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Abstract

Background: On January 8, 2021 a power outage in almost all of Transylva-

nia/Romania led to a critical drop in frequency. For the first time since Novem-

ber 4, 2006 the normal range was undercut with 49.746 Hz. Incidents like this

make an analysis of balancing energy demand inevitable. Method: A two-stage

model was developed. In stage I, an attempt is made to predict the absolute

load, solar and wind forecast errors. Then the results of the first stage are used

as explanatory variables for the analysis of the absolute control area imbalance

in stage II. Results: Using a two-stage modelling approach proves to be be-

neficial, mostly due to the fact that the absolute wind forecast error shows a

significant influence on the absolute control area imbalance. The final results of

a model utilizing only quantile regression showcase a stable performance in all

comparisons and a reduction in MAE and RMSE by 11% and 5% respectively

when compared to the best performing benchmark (a mean forecast).

Zusammenfassung

Hintergrund: Am 8. Januar 2021 führte ein Stromausfall in fast ganz Sieben-

bürgen/Rumänien zu einem kritischen Frequenzabfall. Zum ersten Mal seit

dem 4. November 2006 wurde der Normalbereich mit 49,746 Hz unterschrit-

ten. Störungen dieser Art machen eine Analyse des Regenlenergiebedafs un-

umgänglich. Methode: Es wurde ein zweistufiges Modell entwickelt. In Stufe I

werden mathematische Modelle entwickelt um die absoluten Last-, Solar- und

Windprognosefehler zu beschreiben. Die Ergebnisse der ersten Stufe werden als

erklärende Variablen für die Analyse des absoluten Wertes der Deltaregelzone

in Stufe II verwendet. Ergebnisse: Die Verwendung eines zweistufigen Model-

lierungsansatzes erweist sich als vorteilhaft, hauptsächlich aufgrund der Tatsa-

che, dass der absolute Windprognosefehler einen signifikanten Einfluss auf den

absoluten Wert der Deltaregelzone hat. Die Ergebnisse des Modells, das aus-

schließlich Quantile Regression verwendet, zeigen eine stabile Leistung in allen

Vergleichen und eine Verringerung von MAE und RMSE um 11% bzw. 5% im

Vergleich zum Benchmark mit der besten Leistung (eine Durchschnittsprogno-

se).
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Chapter 1

Introduction

In Austria, the liberalization of the electricity and natural gas markets took

place in 2001 and 2002. Clear rules were required for all market participants, so

that fair competition could develop in the electricity market. As a regulatory

authority in Austria, the legislator established the E-Control on the basis of the

Energy Regulatory Authorities Act, which is now responsible for establishing

and verifying these regulations. It is their task as regulator to monitor the

implementation of the liberalization of the Austrian electricity and gas market,

to accompany and, if necessary, to intervene and regulate.

The regulation has two components: the ex-ante regulation, through which the

framework conditions or rules under which competition is to take place are set

before trading, and the ex-post regulation, through which competition violations

can be identified and eliminated. With the instrument of market monitoring,

E-Control is able to follow and analyze developments in the market.

In June 2019 there was an enormous electricity bottleneck in Germany. On

three days in 2019, the four transmission system operators (TSOs) in Germany

only managed to prevent a widespread collapse of the power supply with great

effort. The reason for this was that forecasts of the power supply were off by

such a large margin that it became necessary several times to feed large amounts

of balancing energy into the grid in order to prevent a widespread collapse of

the power grid.

Research into the causes goes in two directions: on the one hand, the forecast

errors and breaches of duty in the involved balancing groups concerned and, on

the other hand, any market manipulation that may be present by the market

participants. This is just one of many events, which can also occur in Austria,

1
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where a large amount of balancing energy is required [Röhrlich, 2019].

On January 8, 2021 a power outage in almost all of Transylvania/Romania

led to a critical drop in frequency. For the first time since November 4, 2006

the normal range (49.8 - 50.2 Hz) was undercut with 49.746 Hz and thus this

represents the second most major disturbance ever in the European network

system, since 2006.

The European power grid is normally synchronized to compensate for any fluctu-

ations (most of the time the Frequency Containment Reserve (FCR) is enough).

If the frequency falls too low, this synchronization will be interrupted automat-

ically. So-called temporary network splitting occurs, in which the network is

split up. There are a number of security mechanisms that take effect in such a

case. In order for the frequency to slip back into the normal range, reserves of

several power plants were activated (also in Austria). After about an hour, the

normal state was restored [Futurezone, 2021].

In this thesis the focus is on forecast errors as well as on the control area

imbalance and therefore the recent developments in the electricity market are

examined. During the last few years there have been a lot of developments

in the electricity market, which affect the requirements of balancing energy.

Rising CO2 emissions and global warming led to an expansion of renewable

and sustainable forms of energy generation. In particular, electricity generation

through wind and solar systems has become increasingly important. Measures

like these are undoubtedly necessary. However renewable forms of energy are

coupled with an increased volatility, which further increases the demand of

balancing energy.

The exact demand of balancing energy is difficult to predict. In the context

of this thesis, the preparation and mathematical analysis of given input data

(such as wind and solar forecast data as well as supply and demand data on the

Austrian electricity market) should be carried out as well as their connection

with the forecast error (for renewable energies; subsequently the forecast of the

need for of balancing energy) on the electricity market.

The aim is to create a day ahead forecast for the absolute control area imbalance

where the absolute load, solar and wind forecast errors are used as explanatory

variables. In the first chapter, details on balancing energy are explained in order

to provide an understanding of the following analysis. In this context there are

also scientific papers presented in the section called ”State of the Art”. Next, a

CHAPTER 1. INTRODUCTION 2
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descriptive statistical analysis of the given data (ranging from 2015 to 2020) is

carried out.

The results of the descriptive analysis will show it is reasonably to restrict the

data to the years 2019 and 2020. The data from 2019 are used for modeling the

three different absolute forecast errors (load, solar, wind) as well as the control

area imbalance and those from 2020 are used as test data to check the quality

of the different modeled forecasts.

The model is developed in two stages. In the first stage, the model deals with

the analysis of the absolute forecast error of load, solar and wind and uses a

multiple linear regression, a tobit model (only for the solar forecast error) and a

quantile regression. Then the results of the first stage (for the predicted absolute

load, solar and wind forecast errors) are used as an input factor for the analysis

of the absolute control area imbalance in the second stage. All results (both

stages) are documented in this thesis.

CHAPTER 1. INTRODUCTION 3



Chapter 2

Basic Explanations

The energy system is a network of different actors. Supply and demand are

created by producers and consumers. The exchange of electricity takes place

through the transmission network, which joins all participants. An essential

property of electricity grids is that electricity cannot be stored, except for small

storages in form of batteries, or large storages in different forms of energy (e.g.

potential energy of pumped water). In order to make electricity available for

the consumers, certain framework conditions must be adhered to, e.g. the grid

frequency must always be at 50 Hz. This is only possible as long as the amount

fed in is equal to the amount withdrawn.

There exists free competition in Austria concerning power generation, trading

and sales, and there is a so-called ”balancing group system” defined. A balancing

group is the combination of suppliers and customers in a virtual group within

which there is a balance between supply and demand. As long as this balance is

achieved, even if there are some deviations from planned set-points, no balancing

energy from the control area is activated. A control area can consist of many

balancing groups. Every market participant is obliged to join a balancing group.

The Austrian Power Grid is the transmission system operator (TSO) and has

a monopoly position. The TSO is responsible for the proper metering of feed-

in and consumption, the confidential administration of the data as well as the

balanced operation of the specific control area. Balancing energy is provided by

qualified producers, and organized by the TSO through an auction process.

4
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2.1 Renewable Energies on the Austrian Elec-

tricity Market

The generation mix of Austrian power plants is characterized by renewable en-

ergies and in particular by clean hydropower. The flexible mix is complemented

by highly efficient thermal power plants. Due to this, in comparison to other

European countries, Austria is one of the countries with the lowest emissions

per kWh. With a share of 60.5%, hydropower is the most important source of

electricity in Austria. The second pillar of the flexible Austrian energy mix are

thermal power plants with a share of 24%. New renewable forms of energy - such

as wind, solar and geothermal energy - are making an increasing contribution

to domestic electricity generation [Österreichs E-Wirtschaft, 2018].

Austria’s first wind turbine went online in 1994, but it took until 2002 for

the expansion of wind power to really get started. From then on, a separate

green electricity law regulated electricity generation by wind turbines. The first

expansion phase was from 2002 until 2006. The expansion further continued

since 2012 due to the Green Electricity Act. Currently, in Austria every year

around 63 TWh of electricity are consumed. At the end of 2017, wind turbines

provided an annual generation of 7 TWh, that is 11% of the domestic electricity

demand. In a second expansion phase, wind power output doubled in just four

years. The total installed capacity by the end of 2020 was 3198 MW [ENTSO-E,

2020a], [InteressengemeinschaftWindkraft, 2020], [WienEnergie, 2019].

The Austrian government itself has set the goal of covering 100 percent (na-

tionally balanced) of electricity consumption in Austria from renewable energy

sources by 2030. Accordingly, by 2030, enough solar power is to be added that

11 TWh will come from solar systems. This will increase the installed solar

capacity from currently 1851 MW (2021) to around 13 GW - within the next

10 years [APG, 2020].

2.2 Balancing Energy

Balancing energy is a reserve to compensate fluctuations in the electricity grid.

These fluctuations are expressed in a decrease or increase in the power grid fre-

quency of nominally 50 Hz. When using balancing energy, electricity can both

be taken from the power grid (negative balancing energy) as well as supplied

(positive balancing energy). Balancing energy can be provided by power gen-

eration systems and electricity storage systems, negative balancing energy can

also be provided by electricity consumers.

CHAPTER 2. BASIC EXPLANATIONS 5
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The expansion of renewable energies leads to fluctuations in the electricity grid

due to the growing influence of wind and solar energy. Not only the weather, but

also electricity consumers cause fluctuations due to irregular demand profiles.

Nevertheless, power outages are very rare in Austria - thanks to the balancing

energy and an ever better forecast quality for power generation and consump-

tion.

At the same time, an increasing share of electricity power plants in Austria are

able to quickly provide large amounts of balancing power as Frequency Con-

tainment Reserve (FCR), Automatic Frequency Restoration Reserve (aFRR)

and Manual Frequency Restoration Reserve (mFRR) . While the FCR is bal-

anced continuously and within seconds based on a grid frequency measure-

ment, the TSO issues call-up commands for the aFRR and the mFRR, which

must be answered by the connected systems within 5 or 15 minutes, respec-

tively [Kraftwerke, 2020].

Figure 2.1: Timing - Austrian Frequency Reserve [Kraftwerke, 2020]

The quantities of balancing energy are subject to certain conditions to ensure

the proper operation of the control area. The Austrian control area is linked to

other control areas in Europe. This enables the exchange of electricity between

the different zones in Europe. The result is that imbalances in one control area

are carried over to others. The FCR is therefore used or made available by

all members of the European Network. Activation takes place automatically

depending on the measured network frequency and independent of the source.

In contrast, the aFRR and the mFRR are activated in control areas with per-

sistent imbalances. Therefore, the focus in this thesis is on the analysis of the

quantities of aFRR and mFRR.

