introduce the concept of the expected value of
perfect information (EVPI) that has generally been used to determine the importance
of uncertainties in mathematical models and the value of the stochastic solution (VSS),
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which is used to estimate how well a deterministic model performs relatively to solutions
from more complicated stochastic programs.

Therefore, for our observations we recall the stochastic linear program introduced in
3.3.

If the decision maker has perfect information, i.e. if he or she is able to look into the
future and foresee the realizations of the random variable, he or she would choose optimal
first stage decision for each realization of ξ. The decision maker’s decisions may depend
on ξ, i.e. may be Σ1 − measurable, with Σ1 being the σ-algebra generated by ξ. The
expected value of this solution is known as wait-and-see solution or clairvoyant solution:

Definition. (Wait-and-See Solution)

WS = Eξ[min
xt

ft(xt, ξ)] (3.16)

In general, it is assumed in a multi-stage stochastic optimization program that the
decision xt must be taken before the realization of the random variable ξ. This means that
when deciding, the decision maker does not know the actual outcome of the random variable,
he or she just knows the distribution of ξ. We refer to such decisions as here-and-now
decisions.

Definition. (Here-and-Now Solution)
The here-and-now solution corresponding to the recourse problem defined in 3.3 can be
written as

RP = minxtEξ[ft(xt, ξ)] (3.17)

Due to the complexity and large size of the recourse problem, in practice people almost
always try to avoid it. Instead an approximation of the real problem is solved:

Definition. (Expected Value Problem)
The expected value problem is defined as

EV = min
xt

ft(xt, ξ̄)), (3.18)

where ξ̄ = E(ξ). In this problem, every random variable is replaced with its expected
value.

The solution of problem 3.18 is called the expected value solution and we denote it by
x̄t(ξ̄). Then the expected result of using the EV solution is

EEV = Eξ[ft(x̄t(ξ̄), ξ)]. (3.19)
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In words, EEV measures how x̄t(ξ̄) performs.
The following relation between the defined values was established by Madansky (1960).

Proposition 3.2.
WS ≤ RP ≤ EEV

Proof. This result follows directly from Jensen’s inequality and the convexity of ft(xt, ξ).

An important indicator for the effect of uncertainty on stochastic programs is the
expected value of perfect information:

Definition. (Expected Value of Perfect Information)

EV PI = RP − WS

The EVPI measures the maximum amount a decision maker would pay in return for
complete information about the future.

The loss in the objective value between the result of using an expected value solution
and the solution of the recourse problem is called the true value of the stochastic solution.

Definition. (Value of the Stochastic Solution)

V SS = RP − EEV

This quantity represents the cost of ignoring uncertainty in choosing a decision.

Proposition 3.3. (Relations between EVPI and VSS)
For any stochastic program

0 ≤ EV PI (3.20)

0 ≤ V SS (3.21)

and for stochastic programs with fixed recourse matrix and fixed objective coefficients,

EV PI ≥ EEV − EV (3.22)

V SS ≥ EEV − EV (3.23)

Proof. Proof can be found in Birge and Louveaux (2011).
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remark. 3.3 indicates that EVPI and VSS are not negative and bounded from above by
the same quantity. It clearly follows that if EV V = EV , both terms vanish. Although
this result is sufficient for V SS = EV PI = 0, the conditions for V SS = 0 and EV PI = 0
are not the same.

After understanding the basic concepts of stochastic optimization, the next step is to get
familiar with different methods of how stochastic variables can be included in decision
problems.
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4 Modeling Uncertainty
A widespread approach of including uncertainty in a model is by representing the stochastic
data through stochastic data processes, which are used as input parameters in the optimiza-
tion model. Assumptions must be made about distributions as well as the decision-making
structure. A common strategy to represent randomness is to construct a scenario tree
which represents the uncertainty. Generally, stochastic optimization problems can only be
treated numerically in most cases, if the involved stochastic process can be approximated
by a finite number of scenarios. Only under those circumstances, it is possible to represent
the scenarios by a scenario tree. This means that the underlying probability distribution
of the stochastic process is replaced with a discrete distribution with a finite number of
atoms.

One has to face a few challenges if constructing scenario trees. The main problem is
that the complexity of the optimization scales with the number of scenarios. Therefore, a
lot of work is dedicated to techniques reducing the number of scenarios while retaining the
quality of the wanted stochastic solution.However, before reducing, one has to generate
different scenarios. The goal hereby is to obtain a set of scenarios a priori which minimizes
the approximation error.

In the following, we introduce the theory behind scenario trees and the less-known
scenario lattices. Afterwards, we summarize what can be considered state-of-the-art in
generating scenarios of multivariate random variables.

4.1 Scenario Trees

To begin with, we give a short introduction on the theory behind scenario trees.

Definition. (Scenario)
A scenario at stage t is an outcome of the random process ξt = (ξ1, . . . , ξt). The set of all
scenarios can be described as S = {ξ1, . . . , ξS} = {ξ|ξt ∈ St(ξt−1), ∀ t > 1}, where St(ξt)
is the support of the conditional probability distribution of ξt conditioned on all prior
realizations.

Under the assumption that the probability distribution P of the stochastic process
ξ is discrete and has finite support, a scenario tree is an explicit representation of the
branching process induced by the gradual observation of ξ1, . . . , ξT . We call the node
associated with the first decision state root node. The root node is connected to so called
child nodes associated to stage 2, one child node for each possible outcome of the random
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variable ξ1. Each child node of stage 2 has again its own child nodes, associated with
stage 3, one for each outcome of ξ2, given the observation of ξ1. This construction process
continues until a terminal node is reached. This last nodes are called leafs. The unique
path from the root node to a leaf defines a scenario.

Furthermore, probability distributions of the random variables are taken into account.
Probability masses are associated with the nodes of the scenario tree. Clearly, the root
node has probability 1, whereas children nodes are weighted according to the probability
to which two nodes are connected. Multiplying the individual probabilities of the nodes of
a path gives the total probability of a scenario.

Definition. (Arc probabilities, Path probabilities)
Arc probabilities are the conditional probabilities of ξt conditioned on ξt−1,i.e. P(ξt|ξt−1).
Path probabilities are defined as the products of arc probabilities up to time t − 1, i.e.
P(ξt−1) = P(ξ1)

�t−1
i=2 P(ξi|ξi−1).

Keeping all those definitions in mind, we are now able to give a concrete definition of
a scenario tree:

Definition. (Scenario Tree)
A scenario tree is an oriented graph consisting of edges and nodes, with every node having
a unique predecessor. Each node represents a possible state and each edge represents a
transition between states. The set of nodes V can be disjointly partitioned into V = 
̇ Nt

with Nt being the nodes belonging to stage t. Moreover, a probability pi is assigned to
every edge ei ∈ E, representing the arc probability as defined above.

Figure 7: available information

It is important to note the following special features of stochastic scenario trees; In
contrast to deterministic scenario trees, one has to consider that, although the decision
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maker may contemplate as many hypothetical scenarios as desired, the decisions cannot
depend on observations that are not yet available when the decision is made. Figure 7 is
based on a figure in Defourny et al. (2012) and shows how information on the realization
of the random variables becomes gradually available:

At each decision stage, refinements of the partitions of the event space Ω appear
gradually in correspondence with possible realizations of new observations. Each sub-
region arising from this division of the event space can be associated a constant recourse
decision. In Figure 7, the area of each subregion could also represent probabilities, for
example, the initial square would be allocated to an unit surface. This dynamic process
can be captured by a scenario tree: the nodes are corresponding to the subregions of the
event space and the edges connect a parent region to its refined subregions obtained by
one step of the recursive partitioning process.

4.2 Scenario Lattices

If the stochastic process one wants to include is Markovian the conditional distribution
of future states in t + 1 at stage t does not depend on the entire history of the process
but only on the values in t. If we wanted to discretize such a process to a scenario tree,
many branches of the tree would have identical sub-trees. The idea of scenario lattices is
to take advantage of this characteristic and combine the identical trees without loosing
any information.

Concretely speaking, a lattice is a graph organized in a finite number of layers. Each
discrete point in time is represented by one of those layers and contains a finite number of
nodes. Two nodes in successive layers are connected by arcs. Similar to scenario trees,
a node represents a possible state of the stochastic process and an arc stands for the
probability of transiting from one node into another in a successive layer. Furthermore,
each arc is associated with a probability weight, and the weights of all outgoing arcs of
one layer sum up to one. The difference to scenario trees is that we do not require for
each node to have only one predecessor.

The advantage of this relaxation will be clear after the following construction:
Let Nt be the number of nodes in t and F̄tn, n ∈ [Nt] the state of the stochastic process in
node n at time t. Further, denote F̄t = {F̄tn : n ∈ [Nt]} as the set of all possible states in
the lattice layer corresponding to time t. The set of possible scenarios on the lattice is
then given by

F̄1 × F̄2 × · · · F̄T −1 × F̄T .

As one can see, if more stages are added, the additional nodes needed to expand the lattice
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are those of the new added stage. In contrast, the number of nodes in a scenario tree
would grow exponentially. An illustrative comparison can be found in Figure 8.

The question now arising is how to construct scenario trees and lattices. The key are

Figure 8: A tree with 31 nodes representing 16 scenarios compared to a scenario lattice
with 15 nodes representing 120 scenarios

different scenario generation methods. Over time, the field of scenario generation has
grown and today there are numerous approaches on how to generate scenarios. In the
following section, we will give an introduction of a few selected methods.

4.3 Scenario Generation Methods

One of the most commonly used technique to solve real world stochastic optimization
problems via scenario tree construction is sample average approximation(SAA). The main
idea of SAA was explained by Birge and Louveaux (2011) or Shapiro et al. (2009) and is
to approximate the probability distribution by a set of discrete scenarios.

As mentioned before, the complexity of a stochastic problem grows with the number of
stages, so a great effort is made in finding techniques which reduce the number of scenarios
while retaining the quality of the stochastic solution. The aim is to find a set of scenarios
which minimizes the approximation errors.

A well researched field are scenario reducing techniques for underlying univariate
distributions, typically referred to as variance reduction techniques (see for example
Shapiro (2003)).

There exist different approaches that extends the methods for univariate distributions
to the more general multivariate cases. In the course of this section we will give an overview
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of what can be considered as state-of-the art to generate scenarios of multivariate random
variables for sample average approximation. The presented methods include Monte Carlo
methods, methods based on probability metrics, optimal quantization, moment matching
and voronoi cell sampling.

The outline of this section is as follows: We start with giving an overview of the general
concept of SAA, followed by a description of the existing approaches to generate scenarios
for stochastic optimization.

4.3.1 Sample Average Approximation

For an outline of the SAA approach we consider the stochastic optimization problem

min
x∈X

{F (x) =
�

f(x, z)dG(z)} (4.1)

where x is as usual a decision variable defined on a feasible set X ⊆ R and z is a k

dimensional random realization of the stochastic variable Z. The random variable is
defined by the distribution function G : Rk → [0, 1]. f(x, z) denotes the cost function we
want to minimize by choosing an optimal action x∗ ∈ argminx∈X F (x).

A common way to calculate numerical solutions is to either draw a sample from G or
approximate G by a discrete distribution Ĝ. Using Ĝ instead of G leads to the following
problem:

F̂ (x) =
�
ẑ∈Ĝ

p̂(z)f(x, ẑ),

where p̂(z) denotes the probability of the mass points of Ĝ.

