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1. Summary

The aim of this thesis is to collect and put into context the complete groundwork re-
quired for describing slow-moving uncharged fermions, like neutrons, above earth’s sur-
face to obtain the general relativistic corrections that can be employed in experiments
like qBOUNCE [4]. For this aim, we collect the necessary parts from a variety of already
existing literature, work through them in detail, and arrange them such that they will
be easy to use. In section 4 we shortly discuss how the bulk of the thesis might be used
to calculate the relativistic corrections in question in subsequent investigations.

In particular we will be establishing some background in general relativity, quantum
mechanics, and 2-spinor formalism. We will then discuss, how these techniques could
be used to describe a spin—% particle over the background of the Kerr-metric and to
perform a Foldy-Wouthuysen transformation to obtain a Pauli equation with relativistic
corrections. All this provides the necessary background for the search of hypothetical
new interactions by using precision measurements.

The stage:

General Relativity,

Tensors Einstein Equation,
| Kerr Metric \ Fermion
. . in curved
2-spinor formalism )
space-time

| The performer: /

Spinors — Quantum Mechanics, |
—— Foldy-Wouthuysen transformation

Dirac Equation |

Slow moving approximation

1.1. Summary

In this section, a brief summary of the sections of this thesis is provided.

1.2. Introduction

This section provides a brief overview of the methods used subsequently. Among these
are
e The Dirac equation and the Foldy-Wouthuysen transformation, which provides the
nonrelativistic approximation of the Dirac equation [1].
e The tetrad Formalism, which is essential for the description of the Dirac equation
in curved space-time [9].
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e The 2-spinor formalism, which allows us to treat spinors and tensors on an equal
footing [6].
o The Einstein equation and some of it’s solutions [9)].

e The Schwarzschild solution in particular as a preparation for the derivation of the
Kerr solution [9].

1.3. The Kerr metric

This section provides a fully detailed step-by-step derivation of the Kerr metric, following

2].

1.4. Outlook

In this section, we outline prospects for further work and discuss how the techniques of
this thesis can be employed to describe the Dirac equation in the background of the Kerr-
metric, followed by the application of the Foldy-Wouthuysen transformation in order to
obtain the corresponding Pauli equation containing the relativistic corrections in terms
of an effective potential.
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2. Introduction

This section provides a brief overview of the methods used in later sections. Among
these are

e The Dirac equation and the Foldy-Wouthuysen transformation, which provides a
nonrelativistic approximation of the Dirac equation [1].

e The tetrad Formalism, which is essential for the description of the Dirac equation
in curved space-time [9].

e The 2-spinor formalism, which allows us to treat spinors and tensors on equal
footing [6].

o The Einstein equation and some of it’s solutions [9].

o The Schwarzschild solution in particular as a preparation for the Kerr solution [9].

2.1. Conventions

Throughout this thesis we will use the metric convention 7, = diag(l,—1,—1,—1).
Except when explicitly stated, the speed of light ¢ and A will be chosen to be 1.

We define commutation and anticommutation of a family of indices i; := i173...7, as

1 1 .
Ay = g 2 Avtiyr A = o 201 Ao, (2.1)
where o runs over all permutations.

2.2. Dirac equation

In this section we follow [1] and examine at the Dirac equation.

The Dirac equation (2.2) describes a relativistic spin—% particle.
. he 2
ihoy ¥ = | —a'0; + pfmc” | ¥ =: HY, (2.2)
i
where 7 runs over the spatial indices. To fulfill the relativistic energy-momentum relation

(2.3) and for every component to satisfy the Klein-Gordon equation (2.4), «; and /3 must
fulfill the anticommutation relations (2.5-2.7).

E? = p? + m?c! (2.3)
—RPOP = [R50, + m?c!| ¥ (2.4)
{ai, f} =0
o =p%=1
6
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Those relations imply that «; and § cannot simply be complex scalars, but they can be
represented as matrices. (2.6) and (2.7) are just an extension of (2.5) to include f, thus
on an algebraic level, ; and 8 are equivalent.

Relation (2.7) tells us that their eigenvalues are +1. By multiplying (2.6) by S and
taking the trace we get

Tr(oy) = —Tr(Boyf) = —Tr(B%q;) = —Tr(a;) = 0, (2.8)

where we used the cyclic invariance of the trace. Slight modification shows the same for
(. Since the trace is just the sum of the Eigenvalues, they must be an equal number of
+1 and —1. The dimension of the matrices must therefore be even.

The axioms of quantum mechanics imply that physical observables correspond to Her-
mitean operators. For the Hamilton operator H to be Hermitean, we need both o and
B to be Hermitean matrices. Hermiticity and vanishing trace imply that for dimension

2 they take the form
a b—ic
<b+ e —a ) , a,b,c € R. (2.9)

All these matrices can be constructed as a real linear combination of the Pauli matrices

01 0 —i 1 0
O'm—<1 0), O'y—<i 0), UZ—<O _1>. (2.10)

In four dimensions there is no further matrix that anticommutes with the Pauli matrices.
The next even dimension is 4 and indeed there exist 4-dimensional matrices that fulfill
relations (2.5 - 2.7). One set of those are

ai:@ %’) B:<]102 _?12>. (2.11)

Those matrices are not the only choice that satisfies these requirements. Other repre-
sentations will be discussed later.

2.2.1. Nonrelativistic approximations

In this section we will investigate the Dirac equation for velocities v < ¢. The structure
of the «; and 8 matrices suggests to decompose the space of 4-component wave functions
¥ into the sum of spaces of 2-component wave functions v and x. For a particle at rest
the Dirac equation reads

iho U = Bmc* ¥, (2.12)
or in the above representation:
ihdh) = mey, (2.13)
ihdyx = —mc?y. (2.14)
7
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The corresponding solutions are

m

'77162 . C
Yp=e"n Ny, x =€ n xo, (2.15)

where 1y and yo are arbitrary constant 2-spinors. From (2.14) we see that the Dirac
equation allows negative energy states.

Next we consider a free slow moving particle. Because the Hamilton operator is time
independent, we focus on energy eigenstates

iho, U = BV, (2.16)

with constant . We assume E > 0. In the above representation, the more general
Dirac equation takes the form

(E — mc?)p = —ihco;0;x (2.17)
(E +mc®)x = —ilico;0: (2.18)

As for a slow moving particle mc? > p, (2.18) suggests that in that case, x < .
Therefore ¢ will be called the large component and x the small component.

By adding a minimal coupling
Pa > Pa — SA,I, a€{0,1,2,3}, (2.19)
we can couple a charged Dirac particle to an electromagnetic field. With the definition
I := p; — EAZ-, i€{1,2,3), (2.20)
this leads to the Dirac equation
iho,U = [caiﬂi + Bmc® + e@} 0, (2.21)

where we renamed ¥ to U. Because of our slow moving and weak field approximations
the majority of the energy will be mc?. Therefore we can decompose the wave function
into a fast oscillating factor and a slowly varying wave function.

2
me” 4

U =en W (2.22)

Plugging that into the Dirac equation and using the above representation, we get

. (AT 17 [ X e (0 — 9me? 0
ihoy (X) = co;11; <¢> +ed (X) 2 <X> i (2.23)

Looking at the second equation, the left hand side can be neglected because we assume
only slow variation of y. Also since ® is small and x is suppressed by a factor ~ ﬁ
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from earlier considerations, we can neglect the second term on the right hand side. What

is left reduces to -
X = Jiy, (2.24)

 2me

Plugging this into the first equation it yields

o - 11
i = | 2T 1 e (2.25)
2m
We can now use the identity
oi0; = 0i; +icijpor, = (o-a)(c-b)=a-b+io-(axDb), (2.26)
to find L
(o - II)(o - T) = T2 — %0' . B. (2.27)

The resulting equation

_cA)?
ihdy = P=CA)  h B " (2.28)
2m 2me

is now recognizable as the famous Pauli equation. As we will later see there is a more
systematic way to deduce this equation.
2.2.2. The v matrices

One of the motivations for the Dirac equation was Lorentz covariance, which is best
portrayed by multiplying (2.2) by S from the left and defining

=8, A :=PBa; i€{l,2,3}. (2.29)
The free Dirac equation now simply reads
[ihy*0q — mc] ¥ = 0. (2.30)
The anticommutation relations (2.5 - 2.7) simplify to

V{aVb} = Mabs (2.31)

and while 7° remains Hermitean, 7% are anti-Hermitean. Every set of matrices that
fulfill these requirements produce a representation of the Dirac equation. As proved in
[5] those sets of matrices are connected by unitary similarity transformations.

The y-matrices for the Dirac representation which we used in the previous sections, are

i 0 O'i 0 __ 12 0
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Another set of valid v matrices is the Weyl- or chiral representation

i 0 O'i 0 __ 0 12

We will later use this representation to write down the Dirac equation in 2-spinor form,
which will also prove Lorentz covariance since 2-spinor equations are inherently Lorentz
covariant.

2.2.3. The Foldy-Wouthuysen transformation

For the following outline we rely on [1].

The fact that the nonrelativistic limit of the Dirac equation in the Dirac representation
separates the spinor into a large and a small component suggests that if we could find
a representation that decouples those components, we can neglect the small component
and the nonrelativistic case can be described by an equation for only the large compo-
nent. That is what the Foldy-Wouthuysen transformation does. The idea is to split the

Hamiltonian of the Dirac equation into even terms & which are of the form (61 g),

and odd terms & of the form (g ﬁ) . The goal is to find a unitary transformation e'®

such that only even terms remain.

In this section, operators act on everything that is written after them, with the exception
of 0, which acts only on the right adjacent object. If another operator acts on only the
adjacent object, it is denoted by a small arrow, e.g. p.

With the transformation

U U =Sy, (2.34)
the Dirac equation reads
0 (e790') = HY = He W/, (2.35)
where
H =&+ 0 + Bm. (2.36)
This leads to ‘ .
0,0 = [ (H —i0,) 75| W/, (2.37)
=H'

which will be our starting point for the specific transformations.

2.2.4. The Foldy-Wouthuysen Transformation for the Free Dirac Equation

In the case of a free moving particle our even and odd parts of the Hamilton operator
are
&=0, O=a-p. (2.38)

10
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We make the Ansatz

S = ePP? — cog(|plf) + pa-p sin(|p|0), (2.39)

p|
in the sense of the operator valued Taylor expansion of sine and cosine. 6 is yet to be
determined. The inverse of the operator ) we denote as é and it satisfies Qé = éQ =1
wherever QW # 0. The parts of Hilbert space that are annihilated by @) can be ignored
here since é will always come in combination with (). That such an operator exists is
shown in appendix A.1.

The transformed Hamilton operator then is

' = [cos(iplt) + P sin(pl6)] 2 p + gm) [cos(lple) — XL sinlple)] (240
= (a-p+Bm) [cos<|pre> - ﬂ‘f‘p“p sinup\mr = (a-p+pm)e Pl (241)
— (- p+ ) [cos(2iple) — P sin(21plo) (2.42)
= - [cos(2{pl6) — - sin(2lpp)| + B m cos(2(pl6) + [plsin(2iple) . (243

To cancel the odd term, we have to set
cos(2|p|0) = % sin(2|pld) = tan(2|p|d) = ‘T‘;'. (2.44)

This forms a right triangle with angle 2|p|6, adjacent side m and opposite side |p|. The
hypotenuse then is y/p? + m?2. We have

S , sin(2|pld) = L .
VP2 +m? VP2 + m?
Inserting that into the Hamilton operator, we get

2 2

P +tm
H =p—~1— = 24 m2, 2.46
B S By\/p (2.46)

the square root of the Klein-Gordon equation.

cos(2|pld) = (2.45)

2.2.5. The general Foldy-Wouthuysen transformation

In general it is not so easy to perform the transformation exactly. To approximate, we
assume that in the nonrelativistic limit all energies are small compared to m. We then
choose S to be proportional to % and eliminate the odd terms order by order in % to
the desired accuracy.

