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1. Summary

The aim of this thesis is to collect and put into context the complete groundwork re-
quired for describing slow-moving uncharged fermions, like neutrons, above earth’s sur-
face to obtain the general relativistic corrections that can be employed in experiments
like qBOUNCE [4]. For this aim, we collect the necessary parts from a variety of already
existing literature, work through them in detail, and arrange them such that they will
be easy to use. In section 4 we shortly discuss how the bulk of the thesis might be used
to calculate the relativistic corrections in question in subsequent investigations.
In particular we will be establishing some background in general relativity, quantum
mechanics, and 2-spinor formalism. We will then discuss, how these techniques could
be used to describe a spin-1

2 particle over the background of the Kerr-metric and to
perform a Foldy-Wouthuysen transformation to obtain a Pauli equation with relativistic
corrections. All this provides the necessary background for the search of hypothetical
new interactions by using precision measurements.

Fermion
in curved
space-time

❍❍❍

The stage:

General Relativity,
Einstein Equation,
Kerr Metric

✟✟✟
The performer:

Quantum Mechanics,
Dirac Equation

Tensors

Spinors

2-spinor formalism

Foldy-Wouthuysen transformation

Slow moving approximation

1.1. Summary

In this section, a brief summary of the sections of this thesis is provided.

1.2. Introduction

This section provides a brief overview of the methods used subsequently. Among these
are

• The Dirac equation and the Foldy-Wouthuysen transformation, which provides the
nonrelativistic approximation of the Dirac equation [1].

• The tetrad Formalism, which is essential for the description of the Dirac equation
in curved space-time [9].
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• The 2-spinor formalism, which allows us to treat spinors and tensors on an equal
footing [6].

• The Einstein equation and some of it’s solutions [9].
• The Schwarzschild solution in particular as a preparation for the derivation of the

Kerr solution [9].

1.3. The Kerr metric

This section provides a fully detailed step-by-step derivation of the Kerr metric, following
[2].

1.4. Outlook

In this section, we outline prospects for further work and discuss how the techniques of
this thesis can be employed to describe the Dirac equation in the background of the Kerr-
metric, followed by the application of the Foldy-Wouthuysen transformation in order to
obtain the corresponding Pauli equation containing the relativistic corrections in terms
of an effective potential.
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2. Introduction

This section provides a brief overview of the methods used in later sections. Among
these are

• The Dirac equation and the Foldy-Wouthuysen transformation, which provides a
nonrelativistic approximation of the Dirac equation [1].

• The tetrad Formalism, which is essential for the description of the Dirac equation
in curved space-time [9].

• The 2-spinor formalism, which allows us to treat spinors and tensors on equal
footing [6].

• The Einstein equation and some of it’s solutions [9].
• The Schwarzschild solution in particular as a preparation for the Kerr solution [9].

2.1. Conventions

Throughout this thesis we will use the metric convention ηab = diag(1, −1, −1, −1).
Except when explicitly stated, the speed of light c and � will be chosen to be 1.
We define commutation and anticommutation of a family of indices ij := i1i2...ip as

A{ij} = 1
p!

'
σ

Aσ(ij), A[ij ] = 1
p!

'
σ

(−1)σAσ(ij), (2.1)

where σ runs over all permutations.

2.2. Dirac equation

In this section we follow [1] and examine at the Dirac equation.
The Dirac equation (2.2) describes a relativistic spin-1

2 particle.

i�∂tΨ =

�c

i αi∂i + βmc2
�

Ψ =: HΨ, (2.2)

where i runs over the spatial indices. To fulfill the relativistic energy-momentum relation
(2.3) and for every component to satisfy the Klein-Gordon equation (2.4), αi and β must
fulfill the anticommutation relations (2.5-2.7).

E2 = p2c2 + m2c4 (2.3)

−�2∂2
t Ψ =



�2c2∂i∂i + m2c4

�
Ψ (2.4)

α{iαj} = δij (2.5)
{αi, β} = 0 (2.6)

α2
i = β2 = 1 (2.7)
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Those relations imply that αi and β cannot simply be complex scalars, but they can be
represented as matrices. (2.6) and (2.7) are just an extension of (2.5) to include β, thus
on an algebraic level, αi and β are equivalent.
Relation (2.7) tells us that their eigenvalues are ±1. By multiplying (2.6) by β and
taking the trace we get

Tr(αi) = −Tr(βαiβ) = −Tr(β2αi) = −Tr(αi) = 0, (2.8)

where we used the cyclic invariance of the trace. Slight modification shows the same for
β. Since the trace is just the sum of the Eigenvalues, they must be an equal number of
+1 and −1. The dimension of the matrices must therefore be even.
The axioms of quantum mechanics imply that physical observables correspond to Her-
mitean operators. For the Hamilton operator H to be Hermitean, we need both α and
β to be Hermitean matrices. Hermiticity and vanishing trace imply that for dimension
2 they take the form �

a b − ic
b + ic −a

�
, a, b, c ∈ R. (2.9)

All these matrices can be constructed as a real linear combination of the Pauli matrices

σx =
�

0 1
1 0

�
, σy =

�
0 −i
i 0

�
, σz =

�
1 0
0 −1

�
. (2.10)

In four dimensions there is no further matrix that anticommutes with the Pauli matrices.
The next even dimension is 4 and indeed there exist 4-dimensional matrices that fulfill
relations (2.5 - 2.7). One set of those are

αi =
�

0 σi

σi 0

�
, β =

�
12 0
0 −12

�
. (2.11)

Those matrices are not the only choice that satisfies these requirements. Other repre-
sentations will be discussed later.

2.2.1. Nonrelativistic approximations

In this section we will investigate the Dirac equation for velocities v � c. The structure
of the αi and β matrices suggests to decompose the space of 4-component wave functions
Ψ into the sum of spaces of 2-component wave functions ψ and χ. For a particle at rest
the Dirac equation reads

i�∂tΨ = βmc2Ψ, (2.12)

or in the above representation:

i�∂tψ = mc2ψ, (2.13)
i�∂tχ = −mc2χ. (2.14)
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The corresponding solutions are

ψ = e−i mc2
� tψ0, χ = ei mc2

� tχ0, (2.15)

where ψ0 and χ0 are arbitrary constant 2-spinors. From (2.14) we see that the Dirac
equation allows negative energy states.
Next we consider a free slow moving particle. Because the Hamilton operator is time
independent, we focus on energy eigenstates

i�∂tΨ = EΨ, (2.16)

with constant E. We assume E > 0. In the above representation, the more general
Dirac equation takes the form

(E − mc2)ψ = −i�cσi∂iχ (2.17)
(E + mc2)χ = −i�cσi∂iψ (2.18)

As for a slow moving particle mc2 
 p, (2.18) suggests that in that case, χ � ψ.
Therefore ψ will be called the large component and χ the small component.
By adding a minimal coupling

pa �→ pa − e

c
Aa, a ∈ {0, 1, 2, 3}, (2.19)

we can couple a charged Dirac particle to an electromagnetic field. With the definition

Πi := pi − e

c
Ai, i ∈ {1, 2, 3}, (2.20)

this leads to the Dirac equation

i�∂tΨ̃ =


cαiΠi + βmc2 + eΦ

�
Ψ̃, (2.21)

where we renamed Ψ to Ψ̃. Because of our slow moving and weak field approximations
the majority of the energy will be mc2. Therefore we can decompose the wave function
into a fast oscillating factor and a slowly varying wave function.

Ψ̃ = e
mc2
� tΨ (2.22)

Plugging that into the Dirac equation and using the above representation, we get

i�∂t

�
ψ
χ

�
= cσiΠi

�
χ
ψ

�
+ eΦ

�
ψ
χ

�
− 2mc2

�
0
χ

�
. (2.23)

Looking at the second equation, the left hand side can be neglected because we assume
only slow variation of χ. Also since Φ is small and χ is suppressed by a factor ∼ 1

mc2
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from earlier considerations, we can neglect the second term on the right hand side. What
is left reduces to

χ = σiΠi

2mc
ψ. (2.24)

Plugging this into the first equation it yields

i�∂tψ =



σ · Πσ · Π
2m

+ eΦ
�

. (2.25)

We can now use the identity

σiσj = δij + iεijkσk ⇒ (σ · a)(σ · b) = a · b + iσ · (a × b), (2.26)

to find
(σ · Π)(σ · Π) = Π2 − e�

c
σ · B. (2.27)

The resulting equation

i�∂tψ =
��

p − e
c A

�2

2m
− e�

2mc
σ · B + eΦ

�
ψ (2.28)

is now recognizable as the famous Pauli equation. As we will later see there is a more
systematic way to deduce this equation.

2.2.2. The γ matrices

One of the motivations for the Dirac equation was Lorentz covariance, which is best
portrayed by multiplying (2.2) by β from the left and defining

γ0 := β, γi := βαi, i ∈ {1, 2, 3}. (2.29)

The free Dirac equation now simply reads

[i�γa∂a − mc] Ψ = 0. (2.30)

The anticommutation relations (2.5 - 2.7) simplify to

γ{aγb} = ηab, (2.31)

and while γ0 remains Hermitean, γi are anti-Hermitean. Every set of matrices that
fulfill these requirements produce a representation of the Dirac equation. As proved in
[5] those sets of matrices are connected by unitary similarity transformations.
The γ-matrices for the Dirac representation which we used in the previous sections, are

γi =
�

0 σi

−σi 0

�
, γ0 =

�
12 0
0 −12

�
. (2.32)
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Another set of valid γ matrices is the Weyl- or chiral representation

γi =
�

0 σi

−σi 0

�
, γ0 =

�
0 12
12 0

�
. (2.33)

We will later use this representation to write down the Dirac equation in 2-spinor form,
which will also prove Lorentz covariance since 2-spinor equations are inherently Lorentz
covariant.

2.2.3. The Foldy-Wouthuysen transformation

For the following outline we rely on [1].
The fact that the nonrelativistic limit of the Dirac equation in the Dirac representation
separates the spinor into a large and a small component suggests that if we could find
a representation that decouples those components, we can neglect the small component
and the nonrelativistic case can be described by an equation for only the large compo-
nent. That is what the Foldy-Wouthuysen transformation does. The idea is to split the

Hamiltonian of the Dirac equation into even terms E which are of the form
�

A 0
0 B

�
,

and odd terms O of the form
�

0 A
B 0

�
. The goal is to find a unitary transformation eiS

such that only even terms remain.
In this section, operators act on everything that is written after them, with the exception
of ∂, which acts only on the right adjacent object. If another operator acts on only the
adjacent object, it is denoted by a small arrow, e.g. Hp.
With the transformation

Ψ �→ Ψ� := eiSΨ, (2.34)
the Dirac equation reads

i∂t

�
e−iSΨ�� = HΨ = He−iSΨ�, (2.35)

where
H = E + O + βm. (2.36)

This leads to
i∂tΨ� =



eiS (H − i∂t) e−iS

�
� �� �

=:H�

Ψ�, (2.37)

which will be our starting point for the specific transformations.

2.2.4. The Foldy-Wouthuysen Transformation for the Free Dirac Equation

In the case of a free moving particle our even and odd parts of the Hamilton operator
are

E = 0, O = α · p. (2.38)
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We make the Ansatz

eiS = eβα·pθ = cos(|p|θ) + βα · p
|p| sin(|p|θ), (2.39)

in the sense of the operator valued Taylor expansion of sine and cosine. θ is yet to be
determined. The inverse of the operator Q we denote as 1

Q and it satisfies Q 1
Q = 1

QQ = 1
wherever QΨ �= 0. The parts of Hilbert space that are annihilated by Q can be ignored
here since 1

Q will always come in combination with Q. That such an operator exists is
shown in appendix A.1.
The transformed Hamilton operator then is

H � =


cos(|p|θ) + βα · p

|p| sin(|p|θ)
�

(α · p + βm)


cos(|p|θ) − βα · p

|p| sin(|p|θ)
�

(2.40)

= (α · p + βm)


cos(|p|θ) − βα · p

|p| sin(|p|θ)
�2

= (α · p + βm) e−2βα·pθ (2.41)

= (α · p + βm)


cos(2|p|θ) − βα · p

|p| sin(2|p|θ)
�

(2.42)

= α · p


cos(2|p|θ) − m

|p| sin(2|p|θ)
�

+ β [m cos(2|p|θ) + |p| sin(2|p|θ)] . (2.43)

To cancel the odd term, we have to set

cos(2|p|θ) = m

|p| sin(2|p|θ) ⇒ tan(2|p|θ) = |p|
m

. (2.44)

This forms a right triangle with angle 2|p|θ, adjacent side m and opposite side |p|. The
hypotenuse then is

&
p2 + m2. We have

cos(2|p|θ) = m&
p2 + m2 , sin(2|p|θ) = |p|&

p2 + m2 . (2.45)

Inserting that into the Hamilton operator, we get

H � = β
p2 + m2&
p2 + m2 = β

$
p2 + m2, (2.46)

the square root of the Klein-Gordon equation.

2.2.5. The general Foldy-Wouthuysen transformation

In general it is not so easy to perform the transformation exactly. To approximate, we
assume that in the nonrelativistic limit all energies are small compared to m. We then
choose S to be proportional to 1

m and eliminate the odd terms order by order in 1
m to

the desired accuracy.
We again start with the Hamilton operator

H = βm + O + E . (2.47)
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Since O is proportional to αi, E is diagonal in the sense of 2 × 2 blocks, and the blocks
of β are diagonal, we have

βO = −Oβ, βE = E β. (2.48)

For an operator Ω,

eiλSΩe−iλS =: F (λ) =
∞'

n=0

λn

n!
∂nF (λ̃)

∂λ̃n

(((((
λ̃=0

, (2.49)

where
∂F (λ)

∂λ
= eiλS i[S, Ω]e−iλS , (2.50)

and thus, with L := [S, ·]
∂nF (λ)

∂λn
= eiλS in (LnΩ) e−iλS . (2.51)

By setting λ = 1 after plugging into the Taylor series, we get

eiSΩe−iS = Ω + i[S, Ω] − 1
2[S, [S, Ω]] − i

6 [S, [S, [S, Ω]]] + ... . (2.52)

Now we are prepared to expand the transformed Hamilton operator. We will take into
account terms up to order 1

m3 . Using (2.37), we get

H � = H + i[S, H] − 1
2[S, [S, H]] − i

6 [S, [S, [S, H]]] + 1
24[S, [S, [S, [S, βm]]]]

−Ṡ − i[S, Ṡ] + 1
6[S, [S, Ṡ]].