As mentioned before, it would be desirable for a scenario tree to cover all possible
outcomes of a random process. However, if the distribution of the random variables is not
discrete or the number of stages is not finite, a scenario tree can not exactly represent the
random process with a finite number of nodes. The question of how to find good scenario
tree approximations in order to extract good decision policies is widely addressed in the
literature.

In the following, we will give an overview of commonly applied approaches to gener-
ate scenarios of multivariate random variables with sample average approximation, along
with their advantages and drawbacks.
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4.3.2 Monte Carlo Methods

Monte Carlo Methods are a widespread approach to solve stochastic optimization problems
using SAA. A popular class of methods for Monte Carlo sampling, especially in higher
dimensions, are quasi-Monte Carlo methods. Originating from number theory, these
methods rely on low-discrepancy sequences covering the unit hypercube as uniformly as
possible. After an adequate transformation, these sequences can be treated like pseudo-
random numbers.

To use Monte Carlo sampling for SAA, we follow the notation of Löhndorf (2016)
and create a set of M uniformly distributed, pseudo-random realizations u1, . . . , um with
ui ∈ [0, 1]n. As proposed by Glasserman (2013) we construct a sample from the original
distribution function by an appropriate transformation U → Z. If we assume that z1, . . . zM

is a sample of random realizations from the same distribution as G, we obtain the SAA by
evaluating

F̂MC(x) = 1
M

M�
i=1

f(x, zi). (4.2)

The variance is given by
σ̂2

MC = 1
M

Var(f(x, Z)). (4.3)

Shapiro (2003) shows that the Monte Carlo estimate F̂MC(x) converges to F (x) with
probability 1, as M → ∞. Nevertheless, to accelerate the speed of convergence of the error
bounds it would be desirable to reduce the variance of the estimate more quickly. Shapiro
(2003) for example proposes a scenario reduction technique for Monte Carlo sampling.

4.3.3 Methods based on Probability Metrics

The idea behind using probability metrics for scenario reduction is to evaluate the closest
approximation of a probability distribution to a discrete distribution with smaller support.
Here, a probability metric is used as the objective criterion and can be related to the error
occurring from implementing the optimal solution of a stochastic problem using SAA.
Following Pflug (2001), another approach is to address the approximation error directly.
The approximation error e(F, F̂ ) is defined as the price (measured in the objective function
F ) one has to pay if optimizing F̂ instead of the true F , i.e.

e(F, F̂ ) = F (argmin
x

F̂ (x)) − F (argmin
x

F (x)). (4.4)

In most cases, the error defined in 4.4 is difficult to evaluate. Therefore, one must be
satisfied by determining an upper bound of the error by using the following lemma:
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Lemma 4.1.
e(F, F̂ ) ≤ 2 sup

x
|F (x) − F̂ (x)|

Proof. The proof of the lemma is given in Pflug (2001).

To construct another upper bound, which is suggested by Pflug (2001), we need to
define a metric according to which the scenario construction takes place:

Definition. (The Lipschitz-constant of order p of h)
The Lipschitz-constant of order p of h is calculated as follows:

Lp(f(x)) = inf{L : |f(x, z1) − f(x, z2)| ≤ L|z1 − z2| max(1, |z1|p−1, |z2|p−1) ∀z1, z2} ≤ L̄p

(4.5)
where L̄p is an upper bound. This is an indicator for how fast the cost f(·, z) changes in z.

As next step, we have to introduce the Fortet-Mourier distance between F and F̂ .

Definition. (Fortet-Mourier distance)

dp(F, F̂ ) =
�

max(1, |z|p)|G(z) − Ĝ(z)|dz. (4.6)

If p = 1 this metric equals the widely known Wasserstein-distance.

Lemma 4.2. The approximation error is then bounded by

e(F, F̂ ) ≤ 2L̄pdp(F, F̂ ). (4.7)

This means that if the cost function f(·, z) is continuous with Lipschitz-constant of
order p our original problem can be approximated by the problem of minimizing the
distance dp(F, F̂ ). So, if we want to minimize the approximation error, we have to find
the discrete distribution F̂ closest to F . This means that we are looking for a tree with a
distribution Ptree such that

dp(P,Ptree) ≤ " (4.8)

with " > 0 given. The actual tree construction is done based on a scenario fan (a scenario
fan is a special case of a scenario tree, where each scenario is independent of other scnearios)
of simulated scenarios, together with stage-by-stage approximations.

Again, an essential point is the reduction of scenarios. This is handled by summarizing
distinct scenarios in a single scenario, again with respect to a probability metric. Therefore,
a certain precision " is defined and the reduction takes place either via forward selection
or backward reduction.
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4.3.4 Optimal Quantization

Similar to the methods based on probability metrics, optimal quantization also aims
at minimizing the average distance between the sample distribution and the discrete
distribution. A limitation hereby is that the approach is only tractable for scenario trees
with only two stages.

Following Heitsch and Römisch (2003), let z1, . . . , zN be a set of equally likely sample
vectors, drawn from a continuous distribution. Then, the problem we have to solve is

min
ẑ1...,ẑM

{( min
yi,j∈(0,1),qj≥0

{
N�

i=1

M�
j=1

yi,j�zi − ẑj�r|
M�

j=1
yi,j = 1,

N�
i=1

yi,j = qjN}) 1
r }. (4.9)

Solving this equation yields optimal mass points (ẑ∗
1 , q∗

1), . . . , (ẑ∗
M , q∗

M), but finding a
concrete solution is N P-hard. For this reason, one has to be satisfied with finding local
optimizers. Therefore, a common approach is to start with an initial guess of ẑ to then
try to find optimal q∗

1, . . . q∗
M by solving

min
yi,j∈(0,1),qj≥0

{
N�

i=1

M�
j=1

yi,j�zi − ẑj�r|
M�

j=1
yi,j = 1,

N�
i=1

yi,j = qjN} (4.10)

for ẑj fixed. The next step is to find optimal ẑ∗
1 , . . . ẑ∗

M by solving the following equation
for yi,j fixed:

min
ẑ1,...,ẑM

{
N�

i=1

M�
j=1

yi,j�zi − ẑj�r}. (4.11)

A well-known special case results from taking the squared Euclidian distance, the so called
k-means clustering algorithm, which was first proposed by MacQueen (1967). If one uses
quantizers as scenarios the corresponding optimal objective value is a lower bound:

Proposition 4.3. If F̂ (x) = 	M
j=1 qjf(x, ẑj) and f(x, z) convex in z, then

min
x

F̂ (x) ≤ min
x

F (x).

Proof. A proof is given by Löhndorf (2016).

4.3.5 Voronoi Cell Sampling

A main drawback of optimal quantization, as criticized by Hochreiter and Pflug (2007), is
that even if one found appropriate minimizers of 4.9 the variance of the set of scenarios
could be smaller than that of the sample distribution. Generally, the variance of the
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marginal distributions tends to decrease in the dimensionality of the joint distribution.
As an alternative scenario generation method which is able to mitigate the contraction

of scenarios towards the mean, Voronoi cell sampling was developed by Löhndorf (2016).
The author discovered the method as a by-product of his work about scenario generation
methods. Similar to the optimal quantization method, the discretization of the stochastic
process is done by separating the continuous data process into a finite number of disjoint
partitions. This method integrates stratified sampling with probability metrics and it
turned out to perform in a favorable way, meaning that the approximation error which
occurs is very small compared to other methods we have already introduced.

Löhndorf and Wozabal (2017) use this method to approximate the continuous process of
natural gas prices by a discrete scenario lattice.

For example, stratified sampling is used to reduce the variance of a Monte Carlo
simulation by Corlay and Pagès (2015). This is done by partitioning the outcome space
into a number of disjoint regions.

The purpose of including stratified sampling is to reduce the variance of the Monte
Carlo estimate by partitioning the outcome space into a number of non- intersecting
regions. Fortunately, the optimal quantizers provide such a partitioning as by-product.
These special partitions are known as Voronoi cells.

To take a closer look at the performance of the Voronoi sampling approach in terms
of variance reduction we have to consider pj, which refers to the proportion of samples
allocated to partition Ωj. Using stratified sampling, the variance of the Monte Carlo
estimate is given by

σ̂2
SS = 1

M

M�
j=1

pj

qj

qjVar(f(x, z)|z ∈ Ωj). (4.12)

The first step of our journey in reducing the variance is to allocate samples to partitions,
i.e. pj = qj proportionally. Then we use the law of total variance to get

1
M

Varz(f(x, z)) = 1
M

(Ez(f(x, z)2) − Ez(f(x, z))2) (4.13)

= 1
M

(Ez(Ez(f(x, z)2|z ∈ Ωj)) − Ez(Ez(f(x, z)|z ∈ Ωj))2)

≥ 1
M

Ez(Varz(f(x, z)|z ∈ Ωj))

= 1
M

M�
j=1

qjVarz(f(x, z)|z ∈ Ωj).
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Following Löhndorf (2016), we can further reduce variance by using optimal quantizers.

Proposition 4.4. Voronoi cell sampling provides optimal variance reduction under strati-
fied sampling with proportional allocation.

Proof. The proof is given in Löhndorf (2016).

Except all weights being equal, we need fewer partitions than scenarios for proportional
allocation, to be able to make multiple draws from partitions with large weights. Instead
of drawing from fewer partitions multiple times, we could alternatively draw once, but
from more partitions, since 4.13 assures that further stratification of a partition would
result in further variance reduction.

Following Löhndorf (2016), we therefore assume that Voronoi cell sampling draws
just one random realization from each partition and assigns the resulting scenario to the
probability of the nearest quantizer. We define another sequence of candidate scenarios
by (ẑ�

n, . . . , ẑ
�n
M )N

n=1 with equal starting points then the original scenario, i.e. ẑ
0
j = ẑ0

j , j =
1, . . . , M . Then, scenarios can be obtained through

ẑ
�n
j =

��zn if j = argmink{�zn − ẑn−1
k �2}

ẑ
�n−1
j otherwise

(4.14)

for j = 1, . . . , M, n = 1 . . . , N .

Proposition 4.5. The sampling method in 4.14 reduces the variance of the cost function
estimate for sufficiently large M .

Proof. The proof is given in Löhndorf (2016).

4.3.6 Moment Matching

In moment matching the idea is to generate a set of scenarios where the first four moments
of random variables have to coincide with the first four moments of the original model.
The method was first proposed by Fleishman (1978) and later adapted to the multivariate
setting by Høyland et al. (2003).

The procedure works as follows:

(i). Generate z1, . . . , zM discrete univariate random variables using Monte Carlo sampling,
each satisfying a specification for the first four moments.
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(ii). Transform the random variables to meet a given correlation structure by pre-
multiplying the vectors with a lower triangular matrix L of covariance matrix
Σ:

z

j = Lzj, Σ = LL
, j = 1, . . . , M

(iii). Apply the cubic transformation proposed by Fleishman (1978) to obtain sequences
that satisfy the specification for the first four moments.

The second point, the transformation of the variables, will distort the marginal moments
higher than second order. Therefore, the clue is to start with a different set of higher
moments. Following Høyland et al. (2003), the proposed procedure leads to exact desired
values for the moments and the correlation, if the generated univariate random variables
from step 1 are independent. This is only true in the case of all scenarios being equally
probable and the number of outcomes going to infinity. In most cases, those assumptions
are not fulfilled and one has to deal with moments and correlations that are not matching
the desired ones. In order to address this purpose and to ensure that the moments deviate
from their target moments at most by a given ", Høyland et al. (2003) developed an
iterative algorithm.

A disadvantage of moment matching is that there exist indefinite numbers of distri-
butions with the same first four moments. So it is unknows if the distribution one has
chosen really fits the input data.