We again start with the Hamilton operator

H=p8m+0+6&. (2.47)

11
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Since O is proportional to «;, & is diagonal in the sense of 2 x 2 blocks, and the blocks
of B are diagonal, we have

BO =—-0p8, B&E=EP. (2.48)
For an operator €2,
. . AN GF (N
Qe M = F(\) = l‘ o"F(N) , (2.49)
n—=o v O™ A=0
where OF(\)
_ iAS: —iAS
3 e[S, Qe 7, (2.50)
and thus, with L := [S, -]
OEQ) _ jasin (L") e ™5, (2.51)
o™
By setting A = 1 after plugging into the Taylor series, we get
) . 1 i
é50e™S = Q +i[S, Q] — =[S, [S, Q] — =[S, [S.[S, Q] + ... . (2.52)

2 6

Now we are prepared to expand the transformed Hamilton operator. We will take into
account terms up to order ;. Using (2.37), we get

i

L1S,15.15, HI| + 5,15 [5, 15,15, fm]l]

2 . (2.53)
-8 —i[S, 8] + 6[5’ ERSI

H' = H 48, H] ~ J[5,1, H]

To order 1 this reads
H' = pBm+ & + 0 +i[S, Bm)]. (2.54)

For & to vanish at this order, we need

5= 417 (2.55)

2m

12



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfigbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

o
i
r

M You

Using this with the original Hamiltonian we have

i[S,H]:%[Bﬁ,Bm—i-éa—i—ﬁ]:—ﬁ—i- %[ﬁ,é’]—i—gﬁz, (2.56)
—%[5, (S, H]] = %[S,i[S, H) = —%@ﬂ - 8%[@ 10,8] - 2;2 o5, (257)
i i 1 1 3 3
_g[sv [S7 [S7 Hm = §[S7 _§[S7 [Sv Hm = 62 ﬁs — AR5 [ﬁ, [ﬁ, [ﬁ, éam — %64
(2.58)
1 i i 3
31515 15.18. 11 = 15—l 1[5, = 550 (2.59)
—§ = 1%, (2.60)
—2[5,5] __8m2[ﬁ7 ﬁ]’ (2 61)
1 i i B :
E[S’ [S,9]] = g[S, —5[5, S]] = —1m[ﬁ, (0, 0]]. (2.62)
Combining the terms we obtain
= ﬁm+éo,+ ﬁ,, (2.63)
where
1 1 . .
&=+ ﬂﬁﬁ - %ﬁ‘* 8—[@’, [0,&]] — 1W[ﬁ, 0], (2.64)
P B p p '
0 = Qm[ﬁ &) — 3—6’3 50~ 33 [0,[0,]0,8]]] — 1W[ﬁ, (0,0]]. (2.65)

Here, the odd terms only appear to order % upwards. We can now repeat this procedure
to get rid of the % odd terms. The procedure for the second transformation is exactly
the same as for the first one. The new exponent is

B

S =
2m

(2.66)

which is now of order # The terms for the transformed Hamilton operator up to order
1

m3 are
. B B e
g gl ! ! P s
i, H = 0"+ 5[0, 8]+ =(0)", (2.67)
1 ! / / ﬁ /N2
—— H||=—— 2.
U ﬁ S1
_g —i 2.
S IQmﬁ (2.69)
Therefore we have
H' = ﬁm—I—éa”—i— ﬁ”, (2.70)
13
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with

& =&+ %(@”)2, (2.71)
o' = %[ﬁ’,é"/] + i%ﬁ". (2.72)

The next transformation goes accordingly. The new exponent S” is now of order #,
which leaves us with the transformed Hamilton operator

H//I — Bm+£>lll+ ﬁ///7 (273)

where
&" =&, (2.74)
0" = %[ﬁ”, &' + i%ﬁ'”. (2.75)

For the final transformation, since the exponent S” would be of order #, the only terms
left are
HY = gm + &" (2.76)

which decouples the large and small components up to order # Putting in the lower

order even and odd terms, we get

ﬁ2>_ o4 1

(2.77)

+# (6 -i{l0,6),6} - [0,67).

2.2.6. A charged particle in the electromagnetic field
By minimal substitution we can couple a point charge to the electromagnetic field.
H=pfm+eP+a-(p—eA)=8m+E+ 0 (2.78)
The following useful relation can directly be taken from the Pauli matrices:
;o = 045 + €0 (2.79)

We will only take into account terms up to (momentum)?3/m? and order e. So the only
relevant terms in the Foldy-Wouthuysen transformed Hamilton operator are

6’2> o4 1

HIV:éa I
—|—B<m—|— 8m3  8m2

om (16.10,6)+161). (2.80)

14
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We can now calculate the relevant terms:

0% = ai(pi — eAi)a;(pj — eA;)

= (p — eA)? —ioyeei (5 A; + Ajpi + Aipj) (2.81)
= (p—eA)? —es-B,
0t =p?, (2.82)
0 = —ea- A, (2.83)
[0,&] = —iea - VO, (2.84)
[0,6] 416 = —iea- (V& + A) =ica - E, (2.85)
a-p,a-E| = —iqo; (V,Ej+ E;jV; — E;V;) (2.86)
=—i(V-E+ioc-(VXE)—2ic-(ExV)),
(0,16,6]+i0] =e(V-E+io- (V xE) —2ic - (E x V)). (2.87)
This leads us to the transformed hamilton operator
oV =g <m+ (I)—QeA)2 B p43> ted—B-"0.B
m 8m 2m (2.88)

ie e e

2.3. Tetrad formalism

It is sometimes convenient to switch to an orthonormal basis, or tetrad, that moves along
in space-time in such a way that it stays orthonormal at every point. Instead of just
equipping the manifold with direction and differential structure, the tangent space now
becomes its own entity, acting as the fibre to the manifold basis of the tangent bundle.
A fibre bundle is a topological space E with a projection = : £ — B which maps to
a topological space B, called the basis, such that there exists an open set Up around
every point P of B such that the pre-image 7~ !(Up) is homeomorphic to Up x F. F
is a topological space called the fibre [8]. While in this section it is just another way
of looking at a manifold, where we treat the tangent space as the fibre, later on, when
we extend tensor calculus to include spinors, this will be essential. For calculations it is
useful to employ the algebra of differential forms.

The substance of this section is taken from [9], [6].

2.3.1. Differential Forms

A scalar differential form is a completely antisymmetric (0,p) tensor, where p denotes
the number of lower indices. A differential form with p antisymmetric lower indices is
also called a p-form. For convenience we will suppress form indices. If that is done,
the symbol denoting the differential form will be written in bold face. If the tensor has
additional indices, like upper indices or ones that are not antisymmetric, it is called a
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tensorial differential form. We will call the space of p-forms AP(“/ ), where &7 denotes
the additional tensor indices. There are several possible operations on differential forms
that preserve their form-character.

Addition between two p-forms can be directly taken from tensor addition. The result is
again a p-form of the same form character.

Multiplication on the other hand is a bit more involved. If only tensor multiplication is
applied to two differential forms, the resulting differential form’s form indices might no
longer be totally antisymmetric. Therefore we need a new multiplication called A which
preserves antisymmetry.

A: AP(7) x AY(P) — APTI(7 )

o p P r+q)! 52

11...0p Tpt1-fptq p‘q| [il...ip ip+1...ip+q}

(2.89)

Also differentiation needs to be modified, because the derivative operator brings an index
that is not in general antisymmetrized with the rest. Therefore we introduce the exterior
derivative d.

d: AP(7) — AP

2.90)
o o (
dwiy ;, = P+ 1DVjwy )
One immediate consequence of this definition is that d? acts on tensorial 0-forms via
the Riemann tensor, and vanishes on scalar forms. To prove the latter we will use the
symmetry of the Christoffel symbol Fd[ ab] = 0, as well as the symmetry of the partial
derivatives J),0y = 0.

V[avbwc} = V[aabwc] — V[ardbdwd

(2.91)
= a[aabwc] — Fd[abﬁ‘d‘wc] — Fd[acab]wd =0
The outer derivative fulfills the weighted Leibniz rule
d(a”? A B7) =da” A BZ + (—1)Pa” AdBZ, (2.92)

if @ is a p-form and A% is an arbitrary differential form, because the index of the
exterior derivative in the second term must be translated through a?.

2.3.2. Tetrad Formalism

First we introduce an orthonormal basis of the tangent space we denote by E2. While
latin letters are ordinary abstract tensor indices, greek letters from the beginning of the
alphabet denote labels of the specific basis vector. We will suppress tensor indices in the
further discussion (except where they are needed for clarity) as we did with form indices.
Its dual basis will be denoted by e®. They are given different symbols to distinguish
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them due to the suppressed indices. To express a tensor in the tetrad basis we simply
contract it with the respective basis vector.

T% =T%erE} (2.93)

Because of the suppressed indices we introduce a new symbol for the inner product, or
the contraction between suppressed indices.

a” .87 = ¥’ 3%, (2.94)

% and 2 represent other suppressed indices. We define the inner product in such a way
that the contraction happens between the first contravariant tensor index and the first
form index.

From the orthonormality follows
9 ELEy =nag or Eqoe” =45, (2.95)
Similarly the metric can be decomposed into tetrad components:
Napele, = gay or Bl = 6f. (2.96)

If we differentiate E,, the result will still have a vector index which can be decomposed

into tetrad components.
dES =: ", = Ejw’,. (2.97)

W, is a matrix of 1-forms and is called connection one-forms.

We can now use the second equation of (2.96) to deduce the equivalent of (2.97) for e®
called the first Cartan structure equation. Keep in mind that FE, is a vector O-form and
e is a scalar 1-form.

0=d(E,e*) =dE, Ne* + E,de”
= Egu’, N e + E,de” (2.98)
0=F, (waﬁ Aeb + dea)
Contracting this relation with €” and renaming indices, we get the first Cartan structure

relation,
de®” = —w3 A e’. (2.99)

Since E, is a 0-form, d B4 = V,E2. Using (2.95) we get from (2.97) that
wgp, = eg VB (2.100)

If we substitute d for V; in (2.98), the calculation is very similar, only that A is replaced
by an ordinary tensor product. Eventually one arrives at

Vyes = —wgpel (2.101)

a
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Using similar methods as before, and also V,gp. = 0, we get

—wgy = ESVpel = e, Vo0 P2V 0 (2.102)
Therefore
Since E, is a vector 0-form, d? acting on it gives the Riemann tensor.
0= (wﬁ,y AWy +dw?, — Rﬁa) Ej

Contracting this relation with e’ and renaming indices, we get the second Cartan struc-
ture equation,
R% = dw®s + w Aw’p. (2.105)

R 3 is a matrix of 2-forms and is called the Riemann 2-form. The trace of the Riemann
2-form gives us the Ricci 1-form, which corresponds to the Ricci tensor:

R, = Es.R’,. (2.106)

2.4. 2-Spinors

In this section we will introduce the 2-spinor formalism following [6]. This will allow us
to treat spinors and tensors on equal footing and provide the machinery to formulate
the Dirac equation in a Kerr background.

Note that if spinors are mentioned without further context, it will always refer to
2-spinors and not four component Dirac spinors. However, as we will see later, Dirac
spinors can be expressed as a pair of two-component spin-vectors.

2.4.1. Spin vectors and spin transformations from the light cone

Since one can construct a basis of Minkowski space entirely from null vectors, it seems
natural to formulate an algebra based on the properties of the light cone.

Our goal is to conveniently parametrize null directions. For this aim we take Minkowski
space M with coordinates (T, X,Y,Z) and origin O = (0,0,0,0) and look at null rays
through O passing through the 3-plane T'= —1, which we will parametrize by (z,y, 2).
These null rays trace out a unit sphere at 7' = —1 which is called the celestial sphere S™.
All light that reaches an observer at O in one time unit is encoded on that sphere. This
creates a bijective map from the set of light rays through O and the celestial sphere.

A sphere can be parametrized via stereographical projection onto R?. If instead we use C
as projection plane, the sphere is called Riemann sphere. We will perform this projection
in a way such that the complex plane corresponds to z = 0. Through the north pole
we draw rays which intersect both the sphere and the complex plane, and identify those
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two intersection points (Fig. 1). Thus the complex number { parametrizes the sphere

without the north pole as
T+ iy
= . 2.107
(=2t (2.107)

P(l,x, 5 2)

~F(L.XTY70)

t=X"+iY’

Figure 1: Stereographic projection of ST to the complex plane. The same can be done for S~. This
figure was taken from [6].

The inverse relations are

C - (-1
Cj‘C , Y= 4774 z= Cg . (2.108)
C+1 i(¢C+1) C+1
To include the north pole, which would be at a point ( = oo, in our coordinates, we
parametrize ST as a complex projective line using homogeneous coordinates

(€n) - <=f7, (\é,\n) = (£,1) YA€C. (2.109)

The north pole is then represented by (1,0). The vectors tracing out the sphere are then
represented by

&g i —né _ &
T == - Y= = 2= F - (2.110)
§€ + i) (&€ + ) £+
Those are null vectors (1, z,y, z) with 22 +y%+22 = 1. We can scale them by the positive

real number %(55 + nn) to obtain any null vector in M. (The factor % is chosen for

later convenience.) The coordinates of these null vectors then are

1 - 1

7= (et X (0. Y = (@m0, 2= (o). (1)

V2

While these vectors are no longer invariant under arbitrary rescaling (&,7) — (A, An),
there remains a phase invariance (£,7) — (e, €l%n). Since the light cone spans M,

1
iv2
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the coordinates of any vector can be given by (2.111). Because (2.111) are real for any
complex numbers € and 7, a regular linear transformation

¢ ol + B, (2.112)
n—y§+0on, {a,B,7,0} €C, (2.113)

induces a regular real linear transformation on M. The regularity condition on (2.112) is

ad — By #0. (2.114)
For ( this results in a Mobius transformation
ag +
— . 2.115
¢m St (215)

We will now impose the unimodularity condition which does not constrict the transfor-
mation of (:
ad — By = 1. (2.116)

Such transformations are called spin transformations and can be expressed as a spin
matrix
A= (0‘ ﬁ), det(A) = 1, (2.117)
v 0
acting on (£,7m) € C2. Using succession as multiplication, the group of Spin transforma-

tions are isomorphic to the abstract group SL(2,C).

