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Kurzfassung

In dieser Arbeit wird ein neuer Ansatz zur suffizienten Dimensionsreduktion für longitudi-
nal gemessene Prädiktoren und eine reellwertige Zielvariable untersucht. Die meisten be-
stehenden Reduktionsverfahren, die die longitudinale Struktur ignorieren, können zu einem
Informationsverlust führen, da die Zeitinformation nicht genutzt wird. Wir stellen zunächst
eine der ersten linearen Reduktionsmethoden, den Sliced Inverse Regression (SIR) Algo-
rithmus, und seine Anpassung für Longitudinaldaten (LSIR) vor. Letztere wird als Bench-
mark für die Prognoseleistungen der Reduktionen dienen. Anschließend definieren wir das
Structured Time-Dependent Inverse Regression (STIR) Modell, das den bedingten Mittel-
wert der Prädiktoren in Abhängigkeit von der Zielvariable mit Hilfe von Funktionen der
Zeit und der Zielvariable modelliert. Für dieses Modell leiten wir Kleinste-Quadrate und
Maximum-Likelihood-Schätzer der Parameter her und finden eine Reduktion der Marker,
wobei der Zeite↵ekt im Modell berücksichtigt wird. Die Vorteile des Modells liegen darin,
dass verschiedene Zeitpunkte für jedes Individuum modelliert werden können und dass eine
einfachere Interpretation der Reduktion ermöglicht wird, da nur die Marker reduziert wer-
den. Wir untersuchen die Genauigkeit der Parameterschätzer und die Prognosefähigkeit der
Reduktionen für dieses Modell in einer umfangreichen Simulationsstudie. In den meisten
Simulationsszenarien und für einen realen Datensatz ist STIR konkurrenzfähig mit dem
longitudinal angepassten SIR-Algorithmus und mit Standardregressionsmethoden, die die
vektorisierten, nicht reduzierten Prädiktoren verwenden. In bestimmten Simulationsszena-
rien für eine binäre Zielvariable, bei denen das erste und zweite Moment der Prädiktoren
von der Zielvariable abhängen, übertri↵t STIR die anderen Methoden in der Vorhersage-
leistung deutlich.



Abstract

This thesis explores a new sufficient dimension reduction approach for longitudinally mea-
sured predictors and a real response. Most existing reduction techniques ignore the longitu-
dinal structure and can lead to a loss of information, since the time information is not used.
We first introduce one of the first linear reduction methods, the Sliced Inverse Regression
(SIR) algorithm, and its adaptation for longitudinal data (LSIR), which serves as bench-
mark for the predictive performance of the reductions. Then, we define the Structured
Time-Dependent Inverse Regression (STIR) model, which models the conditional mean of
the predictors given the response using functions of time and the response. For this model
we derive least squares and maximum likelihood based parameter estimates, and find a
reduction of the markers that accounts for the time e↵ect. Advantages of the model are
that di↵erent time points for individuals can be modeled and the reduction of markers only
allows an easier interpretation of the reduction. We assess the estimation accuracy of the
parameter estimates and the predictive ability of the reductions for this model in extensive
simulation studies. Throughout most of the simulation settings and on a real data set,
STIR is competitive with the longitudinally adapted SIR algorithm and to standard re-
gression methods using the vectorized unreduced predictors. In certain simulation settings
for a binary response, where the first and second moment of the predictors relate with the
response, STIR excels in predictive performance against the other methods.
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1. Introduction

In many studies aiming to find strong indicators of diseases, multiple biomarkers are mea-
sured, because there is no single biomarker with high classification accuracy. Often, these
measurements are also taken repeatedly over time, e.g. in cohort studies during follow up.
In practice, the sample size of such studies is often rather modest, which limits the use
of statistical methods that estimate many parameters or rely on asymptotic properties.
Dimension reduction techniques, such as Sliced Inverse Regression (SIR) by Li [15], aim to
combine the relevant information of multiple markers into a lower dimensional score, that
contains sufficient information for the regression of the outcome on the markers.

However, in the case of longitudinally measured predictors, or matrix-valued predictors in
general, the data structure can contain additional useful information and accommodating
it is beneficial in modeling.

[17] proposed and studied first moment based dimension reductions by assuming that the
first and second moment of the predictors can be separated into a Kronecker product of
time and marker specific components, reducing the complexity of the first-moment suffi-
cient dimension reduction (FMSDR) space. They also proposed the LSIR algorithm, an
extension of SIR for longitudinally measured predictors. In simulations and a real data
set, the resulting reduction yielded better predictive performance than the SIR algorithm
applied to the vectorized predictors.

In another work, [18], assumed a Kronecker structure only for the first moment without
requiring a specific structure for the covariance. Under a linear model framework, they
proposed and studied computationally efficient least squares based estimates of sufficient
reductions.

This thesis explores a new sufficient dimension reduction approach for longitudinally mea-
sured predictors and a real response based on modeling their first moment using known
functions of time and the response. The method is called Structured Time-Dependent In-
verse Regression (STIR). Using a least squares based estimator of coefficients, the derived
reduction reduces the markers, while accounting for the e↵ect of time.

In Chapter 2, the theoretical setting for dimension reduction is defined and, after a short
overview of multivariate linear regression, the first linear reduction methods, the SIR al-
gorithm, and its adaptation to longitudinal data are described. LSIR serves as benchmark
for the predictive performance of the reductions later in simulations. We define the STIR
model in Chapter 3, and derive least-squares and maximum likelihood based parameter
estimates for a sufficient reduction. We also provide a hypothesis test for variable selection
in that model. Advantages of this model are that di↵erent time points for individuals can
be modeled and the reduction of markers allows an easier interpretation of the reduction.
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1. Introduction

We assess the estimation accuracy of the parameter estimates and the predictive ability of
the reductions for this model in extensive simulation studies in Chapter 4 and on a real
data set from a study on brain cancer in Chapter 5. Throughout most of the simulation
settings and on the real data set, STIR is competitive to the longitudinally adapted SIR-
algorithm and to standard regression methods using the vectorized unreduced predictors.
In certain simulation settings for a binary response, where the first and second moment
of the predictors relate with the response, STIR excels in predictive performance, beating
the other methods by far.

The STIR method was developed by Song, Bura, Parzer and Pfei↵er in [22]. This the-
sis serves as an extension of that paper, providing more detailed theoretical derivations
of estimators and their properties, and deriving a maximum likelihood (ML) based pa-
rameter estimate in the model. Using this ML estimator to calculate the reductions did
not yield an advantage in predictive performance over the more simple least squares based
estimator. The derivation of an alternative representation of the variance-covariance ma-
trix of the estimator was also practically relevant to allow a more efficient calculation.
Additional important contributions of this thesis are the efficient computer implementa-
tion of the STIR method and carrying out extensive simulations. The source code was
implemented in R [19] and can be downloaded from https://github.com/RomanParzer/

STIR-Functions-and-Simulations/releases.
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2. Theory on Sufficient Dimension Reduction

In this section we will introduce some general theory of sufficient dimension reduction
(SDR) and then, after a short overview of multivariate linear regression, present one of the
first linear reduction methods, the SIR algorithm, and its adaptation to longitudinal data.

We start by introducing the notation in this thesis. For matrices A 2 Rm⇥n,B 2 Rk⇥l

we let A0 2 Rn⇥m denote the transpose of A, vec(A) 2 Rmn the vectorized version of A,
where the columns of A are stacked to form vec(A)0 = (A11, A21, . . . , Am1, A12, . . . , Amn),
and A⌦B the Kronecker product of A and B given by the block matrix

A⌦B =

0B@A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

1CA 2 Rmk⇥nl.

See Lemma A.2 in the Appendix for some properties of this Kronecker product, which will
be used often in this work. If not mentioned otherwise, Ai. 2 Rn will be the i-th row of A
(as column vector) and A.j 2 Rm will be the j-th column of A.

Suppose we have two random quantities X 2 Rp, the predictors, and Y 2 R, the response.
In regressing the response on the predictors involves deducing the information contained
in X relevant to Y .

Definition 2.1 (Reduction). For two (jointly) random quantities X 2 Rp, Y 2 R a reduc-
tion function, or simply reduction, is a function R : Rp ! Rd with d ⌧ p, such that

F (Y |X) = F (Y |R(X)), (2.1)

where F (Y | ·) is the conditional cumulative distribution function of the response given the
predictors. If R is linear, that is R(X) = ⌘0X for some full-rank ⌘ 2 Rp⇥d, R is called a
linear reduction.

We aim to find such a reduction because most regression methods work better with fewer
explanatory variables that still contain all the relevant information. For a reduction R
we have that R(X) is sufficient for the regression of Y on X; that is, it contains all the
information for the e↵ect that X has on Y .

It is easy to see1 that R satisfies (2.1) if and only if

F (X|Y,R(X)) = F (X|R(X)). (2.2)

1see Lemma A.1 in the Appendix with a proof for the case of a joint continuous distribution.
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2. Theory on Sufficient Dimension Reduction

So we can also find the sufficient reduction R by finding a sufficient statistic for Y after
assuming a parametric model, treating Y as a parameter. This approach is called model-
based dimension reduction.

Later in Chapter 3 we will build a parametric model for the inverse regression of X on
Y and try to find a reduction of X from this model. For this inverse regression we will
use an ordinary least squares (OLS) estimator for parameter estimation. Since X is the
multivariate response in inverse regression, we introduce the Multivariate Linear Regression
Model in the next section.

2.1. Multivariate Linear Regression

This section is based on [11]. It is an extension of the classical linear regression model,
where a multivariate response Y = (Y1, . . . , Ym)0 2 Rm is regressed on p predictor variables
X = (X1, . . . , Xp)

0 2 Rp. In scalar form the model with n observations can be written as
follows.

Definition 2.2 (Multivariate Linear Regression Model). Assume

yik =

pX
j=1

xijbjk + eik, i = 1 . . . , n, k = 1, . . . ,m, (2.3)

where

• yik 2 R is the k-th response for observation i,

• xij 2 R is the i-th observation of the j-th predictor,

• bjk 2 R is the j-th predictor’s regression coefficient for the k-th response, and

• eik 2 R is the i-th error term for the k-th response.

In addition to (2.3) we assume that

1. yik and xij are observed (known) random variables,

2. the predictor matrix X =

0B@x11 · · · x1p
...

. . .
...

xn1 · · · xnp

1CA 2 Rn⇥p has full rank p (a.s.),

3. bk = (b1k, . . . , bpk)
0 2 Rp are unknown, non-random constants, and

4. (ei1, . . . , eim)
iid⇠ N(0m,Δ) are unobserved Gaussian error vectors independent of the

predictors xij, with Δ 2 Rm⇥m positive definite and unknown.

In the last statement, 0m denotes the zero vector of dimension m. The meaning of this
statement is that within the same observation the errors for modeling the m responses are
correlated via Δ, but they are independent across observations. The same is true for the

4



2. Theory on Sufficient Dimension Reduction

responses yik when considering the conditional model, where all the predictors xij are given.
The assumption on the rank of the predictor matrix ensures that there is no redundant
information in the explanatory variables. For a model with intercept, we can set xi1 = 1
for all i = 1, . . . , n and interpret b1k as the intercept for the k-th response.

Equivalently, model (2.2) can be written in matrix form as

Y = XB+E, (2.4)

with

B =
�
b1 · · · bm

� 2 Rp⇥m,

Y =

0B@y11 · · · y1m
...

. . .
...

yn1 · · · ynm

1CA 2 Rn⇥m, E =

0B@e11 · · · e1m
...

. . .
...

en1 · · · enm

1CA 2 Rn⇥m.

The distributional assumption on the errors translates to

vec(E) ⇠ N(0nm,Δ⌦ In),

vec(Y)|X ⇠ N((Im ⌦X) vec(B),Δ⌦ In),

where Id denotes the d⇥ d identity matrix.

The OLS problem in (2.4) is to find an estimate of B that minimizes the function

S(B) = kY −XBk2F = tr(Y0Y)− 2 tr(Y0XB) + tr(B0X0XB), (2.5)

with kAkF denoting the Frobenius norm and tr(A) the trace of a matrix A, and using that
kAk2F = tr(A0A). For calculating the derivative we use the facts on matrix derivatives in
Lemma A.3 in the Appendix. By the first order condition

@S(B)

@B
= −2X0Y + 2X0XB

!
= 0,

the OLS estimator is given by

bB = argminB2Rp⇥k S(B) = (X0X)−1X0Y. (2.6)

If we let bbk and yk denote the k-th columns of bB and Y, we can express bbk as

bbk = (X0X)−1X0yk, k = 1, . . . ,m.

Thus, the OLS estimate can be obtained by fitting m univariate linear regressions with the
same predictors in parallel, but with the m regression errors being correlated via Δ.

Next we want to take a look at the ML estimator in this model. Let yi. 2 Rm and xi. 2 Rp

denote the i-th row of Y and X. Under assumption 4 in model (2.2), we have

yi.|xi. ⇠ N(B0xi.,Δ),

5



2. Theory on Sufficient Dimension Reduction

independent over i = 1, . . . , n. Therefore, the log-likelihood is given by

`(B|Y,X) = −1

2

nX
i=1

(yi. −B0xi.)
0Δ−1(yi. −B0xi.) + c,

where c is a constant not depending on B. Noting that

(yi. −B0xi.)
0Δ−1(yi. −B0xi.) = tr(Δ−1(yi. −B0xi.)(yi. −B0xi.)

0)

= − tr(Δ−1yi.x
0
i.B)− tr(Δ−1B0xi.y

0
i.) + tr(Δ−1B0xi.x

0
i.B) + c,

and again by Lemma A.3 in the Appendix,

@`(B|Y,X)

@B
= −1

2

nX
i=1

⇣
− 2xi.y

0
i.Δ

−1 + 2xi.x
0
i.BΔ−1

⌘
= (

nX
i=1

xi.y
0
i.)Δ

−1 − (
nX

i=1

xi.x
0
i.)BΔ−1

= X0YΔ−1 −X0XΔ−1,

so by the first order condition, the ML estimator agrees with the OLS estimator bB.

This result can also be obtained, as in [14, Section 6.2], by vectorizing the transposed
version of (2.4). The resulting model has the structure of a (univariate) generalized linear
model. After unvectorizing, the generalized OLS estimator in that model, which is known
to agree with the ML estimator, agrees with our bB in (2.6).

In model (2.2), we have

E[bB|X] = (X0X)−1X0E[Y|X] = B,

Cov(vec(bB)|X) = Cov((Im ⌦ (X0X)−1X0) vec(Y)|X)

= (Im ⌦ (X0X)−1X0) Cov(vec(Y)|X)| {z }
=Δ⌦In

(Im ⌦X(X0X)−1)

= Δ⌦ (X0X)−1.

Thus,

vec(bB)|X ⇠ N(vec(B),Δ⌦ (X0X)−1).

Let bY = XbB be the fitted values, and

U = Y − bY
= (In −X(X0X)−1X0)Y

= (In −X(X0X)−1X0)E

6



2. Theory on Sufficient Dimension Reduction

be the residuals. Then,

E[(U0U)jl] = E[(E0(In −X(X0X)−1X0)E)jl] = E[tr(e0.j(In −X(X0X)−1X0)e.l)]

= tr((In −X(X0X)−1X0)E[e.le0.j ]| {z }
=Δjl·In

)

= tr(In −X(X0X)−1X0) ·Δjl = (n− p)Δjl, j, l = 1, . . . ,m,

where e.j denotes the j-th column of E. Therefore, the unknown Δ can be estimated by
the unbiased estimator bΔ =

1

n− p
U0U.

This section serves as a warm-up for our STIR model in Chapter 3, where we use similar
methods and estimators. When we only assume the error has the same mean and covariance
structure, but it is not normally distributed, then the OLS estimator stays the same with
the same mean and covariance structure, but it is also not normal. Without assuming
a specific distribution, we can not derive a ML estimator. The estimator of the error
covariance, bΔ, remains unbiased for Δ.

2.2. Linear Sufficient Dimension Reductions

In the coming section we introduce some basic results for linear sufficient dimension reduc-
tions.

We go back to the formulation of Definition 2.1 with two (jointly) random quantities
X 2 Rp, Y 2 R, where the (marginal) covariance matrix ⌃x of X is full rank, and want to
find a linear reduction R : Rp ! Rd : X 7! ⌘0X for some full-rank ⌘ 2 Rp⇥d satisfying

F (Y |X) = F (Y |⌘0X), (2.7)

where, again, F (Y | ·) is the conditional cumulative distribution function of the response
given the predictors.

It is easy to see that there is no unique ⌘ satisfying (2.7). For example when scaling
the columns of ⌘ by non-zero constants or for a change of basis ⌘̃ = A⌘ for a full rank
A 2 Rd⇥d, the conditional distribution Y |⌘̃0X does not change at all.

In [15], Li defines the span of the columns span(⌘) as an e↵ective dimension reduction
space, since any basis of span(⌘) is a sufficient dimension reduction. However, also the
span is not unique, since adding additional columns to ⌘ preserves the sufficient-reduction
property (2.7).

In [5, Section 6.4, pp 108–112], Cook found that under mild conditions the central dimension
reduction space, defined as intersection of all e↵ective dimension reduction spaces

SY|X =
\

⌘ satisfying (2.7)

span(⌘),

7



2. Theory on Sufficient Dimension Reduction

is also sufficient. Moreover, it exists and is unique if the support of X is convex.

From now on we assume that SY|X exists and let ⌘ be a basis of that space, i.e. span(⌘) =
SY|X . The first SDR approaches tried to estimate the reduction space by using core ma-
trices ⌦ calculated from the moments of the conditional distribution X|Y with span(⌦) ✓
span(⌘) [18]. These approaches are called moment-based SDR and one such approach is
explained in the remainder of this section.

Li derived the following important result using the first moment of X|Y in [15, Theorem
3.1], which we state without proof.

Theorem 2.3 (Li, 1991). Suppose that

Y = f(⌘01X, . . . ,⌘0dX, "), (2.8)

where " is independent of X and f : Rd+1 ! R is an unknown link function. If for any
b 2 Rp the conditional expectation E[b0X|⌘01X, . . . ,⌘0dX] is linear in ⌘01X, . . . ,⌘0dX, then
for all y in the support of Y

⌃−1
x (E[X|Y = y]− E[X]) 2 span(⌘), (2.9)

where ⌘ = (⌘1, . . . ,⌘d).

In [25] it is shown that the condition (2.8) is equivalent to (2.7), i.e. to the general linear
regression problem. The second condition, called linear design condition, is a property of
the marginal distribution of X. It is satisfied for an elliptically symmetric distribution such
as the normal distribution [15].

From this theorem, we can define the first moment sufficient dimension reduction space as

SFMSDR = ⌃−1
x span(E[X|Y ]− E[X]). (2.10)

To recover all of SY|X , meaning SFMSDR = SY|X , at least one of Var(Var[b0X|Y ]) or
Var(E[b0X|Y ]) must be positive for every non-zero b 2 SY|X [20, Section 2]. This holds,
for example, when the predictors X|Y have a conditional multivariate normal distribution
where the covariance does not depend on Y .

Theorem 2.3 tells us that the centered inverse regression curve falls into the e↵ective di-
mension reduction space scaled by ⌃x. However, the inverse regression curve is difficult to
estimate in general.

Following the arguments in [15, Section 3], let us take a look at the standardized predictors

Z = ⌃
−1/2
x (X − E[X]). If we let γk = ⌃

1/2
x ⌘k, k = 1, . . . , d, then it is easy to see that the

conditions of Theorem 2.3 are equivalent to

Y = f(γ 0
1Z, . . . ,γ

0
dZ, "), Z, " independent,

8b 2 Rp : E[b0Z|γ 0
1Z, . . . ,γ

0
dZ] is linear in γ

0
1Z, . . . ,γ

0
dZ.

8



2. Theory on Sufficient Dimension Reduction

For γ = (γ1, . . . ,γd), applying Theorem 2.3 to Z gives

E[Z|y] 2 span(γ) for all y in the support of Y .

If we take any u 2 span(γ)? orthogonal to span(γ), we therefore have E[Z|Y ]0u = 0 and

Cov(E[Z|Y ])u = E[E[Z|Y ]E[Z|Y ]0u| {z }
=0

] = 0,

which implies

span(Cov(E[Z|Y ])) ✓ span(E[Z|Y ]) ✓ span(γ). (2.11)

In [8], which was made publicly available in [9], Eaton gives the following proposition.