4.4 Lattice Reformulation of the Battery Problem

In general, it is possible to reformulate multistage stochastic optimization problems on a
scenario tree. An approach was given by Pflug and Romisch (2007).

Pflug and Romisch (2007) start by considering a finite probability space Ω = (ω1, . . . , ωK),
representing K scenario paths. This setting allows them to represent the stochastic pro-
cesses by a finite tree with node set N = {1, . . . , N}. Here, the levels of the tree correspond
to the decision stages. By Nt they denote the set of nodes at level t for t = 0, . . . , T .
Using this notation, the set NT contains the K leave nodes of the tree. This tree structure
represents the filtration of the process. The predecessor node for each node n is denoted
by n− and in the same manner n+ denotes the child nodes of each node. They assume,
that there is an unique root node and as it represents the present we refer to it as 0. As
final element of a scenario tree one needs to add probabilities Qn ≥ 0 to each node n,
where 	

j∈Nt
Qj = 1 has to hold for all points in t.
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After this procedure, one can represent the different processes and decision variables in
a model w.r.t. the nodes n of the constructed tree.

The problems constraints which have to hold w.p.1 are obtained by formulating them
for all nodes of stage Nt and the objective function is based on the probabilities related
to the nodes in the following ways: In the case where one just wants to minimize the
expectation, it is possible to calculate the objective value directly by weighting the values
of each leaf node with the respective probability.

If we now try to extend this tree-approach to a lattice version and apply it to our
battery charging problem the following dilemma arises:

Due to the fact that in a lattice every node can have multiple predecessor nodes, the
lattice formulation can not be applied for the charging state of the battery, because the
transition from state B(t) → B(t + 1) is not unique.

As a way out, we formulate the problem as a classical stochastic dynamic optimiza-
tion problem (see 3.3.2), considering the state of charge as the implicitly defined system
state variable. Separately, we consider the stochastic environmental variables price, PV
production and consumption and model them as Markov Processes on a lattice. This
workaround of formulating the problem as DP enables us to keep the advantages of a
lattice, compared to a tree and we are still able to handle state variables.

remark. Note that in our problem the only state variable is the charging state of the
battery. The state variable is not modeled on the lattice.

remark. In a DP the value function is characterized by the Bellman equation, which has
the state variable as arguments. The lattice is only used to calculate the corresponding
expectations.

In the next section, we will became familiar with different algorithms that are able to
solve problems of such kind.
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5 Solution Methods
With a steady increase of computing power, optimization including uncertainty has become
a very popular research field. Nowadays, multiple stochastic programming methods allow
motivated users to get their models one step closer to reality by incorporating randomness.
Unfortunately, as free lunch is nowhere to be found, analytical closed-form solutions to
stochastic optimization problems exist only in some rare cases. Especially when dealing
with continuous distributions of random variables, some approximation must be made.
Most approximation schemes are based on discretization of the underlying random space
through scenario trees. In section 4.3, we have already become familiar with a few of
methods of how to model uncertainty.

Once the discretization of the underlying probability space has been managed, finite
dimensional optimization algorithms can be applied without difficulty. Nevertheless, the
challenges of obtaining high precision of the optimal value and of finding an optimal solu-
tion remain. As it is usually the case in optimization, the results are strongly dependent
on the selected basis functions.

A very popular practical utilization of stochastic programming in the energy sector
is the day ahead bidding problem. Typically, it is modeled as a two-stage stochastic
program. This approach is quite obvious, as one simply takes bidding decisions at first
stage and price realizations as well as operational decisions take place at second stage.

However, what this two-stage approach can definitively not capture, are future storage
states and decisions. To take longer planning horizons into account, it is necessary to solve
a multi-stage stochastic programming problem. In order to accomplish the challenge of
solving such problems, a few basic solution strategies have emerged in the literature:

A method which avoids discretizing the underlying probability space was developed by
Bertsekas and Tsitsiklis (1995); The goal is to project the control function or the cost-to-go
function into a finite dimensional functional space. By doing so, the dimension of the
problem reduces to the cardinality of the functional space. Then the problem could be
solved numerically, based on Monte-Carlo methods.

Another strategy, as proposed by Heitsch and Römisch (2003), is to represent the
uncertainty by a scenario tree and to then solve the problem as one large mathematical
program. The limitation of this approach clearly lies within the comparatively small
number of stages it can handle.

Pereira and Pinto (1991) developed a method called stochastic dual dynamic pro-
gramming (SDDP). They proposed their method to solve certain specific problems where
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randomness only appears at the right-hand-side of constraints and is independent from
one stage to another. The procedure is as follows: First, the problem is formulated as
dynamic program and then Bender’s decomposition algorithm is applied. Recursively, a
value function is constructed at each stage around a set of sample decision. The crucial
part for the construction is to remember the requirement of stage-wise independence of the
random process, because only in this case the respective cost-to-go value functions of the
DP equations are independent of the data process. As long as the optimization problem
is convex at each stage and the stochastic process is stage-wise independent, SDDP can
handle problems with a large number of stages without any difficulties. The convergence
of this method was studied in detail by Philpott and Guan (2008).

However, in most real world cases, complete independence of the randomness is not
given. To relax this necessary assumption, certain approaches have been suggested dealing
with Markovian type dependence structures.

One possibility pointed out by Pereira (1989) and Shapiro et al. (2013) is to model the
data process as an autoregressive process and to then add time series transition equations
as additional equality constraints to the optimization problem. As a result, realizations
of the data process are treated as decision variables. This way of proceeding enables
reformulating the problem in terms of stage-wise independent errors of the considered
time series. Disadvantages are that the number of stage variables must be increased and
that the approach is restricted to linear cases and right-hand side uncertainty.

Another approach to solve problems, with Markovian type dependence structures, in
particular discrete-time, continuous-state, risk averse MDP’s, was developed by Powell
(2007). They proposed a method to approximate the optimal policy of the continuous-state
problem which is equivalent to approximating the value function of the MDP. In other
words, the so-called approximate dynamic programming (ADP) algorithm simulates the
state transition process of a MDP and then uses the sampled information to approximate
the high dimensional value function through a function of much lower complexity.

Bonnans et al. (2012) and Löhndorf et al. (2013) developed a method for solving a
general class of discrete-time, continuous-state, risk-averse MDPs integrating scenario
lattices with the SDDP framework. Their approach called approximate dual dynamic
programming (ADDP) allows modeling any parameter as Markovian data process and,
therefore, a much broader range of stochastic models can be used. Similar to SDDP,
the decision problem is solved iteratively in ADDP, using forward simulation to sample
candidate decisions and backward recursion to construct a polyhedral approximation of
the post-decision value function. The clear advantage of this method is that, in contrast
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to regular SDDP approaches, no stage-wise independence of the stochastic process is
required. Moreover, it is rather assumed that randomness follows a Markov process. The
disadvantage of the ADDP approach is that no convergence guarantee can be made with
respect to the true process.

Our goal is to solve the stochastic dynamic optimization problem of optimally charging a
battery, where the stochastic variables follow a Markovian type dependence structure and
can be modeled on a lattice (see 4.4). The most promising solution algorithm concerning
our setting is ADDP. Therefore, the following sections give an introduction of the underly-
ing concepts. We start with an outline of ADP, followed by an overview of SDDP. Then,
we use the gained knowledge to understand the concepts of ADDP.

5.1 Approximate Dynamic Programming

As already discussed in chapter 3.3, in dynamic programming, one always has to deal
with the curse of dimensionality. ADP, also known as neuro-dynamic programming or
reinforcement learning, provides an opportunity to break this burden. Avoiding the
complete enumeration of the state space is done by using Monte Carlo simulation to
sample the Markov decision process. Generally, there are two principal techniques: policy
and value iteration.

When developing an ADP algorithm, there are several factors one should keep in mind.
It would be desirable that a policy using an approximate value function was able to imitate
the behavior of the optimal policy. Moreover, the sampling process has to be designed
in such a way that the states which can be reached by the optimal policy are sampled
adequately often. Furthermore, the mechanism that updates the value function has to
take into account noise occurring in the sampled observations.

To get an overview of the key concepts of ADP we follow Löhndorf (2011). As more
detailed literature on the subject, we recommend Bertsekas and Tsitsiklis (1995), Bertsekas
(2012), or Powell (2007).

For our purpose it will be enough to consider the method for finite horizon problems,
but the concepts can easily be extended to infinite horizon problems (see for example
Löhndorf (2011)).

The first remarkable aspect of ADP is that one does not need access to an explicit
model of the state transition matrix. It is enough to require a simulation model of the
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state transition process. For our considerations, we have to introduce the expectational
form of the optimality equations introduced in equation 3.11:

Vt(St) = min
xt∈X (St)

{ft(St, xt) + γE[Vt+1(St+1)|St, xt]}, ∀ St ∈ St, 1 ≤ t ≤ T − 1. (5.1)

Since we now assume that we have no knowledge of the state transition process, we can’t
compute the expectation explicitly. Therefore, we try the next best method and compute
a sample average using Monte Carlo simulation. To do so, we replace the value function
with a function of an estimate of the state-action value, Qt(St, xt), called Q-factor of
the pair (St, xt). Let us assume that QT (ST , xT ) is given. To compute the Q-factors we
simulate N state transitions for each Qt(St, xt) and solve the following equations using
backward recursion:

Qt(St, xt) = ft(St, xt) + γ

N

N�
n=1

min
xn

t+1∈X (Sn
t+1)

{Qt(Sn
t+1, xn

t+1)} ∀ St ∈ St, xt ∈ X (St), (5.2)

from t = T − 1, . . . , t. This approach only works if the action space is small enough.
In addition, one has the problem of looping over the entire action space repeatedly. To

bypass this effort, we introduce the concept of expressing the value function in terms of
the post-decision state. As the name implies, in contrast to Q-factors, the post-decision
value function returns the value not until the end of a decision epoch. For this purpose,
we reformulate 5.1 as

Vt(St) = min
xt∈Xt(St)

{ft(St, xt) + γV̄t(St, xt)} ∀ St ∈ St (5.3)

where V̄t(St, xt) denotes the expectation of the value right after a decision has been
made. Using this new formulation, we can rewrite the optimality equation in terms of the
post-decision value function as

V̄t(St−1, xt−1) = E[ min
xt∈X (St)

{ft(St, xt)+γV̄t(St, xt)}|St−1, xt−1] ∀ St ∈ St, xt ∈ X (St). (5.4)

Note that up to now we follow the approach of computing separate values for each state-
action pair, which still leaves us with the curse of dimensionality. Hence, let us try to
solve this issue by focusing on approximating the value function. The approximate value
function ˆ̄V (·; ωt) is dependent on a vector ωt ∈ RK . Then, the objective of an ADP
algorithm is

min
ωt

{� ˆ̄Vt(St, xt; ωt) − V̄t(St, xt)�}, ∀ 1 ≤ t ≤ T − 1 (5.5)
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which means that one tries to find a wt that minimizes the approximation error. The
resulting function is the wanted approximation of the expectation in 5.4, i.e.

ˆ̄Vt(St, xt; ωt) ≈ V̄t(St, xt), ∀ 1 ≤ t ≤ T − 1 (5.6)

To find the optimal parameter vector it is necessary to do both, solve the recursion and
construct an approximation simultaneously. Two widespread methods for doing so are
approximate value iteration and approximate policy iteration. On continuation we follow
Löhndorf (2011) and give a short overview of both approaches.