From (2.111) we observe'

1 1 (T+Z X+iY £E €7 €\ /-
— X = . = > = . 2.118
V2 \/§<X—1Y T—Z> (775 i U <£ n) (2.118)
Again, we can interpret X as coordinates for not only a null vector, but an arbitrary
element of M. A spin transformation therefore acts on a vector in M as

X — AXAT, (2.119)

Hermitean conjugation results in the complex conjugation of the determinant, which is
1 in our case. That means that the determinant of X is invariant under spin transfor-

mations. But
det(X) =72 - X2 Y2 - 72, (2.120)

which means that a spin transformation on C? induces a Lorentz transformation on M.
Suppose two spin transformations A and B induce the same Lorentz transformation.
Then

AXAT = BXB, (2.121)

'In some literature on quantum field theory, other conventions are used. If we map ¢ — ( in the
construction (2.107), we get y — —y and Y — —Y, respectively. The matrix X will then, instead of
X=1T+0c-X,read X = 1T + o - X, as is in agreement with [7].
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and
X = A"'BXBf(A")™! = A"'BX(A!B)". (2.122)

Therefore the spin transformation A™'B must induce the identity map on M. Earlier
we saw that the only transformations that leave arbitrary vectors invariant are phase

transformations
&) s o [ € , (2.123)
n n

det=1
=

restricting the transformation to

ATIB =¢Y1 A"'B=+1= A =+B. (2.124)
Thus one Lorentz transformation is induced by two spin transformations with mutually
opposite sign.

As proven in [6]:

Corollary 1. Every spin transformation induces a unique proper orthochronous Lorentz
transformation. Conversely every proper orthochronous Lorentz transformation is in-
duced by exactly two spin transformations, one being the negative of the other.

This 2 to 1 epimorphism shows, that SL(2,C) is the double cover of A*T. In fact,
SL(2,C) is simply connected and therefore the universal cover of A*T.

Those elements on C? the components of which are ¢ and 7, on which the spin transfor-
mations act, are called spin vectors.

2.4.2. Spinors in space-time

As we have seen in the last section, we can describe null vectors as a product of a spin-
vector and its complex conjugate (2.118). We will now use this to define a spinor calculus
similar to how it can be done for tensors, which will incorporate the usual tensor calculus.
For that we introduce a vector bundle with fibre C? over space-time, the elements of the
fibre will be called spin-vectors. The abstract space of spin vectors will be called &4, its
complex conjugate space &4, and their dual spaces with lowered indices. We define a
general spinor as a multilinear map G41 x ... x &g, x ... x 61 x ... x Sp; x... =~ C. The
operation of complex conjugation is defined as an involutory isomorphism &9 — & /
where &7 € {A, A’}. Elements of the tangent space are repesented by elements of G4,
For convenience, as long as abstract indices are used, pairs of complex conjugated spinor
indices will be used interchangeably with tensor indices 644" +» &%,

It would be advantageous to find an inner product &4 x &8 — C which is invariant
under spin transformations, just like the Minkowski metric is invariant under Lorentz
transformations. Consider two spin vectors £ and w?. The inner product

(k,w) = kO — k1O (2.125)
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fulfills the required condition. To show this, consider a spin transformation

_ (o B By
A= (7 5) , ad—py=1. (2.126)
Then
=0 ~0 0,0
~0~1_~1~0_Hw_045/<fﬂ_ . o1 1,0y_,0 1 1,0
RO —Rw = et Il I L wl—(ad BY)(Kw —kw)=Kw —Kw.
(2.127)
This product is realized by the antisymmetric e-spinor
EAB = —€BA (2128)
by defining
(k,w) =: e g WP, (2.129)

With similar considerations we find the analogues for the complex conjugate and dual
spaces

EAB = —E€EBA 5AB = —5BA, 5A/B/ = —5B/A/. (2130)
The antisymmetry portrays the importance of the order of indices within primed or
unprimed indices. The permutation between these sets has no effect. The e-spinors are
defined such that

1 s%

eapetl =eppet B =2, (2.131)
We can use the e-spinor to map between the spinor spaces and their duals
! ’ ! /

ekl = —ka, eppk® =—ka, ePrp=kt, ANPrp =r?. (2.132)

This leads to

(2.125)
raw? = kow? + kw! =" KW — kWO, (2.133)
ko = —rb, Ky = kK0 (2.134)
Summarizing we find
eapiw® = k0P = —kAwp = e Pk pwp
A/ Bl B/ A/ A/B/ (2.135)
ek W =Rraw” = -k wp =77 kpwp

Collecting the statements above, € 4z€ 4/ 5 translates to a tensor of the tangent space.
Since € 45 and € 4, 5, are invariant under spin transformations, which translate to Lorentz
transformations in tangent space, the tensor they represent is invariant under Lorentz
transformations. Thus

EABEA'B’ = Nab- (2136)
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2.4.3. Symmetric and antisymmetric spinors

A spinor is called symmetric [antisymmetric| if it is symmetric [antisymmetric] in all of
it’s indices. Because of the antisymmety of the e-spinor, the trace of a pair of symmetric
indices vanishes. Since spin space is only 2-dimensional, a pair of antisymmetric indices
has only one independent component. This component is the trace over the respective
indices.

1
Pa1aB)] = §¢9005AB (2.137)

This can be shown by assuming following identity for arbitrary spinors x, w, and T,
which can be easily checked by switching to components.

kAwATE 4w AP 4 kAP =0 (2.138)

This can be turned into an identity for e-spinors which when contracted with two com-
ponents of a spinor leads to the desired result.

rAWBTX (EABEXD+6BX5AD+€XA€BD) =0 (2.139)
eapex? +epxeal +exacg? =0 |- e9X (2.140)

enCep” —epCes” = eype” |+ ®ycp (2.141)

yup —Popa = Pyccap (2.142)

Identity (2.137) already suggests that the antisymmetric parts of spinors do not hold
more information than a scalar which is trivially a symmetric spinor. Indeed every spinor
can be decomposed into outer products between symmetric spinors and e-spinors. This
is shown in appendix B.1.1.

2.4.4. The spin dyad

As hinted at the beginning of this chapter, we can introduce an analogue (and also an
extension) to the tetrad in tangent space for spin space. This basis is called spin dyad
or spin frame. This dyad is defined by the basis spin vectors o and ¢*, as well as their
orthonormality condition

oat =1, op =1. (2.143)
Alongside this dyad there emerges naturally a complex null tetrad
1°:=0%", n®:=AY, m®i=0MY, mt =47, (2.144)
where
Ing =1, mmg, = —1. (2.145)
As can be easily checked, it is possible to obtain the standard orthonormal tetrad by
1 1
t*=—(1"4+n%, z%=-—(m*+m"),
iﬂ \{i (2.146)
azima_ma, L0 — _—_(]¢ _pa
V=75 ( ) 7 ( )
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In terms of components we can write a spin vector as

kA = k0" + kLA (2.147)
That gives us
KO = —iakd, kY= oar?. (2.148)
From (2.134) we get
ko= —K' = OAIiA, k1 = k0 = 14k 4. (2.149)

We can write the e-spinor in terms of the spin frame
EAp = OALB — LAOR, (2.150)

which gives us

€9 — OB, &1 — !By €OB = LB, ElB = _OB. (2151)

Spinor components will be symbolized by bold face capital letters. The spin dyad is
therefore ¢ AB or € BA, respectively.
2.4.5. Covariant derivative

The isomorphism between the tangent vectors and real [} }] spinors associates to each
covariant derivative V, a spinor valued derivative V 4, ,. This derivative is only defined
for real directions and acting on real scalars yet. The first step will therefore be to
extend its definition to complex directions and scalars.

Consider U® and V* to be real vector fields and f and g to be real scalar fields. Then

U, (f +ig) := UV, (f) + iUV, (g) (2.152)
(U + VIV, (f) = UV, (f) +iVeV,(f) (2.153)

Now we can define the covariant derivative for arbitrary spinors.
Definition 1. A spinor covariant derivative is a map
Vau 68 =65, (2.154)
satisfying, for each €8, nB® € &8, f e &,
Van (€% + 1) =V au&® +V 4um” (2.155)
Van(fEP) = [V ant” + PV f. (2.156)

This definition can be extended for V , 4, also acting on &5 by requiring the Leibniz
rule.

(Vaaap)e® ==V (apé®) — apV 468 (2.157)

The extension to V 44, acting on S5 and & g follows from complex conjugation.

VAA/CB/ = VAAléB, Vaawg = Vaawp (2.158)
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We can now extend V 4, to act on a general spinor, again requiring that the Leibniz
rule holds.

(Vaurx"“p. g)Bpcs” . =V u (P b wBp1")

___B..C" B _ B E

(2.159)
X .5 (VaxpBp)..n p.. g BB (Vaan™)

The derivative constructed like that is unique if we require vanishing torsion and that it
annihilates € 4 5.

2.4.6. Spin coefficients

As we defined the connection one-form as the bundle connection of tangent space
VyE2 = EgwP,, (2.160)
we will define the spin coefficients as a connection on the spin bundle

A C_. A
B B C (2.161)
VAA/EA - _FAA/C EA .
Because € 45 is constant we get
0=V =V A = eV A_egaVaaeic=T -T
AA'€BC AA' \€B f4AC EACVAA'EB “EBAVAA'C C AA'BC— 1 AA'CB
(2.162)
the symmetry of the spin coefficients

We can now establish the relationship between the connection one-forms and the spin
coefficients. Note that in the conventions we use, where we derive the tetrad directly
from the spin basis, the Infeld-van der Waerden symbols gaAA/ which describe the iso-
morphism between spinors and tensors are constant.

WPi = Vi B}
= CZVi (gbAA 8AA€A/A )
AA’ A A A A
= edgp <5A/ Viea” +epa"Vicps ) (2.164)

a. B B’ A C_ A AT C’ Al AA’
=9BB €A €a <EA/ FZA Ec + EA FiA/ Ec ) 9b
a_AA’ B’ B B B’
= 9BB’ 9b <5A' Lia” +ea Liar )

Thus
Ccc’ C’ C Cr C’
w DD/ — ED/ FZD + €D FZ-D/ . (2165)

We get the reverse relations by contracting D’ with C’ or D with C, respectively.

1 /
c_1,cc

I'p~ = 5 DC/i
1 (2.166)
S ¢ cc’
Iip™ = 5 WD
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2.5. Null surfaces

The orthogonal surface (if it exists) to a null vector field u® is called a null hypersurface.
A null surface is a submanifold of a null hypersurface.

Proposition 1. The vanishing of the scalar product between two null vectors u® and v*
1s equivalent to them being proportional to each other.

ugv® =0 < v =au® (2.167)

Proof. Consider two nonzero null vectors u® and v® that point in distinct directions.
Then their sum (u® 4+ v*) will no longer be null.

0 # (uq + va)(u® + v%) = ugu® + 2u v + VU®* = 2uuv® (2.168)

The negation of that proves the "=" direction. The inverse is clear by the definition of
a null vector. O

This proposition provides that u® is the only null vector (up to proportionality) tangent
to the null hypersurface.

Proposition 2. The metric for a null surface is degenerate, i.e. its determinand van-
ishes.

Proof. For a non-singular coordinate transformation the vanishing of the metric deter-
minand is coordinate independent. That means if we can show it in one coordinate
frame it is true for all coordinate frames. Consider a point P on the null surface. We
can choose a coordinate frame where the metric at P has the form

ds? = 2dudv — §;;dz"da? (2.169)
or
01 0 0
10 0 0
=100 -1 o | (2.170)
00 0 -1

where the columns and rows are in the order (v,u, z!, 22).