(2.53)

To order 1 this reads
H � = βm + E + O + i[S, βm]. (2.54)

For O to vanish at this order, we need

S = −iβO

2m
. (2.55)
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Using this with the original Hamiltonian we have

i[S, H] = 1
2m

[βO, βm + E + O] = −O + β

2m
[O, E ] + β

m
O2, (2.56)

−1
2[S, [S, H]] = i

2 [S, i[S, H]] = − β

2m
O2 − 1

8m2 [O, [O, E ]] − 1
2m2 O3, (2.57)

− i
6 [S, [S, [S, H]]] = i

3 [S, −1
2[S, [S, H]]] = 1

6m2 O3 − β

48m3 [O, [O, [O, E ]]] − β

6m3 O4,

(2.58)
1
24[S, [S, [S, [S, H]]]] = i

4 [S, − i
6 [S, [S, [S, H]]]] = β

24m3 O4, (2.59)

−Ṡ = iβȮ

2m
, (2.60)

− i
2 [S, Ṡ] = − i

8m2 [O, Ȯ], (2.61)
1
6[S, [S, Ṡ]] = i

3 [S, − i
2 [S, Ṡ]] = −i β

48m3 [O, [O, Ȯ]]. (2.62)

Combining the terms we obtain

H � = βm + E � + O �, (2.63)

where

E � = E + β

2m
O2 − 1

8m3 O4 − 1
8m2 [O, [O, E ]] − i 1

8m2 [O, Ȯ], (2.64)

O � = β

2m
[O, E ] − 1

3m2 O3 + i β

2m
Ȯ − β

48m3 [O, [O, [O, E ]]] − i β

48m3 [O, [O, Ȯ]]. (2.65)

Here, the odd terms only appear to order 1
m upwards. We can now repeat this procedure

to get rid of the 1
m odd terms. The procedure for the second transformation is exactly

the same as for the first one. The new exponent is

S� = −iβO �

2m
, (2.66)

which is now of order 1
m2 . The terms for the transformed Hamilton operator up to order

1
m3 are

i[S�, H �] = −O � + β

2m
[O �, E �] + β

m
(O �)2, (2.67)

−1
2[S�, [S�, H �]] = − β

2m
(O �)2, (2.68)

−Ṡ� = i β

2m
Ȯ �. (2.69)

Therefore we have
H �� = βm + E �� + O ��, (2.70)
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with

E �� = E � + β

2m
(O �)2, (2.71)

O �� = β

2m
[O �, E �] + i β

2m
Ȯ �. (2.72)

The next transformation goes accordingly. The new exponent S�� is now of order 1
m3 ,

which leaves us with the transformed Hamilton operator

H ��� = βm + E ��� + O ���, (2.73)

where

E ��� = E ��, (2.74)

O ��� = β

2m
[O ��, E ��] + i β

2m
Ȯ ��. (2.75)

For the final transformation, since the exponent S��� would be of order 1
m4 , the only terms

left are
HIV = βm + E �� (2.76)

which decouples the large and small components up to order 1
m3 . Putting in the lower

order even and odd terms, we get

HIV = E + β

�
m + O2

2m

�
− O4

8m3 − 1
8m2

�
[O, [O, E ]] + i[O, Ȯ]

�
+ 1

8m3

�
Ȯ2 − i{[O, E ], Ȯ} − [O, E ]2

�
.

(2.77)

2.2.6. A charged particle in the electromagnetic field

By minimal substitution we can couple a point charge to the electromagnetic field.

H = βm + eΦ + α · (p − eA) =: βm + E + O (2.78)

The following useful relation can directly be taken from the Pauli matrices:

αiαj = δij + i!ijkσk. (2.79)

We will only take into account terms up to (momentum)3/m3 and order e. So the only
relevant terms in the Foldy-Wouthuysen transformed Hamilton operator are

HIV = E + β

�
m + O2

2m

�
− O4

8m3 − 1
8m2

�
[O, [O, E ] + iȮ]

�
. (2.80)
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We can now calculate the relevant terms:

O2 = αi(pi − eAi)αj(pj − eAj)
= (p − eA)2 − iσke!ijk (HpiAj + Ajpi + Aipj)
= (p − eA)2 − eσ · B,

(2.81)

O4 = p4, (2.82)
Ȯ = −eα · Ȧ, (2.83)

[O, E ] = −ieα · ∇Φ, (2.84)

[O, E ] + iȮ = −ieα ·
�
∇Φ + Ȧ

�
= ieα · E, (2.85)

[α · p, α · E] = −iαiαj (∇iEj + Ej∇i − Ei∇j)
= −i (∇ · E + iσ · (∇ × E) − 2iσ · (E × ∇)) ,

(2.86)

[O, [O, E ] + iȮ] = e (∇ · E + iσ · (∇ × E) − 2iσ · (E × ∇)) . (2.87)

This leads us to the transformed hamilton operator

HIV = β

�
m + (p − eA)2

2m
− p4

8m3

�
+ eΦ − β

e
2m

σ · B

− ie
8m2 σ · (∇ × E) − e

4m2 σ · (E × p) − e
8m2 ∇ · E.

(2.88)

2.3. Tetrad formalism

It is sometimes convenient to switch to an orthonormal basis, or tetrad, that moves along
in space-time in such a way that it stays orthonormal at every point. Instead of just
equipping the manifold with direction and differential structure, the tangent space now
becomes its own entity, acting as the fibre to the manifold basis of the tangent bundle.
A fibre bundle is a topological space E with a projection π : E → B which maps to
a topological space B, called the basis, such that there exists an open set UP around
every point P of B such that the pre-image π−1(UP ) is homeomorphic to UP × F . F
is a topological space called the fibre [8]. While in this section it is just another way
of looking at a manifold, where we treat the tangent space as the fibre, later on, when
we extend tensor calculus to include spinors, this will be essential. For calculations it is
useful to employ the algebra of differential forms.
The substance of this section is taken from [9], [6].

2.3.1. Differential Forms

A scalar differential form is a completely antisymmetric (0, p) tensor, where p denotes
the number of lower indices. A differential form with p antisymmetric lower indices is
also called a p-form. For convenience we will suppress form indices. If that is done,
the symbol denoting the differential form will be written in bold face. If the tensor has
additional indices, like upper indices or ones that are not antisymmetric, it is called a
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tensorial differential form. We will call the space of p-forms Λp(A ), where A denotes
the additional tensor indices. There are several possible operations on differential forms
that preserve their form-character.

Addition between two p-forms can be directly taken from tensor addition. The result is
again a p-form of the same form character.
Multiplication on the other hand is a bit more involved. If only tensor multiplication is
applied to two differential forms, the resulting differential form’s form indices might no
longer be totally antisymmetric. Therefore we need a new multiplication called ∧ which
preserves antisymmetry.

∧ : Λp(A ) × Λq(B) → Λp+q(A B)

αA
i1...ip

∧ βB
ip+1...ip+q

= (p + q)!
p!q! αA

[i1...ip
βB

ip+1...ip+q ]
(2.89)

Also differentiation needs to be modified, because the derivative operator brings an index
that is not in general antisymmetrized with the rest. Therefore we introduce the exterior
derivative d.

d : Λp(A ) → Λp+1(A )
dωA

i1...ip
= (p + 1)∇[jωA

i1...ip]
(2.90)

One immediate consequence of this definition is that d2 acts on tensorial 0-forms via
the Riemann tensor, and vanishes on scalar forms. To prove the latter we will use the
symmetry of the Christoffel symbol Γd

[ab] = 0, as well as the symmetry of the partial
derivatives ∂[a∂b] = 0.

∇[a∇bωc] = ∇[a∂bωc] − ∇[aΓd
bc]ωd

= ∂[a∂bωc] − Γd
[ab∂|d|ωc] − Γd

[ac∂b]ωd = 0
(2.91)

The outer derivative fulfills the weighted Leibniz rule

d(αA ∧ βB) = dαA ∧ βB + (−1)pαA ∧ dβB, (2.92)

if αA is a p-form and βB is an arbitrary differential form, because the index of the
exterior derivative in the second term must be translated through αA .

2.3.2. Tetrad Formalism

First we introduce an orthonormal basis of the tangent space we denote by Ea
α. While

latin letters are ordinary abstract tensor indices, greek letters from the beginning of the
alphabet denote labels of the specific basis vector. We will suppress tensor indices in the
further discussion (except where they are needed for clarity) as we did with form indices.
Its dual basis will be denoted by eα. They are given different symbols to distinguish
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them due to the suppressed indices. To express a tensor in the tetrad basis we simply
contract it with the respective basis vector.

T α
β = T a

b eα
a Eb

β (2.93)

Because of the suppressed indices we introduce a new symbol for the inner product, or
the contraction between suppressed indices.

αA �βB := αaA
C βB

aD (2.94)

C and D represent other suppressed indices. We define the inner product in such a way
that the contraction happens between the first contravariant tensor index and the first
form index.
From the orthonormality follows

gabE
a
αEb

β = ηαβ or Eα�eβ = δβ
α. (2.95)

Similarly the metric can be decomposed into tetrad components:

ηαβeα
a eβ

b = gab or Ea
αeα

b = δa
b . (2.96)

If we differentiate Eα, the result will still have a vector index which can be decomposed
into tetrad components.

dEa
α =: ωa

α = Ea
βωβ

α . (2.97)

ωβ
α is a matrix of 1-forms and is called connection one-forms.

We can now use the second equation of (2.96) to deduce the equivalent of (2.97) for eα

called the first Cartan structure equation. Keep in mind that Eα is a vector 0-form and
eα is a scalar 1-form.

0 = d(Eαeα) = dEα ∧ eα + Eαdeα

= Eβωβ
α ∧ eα + Eαdeα

0 = Eα

�
ωα

β ∧ eβ + deα
� (2.98)

Contracting this relation with eγ and renaming indices, we get the first Cartan structure
relation,

deα = −ωα
β ∧ eβ . (2.99)

Since Eα is a 0-form, dbE
a
α = ∇bE

a
α. Using (2.95) we get from (2.97) that

ωα
βb = eα

a ∇bE
a
β . (2.100)

If we substitute d for ∇b in (2.98), the calculation is very similar, only that ∧ is replaced
by an ordinary tensor product. Eventually one arrives at

∇be
α
a = −ωα

βbeβ
a . (2.101)
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Using similar methods as before, and also ∇agbc = 0, we get

−ωα
βb = Ea

β∇be
α
a = eβa∇bE

αa (2.100)= ω α
β b. (2.102)

Therefore
ωα

β = −ω α
β . (2.103)

Since Eα is a vector 0-form, d2 acting on it gives the Riemann tensor.

Rβ
αEβ = d2Eα

(2.97)= d
�
Eβωβ

α

�
= Eγωγ

β ∧ ωβ
α + Eβdωβ

α

0 =
�
ωβ

γ ∧ ωγ
α + dωβ

α − Rβ
α

�
Eβ

(2.104)

Contracting this relation with eδ and renaming indices, we get the second Cartan struc-
ture equation,

Rα
β = dωα

β + ωα
γ ∧ ωγ

β . (2.105)

Rα
β is a matrix of 2-forms and is called the Riemann 2-form. The trace of the Riemann

2-form gives us the Ricci 1-form, which corresponds to the Ricci tensor:

Rα = Eβ�Rβ
α. (2.106)

2.4. 2-Spinors

In this section we will introduce the 2-spinor formalism following [6]. This will allow us
to treat spinors and tensors on equal footing and provide the machinery to formulate
the Dirac equation in a Kerr background.
Note that if spinors are mentioned without further context, it will always refer to
2-spinors and not four component Dirac spinors. However, as we will see later, Dirac
spinors can be expressed as a pair of two-component spin-vectors.

2.4.1. Spin vectors and spin transformations from the light cone

Since one can construct a basis of Minkowski space entirely from null vectors, it seems
natural to formulate an algebra based on the properties of the light cone.
Our goal is to conveniently parametrize null directions. For this aim we take Minkowski
space M with coordinates (T, X, Y, Z) and origin O = (0, 0, 0, 0) and look at null rays
through O passing through the 3-plane T = −1, which we will parametrize by (x, y, z).
These null rays trace out a unit sphere at T = −1 which is called the celestial sphere S−.
All light that reaches an observer at O in one time unit is encoded on that sphere. This
creates a bijective map from the set of light rays through O and the celestial sphere.
A sphere can be parametrized via stereographical projection onto R2. If instead we use C
as projection plane, the sphere is called Riemann sphere. We will perform this projection
in a way such that the complex plane corresponds to z = 0. Through the north pole
we draw rays which intersect both the sphere and the complex plane, and identify those
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two intersection points (Fig. 1). Thus the complex number ζ parametrizes the sphere
without the north pole as

ζ = x + iy
1 − z

. (2.107)

Figure 1: Stereographic projection of S+ to the complex plane. The same can be done for S−. This
figure was taken from [6].

The inverse relations are

x = ζ + ζ̄

ζζ̄ + 1
, y = ζ − ζ̄

i(ζζ̄ + 1)
z = ζζ̄ − 1

ζζ̄ + 1
. (2.108)

To include the north pole, which would be at a point ζ = ∞, in our coordinates, we
parametrize S− as a complex projective line using homogeneous coordinates

(ξ, η) : ζ = ξ

η
, (λξ, λη) = (ξ, η) ∀λ ∈ C. (2.109)

The north pole is then represented by (1, 0). The vectors tracing out the sphere are then
represented by

x = ξη̄ + ηξ̄

ξξ̄ + ηη̄
, y = ξη̄ − ηξ̄

i(ξξ̄ + ηη̄)
, z = ξξ̄ − ηη̄

ξξ̄ + ηη̄
. (2.110)

Those are null vectors (1, x, y, z) with x2+y2+z2 = 1. We can scale them by the positive
real number 1√

2(ξξ̄ + ηη̄) to obtain any null vector in M. (The factor 1√
2 is chosen for

later convenience.) The coordinates of these null vectors then are

T = 1√
2

(ξξ̄+ηη̄), X = 1√
2

(ξη̄+ηξ̄), Y = 1
i
√

2
(ξη̄−ηξ̄), Z = 1√

2
(ξξ̄−ηη̄). (2.111)

While these vectors are no longer invariant under arbitrary rescaling (ξ, η) �→ (λξ, λη),
there remains a phase invariance (ξ, η) �→ (eiφξ, eiφη). Since the light cone spans M,
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the coordinates of any vector can be given by (2.111). Because (2.111) are real for any
complex numbers ξ and η, a regular linear transformation

ξ �→ αξ + βη, (2.112)
η �→ γξ + δη, {α, β, γ, δ} ∈ C, (2.113)

induces a regular real linear transformation on M. The regularity condition on (2.112) is

αδ − βγ �= 0. (2.114)

For ζ this results in a Möbius transformation

ζ �→ αζ + β

γζ + δ
. (2.115)

We will now impose the unimodularity condition which does not constrict the transfor-
mation of ζ:

αδ − βγ = 1. (2.116)

Such transformations are called spin transformations and can be expressed as a spin
matrix

A =
�

α β
γ δ

�
, det(A) = 1, (2.117)

acting on (ξ, η) ∈ C2. Using succession as multiplication, the group of Spin transforma-
tions are isomorphic to the abstract group SL(2, C).
From (2.111) we observe1

1√
2

X := 1√
2

�
T + Z X + iY
X − iY T − Z

�
=

�
ξξ̄ ξη̄

ηξ̄ ηη̄

�
=

�
ξ
η

� �
ξ̄ η̄

�
. (2.118)

Again, we can interpret X as coordinates for not only a null vector, but an arbitrary
element of M. A spin transformation therefore acts on a vector in M as

X �→ AXA†. (2.119)

Hermitean conjugation results in the complex conjugation of the determinant, which is
1 in our case. That means that the determinant of X is invariant under spin transfor-
mations. But

det(X) = T 2 − X2 − Y 2 − Z2, (2.120)

which means that a spin transformation on C2 induces a Lorentz transformation on M.
Suppose two spin transformations A and B induce the same Lorentz transformation.
Then

AXA† = BXB†, (2.121)
1In some literature on quantum field theory, other conventions are used. If we map ζ �→ ζ̄ in the

construction (2.107), we get y �→ −y and Y �→ −Y , respectively. The matrix X will then, instead of
X = 1T + σ̄ · X, read X = 1T + σ · X, as is in agreement with [7].
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and
X = A−1BXB†(A†)−1 = A−1BX(A−1B)†. (2.122)

Therefore the spin transformation A−1B must induce the identity map on M. Earlier
we saw that the only transformations that leave arbitrary vectors invariant are phase
transformations �

ξ
η

�
�→ eiφ

�
ξ
η

�
, (2.123)

restricting the transformation to

A−1B = eiφ1 det=1⇒ A−1B = ±1 ⇒ A = ±B. (2.124)

Thus one Lorentz transformation is induced by two spin transformations with mutually
opposite sign.
As proven in [6]:

Corollary 1. Every spin transformation induces a unique proper orthochronous Lorentz
transformation. Conversely every proper orthochronous Lorentz transformation is in-
duced by exactly two spin transformations, one being the negative of the other.