Proposition 2.4 ([9, Prop. 2.7]). Let eX be a random vector in a linear space V with an
inner product and suppose that Cov(X̃) = ⌃x exists. Then

P(eX 2 E[eX] + span(⌃x)) = 1. (2.12)

Applying this proposition to the random variable E[Z|Y ] obtains that the span of E[Z|Y ] lies
in span(Cov(E[Z|Y ])) with probability 1. Together with (2.11) yields that
span(Cov(E[Z|Y ])) = span(E[Z|Y ]) (with probability 1).

This way, we get the following corollary for the original X variables by scaling back.

Corollary 2.5. Under the conditions of Theorem 2.3, we have

SFMSDR = ⌃−1/2
x span(Cov(E[Z|Y ])) ✓ span(⌘). (2.13)

This corollary is the foundation for the Sliced Inverse Regression (SIR) algorithm given in
the next section.

2.3. SIR Algorithm

In this section we will introduce the SIR algorithm and give an illustrative example for its
application.

Starting from Corollary 2.5, Li proposes the following algorithm to find a linear reduction
by estimating Cov(E[Z|Y ]) [15].

Algorithm 2.6 (SIR). Suppose we have data (xi, yi), i = 1, . . . n. For a chosen H, the
number of slices for Y , and k, the estimated dimension of the reduction space:

1. Standardize the predictors to get zi = b⌃−1/2

x (xi − x̄), where b⌃x and x̄ denote the
empirical covariance matrix and mean of X, respectively.

9



2. Theory on Sufficient Dimension Reduction

2. Divide the range of Y into H slices S1, . . . , SH and let p̂h = (1/n)
Pn

i=1 (yi 2 Sh)
be the portion of yis in the h-th slice, where is the indicator function.

3. Within each slice, compute the sample mean m̂h of the zis: m̂h = (1/np̂h)
P

yi2Sh
zi.

4. Let bΔ =
PH

h=1 p̂hm̂hm̂
0
h be the estimated covariance of E[Z|Y ] and γ̂1, . . . , γ̂k be the

eigenvectors corresponding to the k largest eigenvalues of bΔ.

5. Output ⌘̂j = b⌃−1/2

x γ̂j for j = 1, . . . , k.

Steps 2 and 3 aim to (roughly) estimate the inverse regression curve E[Z|Y ]. Only the main
orientation of the estimated curve is needed, so [15] advocates to use the sliced Y due to its
simplicity over more complex non-parametric regression methods such as smoothing splines
or nearest neighbour. The k eigenvectors in step 4 build the most important subspace to
describe the inverse regression curve E[Z|Y ]. After scaling back in step 5, we can estimate
the e↵ective dimension reduction space by span(⌘̂j , j = 1, . . . , k).

In general, when we want to fit a regression model between predictors X 2 Rp and a
response Y 2 R, we can now first use SIR to reduce the predictors and then fit some
regression model

Y = g(b⌘0X, "),

where b⌘ = (⌘̂1, . . . , ⌘̂k). With this model we can also predict responses for new X-
observations by plugging in the reduced values in the regression model. This reduced
regression model can outperform a model using the unreduced predictors, because for large
p finding the right model can be challenging. We illustrate this procedure on an easy
example (adapted from [2]).

Example 2.7. We generate n = 200 observations from

X ⇠ N(010, I10),

Y = (X1 +X2 + 1)3 +N(0, 0.5) (unknown).

In order to find a suitable model for the regression of Y on X we first have a look at the
marginal plots of Y against the Xjs. The one for X1 is shown in the left plot in Figure 2.1.
There seems to be a relation, but the exact functional form can not be determined. For X2

we obtain a similar picture, while there is no visible relation for the remaining variables.

Using R, we fit a linear model with all ten variables, where we also include the interaction
term between X1 and X2, as well as the squares and cubes of those two variables. This model
leads to a coefficient of determination of R2 = 0.9297. Applying model selection techniques,
such as stepwise regression using some information criterion or LASSO, could improve the
predictive performance, but the R2 would not increase. Also, there is an unknown e↵ect on
the validity of inference after all this data processing.

In comparison, we can apply the R function dr() in the dr-package [23] with method="sir"

on the original predictors. A built-in test estimates the reduction dimension to be 1. The

10



2. Theory on Sufficient Dimension Reduction

right plot shows a scatter plot of that one-dimensional reduced predictor against Y . We see
a cubic relation and fitting a linear model using this reduced predictor, as well as the square
and cube of it, yields a coefficient of determination of R2 = 0.9891.

The algorithm identified that this is a one-dimensional problem and the complexity of mod-
eling Y was drastically reduced by the reduction.
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Figure 2.1.: Plots illustrating Example 2.7. Left: Scatterplot of Y against the first com-
ponent of X. Right: Scatterplot of Y against the one-dimensional reduction
found by SIR. The red line gives the fitted values for a linear model using up
to cubic terms of that reduction.

In [15, Section 5], Li also gives an argument for root n consistency of the SDR directions
obtained by the SIR algorithm. One problem of this algorithm is that if the standardized
inverse regression curve falls into a proper subspace of the span of the γks, then it cannot
recover all directions of the e↵ective dimension reduction space [15, Remark 4.5]. An
example for this is

Y = g(⌘01X) + ",

with some symmetric function g and with ⌘01X symmetric around 0. Then the inverse
regression curve is 0 and the algorithm fails to provide a valid estimate for ⌘1.

To overcome the inability of SIR to detect certain types of regression relations, Cook and
Weisberg proposed the following theorem [7].

Theorem 2.8. Additionally to the assumptions of Theorem 2.3, assume that Var(X|⌘0X)
is a non-random matrix (constant variance condition). Then

⌃−1
x span(⌃x −Var(X|Y )) ✓ span(⌘). (2.14)

This theorem leads to the Sliced Average Variance Estimation (SAVE) algorithm, which
also uses the second moment of X|Y .

11



2. Theory on Sufficient Dimension Reduction

There are some limitations with all the methods presented in this section. They might not
be exhaustive, and they only aim to find linear reductions R(X) = ⌘0X and miss other func-
tional relations. For example, Bura and Forzani showed in [3] that for
X|Y ⇠ Np(µy, cyΔ), where cy 2 R is a scaling constant, the minimal sufficient reduc-
tion is given by

R(X) = (↵0(X− E[X]), (X− E[X])0⌃−1
x (X− E[X])), (2.15)

with span(↵) = ⌃−1
x span(E[X|Y ] − E[X]). So the minimal reduction has a non-linear

component. This result also generalizes to elliptically contoured distributions. Here, SIR
and other moment-based methods are not exhaustive.

Starting from equation (2.2), we can assume a model and find a reduction by finding
a sufficient statistic for Y , treating Y as a parameter. The advantages of this model-
based approaches are that after assuming a model for X|Y , we do not need any further
assumptions. One can use existing theory for sufficient statistics to obtain exhaustive
and (possibly) non-linear reductions, such as Fisher’s factorization theorem or exponential
families.

2.4. LSIR Algorithm

In this section we go back to a first moment based approach to find a linear reduction R,
but now with longitudinally measured predictors, where for each individual we observe the
p markers over several time points. We summarize the work by Pfei↵er et al. [17], and
introduce their LSIR (Longitudinal Sliced Inverse Regression) algorithm, which extends
the SIR algorithm 2.6 to longitudinally measured predictors. In [17], the predictors are
modeled as p⇥ T matrices. To be consistent with the modeling in Chapter 3, we state the
results in the transposed version.

At the population level we now have still a single real response Y 2 R, but the predictors
are T ⇥ p random matrices, X 2 RT⇥p, where T is a fixed number of di↵erent time points
and the entry Xtj is the measurement for the j-th marker at the t-th time point. The
aim is to estimate the first moment sufficient dimension reduction space SFMSDR of the
vectorized predictors

SFMSDR = ⌃−1
x span(vec(E[X|Y ]− E[X])), (2.16)

where ⌃x = Cov(vec(X)).

The main assumption is the following structure of the conditional mean X|Y . We assume

E[X|Y ]− E[X] =  Gyφ
0 (2.17)

() vec(E[X|Y ]− E[X]) = (φ⌦ ) vec(Gy), (2.18)

for some r⇥mmatrixGy, which depends on Y with E[Gy] = 0 and det(Cov(vec(Gy))) > 0.
The matrix  2 RT⇥r captures the mean structure over the time points, and φ 2 Rp⇥m

captures the mean structure over the markers regardless of time.

12



2. Theory on Sufficient Dimension Reduction

In the practically important binary case, i.e. when Y only takes the values 0 or 1, we have
r = m = 1, implying that both φ and  are vectors. Otherwise the covariance matrix
of vec(Gy) cannot be full rank. Then the condition (2.17) is also satisfied, if we let one
of φ or  depend on Y . Assume for example that vec(E[X|Y ]) = φy ⌦  , which would
mean that E[Xtj |Y ] = φj(Y ) ·  t for j = 1, . . . , p, t = 1, . . . , T . So, the conditional mean
of each marker only depends on time through a multiplicative scalar, which is the same for
all markers in both groups given by Y . If we let py = P(Y = y) for y = 0, 1 and using that
E[X] = p0(φ0 ⌦ ) + (1− p0)(φ1 ⌦ ), we obtain

vec(E[X|Y = y]− E[X]) = (1− py)(φ0 − φ1)⌦ ,

which shows that condition (2.17) is actually satisfied with Gy = (1−py) and eφ = φ0−φ1

for this example in the binary case.

Let us now move back to the general setting. The second assumption is that the covariance
structure can be decomposed as a Kronecker product into a marker and a time component,
i.e.

Cov(vec(X)) = ⌃x = ⌃p ⌦⌃T , (2.19)

with ⌃p 2 Rp⇥p and ⌃T 2 RT⇥T both positive definite. This structure implies that

Cov(Xsi, Xtj) = σpijσ
T
st, i, j = 1, . . . , p, s, t = 1, . . . , T,

meaning that the correlation of a fixed marker observed at di↵erent time points only de-
pends on these time points and not the marker. Similarly, the correlation of two markers
observed at the same time point only depends on the two markers but not on the time
point. If we let X.j and Xt. denote the j-th column and the t-th row (as column vector) of
X, then (2.19) implies

Cov(X.j) = σpjj⌃T

Cov(Xt.) = σTtt⌃p.

So, the covariance structure between the T time points depends on the marker only through
a multiplicative constant, and the same holds true for the dependence of the covariance
structure between the p markers on time.

Assumption (2.19) might be reasonable if the data come from a prospective cohort study,
but there are settings in which it is not, e.g. when the longitudinal data arise from a
retrospective case-control study [17]. A slightly less restrictive assumption is that

Δ := E[Cov(vec(X)|Y )] = Δp ⌦ΔT , (2.20)

with Δp 2 Rp⇥p and ΔT 2 RT⇥T again both positive definite. An easy example for when
this condition is satisfied is Cov(vec(X)|Y ) = Δp(Y ) ⌦ΔT (Y ), where only one of Δp or
ΔT depends on Y .

By the law of total variance, we have

Cov(vec(X)) = E[Cov(vec(X)|Y )] + Cov(E[vec(X)|Y ]).

13



2. Theory on Sufficient Dimension Reduction

The mean assumption (2.17) implies that

Cov(E[vec(X)|Y ]) = (φ⌦ ) Cov(vec(Gy))(φ⌦ )0,

which does not have a Kronecker structure in general unless Cov(vec(Gy)) itself is decom-
posed as a Kronecker product with symmetric matrices of dimensions m and r. This gives
an idea for assumption (2.20) being less restrictive than (2.19).

The following two theorems are taken from [17].

Theorem 2.9 ([17, Theorem 1]). Suppose that the mean assumption (2.17) holds and the
vectorized predictors have a Kronecker product covariance structure as in (2.19). Then

SFMSDR = span(⌃−1
p φ⌦⌃−1

T  ). (2.21)

Theorem 2.10 ([17, Theorem 2]). Suppose that the mean assumption (2.17) holds and the
conditional vectorized predictors have an expected Kronecker product covariance structure
as in (2.20). Then

SFMSDR = span(Δ−1
p φ⌦Δ−1

T  ).

The main benefit of the two theorems is that under these assumptions, the first moment
reduction space also has a Kronecker structure and there are a lot fewer parameters to
estimate. The covariance matrix alone in (2.16) has Tp(Tp + 1)/2 entries, compared to
T (T + 1)/2 + p(p+ 1)/2 for the two covariance matrices in Theorem 2.9 or 2.10.

Depending on which Theorem’s assumptions are satisfied, we can use ⌃x or Δ respectively
to scale the predictors. It can be shown by direct calculation, as in the proof of Corollary
3.4 in [6], that when using bΔp and bΔT instead of b⌃p and b⌃T in the algorithm given later,
the estimated subspace does not change [17].

In the following algorithm we will therefore rather use ⌃x than Δ to scale the data, since
it is easier to estimate. Similar to the SIR algorithm 2.6, we will use the standardized
variable

vec(Z) = ⌃−1/2
x vec(X− E[X]), (2.22)

for numeric stability. In the derivation of Corollary 2.5 we saw that

span(Cov(vec(E[Z|Y ]))) = span(vec(E[Z|Y ])) (a.s.),

which implies

SFMSDR = ⌃−1/2
x span(vec(E[Z|Y ])) = ⌃−1/2

x span(Cov(vec(E[Z|Y ]))). (2.23)

From Theorems 2.9 and 2.10 we know that this span has a Kronecker structure (under
the corresponding assumptions). So the adapted SIR algorithm aims to estimate ⌃ and
Cov(vec(E[Z|Y ])) as a Kronecker structure and find the subspace this way.
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2. Theory on Sufficient Dimension Reduction

Algorithm 2.11 (LSIR,[17]). Given a data sample (Xi, Yi), i = 1, . . . , n with Xi 2 RT⇥p

and Yi 2 R, H, the number of slices for Y , and estimated ranks r,m of the time and marker
component:

1. Scale the predictors by

vec(Zi) = b⌃−1/2

x vec(Xi − X̄),

where X̄ is the mean over all Xi and b⌃x = b⌃p⌦ b⌃T is found by the following estimate.
Let xi

.j be the j-th column of Xi, x
i
t. the t-th row of Xi (as column vector), and x̄.j , x̄t.

the corresponding means over all observations. Then

b⌃pt =
1

n

nX
i=1

(xi
t. − x̄t.)(x

i
t. − x̄t.)

0, b⌃p =
1

T

TX
t=1

b⌃pt 2 Rp⇥p,

b⌃Tj =
1

n

nX
i=1

(xi
.j − x̄.j)(x

i
.j − x̄.j)

0, b⌃T =
1

p

pX
j=1

b⌃Tj 2 RT⇥T ,

and set b⌃x = b⌃p ⌦ b⌃T .

2. Divide the range of Y into H slices to estimate

dCov(vec(E[Z|Y ])) = b⌦p ⌦ b⌦T ,

where b⌦p and b⌦T are found be the following estimate. Let ph be the proportions

of observation in slice h, z̄
(h)
.j the mean over observations within slice h of the j-th

column of the standardized predictors and z̄
(h)
t. the mean over observations within slice

h of the t-th row of the standardized predictors (as column/vector) for h = 1, . . . , H.
Then,

b⌦pt =

HX
h=1

phz̄
(h)
t. z̄

(h)0
t. , b⌦p =

1

T

TX
t=1

b⌦pt 2 Rp⇥p,

b⌦Tj =

HX
h=1

phz̄
(h)
.j z̄

(h)0
.j , b⌦T =

1

p

pX
j=1

b⌦Tj 2 RT⇥T .

3. Compute the first r left singular vectors bUT = (bUT1, . . . , bUTr) from the singular value
decomposition of b⌦T and the first m left singular vectors bUp = (bUp1, . . . , bUpm) from

the singular value decomposition of b⌦p.

4. Output bφ = b⌃−1/2

p
bUp 2 Rp⇥m and b = b⌃−1/2

T
bUT 2 RT⇥r to form the estimate

bSFMSDR = span(bφ⌦ b ).
One di↵erence to the SIR Algorithm 2.6 is the use of the left singular vectors instead of
eigenvectors. Since ⌦T and ⌦p are symmetric, they do agree up to the sign and their span

15



2. Theory on Sufficient Dimension Reduction

is the same. Note that bφ and b are not (pointwise) estimates of φ and  in (2.17), but
their spans are estimates for span(⌃−1

p φ) and span(⌃−1
T  ).

The Kronecker structures of ⌃x and Cov(vec(E[Z|Y ])) are estimated by first calculating
the empirical covariance across one dimension (time or markers) for every level of the other
dimension and then averaging over these levels of the other dimension. When finding a
Kronecker structure of a given matrix A = A1 ⌦A2, where the dimensions of A1 and A2

are fixed, A1 and A2 are only unique up to scale. However, for standardizing in the first
step we use the full matrix, which is unique, and the span of the output is not a↵ected by
the scaling.

The true dimensions r and m are unknown. They can be estimated separately as the
ranks of b⌦T and b⌦p by using the weighted chi-square test for dimension in [4], and since

rank(bφ ⌦ b ) = rank(bφ) · rank(b ), the dimension of the estimated FMSDR space is then
the product of these two estimated ranks.

From the algorithm, we can obtain the estimated reduction as

bR(X) = b 0
Xbφ 2 Rr⇥m, (2.24)

or in vectorized form as

vec( bR(X)) = (bφ⌦ b )0 vec(X) 2 Rrm. (2.25)

For categorical Y , it is natural to use the categories as slices. It can also be applied for
continuous Y , but one has to choose how to divide the range of Y intoH slices. In the binary
case (where r = m = 1), a scalar score of the predictors is obtained by projecting vectorized
new observations on the estimated span via vec(R(X)) = (bφ ⌦ b )0 vec(X) 2 Rrm = R.
With this score, a AUC value for the prediction of the new responses can be obtained.
This procedure will be explained in more detail later in Chapter 4.

Simulations for a binary case scenario in [17] show that LSIR reached an approximately
5% higher AUC value than the standard SIR, which ignores the longitudinal structure of
the predictors. This di↵erence leads to a significantly better discriminatory power [17].
The method also proved to be robust to violations of the Kronecker structure assumptions
on the covariance. On a practically relevant data set, LSIR also outperformed SIR by 3%
in terms of AUC.

This method will serve as a competitor against the method we will introduce now in Chapter
3 for both the simulations in Chapter 4 and the data analysis in Chapter 5.
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We will now introduce the structured time-dependent inverse regression (STIR) model
from [22]. Here we again consider longitudinal data and we model the first moment of
the matrix-valued predictors by known functions of time and output. We estimate the
coefficients by a least squares procedure. Using the resulting estimate, the method reduces
only the markers to capture their joint e↵ect on the outcome, while accounting for the
e↵ect of time.

3.1. Model

Here we consider a single real response Y 2 R and a set of p markers X 2 Rp, which are
observed repeatedly over T time points for each individual. We assume that the number
of marker-observations T and the set of (ordered) time points T = (t1, . . . , tT ) are the
same for all individuals, although we will allow di↵erent time points Ti for each individual
i = 1, . . . , n later on. For each individual i we therefore observe a response Yi and a T ⇥ p
predictor matrix

Xi =

0B@X i
11 · · · Xi

1p
...

. . .
...

Xi
T1 · · · X i

Tp

1CA 2 RT⇥p, (3.1)

where the entry Xi
sj is the observation of the j-th marker at the s-th time point ts for

individual i. We assume that the observations arise from the following model on the
population level.

Definition 3.1 (STIR Model). Let Y ⇠ FY be a real response and

X = (S0 ⌦G(Y ))B+E 2 RT⇥p, (3.2)

where E is independent of Y with E[E] = 0 and Cov(vec(E)) = Δ 2 RTp⇥Tp positive
definite and the elements of the mean structure are

S =

0B@s1(t1) · · · s1(tT )
...

. . .
...

sd(t1) · · · sd(tT )

1CA 2 Rd⇥T , G(Y ) = (g1(Y ), . . . , gH(Y )) 2 R1⇥H , (3.3)

with s1, . . . , sd being pre-specified and centered functions of time and g1, . . . , gH centered
functions of the response Y .
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The conditional mean of X|Y is given by

E[X|Y ] = (S0 ⌦G(Y ))B,

that is, it consists of a Kronecker product of time e↵ect covered by S and e↵ect of response
covered by G, multiplied by unknown coefficients B. The B matrix can be written as

B =

0BBBBBBBBBBB@

β111 · · · β11p
...

. . .
...

βH11 · · · βH1p
...

. . .
...

β1d1 · · · β1dp
...

. . .
...

βHd1 · · · βHdp

1CCCCCCCCCCCA
2 RdH⇥p,

where the entry βhlj is the coefficient for the l-th function of time and h-th function of Y
of the j-th marker. The parameters d,H and functions sl, l  d and gh, h  H should be
chosen such that S has rank d (implying d  T ) and

G(Y) =

0B@G(y1)
...