If M is a manifold with a metric and S is a submanifold of M, then M induces a metric
on S in the sense that vectors in T'(S) correspond to vectors in T'(M) by embedding S
in M. Since w is tangent to the null hypersurface and v is not, the induced metric is

0 0 0
=10 -1 o0 |. (2.171)
0 0 -1

This metric is clearly degenerate and every null surface must be tangent to u so its
metric will also be degenerate. Since we did not specify the point P, this is true for the
whole null surface. ]
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2.6. The Einstein equation

For the following exposure we rely on [9].

The Einstein equation relates space-time geometry to the energy-momentum tensor of
the present matter.

1
Rap — iRgab + Agap = 8TG Ty (2172)

R., = R*,,, is the Ricci tensor which is the trace of the Riemmann tensor. R = R?,
is the curvature scalar which is the trace of the Ricci tensor. Together they form the
Einstein tensor G, = Ry, — %Rgab, which is the trace reversal of the Ricci tensor. A is
the cosmological constant, and Ty is the energy-momentum tensor of matter.

The vacuum Einstein equation refers to (2.172), but with T, = 0:

Ra, = Agab' (2173)

2.7. Some solutions of the Einstein equation

During the history of general relativity, several analytic solutions to the Einstein equation
were found. We will take a short look at some selected solutions which describe the
space-times produced by spherical objects. The Schwarzschild and Kerr solution will be
treated more fully in the next sections.

All solutions discussed below contain black holes, which are regions in space-time from
which no future timelike curve can reach infinity. Black holes are bounded by a null
surface called the event horizon.

2.7.1. The Schwarzschild solution

The Schwarzschild solution was the first nontrivial analytic solution of the Einstein
equation to be found. It assumes the following symmetries:

e vacuum: Space-time is void of matter, T,;, = 0, and a cosmological constant is
excluded (A = 0).

o static: There exists a timelike Killing vector field (stationary), the orthogonal
spaces of which are the tangent spaces of a spacelike submanifold (hypersurface
orthogonal).

e spherically symmetric: The isometry group has a subgroup the orbits of which
are geometrical spheres S2.

That is what we expect for a space-time outside a spherical uncharged massive object
at rest. The line element for the Schwarzschid solution is

1
ds? = fdt® — ?dﬂ — 20, f=1-"7, (2.174)
T

27



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

where t is the Killing time, r is the area radius of the spacelike S? submanifolds, d§2?
is the line element for a unit S2, and M := Gm is the Mass parameter, where m is the
mass of the object.

This metric describes a black hole with its event horizon at » = 2M. The singularity
at the horizon is only due to the chosen coordinates. In the later discussion we will
circumvent it by transforming into Kruskal coordinates. The singularity at » = 0 is a
real curvature singularity. Notice that, passing the horizon, d; and 0, switch their roles
as timelike and spacelike vectors, respectively.

If we take the Newtonian limit and identify the gravitational potential with % Jit, We see

that it has the same behaviour as Newton’s gravitational potential & = —%.

2.7.2. The Reissner-Nordstrom solution

For this we still consider a spherically symmetric massive object at rest, but with charge
4”%@ in SI-units. Therefore we assume the following symmetries:

e electrovacuum: The only physical fields present are the electromagnetic field and
the gravitational field. We also exclude a cosmological constant (A = 0).

o static: There exists a timelike Killing vector field (stationary), the orthogonal
spaces of which are the tangent spaces of a spacelike submanifold (hypersurface
orthogonal).

o spherically symmetric: The isometry group has a subgroup the orbits of which
are geometrical spheres S2.

The resulting line element is
1
ds® = fdt* — ?er —r2dQ?, f=1- "4 5. (2.175)

This again describes a black hole, but now with two horizons r4 = M 4 /M2 — Q2.
The first horizon r4 coincides with the Schwarzschild horizon for ) = 0, whereas the
second horizon r_ coincides with the singularity at the horizon for Q = 0. For the other
extreme () = M, the two horizons coincide at r = M. For Q > M there is no horizon
and the singularity is "naked", i.e. not inside a black hole.

2.7.3. The Kerr solution

For this we consider a massive uncharged rotating object in vacuum. Due to the rotation
we expect space-time to no longer be spherically symmetric, but axially symmetric. We
assume following symmetries:

e vacuum: Space-time is void of matter, T,;, = 0. We also exclude a cosmological
constant (A = 0).

o stationary: There exists a timelike Killing vector field.

o axially symmetric: The isometry group has a subgroup the orbits of which are
geometrical circles S!.
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The resulting line element is

2 2 i 2 2 2
o PA L, Ysintd 2aMr P° o 92
ds® = 2 de” — e (dgf)— 2 dt) — Zdr — p=db”, (2.176)
where
A =r?—2Mr+d?, (2.177)
p? =1r?+a’cos ), (2.178)
2 = (r? + a?)? — a*Asin? 6, (2.179)

and a and M are constant parameters. The curvature singularity here is a ring in
the equatorial plane. Outside of the black hole there is a region called the ergosphere,
where the gy changes its sign. This means that there is no stationary observer in this
region. Rotational energy can be extracted from the black hole via the Penrose process
by dropping matter into the ergosphere and splitting it in a way such that one part
escapes, and the infalling part has negative energy.

2.8. The Schwarzschild Solution

Other than the conditions listed in section 2.7.1, as an additional requirement we assume
that the direction of the static Killing vector is unique.

We can use the second and third requirement to restrain the metric to a special form
that makes it easier to calculate. The general form of the line element is

ds® = gap(z#)dzda?. (2.180)

For our space-time to be stationary means, that we can choose coordinates in such a
way that g, does not depend on the coordinate in Killing time direction (¢). Also
hypersurface orthogonality enables us to choose our other three basis vectors in the
tangent space of the spacelike orthogonal surface. Therefore our timelike Killing vector
is always orthogonal to the rest of the basis and we get

ds? = f(a:"’)Zdt2 + hij(mp)da:ida:j. (2.181)

We chose f2, because we expect the time to stay at a positive length. Note that we can
always rescale a Killing vector by a constant and it still fulfills the Killing equation

V(as) = 0. (2.182)

Therefore f can without hesitation be replaced by cf, where ¢ is constant.

Because we assume that the static Killing vector is unique modulo rescaling, there can
be no isometry that changes its direction. This means that the orbits of the spherically
symmetric isometry lie entirely insinde the spacelike surfaces ¥ orthogonal to the static
Killing vector. The metric of a geometrical sphere is

r2dQ?,  where dQ? := d#? + sin® 6de?, (2.183)
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in the usual angular coordinates § and ¢. 72 is called the area radius and measures the

area A of the sphere as
A
=/ —. 2.184
r ”47r (2.184)

We then choose r as a coordinate to select those spheres by carrying them along V,r.
This provides V,r to be orthogonal to the spheres. We see here, that this coordinate
representation breaks down at points where V,r = 0. For the spatial metric we then get

hij(r,0, ¢)dz'dx! = —g(r)*dr? — r?dQ2. (2.185)

f and g do not depend on 6 and ¢ because of the spherical symmetry.

Putting everything together we get the metric for static spherically symmetric space-
times:

ds? = f(r)2dt? — g(r)?dr? — r2dQ2. (2.186)

2.8.1. The derivation of the Schwarzschild solution using the tetrad formalism

We will now use the tetrad formalism from section 2.3 and the Einstein equation (2.172)
to calculate f and g. First we need to use (2.96) to decompose the metric into tetrad
components

nagegeg = Gab- (2.187)

That provides the basis covectors e®. From the orthogonality condition (2.95) we get
the corresponding basis vectors E.

Before we start treating the Schwarzschild metric it is useful for the later calculation to
first consider the metric of a geometrical unit-S2. For this we have the metric

dQ? = d6? + sin? Od¢?. (2.188)
We choose our Zweibein EL to be
e’ = do, Ey = 0y, (2.189)

€% = sin6dg, E4 = (2.190)

By use of the first Cartan structure equation (2.99)
de® = w5 N é’, (2.191)

we can calculate the connection one-form by comparing it to the outer derivative of
(2.190).

de? = @’ né’ = —@% A db (2.192)
dé?® = dsin A de + sin 0 d%¢ = cos0d0 A d = — cos 0dg A db (2.193)
~~
=0
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Comparing these two, we can read off

L~d¢9 (2.105) —C:}9¢ = cos 0d¢ + adf. (2.194)

The a term must be added because it would not contribute to equation (2.192) since
df A df = 0. To calculate a, we can use the same method on (2.189):

de? = —GJ% A €% = cosfsin0de A dg + asin0dO A dé = asin 0d6 A do, (2.195)
de? = d%0 =o. (2.196)

Thus we see that ¢ = 0 and
&%) CL _af, = coshde. (2.197)

To calculate the Riemann 2-form, we can now use the second Cartan structure equation
(2.105) .
R%; = do% + &%, A& (2.198)

Since d¢ A d¢ = 0, the second term on the right hand side does not contribute and we

have
R?, = d&% = —sin0df A d¢ = sin Odg A df = &2 A & (2.199)

Because of the antisymmetry of the Riemann tensor in the first two indices and the

wedge product we get
R'_ =¢é"'Nne™. (2.200)

We can now return to our static spherically symmetric metric (2.186), which already
has a convenient form for choosing a tetrad basis.

1

el = fdt E, = ?@ (2.201)
1

e’ = gdr E, = Eﬁr (2.202)
1 -

e =re' E =-E, (2.203)
r

E, are the directions tangential to the geometric S?s. As before we can use (2.99) to
calculate the connection one-forms. Since f and g both only depend on r, we will use ’
to denote a derivative with respect to .

de' = f'dr A dt (229 —wi Ne"— Wl Ne (2.204)
fldt Adr = gwl, Adr +w!, A€t (2.205)
This allows us to extract
!/
wh = Lt +adr, w', = bde". (2.206)
g
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de* =dr A e +rde*

= —;éL Ne' - Ne
det 2 —wh Nel —wh Net —wh Ner
We can therefore read off
b=0, w') = léL +cdr, W' =& +de".

g
d can be eliminated by using (2.103):
w', =", +de”,

2.103) (2.211)  _ 103)
H(: —wf, =" =@, —de" T ="&", —de’,

L

thus
d=0.

de" now fixes the remaining unknown functions a and c.
de” = g/dr Adr =0
2.99
(:)—wrtAet—er/\eL
(2.206)(2.210)  f'f
g rg

thus

If we define the function h = %, the collected connection one-forms read

t _ v _ pl
w', =w'y = f'hdt,

t o _ 0

w, =wy =0,

— T Sl
W' = —w', = he’,

L

S
w', =w',.

1
dt ANdt — fadr ANdt + —e* Ne' + cdr A e

(2.207)
(2.208)

(2.209)

(2.210)

(2.211)

(2.212)

(2.213)

(2.214)
(2.215)

(2.216)

To calculate the Riemann 2-form we will now use (2.105). We will demonstrate the

calculation for the component that is the least straight forward:

R, =dw', +w') Aw’, +w' Aw',

=da', + &', N&F, —h’E NE"

=R _=eé'Ner

= (1-n?)e ne.

32
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Similar calculations for the other components lead to
R, =R, = (f'h) dr Adt,
R!, = R', = —f'h%dt N &',
R',=-R' =-hdrne
R, = (1-h*)e ne.
We can now use (2.106) to obtain the Ricci 1-form. For that, note that
E, e =2,

and
E (&' neé") = (Eﬁé‘) e — (ELJé“) &' = 26" — §ret = &~

With that, we get

/ 2
R,=E..R',+ E_.R', =h(f h) dt + 2f t,
/h / h/
R.=E, R + E_R' = —(ff) dr —2— d
/h2 1— h2
R =E, R',+E, R, + E. R" = I e + é'
L L L f

The vacuum Einstein equation (2.173) with A = 0 is equivalent to

R, =0.
That leads us to the three equations

/
(f'h) + 2f— 0
/
gyt g
e — hh + Lo =0
f r

Adding the first two equations gives

fl h/

o

Inf=Inh+C
f=Ch

To eliminate the constant, we can rescale the Killing time

Cdt — dt,
Ch — h,
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SO we get
1
f=h=-. (2.241)

Using that, equation (2.235) becomes

0:2f’f+1_rf2. (2.242)

With the substitution k := (1 — f?), this reads
, 1
0=*+ "k, (2.243)

Which is a linear differential equation and has the solution

C 1 C
T g r
Therefore the Schwarzschild line element is
C 1
ds* = (1 - > dt? — —5dr® — r?dQ”. (2.245)
T 1—->

T

Comparing its Newtonian limit with the Newtonian gravitation of a spherically sym-
metric object determines the mass of this object to be m = % With the definition

M :=mG, we get
-1
ds® = (1 — 2M) dt* — (1 — 2M> dr? — r2dQ2. (2.246)
r r

As we can see, if we go to large distances (r — 00), as well as if we set M = 0, we arrive at
the Minkowski metric. Birkhoff’s theorem states that any spherically symmetric vacuum
solution of (2.172) (with A = 0) is static and asymptotically flat. That means that we
did not actually need "static" as a requirement as it follows from Birkhoff’s theorem
[2][3]. It also implies that in vacuum (with A = 0), the Schwarzschild solution is the
unique spherically symmetric solution.