This 2 to 1 epimorphism shows, that SL(2, C) is the double cover of Λ+↑. In fact,
SL(2, C) is simply connected and therefore the universal cover of Λ+↑.
Those elements on C2 the components of which are ξ and η, on which the spin transfor-
mations act, are called spin vectors.

2.4.2. Spinors in space-time

As we have seen in the last section, we can describe null vectors as a product of a spin-
vector and its complex conjugate (2.118). We will now use this to define a spinor calculus
similar to how it can be done for tensors, which will incorporate the usual tensor calculus.
For that we introduce a vector bundle with fibre C2 over space-time, the elements of the
fibre will be called spin-vectors. The abstract space of spin vectors will be called SA, its
complex conjugate space SA� , and their dual spaces with lowered indices. We define a
general spinor as a multilinear map SA1 × ...×SB1 × ...×SC�

1 × ...×SD�
1
× ... → C. The

operation of complex conjugation is defined as an involutory isomorphism SA → SA �

where A ∈ {A, A�}. Elements of the tangent space are repesented by elements of SAA� .
For convenience, as long as abstract indices are used, pairs of complex conjugated spinor
indices will be used interchangeably with tensor indices SAA� ↔ Sa.
It would be advantageous to find an inner product SA × SB → C which is invariant
under spin transformations, just like the Minkowski metric is invariant under Lorentz
transformations. Consider two spin vectors κA and ωA. The inner product

�κ, ω� := κ0ω1 − κ1ω0 (2.125)
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fulfills the required condition. To show this, consider a spin transformation

A =
�

α β
γ δ

�
, αδ − βγ = 1. (2.126)

Then

κ̃0ω̃1 − κ̃1ω̃0 =
(((((κ̃0 ω̃0

κ̃1 ω̃1

((((( =
(((((α β
γ δ

(((((
(((((κ0 ω0

κ1 ω1

((((( = (αδ − βγ)(κ0ω1 − κ1ω0) = κ0ω1 − κ1ω0.

(2.127)
This product is realized by the antisymmetric !-spinor

εAB = −εBA (2.128)

by defining
�κ, ω� =: εABκAωB. (2.129)

With similar considerations we find the analogues for the complex conjugate and dual
spaces

εA�B� = −εB�A� , εAB = −εBA, εA�B� = −εB�A�
. (2.130)

The antisymmetry portrays the importance of the order of indices within primed or
unprimed indices. The permutation between these sets has no effect. The !-spinors are
defined such that

εABεAB = εA�B�εA�B� = 2. (2.131)

We can use the !-spinor to map between the spinor spaces and their duals

εABκB = −κA, εA�B�κB� = −κA� , εABκB = κA, εA�B�
κB� = κA�

. (2.132)

This leads to

κAωA = κ0ω0 + κ1ω1 (2.125)= κ0ω1 − κ1ω0, (2.133)
κ0 = −κ1, κ1 = κ0. (2.134)

Summarizing we find

εABκAωB = κAωB = −κAωB = εABκAωB

εA�B�κA�
ωB� = κA�ωB� = −κA�

ωB� = εA�B�
κA�ωB�

(2.135)

Collecting the statements above, εABεA�B� translates to a tensor of the tangent space.
Since εAB and εA�B� are invariant under spin transformations, which translate to Lorentz
transformations in tangent space, the tensor they represent is invariant under Lorentz
transformations. Thus

εABεA�B� = ηab. (2.136)
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2.4.3. Symmetric and antisymmetric spinors

A spinor is called symmetric [antisymmetric] if it is symmetric [antisymmetric] in all of
it’s indices. Because of the antisymmety of the ε-spinor, the trace of a pair of symmetric
indices vanishes. Since spin space is only 2-dimensional, a pair of antisymmetric indices
has only one independent component. This component is the trace over the respective
indices.

φD [AB] = 1
2φ C

DC εAB (2.137)

This can be shown by assuming following identity for arbitrary spinors κ, ω, and τ ,
which can be easily checked by switching to components.

κAωAτB + ωAτAκB + τA κAωB = 0 (2.138)

This can be turned into an identity for ε-spinors which when contracted with two com-
ponents of a spinor leads to the desired result.

κAωBτX
�
εABε D

X + εBXε D
A + εXAε D

B

�
= 0 (2.139)

εABε D
X + εBXε D

A + εXAε D
B = 0

(( · εCX (2.140)
ε C

A ε D
B − ε C

B ε D
A = εABεCD

(( · ΦDCD (2.141)
ΦDAB − ΦDBA = Φ C

DC εAB (2.142)

Identity (2.137) already suggests that the antisymmetric parts of spinors do not hold
more information than a scalar which is trivially a symmetric spinor. Indeed every spinor
can be decomposed into outer products between symmetric spinors and ε-spinors. This
is shown in appendix B.1.1.

2.4.4. The spin dyad

As hinted at the beginning of this chapter, we can introduce an analogue (and also an
extension) to the tetrad in tangent space for spin space. This basis is called spin dyad
or spin frame. This dyad is defined by the basis spin vectors oA and ιA, as well as their
orthonormality condition

oAιA = 1, oA�ιA� = 1. (2.143)
Alongside this dyad there emerges naturally a complex null tetrad

la := oAoA�
, na := ιAιA�

, ma := oAιA�
, m̄a = ιAoA�

, (2.144)

where
lana = 1, mam̄a = −1. (2.145)

As can be easily checked, it is possible to obtain the standard orthonormal tetrad by

ta = 1√
2

(la + na) , xa = 1√
2

(ma + m̄a) ,

ya = i√
2

(ma − m̄a) , za = 1√
2

(la − na) .
(2.146)
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In terms of components we can write a spin vector as

κA = κ0oA + κ1ιA. (2.147)

That gives us
κ0 = −ιAκA, κ1 = oAκA. (2.148)

From (2.134) we get
κ0 = −κ1 = oAκA, κ1 = κ0 = ιAκA. (2.149)

We can write the ε-spinor in terms of the spin frame

εAB = oAιB − ιAoB, (2.150)

which gives us
ε0B = oB, ε1B = ιB, ε0B = ιB, ε1B = −oB. (2.151)

Spinor components will be symbolized by bold face capital letters. The spin dyad is
therefore ε B

A or ε A
B , respectively.

2.4.5. Covariant derivative

The isomorphism between the tangent vectors and real [ 1 1
0 0 ] spinors associates to each

covariant derivative ∇a a spinor valued derivative ∇A�A. This derivative is only defined
for real directions and acting on real scalars yet. The first step will therefore be to
extend its definition to complex directions and scalars.
Consider Ua and V a to be real vector fields and f and g to be real scalar fields. Then

Ua∇a(f + ig) := Ua∇a(f) + iUa∇a(g) (2.152)
(Ua + iV a)∇a(f) := Ua∇a(f) + iV a∇a(f) (2.153)

Now we can define the covariant derivative for arbitrary spinors.

Definition 1. A spinor covariant derivative is a map

∇AA� : SB → SB
AA� (2.154)

satisfying, for each ξB, ηB ∈ SB, f ∈ S,

∇AA�(ξB + ηB) = ∇AA�ξB + ∇AA�ηB (2.155)
∇AA�(fξB) = f∇AA�ξB + ξB∇AA�f. (2.156)

This definition can be extended for ∇AA� also acting on SB by requiring the Leibniz
rule.

(∇AA�αB)ξB := ∇AA�(αBξB) − αB∇AA�ξB (2.157)
The extension to ∇AA� acting on SB� and SB� follows from complex conjugation.

∇AA�ζB� := ∇AA� ζ̄B, ∇AA�ωB� := ∇AA�ω̄B (2.158)
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We can now extend ∇AA� to act on a general spinor, again requiring that the Leibniz
rule holds.

(∇AA�χB...C�
D...E�)βB...γC�δD...ηE� := ∇AA�(χB...C�

D...E�βB...ηE�)
−χB...C�

D...E�(∇AA�βB)...ηE� − ... − χB...C�
D...E�βB...(∇AA�ηE�)

(2.159)

The derivative constructed like that is unique if we require vanishing torsion and that it
annihilates εAB.

2.4.6. Spin coefficients

As we defined the connection one-form as the bundle connection of tangent space

∇bE
a
a = Ea

bωb
ab, (2.160)

we will define the spin coefficients as a connection on the spin bundle

∇AA�ε A
B =: Γ C

AA�B ε A
C ,

∇AA�ε B
A = −Γ B

AA�C ε C
A .

(2.161)

Because εAB is constant we get

0 = ∇AA�εBC = ∇AA�
�
ε A

B εAC
�

= εAC∇AA�ε A
B −εBA∇AA�εA

C = ΓAA�BC−ΓAA�CB,

(2.162)
the symmetry of the spin coefficients

ΓAA�BC = ΓAA�CB. (2.163)

We can now establish the relationship between the connection one-forms and the spin
coefficients. Note that in the conventions we use, where we derive the tetrad directly
from the spin basis, the Infeld-van der Waerden symbols g AA�

a which describe the iso-
morphism between spinors and tensors are constant.

ωa
bi = ea

a∇iE
a
b

= ea
a∇i

�
g AA�

b ε A
A ε A�

A�
�

= ea
ag AA�

b
�
ε A�

A� ∇iε
A

A + ε A
A ∇iε

A�
A�

�
= g a

BB� ε B
A ε B�

A�
�
ε A�

A� Γ C
iA ε A

C + ε A
A Γ̄ C�

iA� ε A�
C�

�
g AA�

b

= g a
BB� g AA�

b
�
ε B�

A� Γ B
iA + ε B

A Γ B�
iA�

�
(2.164)

Thus
ωCC�

DD�i = ε C�
D� Γ C

iD + ε C
D Γ̄ C�

iD� . (2.165)
We get the reverse relations by contracting D� with C� or D with C, respectively.

Γ C
iD = 1

2ωCC�
DC�i

Γ̄ C�
iD� = 1

2ωCC�
CD�i

(2.166)
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2.5. Null surfaces

The orthogonal surface (if it exists) to a null vector field ua is called a null hypersurface.
A null surface is a submanifold of a null hypersurface.

Proposition 1. The vanishing of the scalar product between two null vectors ua and va

is equivalent to them being proportional to each other.

uava = 0 ⇔ va = αua (2.167)

Proof. Consider two nonzero null vectors ua and va that point in distinct directions.
Then their sum (ua + va) will no longer be null.

0 �= (ua + va)(ua + va) = uaua + 2uava + vava = 2uava (2.168)

The negation of that proves the "⇒" direction. The inverse is clear by the definition of
a null vector.

This proposition provides that ua is the only null vector (up to proportionality) tangent
to the null hypersurface.

Proposition 2. The metric for a null surface is degenerate, i.e. its determinand van-
ishes.

Proof. For a non-singular coordinate transformation the vanishing of the metric deter-
minand is coordinate independent. That means if we can show it in one coordinate
frame it is true for all coordinate frames. Consider a point P on the null surface. We
can choose a coordinate frame where the metric at P has the form

ds2 = 2dudv − δijdxidxj , (2.169)

or

gµν =

���
0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

""" , (2.170)

where the columns and rows are in the order (v, u, x1, x2).
If M is a manifold with a metric and S is a submanifold of M , then M induces a metric
on S in the sense that vectors in T (S) correspond to vectors in T (M) by embedding S
in M . Since u is tangent to the null hypersurface and v is not, the induced metric is

g(S)
µν =

�0 0 0
0 −1 0
0 0 −1

" . (2.171)

This metric is clearly degenerate and every null surface must be tangent to u so its
metric will also be degenerate. Since we did not specify the point P , this is true for the
whole null surface.
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2.6. The Einstein equation

For the following exposure we rely on [9].
The Einstein equation relates space-time geometry to the energy-momentum tensor of
the present matter.

Rab − 1
2Rgab + Λgab = 8πGTab (2.172)

Rab = Rx
axb is the Ricci tensor which is the trace of the Riemmann tensor. R = Ra

a

is the curvature scalar which is the trace of the Ricci tensor. Together they form the
Einstein tensor Gab = Rab − 1

2Rgab, which is the trace reversal of the Ricci tensor. Λ is
the cosmological constant, and Tab is the energy-momentum tensor of matter.

The vacuum Einstein equation refers to (2.172), but with Tab = 0:

Rab = Λgab. (2.173)

2.7. Some solutions of the Einstein equation

During the history of general relativity, several analytic solutions to the Einstein equation
were found. We will take a short look at some selected solutions which describe the
space-times produced by spherical objects. The Schwarzschild and Kerr solution will be
treated more fully in the next sections.
All solutions discussed below contain black holes, which are regions in space-time from
which no future timelike curve can reach infinity. Black holes are bounded by a null
surface called the event horizon.

2.7.1. The Schwarzschild solution

The Schwarzschild solution was the first nontrivial analytic solution of the Einstein
equation to be found. It assumes the following symmetries:

• vacuum: Space-time is void of matter, Tab = 0, and a cosmological constant is
excluded (Λ = 0).

• static: There exists a timelike Killing vector field (stationary), the orthogonal
spaces of which are the tangent spaces of a spacelike submanifold (hypersurface
orthogonal).

• spherically symmetric: The isometry group has a subgroup the orbits of which
are geometrical spheres S2.

That is what we expect for a space-time outside a spherical uncharged massive object
at rest. The line element for the Schwarzschid solution is

ds2 = fdt2 − 1
f

dr2 − r2dΩ2, f = 1 − 2M

r
, (2.174)
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where t is the Killing time, r is the area radius of the spacelike S2 submanifolds, dΩ2

is the line element for a unit S2, and M := Gm is the Mass parameter, where m is the
mass of the object.
This metric describes a black hole with its event horizon at r = 2M . The singularity
at the horizon is only due to the chosen coordinates. In the later discussion we will
circumvent it by transforming into Kruskal coordinates. The singularity at r = 0 is a
real curvature singularity. Notice that, passing the horizon, ∂t and ∂r switch their roles
as timelike and spacelike vectors, respectively.
If we take the Newtonian limit and identify the gravitational potential with 1

2gtt, we see
that it has the same behaviour as Newton’s gravitational potential Φ = −M

r .

2.7.2. The Reissner-Nordström solution

For this we still consider a spherically symmetric massive object at rest, but with charge$
4π�0

G Q in SI-units. Therefore we assume the following symmetries:
• electrovacuum: The only physical fields present are the electromagnetic field and

the gravitational field. We also exclude a cosmological constant (Λ = 0).
• static: There exists a timelike Killing vector field (stationary), the orthogonal

spaces of which are the tangent spaces of a spacelike submanifold (hypersurface
orthogonal).

• spherically symmetric: The isometry group has a subgroup the orbits of which
are geometrical spheres S2.

The resulting line element is

ds2 = fdt2 − 1
f

dr2 − r2dΩ2, f = 1 − 2M

r
+ Q2

r2 . (2.175)

This again describes a black hole, but now with two horizons r± = M ± &
M2 − Q2.

The first horizon r+ coincides with the Schwarzschild horizon for Q = 0, whereas the
second horizon r− coincides with the singularity at the horizon for Q = 0. For the other
extreme Q = M , the two horizons coincide at r = M . For Q > M there is no horizon
and the singularity is "naked", i.e. not inside a black hole.

2.7.3. The Kerr solution

For this we consider a massive uncharged rotating object in vacuum. Due to the rotation
we expect space-time to no longer be spherically symmetric, but axially symmetric. We
assume following symmetries:

• vacuum: Space-time is void of matter, Tab = 0. We also exclude a cosmological
constant (Λ = 0).