Situations that require balancing energy are difficult to predict. If that were

not the case, it would be possible to include the necessary amount of electricity

CHAPTER 2. BASIC EXPLANATIONS 6
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in the standard planning. There are many discussions why the total amount

of necessary balancing energy did not increase proportionally to the share of

renewable energies in the electricity grid. Therefore the question about the

reasons why and when there is a need for balancing energy arises.

This thesis aims to analyze the various dependencies and effects of given input

parameters (like renewable forecasts, load forecasts and power exchange prices)

on the needed quantity of aFRR and mFRR (the sum being called ”control

area imbalance”) in the Austrian control area managed by the Austrian Power

Grid AG (APG). Due to technical and economic reasons, as already mentioned

above, balancing energy is divided into three categories [APG, 2020]:

1. Frequency Containment Reserve (= ”Primärregelreserve”)

The FCR is provided by power plants and is required to automatically

compensate for an imbalance between generation and consumption within

a few seconds through appropriate activation and thus to stabilize the

frequency in the connected power grid. The FCR is automatically acti-

vated through the use of turbine regulators in power plants - based on the

respective operating point. The activation is triggered by deviations of

the frequency from the setpoint (50 Hz), whereby the activated FCR also

increases with increasing frequency deviation. The maximum activation

occurs with a frequency deviation of 200 mHz and above - the FCR is

then exhausted. The maximum activation must be achieved no later than

30 seconds after the occurrence of the corresponding frequency deviation.

2. Automatic Frequency Restoration Reserve (= ”Sekundärregelreserve”)

The aFRR is required to relieve the activated FCR and again ensure its

future availability. The aFRR is activated automatically so that the FCR

is relieved and free so that it can again fulfill its function of network

balancing. The aFRR is activated if the influence on the network lasts

longer than 30 seconds or it is assumed that it will last longer than 30

seconds. Before that, the deviation of the network is only covered by the

FCR.

3. Manual Frequency Restoration Reserve (= ”Tertiärregelreserve”)

The mFRR is activated if the deviation in the control area lasts longer

than 15 minutes. The mFRR is used to relieve the aFRR so that it is free

again in order to support the FCR or make it available again if necessary.

The mFRR can be activated automatically or manually.

CHAPTER 2. BASIC EXPLANATIONS 7
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The control area imbalance [APG, 2020] is the surplus or deficit of electrical

energy in the control area. It equals the sum of all balancing group deviations

(balancing energy) and is calculated as sum of the following components:

• aFRR and mFRR,

• Unintended exchange 1 with the continental European synchronous net-

work.

2.3 Separation of the Germany-Austria Electric-

ity Price Zone

In May 2017, the German and Austrian regulatory authorities (BNetzA and

E-Control) agreed to separate the common electricity price zone2 that has ex-

isted since the electricity market was liberalized. As the TSO, the APG is

responsible for the technical implementation of this decision. The separation

of the Germany-Austria electricity price zone came into effect on October 1,

2018. Since that day, the cross-border exchange of electricity is no longer pos-

sible without restrictions as before, but is guaranteed up to the extent of 4.9

GWh. This corresponds to around half of the Austrian consumption at peak

times [APG, 2020].

2.4 Power Exchanges

Whether electricity is needed for the current (intraday (ID)) or the following day

(day ahead (DA)), EPEX Spot (spot market of the European Power Exchange)

is the leading energy exchange for spot markets. EPEX Spot covers the markets

in France, Germany, Austria and Switzerland. Together these countries already

consume more than a third of the overall European electricity. The company

is based in Paris and has branches in Leipzig, Bern and Vienna. The following

two sections explain the timings and deadlines for the different products in more

detail.

1These are deviations between the setpoint and actual values of the exchange between
neighboring power grids. The unintentional exchange of the control area is the amount of
energy that the control area takes from the grid area of the Regional Group Continental
Europe or is delivered to it. [APG, 2020]

2A bidding zone - also known as the electricity price zone - is the largest geographical area
in which electricity can be traded on the wholesale market without capacity allocation. The
assumption is that no bottlenecks occur within a bidding zone, so the exchange of energy
is possible without restrictions. This means that there is a uniform market price within a
bidding zone. [APG, 2020]

CHAPTER 2. BASIC EXPLANATIONS 8
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2.4.1 Day Ahead

Definition

The term day ahead trading refers to the trading of electricity for the following

day, which takes place on the EPEX Spot in Paris, on the EXAA in Vienna

(Energy Exchange Austria) or in the form of OTC (over-the-counter trading)

trades, which take place via contracts negotiated outside of exchanges. The

term auction market is also used sometimes [Kraftwerke, 2020].

Timing

The EPEX spot market is divided into four different market regions: France,

Switzerland, Germany and Austria. For the individual market regions, trading

is again differentiated according to the respective transmission system operator.

In the German and Austrian markets, the bids for the auctions for the next day

must be submitted by 12 noon. The market results are published at 12:40 p.m.

each day [Kraftwerke, 2020].

2.4.2 Intraday

Definition

Intraday electricity trading takes place both on spot markets such as the EPEX

Spot and in OTC trading, i.e. via contracts negotiated outside of exchanges

between electricity buyers and sellers. It describes the continuous purchase and

sale of electricity that is delivered on the same day. That is called a short-term

electricity wholesale, especially in contrast to electricity trading with longer lead

times on the futures market [Kraftwerke, 2020].

Timing

In short-term continuous electricity trading, electricity deliveries are usually

traded in both 15-minute and hourly blocks. It is also possible to trade larger

blocks. The possibility of quarter-hourly trading is probably the most important

characteristic of intraday trading. A position can be traded up to 5 minutes

before delivery begins. Intraday trading opens at 3 p.m. the previous day. At

this time, the continuous trading of hourly products and, since December 9,

2014, the opening auction of quarter-hour products will start. The latter then

be traded continuously for the following day from 4 p.m.

CHAPTER 2. BASIC EXPLANATIONS 9
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One difference to day ahead trading is the price formation on the intraday

market: While day ahead trading is always based on the principle of the market-

clearing price, in which the last bid that was accepted determines the price

(”marginal pricing”) for all transactions (”Merit-Order principle” 3), the prices

in continuous intraday trading are determined using the ”pay-as-bid” method

[Kraftwerke, 2020].

3A merit order is the order in which the units in a power plant system are used. This order
is determined by the marginal costs of the individual power generator.

CHAPTER 2. BASIC EXPLANATIONS 10



Chapter 3

State of the Art

In this section, scientific work will be presented that has dealt with the modeling

of balancing energy in recent years. Due to constant regulatory changes in the

electricity markets and thus also in the markets for balancing energy in recent

years, there are a variety of approaches to estimate the maximum demand of

balancing energy. This is necessary for TSOs to safely procure enough balancing

capacity, in order to ensure grid stability at (almost) all times. A short presen-

tation of different approaches to estimate sensible upper bounds of this demand

for balancing energy seems useful. In general one can choose between static and

dynamic, as well as between deterministic (heuristic) and probabilistic methods

in order to estimate the needed balancing energy. As a reminder, the aFRR and

mFRR are part of the control area imbalance. Therefore, the procured quantity

of these products plays a role in the consideration and analysis of the control

area imbalance.

3.1 Methods to estimate Balancing Demand

In contrast to the determination of the aFRR and mFRR, the need for FCR

is determined at the European level. The failure of 3000 MW of generation

or consumption is assumed as a reference incident for the continental European

area. The demand of FCR is allocated to the TSOs of the area on the basis of an

annually recalculated distribution key. The annual net electricity generation and

the annual net electricity consumption in the control area are decisive for this

[Amprion, 2020]. A distinction is made between different methods to estimate

the needed balancing energy. These methods are explained in more detail below.

11
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3.1.1 Static Approaches

Static approaches define the balancing energy to be provided for longer periods

of time and do not take into account any forecasts for changing influencing

factors within these periods. Thus the result is a static value for the entire

period. An example of a static algorithm is the Graf-Haubrich method. In

Germany, aFRR and mFRR are provided by the TSOs. The amount tendered

is determined every three months for the upcoming three months using the

Graf-Haubrich method to dimension the balancing energy demand based on

the errors that occurred in the previous twelve months. The idea behind this

method is that the various errors that occur (which lead to a need of balancing

energy) belong to an overall error distribution. In this way, the control power

requirement can be determined [Jansen, 2014], [Jost et al., 2015a].

3.1.2 Dynamic Approaches

Dynamic approaches take changing influences on the balancing energy demand

within the periods for which the estimation is carried out into account. At

the same time, these periods are significantly shorter. E.g. estimation takes

place once a day for the following day, whereby a constant value for each hour

is set. In research these dynamic methods gain in importance due to their

advantages with high proportions of fluctuating feed-in, e.g. because of wind or

solar power [Jost et al., 2015a].

3.1.3 Deterministic (heuristic) Approaches

Some deterministic approaches define the demand of balancing energy to be

kept available based on a specific event that is to be controlled, such as for

example the failure of the largest power plant or another component (called

n-1 criterion). When estimating the FCR in Central Europe for example the

simultaneous failure of the two largest power plants with the amount of 3000

MW is the reference incident that should be controlled with the help of the

FCR.

Heuristic methods are based on empirical values, e.g. a certain percentage of

the annual maximum load. However, it does not take into account how often the

reserve is not sufficient or what proportion of the required balancing energy can

actually be covered, which is a serious disadvantage compared to probabilistic

procedures [Jost et al., 2015a].
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3.1.4 Probabilistic Approaches

Probabilistic approaches assume an acceptable probability of grid failure. The

probabilistic method can basically choose between simulative and statistical

methods.

Simulative methods simulate the behavior of individual components within the

energy supply system and consider failures with certain probabilities. An ex-

ample for this method is the Monte Carlo Simulation.

Statistical processes determine the demand of balancing energy on the basis of

historical data. The most simple method is to measure the balancing energy

used over a certain period of time and then to use this to determine a probability

distribution of the balancing energy calls. In the Graf-Haubrich method (used

in Germany), the probability distributions for different errors such as power

plant failures, load forecast errors, etc. are determined and then folded into an

overall error distribution under the assumption of stochastic independence [Jost

et al., 2015a].

3.2 Econometrics and Time Series Analysis

Econometrics and time series analysis are common tools in the context of the bal-

ancing energy market. In [Wenzel, 2011] the sum of aFRR and mFRR together

was considered. The sum was analyzed by splitting it into a trend-component,

two periodic components (with an hourly and daily period) and a remainder

term, that was modeled using an ARIMA model. In [Möller et al., 2011] not

the amount of balancing energy but instead imbalances (inside balance groups)

are considered. This is closely related, but not identical. A detailed explana-

tion about the difference can be found in [E-Control, 2020]. The focus in [Möller

et al., 2011] is on the consideration of the residuals in the context of SARIMA

models of time series, including the implementation of forecasts as well as the

evaluation of the forecasts. In [Kurscheid and Düvelmeyer, 2009] calls of mFRR

are modeled as a Poisson process.

It should be mentioned that during recent years methods of econometrics and

time series analysis are often used in the context of balancing energy mar-

ket analysis. In addition to econometric models, alternative probabilistic ap-

proaches to determine the balancing energy are developed.