While the singularity at » = 0 is a real curvature singularity, meaning that the curvature
diverges as r — 0, the one at r = 2M is a coordinate artefact. We can see that, if employ
to null Kruskal-Szekeres coordinates.

wv = (2;\4 - 1) e (2.247)
u t
%= e (2.248)
v
32M3 _ .
ds* = " e” 20 dudv + 12dQ> (2.249)
34
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3. The Kerr Metric

In this chapter we derive the Kerr metric. The earth, as approximately rotating ball,
has symmetries which transfer to the surrounding space-time.

This section relies heavily on [2].

3.1. A stationary axisymmetric Space-time

Stationarity means that there exists a timelike Killing vector field 9;. That means that
the metric is invariant with respect to infinitesimal changes in the direction of this vector.
Axisymmetry on the other hand means that there is an angle ¢ which leaves the metric
invariant. With the other two coordinates being 22 and 3,

Gab = gab($27$3)' (31)

In addition to that we will assume that the source is axisymmetric and rotating with .
This source is invariant with respect to the transformation t — —t, ¢ — —. Therefore
we also assume the metric to be. All terms which change sign after this transformation
must be zero:

g2 = 93 = gp2 = 93 = 0. (3.2)

That leaves us with the block diagonal line element
ds® = gudt® + 2g4dtde + gepde?® + {gzg(de)Q + 2go3da?daz® + gs3 (dzng)ﬂ ) (3.3)
We can simplify this metric by using [2]:
Theorem 1. The Riemannian metric
go2(dx?)? + 2gogdu?da® + gs3(da®)? (3.4)

of a two-dimensional space parametrized by x> and x* can always be brought into the
diagonal form

ds? = e |(d?)? + (da®)?] (3.5)
by a coordinate transformation.

Although we could turn the non-Killing part of the metric into a multiple of the unit
matrix we will only assume it as diagonal, which leaves us with the choice of an arbitrary
gauge function, as we see in the following proposition.

Proposition 3. Assume a 2-dimensional manifold with a metric with line element

ds? = " ((dx3)2 + (d334)2) . (3.6)
Then there exists a coordinate transformation turning the line element into

ds* = 1 (da')? 4 22 (da?)? (3.7)

for an arbitrary gauge function f = uy — ps.
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Proof. Consider the coordinate transformation

dzt = \}5 (d:c?’ - da;4) = (dz')? = % ((dnc?’)2 — 2dz3daz? + (d:c4)2) ,
s of (3.8)
2, ¢ 3 4 22 _ ¢ 312 33,4 452
dz .—ﬁ<dfn +dx) = (dz)° = 5 ((dx) + 2dz°dx —|—(dx)>,

f being an arbitrary function. Multiplying the second square with e 2/ and adding them
together we get

(dzh)? + e 2/ (da?)? = (d2?®)? + (dzh)2 (3.9)

Plugging that into (3.6) we get
ds? = 21 (dz')? 4 21— (dz?)? =i 2 (dzh)? + e?#2(dz?)?. (3.10)
O

Therefore we can start with the line element (3.7) and fix the gauge function f = p1 — uo
accordingly.

With the help of this theorem the line element for our entire manifold now has the form
ds® = gudt? + 2g14dtde + ggedd® — 22 (da?)? — e*3(da®)?. (3.11)

We can now take the (¢, ¢)-part of the metric and express it in terms of new functions
g =: 2 — w?e??, Gtp = we?, Gop =: —€Y, (3.12)

where, because of the Lorentzian metric signature, e?” > w?e?¥ must be fulfilled. With
these choices we can factor the line element into its final form

ds? = e dt? — %Y (d¢p — wdt)? — e2(da?)? — 23 (da®)2. (3.13)

3.2. Derivation of the Kerr Metric

In the last section we derived a convenient general form of the metric for the space-time
outside of rotating axisymmetric bodies. We will now use the Cartan structure relations
and the Einstein equation to calculate its components.

Similar to the Schwarzschild case we first choose an orthonormal tetrad frame

el ;= e’dt, E;:=¢e " (0 +wdy), (3.14)
e’ == e¥ (dp — wdt), E4:=e "0, (3.15)
e' = etida’, E;:=e 10, (3.16)

where i € {2,3}. For this derivation we will write sums over the indices 2 and 3 explicitly
to avoid confusion.

First, we will use Cartan’s first structure relation (2.99) to calculate the connection one-
forms. We will then employ them in Cartan’s second structure relation (2.105) to obtain
the Riemann 2-form, the contraction of which we can use in Einstein’s equation.
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3.2.1. The connection one-forms

In this section we will calculate the connection one-forms for an axisymmetric station-
ary vacuum. We will make the most general ansatz for the connection one-forms and

constrain them step by step until they are fully determined. For now they are
wt¢ = w¢t = a;dt + agdo + Z a;dzt,
i

T S
i

w’; = —w'y = e, dt + 5, dd + Y ¢jda’,
J

w' = —w’; = fidt+ f5,do+ D fi,da",
k

(3.17)

(3.18)
(3.19)

(3.20)

where the indexed a, b, ¢, and h are functions which are to be determined. We begin by

using Cartan’s first structure relation on e?,

de' = Z dive’da’ A dt (2.99) —e¢wt¢ A (d¢ — wdt) — Z eliwt, Ndat.

A

B

Using the connection one-forms gives

A= —c%a,dt A do + e’/’a¢wd¢ Adt —e? Z a;dzt A do + e¥ Z a;wdz’ A dt,

B = Z —B‘uibtidt A dxi _ e“ib@.dqé A d$i — et Z bjidl‘j A dl‘i
! J

By comparing the different coefficients we get the restrictive conditions

dtAde

= 0=—e"a; — eayw,

dxi:/;dqs 0= —e%a; + eliby,,

da pdt e’ = e¥a;w + etiby,,

da? Ada 0="> etibjdal Ada’.

]
From the first three equations we can read off

ar %2 a4,
be, (3:25) oy 7
b, (3.26) _p, (eyaw e wai)

37
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Condition (3.27) we cannot treat without the sum, because dz* and daz’ are not neces-

sarily independent. Therefore we write out the sum explicitly:
0= —eM2bz,dad A da? — eF3by,da? A dad = [eH3by, — e2bg,] dad A da?

Thus we get
b32 = 6”3_”21323.

After these restrictions, the relevant connection one-forms are of the form

wt¢ = ay (d¢ — wdt) + Z a;dz’,

i
J

For the next step we consider e?.
de? =" [ed}aﬂbdxi Adg — e¥ (9w + Ow) dz' A dt}
= —e”wd’t Adt — Z e’”wd’i A dz’

(2

A

B

Using the connection one-forms with the previous restrictions we get

A= —c’agdp Ndt —e” Z aidz’ A dt

B = Z —elicy,dt Ada’ — eticy,dp A da’ — et Z cj,da? A dat
( J

The restrictive conditions are

dgndt 0= —e"ag,

dzZ\}dqﬁ ewaﬂ,l) = el Cs >

da’fdt —e¥ (0w + Ojw) = —€’a; + eficy,,
dxj:/\>dzi 0=— Z e/‘icjidxj A da’.

]
The four restrictions arise analogous to the previous calculations.

(3.38) 0

oy (3.39) VM i)
(3.40) e Hi (e”ai — e¢8¢w) — VM Qb

(341)

Ct.

7

c3, eMsTH2 ey

38

W'y = e’ Fidudt + eV Hia; (A — wdt) + Z bjda?  with bz, = €3 F2by,.

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.42)
(3.43)
(3.44)

(3.45)
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At the current stage, the restricted connection one-forms are
7

w'y = e Middt + e Hia; (dd — wdt) + Y bj,da’
j (3.47)
with b, = e!37H2by,,
wd)i = e Hi (e"ai — e¢6iw) dt + eV 19,0 (d¢ — wdt) + Z Cjidxj
J (3.48)

with ¢3, = €37 H2¢o,.
The calculation for the last basis one-form proceeds just as for the previous ones.

i_ i dd i v, i P, i i j
de —Ze“ Ojpida? Nda' = —e’w', ANdt —e w¢A(d¢—wdt)—Ze“ij A da?

J 1 % J
C
(3.49)
Using the connection one-forms gives
A=—eltrtigdg Adt — e’ > bjdal Adt, (3.50)

J
B = ¢V Hi (e”ai - e¢8iw> dt Adg + e¥ Z ¢jda? A dg — eVw Z cj,dz? Adt,  (3.51)

J J
C= Z [_eﬂj ftij dt Ada’ — et f¢z‘jd¢ Adal — et Z fkijdxk Adal| . (3.52)
P k
The resulting restrictive conditions are
dgpdt 0= —eV TV Hig, — VTV Hig, 4 2V Higy, (3.53)
da pde 0= —e"b;, — ePwej, + et Friso (3.54)
dxgd¢ 0= e’l/chi + et f¢ij’ (355)
WA N et Adat = =Y et fy, dab A dal, (3.56)
- ,

Ik

The first three equations give

1
a; (9:59) §e¢_”8¢w, (3.57)
fti; B3 - (e”b-i + eYwe; ) , (3.58)
Fo, 02— (3.59)
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For equation (3.56) we can choose values for i to get

i=2: D3pge’?da® A da? = —et's fo, . da? A da, (3.60)
i=3: Dopuzer?da® A da® = —et? fz,,dad A da?, (3.61)
which give us
f223 (320) et27H3 O3 119, (3.62)
Fagy PN cps—i2 gy (3.63)
To assign the last unknown functions we can exploit the connection one-form’s antisym-
metry . '
W' = —w (3.64)
First, we realize that
fdm =0, fi, =0 fi, =0, (3'65)
which leads us to
3.59 3.58
e, P20, b 920, (3.66)
For i # j we get
Joiy = —Joys (3.59:)?'_)2 —eV Moy, = 677[)_“2023 (3.67)
= et 2y, (3.45) 3, (3.67) —el3TH2 ey, (3.68)
N Co =3 =0, (3.69)
ftij = _ftji (3.58:);2"_)2 e” M3bs, = —e" by, (3.70)
= 6”3_M2b23 (322) b32 (SiO) —6”3_M2b23 (3.71)
= b23 = b32 =0. (372)
That, with the use of (3.58) and (3.59), gives
fti; =0, fs,;, =0. (3.73)
For the non-Killing coordinate coefficients the antisymmetry leads to
Ty = —fryi- (3.74)
Conclusively, the connection one-forms then take the form
1 A
w'y = w? = §e¢_” Z Ojwda’, (3.75)
i
. 1
wh = W', = " M oudt + §e2¢_”_“i8iw (dop — wdt) (3.76)
. 1
w? = —wiy = —iew_’” diwdt + Vi dp (dgp — wdt) , (3.77)
W' = —w!; = MY et — e Dpdal (3.78)
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3.2.2. The Riemann 2-form

From the previously obtained connection one-forms we can now use Cartan’s second
structure relation (2.105) to calculate the Riemann 2-form.

R = dw’ + w” Aw'y (3.79)

For the component th), the relevant parts are
1 . .
dw', = 3 D el (0;(¢ — v)Oiw + 0;0w) Az A da’, (3.80)
ij
. 1
Z wh Aw'y = — Z ey Ru (62”&%81-1/) + 4e2w(8¢w)2> dt A de. (3.81)

Adding them up yields

i

-V —2p; v 1 1 j i
th) =¥ Z [—e 2u (62 0o + 462¢(8iw)2) dt Adeo + 3 zj:(?j(w — v)Oiwdz’ A dz ] .

(3.82)
The 0;0;w term does not contribute because of its symmetry and the contraction with
the antisymmetric dz? A da?.