G(yn)

1CA 2 Rn⇥H (3.4)

has rank H for observations of the response y1, . . . , yn. Typical choices for the time func-
tions are polynomials or Fourier basis elements. For continuous Y , we can also choose
these for the ghs. If Y is categorical with values in {0, 1, . . . , H}, a natural choice is
gh(Y ) = (Y = h)− P(Y = h).

To give a better understanding of the model and equation (3.2), the expectation of the j-th
marker at the s-th time point for given Y = y can be written as

E[Xsj ] = s1(ts)
�
β11jg1(y) + · · ·+ βH1jgH(y)

�
+ · · ·+ sd(ts)

�
β1djg1(y) + ...+ βHdj gH(y)

�
.

The formulation from Definition 3.1 implies that X has mean 0. This does not result in
a loss of generality, since for a general eX we can use the centered X = eX − E[eX] in our
model.

3.2. Reduction

Next, we give the setting for finding a reduction in that model. In general, we want to find
a linear reduction on the vectorized predictors, as in LSIR, such that

F (Y | vec(X)) = F (Y |⌘0 vec(X)),⌘ 2 RTp⇥a, a ⌧ Tp. (3.5)

18



3. STIR

Our method aims to reduce the markers while accounting for the time component, so we
will have a = Tk for some k ⌧ p.

Here we consider the time points as given. One could also model the time e↵ect as random.
Then, there would be two scenarios. If the distribution of the response depends on the time
points T , i.e. the time points capture relevant information for the outcome, we would need
to find a reduction as a function of both X and T . This scenario can occur e.g. in a health
study where sicker individuals seek healthcare (where their predictors are observed) more
frequently or earlier. However, modeling the distribution of T |Y can be quite challenging
and is not considered here any further. The other scenario, where the distribution of
the response Y is independent of the time points T , is equivalent to our setting when
conditioning on the time points.

As described in Chapter 2, finding a reduction satisfying (3.5) is equivalent to finding
⌘ 2 RTp⇥a with

F (vec(X)|Y,⌘0 vec(X)) = F (vec(X)|⌘0 vec(X)).

This can be accomplished by finding a sufficient statistic for Y , treated as a parameter, in
the inverse regression model X|Y . Since under our model (3.2), the response Y relates to
X only through the conditional mean, the linear design condition in Theorem 2.3 is not
required. For categorical Y and normal errors E, the marginal distribution of our X would
be a mixture of multivariate normal distributions with di↵erent means and would not be
elliptically symmetric.

The following theorem states how to find a sufficient reduction in our STIR model from
Definition 3.1 [22, Theorem 1].

Theorem 3.2. Under the STIR model (3.2) with ⌃x = Cov(vec(X))) 2 RTp⇥Tp and
k = rank(B0) = rank(B), a sufficient reduction for the regression of Y on X reducing the
rows of X is given by

R(X) = unvec(⌃−1
x vec(X))↵p, (3.6)

where ↵p 2 Rp⇥k such that span(↵p) = span(B0).

Proof. Under (3.2), the rows of E[X|Y ] = (S0 ⌦ G(Y ))B are linear combinations of the
rows of B, so the idea is to find a base ↵p of span(B0) for the reduction. Since

R(X) = unvec(⌃−1
x vec(X))↵p () vec(R(X)) = (⌃−1

x (↵p ⌦ IT ))
0 vec(X),

we need to show that

span(vec(E[X|Y ])) ✓ span(B0 ⌦ IT ).

Then the span of the supposed reduction covers the first moment sufficient dimension
reduction space SFMSDR = ⌃−1

x span(vec(E[X|Y ])).

19



3. STIR

For any m 2 N and i = 1, . . . ,m let ci 2 R be coefficients and yi realizations of Y . Using
the properties of the Kronecker product in A.3, we get

mX
i=1

ci vec((S
0 ⌦G(yi))B) = (Ip ⌦ S0 ⌦

mX
i=1

ciG(yi)| {z }
:=C

) vec(B) = vec((S0 ⌦C)B)

= (B0 ⌦ IT ) vec(S
0 ⌦C) 2 span(B0 ⌦ IT ) ✓ RTp,

which completes the proof.

In general we have

span(vec(E[X|Y ]))  span(B0 ⌦ IT ),

so our reduction might cover more than the first moment and is not minimal.

So far, we considered the error distributions to be independent of Y . In the simulations we
will let the error covariance depend on Y , such that vec(E)|Y ⇠ N(0,ΔY ). More precisely,
we will let ΔY = cyΔ for a scaling constant cy 2 R. As mentioned earlier in Chapter
2, Bura and Forzani showed in [3] that for X|Y ⇠ Np(µy, cyΔ), the minimal sufficient
reduction is given by

R(X) = (↵0(X− E[X]), (X− E[X])0⌃−1
x (X− E[X])), (3.7)

with span(↵) = ⌃−1
x span(E[X|Y ]−E[X]). Therefore, including second order terms of our

reduction (3.6) for fitting a model to Y can possibly increase the predictive performance.

3.3. Estimation of the Coefficients

To estimate the reduction (3.6), we need to find the coefficients B in model (3.2). We
can find an approximation of the row span of B from this estimate. In this section we will
derive an OLS based estimator and an ML estimator assuming a normal error distribution,
both for equal and unequal time points for the individuals. The predictive performance for
the di↵erent resulting reductions will be compared in simulations in Chapter 4.

As a general case we will allow now di↵erent time points for each individual Ti = (ti1, . . . , t
i
T )

and let Si be the time matrix for those time points, meaning

Si =

0B@s1(t
i
1) · · · s1(t

i
T )

...
. . .

...
sd(t

i
1) · · · sd(t

i
T )

1CA 2 Rd⇥T .

However, we always assume a fixed number of time points T . Then the STIR model in
Definition 3.1 at the observation level is

Xi = (Si
0 ⌦G(yi))B+Ei, i = 1, . . . , n, (3.8)
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3. STIR

or in vectorized version

vec(Xi) = (Ip ⌦ Si
0 ⌦G(yi)) vec(B) + vec(Ei), i = 1, . . . , n. (3.9)

By stacking the rows of the Xis in a convenient way, we will obtain a version of the
multivariate linear regression model from Definition 2.2, where we distinguish between the
case of same or di↵erent time points. Note that we are looking at an inverse regression
problem here, so X plays the role of the response of the multivariate linear regression
model. Afterwards we will assume a normal distribution for the errors Ei and derive the
ML estimator for B in this model.

3.3.1. OLS Estimates

Same Time Points

We first look at the case where Si = S for all i = 1, . . . , n. Let Xi
s. 2 R1⇥p denote the s-th

row of Xi (here as row). Then by stacking these rows with varying the observation index
i before the time index, we can write

Xsame =

0BBBBBBBBBBB@

X1
1.
...

Xn
1.
...

X1
T.
...

Xn
T.

1CCCCCCCCCCCA
= (S0 ⌦G(Y))B+ Esame 2 RnT⇥p, (3.10)

with Cov(vec(Esame)) = Cov(vec(Xsame)|Y) = Δ⌦ In and G(Y) 2 Rn⇥H with rows G(yi).
The OLS estimator of B in equation (3.10) derived in Section 2.1 is given by

bBsame =
�
(SS0)−1S⌦ (G(Y)0G(Y))−1G(Y)0

�
Xsame 2 RdH⇥p, (3.11)

with the dHp⇥ dHp covariance matrix

Cov(vec(bBsame)|Y) = (Ip ⌦W)(Δ⌦ In)(Ip ⌦W0), (3.12)

where W =
�
(SS0)−1S⌦ (G(Y)0G(Y))−1G(Y)0

�
. The formulation in (3.10) does not

exactly satisfy the assumptions for the multivariate linear regression model, since Xsame

in (3.10) would need to have error covariance structure eΔp ⌦ InT for some eΔp 2 Rp⇥p.
However, we can still use this unbiased estimator. It has a di↵erent covariance structure
and, when assuming a normal error distribution, does not agree with the ML estimator.
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Di↵erent Time Points

Now we consider the more general case of di↵erent time points and time matrices Si. By
stacking the n equations for the observations of (3.8), we get

Xdi↵ =

0B@X1
...

Xn

1CA =

0B@S0
1 ⌦G(y1)

...
S0
n ⌦G(yn)

1CA
| {z }

:=Z2RnT⇥dH

B+ Edi↵ = ZB+ Edi↵ 2 RnT⇥p, (3.13)

with

Cov(vec(Edi↵)) = Cov(vec(Xdi↵)|Y) =

0B@In ⌦Δ11 · · · In ⌦Δ1p
...

. . .
...

In ⌦Δp1 · · · In ⌦Δpp

1CA , (3.14)

where Δjk = E[E.jE
0
.k] 2 RT⇥T for j, k = 1, . . . , p denotes the (j, k)-th sub-matrix of

Δ 2 RTp⇥Tp. The di↵erent order of the row stacking leads to a di↵erent covariance
structure compared to the equal time setting. If we assume Δ = Δp ⌦ ΔT , then the
covariance matrix in (3.14) simplifies to

Cov(vec(Edi↵)) = Δp ⌦ In ⌦ΔT .

Similar to the case of equal time points, the OLS estimator of B in (3.13) is

bBdi↵ = (Z0Z)−1Z0Xdi↵, (3.15)

with the dHp⇥ dHp covariance matrix

Cov(vec(bBdi↵)|Y) = (Ip ⌦ (Z0Z)−1Z0)

0B@In ⌦Δ11 · · · In ⌦Δ1p
...

. . .
...

In ⌦Δp1 · · · In ⌦Δpp

1CA (Ip ⌦ Z(Z0Z)−1).

This structure implies that for j, k = 1, . . . , p the (j, k)-th sub-matrix of dimension dH⇥dH
is given by

Cov(vec(bBdi↵)|Y)jk = (Z0Z)−1Z0(In ⌦Δjk)Z(Z
0Z)−1 =

= (Z0Z)−1

 
nX

i=1

(SiΔjkS
0
i ⌦G(yi)

0G(yi))

!
(Z0Z)−1 (3.16)

The following proposition tells us that this estimator is indeed a generalization of the
estimator bBsame in (3.11) for equal time points.

Proposition 3.3. If we have equal time points for all individuals and therefore Si = S for
all i = 1, . . . , n, then the estimator bBsame in (3.11) agrees with bBdi↵ in (3.15).
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Proof. bBsame can also be written asbBsame =
�
(SS0)⌦ (G(Y)0G(Y))

�−1
(S0 ⌦G(Y))0Xsame.

For Si = S,

Z0Z =

nX
i=1

(Si ⌦G(yi)
0)(S0

i ⌦G(yi)) = SS0 ⌦
 

nX
i=1

G(yi)
0G(yi)

!
= SS0 ⌦ (G(Y)0G(Y)),

so what is left to show is that

(S0 ⌦G(Y))0Xsame = Z0Xdi↵ 2 RdH⇥p.

Let l 2 {1, . . . , d}, h 2 {1, . . . ,H} and j 2 {1, . . . , p}. Then, element-wise comparison gives

(Z0Xdi↵)h+H(l−1),j =

nX
i=1

((Si)l. ⌦ gh(yi))X
i
.j =

nX
i=1

TX
s=1

((Si)ls ⌦ gh(yi))X
i
sj =

=
TX

s=1

((S)ls ⌦G(Y).h)

0B@X1
sj
...

Xn
sj

1CA = ((S)l. ⌦ (G(Y)0)h.)(Xsame).j =

= ((S0 ⌦G(Y))0Xsame)h+H(l−1),j ,

which proves the claim.

Even though bBsame and bBdi↵ do theoretically agree for equal time points, using (3.11) to
calculate the estimator is computationally more efficient and stable than (3.15).

If we apply the formula (3.16) in the case of equal time Si = S, we obtain the following
alternative representation of Cov(vec(bBsame)|Y).

Corollary 3.4. The (j, k)-th sub-matrix of Cov(vec(bBsame)|Y) 2 RdHp⇥dHp in (3.12) for
j, k = 1, . . . , p is given by

Cov(vec(bBsame)|Y)jk =
�
(SS0)−1SΔjkS

0(SS0)−1
�⌦ (G(Y)0G(Y))−1 2 RdH⇥dH . (3.17)

Proof. For Si = S, the previous proposition tells us that we can also use (3.16) to calculate
Cov(vec(bBsame)|Y). In that case we have

Z0Z =

nX
i=1

(SiS
0
i ⌦G(yi)

0G(yi))
Si=S
= (SS0 ⌦G(Y)0G(Y))

=) (Z0Z)−1 = (SS0)−1 ⌦ (G(Y)0G(Y))−1.

Then, directly applying (3.16) gives

Cov(vec(bBsame)|Y)jk = (Z0Z)−1

 
nX

i=1

(SΔjkS
0 ⌦G(yi)

0G(yi))

!
(Z0Z)−1

=
�
(SS0)−1 ⌦ (G(Y)0G(Y))−1

� �
SΔjkS

0 ⌦G(Y)0G(Y)
� �

(SS0)−1 ⌦ (G(Y)0G(Y))−1
�

=
�
(SS0)−1SΔjkS

0(SS0)−1
�⌦ (G(Y)0G(Y))−1 2 RdH⇥dH .
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For practical use, this makes a huge di↵erence in computation times of Cov(vec(bBsame)|Y).
For data generated from scenario STIR-1 in Table 4.4, the computing times of direct imple-
mentation of equation (3.12) were around 0.11, 3.35 and 19 seconds for n = 100, 500, 1000,
while they were around 0.002 seconds for all n when using Corollary 3.4.

3.3.2. ML Estimate

Now we assume a normal distribution of the errors Ei in (3.8). Then the vectorized pre-
dictors in (3.9) satisfy

vec(Xi)|(Yi = yi)
indep.⇠ N(Mi vec(B),Δ), i = 1, . . . , n,

where Mi = (Ip ⌦ Si
0 ⌦G(yi)) 2 RTp⇥dHp. The log-likelihood of B is then given by

`(B|Y,X1, . . . ,Xn) = −1

2

nX
i=1

(vec(Xi)−Mi vec(B))0Δ−1(vec(Xi)−Mi vec(B)) + c1

= −1

2

nX
i=1

vec(B)0M0
iΔ

−1Mi vec(B)− 2 vec(B)0M0
iΔ

−1 vec(Xi) + c2,

where c1, c2 are constants not depending on B. Therefore,

@`(B|Y,X1, . . . ,Xn)

@ vec(B)
=

nX
i=1

M0
iΔ

−1Mi vec(B)−M0
iΔ

−1 vec(Xi).

By the first order condition, the ML estimator is given by

bBML = unvec

 
(

nX
i=1

M0
iΔ

−1Mi)
−1

 
nX

i=1

M0
iΔ

−1 vec(Xi)

!!
, (3.18)

with the dHp⇥ dHp covariance matrix

Cov(vec(bBML)|Y) =

 
nX

i=1

M0
iΔ

−1Mi

!−1

.

Both the estimator and its covariance matrix include the unknown error covariance Δ.
We compute bBML in a two-step procedure. We first use bBsame or bBdi↵ to estimate Δ by
the residual covariance bΔ, as described in the next Section 3.4. Then we use this bΔ to
calculate bBML in (3.18).

Models (3.10) and (3.13) can be seen as generalized multivariate linear regression models,
so the OLS estimators derived in those two previous sections do not agree with the ML
estimator given here. However, for the restrictive case Δ = Δp ⌦ IT one can show thatbBML in (3.18) would agree with bBdi↵ in (3.15).
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3.4. Estimation of the Error Covariance

An estimate for Δ is needed for calculating the reduction or the ML estimator of B, as
well as estimating the covariance of any of the bB. The latter is, for example, needed for
variable selection tests.

From now on let bB be either bBsame or bBdi↵ introduced in the previous section, depending
on whether all individuals are measured at equal time points or not. Then we can define
the fitted values and residuals as

bXi = (Si ⌦G(yi))bB,bEi = Xi − bXi,

() vec(bEi) = vec(Xi)− (Ip ⌦ Si ⌦G(yi)) vec(bB).

If we let

bE =

0B@vec(bE1)
...

vec(bEn)

1CA 2 Rn⇥Tp, (3.19)

the OLS based estimate of Δ is

bΔOLS =
1

n− q
bE0bE, (3.20)

where q = rank(Ip ⌦ Z) = pdH, if each Si has full rank d and G(Y) has full rank H. We
give a short argument to show rank(Z) = dH. Let z 2 ker(Z) ✓ RdH and let zl 2 RH

denote the l-th sub-vector of z for l = 1, . . . , d. Then, for each i = 1, . . . , n,

(S0
i ⌦G(yi))z = 0,

()
dX

l=1

(Si)ls(G(yi)zl) = 0, 8s 2 {1, . . . , T}.

Since Si has full rank, this implies G(yi)zl = 0 for each l = 1, . . . , d. This holds for every
i, so also G(Y)zl = 0 for every l. If G(Y) has full rank, this gives zl = 0 for each l and
therefore z = 0. So by the rank-nullity theorem, rank(Z) = dH.

3.4.1. Separable Error Covariance

If we assume a Kronecker structure for Δ, such that Δ = Δp ⌦ ΔT for some
Δp 2 Rp⇥p,ΔT 2 RT⇥T , the number of estimated parameters decreases from pT (pT +1)/2
to p(p+ 1)/2 + T (T + 1)/2.

For estimation, we use the procedure from [17], that was already used for the LSIR-
algorithm in Section 2.4. Let êi.j be the j-th column of bEi, êit. the t-th row of bEi (as
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column/vector), and ē.j , ēt. the corresponding means over all observations. Then

bΔpt =
1

n

nX
i=1

(êit. − ēt.)(ê
i
t. − ēt.)

0, bΔp =
1

T

TX
t=1

bΔpt 2 Rp⇥p,

bΔTj =
1

n

nX
i=1

(êi.j − ē.j)(ê
i
.j − ē.j)

0, bΔT =
1

p

pX
j=1

bΔTj 2 RT⇥T ,

and set bΔkron = bΔp ⌦ bΔT .

3.4.2. ML Estimate of Error Covariance

In this section, we again assume a normal distribution of the errors Ei in (3.8), as in Section
3.3.2. The vectorized predictors in (3.9) have the distribution

vec(Xi)|(Yi = yi)
indep.⇠ N(Mi vec(B),Δ), i = 1, . . . , n,

where Mi = (Ip ⌦ Si
0 ⌦ G(yi)) 2 RTp⇥dHp. For any coefficient B, the likelihood L of Δ

then satisfies

L(Δ|Y,X1, . . . ,Xn) /

/ det(Δ)−n/2 exp

(
−1

2

nX
i=1

(vec(Xi)−Mi vec(B))0Δ−1(vec(Xi)−Mi vec(B))

)
=

= det(Δ)−n/2 exp

(
−1

2
tr

 
Δ−1

nX
i=1

(vec(Xi)−Mi vec(B))(vec(Xi)−Mi vec(B))0
!)

=

= det(Δ)−n/2 exp

⇢
−1

2
tr(Δ−1U)

�
,

for U :=
Pn

i=1(vec(Xi) − Mi vec(B))(vec(Xi) − Mi vec(B))0 depending on B, where /
signifies proportional to. We assume that U is positive definite and let V = U1/2Δ−1U1/2.
Then,

L(Δ|Y,X1, . . . ,Xn) / det(Δ)−n/2 exp{−1

2
tr(Δ−1U)} =

= det(U)−n/2 det(V)n/2 exp{−1

2
tr(V)}.

For fixedU, maximizing the likelihood is equivalent to finding the matrixV that maximizes

det(V)n/2 exp{−1

2
tr(V)} =

TpY
j=1

λ
n/2
j exp{−1

2
λj},

where the λjs denote the eigenvalues of V. Maximizing with respect to the eigenvalues we

obtain λj = n for all j = 1, . . . , Tp and therefore bVML = nITp. Using the definition of V
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this yields

bΔML =
1

n
U =

1

n

nX
i=1

(vec(Xi)−Mi vec(B))(vec(Xi)−Mi vec(B))0,

for any fixed B. Since the ML estimator of B itself depends on Δ, we use the estimator

bΔML =
1

n
bE0bE, (3.21)

where the residuals are calculated from bB as in (3.19). This estimate can then be used to
calculate bBML.

The ML estimate of Δ di↵ers from the OLS based estimate only in the scaling constant.
Simulations performed later on suggest that the scaling by n yields a less biased estimate
(see Figures 4.1 and 4.2). In general, we will therefore use this adapted ML estimator
(3.21) to estimate Δ.