In recent years the framework conditions of the electricity markets and thus also

the markets for balancing energy have been subject to constant changes and
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there is a variety of approaches to model and estimate the need for balancing

energy. In this thesis the focus is not on the estimation of the total procured

balancing reserve but rather on modeling the time series of the control area

imbalance (and thus modeling the time series of the sum of aFRR and mFRR)

and their dependencies on other factors such as renewable energies.

3.3 Different Types of Regression Analysis

In the area of the balancing energy market, the influence of renewable energies

plays an increasingly important role. That explains why the influence wind

and solar generation on the balancing energy market is being examined more

intensively. For example [Abuella and Chowdhury, 2015] proposes a multiple

linear regression to generate probabilistic forecasts for solar energy.

The load forecast is also often examined using a multiple linear regression. For

example in [Amral et al., 2007] an investigation of the short term (up to 24

hours) load forecasting of the demand for the South Sulewesi’s (Sulewesi Island

- Indonesia) power system is considered using multiple linear regression. His-

torical data is used (hourly load and temperatures) to forecast the short term

load.

In [Abuella and Chowdhury, 2017] the solar energy is considered too. This

paper presents a support vector regression to produce solar power forecasts on

a rolling basis for 24 hours ahead over an entire year, with the aim to mimic the

practical business of energy forecasting. Then there is a comparison made with

artificial neuronal networks and multiple linear regression for energy forecasting.

Countless other papers can be found on the subject of multiple linear regression

concerning the energy market.

In [Tsekouras et al., 2007] the authors describe a non-linear multivariable regres-

sion for midterm energy forecasting of power systems in an annual time base. In

addition to (non-linear) multiple linear regression and vector regression, other

models can also be used. Although tobit models are rarely used concerning the

energy market, [Singhee and Wang, 2017] developed a tobit model applicable to

severe weather events.

In contrast to ordinary least squares estimation (OLS), the quantile regression

- as a method of estimating the parameters of a regression model - considers

the quantiles of the conditional distribution of the dependent variable given the

independent variable. In [Wan et al., 2016] a novel direct quantile regression

approach to efficiently generate nonparametric probabilistic forecasting of wind

power generation combining extreme learning machine and quantile regression

CHAPTER 3. STATE OF THE ART 14



Barbara Keck An Analysis: Control Area Imbalance

is suggested. Also in [Bracale et al., 2019] a new cooperative forecasting system

that refines probabilistic forecasts of individual loads online is proposed. As

mentioned in the paper the refining procedure is based on a multivariate quan-

tile regression, which is dynamically applied to the individual forecasts as new

observations become available.
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Chapter 4

Descriptive Analysis

This chapter deals with the amount of the activated balancing energy in the

control area in the years 2015 to 2020, with the exception of FCR. The reason

for the neglect of the FCR is that FCR is not part of the control area imbalance.

Besides, the FCR is also used in the entire European network as first instance

for the balanced operation of the power grid. On the other hand, aFRR and

mFRR are activated specifically in the control area that caused the electricity

deficit or the excess of electricity [E-Control, 2020].

It should be mentioned that in the analysis only the consolidated amount of

aFRR and mFRR is considered. This consolidated amount (plus unintended

exchange) is also called ”control area imbalance”. This happens for the reason

that both forms of balancing energy pursue the same goal - to compensate

deviations in the control area. Even though these balancing energy markets

have different technical characteristics and are traded separately, there is always

a physical need for constant balance between electricity supply and demand,

which is fulfilled by both products.

4.1 Data Sources

All data that is used must be available on the day ahead. The data was taken

from the ENTSO-E and APG homepage [APG, 2020], [ENTSO-E, 2020b]. The

dataset includes 52608 observations of 75 different variables in the period from

January 1st, 2015 to December 31st, 2020. About 30 variables of the 71 vari-

ables are examined more closely. Hourly data, which was originally recorded in

quarter-hourly steps, was generated by aggregation into hours with the aid of

averaging. That concerns the data of the load (load forecast and actual load)

16
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and renewable energies (forecast and actual generation). In this thesis only the

data for Austria is considered.

The data can be divided into the following groups:

• Control area imbalance (sum of aFRR and mFRR including the unin-

tended exchange)

• Load (actual load and forecast)

• Solar (actual generation and forecast)

• Wind (actual generation and forecast)

• Day ahead price

4.2 Control Area Imbalance

The data on the control area imbalance was taken from the APG website [APG,

2020]. A distinction is made between operational and billing-relevant data. The

operational and billing-relevant data differ only slightly. Since values of the

operational data are available for all years from 2015 onwards (in comparison to

the billing-relevant data), the decision was made to work with the operational

data of the control area imbalance.

In figure 4.1 and 4.2 the control area imbalance starting from 2015 to 2020 is

shown, once grouped per hour and once per month. In either plot, no large

differences between hours respectively months can be observed.

In figure 4.3 the autocorrelation of the operational data of the control area

imbalance (2015 to 2020) can be seen. It suggests a weak autocorrelation.
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Figure 4.1: Control area imbalance during the years 2015 - 2020. Boxplots
grouped per hour. Some hours exhibit more extreme outliers with values ranging
up/down to +/-1000 MW.
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Figure 4.2: Control area imbalance during the years 2015 - 2020. Boxplots
grouped per month. Mostly similar extends of whiskers can be observed, with
medians slightly differing around 0 MW.
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Figure 4.3: Autocorrelation, with lag in hours: Control area imbalance during
the years 2015 - 2020. The autocorrelation drops fast during the first three days
with visible peaks for full days (lag 24, 48 and 72).

4.3 Electricity Market: Important Variables

There are various variables that have an impact on fluctuations in consumption

and generation of electricity and can thus also influence the demand of balancing

energy. From now on forecast errors always describe the difference between day

ahead forecasts and realized values (regarding load or generation) on the day of

delivery. The following variables are considered for further analysis:

• Load - level, forecast, forecast error

• Day ahead price

• Feed-in from Solar - realized value, forecast, forecast error

• Feed-in from Wind - realized value, forecast, forecast error

Day ahead prices are available after the market clearing and can be retrieved

from the EPEX. They are usually available at 12:00 (CET+1), but can be de-

layed by a few minutes on some days. Load as well as solar- and wind-generation

forecasts are published on the ENTSO-E transparency platform1 no later than

18:00 (CET+1) for the entirety of the following day (”day ahead forecast”).

1https://transparency.entsoe.eu/
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This entails, that with the latter publication all used data is published and the

predictions for the control area imbalance can be made.

4.3.1 Load

Load describes the total consumption of electricity. When forecast errors occur,

this leads to an increase or a decrease in electricity feed in to ensure the operation

of a balanced network. A sharp rise or fall of the load can lead to adjustment

difficulties concerning the producers, which can result in a need for balancing

energy. It should be noted that the design of the electricity market, in particular

the discrete billing intervals of the balancing groups respectively the trading of

hourly products on the electricity market, can lead to sudden deviations in the

electricity grid. Even if the forecast of demand of electricity in a specific time

interval (made from the balancing group) is correct, nevertheless often they do

not make (short-term) adjustments2 and that can lead to short-term surpluses

or deficits [Maurer, 2010]. This is shown in figure 4.4.

Figure 4.4: Difficulties in an electricity market with hourly products: Due to
the blockwise (time periods) resolution of traded products, mismatches between
demand - that follows a continuous path - and generation can occur even for
perfect forecasts.

2Consider for example a small - but commercial - consumer that fails to update its balancing
group leader of any (short-term) changes in consumption (e.g. employees starting up or
shutting down big machinery).
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Figure 4.5 describes the average load within Austria in the years 2015 to 2020.

It can be seen that the average load has remained relatively the same over the

last five years. However, a small decline can be seen in 2020. This decline

can be explained by the measures taken to contain COVID-19. These had

a significant impact on electricity consumption in Austria. In some cases, the

weekly requirement fell by around ten percent compared to normal consumption

[Statista, 2020].
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Figure 4.5: Boxplots: Realized load in Austria for each year from 2015 - 2020.
Only small shifts of the yearly median can be observed, but the years 2019 and
2020 showcase that electricity demand does not steadily increase each year.

Figure 4.6 shows the average load in Austria for each hour from 2015 to 2020.

The difference between ”peak” (8:00 a.m. to 8:00 p.m.) and ”off-peak” (0:00

a.m. to 8:00 a.m. and 8:00 p.m. to midnight) hours can clearly be seen.
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Figure 4.6: Boxplots: Realized load in Austria during the years 2015 - 2020,
grouped per hour. A daily pattern can be observed, with low demand during
night time (”offpeak”) and comparably higher demand during the day (”peak”).
Only a few outliers can be observed, but most hours showcase large deviations,
with demand during the day ranging between 4500 and 10500 MW.
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Figure 4.7: Boxplots: Realized load in Austria during the years 2015 - 2020,
grouped per weekday (starting the week with Sunday=”1”). A clear pattern
can be observed with load dropping significantly on weekends. More outliers in
loads can be observed on Fridays and Sundays.
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Originally, load forecast errors were considered based on the hourly average

for 2015 to 2020. This showed clear differences between individual hours: the

forecast error in the off-peak hours is positive on average and has negative values

in the peak hours. However, there are big differences between the individual

years. Therefore, figure 4.8 shows the forecast error grouped per year. The

median forecast error per year from 2015 to 2017 is negative. A positive median

forecast error per year can be seen in the years 2018 to 2020. As explained in 2.3

in May 2017, the German and Austrian regulatory authorities (BNetzA and E-

Control) agreed to separate the common electricity price zone. The separation

of the Germany-Austria electricity price zone came into effect on October 1,

2018. The separation of the price zones led to a restructuring of the market.

To investigate the effect of events like that, structural breaks in given data can

be examined with the help of statistical tests. In 4.4, amongst other things, the

Chow-Test will be used to investigate structural breaks.
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Figure 4.8: Load forecast error during the years 2015 - 2020. Separate boxplots
for each year. Relatively small ”boxes” (covering the range from the first to
the third quantile), but many outliers, can be observed. The medians shifting
from negative to positive show a large shift of errors comparing the years (2015,
2016, 2017) against (2018, 2019, 2020).

Figure 4.9 shows the QQ-plot of the load forecast error versus the quantiles of a

normal distribution. About 50% of the load forecast error is between ± 280 MW.

When considering the autocorrelation with a maximum lag of 72 hours (three
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days) a slow decrease in correlation can be seen. The autocorrelation over the

period of a whole year almost approaches zero. Here, the lag of 72 hours was

considered to ensure consistency with the other figures that show an autocorre-

lation.
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Figure 4.9: The left plot compares the theoretical quantiles of a normal distribu-
tion against the quantiles of the load forecast error and reveals large deviations.
The right plot highlights that the autocorrelation of load forecast errors only
drops slowly, with visible peaks for whole days (24, 48 and 72 hours). This
could hint at ”systematic errors” that are repeated over a longer period of time
and either continuously over- or underestimate the load.