• stationary: There exists a timelike Killing vector field.
• axially symmetric: The isometry group has a subgroup the orbits of which are

geometrical circles S1.
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The resulting line element is

ds2 = ρ2Δ
Σ2 dt2 − Σ2 sin2 θ

ρ2

�
dφ − 2aMr

Σ2 dt

 2
− ρ2

Δ dr2 − ρ2dθ2, (2.176)

where

Δ = r2 − 2Mr + a2, (2.177)
ρ2 = r2 + a2 cos2 θ, (2.178)
Σ2 = (r2 + a2)2 − a2Δ sin2 θ, (2.179)

and a and M are constant parameters. The curvature singularity here is a ring in
the equatorial plane. Outside of the black hole there is a region called the ergosphere,
where the gtt changes its sign. This means that there is no stationary observer in this
region. Rotational energy can be extracted from the black hole via the Penrose process
by dropping matter into the ergosphere and splitting it in a way such that one part
escapes, and the infalling part has negative energy.

2.8. The Schwarzschild Solution

Other than the conditions listed in section 2.7.1, as an additional requirement we assume
that the direction of the static Killing vector is unique.
We can use the second and third requirement to restrain the metric to a special form
that makes it easier to calculate. The general form of the line element is

ds2 = gab(xµ)dxadxb. (2.180)

For our space-time to be stationary means, that we can choose coordinates in such a
way that gab does not depend on the coordinate in Killing time direction (t). Also
hypersurface orthogonality enables us to choose our other three basis vectors in the
tangent space of the spacelike orthogonal surface. Therefore our timelike Killing vector
is always orthogonal to the rest of the basis and we get

ds2 = f(xρ)2dt2 + hij(xρ)dxidxj . (2.181)

We chose f2, because we expect the time to stay at a positive length. Note that we can
always rescale a Killing vector by a constant and it still fulfills the Killing equation

∇(aξb) = 0. (2.182)

Therefore f can without hesitation be replaced by cf , where c is constant.
Because we assume that the static Killing vector is unique modulo rescaling, there can
be no isometry that changes its direction. This means that the orbits of the spherically
symmetric isometry lie entirely insinde the spacelike surfaces Σ orthogonal to the static
Killing vector. The metric of a geometrical sphere is

r2dΩ2, where dΩ2 := dθ2 + sin2 θdφ2, (2.183)

29



in the usual angular coordinates θ and φ. r2 is called the area radius and measures the
area A of the sphere as

r :=
%

A

4π
. (2.184)

We then choose r as a coordinate to select those spheres by carrying them along ∇ar.
This provides ∇ar to be orthogonal to the spheres. We see here, that this coordinate
representation breaks down at points where ∇ar = 0. For the spatial metric we then get

hij(r, θ, φ)dxidxj = −g(r)2dr2 − r2dΩ2. (2.185)

f and g do not depend on θ and φ because of the spherical symmetry.
Putting everything together we get the metric for static spherically symmetric space-
times:

ds2 = f(r)2dt2 − g(r)2dr2 − r2dΩ2. (2.186)

2.8.1. The derivation of the Schwarzschild solution using the tetrad formalism

We will now use the tetrad formalism from section 2.3 and the Einstein equation (2.172)
to calculate f and g. First we need to use (2.96) to decompose the metric into tetrad
components

ηαβeα
a eβ

b = gab. (2.187)

That provides the basis covectors eα. From the orthogonality condition (2.95) we get
the corresponding basis vectors Eα.
Before we start treating the Schwarzschild metric it is useful for the later calculation to
first consider the metric of a geometrical unit-S2. For this we have the metric

dΩ2 = dθ2 + sin2 θdφ2. (2.188)

We choose our Zweibein Ẽι to be

ẽθ = dθ, Ẽθ = ∂θ, (2.189)

ẽφ = sin θdφ, Ẽφ = 1
sin θ

∂φ. (2.190)

By use of the first Cartan structure equation (2.99)

dẽα = −ω̃α
β ∧ ẽβ , (2.191)

we can calculate the connection one-form by comparing it to the outer derivative of
(2.190).

dẽφ = −ω̃φ
θ ∧ ẽθ = −ω̃φ

θ ∧ dθ (2.192)
dẽφ = d sin θ ∧ dφ + sin θ d2φ����

=0

= cos θdθ ∧ dφ = − cos θdφ ∧ dθ (2.193)
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Comparing these two, we can read off

ω̃φ
θ

(2.103)= −ω̃θ
φ = cos θdφ + adθ. (2.194)

The a term must be added because it would not contribute to equation (2.192) since
dθ ∧ dθ = 0. To calculate a, we can use the same method on (2.189):

dẽθ = −ω̃θ
φ ∧ ẽφ = cos θ sin θdφ ∧ dφ + a sin θdθ ∧ dφ = a sin θdθ ∧ dφ, (2.195)

dẽθ = d2θ = 0. (2.196)

Thus we see that a = 0 and

ω̃φ
θ

(2.103)= −ω̃θ
φ = cos θdφ. (2.197)

To calculate the Riemann 2-form, we can now use the second Cartan structure equation
(2.105)

R̃α
β = dω̃α

β + ω̃α
γ ∧ ω̃γ

β . (2.198)
Since dφ ∧ dφ = 0, the second term on the right hand side does not contribute and we
have

R̃φ
θ = dω̃φ

θ = − sin θdθ ∧ dφ = sin θdφ ∧ dθ = ẽφ ∧ ẽθ. (2.199)
Because of the antisymmetry of the Riemann tensor in the first two indices and the
wedge product we get

R̃ι
κ = ẽι ∧ ẽκ. (2.200)

We can now return to our static spherically symmetric metric (2.186), which already
has a convenient form for choosing a tetrad basis.

et = fdt Et = 1
f

∂t (2.201)

er = gdr Er = 1
g

∂r (2.202)

eι = rẽι Eι = 1
r

Ẽι (2.203)

Eι are the directions tangential to the geometric S2s. As before we can use (2.99) to
calculate the connection one-forms. Since f and g both only depend on r, we will use �

to denote a derivative with respect to r.

det = f �dr ∧ dt
(2.99)= −ωt

r ∧ er − ωt
ι ∧ eι (2.204)

f �dt ∧ dr = gωt
r ∧ dr + ωt

ι ∧ eι (2.205)

This allows us to extract

ωt
r = f �

g
dt + adr, ωt

ι = bdeι. (2.206)
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deι = dr ∧ ẽι + rdẽι (2.207)

= −1
g

ẽι ∧ er − ω̃ι
κ ∧ eκ (2.208)

deι (2.99)= −ωι
t ∧ et − ωι

r ∧ er − ωι
κ ∧ eκ (2.209)

We can therefore read off

b = 0, ωι
r = 1

g
ẽι + cdr, ωι

κ = ω̃ι
κ + deκ. (2.210)

d can be eliminated by using (2.103):

ωι
κ = ω̃ι

κ + deκ, (2.211)

ωι
κ

(2.103)= −ωκ
ι

(2.211)= −ω̃κ
ι − deι (2.103)= ω̃ι

κ − deι, (2.212)

thus
d = 0. (2.213)

der now fixes the remaining unknown functions a and c.

der = g�dr ∧ dr = 0 (2.214)
(2.99)= −ωr

t ∧ et − ωr
ι ∧ eι (2.215)

(2.206)(2.210)= −f �f
g

dt ∧ dt − fadr ∧ dt + 1
rg

eι ∧ eι + cdr ∧ eι, (2.216)

thus
a = 0, c = 0. (2.217)

If we define the function h = 1
g , the collected connection one-forms read

ωt
r = ωr

t = f �hdt, (2.218)
ωt

ι = ωι
t = 0, (2.219)

ωι
r = −ωr

ι = hẽι, (2.220)
ωι

κ = ω̃ι
κ. (2.221)

To calculate the Riemann 2-form we will now use (2.105). We will demonstrate the
calculation for the component that is the least straight forward:

Rι
κ = dωι

κ + ωι
ρ ∧ ωρ

κ + ωι
r ∧ ωr

κ

= dω̃ι
κ + ω̃ι

ρ ∧ ω̃ρ
κ� �� �

=R̃ι
κ=ẽι∧ẽκ

−h2ẽι ∧ ẽκ

=
�
1 − h2

�
ẽι ∧ ẽκ.

(2.222)
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Similar calculations for the other components lead to

Rr
t = Rt

r =
�
f �h

�� dr ∧ dt, (2.223)
Rt

ι = Rι
t = −f �h2dt ∧ ẽι, (2.224)

Rr
ι = −Rι

r = −h�dr ∧ ẽι, (2.225)

Rι
κ =

�
1 − h2

�
ẽι ∧ ẽκ. (2.226)

We can now use (2.106) to obtain the Ricci 1-form. For that, note that

Ẽι�ẽι = 2, (2.227)

and
Ẽι� (ẽι ∧ ẽκ) =

�
Ẽι�ẽι

�
ẽκ −

�
Ẽι�ẽκ

�
ẽι = 2ẽκ − δκ

ι ẽι = ẽκ. (2.228)

With that, we get

Rt = Er�Rr
t + Eι�Rι

t = h
�
f �h

�� dt + 2f �h2

r
dt, (2.229)

Rr = Et�Rt
r + Eι�Rι

r = −(f �h)�

f
dr − 2h�

r
dr, (2.230)

Rι = Et�Rt
ι + Er�Rr

ι + Eκ�Rκ
ι = −f �h2

f
ẽι − hh�ẽι + 1 − h2

r
ẽι. (2.231)

The vacuum Einstein equation (2.173) with Λ = 0 is equivalent to

Rα = 0. (2.232)

That leads us to the three equations

�
f �h

�� + 2f �h
r

= 0 (2.233)

− �
f �h

�� − 2fh�

r
= 0 (2.234)

−f �h2

f
− hh� + 1 − h2

r
= 0 (2.235)

Adding the first two equations gives

f �

f
= h�

h
(2.236)

ln f = ln h + Ĉ (2.237)
f = C̃h (2.238)

To eliminate the constant, we can rescale the Killing time

C̃dt → dt, (2.239)
C̃h → h, (2.240)
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so we get
f = h = 1

g
. (2.241)

Using that, equation (2.235) becomes

0 = −2f �f + 1 − f2

r
. (2.242)

With the substitution k := (1 − f2), this reads

0 = k� + 1
r

k, (2.243)

Which is a linear differential equation and has the solution

k = C

r
⇒ f2 = 1

g2 = 1 − C

r
(2.244)

Therefore the Schwarzschild line element is

ds2 =
�

1 − C

r

 
dt2 − 1

1 − C
r

dr2 − r2dΩ2. (2.245)

Comparing its Newtonian limit with the Newtonian gravitation of a spherically sym-
metric object determines the mass of this object to be m = C

2G . With the definition
M := mG, we get

ds2 =
�

1 − 2M

r

 
dt2 −

�
1 − 2M

r

 −1
dr2 − r2dΩ2. (2.246)

As we can see, if we go to large distances (r → ∞), as well as if we set M = 0, we arrive at
the Minkowski metric. Birkhoff’s theorem states that any spherically symmetric vacuum
solution of (2.172) (with Λ = 0) is static and asymptotically flat. That means that we
did not actually need "static" as a requirement as it follows from Birkhoff’s theorem
[2][3]. It also implies that in vacuum (with Λ = 0), the Schwarzschild solution is the
unique spherically symmetric solution.
While the singularity at r = 0 is a real curvature singularity, meaning that the curvature
diverges as r → 0, the one at r = 2M is a coordinate artefact. We can see that, if employ
to null Kruskal-Szekeres coordinates.

uv :=
�

r

2M
− 1

 
e

r
2M (2.247)

u

v
:= e

t
2M (2.248)

ds2 = 32M3

r
e− r

2M dudv + r2dΩ2 (2.249)
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3. The Kerr Metric

In this chapter we derive the Kerr metric. The earth, as approximately rotating ball,
has symmetries which transfer to the surrounding space-time.
This section relies heavily on [2].

3.1. A stationary axisymmetric Space-time

Stationarity means that there exists a timelike Killing vector field ∂t. That means that
the metric is invariant with respect to infinitesimal changes in the direction of this vector.
Axisymmetry on the other hand means that there is an angle ϕ which leaves the metric
invariant. With the other two coordinates being x2 and x3,

gab = gab(x2, x3). (3.1)

In addition to that we will assume that the source is axisymmetric and rotating with ϕ.
This source is invariant with respect to the transformation t → −t, ϕ → −ϕ. Therefore
we also assume the metric to be. All terms which change sign after this transformation
must be zero:

gt2 = gt3 = gφ2 = gφ3 = 0. (3.2)
That leaves us with the block diagonal line element

ds2 = gttdt2 + 2gtφdtdφ + gφφdφ2 +


g22(dx2)2 + 2g23dx2dx3 + g33(dx3)2

�
. (3.3)

We can simplify this metric by using [2]:

Theorem 1. The Riemannian metric

g22(dx2)2 + 2g23dx2dx3 + g33(dx3)2 (3.4)

of a two-dimensional space parametrized by x2 and x3 can always be brought into the
diagonal form

ds2 = ±e2µ


(dx2)2 + (dx3)2

�
(3.5)

by a coordinate transformation.

Although we could turn the non-Killing part of the metric into a multiple of the unit
matrix we will only assume it as diagonal, which leaves us with the choice of an arbitrary
gauge function, as we see in the following proposition.