One open problem is to prove consistency of this covariance error estimator. For this
asymptotic property does not matter whether the ML based or the OLS based scaling
is used. In [3, Theorem 4], Bura and Forzani show asymptotic normality (implying con-
sistency) of the residual covariance matrix for a homeostatic model. However, there are
requirements on the mean that would only be satisfied for our model, if it were an ex-
act Multivariate Linear Regression Model. In [12], Hoadley states general conditions for
consistency of MLestimators for the case of independent, but not identically distributed,
observations. These conditions are by far not trivial to check for our model, so we rely on
the usefulness of the error covariance estimator suggested by the simulations.

3.5. Estimation of the Reduction

Using the estimators derived in the previous sections, the estimation of the reduction (3.6)
is straightforward. We will use the empirical covariance matrix of the vectorized predictors
as estimate for ⌃x, i.e.

b⌃x =
1

n− 1

nX
i=1

vec(Xi) vec(Xi)
0 2 RTp⇥Tp.

Then, for a given k = rank(B0) = rank(B), we estimate span(B0) by

b↵ =
⇣bU1, . . . , bUk

⌘
,

where ( bU1, . . . , bUk) is the p⇥ k matrix of the first k left singular vectors of bB0.

Thus, the estimator of the sufficient reduction in (3.6) for Xi in (3.8), i = 1, . . . , n, is

bRp(Xi) = unvec
⇣b⌃−1

x vec(Xi)
⌘⇣bU1, . . . , bUk

⌘
2 RT⇥k. (3.22)
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By Corollary 3.4 in [6], b⌃x and bΔ, the sample covariance matrix of the residuals, can be
used interchangeably in (3.22). For the reduction, it does not matter which exact scaling of
the sample residual covariance matrix is used, since it just scales the reduced observations
by the inverse of this scalar.

In the simulations, we compare the predictive performance of these reductions for using b⌃x

and bΔ, and also for estimating both these covariance matrices by a Kronecker structure.
Also, we estimate the span of B0 from bBML and compare the performance.

In practice, the true rank k is unknown and d,H are parameters of choice. To not lose
information, one should choose dH ≥ k. This would be ensured by setting dH ≥ p.
However, this might not always be possible. For example, in the binary case H = 1,
because otherwise G(Y) in (3.4) cannot have full rank. Also, d cannot exceed T to ensure
the full (row-)rank of S.

3.6. Variable Selection

In this section we introduce a testing procedure for our STIR-model to test for the
importance of a marker j 2 {1, . . . , p}. We can test the null H0 : βhl,j = 0 for all
l = 1 . . . , d, h = 1, . . . , H, which is equivalent to

H0 : B.j = Aj vec(B) = 0 vs. H1 : B.j 6= 0 (3.23)

for the full row rank matrix

Aj =
�
0 · · · 0 IdH 0 · · · 0

� 2 RdH⇥dHp, (3.24)

where 0 2 RdH⇥dH and the identity matrix is positioned as the j-th (dH ⇥ dH)-block.

Let C = Ip ⌦ (SS0)−1S⌦ (G(Y)0G(Y))−1G(Y)0. Under the STIR-model from Definition
3.1 for equal time points for each individual and assuming normality of the errors, we have

vec(bBsame) ⇠ NdHp(vec(B),C(Δ⌦ In)C
0) (3.25)

Therefore, letting bB.j = Aj vec(bBsame) leads to bB.j ⇠ NdH(B.j ,AjC(Δ⌦ In)C
0A0

j). Since
this covariance matrix still has full rank, under the null

(Aj vec(bBsame))
0(AjC(Δ⌦ In)C

0A0
j)

−1(Aj vec(bBsame)) ⇠ χ2(dH).

Provided bΔ is consistent for Δ, a simple application of Slutsky’s theorem yields that

W = (Aj vec(bBsame))
0(AjC( bΔ⌦ In)C

0A0
j)

−1(Aj vec(bB)) ⇠H0 χ
2(dH). (3.26)

The null (3.23) is rejected at level ↵, if W > χ2
↵(dH).

In practice, Corollary 3.4 is useful to compute this test statistic, because the variance-
covariance matrix of bB.j is exactly the (j, j) sub-matrix of Cov(vec(bBsame)|Y). From this

corollary, we can also see that the covariance matrix of bB.j still has full rank, if S,Δjj ,
and G(Y) have full ranks d, T and H.

Similar tests can be performed using bBdi↵ or bBML. However, we will mostly use this more
simple estimator in the simulations.
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We perform extensive simulation studies to assess the performance of the STIR method.
We will generate the data from this STIR model, as well as from a model satisfying
the main assumption of the LSIR algorithm (2.17) for both the case of a binary and
continuous response variable Y . Each scenario is repeated for fixed error covariance and for
error covariance depending on Y through a multiplicative scalar. We assess the estimation
accuracy of estimating B and Δ, and report predictive performance for fitting a regression
model on the reduced predictors. We compare di↵erent versions of our method to LSIR
and to using no reduction. This analysis mostly agrees with what was done in [22], but
also examines the performance when using the ML estimator for B.

4.1. Data Generation

We start by generating a response Y . In the binary case, we draw yi
iid⇠ Bern(0.5),

i = 1, . . . , n for n = 500. Some settings will also use n = 2000 observations. For

the continuous case we instead use yi
iid⇠ N(0, 0.1), i = 1, . . . , n. For the error covari-

ances not depending on Y we will use Δ = AR1
Tp(⇢) with ⇢ = 0.8, i.e. an autore-

gressive structure where (Δ)jk = ⇢|j−k|, j, k = 1, . . . , T p. If we let the error covari-
ance depend on Y , we set Δ0 = 0.1 · AR1(0.8),Δ1 = AR1(0.8) in the binary case and
Δyi = exp(−min(

p
10|yi|, 2)) ·AR1

Tp(0.8) in the continuous case. When generating from a
error covariance matrix, which is dependent on Y , we expect that not all information on
Y is covered by the first moment of X|Y .

4.1.1. STIR

For binary Y we have to set H = 1, because otherwise G(Y) in (3.4) cannot have full rank.
We use

G(Y) =
�
y1 − ȳ, . . . , yn − ȳ

�0 2 Rn⇥1,

which is already centered when taking the expectation w.r.t. Y . For continuous response
Y , we can choose H arbitrarily and use Fourier basis elements as functions of Y . The rows
of G(Y) are then given by

G(yi) = (cos(2⇡yi), sin(2⇡yi), cos(2⇡2yi), sin(2⇡2yi), cos(2⇡3yi), . . . ) 2 R1⇥H , (4.1)

for i = 1, . . . , n and we then center the columns of G(Y) 2 Rn⇥H by their empirical mean.
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We consider fixed, equal time points (either T = {exp(t/6 − T/6), t = 1, . . . , T} or
T = {t/T, t = 1, . . . , T}) and random, unequal time points, where, for each individual,
T time points are drawn from a uniform distribution on (0, 1). These time points are only
drawn once for each setting and then stay the same for all replications of that setting. We
use the polynomial basis sj(t) = tj , j = 1, . . . , d for time basis functions. The rows of the
resulting S matrix are then centered by the mean over all time points (T time points for
equal time case and nT time points for unequal time case).

With all the components specified, we can then generate the predictors Xi from (3.8),

where we use multivariate normal errors vec(Ei)
iid⇠ N(0,Δ) or vec(Ei)

iid⇠ N(0,Δyi) for
i = 1, . . . , n.

4.1.2. LSIR

As model satisfying the mean structure of the LSIR section (2.17), we will use and generate
from

Xi =  Gyiφ
0 +Ei 2 RT⇥p, i = 1, . . . , n, (4.2)

with  2 RT⇥r, φ 2 Rp⇥m and some r ⇥ m matrix Gyi , and vec(E) ⇠ N(0,Δ) or
vec(E) ⇠ N(0,Δy).

We choose the matrix Gyi , such that vec(Gyi) agrees with G(yi), the i-th row of G(Y),
from the previous subsection for both the binary and continuous case.

4.2. Performance Measures

In this section we define how we compare and measure the performance of our proposed
STIRmethod to other methods. We assess how well the parametersB andΔ are estimated
and how useful the reduced predictors of our method are to predict new responses.

4.2.1. Estimation Accuracy

To see whether bB is a good point estimator, we consider the average of kB− bBkF over mul-
tiple replications for the scenarios where we generate from our model with true parameter
B, where ||.||F denotes the Frobenius norm. We also take a look at kB− Pnrep

j=1
bBj/nrepkF

and kΔ−Pnrep

j=1
bΔj

/nrepkF for an increasing number of replications to check whether our
estimators are unbiased. Here the superscript j denotes the estimator resulting from the
j-th replication. For all three measures, we compare the OLS based estimators to the ML
based ones.

Since the reduction in our model does not need a point estimate of the true B, but rather
of span(B0), we use the the principal angle to assess closeness of the subspace spanned bybB0 to the subspace spanned by B0. The principal angle 0  ✓  ⇡/2 can be expressed as
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cos ✓ = kPB0PbB0k = kPbB0PB0k, where k · k is the spectral norm and PA is the orthogonal
projection onto the column space of a matrix A [13]. For two subspaces span(A) ✓ Rm

and span(B) ✓ Rm with the same dimension, the principal angle ✓ is zero if and only if
span(A) \ span(B) 6= 0, and ✓ = ⇡/2 if and only if span(A) is orthogonal to span(B). We
report 1− cos(✓), which is zero when span(bB0) = span(B0).

4.2.2. Modeling and Predicting the Response

We compare the predictive performance of the following reductions. From the STIR model

and for span
⇣bU1, . . . , bUk

⌘
= span(bB0) with di↵erent k, we use

bRdelta(Xi) = unvec
⇣ bΔ−1

vec(Xi)
⌘⇣bU1, . . . , bUk

⌘
,

bRdel-kron(Xi) = unvec
⇣
( bΔ−1

p ⌦ bΔ−1

T ) vec(Xi)
⌘⇣bU1, . . . , bUk

⌘
,

bRsigma(Xi) = unvec
⇣b⌃−1

x vec(Xi)
⌘⇣bU1, . . . , bUk

⌘
,

bRsig-kron(Xi) = unvec
⇣
(b⌃−1

p ⌦ b⌃−1

T ) vec(Xi)
⌘⇣bU1, . . . , bUk

⌘
,

where b⌃p and b⌃T are estimated as in the first step of the LSIR algorithm 2.11, as well as
not using any scaling

bRunscaled(Xi) = Xi

⇣bU1, . . . , bUk

⌘
.

For span
⇣bV1, . . . , bVk

⌘
= span(bBML

0), we also use

bRdelta(Xi) = unvec
⇣ bΔ−1

x vec(Xi)
⌘⇣bV1, . . . , bVk

⌘
.

All these reductions bR(Xi) are T ⇥ k matrices. When we apply LSIR to a continuous Y ,
we categorize the observed responses into 10 categories based on the deciles of a N(0, 0.1)-
distribution. The reduction from LSIR is given by

bRLSIR(Xi) = b 0
Xi
bφ 2 Rr⇥m.

We also compare the performance to using no reduction at all, i.e. bRunred(Xi) = Xi 2 RT⇥p.

For any of these reductions let eXi = bR(Xi) be the reduced predictors for i = 1, . . . , n.
With those, we model the mean of the response Y through a link function g as

g(E[Y | eXi]) = µ+ vec(✓)0 vec(eXi), (4.3)

where ✓ is a parameter matrix corresponding to the Xis. Sometimes we will also allow

g(E[Y | eXi]) = µ+ vec(✓)0 vec(eXi) + vec(eXi)
0⇥ vec(eXi), (4.4)
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where ⇥ is a symmetric parameter matrix for the interaction and quadratic terms among
the components of the reduction. For binary Y , we use the logit link function and obtain
ML estimators b✓ and b⇥ of ✓ and ⇥ from fitting a logit model. For continuous Y , we use
the identity link to fit a linear regression model and obtain least squares estimates of ✓ and
⇥.

For a continuous response Y we will also apply a generalized additive model (GAM) [10],

g(E(Y | eXi)) = β0 +

TkX
j=1

fj(vec(eXi)j). (4.5)

where vec(eXi)j is the j-th element of vec(eXi) and the fjs are smooth functions, for
j = 1, . . . , Tk, i = 1, . . . , n. We fit model (4.5) using the mgcv package [24] in R with
REML smoothness estimation.

We then generate 100 new data samples, calculate the reductions of those predictors and
use these regression models to predict the new responses from the new reduced predictors.

For a binary response Y , we will assess this performance by the AUC (area under the curve)
between the 100 true new responses and the predicted probabilities from the logit model
on the reduced predictors. In R, we use the ROCR package [21] to calculate the AUC.

For a continuous response Y , we assess the performance by the empirical correlation be-
tween the true new responses and the predictions from the regression model for the new
reduced predictors.

4.3. Simulation Results

Here we state the exact specifications of the scenarios to generate the data for binary and
continuous response and give the results.

4.3.1. Binary Response

In the binary case we have to choose r = m = 1 for LSIR and H = 1 for STIR. All
considered settings are listed in Table 4.1. Settings STIR-1,2 and LSIR-1,2 aim to show
the di↵erence between same and di↵erent time points for the individuals. Settings STIR-1,2
consider large T and smaller p, while STIR-3,4,5,6 do the opposite. Starting from STIR-4
with equally spaced time points, settings STIR-5,6 aim to show the di↵erence between
having the markers available 3 times or once, but with a 3 times stronger signal. The
scaling of the true B matrices was chosen in a way to obtain interpretable and meaningful
AUC values.

Estimation Accuracy

Table A.1 in the appendix shows the estimation accuracy of the STIR estimates to the
true B for the scenarios where we generate from the STIR model. We see that in each
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Table 4.1.: Simulation scenarios for yi ⇠ Bern(0.5), i = 1, . . . , 500. For setting STIR-1 -
STIR-6 rank(B) = 2, for settings LSIR-1 and LSIR-2 rank(B) = 1. ⇤di↵erent
time points for each observation in the sample.

Setting Data generation True B Error dist. Time points t (T, p, d)

STIR-1 model (3.1) B = 0.1 ·

0BB@
1 0.7 0.1
0.5 0.3 0.1
1 0.7 0.1
0.5 0.3 0.1

1CCA 2 RdH⇥p, H = 1 (a) N(0,Δy) (b) N(0,Δ) exp(t/6− T/6) (10, 3, 4)

STIR-2 model (3.1) B = 0.1 ·

0BB@
1 0.7 0.1
0.5 0.3 0.1
1 0.7 0.1
0.5 0.3 0.1

1CCA (a) N(0,Δy) (b) N(0,Δ) ind.⇤, runif(0,1) (10, 3, 4)

STIR-3 model (3.1) B = 0.1 ·
0@ 1 0.7 0.1 1 0.7 · · · 0.1
0.5 0.3 0.1 0.5 0.3 · · · 0.1
1 0.7 0.1 1 0.7 · · · 0.1

1A (a) N(0,Δy) (b) N(0,Δ) exp(t/6− T/6) (4, 15, 3)

STIR-4 model (3.1) B = B4 =

✓
1 0 0.5 0 0.5 0 1
0 0.25 0.5 0.25 0.5 0.25 0

◆
(a) N(0,Δy) (b) N(0,Δ) t/T (3, 7, 2)

STIR-5 model (3.1) B =
�
B4 B4 B4

�
(a) N(0,Δy) (b) N(0,Δ) t/T (3, 21, 2)

STIR-6 model (3.1) B = 3B4 = 3

✓
1 0 0.5 0 0.5 0 1
0 0.25 0.5 0.25 0.5 0.25 0

◆
(a) N(0,Δy) (b) N(0,Δ) t/T (3, 7, 2)

LSIR-1 model (4.2) φ = (1, 0.5, 0.1)0 (a) N(0,Δy) (b) N(0,Δ) exp(t/6− T/6) (8, 3, 4)
 = (1, . . . , 8)0/8

LSIR-2 model (4.2) φ = (1, 0.5, 0.1)0 (a) N(0,Δy) (b) N(0,Δ) ind.⇤, runif(0,1) (8, 3, 4)
 = (1, . . . , 8)0/8

setting the estimation accuracy increases for increasing number of observations n, because
the average of kB− B̂kF decreases. In general, the ML estimate is slightly more accurate
than the OLS estimate and both estimators perform better when generating with error
covariance depending on Y (a) than when generating from a fixed Δ (b). This e↵ect is
likely caused by the less noisy errors for controls, i.e. Δ0 = 0.1 ·AR1(0.8).

For scenarios STIR-1 and 2, the principle angle is almost 0, so the span of the true B0 is
estimated very well. In the other STIR scenarios we do see higher numbers of 1 − cos(✓)
in Table A.2, which do decrease for increasing number of observations. This result is not
surprising, as for larger p and smaller T , the estimation of span(B0) becomes more difficult.
Here we only analyzed the OLS based estimator bB.

In Figure 4.1 we check whether our estimates for B and Δ are unbiased in scenarios STIR-
1 and 4 with fixed error covariance not depending on Y (b). We can see that bB and bBML

perform both well and on a par and seem to be unbiased. Furthermore, the scaling factor
used in the ML estimator Δ leads to a less biased estimate of Δ compared to the OLS
based scaling factor.

Predictive Performance

Next, we look at the predictive performance of the logit models fitted to the reduced
predictors. The predictions are evaluated via AUC and Tables 4.2 and 4.3 show the results
averaged over 100 replications for our STIR reduction using the error covariance estimatebΔ as scaling in the reduction, the STIR reduction with error covariance estimated as a
Kronecker structure used for scaling, the STIR reduction based on bBML using bΔ, the
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Figure 4.1.: kB− Pnrep

j=1
bBj/nrepkF and kΔ−Pnrep

j=1
bΔj

/nrepkF is shown for n = 500 and
increasing number of replications for scenarios STIR-1 and 4 for binary Y with
fixed Δ independent of Y . We compare the OLS based estimate to the ML
based one.

LSIR algorithm and no reduction. The specification of k in these tables only refers to the
first 3 columns, not LSIR and Unreduced.

We again see that in general the AUC values are higher, which corresponds to better
predictive performance, in the settings where the error covariance matrix depends on Y .
Again, this might be due to the fact that the errors are smaller for approximately half of
the observations.

Comparing STIR-1 and 2, we see that same time points for the individuals leads to slightly
better predictive performance. In LSIR-1 and 2 the performances are very much alike. The
performance in scenario STIR-6 is better than in STIR-5, so increasing the signal of given
markers leads to better predictive models than using more markers of similar importance.

Across all scenarios, the performance of using bB to calculate the reduction is very similar
to the one obtained by bBML, so in practice (e.g. for the data analysis in Chapter 5) we will
use the more easily derived OLS based estimator bB.

Our method seems to be fairly competitive compared to LSIR. In all scenarios, even LSIR-
1 and 2, where we generate the data from a model corresponding to the LSIR algorithm,
our method matches or beats the performance of LSIR even with k = 1 or k = 2.

In general, it seems that using the unreduced predictors in the logit model is hard to
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beat. However, in certain settings (STIR-1,2,3 a) with a second moment e↵ect of Y , i.e.
when the error covariance depends on Y , the STIR method has a significantly higher
predictive power when including second order terms (squares and interactions), e.g. AUC
of 0.971 compared to 0.668 of Unreduced without second order terms. Even with n = 2000
observations, the unreduced model including all second order terms does not come close
to that performance (AUC of 0.855). In these settings, our method is able to capture
the relation of the predictors to the response even with k = 1 and a moderate number
of observations n = 500 when including second order terms, overwhelmingly beating an
unreduced model and LSIR.

In the appendix, Tables A.3 and A.4 show the corresponding results for our STIR reduction
using all the di↵erent matrices for scaling that were mentioned in Section 4.2.2. Across
these di↵erent reductions, using bΔ for scaling performs the best and we use this for the
comparison with the other methods. For scenarios STIR-1,2 and 3 the di↵erences are
minor, but for the others the di↵erences are quite remarkable, e.g. in STIR-4 a using bΔ
for scaling leads to an AUC of 0.925 compared to 0.755 when using b⌃x or 0.891 with no
scaling. Especially using b⌃x can lead to poor results in some scenarios.
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Table 4.2.: AUC values for 100 new binary Y -observations and values predicted by logit
model fit. Results are means and standard deviations (in parentheses) over 100
replications for each setting. Settings STIR 1-4.