In figure 4.10 two different scatter plots are shown. In 4.10a the absolute load

forecast error |FCELoad| versus the load forecast FCLoad is plotted. In 4.10b

the load forecast error FCELoad versus the load forecast FCLoad is plotted.
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(a) |FCELoad| vs. FCLoad
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(b) FCELoad vs. FCLoad

Figure 4.10: Plotting load forecast error (absolute values used for the left plot)
over the load forecast during the years 2015 - 2020 reveals no clearly visible
patterns. It can however be observed that the absolute error seems to increase
with the forecast starting at 10000 MW, while the right plot suggests that
positive forecast errors get more unlikely the higher the forecast gets.
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4.3.2 Day Ahead Prices

As already explained in 2.4.1 the term day ahead trading refers to the trading

of electricity for the following day, which takes place mostly on the EPEX Spot

in Paris. In the German and Austrian markets, the bids for the auctions for

the next day must be submitted by noon. The results of the corresponding

surcharges are published at 12:40 p.m. each day [Kraftwerke, 2020]. Figure

4.11 shows the boxplots of the day ahead prices grouped per hour from 2015

to 2020. It can be clearly seen that in hours 21 to 6 the prices are on average

significantly cheaper than in hours 7 to 20, Although, a fluctuation around noon

can be seen.
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Figure 4.11: Day ahead price during the years 2015 - 2020, with separate box-
plots per hour. A daily pattern - similar to the plot regarding the hourly elec-
tricity demand - can be observed, featuring slightly lower median prices during
nighttime hours.
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Figure 4.12: Day ahead price during the years 2015 - 2020, with separate box-
plots per weekday (”1” = Sunday). A small decrease of prices during weekends
- possibly linked to a lower overall demand - can be observed, while prices from
Monday-Friday depict a similar course.

4.3.3 Renewable Energies

The feed in to the electricity grid through wind and solar is an important

emission-free and future-oriented source of energy. However, wind and solar

plants are not under perfect control of humans and are subject to the laws of

nature, which leads to possible forecast errors on the supply side. It should be

noted that times with very high and very low feed-in by wind and solar can

usually be predicted better than times with medium feed-in [Jost et al., 2015b].

Data on solar and wind energy from 2015 to 2020 in Austria is analyzed. As

already mentioned in 2.1 the expansion of renewable energies, especially solar

and wind energy, is making steady progress in Austria. Figure 4.13b shows a

continuous increase in solar energy generation from 2015 to 2018, with a small

decrease for 2019 and 2020. This increase in generation can be explained by an

additional installed capacity of 1128 MW, compared to the end of 2015, resulting

in a total installed capacity of 1851 MW in 2021 [APG, 2020]. The situation

is similar with wind energy. Figure 4.13a shows an increase in wind energy

generation from 2015 to 2020. This increase in generation can be explained

by an additional installed capacity of 701 MW, compared to the end of 2015,

resulting in a total installed capacity of 3198 MW in 2021 [APG, 2020].
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The highest level of electricity generation from wind energy was achieved in

2019, while a decline in production in 2020 can also be seen.
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Figure 4.13: Average hourly generation and installed capacities for wind and
solar during the years 2015 - 2020 [APG, 2020]. While the installed capacities
continuously rise, it can be observed that this does not always result in increased
amounts of energy being generated, since those also depend on weather-based
availability.

The generation of solar energy in Austria from 2015 to 2020 is considered in

figure 4.14. As expected in 4.14a a clear daily seasonality can be seen, which

results from the hours of sunshine per day. Strong monthly seasonality can also

be recognized in 4.14b. Timestamps of all available data are given respecting

the Austrian local time. This entails that winter and summer hours are not

exactly the same (since their UTC differs), but better depicts time-dependent

variables. To keep data consistent these timestamps are used for all variables.
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(a) Grouped per hour
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(b) Grouped per month

Figure 4.14: Solar generation in Austria during the years 2015 - 2020 grouped
per hour (left) and month (right). Both plots show clear patterns, favoring high
generation during midday and summer-times, but also show that the generation
during ”offtimes” (like during mornings or non-summer months) can sometimes
exceed generation during more favorable times.

Particularly when viewed monthly (showed in 4.15b), a clear seasonality can

be seen in wind energy generation. Especially in the months from June to

September, the median generation from wind energy is relatively low compared

to the rest of the year. Looking at the generation of wind energy grouped per

hour in 4.15a, it can be observed that wind generation accounts for around 10%

of the Austrian load.
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(a) Grouped per hour
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(b) Grouped per month

Figure 4.15: Wind generation in Austria during the years 2015 - 2020 grouped
per hour (left) and month (right). Both plots showcase a much more stable gen-
erational profile than solar, but also highlight an inverse relationship with wind
generation dropping slightly during hours and months were solar generation
peaks.

The histogram in figure 4.16 of the solar and wind generation in Austria from

2015 to 2020 shows that about 50% of the solar generation per hour is smaller
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than 15.75 MW (this low value is due to the fact that no solar energy generation

is possible at night) and about 50% of the wind generation per hour is smaller

than 495 MW.

0

3

6

9

12

0 250 500 750 1000
Solar Generation AT [MW]

R
el

at
iv

e 
Fr

eq
ue

nc
y 

[%
]

(a) Solar

0.0

2.5

5.0

7.5

0 1000 2000 3000
Wind Generation AT [MW]

R
el

at
iv

e 
Fr

eq
ue

nc
y 

[%
]

(b) Wind

Figure 4.16: Histogram: Renewable energy generation for wind and solar during
the years 2015 - 2020. Both plots show that lower generation values are more
likely for both technologies.

In the following, the forecast error of renewable energies (wind and solar) is

considered. The figure 4.17 shows a QQ-plot and a scatter plot. In the QQ-plot

the solar forecast error versus the quantiles of the normal distribution as well as

the wind forecast error versus the quantiles of the normal distribution is plotted.

In scatter plot 4.17a the relatively good forecast quality for solar energy can be

seen. The scatter plot in 4.17b shows that the wind forecast quality cannot

match that of the solar forecast quality.
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(a) Solar
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(b) Wind

Figure 4.17: QQ-plots and scatterplots for renewable energy forecast errors
during the years 2015 - 2020. The plots show a superior quality of solar forecasts
compared to wind forecasts. It shall here be noted, that the minimum reported
resolution of measurements of 1 MW favors the much lower values (due to less
installed capacity) of solar, generating much more ”perfect” (forecast error equal
to zero) forecasts. This excess of solar forecast errors being zero can be observed
in the mostly horizontal QQ-plot of the solar forecast error.

In figure 4.18 two different scatter plots are shown. In 4.18a the absolute solar

forecast error |FCESolar| versus the solar forecast FCSolar is plotted. In 4.18b

the solar forecast error FCESolar versus the solar forecast FCSolar is plotted.
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(a) |FCESolar|
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(b) FCESolar

Figure 4.18: Solar forecast error (absolute values in the left plot) plotted over
the solar forecast during the years 2015 - 2020 showing no obvious patterns.

In figure 4.19 two different scatter plots are shown. In 4.19a the absolute wind

forecast error |FCEWind| versus the wind forecast FCWind is plotted. In 4.19b

the wind forecast error FCEWind versus the wind forecast FCWind is plotted.
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(a) |FCEWind|
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(b) FCEWind

Figure 4.19: Wind forecast error (absolute values in the left plot) plotted over
the wind forecast during the years 2015 - 2020. The supposedly observable
pattern in the right plot is only created by definition of FCE = actual−forecast
and hours were no generation was realized.

Figure 4.20 shows the autocorrelation for the solar and wind forecast error. In

this figure a lag with 72 hours (three days) is chosen. A strong decrease in the

correlation can be seen as, it almost approaches zero for the forecast error of

solar and wind energy.
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Figure 4.20: Autocorrelation: Forecast errors of wind and solar during the years
2015 - 2020. Besides small peaks for lags of whole days, it can be observed that
wind forecast errors propagate more into the future with an autocorrelation that
drops much slower.

4.4 Structural Breaks

The previous consideration of the data suggests that there exist structural

breaks in the considered time period. The Chow-Test is one possibility to verify

structural breaks.

4.4.1 Chow-Test

A data record with the form (yi, xi) is given , whereby the relationship between

the variables is described by a linear function with a normally distributed error

with an expected value of 0. The assumption is made that the dataset can be

divided into two groups of size Na and Nb that are better described by two

different linear functions:

yi = β0 + β1xi1 + β2xi2 + ...+ βkxik + ui with i ∈ [1, Na]

yi = α0 + α1xi1 + α2xi2 + ...+ αkxik + ui with i ∈ [Na + 1, Na +Nb]

It follows that N = Na + Nb and the null hypothesis H0 : (β0, β1, ..., βk) =

(α0, α1, ..., αk) is tested against the alternative hypotheses H1 : (β0, β1, ..., βk) 
=
(α0, α1, ..., αk).

If one denotes the sum of the squared residuals of the regression over the entire

dataset with S and over the two subgroups with Sa and Sb, then the defined test

variable T follows an F-distribution with f1 = k+1 and f2 = Na+Nb−2(k+1)

degrees of freedom. T is defined as follows:

T := (S−(Sa+Sb))/(k+1)
(Sa+Sb)/(Na+Nb−2(k+1))

CHAPTER 4. DESCRIPTIVE ANALYSIS 32



Barbara Keck An Analysis: Control Area Imbalance

If T ≥ Ff1,f2,1−α (level of significance α = 0.05) then the null hypothesis H0

can be rejected. This means that the two regression lines on the sub-intervals

are not identical and there is evidence that a structural break could potentially

exist and that the partial regressions would therefore provide better modeling

than a regression over the entire dataset.

4.4.2 Breakpoints

Many applications make it reasonable to assume that there are a n breakpoints

(instead of only a single one), where the coefficients change from one stable

regression relationship to another one. This implies, that there are n+ 1 ”sep-

arable” segments in which the regression coefficients remain constant. The

STRUCCHANGE package [Hurtado, 2020] in R [R Core Team, 2013] enables

testing/searching for these breakpoints in an automated fashion, based on a

dynamic programming approach. Furthermore the corresponding breakpoints

(the timestamps that best separate the n+ 1 segments) are reported.

4.4.3 Results

All variables were examined for structural breaks using the Chow-Test explained

in 4.4.1. It is important to note however, that a ”positive” result of the Chow-

Test does not immediately imply a hard structural break, it is merely one of

many possible hints that a break could exist. Changes in regression coefficients

(indicated by the Chow-Test) could for example also be caused by newly in-

stalled capacity (changing the total generation values). Furthermore, the break-

points function was used to estimate optimal structural breaks. Both approaches

are explained in more detail below.

Approach

All Chow-Tests (using a regression on the intercept β0) were done in R [R Core

Team, 2013] using sctest from the STRUCCHANGE package [Zeileis et al.,

2019]. The single timestamp that was used to test for a structural break is

”October 1, 2018” (date of the price zone separation of Austria and Germany).

Estimating optimal structural breaks was implemented in R [R Core Team,

2013] using breakpoints from the STRUCCHANGE package [Hurtado, 2020].

This allows the possibility to search for an arbitrary number (here k = 5) of

structural breaks in the whole data. Since the overall data was too large to

handle (and breakpoints could not be applied in a reasonable amount of time),

first the hourly data was summarized into daily data (using the daily mean).
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This results in a timeseries with 2193 days that was then analyzed for every

variable of interest. Since breakpoints does not return p-values, all reported

dates where again checked with a Chow-Test, which resulted in p-values close

to zero, indicating a significant structural break at or near these dates.

The following sections document the results for both approaches for every vari-

able.

Load Forecast Error

As already seen, in figure 4.8 suggests a structural break at the time of the price

zone separation of Austria and Germany.