For Rti we need

dwt, = e v 7Hi Z KeQ” (05(v — p3) O + 0;0;v) — ;ewﬁiwﬁjw> da? A dt
J

(3.83)
1 :
4562 (0520 — v — )i + ;0) da? A (46 wdt)} , (3.84)
w'y A w(bi = 621/’_”_“2'% Z [—; jwd;wda? A dt + 90 wda? A (dg — wdt)] , (3.85)

J
A 1 j
Zwtj Aw!, = eV Z [62” i 05vdt A da? — Eew&-,ujajwdxj A (d¢ — wdt) (3.86)
J J
— R 99 dt A da + iez(wwﬁuj)ajwajmdxl A (d¢ — wdt)} :
(3.87)
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Written together, those read
3 .
Rti = VTH Z l {62'} (8,~8ju + aZ‘Vajl/ — (8,~V8ju,~ + @vc‘)iuj)) — 4€2w8iwajw:| dx’
J

+ 62(”+“i_“ﬂ')6juﬁjmdxi] A dt

2 .
J

+ L v > U&'ij + 0jwd; (Y — v) + (059 0iw + Oppdjw) — (O ;0w + ajﬂj@j&))} da?
+ ez(ui“j)ajyajuidxil A (d¢ — wdt).
(3.88)

The relevant terms for R¢i are
dw% — %61/1—.“1' Z [ — al-@b(’)jw + 83',[14'81'&} — 8]-81-&;
J
— (OO + 0p0w) [da? ndt (3.89)
+ VTN 105 (4 — ) O + 9;000) dad A (A — wdt),

J

1 ; 1 ,
wd)t A = §e¢_“i Z [@-Vajwdazj Adt + 562(w_”)8iw8jwdxj A (d¢p — wdt)] ,
J

(3.90)
< 1 . .
Z w¢j Aw!, = eV Z [ ~3 jwO;pidt A da? + 0905 (dg — wdt) A da?
J J X (3.91)
+ e2mimn) [2ajwaj~mdt Ada’ — 9;00; (A — wdt) A dx%} ] :

Collecting them gives

1 4
R’ = 3¢ D “@'(V — 1)0jw — 00w + (Ow0jpi + Ojwdip;) — (Oipdjw + aﬂﬁaiwudl’j
J

— 62(“i_“f)6jw8j,uidxi A dt

+ eV H Z [ [ala]d] + aﬂf)ajw - (aﬂ[JajMi + adeaiﬂj) + i€2(¢_y)aiwajw} dz?

J
I ez(uiuj)ajwajmdxi] A (d¢ — wdt).

(3.92)
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To calculate Rij, we need the terms

dwij = eliTHj Z [816(/%’ _ ,uj)ajﬂi 4 8kajﬂi] dmk A dmi
k

— TN (O (1 — i) Diguj + OpDips) dz® A da
k

. 1

W' A wtj = 5621#*%*#;' (Oivdjw — Ojvoiw) dt A dé,
’ 1

W'y Nw®; = S 2T (w0t — Djwdi) dt A do,

Zwik A wkj = Z {e“i*“j({)kui({)jﬂkdxi A dak — et ri gy i 0, puda? A da®
k k
- e“ﬁ“j’%’fakuiakujdxi N d.’L’j} .
Adding those gives us

R 20w 0,00 (v — 1) — Biwd; (v — )] dt A dg

72
_ [Z emﬂtr?#kak Miakuj} dz’ A da?
k
+ e " [0k 0 + Ok (i — )05 — OpriOypue] da® A da?
k
— MY 0O + O (1 — i) Ogpj — OppajOigu] da® A dar?.
k

Collecting the previous results, the Riemann 2-form components are
. 1
Rt¢ = — Z e 2 (&V@iw + 462(¢”)(8iw)2> et A e?
i

+ Z eVTVTHITII 9 () — v)Djwel A e,
ij

Rti = Z e MiTH [ |:(8i8jl/ -+ aivajlj — (az‘llajui -+ aju@-uj)) — ieﬂwy)@'wajw} e’
J

4 ePiTHi Gjuajuiei A el

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

1 .
+ § Z P Uaﬁjw + 81'008]' (1/) — I/) + (8Jw61w + 82¢83w) — (8j,ul-8iw + amjajw)} e’
J

+ etiTHI 8jw8j,uiei Ae?,
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R’ = % Yo erTvhiTh “@(V — )0jw — idjw + (Oiwdjpi + O0jwdip;) — (BiYdjw + 99hdiw) } el
j

14 i t
— el gjwojue’| Ne

L 1 ;
+y et l [8@'@& + 01051 — (0ipdjpi + Oj2bipj) + 462(¢_”)3¢w3jw} e’
j

+ etiTHi aj¢8jui6i] A\ e¢.

(3.100)
R = %ew’”*‘”"‘j [0jwdi(v — ) — 0wd; (v — )] €' A e?
k (3.101)

4 Ze—uj—ﬂk [&cajﬂi + 8k(ﬂz — ,U'j)ajﬂi — Gk,ui@j,u,k] ek A€
k

_ Z e MM (003 + Ok (1 — 117) Ot — Onefn Oy pu] e’ nel.
k

3.2.3. The Ricci 1-form

Since we have the Riemann 2-form we can now contract it with the tetrad basis to obtain
the Ricci 1-form (2.106).
R,=> EzR’, (3.102)
B

There are two terms relevant for R;, which are

1
E, R =Y e % <aiu8ﬂ/} + 162@—”) (8iw)2> e, (3.103)

Z E,_R', = Z (6_2“" [8121/ + (aiy)2 — 20;v0;p1; — 262@’_”) (&w)z] + Z e M 8jl/8jui) el

i J

2
J

i

+ 1€¢_V Z (6_2/“ {812(,0 + 8Zw81(3¢ e 2/“)} —+ Z 6_2“jajwajUi) 6¢,

(3.104)
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yielding

1
R; = Z (e—Qm [8121/ + 0iv0;i(Y + v —2u;) — Qez(w_”)(ﬁiw)Q] + Z e 21 ajyajui) et

i J

+ %ew_” Z (6_2‘” [Ggw + Qwd; (3 — v — 2,ui)} + Z e 2K 8jw8jui> e’.
( J

(3.105)

For Ry, we need the terms

1
Et_nRt¢ = — Z e 2 (&1/6@ + Zegw_”) (8iw)2> e?, (3.106)

Z EiJRi¢ = %ewfy Z (GZM [812(,0 + 81(,«}81(31/) o Z 2/@)} + Z e 21 8jw8j,u,-) e

% J
1
-3 (e—%‘ [a,.% + 00 (1 — 2u;) + 162@—”) (8iw)2] +> e ajwjm) e’
i J
(3.107)

to obtain

Ry = %ew_” Z (6_2‘” [82-2w + 0w0;(3Y — v — 2,ul-)} + Z e—2ﬂj8jw8jui) e’
J

i

1
- Z (6_2M {81-21/1 + 0i0; (Y + v — 2p;) + 562@)—”) (8iw)2] + Z e 2 ajzpajm) e?.
i J

(3.108)
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The relevant terms for R; are

E, . R', = Ze pi— Na({@@u+6u8u (OO + Ojv0ipi4)
(3.109)

3 .
- 162 Y-y &w@ w] el + e’”“J'(“)jl/é)j,u,-e’>7

E4.R%, ==Y e tih <|:az 0jY + 0ip0jyp — (0pOj i + 0jab i)
(3.110)
1 : .
+ 462(w_”)8iw6jw] e’ + e“i_“jajwajme’> s

> E; R, = Z e ( Otti)® = OptiOpij — O i — OrpiOr (pi — 2Mk)) e'
J J

+ Y e (&&(ui + i) = 20ip11 O
k

=D [0i0kpj + Oy — pa)Oipj — OepajOigur] ) e,
i
(3.111)

and, after renaming some summation indices, they result in

Ri=—) e (@% + 0505 + v = 2p5) + Y 3jm8juk> e’
;

k

=D et <3iaj(¢ +v) + 0505 + 0w djv — [0i(¢ 4 v)Ojpi + 05 (¢ + v)Oiju;]
j
1
— 562@}7”)@'&)8‘70) — (9iaj (Ni + /Jj) + Qajﬂiaiﬂj
+ 3 (00 + Oip0; (e — i) — Digt O] )ej
k
(3.112)

3.2.4. The curvature scalar

Even though for a vacuum space-time the Ricci one-form would be sufficient to extract
the relevant differential equations, it is in this case more convenient to use the Einstein

one-form .
G =R" — §Rea. (3.113)
For that we need the curvature scalar
R=FE, .R". (3.114)
46



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfigbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1
E, R' =) e |07 + 0wdi(v + v — 2p;) — 562@—”)(@-@2 +3° aiuamj]
i J

(3.115)

| 1y
E4.R? = ZZ: e 2 1 02 + Op0; (W + v — 2p;) + §€Q(w )(Bw)? + Zj: 32‘1115@%‘]

(3.116)

ZEi_lRi — Ze—Qm (9?/“ + ijai(w +v—2u)+ Zaiﬂjai,uk
+Z€ 2#1[ w—f‘l/) ( lw) ( ) _261,“1 (w‘i‘l/)

1 —v
- 562(w N(Ow)* = 207 i + 2(0ip)* + Y (81'2% + Oipt; O (15 — 2%)) ]

J

(3.117)
Putting those parts together gives
3226_2“[25?(1/1%/) (0) + (0iw)? + 03 (¢ + )0 (¥ + v — dp;)
— 207 i + 2(Digui)? — %ew’”) (Oiw)* (3.118)

+Z( it 0i (2(Y + v — 2p1) + py) + 20; NJ+Zaz,u] zﬂk)]
k

3.2.5. The differential equations
We get the differential equations for the metric components for vacuum space-time by
R,=0, G“=0. (3.119)

Which one is chosen depends on how convenient the resulting equations are. The tetrad
components of the hidden indices will be denoted by parentheses. At this stage we will
plug in 2 and 3 for the indices ¢ and j and carry out the summations. The resulting
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equations are

202 (0B + Dywda(sh + v — pa + )]
Rypy =0 = + e s [832,1/ + O3v03(¢ + v — pg + p2) (3.120)
= 162(¢_V) [e_2ﬂ2 (820.)) +e —2pu3 8360 ] ,
202 [0 + OO + v — iz + )]
Ryg)=0 = {+ e 8 [05¢ + 03903(¢ + v — pz + pi2)] (3.121)
= _562(1# V) [em 22 (Dyw)? + e~ 21 (D3w)?]

Ripy=0 = 0=0, (e3¢*”*“2+“382w> + s (ew*”*%“‘?agw) , (3.122)

003(¢ +v) — 02(¥ + V)O3 — O3(¢p + v)Oapus
+ 0¥ 03¢ + Oovdsv = § e2(¥ 71/)82&}83(,«.},

e=23 [03(¢ + v) + O3(¥ + V)03 (v — p3) + (0s¢)?]
G =0 = (4 e [0wds(¢ + p3) + 0a9pDaps] (3.124)
— _%62(1#71/) [672;@(52@,)2 — e2u3 (33w)2} 7

e"22 [03(¢) + v) + Do (¥ + v)Da(v — pi2) + (020))?]

G3(3) =0 = + 672,&3 [831/83@& =+ MQ) + 83¢83M2] (3125)
= e [ 0)? — 0 (O]

(3.123)

With
B:=v+v, (3.126)
equations (3.120) and (3.121), when multiplied by e#T#2+#3 can be written as

s (eﬁﬂtsfuzaw) 1+ (eﬁﬂtrusa?)y) _ %6311171/ {euruz (Oow)? + ek2—hs (83w)2} ’

(3.127)
0o (eﬁ+“3_“2821/1) + 03 (eﬁ+“2_”383¢) = —%e?’w_” [6“3_“2(82w)2 + e“g_’“’(@gw)ﬂ ,
(3.128)
and their sum and difference, respectively, give
Oy [ers=12 e | 4 0y [t 505eP | = 0, (3.129)
0y [+ 1205 () — )] + By [P0y (1 — v)]
(3.130)

s [ 0 1 (]
While the sum of (3.124) and (3.125) is the same as (3.129), their difference yields
4et37H2 (09 f0a i3 4 O21pOav) — 4eH27H3 (036032 + 031 031)
=20 [0y (e 71205¢7) — 05 (e H305¢” )| (3.131)
— W) [6“3_“2(82w)2 — 6“2_“3(83w)2] .
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We will now group the metric coefficients with the following new functions:
A = 2lHsh2) X =e"Y. (3.132)

With these definitions, the line element takes the form

et +ps
VA

Remember that ps — s is the gauge function, that means we can choose A as we wish.

ds? = e’ |xdt? — =(d¢ — wdt)ﬂ -

)1( [(d2?)? + A(dz®)?] . (3.133)

3.2.6. The conjugate metric
If we undertake a coordinate transformation
t— o, ¢ —it (3.134)
on (3.133), its Killing part transforms as
xdt? — l(dqﬁ — wdt)? — —xd¢? + Lae w—qubZ + 2—wdtd¢
X X X X

1., x2—w? 9 2w
= —dt* - =—— (qu - 2d¢dt>

X X X2 —w?
1 2 2 2 2
= - X (d(;S - 2“’2dt> (3.135)
X xX(x? —w?) X X2 —w
2,2 2
- X g XY <d¢ ~ th)
X2 —w X X
1
=: xdt? — = (d¢p — @dt)?,
X
where N o
X = 7)(2 2 W= 7){2 — (3.136)

Thus if the equations are fulfilled by (,w), they are also fulfilled by (x,&). Those pairs
are called conjugate solutions.