Reduction STIR STIR STIR ML LSIR Unreduced

Covariance bΔ bΔ = Δ̂p ⌦ Δ̂T
bΔ bΔ = Δ̂p ⌦ Δ̂T

Scenario STIR-1 a (T, p, d) = (10, 3, 4)
k=1 0.605 (0.067) 0.536 (0.068) 0.61 (0.065) 0.578 (0.064) 0.637 (0.053)
k=1, 2.ord.terms 0.982 (0.019) 0.977 (0.022) 0.983 (0.017) 0.791 (0.045) 0.633 (0.078)
same w. n=2000 0.996 (0.005) 0.996 (0.006) 0.996 (0.006) 0.811 (0.046) 0.998 (0.005)
k=2 0.631 (0.053) 0.569 (0.069) 0.63 (0.052)
k=3 0.637 (0.053) 0.637 (0.053) 0.637 (0.053)

Scenario STIR-1 b
k=1 0.577 (0.069) 0.524 (0.067) 0.576 (0.067) 0.539 (0.058) 0.594 (0.056)
k=1, 2.ord.terms 0.54 (0.063) 0.507 (0.062) 0.542 (0.064) 0.539 (0.058) 0.508 (0.055)
same w. n=2000 0.562 (0.067) 0.518 (0.061) 0.562 (0.064) 0.575 (0.061) 0.54 (0.06)
k=2 0.589 (0.061) 0.544 (0.068) 0.587 (0.058)
k=3 0.594 (0.056) 0.594 (0.056) 0.594 (0.056)

Scenario STIR-2 a (T, p, d) = (10, 3, 4)
k=1 0.576 (0.064) 0.515 (0.066) 0.588 (0.074) 0.551 (0.065) 0.6 (0.062)
k=1, 2.ord.terms 0.978 (0.022) 0.982 (0.018) 0.98 (0.018) 0.791 (0.046) 0.608 (0.088)
same w. n=2000 0.562 (0.067) 0.518 (0.061) 0.562 (0.064) 0.575 (0.061) 0.54 (0.06)
k=2 0.601 (0.06) 0.554 (0.073) 0.598 (0.066)
k=3 0.6 (0.062) 0.6 (0.062) 0.6 (0.062)

Scenario STIR-2 b
k=1 0.564 (0.061) 0.523 (0.063) 0.558 (0.06) 0.528 (0.065) 0.567 (0.063)
k=1, 2.ord.terms 0.53 (0.061) 0.51 (0.064) 0.529 (0.064) 0.528 (0.065) 0.501 (0.064)
same w. n=2000 0.562 (0.067) 0.518 (0.061) 0.562 (0.064) 0.575 (0.061) 0.54 (0.06)
k=2 0.566 (0.058) 0.529 (0.064) 0.568 (0.066)
k=3 0.567 (0.063) 0.567 (0.063) 0.567 (0.063)

Scenario STIR-3 a (T, p, d) = (4, 15, 3)
k=1 0.542 (0.086) 0.502 (0.077) 0.542 (0.083) 0.568 (0.064) 0.668 (0.06)
k=1, 2.ord.terms 0.971 (0.017) 0.969 (0.018) 0.973 (0.014) 0.787 (0.05) 0.543 (0.082)
same w. n=2000 0.975 (0.015) 0.972 (0.015) 0.975 (0.015) 0.797 (0.049) 0.855 (0.056)
k=2 0.562 (0.078) 0.504 (0.072) 0.564 (0.078)
k=3 0.665 (0.057) 0.561 (0.067) 0.671 (0.06)

Scenario STIR-3 b
k=1 0.524 (0.076) 0.502 (0.067) 0.525 (0.073) 0.539 (0.057) 0.618 (0.055)
k=1, 2.ord.terms 0.521 (0.073) 0.506 (0.067) 0.52 (0.073) 0.538 (0.058) 0.502 (0.054)
same w. n=2000 0.539 (0.065) 0.501 (0.064) 0.539 (0.065) 0.57 (0.065) 0.509 (0.049)
k=2 0.54 (0.07) 0.501 (0.059) 0.543 (0.071)
k=3 0.616 (0.056) 0.535 (0.061) 0.624 (0.055)

Scenario STIR-4 a (T, p, d) = (3, 7, 2)
k=1 0.925 (0.085) 0.794 (0.065) 0.924 (0.086) 0.858 (0.037) 0.983 (0.015)
k=1, 2.ord.terms 0.985 (0.016) 0.964 (0.018) 0.985 (0.016) 0.896 (0.033) 0.941 (0.036)
same w. n=2000 0.992 (0.009) 0.971 (0.016) 0.992 (0.01) 0.9 (0.031) 1 (0.001)
k=2 0.987 (0.012) 0.866 (0.043) 0.987 (0.012)

Scenario STIR-4 b
k=1 0.825 (0.123) 0.698 (0.078) 0.832 (0.117) 0.788 (0.042) 0.954 (0.018)
k=1, 2.ord.terms 0.82 (0.125) 0.689 (0.082) 0.828 (0.121) 0.788 (0.042) 0.794 (0.047)
same w. n=2000 0.915 (0.05) 0.74 (0.059) 0.918 (0.045) 0.778 (0.047) 0.925 (0.027)
k=2 0.956 (0.018) 0.793 (0.047) 0.956 (0.018)
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Table 4.3.: AUC values for 100 new binary Y -observations and values predicted by logit
model fit. Results are means and standard deviations (in parentheses) over 100
replications for each setting. Settings STIR 5, 6 and LSIR 1, 2.

Reduction STIR STIR STIR ML LSIR Unreduced

Covariance bΔ bΔ = Δ̂p ⌦ Δ̂T
bΔ bΔ = Δ̂p ⌦ Δ̂T

Scenario STIR-5 a (T, p, d) = (3, 21, 2)
k=1 0.988 (0.043) 0.871 (0.072) 0.985 (0.056) 0.957 (0.025) 1 (0.002)
k=1, 2.ord.terms 0.994 (0.011) 0.974 (0.017) 0.993 (0.012) 0.961 (0.023) 0.547 (0.071)
same w. n=2000 0.994 (0.011) 0.974 (0.017) 0.996 (0.008) 1 (0.002) 0.986 (0.014)
k=2 1 (0.001) 0.955 (0.026) 1 (0.001)

Scenario STIR-5 b
k=1 0.911 (0.11) 0.735 (0.095) 0.921 (0.096) 0.897 (0.033) 0.992 (0.006)
k=1, 2.ord.terms 0.908 (0.112) 0.73 (0.096) 0.918 (0.098) 0.897 (0.033) 0.545 (0.07)
same w. n=2000 0.908 (0.112) 0.73 (0.096) 0.98 (0.013) 0.982 (0.015) 0.883 (0.037)
k=2 0.997 (0.004) 0.895 (0.034) 0.997 (0.003)

Scenario STIR-6 a (T, p, d) = (3, 7, 2)
k=1 1 (0) 0.998 (0.005) 1 (0) 1 (0.001) 1 (0)
k=1, 2.ord.terms 1 (0) 0.998 (0.005) 1 (0) 0.999 (0.002) 0.996 (0.008)
same w. n=2000 1 (0) 0.999 (0.003) 1 (0) 0.999 (0.003) 1 (0)
k=2 1 (0) 0.998 (0.006) 1 (0)

Scenario STIR-6 b
k=1 1 (0) 0.983 (0.01) 1 (0) 0.992 (0.006) 1 (0)
k=1, 2.ord.terms 1 (0.001) 0.982 (0.011) 1 (0.001) 0.992 (0.006) 0.997 (0.004)
same w. n=2000 1 (0) 0.983 (0.01) 1 (0) 0.99 (0.007) 1 (0)
k=2 1 (0) 0.993 (0.006) 1 (0)

Scenario LSIR-1 a (T, p, d) = (8, 3, 4)
k=1 0.849 (0.102) 0.669 (0.123) 0.851 (0.095) 0.846 (0.049) 0.941 (0.027)
k=1, 2.ord.terms 0.983 (0.015) 0.983 (0.015) 0.984 (0.015) 0.889 (0.043) 0.875 (0.054)
same w. n=2000 0.997 (0.005) 0.996 (0.005) 0.996 (0.005) 0.89 (0.034) 1 (0.002)
k=2 0.934 (0.031) 0.86 (0.083) 0.928 (0.035)
k=3 0.941 (0.027) 0.941 (0.027) 0.941 (0.027)

Scenario LSIR-1 b
k=1 0.799 (0.083) 0.635 (0.105) 0.795 (0.102) 0.773 (0.051) 0.884 (0.034)
k=1, 2.ord.terms 0.766 (0.094) 0.606 (0.1) 0.765 (0.105) 0.773 (0.051) 0.661 (0.064)
same w. n=2000 0.813 (0.073) 0.643 (0.098) 0.793 (0.084) 0.779 (0.049) 0.851 (0.042)
k=2 0.869 (0.041) 0.771 (0.092) 0.867 (0.04)
k=3 0.884 (0.034) 0.884 (0.034) 0.884 (0.034)

Scenario LSIR-2 a (T, p, d) = (8, 3, 4)
k=1 0.855 (0.091) 0.656 (0.132) 0.856 (0.083) 0.852 (0.046) 0.946 (0.026)
k=1, 2.ord.terms 0.986 (0.013) 0.983 (0.016) 0.982 (0.018) 0.891 (0.033) 0.878 (0.055)
same w. n=2000 0.998 (0.005) 0.997 (0.004) 0.998 (0.003) 0.895 (0.035) 0.999 (0.003)
k=2 0.93 (0.037) 0.842 (0.087) 0.927 (0.036)
k=3 0.946 (0.026) 0.946 (0.026) 0.946 (0.026)

Scenario LSIR-2 b
k=1 0.786 (0.087) 0.619 (0.101) 0.796 (0.089) 0.777 (0.048) 0.887 (0.03)
k=1, 2.ord.terms 0.757 (0.089) 0.591 (0.089) 0.763 (0.095) 0.777 (0.048) 0.663 (0.058)
same w. n=2000 0.811 (0.077) 0.647 (0.104) 0.802 (0.085) 0.783 (0.048) 0.851 (0.038)
k=2 0.869 (0.045) 0.771 (0.079) 0.865 (0.043)
k=3 0.887 (0.03) 0.887 (0.03) 0.887 (0.03)
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4.3.2. Continuous Response

The settings used for continuous Y are listed in Table 4.4. Similarly to the binary case,
settings STIR-1,2 and LSIR-1,2 aim to show the di↵erence between same and di↵erent
time points for the individuals. Settings STIR-1,2 consider large T and smaller p, while
STIR-3,4,5,6 do the opposite. Starting from STIR-4 with equally spaced time points,
settings STIR-5,6 aim to show the di↵erence between having the markers available 3 times
or once, but with a 3 times stronger signal. In the STIR settings we will use di↵erent
values for r and m for LSIR.

Table 4.4.: Simulation scenarios for yi ⇠ N(0, 0.1), i = 1, . . . , 500. For all settings
rank(B) = 2. ⇤di↵erent time points for each observation in the sample.

Setting Data generation True B Error dist. Time points t (T, p, H, d)

STIR-1 model (3.1) B =

0BB@
1 0.7 0.1
0.5 0.3 0.1
1 0.7 0.1
0.5 0.3 0.1

1CCA 2 RdH⇥p (a) N(0,Δy) (b) N(0,Δ) exp(t/6− T/6) (10, 3, 2, 2)

STIR-2 model (3.1) B =

0BB@
1 0.7 0.1
0.5 0.3 0.1
1 0.7 0.1
0.5 0.3 0.1

1CCA (a) N(0,Δy) (b) N(0,Δ) ind.⇤, runif(0,1) (10, 3, 2, 2)

STIR-3 model (3.1) B =

0@ 1 0.7 0.1 1 0.7 · · · 0.1
0.5 0.3 0.1 0.5 0.3 · · · 0.1
1 0.7 0.1 1 0.7 · · · 0.1

1A (a) N(0,Δy) (b) N(0,Δ) exp(t/6− T/6) (3, 15, 3, 1)

STIR-4 model (3.1) B = B4 =

✓
2 0 1 0 1 0 2
0 0.5 1 0.5 1 0.5 0

◆
(a) N(0,Δy) (b) N(0,Δ) t/T (2, 7, 2, 1)

STIR-5 model (3.1) B =
�
B4 B4 B4

�
(a) N(0,Δy) (b) N(0,Δ) t/T (2, 21, 2, 1)

STIR-6 model (3.1) B = 3B4 = 3

✓
2 0 1 0 1 0 2
0 0.5 1 0.5 1 0.5 0

◆
(a) N(0,Δy) (b) N(0,Δ) t/T (2, 7, 2, 1)

LSIR-1 model (4.2)  =

0@1
0
1

1A , φ =

0BBBBB@
0.1 1

−0.05 −1
...

...
0.1 1

−0.05 −1

1CCCCCA 2 R8⇥2 (a) N(0,Δy) (b) N(0,Δ) exp(t/6− T/6) (3, 8, 3, 2)

LSIR-2 model (4.2)  =

0@1
0
1

1A , φ =

0BBBBB@
0.1 1

−0.05 −1
...

...
0.1 1

−0.05 −1

1CCCCCA 2 R8⇥2 (a) N(0,Δy) (b) N(0,Δ) ind.⇤,runif(0,1) (3, 8, 3, 2)

Estimation Accuracy

As in the binary case, we first take a look at the estimation accuracy of the parameter
estimates estimate to the true B for the scenarios where we generate from the STIR
model, which is given in Table A.5 in the appendix.

Exactly as in the binary case, the average of kB − B̂kF decreases for increasing number
of observations in all settings, the ML estimate is slightly more accurate than the OLS
estimate and both estimators perform better when the error covariance depends on Y .
Since for the a version of the scenarios, we scale the fixed Δ by a real and Y -dependent
constant smaller than one, this e↵ect is likely again caused by smaller noise in the data.
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The take-away from the analysis of the principle angle between span(bB0) and span(B0) is
the same as in the binary case as well. Table A.6 shows that for scenarios STIR-1 and
2, the principle angle is almost 0, and in the other more difficult STIR scenarios we see
decreasing numbers of 1− cos(✓) for increasing sample size.

Figure 4.2 shows that also in the continuous case bB and bBML seem to be unbiased, but
here the ML estimate has a slightly better accuracy. The figure also suggests that the ML

estimate for Δ is less biased than the OLS estimate, as kΔ −Pnrep

j=1
bΔj

/nrepkF goes to
zero for increasing number of repetitions for the ML estimate, while it reaches a plateau
for the other scaling factor.
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Figure 4.2.: kB− Pnrep

j=1
bBj/nrepkF and kΔ−Pnrep

j=1
bΔj

/nrepkF is shown for n = 500 and
increasing number of replications for scenarios STIR-1 and 4 for continuous Y
with fixed Δ independent of Y . We compare the OLS based estimate to the
ML based one.

Predictive Performance

The following tables show the prediction performance of the regression models (linear and
gam) fitted to the reduced predictors. It is measured by the empirical correlation between
true new responses and their predicted values.

The two main Tables 4.5 and 4.6, as well as Tables A.7 and A.8 in the appendix, use the
same column structure as in the binary setting. The specification of k in these tables again
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only refers to the first 3 columns, not LSIR and Unreduced, while r and m only refer to
LSIR.

Across all settings we again see a slightly better predictive performance, indicated by
a higher correlation, for scenarios ’a’, where the error covariance matrix depends on Y ,
compared to ’b’, where it does not.

Comparing STIR-1 and 2, there is hardly any di↵erence in performance between using same
or di↵erent time points for the individuals in the sample. However, in LSIR-1 and 2 the
di↵erence for our method is striking, e.g. our method with k = 1 achieves a correlation of
0.97 for equal time points (Scenario LSIR-1 a) and 0.268 for di↵erent time points (Scenario
LSIR-2 a). So our method seems to be very sensitive to the modeling of time. As for binary
Y , the performance in scenario STIR-6 is better than in STIR-5, so increasing the signal
of given markers leads to better predictive models than using more markers of similar
importance.

Here, the performance of using bB to calculate the reduction is again similar to the one
obtained by bBML, but not as alike as in the binary case. Using bB yields better correlations
in scenario LSIR-2 (e.g. 0.268 versus 0.188 for k = 1), while bBML yields slightly better
correlations in scenarios STIR-1,2 and 3.

Our method seems to be fairly competitive compared to LSIR. In all scenarios except
LSIR-2 our method beats or matches the performance of LSIR even with k = 1 or k = 2.
Using a gam regression model instead of the linear model did only improve the performance
slightly in settings STIR-1-4 a (e.g. from 0.475 to 0.502 in STIR-1 a).

The unreduced predictors in the linear model are again hard to beat, but our method is
able to at least match the performance in every setting when using k = 2 (e.g. 0.218
compared to 0.134 for STIR-3 b), with the only exception of scenario LSIR-2.

Looking at the e↵ect of using di↵erent scaling matrices in the reduction for our method
in Tables A.7 and A.8 in the appendix, we see that again using bΔ for scaling did per-
form the best. For all STIR scenarios, using a Kronecker product structure deteriorates
the performance drastically. However, in scenario LSIR-2 we do see the opposite, e.g.
a correlation of 0.223 for our method with k = 1 when using bΔ compared to 0.62 forbΔ = Δ̂p ⌦ Δ̂T .

To summarize, our method did not achieve as astonishing results as in the binary case for
continuous Y , but is still competitive to LSIR and using no reduction.
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Table 4.5.: Correlation between 100 new continuous Y -observations and values predicted
by linear model fit. Results are means and standard deviations (in parentheses)
over 100 replications for each setting. Settings STIR 1-4.

Reduction STIR STIR STIR ML LSIR Unreduced

Covariance bΔ bΔ = Δ̂p ⌦ Δ̂T
bΔ bΔ = Δ̂p ⌦ Δ̂T

Scenario STIR-1 a (T, p,H, d) = (10, 3, 2, 2)
k=1=r=m 0.475 (0.116) 0.312 (0.147) 0.487 (0.103) 0.412 (0.09) 0.504 (0.092)
same w. gam 0.502 (0.123) 0.316 (0.149) 0.516 (0.106) 0.458 (0.096) 0.506 (0.089)
k=1=r=m w.2.ord. 0.463 (0.126) 0.288 (0.159) 0.476 (0.113) 0.459 (0.097) 0.032 (0.089)
same w. n=2000 0.557 (0.097) 0.451 (0.114) 0.56 (0.096) 0.471 (0.106) 0.478 (0.099)
k=2,r=3,m=1 0.508 (0.093) 0.454 (0.091) 0.506 (0.094) 0.411 (0.092)
k=3=r,m=2 0.504 (0.092) 0.504 (0.092) 0.504 (0.092) 0.419 (0.088)
r=7,m=2 0.43 (0.092)

Scenario STIR-1 b
k=1=r=m 0.421 (0.127) 0.242 (0.145) 0.425 (0.123) 0.374 (0.097) 0.463 (0.1)
same w. gam 0.428 (0.131) 0.233 (0.153) 0.433 (0.128) 0.399 (0.107) 0.447 (0.1)
k=1=r=m w.2.ord. 0.371 (0.138) 0.191 (0.147) 0.369 (0.146) 0.402 (0.107) 0.022 (0.101)
same w. n=2000 0.491 (0.108) 0.361 (0.129) 0.496 (0.107) 0.416 (0.11) 0.377 (0.122)
k=2,r=3,m=1 0.469 (0.098) 0.412 (0.099) 0.469 (0.1) 0.372 (0.098)
k=3=r,m=2 0.463 (0.1) 0.463 (0.1) 0.463 (0.1) 0.379 (0.094)
r=7,m=2 0.387 (0.095)

Scenario STIR-2 a (T, p,H, d) = (10, 3, 2, 2)
k=1=r=m 0.474 (0.109) 0.326 (0.147) 0.502 (0.091) 0.391 (0.097) 0.492 (0.094)
same w. gam 0.494 (0.112) 0.327 (0.151) 0.523 (0.092) 0.429 (0.103) 0.493 (0.091)
k=1=r=m w.2.ord. 0.462 (0.112) 0.3 (0.159) 0.489 (0.092) 0.432 (0.102) 0.035 (0.084)
same w. n=2000 0.527 (0.098) 0.432 (0.115) 0.53 (0.095) 0.445 (0.116) 0.441 (0.095)
k=2,r=3,m=1 0.498 (0.093) 0.45 (0.108) 0.498 (0.093) 0.392 (0.094)
k=3=r,m=2 0.492 (0.094) 0.492 (0.094) 0.492 (0.094) 0.394 (0.1)
r=7,m=2 0.404 (0.105)