The Chow-Test provides the following result:

T = 4841.3 and p− value < 2.2 · 10−16

This means that the null hypothesis H0 is rejected and so it is highly likely that

there is a structural break on October 1, 2018.

The function breakpoints hints at a total of four possible structural breaks with

the most dominant found on April 24, 2018. Comparing the first and second

time-period (January 1, 2015 to April 24, 2018 and April 24, 2018 to December

31, 2020) one can observe a mean of -117 MW and 187 MW respectively. This

showcases the big difference between the load forecast errors in each interval.

The standard deviation in the two periods shows only a minor difference: 407

MW and 387 MW.

Solar Forecast Error

The Chow-Test provides the following result:

T = 21.034 and p− value < 5 · 10−6

This means that the null hypothesis H0 is rejected and so it is highly likely that

there is a structural break on October 1, 2018.

Estimating optimal breakpoints using breakpoints fails to find any breakpoints.

Wind Forecast Error

The Chow-Test provides the following result:

T = 298.64 and p− value < 2.2 · 10−16
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This means that the null hypothesis H0 is rejected and so there is a structural

break on October 1, 2018.

The function breakpoints hints at a total of three possible structural breaks with

the most dominant found on October 6, 2018. Comparing the first and second

time-period (January 1, 2015 to October 6, 2018 and October 6, 2018 to Decem-

ber 31, 2020) one can observe a mean of 47 MW and 209 MW respectively. This

showcases the big difference between the wind forecast errors in each interval.

The standard deviation in the two periods shows only a minor difference: 257

MW and 287 MW.

Day Ahead Price

The Chow-Test provides the following result:

T = 1460.5 and p− value < 2.2 · 10−16

This means that the null hypothesis H0 is rejected and so there is a structural

break on October 1, 2018.

The function breakpoints hints at a total of four possible structural breaks with

the most dominant found on May 20, 2018. Comparing the first and second

time-period (January 1, 2015 to May 20, 2018 and May 20, 2018 to December

31, 2020) one can observe a mean of 26 EUR and 41 EUR respectively. This

showcases the big difference between the day ahead prices in each interval. The

standard deviation in the two periods shows only a minor difference: 9 EUR

and 13 EUR.

Control Area Imbalance

The Chow-Test provides the following result:

T = 0.89913 and p− value = 0.343

This means that the null hypothesis H0 can not be rejected and so no further

conclusion about a structural break on October 1, 2018 can be drawn.

The function breakpoints hints at a total of three possible structural breaks,

with none of them being later than 2017. This indicates no systematic changes

of the outcome variable CAI during the period (2019 and 2020) that is later on

analyzed.
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4.5 Conclusion

Generation of solar and wind energy has increased throughout the years, partly

due to the expansion of the respective power plants. While the generation of

electricity by solar energy is clearly dependent on the time of day or the month,

generation by wind energy is relatively independent of the time of day (slight

decline between 8 a.m. to 11 a.m.), but a decline in generation occurs in the

months of July to September. It can also be seen that the forecast of solar

energy is significantly better than that of wind energy.

A structural break analysis was carried out using a Chow-Test and the optimal

breakpoints where estimated using R [R Core Team, 2013]. The Chow Test hints

at significant structural breaks during 2018 for all variables except the control

area imbalance. These structural breaks are, among other things, possibly the

result of the price zone separation of Austria and Germany at October 1, 2018.

The expansion of renewable energies can be identified as a further influencing

factor.

In addition, the representation of the autocorrelation of the operational data

of the control area imbalance (2015 to 2020) suggests a weak autocorrelation

(shown in figure 4.3). Analyzing the control area imbalance - that will be used

as final outcome variable in the following proposed model - revealed no extreme

differences comparing values grouped per months, weekdays or hours. Further-

more, the Chow-Test did not indicate a structural change during the separation

of price zones, as well as no potential breakpoints were found starting from 2018.

This hints at a rather stable course of the timeseries and no systematic changes,

which plays an important role when modelling and explaining the control area

imbalance.

Since the analysis hints at many structural breaks and changes during or leading

up to 2018, the data from 2019 and 2020 will be used in the following sections

to build the model.
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Chapter 5

The Model

The main goal presented in this thesis is a day ahead forecast of the control area

imbalance. Therefore input data that is available at the time of the forecast (day

ahead) from 2019 and 2020 (with a focus on renewable energies) is used. The

model is split into two stages. In stage I the absolute forecast error of load,

solar and wind is analyzed using different mathematical methods. The result

of stage I is then used as additional input for stage II, in which the absolute

control area imbalance is predicted.

5.1 Stage I - Forecast Errors

In stage I of the model three mathematical methods (multiple linear regression,

tobit model and quantile regression) are considered in order to analyze the

absolute value of the load, wind and solar forecast errors.

The following section gives a complete overview about the mathematical models

that are used, including all explanatory variables. Later on some insight into

different ways of estimating the unknown coefficients are presented and the

chapter concludes with an in-depth analysis of model results and compares the

outcomes using the MAE and RMSE.

5.1.1 Mathematical Model

First of all the mathematical model that is used in stage I is defined. For this

the definition of the absolute forecast error is needed. In this thesis the absolute

forecast error is calculated as the absolute value of the difference of the actual
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output (actual load, actual wind generation or actual solar generation) and the

forecast (load, wind or solar forecast).

Due to the assumption that current, available forecasts are already reasonably

good it is highly unlikely to correctly estimate the forecast error. This would en-

tail that the current forecast could be improved using historic values of the same

timeseries and publicly available (aggregated) data for demand and generation;

a fact that would contradict the initial assumption.

This however does not imply that estimating the absolute deviation from the ex-

pected value (which is always zero for the control area imbalance since otherwise

the control area would not be balanced by design) is impossible. Since it can be

seen that the absolute quantity of mismatch between expected load/generation

and actually realized load/generation plays an important role and influences the

power market and grid, the absolute forecast errors will be considered from now

on.

In the following, three absolute forecast errors are considered as endogenous

variables yi with i ∈ {Load, Solar,Wind}:

1. Absolute Load Forecast Error (|FCELoad|)

2. Absolute Solar (Generation) Forecast Error (|FCESolar|)

3. Absolute Wind (Generation) Forecast Error (|FCEWind|)

The mathematical model is intended to describe the three endogenous variables

(absolute load, solar and wind forecast errors) by exogenous variables that are

used below. The chosen explanatory variables were selected based on the results

from Chapter 4.

The descriptive analysis showed, sometimes high, autocorrelation of the various

forecast errors, with all of them showcasing a small peak at the lag of 24 - which

represents the same hour of the day as yesterday. Since it is assumed that the

day ahead forecast is made at the end of each day (using all available data)

for the following day, the realized forecast errors of the current day are already

known and can be used as predictive factors.

It could be expected, that the magnitude of the forecast plays an important

role in the to-be-realized forecast error. This is due to the fact that forecasts of

different magnitudes can result in an increased or decreased volatility (meaning

that for example the wind forecast gets worse the higher the forecast amount

of wind is). Since it is not known whether this relation is strictly linear or

behaves in a non linear way (it could for example happen that really high forecast

introduce a much higher error term than what would be explained by a linear
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term or vice versa) the squared forecast is also included. The results in table

5.4, 5.5 and 5.6 show that this in fact is true.

The solar forecast FCSolar is used in all models as proxy to estimate the current

weather situation: Since weather data could influence the wind generation (e.g.

possible curtailment in stormy weather) and load (e.g. increased demand for

electricity due to air condition, decreased private demand in times of ”good

weather”, ...) it could be important to include this in a regression model. Since

unfortunately hourly exact weather data was not available for this thesis, the

solar forecast (as indicator of solar irradiance) is used.

All three endogenous variables showcase noticeable differences during different

hours of the day and month of the year. While the load depicts the ”usual”

course during peak/offpeak hours, solar generation is (as expected) highest dur-

ing midday hours, while wind showcases the opposite course with lower gen-

eration during the daytime. This inverse relationship also holds true for the

monthly values with solar generation peeking in mid summer, while wind gen-

eration drops from close to 1000 MW (on average during 2015-2020) during

winter months to less than 500 MW in July and August.

The generation of solar and wind energy is independent of the day of the week.

If differences in generation arise throughout the week, they are connected to

differences in the electricity demand between weekdays and weekends or other

market effects. This is the reason that the weekday as exogenous variable was

only added to the model of the load.

As it is often used, binary dummy variables are introduced to describe the

influence of single hours, weekdays or months. For all periods these dummy

variables are defined similar to the hourly ones (assuming the input variable

hour ∈ {1, . . . , 24}:

hourh =

1, if hour = h

0, otherwise

Since it is not clear at this point, whether the day ahead price has any influ-

ence on the forecast errors, it is taken into account in all three models and its

significance is evaluated later on, based on the results of the different regression

models. Table 5.4, 5.5 and 5.6 again show that the inclusion of the day ahead

price makes sense. Although, the quantile regression views it as sometimes not

significant (as can be seen in the mentioned tables).

The following section write out the chosen models in full detail. Abbreviations

used are explained in table 5.1.
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Table 5.1: Abbreviations - Stage I

Abbreviation Description

FCi Forecast of various variables: i ∈ {Load, Solar,Wind}
FCEi Forecast error of various variables: i ∈ {Load, Solar,Wind}
FCEi,day−1 Lagged forecast error of various variables i ∈ {Load, Solar,Wind}.

This uses the forecast error that occured on the previous day during

the same hour (therefore ”day − 1”).

priceDA Day ahead price published on EPEX Spot

hour Hour of the day

hourh hourh = 1 if hour = h, 0 otherwise

month Month of the year

monthh monthh = 1 if month = h, 0 otherwise

wdayd wdayd = 1 if the day of the week is d, 0 otherwise

u Residuals

Load

The chosen model for the absolute load forecast error is as follows:

|FCELoad| = β0 + β1 · FCLoad + β2 · |FCELoad,day−1|
+ β3 · priceDA + β4 · FCSolar

+

24�
h=1

β5,h · hourh +

12�
m=1

β6,m ·monthm

+

7�
d=1

β7,d · wdayd + u

(5.1)

Solar

The chosen model for the absolute solar forecast error is as follows:

|FCESolar| = β0 + β1 · FCSolar + β2 · FC2
Solar

+ β3 · |FCESolar,day−1|+ β4 · priceDA + β5 · hour
+ β6 · hour2 + β7 ·month+ β8 ·month2 + u

(5.2)
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Wind

The chosen model for the absolute wind forecast error is as follows:

|FCEWind| = β0 + β1 · FCWind + β2 · |FCEWind,day−1|
+ β3 · priceDA + β4 · FCSolar

+

24�
h=1

β5,h · hourh +

12�
m=1

β6,m ·monthm + u

(5.3)

As an explanation why the models showcase some small differences:

Difficulties estimating Variance-Covariance

It shall be noted here, that all measured variables (load, solar and wind gen-

eration) are measured with an accuracy of 1 MW. This obviously results in

forecast errors being exactly zero more often than it would happen if ”exact”

measurements would be available.

When choosing the previously mentioned explanatory variables for all three

models (absolute load, solar and wind forecast error), using the three math-

ematical methods explained below in section 5.1.2, multiple difficulties arise

which are all closely related to inverting a poorly conditioned matrix during the

process of determining all coefficients, their standard errors and significance.