Proposition 3. Assume a 2-dimensional manifold with a metric with line element

ds2 = e2µ1
�
(dx3)2 + (dx4)2

�
. (3.6)

Then there exists a coordinate transformation turning the line element into

ds2 = e2µ1(dx1)2 + e2µ2(dx2)2 (3.7)

for an arbitrary gauge function f = µ1 − µ2.
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Proof. Consider the coordinate transformation

dx1 := 1√
2

�
dx3 − dx4

�
⇒ (dx1)2 = 1

2
�
(dx3)2 − 2dx3dx4 + (dx4)2

�
,

dx2 := ef

√
2

�
dx3 + dx4

�
⇒ (dx2)2 = e2f

2
�
(dx3)2 + 2dx3dx4 + (dx4)2

�
,

(3.8)

f being an arbitrary function. Multiplying the second square with e−2f and adding them
together we get

(dx1)2 + e−2f (dx2)2 = (dx3)2 + (dx4)2. (3.9)
Plugging that into (3.6) we get

ds2 = e2µ1(dx1)2 + e2(µ1−f)(dx2)2 f=:µ1−µ2= e2µ1(dx1)2 + e2µ2(dx2)2. (3.10)

Therefore we can start with the line element (3.7) and fix the gauge function f = µ1 −µ2
accordingly.
With the help of this theorem the line element for our entire manifold now has the form

ds2 = gttdt2 + 2gtφdtdφ + gφφdφ2 − e2µ2(dx2)2 − e2µ3(dx3)2. (3.11)

We can now take the (t, φ)-part of the metric and express it in terms of new functions

gtt =: e2ν − ω2e2ψ, gtφ =: ωe2ψ, gφφ =: −e2ψ, (3.12)

where, because of the Lorentzian metric signature, e2ν > ω2e2ψ must be fulfilled. With
these choices we can factor the line element into its final form

ds2 = e2νdt2 − e2ψ (dφ − ωdt)2 − e2µ2(dx2)2 − e2µ3(dx3)2. (3.13)

3.2. Derivation of the Kerr Metric

In the last section we derived a convenient general form of the metric for the space-time
outside of rotating axisymmetric bodies. We will now use the Cartan structure relations
and the Einstein equation to calculate its components.
Similar to the Schwarzschild case we first choose an orthonormal tetrad frame

et := eνdt, Et := e−ν (∂t + ω∂φ) , (3.14)
eφ := eψ (dφ − ωdt) , Eφ := e−ψ∂φ, (3.15)
ei := eµidxi, Ei := e−µi∂i, (3.16)

where i ∈ {2, 3}. For this derivation we will write sums over the indices 2 and 3 explicitly
to avoid confusion.
First, we will use Cartan’s first structure relation (2.99) to calculate the connection one-
forms. We will then employ them in Cartan’s second structure relation (2.105) to obtain
the Riemann 2-form, the contraction of which we can use in Einstein’s equation.
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3.2.1. The connection one-forms

In this section we will calculate the connection one-forms for an axisymmetric station-
ary vacuum. We will make the most general ansatz for the connection one-forms and
constrain them step by step until they are fully determined. For now they are

ωt
φ = ωφ

t = atdt + aφdφ +
'

i

aidxi, (3.17)

ωt
i = ωi

t = btidt + bφidφ +
'

j

bjidxj , (3.18)

ωφ
i = −ωi

φ = ctidt + cφidφ +
'

j

cjidxj , (3.19)

ωi
j = −ωj

i = ftij dt + fφij dφ +
'

k

fkij dxk, (3.20)

where the indexed a, b, c, and h are functions which are to be determined. We begin by
using Cartan’s first structure relation on et,

det =
'

i

∂iνeνdxi ∧ dt
(2.99)= −eψωt

φ ∧ (dφ − ωdt)� �� �
A

−
'

i

eµiωt
i ∧ dxi

� �� �
B

. (3.21)

Using the connection one-forms gives

A = −eψatdt ∧ dφ + eψaφωdφ ∧ dt − eψ
'

i

aidxi ∧ dφ + eψ
'

i

aiωdxi ∧ dt, (3.22)

B =
'

i

−eµibtidt ∧ dxi − eµibφidφ ∧ dxi − eµi
'

j

bjidxj ∧ dxi

 . (3.23)

By comparing the different coefficients we get the restrictive conditions

dt∧dφ⇒ 0 = −eψat − eψaφω, (3.24)
dxi∧dφ⇒ 0 = −eψai + eµibφi , (3.25)
dxi∧dt⇒ ∂iνeν = eψaiω + eµibti , (3.26)
dxj∧dxi⇒ 0 =

'
ij

eµibjidxj ∧ dxi. (3.27)

From the first three equations we can read off

at
(3.24)= −aφω, (3.28)

bφi

(3.25)= eψ−µiai, (3.29)

bti

(3.26)= e−µi

�
eν∂iν − eψωai

�
. (3.30)
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Condition (3.27) we cannot treat without the sum, because dxi and dxj are not neces-
sarily independent. Therefore we write out the sum explicitly:

0 = −eµ2b32dx3 ∧ dx2 − eµ3b23dx2 ∧ dx3 = [eµ3b23 − eµ2b32 ] dx3 ∧ dx2. (3.31)

Thus we get
b32 = eµ3−µ2b23 . (3.32)

After these restrictions, the relevant connection one-forms are of the form

ωt
φ = aφ (dφ − ωdt) +

'
i

aidxi, (3.33)

ωt
i = eν−µi∂iνdt + eψ−µiai (dφ − ωdt) +

'
j

bjidxj with b32 = eµ3−µ2b23 . (3.34)

For the next step we consider eφ.

deφ =
'

i



eψ∂iψdxi ∧ dφ − eψ (∂iψω + ∂iω) dxi ∧ dt

�
= −eνωφ

t ∧ dt� �� �
A

−
'

i

eµiωφ
i ∧ dxi

� �� �
B

(3.35)

Using the connection one-forms with the previous restrictions we get

A = −eνaφdφ ∧ dt − eν
'

i

aidxi ∧ dt (3.36)

B =
'

i

−eµictidt ∧ dxi − eµicφidφ ∧ dxi − eµi
'

j

cjidxj ∧ dxi

 . (3.37)

The restrictive conditions are
dφ∧dt⇒ 0 = −eνaφ, (3.38)
dxi∧dφ⇒ eψ∂iψ = eµicφi

, (3.39)
dxi∧dt⇒ −eψ (∂iψω + ∂iω) = −eνai + eµicti , (3.40)
dxj∧dxi⇒ 0 = −

'
ij

eµicjidxj ∧ dxi. (3.41)

The four restrictions arise analogous to the previous calculations.

aφ
(3.38)= 0 (3.42)

cφi

(3.39)= eψ−µi∂iψ (3.43)

cti

(3.40)= e−µi

�
eνai − eψ∂iω

�
− eψ−µi∂iψω (3.44)

c32
(3.41)= eµ3−µ2c23 (3.45)
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At the current stage, the restricted connection one-forms are

ωt
φ =

'
i

aidxi, (3.46)

ωt
i = eν−µi∂iνdt + eψ−µiai (dφ − ωdt) +

'
j

bjidxj

with b32 = eµ3−µ2b23 ,

(3.47)

ωφ
i = e−µi

�
eνai − eψ∂iω

�
dt + eψ−µi∂iΨ (dφ − ωdt) +

'
j

cjidxj

with c32 = eµ3−µ2c23 .

(3.48)

The calculation for the last basis one-form proceeds just as for the previous ones.

dei =
'

j

eµi∂jµidxj ∧ dxi = −eνωi
t ∧ dt� �� �

A

−eψωi
φ ∧ (dφ − ωdt)� �� �

B

−
'

j

eµj ωi
j ∧ dxj

� �� �
C

(3.49)
Using the connection one-forms gives

A = −eψ+ν−µiaidφ ∧ dt − eν
'

j

bjidxj ∧ dt, (3.50)

B = eψ−µi

�
eνai − eψ∂iω

�
dt ∧ dφ + eψ

'
j

cjidxj ∧ dφ − eψω
'

j

cjidxj ∧ dt, (3.51)

C =
'

j

�
−eµj ftij dt ∧ dxj − eµj fφij

dφ ∧ dxj − eµj
'

k

fkij dxk ∧ dxj

�
. (3.52)

The resulting restrictive conditions are

dφ∧dt⇒ 0 = −eψ+ν−µiai − eψ+ν−µiai + e2ψ−µi∂iω, (3.53)
dxj∧dt⇒ 0 = −eνbji − eψωcji + eµj ftij , (3.54)
dxj∧dφ⇒ 0 = eψcji + eµj fφij , (3.55)
dxj∧dxi⇒

'
j

eµi∂jµidxj ∧ dxi = −
'
jk

eµj fkij dxk ∧ dxj . (3.56)

The first three equations give

ai
(3.53)= 1

2eψ−ν∂iω, (3.57)

ftij

(3.54)= e−µj

�
eνbji + eψωcji

�
, (3.58)

fφij

(3.55)= −eψ−µj cji . (3.59)
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For equation (3.56) we can choose values for i to get

i = 2 : ∂3µ2eµ2dx3 ∧ dx2 = −eµ3f223dx2 ∧ dx3, (3.60)
i = 3 : ∂2µ3eµ3dx2 ∧ dx3 = −eµ2f332dx3 ∧ dx2, (3.61)

which give us

f223
(3.60)= eµ2−µ3∂3µ2, (3.62)

f332
(3.61)= eµ3−µ2∂2µ3. (3.63)

To assign the last unknown functions we can exploit the connection one-form’s antisym-
metry

ωi
j = −ωj

i . (3.64)
First, we realize that

fφii = 0, ftii = 0 fkii = 0, (3.65)
which leads us to

cii

(3.59)= 0, bii

(3.58)= 0. (3.66)
For i �= j we get

fφij = −fφji

(3.59),i 
→2⇒ −eψ−µ3c32 = eψ−µ2c23 (3.67)

⇒ eµ3−µ2c23
(3.45)= c32

(3.67)= −eµ3−µ2c23 (3.68)
⇒ c23 = c32 = 0, (3.69)

ftij = −ftji

(3.58),i 
→2⇒ eν−µ3b32 = −eν−µ2b23 (3.70)

⇒ eµ3−µ2b23
(3.32)= b32

(3.70)= −eµ3−µ2b23 (3.71)
⇒ b23 = b32 = 0. (3.72)

That, with the use of (3.58) and (3.59), gives

ftij = 0, fφij = 0. (3.73)

For the non-Killing coordinate coefficients the antisymmetry leads to

fkij = −fkji . (3.74)

Conclusively, the connection one-forms then take the form

ωt
φ = ωφ

t = 1
2eψ−ν

'
i

∂iωdxi, (3.75)

ωt
i = ωi

t = eν−µi∂iνdt + 1
2e2ψ−ν−µi∂iω (dφ − ωdt) , (3.76)

ωφ
i = −ωi

φ = −1
2eψ−µi∂iωdt + eψ−µi∂iψ (dφ − ωdt) , (3.77)

ωi
j = −ωj

i = eµi−µj ∂jµidxi − eµj−µi∂iµjdxj . (3.78)
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3.2.2. The Riemann 2-form

From the previously obtained connection one-forms we can now use Cartan’s second
structure relation (2.105) to calculate the Riemann 2-form.

Rα
β = dωα

β + ωα
γ ∧ ωγ

β (3.79)

For the component Rt
φ, the relevant parts are

dωt
φ = 1

2
'
ij

eψ−ν (∂j(ψ − ν)∂iω + ∂j∂iω) dxj ∧ dxi, (3.80)

'
i

ωt
i ∧ ωi

φ = −
'

i

eψ−ν−2µi

�
e2ν∂iν∂iψ + 1

4e2ψ(∂iω)2
 

dt ∧ dφ. (3.81)

Adding them up yields

Rt
φ = eψ−ν

'
i

−e−2µi

�
e2ν∂iν∂iψ + 1

4e2ψ(∂iω)2
 

dt ∧ dφ + 1
2

'
j

∂j(ψ − ν)∂iωdxj ∧ dxi

 .

(3.82)
The ∂i∂jω term does not contribute because of its symmetry and the contraction with
the antisymmetric dxj ∧ dxi.
For Rt

i we need

dωt
i = e−ν−µi

'
j


�
e2ν (∂j(ν − µi)∂iν + ∂j∂iν) − 1

2e2ψ∂iω∂jω

 
dxj ∧ dt

(3.83)

+1
2e2ψ (∂j(2ψ − ν − µi)∂iω + ∂j∂iω) dxj ∧ (dφ − ωdt)

�
, (3.84)

ωt
φ ∧ ωφ

i = e2ψ−ν−µi
1
2

'
j



−1

2∂iω∂jωdxj ∧ dt + ∂iψ∂jωdxj ∧ (dφ − ωdt)
�

, (3.85)

'
j

ωt
j ∧ ωj

i = e−ν−µi
'

j



e2ν∂iµj∂jνdt ∧ dxj − 1

2e2ψ∂iµj∂jωdxj ∧ (dφ − ωdt) (3.86)

−e2(ν+µi−µj)∂jν∂jµidt ∧ dxi + 1
2e2(ψ+µi−µj)∂jω∂jµidxi ∧ (dφ − ωdt)

�
.

(3.87)
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Written together, those read

Rt
i = e−ν−µi

'
j

� 

e2ν (∂i∂jν + ∂iν∂jν − (∂iν∂jµi + ∂jν∂iµj)) − 3

4e2ψ∂iω∂jω

�
dxj

+ e2(ν+µi−µj)∂jν∂jµidxi

�
∧ dt

+ 1
2e2ψ−ν−µi

'
j

�

∂i∂jω + ∂iω∂j(ψ − ν) + (∂jψ∂iω + ∂iψ∂jω) − (∂jµi∂iω + ∂iµj∂jω)

�
dxj

+ e2(µi−µj)∂jν∂jµidxi

�
∧ (dφ − ωdt).

(3.88)

The relevant terms for Rφ
i are

dωφ
i = 1

2eψ−µi
'

j



− ∂iψ∂jω + ∂jµi∂iω − ∂j∂iω

− (∂iψ∂jω + ∂jψ∂iω)
�
dxj ∧ dt

+ eψ−µi
'

j

[∂j(ψ − µi)∂iψ + ∂j∂iψ] dxj ∧ (dφ − ωdt),

(3.89)

ωφ
t ∧ ωt

i = 1
2eψ−µi

'
j



∂iν∂jωdxj ∧ dt + 1

2e2(ψ−ν)∂iω∂jωdxj ∧ (dφ − ωdt)
�

,

(3.90)'
j

ωφ
j ∧ ωj

i = eψ−µi
'

j



− 1

2∂jω∂iµjdt ∧ dxj + ∂jψ∂iµj(dφ − ωdt) ∧ dxj

+ e2(µi−µj)

1

2∂jω∂jµidt ∧ dxi − ∂jψ∂jµi(dφ − ωdt) ∧ dxi
� �

.

(3.91)

Collecting them gives

Rφ
i = 1

2eψ−µi
'

j

�

∂i(ν − ψ)∂jω − ∂i∂jω + (∂iω∂jµi + ∂jω∂iµj) − (∂iψ∂jω + ∂jψ∂iω)

�
dxj

− e2(µi−µj)∂jω∂jµidxi

�
∧ dt

+ eψ−µi
'

j

� 

∂i∂jψ + ∂iψ∂jψ − (∂iψ∂jµi + ∂jψ∂iµj) + 1

4e2(ψ−ν)∂iω∂jω

�
dxj

+ e2(µi−µj)∂jψ∂jµidxi

�
∧ (dφ − ωdt).

(3.92)
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To calculate Ri
j , we need the terms

dωi
j = eµi−µj

'
k

[∂k(µi − µj)∂jµi + ∂k∂jµi] dxk ∧ dxi

− eµj−µi
'

k

[∂k(µj − µi)∂iµj + ∂k∂iµj ] dxk ∧ dxj ,
(3.93)

ωi
t ∧ ωt

j = 1
2e2ψ−µi−µj (∂iν∂jω − ∂jν∂iω) dt ∧ dφ, (3.94)

ωi
φ ∧ ωφ

j = 1
2e2ψ−µi−µj (∂iω∂jψ − ∂jω∂iψ) dt ∧ dφ, (3.95)'

k

ωi
k ∧ ωk

j =
'

k



eµi−µj ∂kµi∂jµkdxi ∧ dxk − eµj−µi∂kµj∂iµkdxj ∧ dxk

− eµi+µj−2µk∂kµi∂kµjdxi ∧ dxj
�
.

(3.96)

Adding those gives us

Ri
j = 1

2e2ψ−µi−µj [∂jω∂i(ν − ψ) − ∂iω∂j(ν − ψ)] dt ∧ dφ

−
�'

k

eµi+µj−2µk∂kµi∂kµj

�
dxi ∧ dxj

+ eµi−µj
'

k

[∂k∂jµi + ∂k(µi − µj)∂jµi − ∂kµi∂jµk] dxk ∧ dxi

− eµj−µi
'

k

[∂k∂iµj + ∂k(µj − µi)∂iµj − ∂kµj∂iµk] dxk ∧ dxj .