Scenario STIR-2 b
k=1=r=m 0.427 (0.126) 0.26 (0.161) 0.452 (0.109) 0.346 (0.11) 0.454 (0.097)
same w. gam 0.428 (0.13) 0.251 (0.155) 0.457 (0.111) 0.365 (0.118) 0.443 (0.1)
k=1=r=m w.2.ord. 0.378 (0.123) 0.2 (0.149) 0.405 (0.116) 0.369 (0.118) 0.023 (0.108)
same w. n=2000 0.475 (0.1) 0.365 (0.12) 0.478 (0.1) 0.4 (0.117) 0.353 (0.094)
k=2,r=3,m=1 0.465 (0.098) 0.398 (0.113) 0.461 (0.096) 0.348 (0.104)
k=3=r,m=2 0.454 (0.097) 0.454 (0.097) 0.454 (0.097) 0.359 (0.101)
r=7,m=2 0.365 (0.101)

Scenario STIR-3 a (T, p,H, d) = (3, 15, 3, 1)
k=1=r=m 0.166 (0.135) 0.059 (0.112) 0.19 (0.137) 0.148 (0.117) 0.162 (0.122)
same w. gam 0.194 (0.163) 0.06 (0.116) 0.222 (0.159) 0.169 (0.138) 0.16 (0.109)
k=1=r=m w.2.ord. 0.19 (0.166) 0.06 (0.117) 0.224 (0.156) 0.175 (0.135) -0.004 (0.086)
same w. n=2000 0.306 (0.141) 0.161 (0.108) 0.308 (0.141) 0.188 (0.115) 0.113 (0.093)
k=2,r=1,m=3 0.239 (0.128) 0.128 (0.107) 0.242 (0.126) 0.131 (0.116)
k=3,r=2,m=3 0.206 (0.131) 0.096 (0.107) 0.199 (0.124) 0.111 (0.117)
r=2,m=10 0.125 (0.119)

Scenario STIR-3 b
k=1=r=m 0.101 (0.136) 0.023 (0.111) 0.124 (0.138) 0.122 (0.125) 0.134 (0.125)
same w. gam 0.105 (0.151) 0.028 (0.11) 0.115 (0.15) 0.117 (0.141) 0.129 (0.118)
k=1=r=m w.2.ord. 0.097 (0.133) 0.022 (0.11) 0.121 (0.14) 0.125 (0.141) -0.007 (0.097)
same w. n=2000 0.24 (0.151) 0.078 (0.117) 0.254 (0.153) 0.16 (0.115) 0.083 (0.115)
k=2,r=1,m=3 0.218 (0.126) 0.105 (0.108) 0.223 (0.127) 0.107 (0.114)
k=3,r=2,m=3 0.179 (0.131) 0.073 (0.112) 0.176 (0.125) 0.092 (0.117)
r=2,m=10 0.09 (0.122)

Scenario STIR-4 a (T, p,H, d) = (2, 7, 2, 1)
k=1=r=m 0.412 (0.124) 0.024 (0.113) 0.411 (0.126) 0.167 (0.158) 0.666 (0.057)
same w. gam 0.457 (0.128) 0.024 (0.133) 0.453 (0.128) 0.162 (0.185) 0.663 (0.057)
k=1=r=m w.2.ord. 0.457 (0.128) 0.03 (0.127) 0.457 (0.13) 0.166 (0.18) 0.651 (0.059)
same w. n=2000 0.445 (0.131) 0.032 (0.142) 0.444 (0.132) 0.117 (0.171) 0.719 (0.048)
k=2,r=1,m=3 0.668 (0.056) 0.398 (0.081) 0.668 (0.057) 0.408 (0.08)
r=2,m=4 0.454 (0.081)

Scenario STIR-4 b
k=1=r=m 0.362 (0.123) 0.019 (0.118) 0.364 (0.127) 0.154 (0.132) 0.621 (0.062)
same w. gam 0.387 (0.138) 0.035 (0.14) 0.387 (0.142) 0.165 (0.151) 0.615 (0.063)
k=1=r=m w.2.ord. 0.389 (0.137) 0.02 (0.124) 0.39 (0.14) 0.166 (0.142) 0.566 (0.072)
same w. n=2000 0.401 (0.133) 0.041 (0.128) 0.4 (0.135) 0.095 (0.149) 0.655 (0.058)
k=2,r=1,m=3 0.625 (0.062) 0.351 (0.099) 0.625 (0.062) 0.359 (0.095)
r=2,m=4 0.408 (0.091)
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Table 4.6.: Correlation between 100 new continuous Y -observations and values predicted
by linear model fit. Results are means and standard deviations (in parentheses)
over 100 replications for each setting. Settings STIR 5 - 6 and LSIR 1 - 2

Reduction STIR STIR STIR ML LSIR Unreduced

Covariance bΔ bΔ = Δ̂p ⌦ Δ̂T
bΔ bΔ = Δ̂p ⌦ Δ̂T

Scenario STIR-5 a (T, p,H, d) = (2, 21, 2, 1)
k=1=r=m 0.489 (0.136) 0.073 (0.152) 0.489 (0.135) 0.289 (0.221) 0.822 (0.033)
same w. gam 0.507 (0.143) 0.065 (0.211) 0.508 (0.142) 0.317 (0.245) 0.817 (0.034)
k=1=r=m w.2.ord. 0.505 (0.137) 0.075 (0.188) 0.505 (0.136) 0.325 (0.239) 0.051 (0.099)
same w. n=2000 0.515 (0.147) 0.091 (0.182) 0.515 (0.146) 0.303 (0.241) 0.788 (0.041)
k=2,r=1,m=4 0.824 (0.033) 0.588 (0.068) 0.824 (0.033) 0.591 (0.069)
r=2,m=10 0.652 (0.058)

Scenario STIR-5 b
k=1=r=m 0.465 (0.142) 0.064 (0.159) 0.466 (0.142) 0.278 (0.219) 0.794 (0.038)
same w. gam 0.462 (0.163) 0.052 (0.198) 0.462 (0.162) 0.285 (0.245) 0.786 (0.039)
k=1=r=m w.2.ord. 0.475 (0.148) 0.062 (0.186) 0.476 (0.149) 0.298 (0.238) 0.045 (0.112)
same w. n=2000 0.494 (0.144) 0.07 (0.17) 0.494 (0.141) 0.255 (0.222) 0.733 (0.048)
k=2,r=1,m=4 0.799 (0.038) 0.538 (0.071) 0.799 (0.038) 0.539 (0.073)
r=2,m=10 0.601 (0.068)

Scenario STIR-6 a (T, p,H, d) = (2, 7, 2, 1)
k=1=r=m 0.586 (0.128) 0.056 (0.171) 0.585 (0.129) 0.407 (0.253) 0.923 (0.017)
same w. gam 0.589 (0.13) 0.043 (0.227) 0.588 (0.132) 0.418 (0.272) 0.923 (0.018)
k=1=r=m w.2.ord. 0.589 (0.129) 0.053 (0.203) 0.588 (0.131) 0.427 (0.266) 0.936 (0.013)
same w. n=2000 0.57 (0.13) 0.063 (0.22) 0.57 (0.131) 0.29 (0.259) 0.951 (0.01)
k=2,r=1,m=3 0.924 (0.017) 0.795 (0.035) 0.924 (0.017) 0.808 (0.038)
r=2,m=4 0.839 (0.038)

Scenario STIR-6 b
k=1=r=m 0.565 (0.129) 0.042 (0.161) 0.565 (0.13) 0.328 (0.225) 0.909 (0.019)
same w. gam 0.565 (0.132) 0.041 (0.205) 0.564 (0.134) 0.331 (0.257) 0.907 (0.02)
k=1=r=m w.2.ord. 0.567 (0.129) 0.054 (0.187) 0.567 (0.131) 0.346 (0.242) 0.913 (0.017)
same w. n=2000 0.56 (0.132) 0.067 (0.206) 0.56 (0.133) 0.247 (0.23) 0.933 (0.013)
k=2,r=1,m=3 0.91 (0.019) 0.756 (0.042) 0.91 (0.019) 0.771 (0.043)
r=2,m=4 0.81 (0.044)

Scenario LSIR-1 a (T, p,H, d) = (3, 8, 3, 2)
k=1 0.97 (0.007) 0.971 (0.006) 0.97 (0.007) 0.973 (0.007) 0.973 (0.007)
same w. gam 0.973 (0.006) 0.974 (0.006) 0.973 (0.006) 0.972 (0.006) 0.972 (0.007)
k=1 w.2.ord. 0.97 (0.007) 0.971 (0.006) 0.97 (0.007) 0.916 (0.02) 0.916 (0.02)
same w. n=2000 0.973 (0.007) 0.973 (0.007) 0.973 (0.007) 0.97 (0.007) 0.97 (0.007)
k=2 0.971 (0.006) 0.972 (0.006) 0.971 (0.006)
k=3 0.971 (0.006) 0.972 (0.006) 0.971 (0.006)

Scenario LSIR-1 b
k=1 0.965 (0.008) 0.967 (0.008) 0.965 (0.008) 0.968 (0.008) 0.968 (0.008)
same w. gam 0.966 (0.008) 0.968 (0.008) 0.966 (0.008) 0.968 (0.008) 0.967 (0.008)
k=1 w.2.ord. 0.965 (0.008) 0.966 (0.008) 0.965 (0.009) 0.908 (0.021) 0.908 (0.021)
same w. n=2000 0.97 (0.008) 0.97 (0.007) 0.97 (0.008) 0.965 (0.008) 0.965 (0.008)
k=2 0.966 (0.008) 0.967 (0.007) 0.966 (0.008)
k=3 0.967 (0.008) 0.967 (0.007) 0.967 (0.007)

Scenario LSIR-2 a (T, p,H, d) = (3, 8, 3, 2)
k=1 0.268 (0.162) 0.696 (0.273) 0.188 (0.155) 0.975 (0.006) 0.975 (0.006)
same w. gam 0.262 (0.166) 0.695 (0.274) 0.186 (0.156) 0.974 (0.006) 0.974 (0.006)
k=1 w.2.ord. 0.248 (0.167) 0.689 (0.281) 0.175 (0.157) 0.921 (0.018) 0.921 (0.018)
same w. n=2000 0.497 (0.233) 0.898 (0.132) 0.281 (0.207) 0.971 (0.008) 0.971 (0.008)
k=2 0.732 (0.096) 0.961 (0.011) 0.568 (0.162)
k=3 0.773 (0.092) 0.964 (0.01) 0.631 (0.15)

Scenario LSIR-2 b
k=1 0.223 (0.15) 0.62 (0.248) 0.169 (0.142) 0.971 (0.006) 0.971 (0.006)
same w. gam 0.217 (0.152) 0.616 (0.253) 0.166 (0.141) 0.97 (0.006) 0.969 (0.006)
k=1 w.2.ord. 0.202 (0.153) 0.61 (0.258) 0.151 (0.144) 0.91 (0.02) 0.91 (0.02)
same w. n=2000 0.343 (0.221) 0.784 (0.217) 0.219 (0.191) 0.965 (0.009) 0.965 (0.009)
k=2 0.7 (0.114) 0.952 (0.015) 0.569 (0.163)
k=3 0.75 (0.105) 0.957 (0.013) 0.622 (0.151)
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4.3.3. Wald Test

In this Section weassess the power of the Wald test for variable selection derived in Section
3.6 when generating from our model. Therefore, we consider the binary settings STIR-1
and 4, where we test for the first marker corresponding to the first column of the trueB, and
the continuous settings STIR-1 and 4, where we test for the third marker corresponding
to the third column of the true B. In each setting we multiply the corresponding column
of B by a scaling factor c > 0 and compute the power of the test as number of rejected test
statistics at level ↵ = 0.05 over the number of simulations, which is chosen as 500.

Figure 4.3 shows the rejection rates of the four scenarios for varying scaling factor c, which
measures the degree of violation of the null hypothesis. In all four scenarios, the ↵-level
under the null (i.e. c = 0) is met and the power increases for higher c and for a higher
number of observations (n = 2000 versus n = 500). Also, the power is higher for fixed
error covariances not depending on Y (b). A possible explanation for this is that the test
statistic uses the estimated variance-covariance matrix of the vectorized coefficient, which
does assume a fixed Δ, so in the ’a’ scenarios this covariance is misspecified.

From this analysis, the variable selection test seems to work fine. We tried to find a
comparable test, e.g. testing whether all T coefficients of the selected predictor were equal
to zero with a T degrees of freedom Wald test in the logit model for binary Y and a linear
F-test in the linear regression model for continuous Y . However, the null hypothesis of
these tests seems to not correspond to our null hypothesis and the tests do not meet the
↵-level under our null.
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Figure 4.3.: Rejection rates over 500 replications of Wald test testing significance of one
marker for STIR scenarios.
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In this final chapter we apply the STIRmethod to a real data set and see how it compares to
a standard logit model on the unreduced predictors and to the LSIR reduction in predictive
performance.

We analyze a medical data set on glioma, a type of brain cancer. The original data are from
a study examining the relationship of fourteen serially measured biomarkers with glioma
risk in individuals sampled from active component US military personnel [1]. Here, we use
a resampled version of this data set, that was provided by R. Pfei↵er.

In this data set we have n1 = 131 cases (Y = 1) of glioma and n0 = 109 healthy control sub-
jects (Y = 0) with no cancer, giving a total sample size of n = 240. The fourteen available
markers are: interleukin(IL)-12p40, IL-15, IL-16, IL-7, IL-8, monocyte chemoattractant
protein (MCP1), thymus and activation regulated chemokine (TARC), placental growth
factor (PLGF), tumor necrosis factor alpha (TNFa), vascular endothelial growth factor
(VEGF), hepatocyte growth factor (HGF), transforming growth factor beta (TGFb1), in-
terferon gamma (IFNγ) and IL-10.

All these markers were measured in serum at three time points prior to glioma diagnosis
for cases, or the date of selection for controls. A typical space of time between the mea-
surements for the study participants is two years. Also, the age at diagnosis or selection
is given. We analyse two di↵erent versions of the data set. The first is the full version,
where we log-log transform IL-8, log-transform all other markers and include the age at
each measurement. For IL-10 we have to add a constant to make all values positive before
log-transforming. In the second version, we exclude age and the two markers IL-8 and
IL-10, because these two markers do not seem to follow a normal distribution.

As in the simulations, we measure the predictive performance by the AUC, but here we
have to apply a cross-validation procedure. To obtain empirical confidence intervals for the
resulting AUCs, we bootstrap n1 cases and n0 controls with replacement 100 times and for
each resulting data set we use the following 10-fold cross-validation procedure. For each of
the 10 folds we estimate the STIR and LSIR reductions from the data withholding that
fold. With the reductions of the predictors used to find these reductions we fit a logit model
to the corresponding responses in a similar way to the simulations, where we also include
all second order terms of the predictors, i.e. all two-way interactions and the square of
each predictor. Then we calculate the reductions for the ’new’ observations in the fold and
predict their responses from the logit model. This way we have valid predictions (i.e. from
a model that has not yet seen this observation) for each observation after going through
all folds and an AUC can be obtained. We report the mean and a 95% confidence interval
of the AUCs over all bootstrapped data sets. As baseline comparison, we again also use a
logit model on the unreduced predictors following the same cross-validation procedure.
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5. Data

The individual time points are given as time before diagnosis/selection at each measurement
as negative values. We tried many di↵erent transformations of those time points and used
di↵erent basis functions of time, e.g. polynomial or Fourier basis.

Table 5 shows the results for transformed time points, such that the time point of the first
measurement is one for each individual and the di↵erence to the next ones is the actual time
passed between the measurements (in years). We also applied the STIR method assuming
equal time points t = 1/3, 2/3 and 1 for each individual and used a B-spline basis with
degree d = 2 in both cases (using the function bs() from the base R package splines).
The term ’quadratic e↵ects’ indicates that all second order terms were included in the logit
models. Doing this for the unreduced predictors, the number of variables in the logit model
would exceed n and is therefore infeasible.

For both versions of the data set, the STIR reduction always performs better when using
equal time points for all individuals. A possible explanation for this is that the estimation
of B is computationally more efficient for equal time points. In the larger data set, which
includes age at each measurement, LSIR reaches the overall best performance of 0.672.
STIR reaches an AUC of 0.639 for equal time points and k = 2, beating the unreduced
predictors’ AUC of 0.609. On the smaller data set, excluding age and non-normal predic-
tors, STIR with equal time and k = 2 performs similar to the unreduced predictors with
AUCs of 0.625 and 0.622, which is higher than LSIR’s AUC of 0.597.

In summary, the STIR-method can be seen to be fairly competitive to LSIR. However, we
do not see such an outstanding performance of STIR as in the binary simulations, when
the relation between the predictors and the response was not just in the mean, but also in
the second moment of the predictors, which seems not to be the case in this glioma data
set. Also, the prediction task for this data set is quite challenging in general, as can be
seen by the relatively low AUC values of the unreduced logit models.
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5. Data

Table 5.1.: AUC estimates and 95% confidence intervals (CIs) for the glioma data, where
(p, T ) = (12, 3) or (p, T ) = (15, 3) and the total sample size is n = 240. We
use equal time points (1/3, 2/3, 1) and unequal time points and model S using
spline basis functions.

Reduction AUC (95%CI) AUC (95%CI)

Unequal time points Equal time points

Data including age, IL-8 and IL-10, p = 15
STIR (d = 2, k = 1) 0.572 (0.49,0.666) 0.585 (0.509,0.672)
STIR, quadratic e↵ects (d = 2, k = 1) 0.509 (0.405,0.604) 0.525 (0.406,0.617)
STIR (d = 2, k = 2) 0.612 (0.527,0.69) 0.639 (0.543,0.745)
STIR, quadratic e↵ects (d = 2, k = 2) 0.533 (0.432,0.634) 0.534 (0.418,0.633)
LSIR (r=1,m=1) 0.672 (0.581,0.751)
LSIR, quadratic e↵ects (r=1,m=1) 0.669 (0.581,0.748)
Unreduced 0.609 (0.539,0.695)

Data with excluded predictors, p = 12
STIR (d = 2, k = 1) 0.574 (0.501,0.667) 0.578 (0.491,0.647)
STIR, quadratic e↵ects (d = 2, k = 1) 0.517 (0.433,0.62) 0.524 (0.388,0.598)
STIR (d = 2, k = 2) 0.603 (0.532,0.691) 0.625 (0.529,0.725)
STIR, quadratic e↵ects (d = 2, k = 2) 0.538 (0.443,0.644) 0.536 (0.41,0.643)
LSIR (r=1,m=1) 0.597 (0.504,0.713)
LSIR, quadratic e↵ects (r=1,m=1) 0.586 (0.48,0.705)
Unreduced 0.622 (0.526,0.706)
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6. Conclusion

In this thesis we propose a new sufficient dimension reduction approach for longitudinally
measured predictors and a real response. Many of the usual existing reduction techniques,
where the longitudinal structure is ignored, can su↵er from a loss of information, since the
time structure is ignored.

The STIR model assumes the conditional mean of the predictors given the response to
consist of linear combinations of functions of time and functions of the response. The
reduction derived in STIR only reduces the markers, while accounting for the time e↵ect
through the modeling of the mean. Advantages of the model are that di↵erent time points
for individuals can be modeled and the reduction of markers allows an easier interpretation
of the reduction.

In the simulations we see that the STIR method is sensitive to the specific modeling of the
time points, e.g. there is a big di↵erence in predictive performance between scenarios LSIR-
1 and 2 in the continuous response case. Other limitations of the proposed STIR method
are that finding a satisfying modeling of time can be difficult and is not straightforward,
and that the reduction is not minimal.

In STIR, using the ML estimator bBML for estimating the parameter B does not signifi-
cantly change the predictive performance compared to the OLSbased estimator.

Throughout most of the simulation settings and on a real data set, STIR is competitive to
LSIR and to standard regression methods using the vectorized unreduced predictors (logit
model in binary case and linear regression in continuous case).

In simulation settings for binary response regressions, where the error covariance matrix
depends on Y , STIR excels in predictive performance, beating the other methods by far.
For example in binary scenario STIR-2 a it reaches a high AUC of over 0.95 for k = 1
when including all second order terms, while LSIR does only achieve an AUC of under 0.8
and a standard logit model reaches an AUC of around 0.6.

In general, the reduction space in STIR covers more than just the first moment. In those
scenarios it covers almost all of the modeling information, which the standard logit model
is not able to pick up even for significantly large sample sizes.
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A. Appendix

Lemma A.1 (Inverse Regression). For two random quantities X 2 Rp, Y 2 R with a
(joint) distribution we have that

F (Y |X) = F (Y |R(X)) () F (X|Y,R(X)) = F (X|R(X)).