First, the tobit model for the absolute load forecast error returns an error while

calculating all results. The same error occurs (for a different reason) in the tobit

parameter estimation of the absolute solar forecast error: Using all described

exogenous variables leads to the matrix X �X being almost singular (with X

indicating the regressor matrix). This prevents the algorithm from inverting

said matrix, which is needed to calculate the estimators for all parameters (the

coefficients β and variances σ).

The exact reason can not be fully determined since the used algorithms in R

only terminate with a general error message, that does not contain any further

detailed information. Nevertheless, it can be guessed that this is closely related

to a strong correlation between the load and load2 terms, since the removal of

the squared term fixes the problem. Due to this the quadratic load term was

removed from all models. It was later on decided to not include the results of

the tobit model for the absolute wind and load forecast error in this thesis (since

they are indistinguishable from the results of the multiple linear regression), but

the model structure was kept in place like explained.
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The reasoning in the solar model is different: Due to the fact, that times of ”sun

- availability” vary throughout the year, it happens that some combinations of

explanatory variables are underrepresented in the dataset. For example, during

the winter months, late hours (after 16:00) with a positive solar generation are

becoming less likely with some combinations of month/hour only occurring a

few times. This again leads to singular Hessian matrix, which - in this case - can

be fixed by using the original continuous variable instead of binary dummies.

In order to roughly estimate the daily/hourly pattern of different influential

factors (e.g. solar irradiance), the monthly and hourly (continuous) terms are

also added as squared term.

The difficulties explained in the previous paragraphs can be investigated by look-

ing at the regressor matrix X, more precisely comparing the condition number

of X �X (since that is the matrix that is inverted during the calculation of the

estimators for all parameters - the coefficients β and variances σ). The condition

number of a matrix is a measure how close it is to being singular (and therefore

not invertible), with a condition number of 1 for ”far away from singular” up

to ∞ for a singular matrix. This entails that the lower the condition number

is, the better (for this case). Table 5.2 shows that removing the squared load

forecast from the load model and respectively the time-based dummy variables

(hour, month and weekday) from the load model reduces the condition number

of X �X in both models by a considerable amount. It should however be noted,

that both matrices are still poorly conditioned, with condition numbers greater

than 107.

Table 5.2: Condition numbers of X �X for the load and solar model, indicating
”how close to being singular” the matrix is. It can be seen that the proposed
simple changes reduce the condition number by a great magnitude.

Model Condition number Note

Load 4 · 1018 Complete model

Load 9 · 1010 Load model without squared forecast

Solar 8 · 1013 Complete model

Solar 6 · 107 Solar model without squared forecast and with continuous

time-variables instead of ordinal / factor-based variables.

5.1.2 Estimating coefficients

The mathematical models that will be analyzed in more detail using a multiple

linear regression, a tobit model and a quantile regression are already defined.

These different methods of analyzing the mathematical model, as well as their
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implementation in R [R Core Team, 2013] are explained in theory below.

Multiple Linear Regression

Regression analysis is a statistical technique used to analyze the relationship

between several variables. Specifically, it is about explaining a variable using a

function of other variables. The variable to be explained is called the depen-

dent variable or endogenous variable. The variables used for clarification are

the so-called independent or exogenous variables. Often these independent vari-

ables are also called regressor variables or regressors. These are mathematically

written as

yt ∈ R with t = 1, ..., T Observations of the dependent

(endogenous) variable y

xtk ∈ R with t = 1, ..., T , k = 1, ...,K Observations of the independent

(exogenous) variables xk

The aim is to approximate the dependent variable y using a function of the

independent variable xk:

y = x1β1 + ...+ xKβK + u

The unknown parameters βk are to be determined in such a way that the resid-

uals u = y − (x1β1 + ...+ xKβK) are as small as possible [Scherrer, 2015].

The unknown parameter vector is estimated on the basis of a sample. For this

there exist different procedures, the best known in this context is the Ordinary

Least Squares estimation (OLS). The non explainable differences that are re-

sulting from an estimation procedure are called residuals u. The OLS will later

be used in order to find out which variables, in the sense of this model, have a

comparatively high influence on the level of forecast errors.

As with most statistical methods, for OLS certain conditions must be met in

order to be able to interpret the results. A violation of one of these condi-

tions usually leads to the fact that the interpretability of our model is reduced

(the estimator could for example be biased). For a OLS, the following general

assumptions must be met:

• Linear relationship between the variables: As the name suggests, multiple

linear regressions, examines the strength of linear relationships.
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• No multicollinearity: In the case of multicollinearity, two or more of the

predictors correlate strongly with one another. This means that one vari-

able can be predicted from the other with high accuracy. It leads to large

variances of the estimated coefficients. This was investigated by looking

at the correlation between all combinations of explanatory variables for all

models. The only correlation ”that seems to be significant enough” is the

one between the load forecast FCLoad and the day ahead price priceDA

with a value of 0.618. However, the bad condition number of the matrix

X �X (see table 5.2) shows that some columns of X may be explained al-

most perfectly by a linear combination of the other columns. This again

leads to large variances of the estimates.

• No outliers: Outliers are a problem for most parametric statistical meth-

ods. A single outlier can destroy an otherwise significant trend. Looking

at the data some outliers can be observed - but only a low amount.

Considering linear relationship between the variables, the corresponding errors

must fulfill the following properties:

• Uncorrelated errors: Autocorrelation of the errors is a wide- spread prob-

lem for many reasons. Autocorrelation reduces the informative value of

our results.

• Homoscedasticity (equality of variances) of the errors: OLS estimation

expects the variance of the errors to be the same. If this condition is

violated, the model explains one section of the data better than another.

• Normal distribution of the errors: The errors should not only be uncor-

related and homoscedastically distributed, but also (roughly) normal dis-

tributed.

The multiple linear regression for the forecast errors was implemented in R [R

Core Team, 2013] using lm from the STATS package [Team, 2012].

This enables the possibility to investigate whether the previously mentioned

assumptions are fulfilled for the given dataset. Figure 5.1 shows the residuals

vs. the fitted values of all three multiple linear regression models. This can be

used to check the linear relationship between the variables. A horizontal

line without any ”clustered” deviations from that line (or other visible patterns)

indicate a linear relationship. The wind model plot showcases a horizontal line,

but with largely increasing spread of residuals for higher fitted values. Both the

load as well as the solar plot do not seem to indicate a linear relationship.
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Figure 5.1: Residuals vs. fitted values for the multiple linear regression, show-
casing clear patterns for all three variables - indicating that the relationship
may not be fully linear.

Figure 5.2 shows the Scale-Location plot (left column) and the Normal QQ-plot

(right column) for the wind, load and solar multiple linear regression model.

After visualizing the indication of linear relationships in the previous plot, the

Scale-Location plots the square root of the absolute standardized residuals1

against the fitted values. This can be used as indicator for homoscedasticity

(homogeneity of the variance of the residuals). The non-horizontal line, with

increasing spread, in all plots indicates heteroscedasticity for all three models.

The Normal QQ-plots can be used to compare the quantiles of the residu-

als against the theoretical quantiles of a normal distribution. If the quantiles

”match” (indicated by all points lying on the 45° line), this can indicate that

the ”normal distribution of the residuals” assumption holds. It can be

observed that this assumption is violated, where especially for the solar model

huge deviations from the theoretical quantiles can be observed. This is due

to the fact, that a high number of zeros are present in the observation (hours

were the solar forecast was ”perfect”), but at the same time outliers with huge

forecast errors exist (see the right plot of figure 5.2b).

1The ”standardized residuals” in the implementation of lm in R refer to the studentized

residuals 	̂i
σ̂
√

1−hii
, where σ̂2 := 1

n−m

�n
j=1 �̂i

2 and m is the column dimension of X. hii

is the so called leverage and is defined as hii := (X(X�X)−1X�)ii. This is a measure of the
influence that the observed response yi has on its predicted value ŷi.
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Figure 5.2: Scale-Locations (that hint to the presence of heteroscedasticity due
to a non constant relation being displayed) and Normal QQ-plots (that show
that the residuals do not follow a normal distribution for any of the three vari-
ables) for the multiple linear regression.
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Furthermore the independence of the residuals can be investigated using

the Durbin-Watson test. The Durbin-Watson test is a statistical test commonly

used to test for autocorrelation of residuals with lag 1. The null hypothesis states

that there is no correlation among residuals, while the alternative hypothesis

is that residuals are autocorrelated. As table 5.3 shows, the null hypothesis is

rejected in all three cases, implying the possible existence of autocorrelation of

residuals.

Table 5.3: Durbin-Watson test indicating a positive autocorrelation of residuals.

Model Autocorrelation p value

Wind positive 0

Load positive 0

Solar positive 0

The default implementation uses the mentioned two sided test (with the alter-

native hypothesis only stating that there is an autocorrelation). The sign of

the autocorrelation can be checked by performing a one sided test (fixing the

alternative hypothesis to either an autocorrelation greater or less than zero),

which clearly indicates a positive autocorrelation (p value of 0 vs. a p value of

1 when checking for negative autocorrelation). It can further be investigated

whether there is autocorrelation for lags greater than 1. This was done for all

lags up to 24. This rejects the null hypothesis (indicating autocorrelation of

residuals) for all lags up to 6, with some lags greater than 6 not rejecting the

null hypothesis.

Tobit Model

The tobit model tries to describe the relationship between variables, where

the dependent variable is constrained in a certain sense. The usual restriction

mechanisms here are ”truncation” and ”censoring”. A truncated variable is only

observable in a particular range (e.g. income tax as a percentage of income in

Austria), a censored variable only to a certain extent (e.g. lifetime of machine

parts). Latent variables are often used with tobit models in which y∗ is directly

observable. However a function y of the latent variable y∗ can be observed. An

example for such a variable is the student knowledge in a specific subject area.

It can neither be observed nor is it exact quantifiable, but assessments of exams

and written works could be understood as estimates of it.

Let y∗ be a latent random variable and let y be observed. y is left-censored for
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L, if

y =

 y∗ y∗ > L

L y∗ ≤ L

respectively y is left-truncated for L, if

y = y∗ y∗ > L

There are a lot of different tobit models which allow different modeling of con-

nections or the data itself. The first tobit model was developed for the analysis

of cross-sectional data from households, but such models have already been used

in the context of time series analysis. In this thesis the focus of consideration

is the standard tobit model (also called tobit-I model) [Schneider, 2019].

Since all considered absolute forecast errors are by definition non-negative, the

used data can be interpreted as being left-censored at L = 0. This suggests

applying a tobit model as additional way to estimate the coefficients. Since

values of yi = 0 only exist for the solar forecast error, the tobit model was not

conducted for the load and wind forecast error (where it would lead to the same

results as the multiple linear regression).

The standard tobit model for the forecast error was implemented in R [R Core

Team, 2013] using tobit from the AER package [Kleiber and Zeileis, 2020]. L

(the lower bound) was defined as zero and a left-censored tobit model is chosen.

The coefficients β of the underlying multiple linear regression are estimated

using the IRLS (iteratively reweighted least squares) algorithm that implements

a maximum likelihood estimation.

Quantile Regression

Quantile regression (QR) [Koenker and Bassett Jr, 1978] is a method for esti-

mating functional relations between variables for all portions of a probability

distribution.

This type of modeling represents a good alternative to conventional regression.