5.1.1 Approximate Value Iteration

The first step in the approximate value iteration algorithm is to initialize the algorithm
with an approximate value function ˆ̄Vt(·; ω0

t ) and a set of (possibly identical) initial states
St

1 (Step (1)). Then, over N iterations, the algorithm alternates between a forward pass
(Step 2.1) and a backward pass (Step 2.2 and Step 2.3). At each iteration of the forward
pass, the algorithm chooses the action that maximizes the sum of the immediate reward
and the current estimate of the discounted post-decision value (Step 2.1.1). Then, by
calling the simulation model SM , the next state given the current state and action is
generated (Step 2.2.2).

The backward pass proceeds as follows: First, at each iteration, the algorithm recursively
computes the discounted value of the state-action pair sampled during forward pass by
evaluating

vn
t = ft(Sn

t , xn
t ) + γvn

t+1

(Step 2.2.1). This value is passed on to the updating function UV (Step 2.2.3) to update
the estimate of the approximate value function of the previous state-action pair (Step
2.2.2). After termination, one receives the final approximation of the post-decision value
function (Step 3). In the following, an outline of the algorithm is given:

(1) Input arguments: approximate value function ˆ̄Vt(·, ω0
t ), t = 1, . . . , T ; initial states

(Sn
1 )N

n=1

(2) Do for n = 1, 2, . . . , N

(2.1) Do for t = 1, 2, . . . , T − 1

(2.1.1) Solve xn
t = argminx∈X (Sn

t ){ft(Sn
t , x) + γ ˆ̄Vt(Sn

t , x; ωn−1
t )}

(2.1.2) Simulate Sn
t+1 = SM(Sn

t , xn
t )
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(2.2) Solve vn
T = minx∈X (Sn

T ){fT (Sn
T , x) + γ ˆ̄VT (Sn

T , x; ωT )}
(2.3) Do for t = T − 1, T − 2, . . . , 2

(2.3.1) Compute vn
t = ft(Sn

t , xn
t ) + γvn

t+1

(2.3.2) Update ωn
t−1 = UV ( ˆ̄Vt−1, ωn−1

t−1 , Sn
t−1, xn

t−1, vn
t )

(3) Return approximate value function ˆ̄Vt(·; ωN
t ), t = 1, . . . , T − 1

Note that there also are approximate value iteration approaches which update the value
function during the forward pass.

5.1.2 Approximate Policy Iteration

Contrary to what the name may suggest, when performing approximate policy iteration,
we are still updating the value function. Due to the misleading name in reinforcement
learning communities approximate policy iteration methods are also referred to as batch
methods. The basic concept is to store a batch of observations of (St, xt, vt+1) tuples and
to update the value function only after a complete batch has been collected. Despite
the additionally added outer loop, the algorithm works similar to the above discussed
approximate value iteration.

In the following, an outline of the algorithm is given:

(1) Input arguments: approximate value function ˆ̄Vt(·, ω0
t ), t = 1, . . . , T ; initial states

(Sn
1 )N

n=1

(2) Do for m = 1, 2, . . . , M

(2.1) Do for n = 1, 2, . . . , N

(2.1.1) Do for t = 1, 2, . . . , T − 1
(2.1.1.1) Solve xn,m

t = argminx∈X (Sn,m
t ){ft(Sn,m

t , x) + γ ˆ̄Vt(Sn,m
t , xt; ωm−1

t )}
(2.1.1.2) Simulate Sn,m

t+1 = SM(Sn,m
t , xn,m

t )
(2.1.2) Solve vn,m

T = minx∈X (Sn,m
T ){fT (Sn,m

T , x) + γ ˆ̄VT (Sn,m
T , x, ωT )}

(2.1.3) Do for t = T − 1, T − 2, . . . , 2
(2.1.3.1) Compute vn,m

t = ft(Sn,m
t , xn,m

t ) + γvn,m
t+1

(2.4) Update ωm
t = UP ( ˆ̄Vt, ωm−1

t , (Sn,m
t , xn,m

t , vn,m
z )N

n=1), t = 1, . . . , T − 1

(3) Return approximate value function ˆ̄Vt(·, ωM
t ), t = 1, . . . , T − 1
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Compared to approximate value iteration, the special feature of the policy iteration
approach is the additional outer loop. During each iteration of this loop, the algorithm
performs N forward and backward passes, similar to approximate value iteration, but
instead of updating the approximate value function during backward pass, the algorithm
stores the entire information about state, action and value collected during all N sample
paths. After N iterations of the second loop, the algorithm passes the collected information
on to the updating function UP in order to obtain a new estimate of the approximate
value function.

remark. Updating the value function only every N steps might not be desirable in every
application.

5.2 Stochastic Dynamic Dual Programming

As already mentioned, the usual procedure of solving a multi-stage stochastic program is
by constructing a scenario tree.

Furthermore, what we also have already discussed is that even with a small number
of outcomes per stage, the size of a scenario tree grows exponentially with increasing
stages. For two-stage problems with a large number of scenarios, SAA provides a solution
approach which allows large-scale problems to be solved. However, due to the curse of
dimensionality, multi-stage problems are intractable.

Because of Philpott and Guan (2008), one field of application where multi-stage pro-
gramming models are widely used is the long-term scheduling of water resources. Those
problems normally involve determining a policy of releasing water from water reservoirs
for generation of hydro-electricity. The necessity of modeling multiple reservoirs led
to the development of various multi-stage stochastic linear programming models using
scenario trees. One of those methods is stochastic dual dynamic programming, which
was developed as an algorithm able to deal with a rapidly growing scenario tree. The
general idea is to approximate the future cost function of dynamic programming using a
piecewise linear outer approximation. This approximation is defined via cutting planes,
short cuts, computed by solving linear programs. By using this method, the curse of
dimensionality arising from discretizing the scenario tree can be avoided. Another im-
portant aspect is that stage-wise independent uncertainty must be assumed. This allows
for shared cuts between different states, leading to an efficient reduction of the scenario tree.
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The standard implementations of SDDP are risk neutral, but many authors extended the
algorithm to implementations accounting for risk. For example, Philpott and de Matos
(2012) considered the incorporation of a time-consistent coherent risk measure into a
multi-stage stochastic programming model which is solved by SDDP.

Hence, we introduce the risk neutral SDDP method introduced by Pereira and Pinto
(1991). Here, we will follow the notation of Philpott and de Matos (2012) who give a good
outline of the algorithm.

Let us reconsider the linear multistage stochastic problem, as introduced in 3.3. The
problem we consider has T stages, denoted t = 1, 2, . . . , T . Furthermore, we assume
that at each stage a random right-hand-side vector bt(ξt) ∈ Rm has a finite number of
realizations defined by ξt ∈ Ωt. Another important assumption we have to request is the
stage-wise independence of the outcomes ξt. Ω1 consists of just one element. Under these
assumptions, the first-stage problem can be written as

z = min cT
1 x1 + E[Q2(x1, ξ2)]

s.t. A1x1 = b1, (5.7)
x1 ≥ 0 (5.8)

where x1 ∈ Rn is the first stage decision, c1 ∈ Rn a cost vector, A1 is a m × n matrix and
b1 ∈ Rm. Q2(x1, ξ2) refers to second stage costs associated with decision x1 and realization
ξ2 ∈ Ω2.

Given decision xt−1 and realization ξt, the problem we have to solve in later stages t

is

Qt(xt−1, ξt) = min cT
t xt + E[Qt+1(xt, ξt+1)]

s.t. Atxt = bt(ξt) − Etxt−1, [πt(ξt)] (5.9)
xt ≥ 0,

In this problem, xt ∈ Rn is the decision in stage t, ct again the cost, At and Et denote
m × n matrices. By πt(ξt), we denote the dual variables of the constraints. Concerning
the last state, we assume that E[QT +1(xT , ξT +1)] = 0. For all instances of 5.9 we assume
relatively complete recourse, whereby 5.9 at stage t has a feasible solution for all values
of xt−1 that are feasible for the instance of 5.9 at stage t − 1. This assumption is not a
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limiting restriction, as relatively complete recourse can be ensured by simply introducing
artificial variables with penalty terms in the objective.

In order to build an approximately optimal policy, the SDDP algorithm performs a
sequence of iterations. Each iteration consists of a forward pass and a backward pass.
During the forward pass, a set of N scenarios is sampled from the scenario tree. Then,
starting from the first stage, decisions are made at each stage of the N scenarios. Denoting
a specific scenario s, all observed values x̄t(s) of the decision variable xt and the cost of
each stage in all scenarios s are stored.

The determined policy at stage t is defined by a polyhedral outer approximation of
E[Qt+1(xt, ξt+1)], the specific form of the approximation resulting from the use of Benders
cuts. Mathematically speaking, in a problem at stage t, E[Qt+1(xt, ξt+1)] is replaced with
the variable θt+1. This variable is bounded by

θt+1 − ḡT
t+1,k,sxt ≥ h̄t+1,k,s, k = 1, 2, . . . , K, s = 1, 2 . . . , N, (5.10)

where K equals the number of backward passes that are already completed.
Using this approximation we can rewrite the first-stage problem from 5.7 as

z = min cT
1 x1 + θ2

s.t. A1x1 = b1,

θ2 − ḡT
2,k,sx1 ≥ h̄2,k,s, k = 1, 2, . . . , K, (5.11)

s = 1, 2, . . . , N,

x1 ≥ 0

and the problem at stage t becomes

Q̃t(xt−1, ξt) = min cT
t xt + θt+1

s.t. Atxt = bt(ξt) − Etxt−1, [πt(ξt)],
θt+1 − ḡT

t+1,k,sxt ≥ h̄t+1,k,s, k = 1, 2, . . . , K (5.12)
s = 1, 2, . . . , N,

xt ≥ 0

Here, the set of cuts is interpreted as empty, when K = 0.
For the algorithm to terminate, a convergence criterion is tested at the end of the
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forward pass. If the termination criterion is satisfied, the iterations stop, otherwise a
backward pass is conducted. The convergence check is satisfied when the lower bound
of the expected cost at first stage is statistically close to an estimate of the expected
total operation cost obtained by averaging the cost of the policy defined by the cuts when
applied to the N sampled scenarios. In some cases, the convergence test is simply replaced
with a maximal number of iterations after which the algorithm terminates.

In case of the convergence criterion not being satisfied, a backward pass is executed.
By doing so, N cuts are added to each stage problem, starting at the last but one stage.
Coefficients for the cuts are obtained by solving the next stage problems for all possible
realizations (Ωt+1) at each stage t and for each scenario s. The cut for 5.12 is computed
after its solution x̄k

t (s) has been obtained in the forward pass, immediately preceding
backward pass k. Solving the t + 1th (approximate) stage problem for every ξt+1 ∈ Ωt+1

results in dual variables π̄t+1,k,s = E[πt+1(ξt+1)]. Then, the cut gradient can be defined as

ḡt+1,k,s = −π̄T
t+1,k,sEt+1 (5.13)

and its intercept

h̄t+1,k,s = E[Qt+1(x̄k
t (s), ξt+1)] + π̄T

t+1,k,sEt+1x̄k
t (s). (5.14)

The algorithm is initialized by setting θt = −∞, t = 2, . . . , T, K = 0, k = 1. In the
following, a summary of the algorithm is given:

(1) Forward pass

(1.1) Do for t = 1,

(1.1.1) Solve 5.11 and save x̄k
1(s) = x1, s = 1, . . . , N and z̄k = z;

(1.2) Do for t = 2, . . . , T and s = 1, . . . , N ,

(1.2.1) Solve 5.12 setting xt−1 = x̄k
t−1(s), and save x̄k

t (s) and Q̃t(x̄k
t−1(s), ξt).