Proof. We give a proof idea for the case that X and Y have a joint continuous distribution.
In form of densities the statement equivalently reads as

fY |X(y|x) = fY,X(y,x)

fX(x)

!
=

fY,R(X)(y,R(x))

fR(X)(R(x))
= fY |R(X)(y|R(x)) () (A.1)

fX|R(X),Y (x|R(x), y) =
fY,X,R(X)(y,x, R(x))

fY,R(X)(y,R(x))

!
=

fX,R(X)(x, R(x))

fR(X)(R(x))
= fX|R(X)(x|R(x)).

(A.2)

Noting that fY,X,R(X)(y,x, r) =

(
0 r 6= R(x)

fY,X(y,x) r = R(x)
, the equivalence is then easy to

show.

Lemma A.2 (Properties of Kronecker Product). The Kronecker product is bilinear and
associative. Additionally it satisfies the following useful properties for matrices A,B,C,D
of compatible dimensions. We do not give the (rather easy) proofs here.

• (A⌦B)0 = A0 ⌦B0,

• (A⌦B)−1 = A−1 ⌦B−1 for invertible A and B,

• (A⌦B)(C⌦D) = (AC)⌦ (BD),

• vec(ABC) = (C0 ⌦A) vec(B), often applied with A or C being the identity,

• rank(A⌦B) = rank(A) rank(B).

The following facts about matrix derivatives are taken from [16, Section 2.5].

Lemma A.3. For matrices of compatible dimensions A,B,X it holds that

@

@X
tr(AXB) = A0B0, (A.3)

@

@X
tr(AX0B) = BA, (A.4)

@

@X
tr(AX0BX) = BXA+B0XA0. (A.5)
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A. Appendix

A.1. Additional Tables for Simulations

A.1.1. Binary Response

Table A.1.: Estimation accuracy kB− B̂kF for binary Y , yi ⇠ Bern(0.5), i = 1, . . . , n. Re-
sults are means and standard deviations (in parentheses) over 500 replications.

STIR-1 STIR-2 STIR-3 STIR-4 STIR-5 STIR-6

n = 200
OLS (a) 52.998 (21.909) 31.302 (13.252) 161.614 (29.365) 1.953 (0.499) 3.386 (0.519) 1.953 (0.499)
OLS (b) 71.332 (28.744) 42.314 (18.114) 218.311 (38.985) 2.672 (0.685) 4.609 (0.699) 2.672 (0.685)
ML (a) 53.042 (21.996) 18.15 (7.568) 171.289 (31.84) 1.952 (0.498) 3.517 (0.553) 1.952 (0.498)
ML (b) 69.744 (28.633) 25.907 (10.744) 226.227 (41.71) 2.634 (0.681) 4.656 (0.716) 2.634 (0.681)

n = 500
OLS (a) 33.952 (13.562) 19.735 (8.05) 101.941 (19.67) 1.214 (0.333) 2.144 (0.336) 1.214 (0.333)
OLS (b) 45.539 (18.554) 26.145 (10.619) 137.283 (26.536) 1.617 (0.448) 2.877 (0.465) 1.617 (0.448)
ML (a) 32.874 (13.74) 11.223 (4.456) 104.463 (19.765) 1.191 (0.323) 2.145 (0.337) 1.191 (0.323)
ML (b) 44.12 (18.538) 15.45 (6.019) 139.13 (26.584) 1.572 (0.434) 2.855 (0.46) 1.572 (0.434)

n = 2000
OLS (a) 17.002 (6.86) 9.935 (4.334) 50.536 (9.566) 0.611 (0.162) 1.087 (0.167) 0.611 (0.162)
OLS (b) 22.782 (9.666) 13.468 (5.863) 69.021 (12.379) 0.826 (0.209) 1.456 (0.215) 0.826 (0.209)
ML (a) 16.345 (6.5) 5.816 (2.454) 50.646 (9.738) 0.595 (0.155) 1.055 (0.166) 0.595 (0.155)
ML (b) 21.627 (9.274) 7.837 (3.242) 69.035 (12.447) 0.803 (0.207) 1.41 (0.213) 0.803 (0.207)

n = 10000
OLS (a) 7.664 (3.089) 4.434 (1.792) 22.735 (4.201) 0.272 (0.071) 0.485 (0.072) 0.272 (0.071)
OLS (b) 10.322 (4.188) 5.96 (2.438) 30.847 (5.695) 0.359 (0.094) 0.65 (0.095) 0.359 (0.094)
ML (a) 7.3 (3.065) 2.438 (1.015) 22.719 (4.158) 0.263 (0.072) 0.47 (0.068) 0.263 (0.072)
ML (b) 9.796 (4.109) 3.298 (1.394) 30.788 (5.683) 0.347 (0.092) 0.629 (0.093) 0.347 (0.092)

Table A.2.: 1 − cos(✓) for binary Y , yi ⇠ Bern(0.5), i = 1, . . . , n, where ✓ is the principle

angle between span(B0) and span(bB0). Results are means over 500 replications.

STIR-1 STIR-2 STIR-3 STIR-4 STIR-5 STIR-6

n = 200
OLS (a) -5.666e-12 -5.873e-13 1.967e-01 7.223e-03 1.079e-02 8.096e-04
OLS (b) -3.749e-12 -7.240e-13 2.694e-01 1.302e-02 1.911e-02 1.480e-03

n = 500
OLS (a) -8.331e-13 -2.998e-13 1.079e-01 2.870e-03 4.427e-03 3.197e-04
OLS (b) -5.460e-12 -1.936e-13 1.660e-01 5.345e-03 7.890e-03 5.982e-04

n = 2000
OLS (a) -8.826e-13 -3.989e-13 3.249e-02 7.400e-04 1.071e-03 8.238e-05
OLS (b) -7.534e-13 -2.196e-13 5.605e-02 1.321e-03 1.915e-03 1.472e-04

n = 10000
OLS (a) -8.106e-13 -1.283e-13 6.806e-03 1.502e-04 2.120e-04 1.669e-05
OLS (b) -3.260e-13 -1.343e-13 1.200e-02 2.691e-04 3.895e-04 2.993e-05
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Table A.3.: AUC values for 100 new binary Y -observations and values predicted by logit
model fit. Results are means and standard deviations (in parentheses) over 100
replications for each setting. Settings STIR-1-4.

Reduction STIR STIR STIR STIR STIR

Scaling bΔ bΔ = Δ̂p ⌦ Δ̂T
b⌃x

b⌃x = ⌃̂p ⌦ ⌃̂T ITp

Scenario STIR-1 a (T, p, d) = (10, 3, 4)
k=1 0.605 (0.067) 0.536 (0.068) 0.597 (0.07) 0.536 (0.068) 0.542 (0.071)
k=1, 2.ord.terms 0.982 (0.019) 0.977 (0.022) 0.981 (0.019) 0.977 (0.022) 0.977 (0.021)
same w. n=2000 0.996 (0.005) 0.996 (0.006) 0.997 (0.004) 0.996 (0.006) 0.996 (0.007)
k=2 0.631 (0.053) 0.569 (0.069) 0.628 (0.055) 0.569 (0.069) 0.577 (0.067)
k=3 0.637 (0.053) 0.637 (0.053) 0.637 (0.053) 0.637 (0.053) 0.637 (0.053)

Scenario STIR-1 b
k=1 0.577 (0.069) 0.524 (0.067) 0.573 (0.069) 0.524 (0.067) 0.525 (0.068)
k=1, 2.ord.terms 0.54 (0.063) 0.507 (0.062) 0.536 (0.063) 0.507 (0.062) 0.509 (0.06)
same w. n=2000 0.562 (0.067) 0.518 (0.061) 0.56 (0.067) 0.518 (0.061) 0.52 (0.063)
k=2 0.589 (0.061) 0.544 (0.068) 0.587 (0.061) 0.544 (0.068) 0.549 (0.068)
k=3 0.594 (0.056) 0.594 (0.056) 0.594 (0.056) 0.594 (0.056) 0.594 (0.056)

Scenario STIR-2 a (T, p, d) = (10, 3, 4)
k=1 0.576 (0.064) 0.515 (0.066) 0.571 (0.065) 0.515 (0.065) 0.517 (0.067)
k=1, 2.ord.terms 0.978 (0.022) 0.982 (0.018) 0.978 (0.021) 0.981 (0.021) 0.98 (0.021)
same w. n=2000 0.562 (0.067) 0.518 (0.061) 0.56 (0.067) 0.518 (0.061) 0.52 (0.063)
k=2 0.601 (0.06) 0.554 (0.073) 0.599 (0.06) 0.554 (0.073) 0.558 (0.072)
k=3 0.6 (0.062) 0.6 (0.062) 0.6 (0.062) 0.6 (0.062) 0.6 (0.062)

Scenario STIR-2 b
k=1 0.564 (0.061) 0.523 (0.063) 0.561 (0.061) 0.523 (0.064) 0.526 (0.062)
k=1, 2.ord.terms 0.53 (0.061) 0.51 (0.064) 0.527 (0.061) 0.51 (0.064) 0.511 (0.062)
same w. n=2000 0.562 (0.067) 0.518 (0.061) 0.56 (0.067) 0.518 (0.061) 0.52 (0.063)
k=2 0.566 (0.058) 0.529 (0.064) 0.565 (0.058) 0.529 (0.064) 0.534 (0.065)
k=3 0.567 (0.063) 0.567 (0.063) 0.567 (0.063) 0.567 (0.063) 0.567 (0.063)

Scenario STIR-3 a (T, p, d) = (4, 15, 3)
k=1 0.542 (0.086) 0.502 (0.077) 0.524 (0.085) 0.502 (0.076) 0.506 (0.078)
k=1, 2.ord.terms 0.971 (0.017) 0.969 (0.018) 0.972 (0.017) 0.969 (0.018) 0.97 (0.017)
same w. n=2000 0.975 (0.015) 0.972 (0.015) 0.975 (0.015) 0.972 (0.015) 0.974 (0.016)
k=2 0.562 (0.078) 0.504 (0.072) 0.54 (0.077) 0.504 (0.072) 0.518 (0.079)
k=3 0.665 (0.057) 0.561 (0.067) 0.661 (0.057) 0.561 (0.067) 0.629 (0.068)

Scenario STIR-3 b
k=1 0.524 (0.076) 0.502 (0.067) 0.513 (0.078) 0.502 (0.067) 0.507 (0.07)
k=1, 2.ord.terms 0.521 (0.073) 0.506 (0.067) 0.512 (0.073) 0.505 (0.067) 0.508 (0.067)
same w. n=2000 0.539 (0.065) 0.501 (0.064) 0.533 (0.064) 0.501 (0.064) 0.511 (0.069)
k=2 0.54 (0.07) 0.501 (0.059) 0.526 (0.071) 0.501 (0.059) 0.509 (0.063)
k=3 0.616 (0.056) 0.535 (0.061) 0.613 (0.057) 0.535 (0.061) 0.578 (0.061)

Scenario STIR-4 a (T, p, d) = (3, 7, 2)
k=1 0.925 (0.085) 0.794 (0.065) 0.755 (0.124) 0.781 (0.069) 0.891 (0.088)
k=1, 2.ord.terms 0.985 (0.016) 0.964 (0.018) 0.966 (0.02) 0.964 (0.018) 0.977 (0.018)
same w. n=2000 0.992 (0.009) 0.971 (0.016) 0.977 (0.017) 0.971 (0.016) 0.985 (0.011)
k=2 0.987 (0.012) 0.866 (0.043) 0.985 (0.013) 0.866 (0.043) 0.978 (0.016)

Scenario STIR-4 b
k=1 0.825 (0.123) 0.698 (0.078) 0.706 (0.13) 0.69 (0.078) 0.779 (0.11)
k=1, 2.ord.terms 0.82 (0.125) 0.689 (0.082) 0.697 (0.132) 0.682 (0.082) 0.776 (0.11)
same w. n=2000 0.915 (0.05) 0.74 (0.059) 0.83 (0.091) 0.736 (0.061) 0.862 (0.062)
k=2 0.956 (0.018) 0.793 (0.047) 0.954 (0.018) 0.793 (0.047) 0.933 (0.022)
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Table A.4.: AUC values for 100 new binary Y -observations and values predicted by logit
model fit. Results are means and standard deviations (in parentheses) over 100
replications for each setting. Settings STIR-5,6 and LSIR-1,2.

Reduction STIR STIR STIR STIR STIR

Scaling bΔ bΔ = Δ̂p ⌦ Δ̂T
b⌃x

b⌃x = ⌃̂p ⌦ ⌃̂T ITp

Scenario STIR-5 a (T, p, d) = (3, 21, 2)
k=1 0.988 (0.043) 0.871 (0.072) 0.635 (0.092) 0.82 (0.081) 0.974 (0.044)
k=1, 2.ord.terms 0.994 (0.011) 0.974 (0.017) 0.952 (0.022) 0.967 (0.02) 0.992 (0.012)
same w. n=2000 0.994 (0.011) 0.974 (0.017) 0.952 (0.022) 0.967 (0.02) 0.992 (0.012)
k=2 1 (0.001) 0.955 (0.026) 0.994 (0.01) 0.955 (0.026) 1 (0.001)

Scenario STIR-5 b
k=1 0.911 (0.11) 0.735 (0.095) 0.614 (0.106) 0.704 (0.095) 0.861 (0.122)
k=1, 2.ord.terms 0.908 (0.112) 0.73 (0.096) 0.61 (0.105) 0.7 (0.096) 0.857 (0.125)
same w. n=2000 0.908 (0.112) 0.73 (0.096) 0.61 (0.105) 0.7 (0.096) 0.857 (0.125)
k=2 0.997 (0.004) 0.895 (0.034) 0.992 (0.006) 0.895 (0.034) 0.997 (0.003)

Scenario STIR-6 a (T, p, d) = (3, 7, 2)
k=1 1 (0) 0.998 (0.005) 0.746 (0.077) 0.987 (0.015) 1 (0)
k=1, 2.ord.terms 1 (0) 0.998 (0.005) 0.957 (0.021) 0.996 (0.007) 1 (0)
same w. n=2000 1 (0) 0.999 (0.003) 0.963 (0.02) 0.997 (0.006) 1 (0.002)
k=2 1 (0) 0.998 (0.006) 1 (0) 0.998 (0.006) 1 (0)

Scenario STIR-6 b
k=1 1 (0) 0.983 (0.01) 0.792 (0.082) 0.966 (0.021) 1 (0.001)
k=1, 2.ord.terms 1 (0.001) 0.982 (0.011) 0.787 (0.084) 0.964 (0.021) 0.999 (0.004)
same w. n=2000 1 (0) 0.983 (0.01) 0.823 (0.064) 0.971 (0.016) 1 (0)
k=2 1 (0) 0.993 (0.006) 1 (0) 0.993 (0.006) 1 (0)

Scenario LSIR-1 a (T, p, d) = (8, 3, 4)
k=1 0.849 (0.102) 0.669 (0.123) 0.756 (0.121) 0.666 (0.123) 0.704 (0.125)
k=1, 2.ord.terms 0.983 (0.015) 0.983 (0.015) 0.985 (0.017) 0.983 (0.014) 0.981 (0.014)
same w. n=2000 0.997 (0.005) 0.996 (0.005) 0.996 (0.005) 0.996 (0.005) 0.996 (0.006)
k=2 0.934 (0.031) 0.86 (0.083) 0.909 (0.056) 0.859 (0.084) 0.877 (0.076)
k=3 0.941 (0.027) 0.941 (0.027) 0.941 (0.027) 0.941 (0.027) 0.941 (0.027)

Scenario LSIR-1 b
k=1 0.799 (0.083) 0.635 (0.105) 0.743 (0.1) 0.634 (0.104) 0.66 (0.105)
k=1, 2.ord.terms 0.766 (0.094) 0.606 (0.1) 0.703 (0.109) 0.605 (0.1) 0.63 (0.1)
same w. n=2000 0.813 (0.073) 0.643 (0.098) 0.757 (0.088) 0.641 (0.098) 0.665 (0.1)
k=2 0.869 (0.041) 0.771 (0.092) 0.849 (0.056) 0.77 (0.092) 0.793 (0.08)
k=3 0.884 (0.034) 0.884 (0.034) 0.884 (0.034) 0.884 (0.034) 0.884 (0.034)

Scenario LSIR-2 a (T, p, d) = (8, 3, 4)
k=1 0.855 (0.091) 0.656 (0.132) 0.77 (0.108) 0.654 (0.132) 0.695 (0.13)
k=1, 2.ord.terms 0.986 (0.013) 0.983 (0.016) 0.981 (0.017) 0.983 (0.016) 0.978 (0.017)
same w. n=2000 0.998 (0.005) 0.997 (0.004) 0.998 (0.003) 0.997 (0.004) 0.997 (0.004)
k=2 0.93 (0.037) 0.842 (0.087) 0.901 (0.061) 0.84 (0.088) 0.869 (0.082)
k=3 0.946 (0.026) 0.946 (0.026) 0.946 (0.026) 0.946 (0.026) 0.946 (0.026)

Scenario LSIR-2 b
k=1 0.786 (0.087) 0.619 (0.101) 0.74 (0.096) 0.618 (0.1) 0.648 (0.106)
k=1, 2.ord.terms 0.757 (0.089) 0.591 (0.089) 0.708 (0.096) 0.59 (0.089) 0.62 (0.091)
same w. n=2000 0.811 (0.077) 0.647 (0.104) 0.767 (0.093) 0.646 (0.104) 0.668 (0.106)
k=2 0.869 (0.045) 0.771 (0.079) 0.853 (0.057) 0.77 (0.079) 0.792 (0.079)
k=3 0.887 (0.03) 0.887 (0.03) 0.887 (0.03) 0.887 (0.03) 0.887 (0.03)
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A.1.2. Continuous Response

Table A.5.: Estimation accuracy kB − B̂kF for continuous Y , yi ⇠ N(0, 0.1), i = 1, . . . , n.
Results are means and standard deviations (in parentheses) over 500 replica-
tions.

STIR-1 STIR-2 STIR-3 STIR-4 STIR-5 STIR-6

n = 200
OLS (a) 4.032 (1.418) 3.275 (1.191) 10.076 (4.312) 0.87 (0.209) 1.531 (0.26) 0.87 (0.209)
OLS (b) 5.19 (1.812) 4.135 (1.511) 13.736 (5.25) 1.112 (0.274) 1.959 (0.319) 1.112 (0.274)
ML (a) 3.705 (1.32) 2.24 (0.831) 9.076 (3.955) 0.791 (0.196) 1.425 (0.242) 0.791 (0.196)
ML (b) 4.723 (1.678) 2.841 (0.993) 12.456 (4.869) 1.01 (0.261) 1.824 (0.293) 1.01 (0.261)

n = 500
OLS (a) 2.512 (0.895) 2.066 (0.703) 5.662 (1.806) 0.537 (0.136) 0.957 (0.133) 0.537 (0.136)
OLS (b) 3.218 (1.125) 2.635 (0.905) 8.039 (2.288) 0.685 (0.175) 1.234 (0.171) 0.685 (0.175)
ML (a) 2.244 (0.8) 1.376 (0.463) 4.824 (1.55) 0.492 (0.123) 0.868 (0.125) 0.492 (0.123)
ML (b) 2.911 (1.044) 1.759 (0.623) 6.886 (2.021) 0.622 (0.157) 1.12 (0.155) 0.622 (0.157)

n = 2000
OLS (a) 1.232 (0.411) 1.048 (0.344) 2.579 (0.544) 0.267 (0.061) 0.471 (0.062) 0.267 (0.061)
OLS (b) 1.576 (0.53) 1.331 (0.445) 3.734 (0.735) 0.344 (0.079) 0.609 (0.085) 0.344 (0.079)
ML (a) 1.096 (0.372) 0.679 (0.216) 2.184 (0.479) 0.245 (0.056) 0.421 (0.061) 0.245 (0.056)
ML (b) 1.404 (0.487) 0.866 (0.282) 3.171 (0.656) 0.313 (0.072) 0.545 (0.082) 0.313 (0.072)

n = 10000
OLS (a) 0.561 (0.196) 0.447 (0.158) 1.141 (0.217) 0.122 (0.029) 0.212 (0.029) 0.122 (0.029)
OLS (b) 0.723 (0.251) 0.581 (0.208) 1.655 (0.31) 0.157 (0.036) 0.272 (0.038) 0.157 (0.036)
ML (a) 0.488 (0.161) 0.298 (0.1) 0.967 (0.191) 0.11 (0.026) 0.188 (0.026) 0.11 (0.026)
ML (b) 0.627 (0.211) 0.38 (0.13) 1.398 (0.28) 0.141 (0.033) 0.241 (0.034) 0.141 (0.033)
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Table A.6.: 1−cos(✓) for continuous Y , yi ⇠ N(0, 0.1), i = 1, . . . , n, where ✓ is the principle

angle between span(B0) and span(bB0). Results are means over 500 replications.