Restrictive assumptions such as, for example, a certain distribution for the er-

ror terms are not necessary anymore. Furthermore, the estimator of the con-

ditional quantile function provides a more thorough overview of the response’s

distribution (achieved by estimating coefficients for multiple quantiles) than it
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is the case with models that only consider the conditional expected value (like

OLS). The following summary of the backgrounds of quantile regression is based

on [Körbler, 2014].

Quantiles are used to describe the distribution of the dependent variable. Quan-

tiles and percentiles are used synonymously - the 0.99 quantile is the 99th per-

centile. The best-known quantile is the median, which is the 0.50 quantile.

For a fixed value of τ ∈ (0, 1) - the quantile one is interested in estimating - and

assuming a so-called loss function that is defined as

ρτ (y) := y(τ − 1{y<0})

the theoretical τ -quantile can be calculated as

argmin
qτ∈R

E(ρτ (Y − qτ ))

Here, the loss function acts as asymmetric, weighted absolute value function.

Choosing τ = 0.5 for example leads to a symmetric function (as can be seen by

the definition) and to the calculation of the median.

When looking at regression tasks, obviously the true distribution of the outcome

variable Y is not known. Therefore the empirical cdf must be used. Assuming

that yi are the observations of Y , this leads to solving the minimization problem

(for the derivation see [Körbler, 2014]):

q̂τ = argmin
qτ∈R

1

n

n�
i=1

ρτ (yi − qτ )

The calculation of this (empirical) quantile can be reformulated as LP (linear

program). This follows the idea that by defining

ri := yi − qτ

and replacing this residual term by the difference of two non-negative variables

ui, vi so that

ri = ui − vi

it can be followed that

ρτ (yi − qτ ) = ρτ (ri) = τui + (1− τ)vi
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This can now be formulated as LP:

min
qτ ,u,v

n�
i=1

τui + (1− τ)vi

s.t. qτ + ui − vi = yi ∀i

The explained approach can now be formulated in a more general way to account

for explanatory variables (captured in the regression matrix X) by considering

conditional quantiles. This is done by replacing the (”static”) quantile function

qτ by its conditional counterpart QY (τ |x) = x�βτ for any given vector x of

observed explanatory variables. Using the i-th row of the regression matrix X,

given by xi·, the estimator β̂τ ∈ Rk is again determined through solving a LP

minimization:

min
βτ ,u,v

n�
i=1

τui + (1− τ)vi

s.t. xi· · βτ + ui − vi = yi ∀i

For the jth regressor, the marginal effect is the coefficient for the τ -quantile,

written as follows

∂QY (τ |x)
∂xj

= βτ,j

A quantile regression parameter βτ,j estimates the change of a specified quantile

τ of the dependent variable y produced by a one unit change in the independent

variable xj . The marginal effects are for infinitesimal changes in the regressor,

assuming that the dependent variable remains in the same quantile.

Unlike interpretations of OLS estimation, the interpretation of quantile regres-

sion results need to specify which quantile of the dependent variable they refer

to. QR coefficients can be significantly different for some or all quantiles in

comparison with results form the OLS.

The quantile regression will be used later on, in order to find out which variables,

in the sense of this model, have a comparatively high influence on the level of

forecast errors. The quantile regression for the forecast errors was implemented

in R [R Core Team, 2013] using rq from the QUANTREG package [Koenker,

2021]. The used algorithmic method to compute the fit is ”br”. This default

method is the modified version of the Barrodale and Roberts algorithm for

L1-regression and is described in [Koenker and d’Orey, 1994]. This is quite

efficient for problems up to several thousand observations, and may be used
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to compute the full quantile regression process [Koenker, 2021], [Econometric-

sAcademy, 2020].

5.1.3 Results

As conclusion of the results from chapter 4 on descriptive data analysis, the data

from 2019 and 2020 is considered for the previously introduced models (multiple

linear regression, tobit model and quantile regression as explained theoretical

in section 5.1.2). The data of 2019 is being used as so-called training data, i.e.

to build the models. The data of 2020 is then used as test data to examine the

quality of the models. It is important that the training data and test data are

disjoint, so as not to test on data that was used to build the models.

Graphic Differences

First, scatter plots are shown in which the predicted absolute forecast value is

compared to the historical value of the respective absolute forecast error. The

respective scatter plots for the multiple linear regression for the load and wind

forecast error are shown.

Figure 5.3 shows the predicted |FCELoad| versus the historic |FCELoad| in the

multiple linear regression as well as the predicted |FCEWind| versus the historic
|FCEWind|. In both cases a weak connection between the predicted absolute

forecast error and realized absolute forecast error can be seen.
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Figure 5.3: Scatterplots comparing the predicted vs. realized absolute load and
wind forecast error for the multiple linear regression during the test year 2020.
While both plots hint at the fact that the model does not capture all variation
in the data well, the most prominent observation can be deducted from the
wind plot: Absolute forecast errors above 400 MW can not be modelled and are
heavily under-predicted.
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Figure 5.4 shows the predicted |FCESolar| versus the historic |FCESolar| in
the multiple linear regression as well as in the tobit model. For the model of

|FCESolar|, the results seem rather random.
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(a) Multiple Linear Regression

0

50

100

150

0 50 100 150
Historic Absolute Solar Forecast Error [MW]

P
re

di
ct

ed
 A

bs
ol

ut
e 

S
ol

ar
 F

or
ec

as
t E

rr
or

 [M
W

]

(b) Tobit Model

Figure 5.4: Scatterplots comparing the predicted vs. realized absolute solar
forecast error for the multiple linear regression and the tobit model during the
test year 2020. Especially the tobit model displays an excess of predicted zeros.

In figure 5.5 the different results for the most important coefficients concerning

the quantile regression for the |FCELoad| are shown and compared with the

results for the multiple linear regression.

The red solid line marks the estimator of the coefficient for the respective ex-

ogenous variable in the multiple linear regression, while the red dashed line

shows the respective standard error. Since in the multiple linear regression the

estimator does not differ for the individual quantiles, it is clear that it must be

a constant value for the estimator. The blue dashed line shows the respective

estimator of the coefficient for the respective quantile in the quantile regression.

The gray area indicates the respective standard error. For the quantile regres-

sion, all quantiles were calculated with an interval of 5%, starting with the 5%

quantile and ending with the 95% quantile.
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Figure 5.5: Multiple linear regression vs. quantile regression - absolute load
forecast error. This highlights the vastly different influence various predictors
can have on the outcome variable for different quantiles. It can for example
be followed that high day ahead prices have a lower influence on low and high
quantiles than they have on the median, suggesting that the distribution above
the median actually tightens the higher the day ahead price is.

Graphically it can be clearly seen that the two models perform very differently

and the application of quantile regression makes sense. As can be seen in figure

5.5a, approximately around the 15% quantile, the estimator of the coefficient of

the quantile regression is significantly below the estimator of the multiple linear

regression.
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For example, the coefficient for the month (see subfigure 5.5e) is interesting.

The month of June was selected as a representative for the presentation. The

multiple linear regression returns a higher estimate of the coefficient for approx-

imately 50% of the data. Figure 5.5f also clearly shows the usefulness of the

quantile regression. There is a clear difference in the influence of the exogenous

variable hour - 12 a.m. in comparison to the results of the multiple linear re-

gression. Clear differences can also be seen for all other subfigures.
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Figure 5.6: Multiple linear regression vs. quantile regression - absolute solar
forecast error. These comparisons show that the quantile regression estimates
the effect of the lagged solar forecast error (of the previous day) completely
different compared to the multiple linear regression: While the median’s esti-
mator is similar, high forecast errors increasingly influence the upper quantiles.
This entails that days following ”bad forecast days” can result in an estimated
distribution that is much wider than for days following ”perfect forecast days”.

In figure 5.6 the different results for the most important coefficients concerning

the quantile regression of the |FCESolar| are shown and compared with the

results for the multiple linear regression. In the case of the coefficients to be

estimated for the model of |FCESolar| it can be seen that for FCSolar, FC2
Solar
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and priceDA the coefficients for all quantiles are estimated to be zero and also

a large standard deviation can be seen. A different picture emerges exclusively

for |FCESolar,day−1|. The multiple linear regression returns a higher estimate

of the coefficient for approximately 50% of the data and a lower estimate for

the rest.
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Figure 5.7: Multiple linear regression vs. quantile regression - absolute wind
forecast error. Again, significant difference between the estimator can be ob-
served. The coefficients of the wind generation forecast (a) show that high
forecasts come with a much wider distribution of absolute wind forecast errors,
indicating increased uncertainty during such hours.

In figure 5.7 the different results for the most important coefficients concern-
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ing the quantile regression of |FCEWind| are shown and compared with the

results for the multiple linear regression. Also for |FCEWind| the results show

clear differences between the estimators of the multiple linear regression and

the quantile regression, which also suggests the use of quantile regression. The

conclusion, that in the considered case for the absolute load and wind forecast

error quantile regression is useful, can also be supported by the results of the

calculation of the MAE and RMSE in section 5.1.3.

Influence of the Variables in the Model

Now an overview of the influence of individual variables on the different re-

gression models is given and the significance of the variables is discussed. As

explained in section 5.1.1 three mathematical models (absolute load, solar and

wind forecast error) are formulated. For these models three different regression

models (multiple linear regression, tobit model, quantile regression) are used to

evaluate the influences of the different variables in the model. The tobit model

was only used for |FCESolar|. Tables 5.4, 5.5 and 5.6 compare the results of

the coefficient estimation of the different used regression models. From now on

for the comparison the results of the quantile regression for the 50% quantile

(median) are used.

First, |FCELoad| is considered in table 5.4. 8760 observations were considered

and embedded in the two different regression models. The two different models

for |FCELoad| deliver very similar results. All exogenous variables are marked

as significant in both models, which is indicated by a p-value below 0.01. Most

of the coefficients of the hours, days and months that are not explicitly listed in

the table 5.4 also prove to be significant. The relationships explained by both

models are as follows:

• The greater FCLoad, the smaller |FCELoad|.

• The greater FCELoad,day−1, the greater |FCELoad|.

• The higher priceDA, the greater |FCELoad|.

• The greater FCSolar, the smaller |FCELoad|.

R2 is the coefficient of determination of the regression. The value of the co-

efficient of determination indicates the portion of the sum of squares (sum of

the squared values of the dependent variables = total sum of squares (TSS))

that is explained by the model. A small coefficient of determination (R2 ≈ 0,

close to 0) means a poor approximation of the absolute load forecast error by
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the linear function of the independent variables. A high coefficient of determi-

nation (R2 ≈ 1) means that |FCELoad| is well explained by a linear function of

the independent variables [Scherrer, 2015]. In the multiple linear regression for

|FCELoad|, R2 = 0.473. The use of an adjusted R2
adj is an attempt to account

for the phenomenon of the R2 automatically and spuriously increasing when

extra explanatory variables are added to the model. Here adjusted R2
adj and R2

have approximately the same value.