(3.97)

Collecting the previous results, the Riemann 2-form components are

Rt
φ = −

'
i

e−2µi

�
∂iν∂iψ + 1

4e2(ψ−ν)(∂iω)2
 

et ∧ eφ

+
'
ij

eψ−ν−µi−µj ∂j(ψ − ν)∂iωej ∧ ei,
(3.98)

Rt
i =

'
j

e−µi−µj

� 

(∂i∂jν + ∂iν∂jν − (∂iν∂jµi + ∂jν∂iµj)) − 3

4e2(ψ−ν)∂iω∂jω

�
ej

+ eµi−µj ∂jν∂jµie
i

�
∧ et

+ 1
2

'
j

eψ−ν−µi−µj

�

∂i∂jω + ∂iω∂j(ψ − ν) + (∂jψ∂iω + ∂iψ∂jω) − (∂jµi∂iω + ∂iµj∂jω)

�
ej

+ eµi−µj ∂jω∂jµie
i

�
∧ eφ,

(3.99)
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Rφ
i = 1

2
'

j

eψ−ν−µi−µj

�

∂i(ν − ψ)∂jω − ∂i∂jω + (∂iω∂jµi + ∂jω∂iµj) − (∂iψ∂jω + ∂jψ∂iω)

�
ej

− eµi−µj ∂jω∂jµie
i

�
∧ et

+
'

j

e−µi−µj

� 

∂i∂jψ + ∂iψ∂jψ − (∂iψ∂jµi + ∂jψ∂iµj) + 1

4e2(ψ−ν)∂iω∂jω

�
ej

+ eµi−µj ∂jψ∂jµie
i

�
∧ eφ.

(3.100)

Ri
j = 1

2eψ−ν−µi−µj [∂jω∂i(ν − ψ) − ∂iω∂j(ν − ψ)] et ∧ eφ

−
�'

k

e−2µk∂kµi∂kµj

�
ei ∧ ej

+
'

k

e−µj−µk [∂k∂jµi + ∂k(µi − µj)∂jµi − ∂kµi∂jµk] ek ∧ ei

−
'

k

e−µi−µk [∂k∂iµj + ∂k(µj − µi)∂iµj − ∂kµj∂iµk] ek ∧ ej .

(3.101)

3.2.3. The Ricci 1-form

Since we have the Riemann 2-form we can now contract it with the tetrad basis to obtain
the Ricci 1-form (2.106).

Rα =
'

β

Eβ�Rβ
α (3.102)

There are two terms relevant for Rt, which are

Eφ�Rφ
t =

'
i

e−2µi

�
∂iν∂iψ + 1

4e2(ψ−ν)(∂iω)2
 

et, (3.103)

'
i

Ei�Ri
t =

'
i

e−2µi



∂2

i ν + (∂iν)2 − 2∂iν∂iµi − 3
4e2(ψ−ν)(∂iω)2

�
+

'
j

e−2µj ∂jν∂jµi

 et

+ 1
2eψ−ν

'
i

e−2µi



∂2

i ω + ∂iω∂i(3ψ − ν − 2µi)
�

+
'

j

e−2µj ∂jω∂jµi

 eφ,

(3.104)
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yielding

Rt =
'

i

e−2µi



∂2

i ν + ∂iν∂i(ψ + ν − 2µi) − 1
2e2(ψ−ν)(∂iω)2

�
+

'
j

e−2µj ∂jν∂jµi

 et

+ 1
2eψ−ν

'
i

e−2µi



∂2

i ω + ∂iω∂i(3ψ − ν − 2µi)
�

+
'

j

e−2µj ∂jω∂jµi

 eφ.

(3.105)

For Rφ, we need the terms

Et�Rt
φ = −

'
i

e−2µi

�
∂iν∂iψ + 1

4e2(ψ−ν)(∂iω)2
 

eφ, (3.106)

'
i

Ei�Ri
φ = 1

2eψ−ν
'

i

e−2µi



∂2

i ω + ∂iω∂i(3ψ − ν − 2µi)
�

+
'

j

e−2µj ∂jω∂jµi

 et

−
'

i

e−2µi



∂2

i ψ + ∂iψ∂i(ψ − 2µi) + 1
4e2(ψ−ν)(∂iω)2

�
+

'
j

e−2µj ∂jψ∂jµi

 eφ,

(3.107)

to obtain

Rφ = 1
2eψ−ν

'
i

e−2µi



∂2

i ω + ∂iω∂i(3ψ − ν − 2µi)
�

+
'

j

e−2µj ∂jω∂jµi

 et

−
'

i

e−2µi



∂2

i ψ + ∂iψ∂i(ψ + ν − 2µi) + 1
2e2(ψ−ν)(∂iω)2

�
+

'
j

e−2µj ∂jψ∂jµi

 eφ.

(3.108)
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The relevant terms for Ri are

Et�Rt
i = −

'
j

e−µi−µj

�

∂i∂jν + ∂iν∂jν − (∂iν∂jµi + ∂jν∂iµj)

− 3
4e2(ψ−ν)∂iω∂jω

�
ej + eµi−µj ∂jν∂jµie

i

�
,

(3.109)

Eφ�Rφ
i = −

'
j

e−µi−µj

�

∂i∂jψ + ∂iψ∂jψ − (∂iψ∂jµi + ∂jψ∂iµj)

+ 1
4e2(ψ−ν)∂iω∂jω

�
ej + eµi−µj ∂jψ∂jµie

i

�
,

(3.110)

'
j

Ej�Rj
i =

'
k

e−2µk

(∂kµi)2 −
'

j

∂kµi∂kµj − ∂2
kµi − ∂kµi∂k(µi − 2µk)

 ei

+
'

k

e−µi−µk

�
∂i∂k(µi + µk) − 2∂iµk∂kµi

−
'

j

[∂i∂kµj + ∂k(µj − µi)∂iµj − ∂kµj∂iµk]
�

ek,

(3.111)
and, after renaming some summation indices, they result in

Ri = −
'

j

e−2µj

�
∂2

j µi + ∂jµi∂j(ψ + ν − 2µj) +
'

k

∂jµi∂jµk

�
ei

−
'

j

e−µi−µj

�
∂i∂j(ψ + ν) + ∂iψ∂jψ + ∂iν∂jν − [∂i(ψ + ν)∂jµi + ∂j(ψ + ν)∂iµj ]

− 1
2e2(ψ−ν)∂iω∂jω − ∂i∂j(µi + µj) + 2∂jµi∂iµj

+
'

k

[∂i∂jµk + ∂iµk∂j(µk − µi) − ∂iµj∂jµk]
�

ej

(3.112)

3.2.4. The curvature scalar

Even though for a vacuum space-time the Ricci one-form would be sufficient to extract
the relevant differential equations, it is in this case more convenient to use the Einstein
one-form

Gα = Rα − 1
2Reα. (3.113)

For that we need the curvature scalar
R = Eα�Rα. (3.114)
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Et�Rt =
'

i

e−2µi

∂2
i ν + ∂iν∂i(ψ + ν − 2µi) − 1

2e2(ψ−ν)(∂iω)2 +
'

j

∂iν∂iµj



(3.115)

Eφ�Rφ =
'

i

e−2µi

∂2
i ψ + ∂iψ∂i(ψ + ν − 2µi) + 1

2e2(ψ−ν)(∂iω)2 +
'

j

∂iψ∂iµj


(3.116)'

i

Ei�Ri =
'
ij

e−2µi

�
∂2

i µj + ∂iµj∂i(ψ + ν − 2µi) +
'

k

∂iµj∂iµk

�

+
'

i

e−2µi



∂2

i (ψ + ν) + (∂iψ)2 + (∂iν)2 − 2∂iµi∂i(ψ + ν)

− 1
2e2(ψ−ν)(∂iω)2 − 2∂2

i µi + 2(∂iµi)2 +
'

j

�
∂2

i µj + ∂iµj∂i(µj − 2µi)
� �
(3.117)

Putting those parts together gives

R =
'

i

e−2µi

�
2∂2

i (ψ + ν) + (∂iψ)2 + (∂iν)2 + ∂i(ψ + ν)∂i(ψ + ν − 4µi)

− 2∂2
i µi + 2(∂iµi)2 − 1

2e2(ψ−ν)(∂iω)2

+
'

j

�
∂iµj∂i(2(ψ + ν − 2µi) + µj) + 2∂2

i µj +
'

k

∂iµj∂iµk

 �
.

(3.118)

3.2.5. The differential equations

We get the differential equations for the metric components for vacuum space-time by

Rα = 0, Gα = 0. (3.119)

Which one is chosen depends on how convenient the resulting equations are. The tetrad
components of the hidden indices will be denoted by parentheses. At this stage we will
plug in 2 and 3 for the indices i and j and carry out the summations. The resulting
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equations are

Rt(t) = 0 ⇒

����
e−2µ2

�
∂2

2ν + ∂2ν∂2(ψ + ν − µ2 + µ3)
�

+ e−2µ3
�
∂2

3ν + ∂3ν∂3(ψ + ν − µ3 + µ2)
�

= 1
2e2(ψ−ν) �

e−2µ2(∂2ω)2 + e−2µ3(∂3ω)2�
,

(3.120)

Rφ(φ) = 0 ⇒

����
e−2µ2

�
∂2

2ψ + ∂2ψ∂2(ψ + ν − µ2 + µ3)
�

+ e−2µ3
�
∂2

3ψ + ∂3ψ∂3(ψ + ν − µ3 + µ2)
�

= −1
2e2(ψ−ν) �

e−2µ2(∂2ω)2 + e−2µ3(∂3ω)2�
,

(3.121)

Rt(φ) = 0 ⇒ 0 = ∂2
�
e3ψ−ν−µ2+µ3∂2ω

�
+ ∂3

�
e3ψ−ν−µ3+µ2∂3ω

�
, (3.122)

R2(3) = 0 ⇒
�

∂2∂3(ψ + ν) − ∂2(ψ + ν)∂3µ2 − ∂3(ψ + ν)∂2µ3

+ ∂2ψ∂3ψ + ∂2ν∂3ν = 1
2e2(ψ−ν)∂2ω∂3ω,

(3.123)

G2
(2) = 0 ⇒

����
e−2µ3

�
∂2

3(ψ + ν) + ∂3(ψ + ν)∂3(ν − µ3) + (∂3ψ)2�
+ e−2µ2 [∂2ν∂2(ψ + µ3) + ∂2ψ∂2µ3]
= −1

4e2(ψ−ν) �
e−2µ2(∂2ω)2 − e−2µ3(∂3ω)2�

,

(3.124)

G3
(3) = 0 ⇒

����
e−2µ2

�
∂2

2(ψ + ν) + ∂2(ψ + ν)∂2(ν − µ2) + (∂2ψ)2�
+ e−2µ3 [∂3ν∂3(ψ + µ2) + ∂3ψ∂3µ2]
= 1

4e2(ψ−ν) �
e−2µ2(∂2ω)2 − e−2µ3(∂3ω)2�

.

(3.125)

With
β := ψ + ν, (3.126)

equations (3.120) and (3.121), when multiplied by eβ+µ2+µ3 can be written as

∂2
�
eβ+µ3−µ2∂2ν

�
+ ∂3

�
eβ+µ2−µ3∂3ν

�
= 1

2e3ψ−ν


eµ3−µ2(∂2ω)2 + eµ2−µ3(∂3ω)2

�
,

(3.127)

∂2
�
eβ+µ3−µ2∂2ψ

�
+ ∂3

�
eβ+µ2−µ3∂3ψ

�
= −1

2e3ψ−ν


eµ3−µ2(∂2ω)2 + eµ2−µ3(∂3ω)2

�
,

(3.128)

and their sum and difference, respectively, give

∂2


eµ3−µ2∂2eβ

�
+ ∂3



eµ2−µ3∂3eβ

�
= 0, (3.129)

∂2


eβ+µ3−µ2∂2(ψ − ν)

�
+ ∂3



eβ+µ2−µ3∂3(ψ − ν)

�
= −e3ψ−ν



eµ3−µ2(∂2ω)2 + eµ2−µ3(∂3ω)2

�
.

(3.130)

While the sum of (3.124) and (3.125) is the same as (3.129), their difference yields

4eµ3−µ2 (∂2β∂2µ3 + ∂2ψ∂2ν) − 4eµ2−µ3 (∂3β∂3µ2 + ∂3ψ∂3ν)

=2e−β


∂2

�
eµ3−µ2∂2eβ

�
− ∂3

�
eµ2−µ3∂3eβ

��
− e2(ψ−ν)



eµ3−µ2(∂2ω)2 − eµ2−µ3(∂3ω)2

�
.

(3.131)
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We will now group the metric coefficients with the following new functions:

Δ := e2(µ3−µ2), χ := eν−ψ. (3.132)

With these definitions, the line element takes the form

ds2 = eβ


χdt2 − 1

χ
(dφ − ωdt)2

�
− eµ2+µ3

√
Δ



(dx2)2 + Δ(dx3)2

�
. (3.133)

Remember that µ2 − µ3 is the gauge function, that means we can choose Δ as we wish.

3.2.6. The conjugate metric

If we undertake a coordinate transformation

t �→ iφ, φ �→ −it (3.134)

on (3.133), its Killing part transforms as

χdt2 − 1
χ

(dφ − ωdt)2 �→ −χdφ2 + 1
χ

dt2 + ω2

χ
dφ2 + 2ω

χ
dtdφ

= 1
χ

dt2 − χ2 − ω2

χ

�
dφ2 − 2ω

χ2 − ω2 dφdt

 
= 1

χ
dt2 + ω2

χ(χ2 − ω2)dt2 − χ2 − ω2

χ

�
dφ − ω

χ2 − ω2 dt

 2

= χ

χ2 − ω2 dt2 − χ2 − ω2

χ

�
dφ − ω

χ2 − ω2 dt

 2

=: χ̃dt2 − 1
χ̃

(dφ − ω̃dt)2 ,

(3.135)

where
χ̃ := χ

χ2 − ω2 , ω̃ := ω

χ2 − ω2 . (3.136)

Thus if the equations are fulfilled by (χ, ω), they are also fulfilled by (χ̃, ω̃). Those pairs
are called conjugate solutions.

3.2.7. The Papapetrou transformation

In this section we will perform a coordinate transformation that will help to show that
a particular choice we will make below does not sacrifice generality. For this, we choose
the gauge

µ2 = µ3 =: µ, Δ = 1, (3.137)

which leaves us with the line element

ds2 = eβ


χdt2 − 1

χ
(dφ − ωdt)2

�
− e2µ



(dx2)2 + (dx3)2

�
. (3.138)
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In this gauge, equation (3.129) turns into the Laplace equation for eβ :'
i

∂2
i eβ = 0. (3.139)

According to theorem 1 (page 35), we can transform the non-Killing part of the metric
to

ds̃2 = e2µ̃


dρ2 + dz2

�
, (3.140)

where ρ and z are the new coordinates, if one of them satisfies the equation

0 =
'

i

∂i(
√

g∂iρ) =
'

i

∂i(e2µe−2µ∂iρ) =
'

i

∂i∂iρ. (3.141)

For this, we have used that
∂i =

'
j

gij∂j = e−2µ∂i. (3.142)

Therefore we only need a function that satisfies the Laplace equation. Fortunately, as
we have seen earlier in this chapter, eβ is such a function. We then define

ρ := eβ , (3.143)

and get the line element

ds2 = ρ



χdt2 − 1

χ
(dφ − ωdt)2

�
− e2µ



dρ2 + dz2

�
, (3.144)

where we dropped the tilde on µ̃ and µ, χ, and ω are now functions of ρ and z.