STIR-1 STIR-2 STIR-3 STIR-4 STIR-5 STIR-6

n = 200
OLS (a) -9.780e-15 -9.209e-15 3.075e-02 8.936e-03 1.561e-02 1.011e-03
OLS (b) -1.312e-14 -1.294e-14 4.681e-02 1.439e-02 2.431e-02 1.654e-03

n = 500
OLS (a) -1.065e-14 -9.504e-15 1.170e-02 3.480e-03 6.421e-03 3.898e-04
OLS (b) -1.005e-14 -9.312e-15 1.824e-02 5.448e-03 1.015e-02 6.094e-04

n = 2000
OLS (a) -9.349e-15 -1.065e-14 3.059e-03 9.580e-04 1.584e-03 1.064e-04
OLS (b) -6.523e-15 -1.039e-14 4.811e-03 1.501e-03 2.537e-03 1.675e-04

n = 10000
OLS (a) -3.011e-14 -1.207e-14 6.320e-04 1.921e-04 3.234e-04 2.140e-05
OLS (b) -1.238e-14 -9.507e-15 1.002e-03 2.958e-04 5.063e-04 3.290e-05
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Table A.7.: Correlation between 100 new continuous Y -observations and values predicted
by linear model fit. Results are means and standard deviations (in parentheses)
over 100 replications for each setting. Settings STIR-1-4.

Reduction STIR STIR STIR STIR STIR

Scaling bΔ bΔ = Δ̂p ⌦ Δ̂T
b⌃x

b⌃x = ⌃̂p ⌦ ⌃̂T ITp

Scenario STIR-1 a (T, p,H, d) = (10, 3, 2, 2)
k=1 0.475 (0.116) 0.312 (0.147) 0.413 (0.147) 0.306 (0.148) 0.334 (0.144)
same w. gam 0.502 (0.123) 0.316 (0.149) 0.418 (0.153) 0.309 (0.149) 0.341 (0.152)
k=1=r=m w.2.ord. 0.463 (0.126) 0.288 (0.159) 0.393 (0.17) 0.282 (0.16) 0.312 (0.162)
same w. n=2000 0.557 (0.097) 0.451 (0.114) 0.546 (0.103) 0.45 (0.114) 0.462 (0.111)
k=2 0.508 (0.093) 0.454 (0.091) 0.5 (0.093) 0.453 (0.091) 0.463 (0.09)
k=3 0.504 (0.092) 0.504 (0.092) 0.504 (0.092) 0.504 (0.092) 0.504 (0.092)

Scenario STIR-1 b
k=1 0.421 (0.127) 0.242 (0.145) 0.355 (0.151) 0.238 (0.145) 0.261 (0.148)
same w. gam 0.428 (0.131) 0.233 (0.153) 0.348 (0.157) 0.229 (0.153) 0.256 (0.15)
k=1=r=m w.2.ord. 0.371 (0.138) 0.191 (0.147) 0.3 (0.162) 0.187 (0.147) 0.213 (0.152)
same w. n=2000 0.491 (0.108) 0.361 (0.129) 0.47 (0.117) 0.358 (0.13) 0.375 (0.124)
k=2 0.469 (0.098) 0.412 (0.099) 0.461 (0.098) 0.411 (0.099) 0.422 (0.098)
k=3 0.463 (0.1) 0.463 (0.1) 0.463 (0.1) 0.463 (0.1) 0.463 (0.1)

Scenario STIR-2 a (T, p,H, d) = (10, 3, 2, 2)
k=1 0.474 (0.109) 0.326 (0.147) 0.426 (0.136) 0.321 (0.148) 0.346 (0.141)
same w. gam 0.494 (0.112) 0.327 (0.151) 0.432 (0.137) 0.321 (0.153) 0.35 (0.141)
k=1=r=m w.2.ord. 0.462 (0.112) 0.3 (0.159) 0.409 (0.142) 0.294 (0.161) 0.321 (0.153)
same w. n=2000 0.527 (0.098) 0.432 (0.115) 0.523 (0.104) 0.431 (0.116) 0.442 (0.114)
k=2 0.498 (0.093) 0.45 (0.108) 0.496 (0.093) 0.45 (0.108) 0.46 (0.104)
k=3 0.492 (0.094) 0.492 (0.094) 0.492 (0.094) 0.492 (0.094) 0.492 (0.094)

Scenario STIR-2 b
k=1 0.427 (0.126) 0.26 (0.161) 0.378 (0.151) 0.256 (0.162) 0.28 (0.158)
same w. gam 0.428 (0.13) 0.251 (0.155) 0.373 (0.152) 0.246 (0.156) 0.274 (0.156)
k=1=r=m w.2.ord. 0.378 (0.123) 0.2 (0.149) 0.324 (0.146) 0.195 (0.15) 0.219 (0.148)
same w. n=2000 0.475 (0.1) 0.365 (0.12) 0.469 (0.102) 0.364 (0.12) 0.377 (0.119)
k=2 0.465 (0.098) 0.398 (0.113) 0.461 (0.098) 0.397 (0.114) 0.411 (0.108)
k=3 0.454 (0.097) 0.454 (0.097) 0.454 (0.097) 0.454 (0.097) 0.454 (0.097)

Scenario STIR-3 a (T, p,H, d) = (3, 15, 3, 1)
k=1 0.166 (0.135) 0.059 (0.112) 0.099 (0.135) 0.056 (0.111) 0.117 (0.14)
same w. gam 0.194 (0.163) 0.06 (0.116) 0.099 (0.141) 0.057 (0.115) 0.115 (0.138)
k=1=r=m w.2.ord. 0.19 (0.166) 0.06 (0.117) 0.106 (0.146) 0.058 (0.116) 0.127 (0.162)
same w. n=2000 0.306 (0.141) 0.161 (0.108) 0.283 (0.142) 0.159 (0.108) 0.283 (0.134)
k=2 0.239 (0.128) 0.128 (0.107) 0.236 (0.126) 0.128 (0.107) 0.221 (0.127)
k=3 0.206 (0.131) 0.096 (0.107) 0.205 (0.13) 0.096 (0.107) 0.18 (0.122)

Scenario STIR-3 b
k=1 0.101 (0.136) 0.023 (0.111) 0.046 (0.117) 0.022 (0.11) 0.056 (0.122)
same w. gam 0.105 (0.151) 0.028 (0.11) 0.045 (0.128) 0.027 (0.109) 0.045 (0.118)
k=1=r=m w.2.ord. 0.097 (0.133) 0.022 (0.11) 0.042 (0.12) 0.022 (0.109) 0.042 (0.129)
same w. n=2000 0.24 (0.151) 0.078 (0.117) 0.183 (0.157) 0.075 (0.116) 0.194 (0.146)
k=2 0.218 (0.126) 0.105 (0.108) 0.215 (0.125) 0.105 (0.108) 0.199 (0.123)
k=3 0.179 (0.131) 0.073 (0.112) 0.18 (0.13) 0.073 (0.112) 0.151 (0.125)

Scenario STIR-4 a (T, p,H, d) = (2, 7, 2, 1)
k=1 0.412 (0.124) 0.024 (0.113) 0.272 (0.137) 0.024 (0.112) 0.295 (0.133)
same w. gam 0.457 (0.128) 0.024 (0.133) 0.294 (0.16) 0.023 (0.132) 0.295 (0.131)
k=1=r=m w.2.ord. 0.457 (0.128) 0.03 (0.127) 0.309 (0.162) 0.029 (0.126) 0.335 (0.151)
same w. n=2000 0.445 (0.131) 0.032 (0.142) 0.299 (0.172) 0.031 (0.142) 0.323 (0.166)
k=2 0.668 (0.056) 0.398 (0.081) 0.666 (0.056) 0.398 (0.081) 0.62 (0.065)

Scenario STIR-4 b
k=1 0.362 (0.123) 0.019 (0.118) 0.247 (0.131) 0.018 (0.118) 0.25 (0.126)
same w. gam 0.387 (0.138) 0.035 (0.14) 0.256 (0.161) 0.033 (0.139) 0.242 (0.131)
k=1=r=m w.2.ord. 0.389 (0.137) 0.02 (0.124) 0.266 (0.161) 0.019 (0.124) 0.264 (0.159)
same w. n=2000 0.401 (0.133) 0.041 (0.128) 0.283 (0.158) 0.041 (0.128) 0.288 (0.154)
k=2 0.625 (0.062) 0.351 (0.099) 0.622 (0.063) 0.351 (0.099) 0.572 (0.07)
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Table A.8.: Correlation between 100 new continuous Y -observations and values predicted
by linear model fit. Results are means and standard deviations (in parentheses)
over 100 replications for each setting. Settings STIR-5,6 and LSIR-1,2

Reduction STIR STIR STIR STIR STIR

Scaling bΔ bΔ = Δ̂p ⌦ Δ̂T
b⌃x

b⌃x = ⌃̂p ⌦ ⌃̂T ITp

Scenario STIR-5 a (T, p,H, d) = (2, 21, 2, 1)
k=1 0.489 (0.136) 0.073 (0.152) 0.228 (0.182) 0.072 (0.149) 0.414 (0.152)
same w. gam 0.507 (0.143) 0.065 (0.211) 0.211 (0.204) 0.063 (0.207) 0.411 (0.146)
k=1 w.2.ord. 0.505 (0.137) 0.075 (0.188) 0.23 (0.204) 0.071 (0.186) 0.434 (0.154)
same w. n=2000 0.515 (0.147) 0.091 (0.182) 0.252 (0.208) 0.091 (0.182) 0.445 (0.168)
k=2 0.824 (0.033) 0.588 (0.068) 0.809 (0.037) 0.588 (0.068) 0.8 (0.036)

Scenario STIR-5 b
k=1 0.465 (0.142) 0.064 (0.159) 0.235 (0.18) 0.061 (0.159) 0.389 (0.154)
same w. gam 0.462 (0.163) 0.052 (0.198) 0.208 (0.193) 0.048 (0.195) 0.383 (0.147)
k=1 w.2.ord. 0.475 (0.148) 0.062 (0.186) 0.224 (0.203) 0.059 (0.185) 0.402 (0.16)
same w. n=2000 0.494 (0.144) 0.07 (0.17) 0.257 (0.196) 0.07 (0.169) 0.419 (0.164)
k=2 0.799 (0.038) 0.538 (0.071) 0.782 (0.044) 0.538 (0.071) 0.769 (0.045)

Scenario STIR-6 a (T, p,H, d) = (2, 7, 2, 1)
k=1 0.586 (0.128) 0.056 (0.171) 0.157 (0.185) 0.046 (0.168) 0.44 (0.153)
same w. gam 0.589 (0.13) 0.043 (0.227) 0.122 (0.199) 0.043 (0.222) 0.44 (0.152)
k=1 w.2.ord. 0.589 (0.129) 0.053 (0.203) 0.133 (0.199) 0.044 (0.196) 0.442 (0.161)
same w. n=2000 0.57 (0.13) 0.063 (0.22) 0.141 (0.231) 0.062 (0.221) 0.433 (0.172)
k=2 0.924 (0.017) 0.795 (0.035) 0.92 (0.017) 0.795 (0.035) 0.906 (0.02)

Scenario STIR-6 b
k=1 0.565 (0.129) 0.042 (0.161) 0.155 (0.176) 0.036 (0.157) 0.422 (0.151)
same w. gam 0.565 (0.132) 0.041 (0.205) 0.137 (0.195) 0.029 (0.203) 0.418 (0.156)
k=1 w.2.ord. 0.567 (0.129) 0.054 (0.187) 0.138 (0.2) 0.043 (0.181) 0.42 (0.165)
same w. n=2000 0.56 (0.132) 0.067 (0.206) 0.158 (0.22) 0.067 (0.206) 0.423 (0.167)
k=2 0.91 (0.019) 0.756 (0.042) 0.904 (0.021) 0.756 (0.042) 0.889 (0.023)

Scenario LSIR-1 a (T, p,H, d) = (3, 8, 3, 2)
k=1 0.97 (0.007) 0.971 (0.006) 0.948 (0.019) 0.971 (0.006) 0.97 (0.006)
same w. gam 0.973 (0.006) 0.974 (0.006) 0.948 (0.02) 0.971 (0.006) 0.973 (0.006)
k=1 w.2.ord. 0.97 (0.007) 0.971 (0.006) 0.948 (0.02) 0.971 (0.006) 0.97 (0.006)
same w. n=2000 0.973 (0.007) 0.973 (0.007) 0.969 (0.007) 0.973 (0.007) 0.971 (0.007)
k=2 0.971 (0.006) 0.972 (0.006) 0.96 (0.009) 0.972 (0.006) 0.971 (0.007)
k=3 0.971 (0.006) 0.972 (0.006) 0.962 (0.008) 0.972 (0.006) 0.971 (0.006)

Scenario LSIR-1 b
k=1 0.965 (0.008) 0.967 (0.008) 0.932 (0.032) 0.966 (0.008) 0.965 (0.008)
same w. gam 0.966 (0.008) 0.968 (0.008) 0.932 (0.032) 0.966 (0.008) 0.966 (0.008)
k=1 w.2.ord. 0.965 (0.008) 0.966 (0.008) 0.931 (0.032) 0.966 (0.008) 0.965 (0.008)
same w. n=2000 0.97 (0.008) 0.97 (0.007) 0.965 (0.009) 0.97 (0.008) 0.968 (0.007)
k=2 0.966 (0.008) 0.967 (0.007) 0.954 (0.01) 0.967 (0.007) 0.966 (0.008)
k=3 0.967 (0.008) 0.967 (0.007) 0.957 (0.009) 0.967 (0.007) 0.966 (0.008)

Scenario LSIR-2 a (T, p,H, d) = (3, 8, 3, 2)
k=1 0.268 (0.162) 0.696 (0.273) 0.204 (0.17) 0.689 (0.274) 0.812 (0.226)
same w. gam 0.262 (0.166) 0.695 (0.274) 0.2 (0.17) 0.688 (0.276) 0.81 (0.232)
k=1 w.2.ord. 0.248 (0.167) 0.689 (0.281) 0.183 (0.175) 0.682 (0.283) 0.805 (0.239)
same w. n=2000 0.497 (0.233) 0.898 (0.132) 0.464 (0.219) 0.895 (0.135) 0.939 (0.096)
k=2 0.732 (0.096) 0.961 (0.011) 0.684 (0.115) 0.961 (0.011) 0.97 (0.007)
k=3 0.773 (0.092) 0.964 (0.01) 0.736 (0.11) 0.964 (0.01) 0.971 (0.007)

Scenario LSIR-2 b
k=1 0.223 (0.15) 0.62 (0.248) 0.171 (0.153) 0.613 (0.249) 0.726 (0.243)
same w. gam 0.217 (0.152) 0.616 (0.253) 0.163 (0.157) 0.608 (0.255) 0.724 (0.248)
k=1 w.2.ord. 0.202 (0.153) 0.61 (0.258) 0.146 (0.163) 0.602 (0.261) 0.718 (0.255)
same w. n=2000 0.343 (0.221) 0.784 (0.217) 0.315 (0.205) 0.779 (0.218) 0.856 (0.184)
k=2 0.7 (0.114) 0.952 (0.015) 0.647 (0.129) 0.952 (0.015) 0.962 (0.01)
k=3 0.75 (0.105) 0.957 (0.013) 0.708 (0.125) 0.957 (0.013) 0.965 (0.009)

55



Bibliography

[1] A. Brenner, P. Inskip, J. Rusiecki, C. Rabkin, J. Engels, and R. Pfei↵er. Serially
measured pre-diagnostic levels of serum cytokines and risk of brain cancer in active
component military personnel. British Journal of Cancer, 119(7):893–900, 2018.

[2] E. Bura. Lecture notes in introduction to sufficient dimension reduction, May 2020.

[3] E. Bura and L. Forzani. Sufficient reductions in regressions with elliptically contoured
inverse predictors. Journal of the American Statistical Association, 110(509):420–434,
2015.

[4] E. Bura and J. Yang. Dimension estimation in sufficient dimension reduction: A
unifying approach. Journal of Multivariate Analysis, 102(1):130–142, 2011.

[5] D. R. Cook. Regression Graphics: Ideas for studying regressions through graphics.
Wiley, New York, 1998.

[6] R. Cook and L. Forzani. Principal fitted components for dimension reduction in re-
gression. Statistical Science, 23(4), Nov 2008.

[7] R. Cook and S. Weisberg. Sliced inverse regression for dimension reduction: Comment.
Journal of the American Statistical Association, 86(414):328–332, 1991.

[8] M. Eaton. Multivariate Statistics: A Vector Space Approach. Probability and Statistics
Series. Wiley, 1983. https://books.google.at/books?id=1CvvAAAAMAAJ.

[9] M. L. Eaton. Multivariate Statistics: A Vector Space Approach, volume 53 of Lec-
ture Notes–Monograph Series. Institute of Mathematical Statistics, 2007. https:

//projecteuclid.org/euclid.lnms/1196285102.

[10] T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman & Hall/CRC,
1990.

[11] N. E. Helwig. Lecture notes in multivariate linear regression. http://users.stat.

umn.edu/~helwig/notes/mvlr-Notes.pdf, Jan. 2017.

[12] B. Hoadley. Asymptotic properties of maximum likelihood estimators for the in-
dependent not identically distributed case. The Annals of Mathematical Statistics,
42(6):1977–1991, 1971.

[13] I. C. F. Ipsen and C. D. Meyer. The angle between complementary subspaces. The
American Mathematical Monthly, 102(10):904–911, 1995.

[14] A. J. Izenman. Modern Multivariate Statistical Techniques. Springer-Verlag New York,
2008.

56

https://books.google.at/books?id=1CvvAAAAMAAJ
https://projecteuclid.org/euclid.lnms/1196285102
https://projecteuclid.org/euclid.lnms/1196285102
http://users.stat.umn.edu/~helwig/notes/mvlr-Notes.pdf
http://users.stat.umn.edu/~helwig/notes/mvlr-Notes.pdf


Bibliography

[15] K. C. Li. Sliced inverse regression for dimension reduction. Journal of the American
Statistical Association, 86(414):316–327, 1991.

[16] K. B. Petersen and M. S. Pedersen. The matrix cookbook. http://www2.compute.

dtu.dk/pubdb/pubs/3274-full.html, Nov. 2012. Version 20121115.

[17] R. M. Pfei↵er, L. Forzani, and E. Bura. Sufficient dimension reduction for longitudi-
nally measured predictors. Statistics in Medicine, 31(22):2414–2427, 2012.

[18] R. M. Pfei↵er, D. B. Kapla, and E. Bura. Least squares and maximum likelihood
estimation of sufficient reductions in regressions with matrix-valued predictors. Inter-
national Journal of Data Science and Analytics, pages 1–16, 2020.

[19] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2013.

[20] Y. Shao, R. Cook, and S. Weisberg. Marginal tests with sliced average variance
estimation. Biometrika, 94(2):285–296, 2007.

[21] T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer. Rocr: visualizing classifier
performance in r. Bioinformatics, 21(20):7881, 2005.

[22] M. Song, E. Bura, R. Parzer, and R. M. Pfei↵er. Structured time-dependent inverse
regression (stir). unpublished, 2021.

[23] S. Weisberg. Dimension reduction regression in r. Journal of Statistical Software,
7(1):1–22, 2002.

[24] S. N. Wood. Thin-plate regression splines. Journal of the Royal Statistical Society
(B), 65(1):95–114, 2003.

[25] P. Zeng and Y. Zhu. An integral transform method for estimating the central mean
and central subspaces. Journal of Multivariate Analysis, 101:271–290, Jan. 2010.

57

http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html

	Introduction
	Theory on Sufficient Dimension Reduction
	Multivariate Linear Regression
	Linear Sufficient Dimension Reductions
	SIR Algorithm
	LSIR Algorithm

	STIR
	Model
	Reduction
	Estimation of the Coefficients
	OLS Estimates
	ML Estimate

	Estimation of the Error Covariance
	Separable Error Covariance
	ML Estimate of Error Covariance

	Estimation of the Reduction
	Variable Selection

	Simulations
	Data Generation
	STIR
	LSIR

	Performance Measures
	Estimation Accuracy
	Modeling and Predicting the Response

	Simulation Results
	Binary Response
	Continuous Response
	Wald Test


	Data
	Conclusion
	Appendix
	Additional Tables for Simulations
	Binary Response
	Continuous Response


	Bibliography