(2) Standard convergence Test (at 100(1-α)% confidence level)

(2.1) Calculate the Upper bound:
zu = 1

N

	N
s=1

	T
t=1 cT

t x̄k
t (s),

σu =
�

1
N

	N
s=1(

	T
t=1 cT

t x̄k
t (s))2 − z2

u

(2.2) Calculate the Lower bound:
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(2.2.1) zl = z̄k

(2.2.2) Stop if zl > zu − Z α
2√
N

σu,
where Zα is the (1 − α) quantile of the standard normal distribution;

(2.2.3) otherwise go to backward pass.

(3) Backward pass

(3.1) Do for t = T, . . . , 2 and s = 1, . . . , N ,

(3.1.1) Do for ξt ∈ Ωt, solve 5.12 using x̄k
t−1(s) and save π̄t,k,s = E[πt(ξt)] and

Q̃t(x̄k
t−1(s), ξt);

(3.1.2) Calculate the kth cut for s in stage t − 1 using 5.13 and 5.14.

(3.2) Set K = K + 1, k = k + 1.

Figures 9, 10 and 11 give a graphical outline of the main steps of the algorithm.

Figure 9: SDDP: Forward pass

5.2.1 SDDP with Markov Processes

So far, we have assumed that the stochastic variables are stage-wise independent in our
description of the SDDP algorithm. However, in the battery problem we want to solve, the
random variables have a distribution which is depending on an underlying state which is
following a Markov process. Therefore, we need to expand the standard SDDP algorithm.
Again, we base our approach on the work of Philpott and de Matos (2012).
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Figure 10: SDDP: Backward pass 1

Figure 11: SDDP: Backward pass 2

The main drawback of using an underlying Markov process is the necessity to evaluate
a future cost function for each value that the state may take, which results in an increase
of the dimension of the dynamic program that has to be solved.
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To start with, we assume that the process Wt, t = 1, . . . , T is a Markov chain with
transition matrices P (t). By i = 1, 2, . . . , S, we denote the realizations of Wt. Each Markov
state realization i at stage t corresponds to a set Ωti of outcomes ξti. Those particular
outcomes are conditioned by the realization of Wt.

For simplification, we assume that N = 1, i.e. that the forward pass contains only one
scenario.

Coming back to the first-stage problem, we assume that the system is in known state
s1 and that Ω1s1 is a singleton. Therefore, we have

z = min cT
1 x1 +

S�
j=1

P
(1)
s1jE[Q2j(x1, ξ2j)|W2 = j] (5.15)

s.t. A1x1 = b1,

x1 ≥ 0

where Q2(x1, ξ2j) represents the second stage costs associated with decision x1 and realiza-
tion ξ2j ∈ Ω2j. The problem that has to be solved at stage t then is

Qti(xt−1, ξti) = min cT
t xt +

S�
j=1

P
(t)
ij E[Qt+1,j(xt, ξt+1,j)|Wt+1 = j] (5.16)

s.t. Atxt = bt(ξti) − Etxt−1, [πt(ξti)] (5.17)
xt ≥ 0,

Now, the forward pass consists of a sequence of alternately sampled Markov state real-
izations and conditional outcomes. At every step we have to solve the problem given
the Markov state realization and observed stochastic variables at this stage, using a
cutting-plane approximation of future costs. Solving the problems results in a sequence of
Markov states and values for decision variables x̄t, t = 1, . . . , T − 1, which optimize each
of the approximate stage problems.

Again, the backward pass is used to compute cuts at stage t at the point x̄t−1. Now, a
different cut is included for all distinct states of the Markov process, i.e. at each backward
pass we have to solve 	S

t=1 |Ωti| linear programs.
What is left is the definition of the future cost function. This can be obtained in several

different ways using cuts.

Single-cut version
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In the single-cut version, the following minimization problem has to be solved for each
Markov state i in order to obtain an outer approximation of the problem at point x̄t−1:

Q̃t(x̄t−1, ξti) = min cT
t xt + θt+1,i

s.t. Atxt = bt(ξti) − Etx̄t−1, [πt(ξti)],

θt+1,i +
S�

j=1
P S

ij π̄t+1,j,kEt+1xt ≥
S�

j=1
P

(t)
ij h̄t+1,j,k,

k = 1, 2, . . . , K,

xt ≥ 0

where for each k = 1, . . . , K

P̄ it+1,j,k = E[πt+1(ξt+1,k)|Wt+1 = j] (5.18)

evaluated at iterate x̄k
t , and

h̄t+1,j,k = E[Q̃t+1,j(x̄k
t , ξt+1,j)|Wt+1 = j] + π̄T

t+1,j,kEt+1x̄
k
t (5.19)

Here −ET
t+1πt+1(ξt+1,j) is the subgradient of the optimal value function Q̃t+1(x, ξt+1,j) for

the subproblem solved in state j, which is a convex polyhedral function of x. Furthermore,
the conditional expectation of the optimal value function at x given state j is

E[Q̃t+1,j(x, ξt+1,j)|Wt = j].

This expectation is convex with subgradient

E[−ET
t+1πt+1(ξt+1,j)|Wt = j] = −ET

t+1π̄t+1,j

at x = x̄t.
The last term to be specified is the future cost function θt+1,i(x) evaluated at x in state

i with outcome ξti at stage t. This is nothing else than the expectation of the optimal
value function in each Markov state that might occur at the next stage. Mathematically,
this can be expressed as

θt+1,j(x) =
S�

j=1
P

(t)
ij E[Q̃t+1,j(x, ξt+1,j)|Wt = j],
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which is convex with subgradient −ET
t+1

	S
j=1 P

(t)
ij π̄t+1,j at x = x̄t.

Note that
θt+1,i(x) ≥ θt+1,i(x̄t) −

S�
j=1

P
(t)
ij π̄T

t+1,j,kEt+1(x − x̄t)

which shows that
θt+1,i +

S�
j=1

P
(t)
ij π̄t+1,j,kEt+1x ≥

S�
j=1

P
(t)
ij h̄t+1,j,k

is a valid cut for the approximate future cost.

Multi-cut version
The special feature of the multi-cut version is that future costs are represented by cuts for
each of the possible Markov states at the next stage. Thus, at stage t we have to compute

Q̃ti(x̄t−1, ξti) = min cT
t xt +

S�
j=1

P
(t)
(ij)θt+1,j

s.t. Atxt = bt(ξti) − Etxt−1, [πt(ξti)],
θt+1,i + π̄T

t+1,j,kEt+1xt ≥ h̄t+1,j,k, j = 1, . . . , S, k = 1, 2, . . . , K,

xt ≥ 0

where π̄T
t+1,j,k and h̄t+1,j,k are defined by 5.18 and 5.19. Similar to the single cut version, it

can be shown that solving the above system defines a valid outer approximation to the
future cost function using cutting planes.

In both versions of the algorithm, it is necessary to maintain s sets of cuts at each
stage. The difference is that each of the s subproblems uses one set of cuts in the multi-cut
version which leads to larger stage problems, whereas each node will use only one set of
cut sin the single cut version. The advantage of the multi-cut version is that, even tough
the size of each stage problem grows faster, it is expected to require fewer iterations until
convergence.

5.2.2 SDDP with Risk Measures

As a next step, we want to extend the SDDP approach to optimize a coherent risk measure
in the sense that large losses are penalized, without compromising the expected costs too
much. Therefore, we follow Philpott and de Matos (2012) and define a risk measure

ρ(Z) = βE(Z) + γCV aR1−α(Z) (5.20)
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where β and γ are nonnegative. It is easy to show that this risk measure is coherent. In
general, the measure is defined as a single period measure. Kovacevic (2012) extended it to a
dynamic risk measure ρt,T over t = 1, . . . , T in the following way: Given a probability space
(Ω, Σ,P), a dynamic risk measure applies to situations where we have a random sequence
of costs (Z1, . . . , ZT ) which is adapted to some filtration {0, Ω} = Σ1 ⊂ · · · ⊂ ΣT ⊂ Σ of
σ-fields and where Z1 is assumed to be deterministic. Furthermore, we define a dynamic
risk measure in terms of a sequence of conditional risk measures {ρt,T }, t = 1, . . . , T .

Corollar 5.1. Given a dynamic risk measure, one is able to derive a corresponding
single-period risk measure by

ρt(Tt+1) = ρt,T (0, Zt+1, 0, . . . , 0).

Theorem 5.2. Any time-consistent dynamic risk measure can be constructed in terms of
single-period risk measures ρt by

ρt,T (Zt, Zt+1, . . . , ZT ) = Zt + ρt(Zt+1 + ρt+1(Zt+2 + · · · + ρT −2(ZT −1 + ρT −1(ZT )) . . . ))).

Proof. A proof is given by Ruszczyński (2010).

Now we want to describe such a construction in a specific case of 5.20, namely

ρt(Z) = (1 − λt+1)E[Z|Σt] + λt+1CV aR1−α(Z|Σt)

with λt+1 measurable with respect to Σt.
The basic description of the SDDP algorithm is exactly the same as the standard

approach presented earlier in this chapter except for the problems to be solved and the
cut calculation.

To obtain an easier understanding of the influence of the risk measure, we provide an
outline of a linear two-stage problem aiming to minimize the first-stage cost as well as
the risk measure applied to the second-stage costs. This approach can be generalized to
T -stage problems, as it was done by Philpott and de Matos (2012) for example.

As always, we assume that the first stage is deterministic and that the second-stage
random variable has finite support Ω2. For this particular problem, we assume that
randomness only enters at the right hand side constrains. We want to solve a problem of
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the following form:

SP : min cT
1 x1 + (1 − λ)E[cT

2 x2] + λu2 + λα−1E[(cT
2 x2 − u2)+] (5.21)

s.t. A1x1 = b1,

A2x2(ξ) + E2x1 = b2(ξ), for all ξ ∈ Ω2,

x1 ≥ 0, x2(ξ) ≥ 0, for all ξ ∈ Ω2.

Note that one has to take two decisions at first stage, x1 and u2.
Given choices x1 = x̄1 as well as u2 = ū2 and replacing (cT

2 x2 − u2)+ with v2(ξ), where

v2(ξ) ≥ cT
2 x2(ξ) − u2, for all ξ ∈ Ω2

v2(ξ) ≥ 0, for all ξ ∈ Ω2,

the second-stage problem becomes

SP (x̄1, ū2) : min (1 − λ)E[cT
2 x2] + λα−1E[v2] (5.22)

s.t. A2x2(ξ) = b2(ξ) − E2x̄1, for all ξ ∈ Ω2,

v2(ξ) − cT
2 x2(ξ) ≥ −ū2, for all ξ ∈ Ω2,

x2(ξ) ≥ 0, v2(ξ) ≥ 0, for all ξ ∈ Ω2.

Decoupled from scenarios we get

Q(x̄1, ū2, ξ) = min (1 − λ)cT
2 x2 + λα−1v2 (5.23)

s.t. A2x2 = b2(ξ) − E2x̄1, [π2(ξ)]
v2 − cT

2 x2 ≥ −ū2, [φ2(ξ)]
x2 ≥ 0, v2 ≥ 0,

where [π2(ξ)] and [φ2(ξ)] are the dual multipliers. Due to strong duality, the optimal dual
solution satisfies

Q(x̄1, ū2, ξ) = π2(ξ)T (b2 − E2x̄1) − φ2(ξ)ū2.
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Then, the problem SP can be written as

SP : min cT
1 x1 + λu2 + E[Q(x1, u2, ξ)] (5.24)

s.t. A1x1 = b1,

x1 ≥ 0.