3.2.7. The Papapetrou transformation

In this section we will perform a coordinate transformation that will help to show that
a particular choice we will make below does not sacrifice generality. For this, we choose
the gauge

Ho = 13 =: [, A =1, (3.137)
which leaves us with the line element
1
ds? = €? |ydt? — = (d¢p — wdt)ﬂ — e [(da?)? + (da?)?] . (3.138)
X
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In this gauge, equation (3.129) turns into the Laplace equation for el

Yo’ =o. (3.139)

According to theorem 1 (page 35), we can transform the non-Killing part of the metric
to
d3% = 2 [de T dzﬂ , (3.140)

where p and z are the new coordinates, if one of them satisfies the equation
0= Z 9i(\/90"p) = Z Di(e*e ,p) = Z 0;0;p. (3.141)

For this, we have used that ‘ -
O=> g"0; =e ;. (3.142)
J

Therefore we only need a function that satisfies the Laplace equation. Fortunately, as
we have seen earlier in this chapter, €” is such a function. We then define

p=é”, (3.143)

and get the line element
1
ds? = p |xdt? — —(d¢ — wdt)ﬂ — et [dp2 + dzﬂ , (3.144)
X
where we dropped the tilde on fi and pu, x, and w are now functions of p and z.

3.2.8. A choice of gauge

The symmetry choices we made in the beginning of this chapter are consistent with the
Schwarzschild metric. The aim of this section is to choose the gauge in such a way, that
by appropriate parameter choice we obtain the Schwarzschild metric in standard form.
We will therefore assume properties we observe in the Schwarzschild metric and show
later that these assumptions do not affect generality.

First we will choose as 2 the polar angle # with respect to the symmetry axis and give
22 the name 7, which is just a renaming and keeps generality.

The first assumption will be that we allow for an event horizon which is a null surface
spanned by the Killing vectors 0; and 0y, which is a natural choice, because we observe
this in the Schwarzschild case. Also in Schwarzschild, the location of the horizon can be

described by one equation
N(r,0) = 0. (3.145)

The condition for the surface to be null, expresses itself through the equation

GIONO;N = e 22(9,N)? + e 23(9yN)* = 0, (3.146)
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or
e213=12) (5, N)? + (9 N)? = A(9,N)? + (yN)? = 0. (3.147)

Since the two squares must be positive, this results in the condition that at the horizon
A =0. (3.148)

We use our gauge freedom to choose
A = A(r). (3.149)

Because of the assumption that the horizon is a null surface spanned by J4 and 0,
according to proposition 2 (page 26), the determinant of the Killing part of the metric
must vanish on the horizon. This determinant is given by —e??, and therefore

e’ =0 on A=0. (3.150)

We will now restrict e to be separable and of the form:

P = VAF(H). (3.151)
Equation (3.129) now gives
on |[VAD,VA| + chag F=0, (3.152)
and can be solved by
A=k +br+h,  f=Psin(kf)+ Qcos(kb), (3.153)

where k, b, h, P, and () are constants. A choice which is compatible with the Schwarzschild

solution is
k=1, b=:—2M, h=:4a% P=1, Q=0, (3.154)

yielding
A=r?—2Mr+a?  f=siné. (3.155)

If we plug this into the horizon equation A = 0, we see that the horizons are at
re =M+ M?— a2 (3.156)

From this we see that the parameter a measures, how much the metric differs from
Schwarzschild, i.e. the "rotation" or non-stationarity of space-time. There are also two
horizons. In the Schwarzschild case, the second horizon coincides with the singularity
r=0.

In Appendix A.2 we show that the previous choices do not restrict the generality of our
metric. We will now use a new coordinate

i =: cos . (3.157)

o1
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Equations (3.122) and (3.130) can be written as

sin 00, (AeQ(w_”)&«w) + Oy (sin 962(¢_”)89w) =0, (3.158)
sin 00, (A0 (4 — v)) + Oy (510 00y (1) — ) = —e*V ™) 5in 0 [ A(9,w)? + (Opw)?] -
(3.159)
With
Op = —sin 00y, (3.160)
and the definition
§:=1—p?=sin?0, (3.161)
they become
0, (A0, + 8, (52 9uw) =0, (3.162)

O (A0, (1 = 1)) + 0 (00u(Y — v)) = =2V [A(Buw)? + 6(9uw)?] . (3.163)

With the former definition for y := e’ ™% we get
A 0
9, (XZarw) 10, (XQa,M> — 0 (3.164)

o, (iarx> + 0, (iaux> _ X12 [A@w0)? + 8(0,)7] (3.165)

which can, by multiplying them with x3 and 2, respectively, also be written as
X [0r(AO,w) + 0,(60,w)] = 2A0,x0rw + 200, X0, w, (3.166)
X [0r(80,x) +8,(00,0)) = A [(0r)° + (0rw)”] +6 [(0,)° + (@u)’] . (3.167)

With the new functions
X=x+w, Y:i=x—-w, (3.168)

these equations take the form
XY (9.(80,X) + 0,(69,X) — 0,(AD,Y) — 9,(69,Y)

5 (3.169)
= A |(0:X) = (DY) 46 [(0,X)" = ()]

X+y
5 [0 (80, X) + 0,(30,X) + 0:(AD,Y) + 0,(60,Y )] (3.170)

= A[@.X) + @] +6[(@,X) + 0,Y)?]

Adding and subtracting these equations gives

%(X +Y) [0, (ADX) + 8, (00,X)] = A (8,X)* + 6 (9,X)?, (3.171)
%(X +Y) [0, (ADY) + 8, (60,Y)] = A (8,Y) + 6 (9,Y)>. (3.172)
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Now, equations (3.123) and (3.131) can be written as equations for (ug + u3) (details in
appendix A.3).

M
—%&(uz + ps) + TT%(M ) = ¢

2(r — M)0r(p2 + p3) + 210y (2 + p13)

1 M?—a® 1
= Xy BOXOY =00, X0,Y) =3—1—+5
(3.174)

Once we know X and Y, we can simply integrate those equations to obtain g + 3.

3.2.9. The Ernst equation

Equation (3.164) allows for the introduction of a potential ®:

o A

?aﬂw, 0y ® = —— Orw. (3.175)

Op® =
T X2

The commutation of the partial derivatives demands

X X2
d, (58@) +0, (Aal@) —0. (3.176)

We now introduce a new function

VA
g Y02 (3.177)
X
First, remember that
A=r?2—2Mr+a? §=1-p? (3.178)
and therefore
RA=2, 925=-2. (3.179)
We then get
1% 1, o0,V 02w (0,0)?
A = —PA-0.AT— — AT 4 A 1
ar< X) JORA 0,05 = a Ll (3.180)
N——
=1 —10,(20,)
or 8
029, (A TX) = U2 — U9, (A, V) + A (0,7)?, (3.181)
X
and similarly
d
20, (5*)‘(") = 02 — W9, (00,0) 4§ (9,T)*. (3.182)
53
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With that, equation (3.165), multiplied by W2, can be written as
W [0, (AD, W) + 0y, (60,0)] = A [(9,9)” = (8,0)°] + 5 [(9,0)” = (9,0)°] . (3.183)
Plugging ¥ into equation (3.176) and multiplying by ¥3 gives
U [0, (AO,®) + 0, (00,P)] = 2A0,¥0,® + 200,V0,P. (3.184)

These two equations can be summarized by expressing ¥ and ® as the real and imaginary
part of a complex function

Z =V +id, (3.185)
to the complex equation
R(Z) [0, (A, Z) + 8, (80, 2)] = A (8,2)* + 6 (8,2)* . (3.186)
Introducing as a new function the idempotent transformation
E+1
Z =: o1 (3.187)
and using
o FE .
7 — _9 1
82 (E— 1)27 (S {T, M}? (3 88)
0.(C0.2) = 2 = 20@@1 o, (C&ZE)] C whereC=C(i),  (3.189)
1 EE*—1
== (Z+7%) = 1
W(2)=5(Z+27) E-1)E -1 (3.190)
leads us to the Ernst equation
(1= BE") [0, (A9, B) + 0, (00,B)] = —2B* | A (9,E)* + 6 (9,E)’|. (3.191)

To get the equation into a more symmetrical form (regarding § = 1 — p?), we introduce
the new coordinate

r—M 1
1= gr—a 0= ammatr A0 -a)r -1, (3.192)

We then have
(1= BE") [0, (0 = D)0,B) = 0, ((1* = 1)0uE)
= —2B" (1" = 1) (9,B)° — (u* — 1) (9,B)°] .

We have seen in section (3.2.6) that with solutions x and w there come functions x and

@ that are also solutions and are of the form
X w

(3.193)
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Thus there are also conjugate functions Z, ®, ¥, and E arising in the same way from ¥

and @ as Z, ®, ¥, and F do from y and w, that also solve the Ernst equation.

U= —
X X
.0 2 . A
87»® = =3 M(:] Kau(:}, 8M¢ = —?ar(:) = ——0OpWw
- - - E+1
Z =V +id =: =
CTE

In reverse, U and ® can be obtained by
EE* -1 -
|E -1

U =RZ=

3.2.10. The Kerr metric

(3.195)

(3.196)

(3.197)

(3.198)

Solving the Ernst equation is everything we need to get an axisymmetric stationary
metric, because we get y and w from the Ernst equation and then obtain uo + p3 from

(3.123) and (3.131).

One solution of the Ernst equation is

E=—pnp—ign with p?>+¢*=1,

p and ¢q being real constants. We then get

7= yip=L0tian—1
pn+igp +1
and
2
G PP =D+ 1) A= 5 (M? —a?)(1 - pi?)
- 2 2,2 - 2
(pn+1)° + ¢°p (r— a4 A=) 4 &
b 2qp _ 25 (M? - a®)u
- 2 2,2 2
(pn +1)% +¢*p (r— M+ A=) 4 (012 202
The coices
VM2 —a? _a
p=—r— 4T3

are consistent with the condition in (3.199), and with the definition

2= 4 a2,

the potentials read
2aMp

R .
P2

95

(3.199)

(3.200)

(3.201)

(3.202)

(3.203)

(3.204)

(3.205)
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From (3.196) we get

- daMrp W2 (A—a%)’
0,® = — P = Ka"“ = A Ou@, (3.206)
z_2aM o o9y W7 (A _“25)2 ~
9,0 = . (r %y ) = =06 o 0,6, (3.207)
o MA M (r? 22
o — — el B M o = _2aMo(r — s ). (3.208)
(A —a?)) (A — a?0)

As can be checked by differentiation, a solution for these equations is

_ w 2aM dr
w:X2—w2:A—a26' (3.209)

The second term comes from the definition of the conjugate solution. Now from (3.195)
and (3.205) we get

U =¥ (X2 - w2) =e — Wl =" (3.210)

thus

w =

2aMdér 2aMor _
m <X2 — (JJ2> = e 2112)‘ (3211)

2
p
We now use the definition of 5 = v + 1 to obtain

A —a? . . .
and therefore
0
2 _ v 4 4 24525 2
= A=) |Ap" — 4a®M?6r?] (3.213)
A —a?s

w= 2(1M7"Ap4 R YEITh (3.214)

With the new function )

2= (r? +a?) — a?AS, (3.215)

we have

2 (A - a25> = p*A — 4a>M26r2. (3.216)
Using that, w and e?¥ take the simple forms

2
ew:%, wzQaMr.
p ¥2

(3.217)
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Also, the remaining part of the Killing part of the metric can now be calculated:

2
v = 2 _ P A (3.218)

2
vy _ P A

That leaves only pa + us left to determine. We will use the identity

[(rz + a2) F a\/(ﬁ} [\/Z + a\/cﬂ = ,02\/5 + 2aMrV/5. (3.220)

Switching back to X and Y, as given in (3.168), where we use 2 for both X and Y, X
corresponding to the upper sign and Y to the lower, we have

,02\/Z + 2aMrvV35 (3_2:20) [(rQ + a2) ¥ am} [\/K + a\/(ﬂ ‘

2 =xtw= 3.221
Xtw SN SIS (3.221)
With
22 = (12 + a?)? - a®0A = (12 + a?) + aVBA] [(1? + a?) — aVFA] (3.222)
those cancel to VA
2 = Atavd (3.223)
{(r2 +a?) £ av 5A} Vo
Their derivatives with respect to r and u are
(r — M)p? — 2rvA (\/Z:I: a\/g)
o2 = I (3.224)
VOA (2 + a?) + aVFA|
VA {’I“Q +a?(1+46) + 2a\/5A}
O = B . (3.225)
(2 + a2) + aV/GA| " 5%

We can now plug those into equations (3.173) and (3.174) for the calculation of (p2+ ps).