3.2.8. A choice of gauge

The symmetry choices we made in the beginning of this chapter are consistent with the
Schwarzschild metric. The aim of this section is to choose the gauge in such a way, that
by appropriate parameter choice we obtain the Schwarzschild metric in standard form.
We will therefore assume properties we observe in the Schwarzschild metric and show
later that these assumptions do not affect generality.
First we will choose as x3 the polar angle θ with respect to the symmetry axis and give
x2 the name r, which is just a renaming and keeps generality.
The first assumption will be that we allow for an event horizon which is a null surface
spanned by the Killing vectors ∂t and ∂φ, which is a natural choice, because we observe
this in the Schwarzschild case. Also in Schwarzschild, the location of the horizon can be
described by one equation

N(r, θ) = 0. (3.145)

The condition for the surface to be null, expresses itself through the equation

gij∂iN∂jN = e−2µ2(∂rN)2 + e−2µ3(∂θN)2 = 0, (3.146)
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or
e2(µ3−µ2)(∂rN)2 + (∂θN)2 = Δ(∂rN)2 + (∂θN)2 = 0. (3.147)

Since the two squares must be positive, this results in the condition that at the horizon

Δ = 0. (3.148)

We use our gauge freedom to choose

Δ = Δ(r). (3.149)

Because of the assumption that the horizon is a null surface spanned by ∂φ and ∂t,
according to proposition 2 (page 26), the determinant of the Killing part of the metric
must vanish on the horizon. This determinant is given by −e2β , and therefore

e2β = 0 on Δ = 0. (3.150)

We will now restrict eβ to be separable and of the form:

eβ =:
√

Δf(θ). (3.151)

Equation (3.129) now gives

∂r


√
Δ∂r

√
Δ

�
+ 1

f
∂2

θ f = 0, (3.152)

and can be solved by

Δ = k2r2 + br + h, f = P sin(kθ) + Q cos(kθ), (3.153)

where k, b, h, P , and Q are constants. A choice which is compatible with the Schwarzschild
solution is

k = 1, b =: −2M, h =: a2, P = 1, Q = 0, (3.154)

yielding
Δ = r2 − 2Mr + a2, f = sin θ. (3.155)

If we plug this into the horizon equation Δ = 0, we see that the horizons are at

r± = M ±
&

M2 − a2. (3.156)

From this we see that the parameter a measures, how much the metric differs from
Schwarzschild, i.e. the "rotation" or non-stationarity of space-time. There are also two
horizons. In the Schwarzschild case, the second horizon coincides with the singularity
r = 0.
In Appendix A.2 we show that the previous choices do not restrict the generality of our
metric. We will now use a new coordinate

µ =: cos θ. (3.157)
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Equations (3.122) and (3.130) can be written as

sin θ∂r

�
Δe2(ψ−ν)∂rω

�
+ ∂θ

�
sin θe2(ψ−ν)∂θω

�
= 0, (3.158)

sin θ∂r (Δ∂r(ψ − ν)) + ∂θ (sin θ∂θ(ψ − ν)) = −e2(ψ−ν) sin θ


Δ(∂rω)2 + (∂θω)2

�
.

(3.159)

With
∂θ = − sin θ∂µ, (3.160)

and the definition
δ := 1 − µ2 = sin2 θ, (3.161)

they become

∂r

�
Δe2(ψ−ν)∂rω

�
+ ∂µ

�
δe2(ψ−ν)∂µω

�
= 0, (3.162)

∂r (Δ∂r(ψ − ν)) + ∂µ (δ∂µ(ψ − ν)) = −e2(ψ−ν)


Δ(∂rω)2 + δ(∂µω)2

�
. (3.163)

With the former definition for χ := eν−ψ we get

∂r

� Δ
χ2 ∂rω

 
+ ∂µ

�
δ

χ2 ∂µω

 
= 0 (3.164)

∂r

�Δ
χ

∂rχ

 
+ ∂µ

�
δ

χ
∂µχ

 
= 1

χ2



Δ(∂rω)2 + δ(∂µω)2

�
, (3.165)

which can, by multiplying them with χ3 and χ2, respectively, also be written as

χ [∂r(Δ∂rω) + ∂µ(δ∂µω)] = 2Δ∂rχ∂rω + 2δ∂µχ∂µω, (3.166)

χ [∂r(Δ∂rχ) + ∂µ(δ∂µχ)] = Δ


(∂rχ)2 + (∂rω)2

�
+ δ



(∂µχ)2 + (∂µω)2

�
. (3.167)

With the new functions
X := χ + ω, Y := χ − ω, (3.168)

these equations take the form
X + Y

2 [∂r(Δ∂rX) + ∂µ(δ∂µX) − ∂r(Δ∂rY ) − ∂µ(δ∂µY )]

= Δ


(∂rX)2 − (∂rY )2

�
+ δ



(∂µX)2 − (∂µY )2

� (3.169)

X + Y

2 [∂r(Δ∂rX) + ∂µ(δ∂µX) + ∂r(Δ∂rY ) + ∂µ(δ∂µY )]

= Δ


(∂rX)2 + (∂rY )2

�
+ δ



(∂µX)2 + (∂µY )2

� (3.170)

Adding and subtracting these equations gives
1
2(X + Y ) [∂r (Δ∂rX) + ∂µ (δ∂µX)] = Δ (∂rX)2 + δ (∂µX)2 , (3.171)
1
2(X + Y ) [∂r (Δ∂rY ) + ∂µ (δ∂µY )] = Δ (∂rY )2 + δ (∂µY )2 . (3.172)
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Now, equations (3.123) and (3.131) can be written as equations for (µ2 + µ3) (details in
appendix A.3).

−µ

δ
∂r(µ2 + µ3) + r − M

Δ ∂µ(µ2 + µ3) = 2
(X + Y )2 (∂rX∂µY + ∂µX∂rY ) (3.173)

2(r − M)∂r(µ2 + µ3) + 2µ∂µ(µ2 + µ3)

= 4
(X + Y )2 (Δ∂rX∂rY − δ∂µX∂µY ) − 3M2 − a2

Δ + 1
δ

(3.174)

Once we know X and Y, we can simply integrate those equations to obtain µ2 + µ3.

3.2.9. The Ernst equation

Equation (3.164) allows for the introduction of a potential Φ:

∂rΦ := δ

χ2 ∂µω, ∂µΦ := − Δ
χ2 ∂rω. (3.175)

The commutation of the partial derivatives demands

∂r

�
χ2

δ
∂rΦ

�
+ ∂µ

�
χ2

Δ ∂µΦ
�

= 0. (3.176)

We now introduce a new function

Ψ :=
√

δΔ
χ

. (3.177)

First, remember that
Δ = r2 − 2Mr + a2, δ = 1 − µ2, (3.178)

and therefore
∂2

r Δ = 2, ∂2
µδ = −2. (3.179)

We then get

∂r

�
Δ∂rχ

χ

 
= 1

2∂2
r Δ� �� �

=1

−∂rΔ∂rΨ
Ψ − Δ∂2

r Ψ
Ψ� �� �

− 1
Ψ ∂r(Δ∂rΨ)

+Δ(∂rΨ)2

Ψ2 , (3.180)

or
Ψ2∂r

�
Δ∂rχ

χ

 
= Ψ2 − Ψ∂r (Δ∂rΨ) + Δ (∂rΨ)2 , (3.181)

and similarly
Ψ2∂µ

�
δ

∂µχ

χ

 
= −Ψ2 − Ψ∂µ (δ∂µΨ) + δ (∂µΨ)2 . (3.182)
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With that, equation (3.165), multiplied by Ψ2, can be written as

Ψ [∂r (Δ∂rΨ) + ∂µ (δ∂µΨ)] = Δ


(∂rΨ)2 − (∂rΦ)2

�
+ δ



(∂µΨ)2 − (∂µΦ)2

�
. (3.183)

Plugging Ψ into equation (3.176) and multiplying by Ψ3 gives

Ψ [∂r (Δ∂rΦ) + ∂µ (δ∂µΦ)] = 2Δ∂rΨ∂rΦ + 2δ∂µΨ∂µΦ. (3.184)

These two equations can be summarized by expressing Ψ and Φ as the real and imaginary
part of a complex function

Z := Ψ + iΦ, (3.185)
to the complex equation

�(Z) [∂r (Δ∂rZ) + ∂µ (δ∂µZ)] = Δ (∂rZ)2 + δ (∂µZ)2 . (3.186)

Introducing as a new function the idempotent transformation

Z =: E + 1
E − 1 , (3.187)

and using

∂iZ = −2 ∂iE

(E − 1)2 , i ∈ {r, µ}, (3.188)

∂i (C∂iZ) = 2
(E − 1)2

�
2C

(∂iE)2

E − 1 − ∂i (C∂iE)
�

, where C = C(i), (3.189)

�(Z) = 1
2 (Z + Z∗) = EE∗ − 1

(E − 1)(E∗ − 1) , (3.190)

leads us to the Ernst equation

(1 − EE∗) [∂r (Δ∂rE) + ∂µ (δ∂µE)] = −2E∗ 

Δ (∂rE)2 + δ (∂µE)2

�
. (3.191)

To get the equation into a more symmetrical form (regarding δ = 1 − µ2), we introduce
the new coordinate

η = r − M√
M2 − a2 , ∂r = 1√

M2 − a2 ∂η, Δ = (M2 − a2)(η2 − 1). (3.192)

We then have

(1 − EE∗)


∂η

�
(η2 − 1)∂ηE

�
− ∂µ

�
(µ2 − 1)∂µE

��
= −2E∗ 


(η2 − 1) (∂ηE)2 − (µ2 − 1) (∂µE)2
�

.
(3.193)

We have seen in section (3.2.6) that with solutions χ and ω there come functions χ̃ and
ω̃ that are also solutions and are of the form

χ̃ = χ

χ2 − ω2 , ω̃ = ω

χ2 − ω2 . (3.194)
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Thus there are also conjugate functions Z̃, Φ̃, Ψ̃, and Ẽ arising in the same way from χ̃
and ω̃ as Z, Φ, Ψ, and E do from χ and ω, that also solve the Ernst equation.

Ψ̃ :=
√

Δδ

χ̃
= eν+ψ χ2 − ω2

χ
= e2ν − ω2e2ψ (3.195)

∂rΦ̃ := δ

χ̃2 ∂µω̃ = Ψ̃2

Δ ∂µω̃, ∂µΦ̃ := − Δ
χ̃2 ∂rω̃ = −Ψ̃2

δ
∂rω̃ (3.196)

Z̃ := Ψ̃ + iΦ̃ =: Ẽ + 1
Ẽ − 1

(3.197)

In reverse, Ψ̃ and Φ̃ can be obtained by

Ψ̃ = �Z̃ = ẼẼ∗ − 1
|Ẽ − 1|2 , Φ̃ = �Z̃ = i(Ẽ − Ẽ∗)

|Ẽ − 1|2 . (3.198)

3.2.10. The Kerr metric

Solving the Ernst equation is everything we need to get an axisymmetric stationary
metric, because we get χ and ω from the Ernst equation and then obtain µ2 + µ3 from
(3.123) and (3.131).
One solution of the Ernst equation is

Ẽ = −pη − iqµ with p2 + q2 = 1, (3.199)

p and q being real constants. We then get

Z̃ = Ψ̃ + iΦ̃ = pη + iqµ − 1
pη + iqµ + 1 (3.200)

and

Ψ̃ = p2(η2 − 1) + q2(µ2 − 1)
(pη + 1)2 + q2µ2 =

Δ − q2

p2 (M2 − a2)(1 − µ2)�
r − M +

√
M2−a2

p

�2
+ q2

p2 (M2 − a2)µ2
(3.201)

Φ̃ = 2qµ

(pη + 1)2 + q2µ2 =
2 q

p2 (M2 − a2)µ�
r − M +

√
M2−a2

p

�2
+ q2

p2 (M2 − a2)µ2
(3.202)

The coices
p =

√
M2 − a2

M
, q = a

M
(3.203)

are consistent with the condition in (3.199), and with the definition

ρ2 := r2 + a2µ2, (3.204)

the potentials read

Ψ̃ = Δ − a2δ

ρ2 , Φ̃ = 2aMµ

ρ2 . (3.205)
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From (3.196) we get

∂rΦ̃ = −4aMrµ

ρ4 = Ψ̃2

Δ ∂µω̃ =
�
Δ − a2δ

�2

ρ4Δ ∂µω̃, (3.206)

∂µΦ̃ = 2aM

ρ4

�
r2 − a2µ2

�
= −Ψ̃2

δ
∂rω̃ = −

�
Δ − a2δ

�2

ρ4δ
∂rω̃, (3.207)

or
∂µω̃ = − 4aMΔµr

(Δ − a2δ)2 , ∂rω̃ = −2aMδ
�
r2 − a2µ2�

(Δ − a2δ)2 . (3.208)

As can be checked by differentiation, a solution for these equations is

ω̃ = ω

χ2 − ω2 = 2aMδr

Δ − a2δ
. (3.209)

The second term comes from the definition of the conjugate solution. Now from (3.195)
and (3.205) we get

Ψ̃ = e2ψ
�
χ2 − ω2

�
= e2ν − ω2e2ψ = Δ − a2δ

ρ2 , (3.210)

thus
ω = 2aMδr

Δ − a2δ

�
χ2 − ω2

�
= 2aMδr

ρ2 e−2ψ. (3.211)

We now use the definition of β = ν + ψ to obtain

Δ − a2δ

ρ2 e2ψ (3.210)= e2β − ω2e4ψ (3.151)(3.155)= δ

ρ4



Δρ4 − 4a2M2δr2

�
, (3.212)

and therefore

e2ψ = δ

ρ2 (Δ − a2δ)


Δρ4 − 4a2M2δr2

�
, (3.213)

ω = 2aMr
Δ − a2δ

Δρ4 − 4a2M2δr2 . (3.214)

With the new function
Σ2 :=

�
r2 + a2

�2 − a2Δδ, (3.215)

we have
Σ2

�
Δ − a2δ

�
= ρ4Δ − 4a2M2δr2. (3.216)

Using that, ω and e2ψ take the simple forms

e2ψ = δΣ2

ρ2 , ω = 2aMr

Σ2 . (3.217)
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Also, the remaining part of the Killing part of the metric can now be calculated:

e2ν = e2β−2ψ = ρ2Δ
Σ2 , (3.218)

χ = eν−ψ = ρ2

Σ2

%
Δ
δ

. (3.219)

That leaves only µ2 + µ3 left to determine. We will use the identity
�
r2 + a2

�
∓ a

√
δΔ

� 
√
Δ ± a

√
δ
�

= ρ2√
Δ ± 2aMr

√
δ. (3.220)

Switching back to X and Y , as given in (3.168), where we use X for both X and Y , X
corresponding to the upper sign and Y to the lower, we have

X = χ ± ω = ρ2√
Δ ± 2aMr

√
δ

Σ2
√

δ

(3.220)=



(r2 + a2) ∓ a

√
Δδ

� 
√
Δ ± a

√
δ
�

Σ2
√

δ
. (3.221)

With

Σ2 = (r2 + a2)2 − a2δΔ =


(r2 + a2) + a

√
δΔ

� 

(r2 + a2) − a

√
δΔ

�
, (3.222)

those cancel to
X =

√
Δ ± a

√
δ


(r2 + a2) ± a
√

δΔ
� √

δ
. (3.223)

Their derivatives with respect to r and µ are

∂rX =
(r − M)ρ2 − 2r

√
Δ

�√
Δ ± a

√
δ
�

√
δΔ



(r2 + a2) ± a

√
δΔ

�2 , (3.224)

∂µX =
µ

√
Δ



r2 + a2(1 + δ) ± 2a

√
δΔ

�


(r2 + a2) ± a

√
δΔ

�2
δ

3
2

. (3.225)

We can now plug those into equations (3.173) and (3.174) for the calculation of (µ2 +µ3).