Problem 5.24 can be solved by applying Benders decomposition, solving

MP : min cT
1 x1 + λu2 + θ2 (5.25)

s.t. A1x1 = b1,

θ2k + π̄T
2kE2x1 + φ̄2ku2 ≥ h̄2k, k = 1, . . . , K

x1 ≥ 0.

Here, k counts the cuts that are added to the master problem,

π̄2k = E[π2k(ξ)],

φ̄2k = E[φ2k(ξ)],

h̄2k = E[Q2(x̄1k, ū2k, ξ)] + π̄2kE2x̄1k + φ̄2kū2k

and x̄1 and ū2k denote the values of the first-stage variables where cut k is evaluated.

5.2.3 SDDP with Risk Aversion and Markov-chain Uncertainty

Our next step is to combine the Markov stage model with the risk measure and to integrate
both of them into the SDDP algorithm. Fortunately, we can proceed in the exact same
way as we have done when implementing the Markov chain model, whereby each cut is an
affine function of u and x.

Starting from the risk -neutral problem 5.16, we now define

P
(t)
ij (ξ) = P

(t)
ij P(ξt+1,j = ξ|Wt+1 = j).

The single-period coherent risk measure we use at stage t is

ρt|i(Zt+1) = (1−λt+1(i))
S�

j=1

�
ξ

P
(t)
ij (ξ)Zt+1,j(ξ)+λt+1(i)× inf

u∈R
{u+ 1

α

S�
j=1

�
ξ

P
(t)
ij (ξ)(Zt+1,j(ξ)−u)+}.

Although we use the parameter λt+1(i) to compute the risk of outcomes at stage t + 1, it
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is measurable with respect to Σt. This is due to the fact that the observed Markov state i,
which determines our choice of λ, is measurable with respect to Σt.

For every Markov state i at stage t we now require S cuts, one for each possible value
of the Markov state at the previous stage. Therefore, we use parameters λ +t (s) and solve

Q̃tsi(xt−1, ut, ξti) = min (1 − λt(s))(cT
t xt + λt+1(i)ut+1 + θt+1,i) + λt(s)α−1vt

s.t. Atxt = bt(ξti) − Etxt−1, [πts(ξti)],
vt − (cT

t xt + λt+1(i)ut+1 + θt+1) ≥ −ut, [φts(ξts)]

θt+1 +
S�

j=1
P

(t)
ij π̄T

t+1,i,j,kEt+1xt+

S�
j=1

P
(t)
ij φ̄t+1,i,j,kut+1 ≥

S�
j=1

P
(t)
ij h̄t+1,i,j,k, k = 1, 2, . . . , Kt+1,

xt ≥ 0, vt ≥ 0.

At the kth iteration

π̄t+1,i,j,k = E[πt+1,i(ξt+1,j)|Wt = i, Wt+1 = j],

φ̄t+1,i,j,k = E[φt+1,i(ξt+1,j)|Wt = i, Wt+1 = j],

h̄t+1,i,j,k = E[Qt+1,i,j,k(x̄k
t , ūk

t+1, ξt+1,j)|Wt = i, Wt+1 = j] + π̄t+1,i,j,kEt+1x̄k
t + φ̄t+1,i,kūk

t+1

x̄k
t and ūk

t+1 are the values of xt and ut+1 obtained at the k th forward pass of SDDP,
assuming N = 1.

The cuts identified by this approach in Markov state i at stage t that correspond to
the previous state s are only valid for realizations of the Markov chain that visit s at stage
t − 1. One option would be to compute the cuts alongside the S − 1 cuts for the remaining
states whenever the Markov chain visits state i at stage t. Another approach would be
to add the cut corresponding to s one at a time to those cuts stored for Markov state i

whenever a forward pass of the algorithm visits state s immediately before i.
A more general approach where the authors are using Markov states to represent

stage-wise dependence in the uncertain parameters using Markov risk measures can be
found in the work of Ruszczyński (2010).
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5.3 Approximate Dynamic Dual Programming

Again, the goal is to solve a Markov Decision Problem, but now we want to take advantage
of the concept of scenario lattices, that we introduced in Section 4. The algorithm that
allows this modification is called approximate dynamic dual programming and was first
proposed in Löhndorf (2011) and Löhndorf et al. (2013). One of the first problems solved
by implementing an ADDP algorithm was the day-ahead bidding market. Löhndorf
(2011) divided the multi-stage problem into an intrastage and an interstage problem.
The intrastage problem included day-ahead bidding decisions as well as hourly reservoir
operations where prices were assumed to be random. On the interstage step of the model,
reservoir management from day to day, modeled as a Markov decision process, were
handled. To solve the problem efficiently, the authors proposed to integrate SDDP with
ideas from ADP.

The following procedure was used: A relaxed version of the intrastage problem was
used to approximate the value function of the interstage problem. Then, as in SDDP, the
interstage problem was solved by using forward simulation to sample candidate decisions
and backward recursion to construct an approximation of the value function. The next
step was to construct a polyhedral approximation by removing candidate decisions that
did not improve the approximation quality by a given epsilon to accelerate the sampling
process. The obtained polyhedral value function approximation of the interstage problem
was then used within the original intrastage problem to find near-optimal bidding and
operational decision.

Following Löhndorf et al. (2013), we will explain the ADDP method in more detail.
Before, we have to make a few assumptions concerning the structure of the problem we
want to solve:

• The optimization problem is linear/ convex,

• The environmental state of the problem can be modeled as a Markov process and
discretized using a scenario-lattice,

• The problem has relatively complete recourse,

• Uncertainty enters the problem only on the right hand side.
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5.3.1 Approximating the Value Function

To refresh our memory, we start with a short overview of the variables we have to deal
with.

The objective of the battery operator is to minimize the expected costs for a given
environmental state St ∈ St and initial storage states Bt−1 ∈ B at stage t ∈ 1, . . . , T . Here,
the variable B indicates the set of all possible storage states. x = x1, . . . , xT again denotes
the decision policy. Note that the random profits are now referred to as ft(St, Bt−1, xt).
γ again is the discount factor. If we have a given start storage state B0 and a given
salvage value, we can calculate the value of being in state St with initial resource state
Bt−1 through

Vt(St, Bt−1) = max
xt

{E[ft(St, Bt−1, xt) + γ
�

St+1∈St+1

P(St+1|St)Vt+1(St+1, Bt(xt))]} (5.26)

for St ∈ St, Bt−1 ∈ B and t = 1, . . . , T (See 3.11,5.1).
As in 5.1, we will need the post decision value for fixed V̄T :

V̄t(St, Bt) =
�

St+1∈St+1

P(St+1|St)Vt+1(St+1, Bt) (5.27)

for St ∈ St, Bt ∈ B and t = 1, . . . , T . In the course of the ADDP algorithm we will
recursively build an approximation of the post-decision value. To do so, we need to model
the post-decision value Vs as a concave, piecewise-linear function of the final storage state
BsjT . This approach of handling the post-decision value function was first proposed by
Pereira and Pinto (1991). For a given state St, the post-decision value function can be
defined as the minimal of a set of hyperplanes N = {1, . . . , N} with intercepts an(St) and
slopes bnj(St) so that the future value of storage is given by

Vs = min
n∈N

{an(St) +
�
j∈J

bnj(St)BsjT } ∀s ∈ S. (5.28)

If we now denote the optimal value of the original problem relaxed to a linear problem by
V 


t (St, ·), the post decision value function can be described as a concave, piecewise-linear
function. To construct an approximation ˆ̄V 


t−1(St−1, B) of the post-decision value function,
we first have to sample a set of storage states {B̂1, . . . , B̂N} with B̂n ∈ B. Then, we have
to calculate the corresponding hyperplanes at points

(B̂11, . . . , B̂1J , V 

t (St, B̂1)), . . . , (B̂N1, . . . , B̂NJ , V 


t (St, B̂N)) ∀St ∈ St.
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Let ∂BVt(St, Bt) be the set of super-gradients of the function Bt → V 

t (St, Bt). Next,

we select one element, b(St) from this set of super-gradients, which is the slope of the
supporting hyperplane of V 


t (St, ·) at (B̂1, . . . , B̂J , V 

t (St, B̂)). Then the hyperplane is given

by
H(St, B; B̂i) = a(St) + b(St)T B, a(St) = V 


t (St, B̂) − �
j∈J

bj(St)B̂ij, (5.29)

with a(St) ∈ R and b(St) ∈ RJ . Due to the fact that we are considering linear programs,
the slopes b(St) can be obtained from the dual variables λ associated with the constraints
of the original optimization problem.

To conclude, the obtained approximate post-decision value function is given by

ˆ̄V 

t−1(St−1, B) = min{ �

St∈St

P(St|St−1)(an(St) + bn(St)T (B − B̂n)), n = 1, . . . , N}. (5.30)

Here the hyperplane at point B̂n is the weighted sum of all hyperplanes H(St, B; B̂n) over
all successor states.

Proposition 5.3. (Value function approximation)
The value function approximations in any iteration are upper bounds for the real value
functions.

Proof. A proof is given by Löhndorf et al. (2013) for example.

5.3.2 Approximate Dual Dynamic Programming

As it would be to much effort to calculate every single one of the hyperplanes, as introduced
in the last section, similar to SDDP, the ADDP algorithm uses Monte Carlo simulation to
define a set of sample resource states. The algorithm is initialized with an environmental
state S1, a resource state B0, initial value functions ˆ̄V 


t and the set Mt = ∅, t = 1, . . . , T .
In the following, an outline of the algorithm is given:

Input arguments: initial value function ( ˆ̄V 

t )T

t=1, initial states S1 and B0

Do for n = 1, 2, . . . , N

(1) Forward pass
Do for t = 1, 2, . . . , T − 1

(1.1) Sample a scenario s from the lattice

(1.1) Solve B̂nt ← argminxt
{C(St, Bt−1, xt) + γ ˆ̄V 


t (St, Bt(xt))} for the single scenario
s
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(1.1) Sample St+1 ← SM(St)

(2) Backward pass
Do for t = T, T − 1, . . . , 2

(2.1) Do for all St ∈ St

(2.1.1) Do for m ∈ Mt ∪ {n}
(2.1.1.1) Get hyperplane (am(St), bm(St)) ← Hmt(St, B; B̂mt−1) ∈ ∂BV 


t (St, B̂mt−1)

(2.2) If ∃St ∈ St : |V̂ 

t (St, B̂nt−1) − V 


t (St, B̂nt−1)| > " then Mt ← Mt ∪ {n}
(2.3) Do for all St−1 ∈ St−1

(2.3.1) ˆ̄V 

t−1(St−1, B) ← min{	

St∈St
P(St|St−1)(am(St) + bm(St)T (B − B̂mt)), m ∈

Mt}

(3) Return post decision value function ˆ̄V 

t (t = 1, . . . , T − 1)

For more details on the algorithm we refer to (Löhndorf et al., 2013).

Proposition 5.4. (Convergence of ADDP)
Denote xe as the policy obtained by ADDP for " > 0 and x∗ as the optimal policy of the
relaxed problem. For a given initial resource state level B0, the policies obtained by ADDP
for " = 0 converge to the optimal policy in a finite number of steps. The values obtained
from following xe are at most "(T − 1) worse than the optimal values.

Proof. See (Löhndorf et al., 2013).