,
~L 00 iz + ) +

- M K 2 2
; Ouluz + 13) = 555 [(r = M)(p? +24%0) — 20| (3.226)

A
2(r — M)?  4rM

2(r = M)0r(p2 + p3) + 2u0u(p2 + p3) =4 = ——1—— — e (3.227)
These equations can be solved by elimination and integration and yield
2
ehaths — L (3.228)

VA

o7
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With e#s~#2 = \/A we have determined all metric components

2 2 2
621/ P A 21 52 _ QCLMT 62:“2 — pZ? 62#3 = p2’ (3229)

22 ) € 77 w = 22 )

which compose the line element of the Kerr metric

2 2 i2 2 2
o P AL, X7sin“f 2aMr [ P RN
ds® = =2 dt” — e (qu ~ 32 dt| — Zdr — p=do, (3.230)
where
A =712 —2Mr+ a?, (3.231)
p? =1*+a*cos? 0, (3.232)
¥? = (12 + a?)? — a®*Asin? 4, (3.233)
and a and M are constant parameters.
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4. Outlook

In this section, an outlook is provided on how the content of this thesis could be used in
the future. The goal is a general relativistic approximation for slow moving neutrons for
experiments on earth’s surface. One procedure to achieve this might be the following:

e (alculate the spin coefficients for the Kerr metric.

e Transform the 2-spinor version of the Dirac equation in Weyl representation into
the 4-spinor version in Dirac representation.

e Apply the Foldy-Wouthuysen transformation.
Inspired by [6], if we take the 4-spinor of the Dirac equation to be

U= Cfﬁ) : (4.1)

the v-matrices in Weyl representation take the form
0 EAQE A1
=2 : ASTAR ) 4.2
Yo = V2 <€A/S e B 0 (4.2)
The Dirac equation then reads

!

iVapx? = —=a

393

A'B A (4.3)
iV = —
i VB \/EX

Connection
1-form

Spin
coefficients
Dirac EQ — Component form, e Transform to
Weyl rep. Dirac rep.

Foldy-Wouthuysen

[ Kerr metric ]* [ Tetrad ]»

To start calculating, (2.4.4) can be used to switch to component notation, which also
brings spin coefficients into play via the covariant derivative (2.4.6). The spin coefficients
can be related to the connection 1-forms ((3.75-3.78) with (3.229)) via (2.166).
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The coordinate form of the 2-spinor version of the Dirac equation can then be rewritten
in 4-spinor notation and then be transformed to Dirac representation. This shapes the
equation into the right form to perform a Foldy-Wouthuysen transformation (2.2.5). If
a Schrodinger equation with the Newton potential term and additional correction terms
is desired, the Dirac equation can be expanded not only in -2, but also, since we assume
the distance from the origin r large compared to the traveling distance, in the other
dimensionless quantities %\24 and thT, with ¢ being the speed of light, m the neutron
mass, G the gravitational constant, and A the reduced Planck constant. These quantities
can then be compared with -2 to determine to which order of magnitude the individual

terms are relevant.

4.1. Things to consider
4.1.1. Laboratory observer

The calculations in section 3 are from the perspective of an asymptotic inertial observer.
Since most experiments are performed from the surface of the rotating earth, it might
be advantageous to transform into that perspective first.

4.2. No Birkhoff theorem

While the Schwarzschild metric perfectly describes a spherical resting earth according

o (2.8) and further the Birkhoff theorem (section 2.8 in combination with [3]), there
is no Birkhoff theorem for general axially symmetric space-times. That means that the
metric outside of a rotating earth might not be accurately described by the Kerr metric.
In this thesis we use the Kerr metric to describe a rotating earth since a << M, but the
validity of this is not proved here and further work is required.
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A. Supplementation to the main text

A.1. Existence of an inverse on the support of an operator in Hilbert space

Consider operators P with eigenbasis |p; >, and @ on Hilbert space, where
P=> pipi><pil, Q= Z Ipy il (A.1)
i

j in this case runs over the indices i, where p; # 0. The summation is to be seen as
abstract and can also be an integral in the case of a continuous spectrum. Then on the
subspace of the support of P,

PQ=QP =Y |pi><pilp; ><p)| = Z Ipi >< pi| = 1. (A.2)
]

A.2. Proof of generality despite the taken choices

In this section we will prove that the choices taken during the derivation of the Ernst
equation in section 3.2.8 do not limit generality, following [2]. This will be done by
showing that there is a coordinate transformation that brings the metric under the effect
of our choices (3.151) into the Papapetrou form (3.144), which we previously obtained via
a coordinate transformation of the most general metric for axially symmetric stationary
space-times generated by rotating bodies.

The metric we arrived at in section 3.2.8 is

1 eM2t1s
d2:5[dt2—d— dtﬂ— dr? 4+ Ad#?|, A3
3t =[xt = = (dg — wdt)?| - ——— [ar ] (4.3)
with

f=VAsing, A=r?—2Mr+a’ (A4)

The Papapetrou form is

1

ds®=p [th2 - do- wdt)ﬂ — e [dp? +d2?] . (A.5)

Keep in mind that the unknown functions e#2t#3 and e?*, despite their similar origin,
are not the same function, because we used different gauge functions A in both cases.
Thus we can absorb a common factor of dr? and df? into these functions.

Consider the coordinate transformation
p=e’ =VAsin0, z=(r—M)cosb. (A.6)

Notice that because we chose p = e?, the (t, ®) parts of the metric are already identical,
meaning we can restrict our attention to the (r,#) part. For convenience we will perform
the inverse transformation from (p, z) to (r,6).
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It is useful to note that

A =2(r— M), (A7)
(r—M)*=7r*=2Mr + M? = A+ M>. (A.8)

Then the basis forms and their squares are

r—M

dp = —— sin Odr + v'A cos 0d0), A9

P="7x (A.9)

dz = cosOdr — (r — M) sin 0d, (A.10)

A+ M?
dp? = +T sin? 0dr? + A cos? 0d#?* + 2(r — M) sin 6 cos 0drd, (A.11)
dz? = cos? Odr? + (A + MQ) sin? 0d6* — 2(r — M) sin 0 cos Odrde, (A.12)
leading to

M? M?
dp® +dz? = [(1 + A) sin? 6 + cos? 9] dr? + A l<1 + A) sin? 6 + cos? 0] d6?

M? 2 2
1—|—Xsm 0] [dr +Ad9}.

(A.13)

The prefactor can be absorbed into e?* and the equivalence is established.

A.3. Calculation of the equations for (y + u3)

This section is a supplement to section 3.2.8 after the introduction of X and Y in order
to get to equations (3.173) and (3.174) from equations (3.123) and (3.131).

We will need the following relations throughout the calculation:

y=e""" ="t =VAsing, A=¢c*Wr2) =2 oMy 442, (A.14)
as well as
p=cosf, 0Op=—sinfo,, §=sin?0=1—p% (A.15)
Also we will define
T = U2 + ug. (A.16)
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The derivatives of the relevant functions can be written as

0= 20 [+ ) — (v — )] = :ajf - 8;’(: -5 [ -2
O = 20, [(v+0) + (v — )] = & :‘9;5 v a;’f: - [+ 2
o= 3l 0o 3 [ 27 - 81] -4 [eme o]

o= gl o+ - =3 257 ] = [0 20,

00ty = 500 s + 1) + s — 2)] = 5 |47 + 8&?] =5 [or+ ).
Oppio = %39 (13 + p2) = (n3 — p2)] = % [897 - 83\/55] = %897

We first examine equation (3.123),

ar69(¢ + V) - aT(Qz[) + V)GGNQ - 39@ + V)ar:u?) + 81‘71)897;[) + 374/(907/

1
= 562(¢_”)8Tw89w,

Dpe?  0,€P Dpe’ r—M 1 [cos@r—DM  OgxOrx
O =es ™ 2 T T ep [GTTJF A } 2 Lin@ AT
e ﬁ@rwaew,
r—M cosf
_ A T — m T = sz [6rw89w - arXaGX] )
r—M Iz 1
A T = 50T = =15 [0 = O
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Then we bring (3.131) into a similar form,

4
AV A (0,803 + 0,1p0v) — —— (0pBOppi2 + Dptpgv)

‘/Zl . . (A.27)
_9eB [ar (VAS,e") -y (\/Zageﬁﬂ -3 [\/Z (Or)? = = (O’
r—M (r — M)? (0rx)? 2 cosf 1 cos?0 1 (Opx)?
2 7 (9TT—|—37A\/K —VA 2 \/Zsinﬁam—_ A sin20 + JA 2
4 _1 D)2 — L2
- \/E X2 |:\/Z(87" ) \/K(ae ) ] ;
(A.28)
2r — M)dyT — 20982897 + 3(TlAM)2 —3- COSjg 1
) S11 S (A29)
= =5 [0 = (@x)%] = [(@0)® = @0
2(r — M)O,T + 2p0, T
1 M?2—a? 1 (A.30)
==z |8 [0w) = 000°] = 8 [0)* - Ow0®]] 35—+ 5.
If we now use
X =X +w, Y =x—w, (A.31)

in the two equations, we get the desired equations

W r—M 2
=50 (2 + p3) + —1—Oulpz + n3) = X1v)e (0-X0,Y +0,X0,Y),  (A.32)
2(r = M)0y(p2 + p3) + 200, (12 + p3)
4 M?—a? 1
(A.33)
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B. Useful proofs

This section supplements the main text with useful and interesting proofs.

B.1. Spinors
B.1.1. Symmetry decomposition of a generic spinor

Proposition 4. Every spinor can be decomposed into a sum of products of a symmetric
spinor and €-spinors.

Proof. First it is helpful to introduce some definitions for clumped indices:

o = AA (B.1)

and similar for more than one lower index of clumped indices.

If {} is used on indices it is a symmetrisation, only that the indices inside clumped
indices are also affected.

We will start with the following two identities.

1 n
Xy = > X{o; 14,9 (B.4)
=1
(2.137)
X{e, YA, 2 = X( YA, 2 =  EAAX{a,, X}X@ (B.5)

If we now plug (B.5) into (B.4) for every term except the j = n one, we obtain

n—1
X()2 = X(a, 1,9 F — D_€a,4 X, XY (B.6)
j=1
n—1
X
X{et, YA, 2 = X(atyo ~ 3, > €4,A,X{,, X} 9 (B.7)
j=1

We can now start with a general tensor where we assume the first index to be the
symmetrised index block of the left hand side of (B.7), which leaves us with a spinor
with two symmetrised indices, and spinors with less indices than the original one in a
product with an e-spinor. This procedure can be repeated with the former spinor until
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it leaves us with a symmetric spinor and a sum of e-products.

(B.7) 134 X
X/ = X{A1} A2 45 An = X{A1A42}A5.. 4, ~ 5 Z CAA; XX A3 Ap
j=1
(B.7) 132 ¥ (B.8)
X{A1A2}A3A4.. Ay = X{A1A2A3}..A, — 3 €A3A]-XW.(1)(2)X} Au Ay,
i=1 ’
Written compactly, this reads
n 1 i—1 X
Xt = X{ar} — ; z; €AiAjXW1<i—1>j X} /litin (B.9)

This can be repeated with the spinors lower in index number until there are only sym-
metric ones left and the original spinor is fully decomposed into symmetric spinors. [

B.1.2. Zero-valued contractions of symmetric spinors

The proofs in this section follow [6]

Proposition 5. At every point in space-time,
X7 g2 =0 V7 e6” o XYy m)=0. (B.10)

Proof. The backward direction is clear since £7'..¢%k is symmetric in %;...%) and
therefore

X% g, . &% = Xd(gl...gak)fgl--.f‘%k- (B.11)

For the forward direction set £¢Z = n” 4+ X\(?. Then

X7 13,87 & =X g+ NI (g C 2

o (B.12)

Since the left hand side vanishes and A is arbitrary, every term on the right hand side
must vanish independently. But for arbitrary £Z, for Xﬂ(%w@k)g% n”2 .7k to vanish,
X7 (%1...5 n”2..n” must vanish. Since n”? is arbitrary, this argument can be repeated
until the result is obtained. O

Proposition 6. At every point in space-time,

2

=0 & Y =0 V .0 =0 (BI3)

B
V.t Pitprtns)
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Proof. According to proposition 5, the left hand side is equivalent to

Bech o, € oot P
Vet &8 gy &

But that means that

Voo, JEN LT =0V by TEN T =0,

Applying proposition 5 to either of those equations proves the claim.
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