−µ

δ
∂r(µ2 + µ3) + r − M

Δ ∂µ(µ2 + µ3) = µ

ρ2δΔ


(r − M)(ρ2 + 2a2δ) − 2rΔ

�
(3.226)

2(r − M)∂r(µ2 + µ3) + 2µ∂µ(µ2 + µ3) = 4 − 2(r − M)2

Δ − 4rM

ρ2 (3.227)

These equations can be solved by elimination and integration and yield

eµ2+µ3 = ρ2
√

Δ
. (3.228)
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With eµ3−µ2 =
√

Δ we have determined all metric components

e2ν = ρ2Δ
Σ2 , e2ψ = δΣ2

ρ2 , ω = 2aMr

Σ2 , e2µ2 = ρ2

Δ , e2µ3 = ρ2, (3.229)

which compose the line element of the Kerr metric

ds2 = ρ2Δ
Σ2 dt2 − Σ2 sin2 θ

ρ2

�
dφ − 2aMr

Σ2 dt

 2
− ρ2

Δ dr2 − ρ2dθ2, (3.230)

where

Δ = r2 − 2Mr + a2, (3.231)
ρ2 = r2 + a2 cos2 θ, (3.232)
Σ2 = (r2 + a2)2 − a2Δ sin2 θ, (3.233)

and a and M are constant parameters.
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4. Outlook

In this section, an outlook is provided on how the content of this thesis could be used in
the future. The goal is a general relativistic approximation for slow moving neutrons for
experiments on earth’s surface. One procedure to achieve this might be the following:

• Calculate the spin coefficients for the Kerr metric.
• Transform the 2-spinor version of the Dirac equation in Weyl representation into

the 4-spinor version in Dirac representation.
• Apply the Foldy-Wouthuysen transformation.

Inspired by [6], if we take the 4-spinor of the Dirac equation to be

Ψ =
�

ψR

χR�

�
, (4.1)

the γ-matrices in Weyl representation take the form

γa =
√

2
�

0 εASεA�R�

ε S�
A� ε R

A 0

�
. (4.2)

The Dirac equation then reads

i∇AB�χB� = m√
2

ψA

i∇A�BψB = m√
2

χA� (4.3)

Kerr metric ✲ Tetrad ✲ Connection
1-form

❄

Spin
coefficients

Dirac EQ ✲ Component form,
Weyl rep.

✲

❄

Transform to
Dirac rep.

❄

Foldy-Wouthuysen

To start calculating, (2.4.4) can be used to switch to component notation, which also
brings spin coefficients into play via the covariant derivative (2.4.6). The spin coefficients
can be related to the connection 1-forms ((3.75-3.78) with (3.229)) via (2.166).
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The coordinate form of the 2-spinor version of the Dirac equation can then be rewritten
in 4-spinor notation and then be transformed to Dirac representation. This shapes the
equation into the right form to perform a Foldy-Wouthuysen transformation (2.2.5). If
a Schrödinger equation with the Newton potential term and additional correction terms
is desired, the Dirac equation can be expanded not only in p

mc , but also, since we assume
the distance from the origin r large compared to the traveling distance, in the other
dimensionless quantities GM

rc2 and �
mcr , with c being the speed of light, m the neutron

mass, G the gravitational constant, and � the reduced Planck constant. These quantities
can then be compared with p

mc to determine to which order of magnitude the individual
terms are relevant.

4.1. Things to consider

4.1.1. Laboratory observer

The calculations in section 3 are from the perspective of an asymptotic inertial observer.
Since most experiments are performed from the surface of the rotating earth, it might
be advantageous to transform into that perspective first.

4.2. No Birkhoff theorem

While the Schwarzschild metric perfectly describes a spherical resting earth according
to (2.8) and further the Birkhoff theorem (section 2.8 in combination with [3]), there
is no Birkhoff theorem for general axially symmetric space-times. That means that the
metric outside of a rotating earth might not be accurately described by the Kerr metric.
In this thesis we use the Kerr metric to describe a rotating earth since a << M , but the
validity of this is not proved here and further work is required.
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A. Supplementation to the main text

A.1. Existence of an inverse on the support of an operator in Hilbert space

Consider operators P with eigenbasis |pi >, and Q on Hilbert space, where

P =
'

i

pi|pi >< pi|, Q =
'

j

1
pj

|pj��pj |. (A.1)

j in this case runs over the indices i, where pi �= 0. The summation is to be seen as
abstract and can also be an integral in the case of a continuous spectrum. Then on the
subspace of the support of P ,

PQ = QP =
'
ij

|pi >< pi|pj >< pj | =
'

i

|pi >< pi| = 1. (A.2)

A.2. Proof of generality despite the taken choices

In this section we will prove that the choices taken during the derivation of the Ernst
equation in section 3.2.8 do not limit generality, following [2]. This will be done by
showing that there is a coordinate transformation that brings the metric under the effect
of our choices (3.151) into the Papapetrou form (3.144), which we previously obtained via
a coordinate transformation of the most general metric for axially symmetric stationary
space-times generated by rotating bodies.
The metric we arrived at in section 3.2.8 is

ds2 = eβ


χdt2 − 1

χ
(dφ − ωdt)2

�
− eµ2+µ3

√
Δ



dr2 + Δdθ2

�
, (A.3)

with
eβ =

√
Δ sin θ, Δ = r2 − 2Mr + a2. (A.4)

The Papapetrou form is

ds2 = ρ



χdt2 − 1

χ
(dφ − ωdt)2

�
− e2µ



dρ2 + dz2

�
. (A.5)

Keep in mind that the unknown functions eµ2+µ3 and e2µ, despite their similar origin,
are not the same function, because we used different gauge functions Δ in both cases.
Thus we can absorb a common factor of dr2 and dθ2 into these functions.
Consider the coordinate transformation

ρ = eβ =
√

Δ sin θ, z = (r − M) cos θ. (A.6)

Notice that because we chose ρ = eβ, the (t, φ) parts of the metric are already identical,
meaning we can restrict our attention to the (r, θ) part. For convenience we will perform
the inverse transformation from (ρ, z) to (r, θ).
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It is useful to note that

Δ� = 2(r − M), (A.7)
(r − M)2 = r2 − 2Mr + M2 =: Δ + M̃2. (A.8)

Then the basis forms and their squares are

dρ = r − M√
Δ

sin θdr +
√

Δ cos θdθ, (A.9)

dz = cos θdr − (r − M) sin θdθ, (A.10)

dρ2 = Δ + M̃2

Δ sin2 θdr2 + Δ cos2 θdθ2 + 2(r − M) sin θ cos θdrdθ, (A.11)

dz2 = cos2 θdr2 +
�
Δ + M̃2

�
sin2 θdθ2 − 2(r − M) sin θ cos θdrdθ, (A.12)

leading to

dρ2 + dz2 =
��

1 + M̃2

Δ

�
sin2 θ + cos2 θ

�
dr2 + Δ

��
1 + M̃2

Δ

�
sin2 θ + cos2 θ

�
dθ2

=
�
1 + M̃2

Δ sin2 θ

� 

dr2 + Δdθ2

�
.

(A.13)

The prefactor can be absorbed into e2µ and the equivalence is established.

A.3. Calculation of the equations for (µ2 + µ3)

This section is a supplement to section 3.2.8 after the introduction of X and Y in order
to get to equations (3.173) and (3.174) from equations (3.123) and (3.131).
We will need the following relations throughout the calculation:

χ = eν−ψ, eβ = eν+ψ =
√

Δ sin θ, Δ = e2(µ3−µ2) = r2 − 2Mr + a2, (A.14)

as well as
µ = cos θ, ∂θ = − sin θ∂µ, δ = sin2 θ = 1 − µ2. (A.15)

Also we will define
τ := µ2 + µ3. (A.16)
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The derivatives of the relevant functions can be written as

∂rψ = 1
2∂r [(ν + ψ) − (ν − ψ)] = 1

2

�
∂reβ

eβ
− ∂rχ

χ

�
= 1

2


(r − M)
Δ − ∂rχ

χ

�
, (A.17)

∂rν = 1
2∂r [(ν + ψ) + (ν − ψ)] = 1

2

�
∂reβ

eβ
+ ∂rχ

χ

�
= 1

2


(r − M)
Δ + ∂rχ

χ

�
, (A.18)

∂θψ = 1
2∂θ [(ν + ψ) − (ν − ψ)] = 1

2

�
∂θeβ

eβ
− ∂θχ

χ

�
= 1

2


cos θ

sin θ
− ∂θχ

χ

�
, (A.19)

∂θν = 1
2∂θ [(ν + ψ) + (ν − ψ)] = 1

2

�
∂θeβ

eβ
+ ∂θχ

χ

�
= 1

2


cos θ

sin θ
+ ∂θχ

χ

�
, (A.20)

∂rµ3 = 1
2∂r [(µ3 + µ2) + (µ3 − µ2)] = 1

2

�
∂rτ + ∂r

√
Δ√

Δ

�
= 1

2



∂rτ + (r − M)

Δ

�
, (A.21)

∂θµ2 = 1
2∂θ [(µ3 + µ2) − (µ3 − µ2)] = 1

2

�
∂θτ − ∂θ

√
Δ√

Δ

�
= 1

2∂θτ. (A.22)

We first examine equation (3.123),

∂r∂θ(ψ + ν) − ∂r(ψ + ν)∂θµ2 − ∂θ(ψ + ν)∂rµ3 + ∂rψ∂θψ + ∂rν∂θν

= 1
2e2(ψ−ν)∂rω∂θω,

(A.23)

∂r
∂θeβ

eβ
− ∂reβ

2eβ
∂θτ − ∂θeβ

2eβ



∂rτ + r − M

Δ

�
+ 1

2


cos θ

sin θ

r − M

Δ + ∂θχ∂rχ

χ2

�
= 1

2χ2 ∂rω∂θω,

(A.24)

−r − M

2Δ ∂θτ − cos θ

2 sin θ
∂rτ = 1

2χ2 [∂rω∂θω − ∂rχ∂θχ] , (A.25)

r − M

Δ ∂µτ − µ

δ
∂rτ = − 1

χ2 [∂rω∂µω − ∂rχ∂µχ] . (A.26)
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Then we bring (3.131) into a similar form,

4
√

Δ (∂rβ∂rµ3 + ∂rψ∂rν) − 4√
Δ

(∂θβ∂θµ2 + ∂θψ∂θν)

= 2e−β


∂r

�√
Δ∂reβ

�
− ∂θ

� 1√
Δ

∂θeβ
 �

− 1
χ2


√
Δ (∂rω)2 − 1√

Δ
(∂θω)2

�
,

(A.27)

2r − M√
Δ

∂rτ + 3(r − M)2

Δ
√

Δ
−

√
Δ(∂rχ)2

χ2 − 2√
Δ

cos θ

sin θ
∂θτ − 1√

Δ
cos2 θ

sin2 θ
+ 1√

Δ
(∂θχ)2

χ2

= 4√
Δ

− 1
χ2


√
Δ(∂rω)2 − 1√

Δ
(∂θω)2

�
,

(A.28)

2(r − M)∂rτ − 2cos θ

sin θ
∂θτ + 3(r − M)2

Δ − 3 − cos2 θ

sin2 θ
− 1

= − 1
χ2



Δ



(∂rω)2 − (∂rχ)2

�
−



(∂θω)2 − (∂θχ)2

��
,

(A.29)

2(r − M)∂rτ + 2µ∂µτ

= − 1
χ2



Δ



(∂rω)2 − (∂rχ)2

�
− δ



(∂µω)2 − (∂µχ)2

��
− 3M2 − a2

Δ + 1
δ

.
(A.30)

If we now use
X = χ + ω, Y = χ − ω, (A.31)

in the two equations, we get the desired equations

−µ

δ
∂r(µ2 + µ3) + r − M

Δ ∂µ(µ2 + µ3) = 2
(X + Y )2 (∂rX∂µY + ∂µX∂rY ) , (A.32)

2(r − M)∂r(µ2 + µ3) + 2µ∂µ(µ2 + µ3)

= 4
(X + Y )2 (Δ∂rX∂rY − δ∂µX∂µY ) − 3M2 − a2

Δ + 1
δ

.

(A.33)
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B. Useful proofs

This section supplements the main text with useful and interesting proofs.

B.1. Spinors

B.1.1. Symmetry decomposition of a generic spinor

Proposition 4. Every spinor can be decomposed into a sum of products of a symmetric
spinor and ε-spinors.

Proof. First it is helpful to introduce some definitions for clumped indices:

A := A1...An, (B.1)
A ij := Ai...Aj , (B.2)
Ai := A1...Ai−1Ai+1...An,

and similar for more than one lower index of clumped indices.
(B.3)

If {} is used on indices it is a symmetrisation, only that the indices inside clumped
indices are also affected.
We will start with the following two identities.

χ{A }D = 1
n

n'
j=1

χ{Aj }AjD (B.4)

χ{An }AnD − χ{Aj }AjD

(2.137)= εAjAn
χ X

{Ajn X} D (B.5)

If we now plug (B.5) into (B.4) for every term except the j = n one, we obtain

χ{A }D = χ{An }AnD + 1
n

n−1'
j=1

εAnAj
χ X

{Ajn X} D , (B.6)

χ{An }AnD = χ{A }D − 1
n

n−1'
j=1

εAnAj
χ X

{Ajn X} D . (B.7)

We can now start with a general tensor where we assume the first index to be the
symmetrised index block of the left hand side of (B.7), which leaves us with a spinor
with two symmetrised indices, and spinors with less indices than the original one in a
product with an ε-spinor. This procedure can be repeated with the former spinor until
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it leaves us with a symmetric spinor and a sum of ε-products.

χA = χ{A1}A2A3...An

(B.7)= χ{A1A2}A3...An
− 1

2

2−1'
j=1

εA2Aj
χ X

X A3...An

χ{A1A2}A3A4...An

(B.7)= χ{A1A2A3}...An
− 1

3

3−1'
j=1

εA3Aj
χ X

{A
(1)(2)

j X} A4...An

...

(B.8)

Written compactly, this reads

χA = χ{A } −
n'

i=2

1
i

i−1'
j=1

εAiAj
χ X

{A
1(i−1)

j X} A (i+1)n
. (B.9)

This can be repeated with the spinors lower in index number until there are only sym-
metric ones left and the original spinor is fully decomposed into symmetric spinors.

B.1.2. Zero-valued contractions of symmetric spinors

The proofs in this section follow [6]

Proposition 5. At every point in space-time,

χA
B1...Bk

ξB1 ...ξBk = 0 ∀ ξB ∈ SB ⇔ χA
(B1...Bk) = 0. (B.10)

Proof. The backward direction is clear since ξB1 ...ξBk is symmetric in B1...Bk and
therefore

χA
B1...Bk

ξB1 ...ξBk = χA
(B1...Bk)ξ

B1 ...ξBk . (B.11)

For the forward direction set ξB = ηB + λζB. Then

χA
B1...Bk

ξB1 ...ξBk =χA
(B1...Bk)η

B1 ...ηBk + NλχA
(B1...Bk)ζ

B1ηB2 ...ηBk

+...+λkχA
(B1...Bk)ζ

B1 ...ζBk .
(B.12)

Since the left hand side vanishes and λ is arbitrary, every term on the right hand side
must vanish independently. But for arbitrary ξB, for χA

(B1...Bk)ζ
B1ηB2 ...ηBk to vanish,

χA
(B1...Bk)η

B2 ...ηBk must vanish. Since ηB is arbitrary, this argument can be repeated
until the result is obtained.

Proposition 6. At every point in space-time,

ψ B
(A1...Ar

φ C
Ar+1...Ar+s) = 0 ⇔ ψ B

(A1...Ar) = 0 ∨ φ C
(A1...As) = 0. (B.13)
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Proof. According to proposition 5, the left hand side is equivalent to

ψ B
A1...Ar

ξA1 ...ξAr φ C
Ar+1...Ar+s

ξAr+1 ...ξAr+s . (B.14)

But that means that

ψ B
A1...Ar

ξA1 ...ξAr = 0 ∨ φ C
A1...As

ξA1 ...ξAs = 0. (B.15)

Applying proposition 5 to either of those equations proves the claim.
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