Concluding this section on solution methods, we have gained all the theoretical know-how
needed to construct a real life application. Therefore, we will put our stochastic dynamic
battery charging problem to test in an application example in the next section.
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6 Numerical results
This section aims to numerically analyze an existing battery storage system. To do
that, we use the theory developed in previous sections. The system consists of an office
building demanding electricity, several PV plants and a 230 kWh Li-Ion battery. We
assume that there is just one proprietor who owns the building, the PV plants and the bat-
tery. The goal is to operate the battery optimally, aiming at expenditures as low as possible.

For lattice construction and ADDP, we use the QUASAR optimization library, pro-
vided by (Löhndorf, 2017). We implement the library in Python, but implementations in
Java, Matlab or R would also be possible.

Section 6.1 explains how the lattice used for calculations is constructed. Section 6.2
introduces the two different scenarios with their associated parameters which we are
investigating and discusses the special conditions that are used for optimizing by the
software. The last Section of this chapter presents the numerical results obtained in our
case study.

6.1 Lattice construction

The first step in our analysis is the construction of the corresponding scenario lattice.
The data this lattice must contain is composed of electricity prices,PV-generation and
electricity consumption.

One reason why we chose QUASAR is that the integrated dynamic optimizer will converge
to an optimal solution of the stochastic-dynamic decision problem if the randomness can
be represented by a scenario lattice. A big advantage of QUASAR hereby is that the
software itself is able to construct lattices. Therefore, three different approaches can be
used

• QUASAR is able to construct lattices automatically by discretizing a (possibly
continuous) Markov process.

• One can build a lattice manually, starting with an empty lattice.

• QUASAR can fit a lattice statistically from real data.

In our case study, we use the third strategy.
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Our goal is to optimize the charging behavior of the battery over a one year time horizon.
Due to numerical tractability we have to assume decision making once every four hours.
This results in a stochastic optimization problem with 2190 stages. Using the provided
data as input, QUASAR builds a 2190 stage scenario lattice, with 100 nodes per stage
and forward estimation as base case. This means that state transition probabilities are
generated depending on the partition around each node. As distance measure for optimal
quantization, we take the squared Euclidean distance.

In the following, we give an overview of the data we use for our setting and of its
modifications.

6.1.1 Electricity Prices

To model the random variable ’price’, we use data provided at the platform Neon (2016).
For our concerns, we take the day-ahead market data from Germany from the years 2012
to 2018 and adapt it in the following way: First, because it is easier to handle, we modify
each year so that it has exactly 52 weeks and starts with a Monday each. Next, we have
to take into account that seven years of data is far too less to build a descriptive lattice.
To solve this issue, we simply shift the data week-wise, five times forwards and five times
backwards, resulting in 77 years of data.

As mentioned before, due to numerical tractability we have to change the time resolution
of the data from hourly to four-hourly by just taking the mean in four hour steps. As
initial state of the lattice, we take the value 0.15€ as the price component. Figure 12
shows the original price data from 2012 in comparison to the simulated price lattice.

6.1.2 PV Generation

We also model the uncertainty concerning ’PV-production’ by accessing the data platform
Neon (2016) We adapt the data from 2012 to 2018 for German solar generation to our
needs. Again, we define a year by exactly 52 weeks, each year starting on a Monday and
shift the generation day-wise, five times forwards and five times backwards, to obtain 77
years of PV production data. Then, we change the time resolution to a four-hourly period.
The last thing we have to do regarding PV is to normalize the German data to a particular
location in Styria (Austria). We assume an installed PV capacity of 240 kWp, which leads
to an annual production quantity of 264 000 kWh, taking into account local conditions
such as special angle of solar radiation. In Figures 14 and 15, a comparison of the actual
PV production input data from 2012 and the generated scenario lattice for PV production
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Figure 12: Original price data from
2012

Figure 13: 100 different price scenarios sim-
ulated on the lattice. The dotted red line
represents the mean of the different scenarios.
In the small picture the development of the
trajectories, starting at the same initial state
is shown.

is given. Figure 16 shows the scenario development on the lattice in greater detail.

Figure 14: Original PV generation
data 2012

Figure 15: Simulated PV generation scenarios
on the lattice. The dotted red line represents
the mean of the different scenarios. In the
small picture the development of the trajec-
tories for the first week in January is shown.

6.1.3 Electricity Consumption

The hardest part concerning data collection was to find appropriate electricity consumption
data for office buildings. Due to the lack of better alternatives, we use data from DOE
(2012). One can find hourly load profile data for 16 commercial building types including
office buildings at different locations in the United States. Because there is just one
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Figure 16: pv scenario development on the lattice. The dotted red line represents the
mean of the different scenarios. In the small picture daily fluctuations of pv production
are illustrated.

representative year of data available for every building , we take the yearly load profiles
of six different office buildings. We adapt the data to the climatic conditions in Austria
remove American holidays from the dataset. Then, we exactly proceed as in previous cases
of prices and PV production, in particular taking means every four hours and shifting
the data week-wise five times forwards and five times backwards, resulting in 77 years of
consumption data. We assume the annual electricity demand to be around 800 000 kWh.
So as a last step, we have to normalize the yearly consumption. As initial state of the
lattice for consumption we take 120 kWh.

Figure 17 shows the input data load profile from 2012 compared to the electricity
consumption lattice generated by QUASAR.

Note that, if looking at the data in precise terms, one generally has to pay attention to
winter and summer time (sometimes referred to as daylight saving time) conventions for
the geographical area in question. Nowadays, some places around the world use these
conventions, others don’t. The application of daylight saving time includes advancing the
clock from 2:00 to 03:00 in spring resulting in a day with only 23 hours. In autumn, the
clock is set back from 03:00 to 02:00 implying a 25 hours day. This behavior influences
the electricity demand in affected areas, while PV-production is not influenced. As we are
conducting an analysis of yearly charging and discharging behavior, the influence of one
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Figure 17: Original consumption
data 2012

Figure 18: Electricity consumption scenarios
simulated on the lattice. The dotted red line
represents the mean of the different scenarios.
In the small picture the development of the
trajectories in the first week of January is
shown. The low electricity consumption is
representative for the demand profile of an
office building

hour more or less is insignificantly small, so we simply ignore it completely.

6.1.4 Comparison of Data and Lattice

The figures in the last paragraph have already shown that there are no striking inconsis-
tencies between the true data and the constructed lattices at first sight. Taking a look at
the descriptive statistics in Table 1, we can actually see that important properties such as
mean, variance or skewness as well as serial dependence remain unchanged.

Table 1: Descriptive statics data vs lattice

data mean std min 0.5% 2.5% 50% 97.5% 99.5% max
pv 120.485 176.111 0.000 0.000 0.000 23.451 587.734 689.449 818.954

cons 365.685 221.074 94.537 94.537 114.734 272.874 796.394 835.800 919.311
price 0.094 0.016 -0.142 0.048 0.065 0.093 0.125 0.144 0.219
lattice mean std min 0.5% 2.5% 50% 97.5% 99.5% max

pv 120.458 175.037 0.000 0.000 0.000 24.891 588.492 687.109 800.302
cons 365.813 220.931 94.537 97.332 116.858 273.256 797.672 826.965 888.876
price 0.092 0.011 -0.142 0.060 0.070 0.093 0.113 0.120 0.181
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6.2 Implementation

In the course of our case study, we examine two different scenarios which merely differ in
the assumed costs of the battery. In the following, the taken assumptions are summarized.

6.2.1 Parameters and Modeling- Base Scenario

Having constructed the lattice, the next step is to model the decision problem with
QUASAR. Therefore, the parameters summarized in Table 2 are used. Furthermore, we

Table 2: Parameters used for the base scenario, representing actual battery prices

Parameter Value
capacity of the battery (kWh) 230
efficiency of the battery (%) 98

fixed costs of the battery (€/kWh) 920
battery costs for (dis)charging (€/kWh) 0.076

make the following assumptions:

Assumption 6.1. On account of the short planning horizon of one year, we assume that
there are no maintenance costs.

Assumption 6.2. Due to the fact that it is possible to fully charge the battery in four
hours, we take the maximal capacity of the battery as upper bounds on storage capacity as
well as on charge and discharge rate.

Assumption 6.3. Because of the low level (about 3% per month) of self-discharge of a
Li-Io battery we ignore this aspect in the simulation completely.

Assumption 6.4. We assume that the battery is empty at the begin of the planning
horizon.

6.2.2 Parameters and Modeling- Reduced Battery Costs

Due to the rapid decline in battery prices in the past decades, we decided to examine the
effects of a cheaper battery on the simulation outcomes.

The parameters used for modeling the battery system are summarized in Table 3.
Furthermore, we still assume that assumptions 6.1 to 6.4 hold true.
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Table 3: Parameters used in the scenario with reduced battery costs

Parameter Value
capacity of the battery (kWh) 230
efficiency of the battery (%) 98

fixed costs of the battery (€/kWh) 460
battery costs for (dis)charging (€/kWh) 0.038

6.2.3 Optimizing with QUASAR

After implementing the model with the related parameters from 6.2.1 and 6.2.2 we are
ready to hand over the constructed lattice and the model to the optimizer. To solve
the stochastic optimization problem, we run ADDP for 2465 iterations. Hereby, the
algorithm rejects supporting hyperplanes that improve the current approximation by less
than " = 1.e − 6. Dominated cuts are removed from the value function automatically.
The accuracy of the convergence check, defined as the ratio of the half width of the
confidence interval and the sample mean, is set as 0.05. The width of the confidence level
of the convergence check is set as 0.95. After performing 5 iterations, the solver checks
a termination criterion. The linear solver used by the program is CLP’s dual simplex
algorithm.

6.3 Results

Now we turn to studying the actual performance of the ADDP approach. Therefore,
we evaluate policies for five different solution strategies for both scenarios, i.e. the base
scenario and the scenario with lower battery costs.

First, we compute the solution of the deterministic problem, meaning that we ignore
the stochastic part of it and solve the dynamic part of the optimization problem by simply
using the expectation of the stochastic process. We refer to this scenario as ’static’ in
the sense that, once we come up with a plan to solve the problem, we shall not revise it
over time on the basis of contingencies. Next, we evaluate the solution of the problem
under perfect foresight, the clairvoyant solution. For the third scenario, we use the ADDP
approach and therefore assume a risk-neutral decision maker where the battery operator
minimizes the expected costs. The fourth problem assumes a strong risk averse decision
maker who maximizes a weighted combination of expected value and CVaR. In the last
scenario, the optimal behavior of a weak risk averse battery operator is investigated.

Table 4 summarizes the considered solution strategies.
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For both scenarios we start with comparing the losses of the five different solution

Table 4: Summary of the considered solution strategies

Name Description
static deterministic problem, using the expectations of the stochastic process

clairvoyant solution under perfect foresight
stochastic stochastic solution with risk neutral decision maker

strong risk aversion stochastic solution with strong risk aversion of the decision maker
weak risk aversion stochastic solution with weak risk aversion of decision maker

strategies before taking a closer look at each of them.
To inspect the performances of the policies determined for the different solution

strategies, we perform forward simulations of the decision problem, using the respective
policy to make decisions. Therefore, we generate 100 samples with the input data and
analyze the performance of every solution strategy based on the sampled scenarios.

6.3.1 Base Scenario

For the Base Scenario, we consider the parameters introduced in section 6.2.1. Under
those conditions, Table 5 summarizes the mean expenditures from following the optimized
policies and its standard deviation, whereby positive numbers imply income generated by
selling electricity to the grid, while negative numbers account for the amount of money the
operator has to pay for electricity. We observe that the values of mean annual electricity
costs are negative in every scenario, implying high expenditures for electricity. This can
be explained by the relatively small share of PV generation compared to the consumption
level. The relation of high consumption level to low PV generation goes hand in hand
with a loss of the possibility to sell PV power or stored electricity to the grid, because the
whole energy would be needed to fulfill the demand.

Nonetheless, the results are in line with the underlying theory: The clairvoyant solution
provides an upper bound for the performance of the stochastic solution, whereas the static

Table 5: Comparison of the loss distributions following the optimal policies

mean std min 25% 50% 75% max
static -52 894.818 3 142.911 -57 352.592 -56 181.705 -52 408.751 -50 259.186 -47 471.765

clairvoyant -52 888.107 3 141.656 -57 352.592 -56 174.060 -52 391.745 -50 252.015 -47 469.163
stochastic -52 889.180 3 142.041 -57 352.592 -56 174.089 -52 395.597 -50 252.015 -47 469.163

strong risk aversion -52 888.338 3 141.528 -57 352.592 -56 174.060 -52 391.745 -50 252.015 -47 469.163
weak risk aversion -52 889.239 3 138.041 -57 317.331 -56 116.587 -52 341.237 -50 198.696 -47 448.011
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solution provides a lower bound. The electricity costs resulting from following a risk averse
solution strategy are higher than following a risk neutral approach. Figure 19 outlines
these findings by comparing the mean annual expenditures for electricity for the different
scenarios ignoring risk. Figure 20 shows the loss distribution of the static case compared

Figure 19: Comparison of the mean annual expenditures under the assumption of high
battery costs, considering a static decision maker, a clairvoyant decision maker and a
stochastic decision maker.

to the stochastic scenario. We can observe that the mean total costs are higher if we follow
the solution determined by the deterministic approach than the results we get following
the policy obtained by the ADDP algorithm.

Figure 20: Comparison of the loss distributions of the solution approaches ’stochastic’
(left) and ’static’ (right)
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Stochastic Solution Strategy
Now we take a closer look at the determined stochastic solution policy. First, the
convergence behavior of the stochastic solution is analyzed. Therefore, a summary of the
algorithm info is given in Table 6, including the expected expenditures of every step, the
related simulation losses, the standard deviation, the amount of forward simulations the
algorithm run, the amount of time the calculation took, the amount of cuts the algorithm
created, the amount of solves it took and the primal and dual values of the problem.
We can observe that the solver has already verified statistical convergence after 20 steps.
For the convergence check the solver ran 100 forward simulations and thereby tested the
difference between expected loss (dual) and simulated loss (primal).

Table 6: Summary of algorithm information for the stochastic scenario

Figure 21 gives an overview of the optimal charging and discharging behavior of the
battery. The dark blue dotted line marks the mean over the 100 considered scenarios. One
can see that in the base case the battery is nearly never used. This is due to the high
expenditures in conjunction with the high battery costs.

Strong Risk Aversion
The objective of the strong risk averse decision maker is to minimize the expected short-
fall by penalizing large losses, instead of maximizing the expected profit. The resulting
objective function is:

Astrong(X) = 0.2 E(X) + 0.8 CVaR0.95(X) (6.1)

It is important to note that in QUASAR no automatic convergence check exists, if we
use the algorithm with a risk functional. For that reason we define the iterations until
termination as 2500. Table 7 shows a summary of algorithm information using the above
defined risk averse objective function. Notice, that the calculation time compared to
the risk neutral (stochastic) approach is now about 390 times higher. This is due to the
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Figure 21: Comparison of the optimal charging and discharging behavior. The blue dotted
line represents the mean value of the amount of kWh which are charged and discharged
over the considered 100 scenarios. Actually, the battery is nearly never used.

relatively high number of iterations we set. Table 5 shows that the losses of a strong weak
averse decision maker are a little bit lower on average, than in the risk neutral case, even
if the worst case and best case scenarios are the same.

Weak Risk Aversion

Table 7: Summary of algorithm information using a strong risk averse objective function

For the weak risk averse decision maker we assume the following objective function:

Aweak(X) = 0.8 E(X) + 0.2 CVaR0.95(X) (6.2)

Table 8 presents the summary of the algorithm information. Again, compared to the
strong risk averse solution strategy, the calculation time nearly doubled. As we can see
in Figure 22, the distribution of the resulting optimal expenditures is identical to the
one in the stochastic case, where just the expectation is maximized, and the distribution
function for the strong risk averse decision maker. An explanation for this surprising result
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Table 8: Summary of the algorithm information for the weak risk averse solution approach

could be, that in our example the results of the different scenarios are almost the same.
In combination with the relative high standard deviation error this could lead to almost
the same distributions. This result should be verified in further research, maybe using
different software or visualization tools.

Alternative initial state

Figure 22: Loss distribution of the strong risk averse solution strategy, the weak risk averse
solution strategy and the risk neutral solution strategy. All three of them are identical.

Let us now replace assumption 6.4 with the following assumption:

Assumption 6.5. We assume that the battery is fully charged at the beginning of the
planning horizon.
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The first thing we observe is an extreme change in the decision variable ’state of charge’
of the battery. In Figures 23 and 24, a comparison of the development of the charging
level of the two different initial states is given. It can be observed that in the case of a
fully charged battery at t = 0, the battery charge level decreases slowly over the whole
time horizon on average.

If we now take a look at the loss distributions of the strong risk averse solution strategy

Figure 23: Development of the state of
charge of the battery with initial state 0

Figure 24: Development of the state of
charge of the battery with initial state
230

compared to the risk neutral approach again we finally can see the expected shift in the
distributions. In this case, the loss of the strong risk averse decision maker is concentrated
around its mean with low downside risk but also limited upside potential. This finding is
shown in Figure 25. The distribution of the weak risk averse case compared to the risk
neutral case is shown in Figure 26. Although, we can observe that the potential of high
losses of the weak risk averse battery operator are higher than the losses of the risk neutral
operator, the mean losses of the weak risk averse solution strategy are lower than in the
risk neutral approach.

6.3.2 Reduced Battery Costs

Under the assumption of reduced battery costs the different solution strategies lead to the
outputs summarized in Table 9. Again, in line with the underlying theory, the static and
clairvoyant solution approaches are the bounds of the stochastic solution strategy. If the
decision maker accounts for risk, the maximum expenditures are a bit lower than in the
risk neutral approaches, whereas the mean expenditures are a bit higher.

Stochastic Solution Strategy
The first thing we can observe is that in the scenario with reduced battery costs is a
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Figure 25: Loss distribution of the strong risk averse solution strategy (red) and the risk
neutral solution strategy (blue)

Figure 26: Comparison of the loss distribution of the weak risk averse solution strategy
(red) and the risk neutral solution strategy (blue).
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Table 9: Comparison of the loss distributions under the assumption of reduced battery
costs, following the different solution strategies

mean std min 25% 50% 75% max
static -52 881.145 3 138.313 -57 336.640 -56 162.195 -52 385.201 -50 244.159 -47 473.617

clairvoyant -52 849.176 3 138.136 -57 317.331 -56 116.587 -52 341.237 -50 198.611 -47 446.599
stochastic -52 849.239 3 138.041 -57 317.331 -56 116.587 -52 341.237 -50 198.696 -47 448.011

strong risk aversion -52 849.442 3 138.030 -57 317.331 -56 116.587 -52 342.937 -50 198.696 -47 448.011
weak risk aversion -52 849.239 3 138.041 -57 317.331 -56 116.587 -52 341.237 -50 198.696 -47 448.011

lot more charging and discharging activity than in the base case. Although it would be
possible for the model to charge and discharge the battery simultaneously, as predicted,
the optimization never finds it optimal to charge and discharge the storage at the same
time step (see Figures 27 and 28). Another interesting fact is, that it is nearly never
optimal to not fully charge or discharge the battery. This is visualized in Figure 29.

Note that, although the battery is used more often, the overall expenditures are lower
than in the scenario with higher battery costs. This is a clear indication of the possibility
to reduce electricity expenditures by using a battery.

Figure 27: Optimal charging behavior of a battery under the assumption of reduced
battery costs. The dotted blue line represents the mean of the 100 considered scenarios.
Compared to the Base Scenario with higher battery costs the battery is charged much
more frequently.

Figure 30 shows the loss distribution of the static case compared to the stochastic
scenario. We can observe that the distributions are in line with the data presented in
Table 9. The results determined for the total expenditures are lower on average, if the
solution was conducted by stochastic, rather than deterministic optimization.
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Figure 28: Optimal discharging behavior under the assumption of reduced battery costs.
The dotted blue line represents the mean of the 100 considered scenarios. Compared to
the Base Scenario with higher battery costs, now, the decision maker makes much more
use of the battery.

Figure 29: Evolution of the charge level (SoC) of the battery over one year under the
assumption of lower battery costs, shown for one representative scenario.
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Figure 30: Loss distribution of the stochastic solution approach (left) compared to the
loss distribution obtained from the deterministic solution approach (right) under the
assumption of reduced battery costs

Figure 31 shows the development of the state of charge of the battery over time.

Figure 31: Development of the state of charge of the battery over the simulated year,
assuming reduced battery costs. The dotted blue line represents the mean of the 100
considered scenarios.
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7 Conclusion
We formulated a multistage stochastic optimization problem for optimal battery system
operation, facing stochastic electricity prices, stochastic electricity demand and stochastic
PV generation. Furthermore, we modeled different risk preferences of the decision maker,
including risk neutral, risk averse and risk loving.

We introduced ADDP as a generic framework for solving discrete-time MDPs and
compared the performance of the stochastic solution to a deterministic optimization
approach and found that the performance of the stochastic solution is quite promising.

In general, energy storage systems combined with PV panels are an efficient way of
increasing the level of self-use of the generated electricity. Batteries also offer the possibility
of storing energy at off-peak hours (usually at night), when electricity prices are low, in
order to sell or use the stored electricity at a later point in time. But even if we take
those profit generating opportunities into account, our case study shows that the operation
of a battery is currently not economical under the taken assumptions. However, the
combination of PV systems and batteries is increasingly used due to its contribution to
other areas, such as emergency protection (blackout protection) or flexibility coverage,
often of course due to various funding incentives. Therefore, I propose that economic
efficiency should go beyond the classic sense in further considerations and that these
aspects should also be taken into account.

The stochastic optimization approach for the integration of renewable energies is
very promising. It enables more advantageous decision making compared to conventional
optimization. If the battery is operated according to the schedule developed with stochastic
optimization, several hundreds of euros can be saved every year. The disadvantage of
stochastic optimization is that a lot more input data is required to generate a larger lattice,
i.e. more possible nodes per time step, if no underlying probability distribution is used.
The rule of thumb herein is:

number of nodes per time step =
�

years of data that is available

In order to map a realistic number of possible states without storing a probability distri-
bution as a transition function, it would take 10.000 years of available data. Thus, the
easier approach would be to construct a stochastic process representing the input data.

In general, it would be important to have good data as a basis for further models. In
particular, load profiles for office buildings including a period of several years are currently
very difficult to find.
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A further disadvantage of stochastic optimization is the currently high computing time.
Further procedures and algorithms should be developed in order to make the process
suitable for other applications.

Another point that should be examined in more detail are the calculation results
concerning the risk averse decision maker. The values should be verified using another
software.

The performance price should be integrated as a decision variable in future studies,
which could also be a way to reduce electricity costs, especially for bulk purchasers. As a
further step, various PV feed-in mechanisms and their effects on the solution should be
considered in the calculations. In general, there also is a need to consider the problem
in light of the fact that different buildings using the battery may have different owners.
Different ways of dividing the profit should be examined and various possible framework
conditions for using the battery should be developed.
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