For the multiple linear regression model, many software packages (also in R)

automatically output an F-statistic. This is the corresponding statistic to test:

H0 : β1 = ... = βk = 0 vs. H1 : βj 
= 0 for minimum one 1 ≤ j ≤ k,

where β0 is the intercept. This is often referred to as ”testing the significance of

the regression”, because it tests whether a constant alone, without exogenous

variables, describes the data just as well. The F-statistic is calculated using

the restricted OLS estimator with the restriction determined by H0 [Schneider,

2019]. Here (multiple linear regression) the F-statistic has the value 177.465

and is significant. For the 50% quantile, the quantile regression provides results

that are very similar to the multiple linear regression model.

In table 5.5 |FCESolar| was considered. 5200 observations were considered and

embedded in the various regression models. The number of observations is lower

than in the models for the absolute load or wind forecast error, since all values

for which FCSolar is equal to zero have been removed2. One can say that the

quantile regression for |FCESolar| is performing poorly. The reason is that

FCESolar is zero most of the time, hence the median is zero and so the results

for the 50% quantile for the different estimated parameter for the exogenous

variables are zero. See figure 5.6, the estimated coefficients are also zero when

considering other quantiles (except the coeffient for |FCESolar,day−1|). When

comparing the results for the mean absolute error (MAE) and the root mean

square error (RMSE) on the out-of-sample test dataset, the quantile regression

performs clearly best according to MAE and second best according to the RMSE

just behind the multiple linear regression.

2During the six years (2015-2020) a total of ten hours were recorded for which the realized
solar generation was not exactly zero, even though the forecast was zero. This entails that
the best possible forecast that can be made for |FCESolar| during hours where FCSolar = 0
is zero.
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Table 5.4: Results: Absolute load forecast error, results of quantile regression
given as estimation of the 0.5 quantile. Both models (MLR and QR) estimate
the same signs for all coefficients and indicate that all of them are significant.
The regressions for |FCELoad| result in the highest R2 (compared to the other
two stage I models).

Dependent variable:

|FCELoad|
Multiple Linear Quantile

Regression Regression

(1) (2)

FCLoad −0.045∗∗∗ −0.056∗∗∗

(0.005) (0.005)

|FCELoad,day−1| 0.419∗∗∗ 0.504∗∗∗

(0.010) (0.012)

priceDA 2.626∗∗∗ 2.958∗∗∗

(0.272) (0.292)

FCSolar −0.223∗∗∗ −0.162∗∗∗

(0.021) (0.026)

Intercept 374.798∗∗∗ 420.667∗∗∗

(30.899) (32.243)

Observations 8,760 8,760

R2 0.473

Adjusted R2 0.470

Residual Std. Error 206.108 (df = 8715)

F-Statistic 177.465∗∗∗ (df = 44; 8715)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

For |FCESolar| a tobit model was created. The multiple linear regression model

and the tobit model also provide different values for the coefficients:

• In both cases, the influence of the solar forecast is significant with a posi-

tive influence and the square of the FCSolar and the |FCESolar,day−1| are
also significant with the same sign.

• There are clear differences in priceDA. In the multiple linear regression,

the coefficient for priceDA has a positive influence, while in the tobit model

a negative influence can be seen.

• In both cases, the influence of priceDA is significant.

• The same phenomenon that the signs of the estimated coefficients are dif-

ferent is shown concerning hour and hour2. This shows that |FCESolar|
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for the multiple linear regression model is lowest shortly after noon.

Conversely, estimating the coefficients using the tobit model shows that

|FCESolar| is greatest shortly before noon and is lower in the evening and

morning hours. In the multiple linear regression, |FCESolar| is lowest in
the morning, while in the tobit model the minimum is reached a little

later.

• The coefficients in the multiple linear regression model or in the tobit

model are negative for month and positive for month2.

The coefficient of determination R2 can also be calculated in this multiple linear

regression. R2 has the value 0.316, while the adjusted coefficient of determina-

tion R2
adj has the value 0.315. The value of the F-statistic is shown as significant.

In the tobit model, the value of the Wald-Test can be viewed as significant as

well.

Finally, the results of the models for |FCEWind| are considered. 8760 observa-

tions were considered and embedded in two different regression models (multi-

ple linear regression, quantile regression). It can be seen that the models for

|FCEWind| deliver very similar results. Most of the coefficients of the exoge-

nous variables are marked as significant in both models, which means that the

p-value is below 0.01. Most of the coefficients of the hours, days and months

that are not explicitly listed in the table 5.6 also prove to be significant. The

relationships explained by both models (see figure 5.4) are as follows:

• The greater FCWind, the greater |FCEWind|. The greater FC2
Wind, the

smaller |FCEWind|. That means, higher FCWind increases the expected

FCWind up to a forecast of around 2000 MW. From here on, there is a

decreasing influence on the |FCEWind|.

• The greater |FCEWind,day−1|, the greater |FCEWind|.

• The higher priceDA, the lower |FCEWind|.

• The greater FCSolar (this is mostly an indicator for ”good”, stable and

warm weather), the smaller |FCEWind|.

The coefficient of determination R2 can also be calculated in this multiple linear

regression. R2 has the value 0.218, while the adjusted coefficient of determina-

tion R2
adj has the value 0.215. The value of the F-statistic is shown as significant.

For the 50% quantile, the quantile regression provides results that are very sim-

ilar to the multiple linear regression.
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Table 5.5: Results: Absolute solar forecast error, results of quantile regres-
sion given as estimation of the 0.5 quantile. While the QR only estimates one
coefficient distinct from zero, both MLR and the tobit model indicate most
coefficients to be significant. Large differences in estimations (partially with
varying signs) between these two models can be observed. Only 5200 out of
8760 observations were used due to omitting hours for which FCSolar = 0.

Dependent variable:

|FCESolar|
Multiple Linear Tobit Model Quantile

Regression Regression

(1) (2) (3)

FCSolar 0.010∗∗∗ 0.026∗∗∗ 0.000

(0.001) (0.007) (0.013)

FC2
Solar −0.00001∗∗∗ −0.0001∗∗∗ −0.000

(0.00000) (0.00001) (0.00002)

|FCESolar,day−1| 0.392∗∗∗ 0.530∗∗∗ 0.500∗∗∗

(0.012) (0.034) (0.105)

priceDA 0.030∗∗∗ −0.066∗∗∗ 0.000

(0.006) (0.023) (0.015)

hour −0.370∗ 3.661∗∗∗ 0.000

(0.211) (0.973) (1.273)

hour2 0.014∗ −0.151∗∗∗ −0.000

(0.008) (0.039) (0.053)

month −1.842∗∗∗ −7.236∗∗∗ −0.000

(0.157) (0.659) (0.925)

month2 0.120∗∗∗ 0.365∗∗∗ 0.000

(0.012) (0.051) (0.097)

Intercept 6.001∗∗∗ −7.048 0.000

(1.349) (5.990) (7.284)

Observations 5,200 5,200 5,200

R2 0.316

Adjusted R2 0.315

Log Likelihood -4,400.691

Residual Std. Error 4.807 (df = 5191)

F-Statistic 299.861∗∗∗ (df = 8; 5191)

Wald-Test 1,312.210∗∗∗ (df = 8)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

CHAPTER 5. THE MODEL 60



Barbara Keck An Analysis: Control Area Imbalance

Table 5.6: Results: Absolute wind forecast error, results of quantile regression
given as estimation of the 0.5 quantile. Both models (MLR and QR) estimate
the same signs for all coefficients and indicate that most of them are significant.
Out of the three models (load, solar, wind) this one results in the lowest R2.

Dependent variable:

|FCEWind|
Multiple Linear Quantile

Regression Regression

(1) (2)

FCWind 0.381∗∗∗ 0.320∗∗∗

(0.009) (0.008)

FC2
Wind −0.0001∗∗∗ −0.0001∗∗∗

(0.00000) (0.00000)

|FCEWind,day−1| 0.014 0.015∗∗

(0.010) (0.006)

priceDA −0.765∗∗∗ −0.127

(0.195) (0.149)

FCSolar −0.102∗∗∗ −0.059∗∗∗

(0.018) (0.011)

Intercept 107.647∗∗∗ 67.470∗∗∗

(15.737) (12.856)

Observations 8,760 8,760

R2 0.218

Adjusted R2 0.215

Residual Std. Error 176.188 (df = 8720)

F-Statistic 62.452∗∗∗ (df = 39; 8720)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Qualitative Differences

In order to better assess the previously presented results of the models, the fol-

lowing section attempts to highlight qualitative differences. The mean absolute

error (MAE) and the root mean squared error (RMSE) are used for this and

are defined as:

MAE = 1
n

�n
i=1 | ˆFCEi,predicted − FCEi| and

RMSE =

��n
i=1(

ˆFCEi,predicted−FCEi)2

n ,

where n is the number of the predicted values, ˆFCEi,predicted are the predicted

forecast errors and FCEi are the realized (actual/correct) forecast errors.
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The larger either one of them is, the worse the fit of the model. It is there-

fore important to control influencing factors to obtain the smallest possible

MAE/RMSE in order to improve the quality of a model.

The MAE and RMSE are calculated on the test data (whole year of 2020). The

results of the calculation of the MAE and RMSE for the different forecast types

(Naive Zero, Naive Mean, Lag1, multiple linear regression (MLR), tobit model

(Tobit), quantile regression (QR)) for the absolute load, solar and wind forecast

error are shown in table 5.7. Naive Zero, Naive Mean and Lag1 are so-called

naive forecasts. The Naive Zero model always uses the value zero as forecast,

while the Lag1 model always selects the value of the previous day at the same

hour as the forecast. The Naive Mean uses the mean of the whole training data

(2019) as forecast. The results for these three naive models are now compared

with those of the multiple linear regression, the tobit model and the quantile

regression.

Since we know that the model fits the data better the lower the value of MAE

and RMSE, it can be seen in table 5.7 that the multiple linear regression, the

tobit model and the quantile regression provide better results for load, solar and

wind forecast errors than the naive forecasts. In the case of absolute load and

wind forecast error, the quality of the forecast is significantly improved by the

quantile regression.

For |FCESolar|, only a slight improvement in quality compared to the Naive

Zero model can be recognized, which is due to the fact that the solar forecast

error is zero most of the time and therefore the results apply quite well with

the naive forecast. In table 5.7 also the results for the quantile regression (for

the 50% quantile) are shown. Overall the quantile regression seems to be per-

forming quite good, with being the best for |FCELoad| and also really good for

|FCESolar| and |FCEWind|.
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Table 5.7: Comparison - MAE and RMSE. Bold values indicate the best per-
forming ”model” for each column. Both MAE and RMSE are better the smaller
they are. Mean absolute errors of the forecast errors are identical to the results
of the MAE using Naive Zero.

Model |FCELoad| |FCESolar| |FCEWind|
MAE RMSE MAE RMSE MAE RMSE

Naive Zero 338.28 439.93 24.37 55.36 204.78 303.07

Naive Mean 203.35 305.03 24.35 55.34 221.01 314.27

Lag1 187.44 289.29 26.72 60.61 200.05 303.26

MLR 183.12 259.39 22.43 50.69 130.97 204.28

Tobit - - 24.19 53.62 - -

QR 177.71 256.20 22.27 51.02 126.82 208.64

5.1.4 Conclusion

In this chapter, the absolute load, solar and wind forecast error were examined

with the help of three different regression models (multiple linear regression,

tobit model, quantile regression). It has been shown that carrying out these

models as preparation for stage II (investigation of the control area imbalance)

makes perfect sense, since all three models deliver significantly better results

than the three naive forecasts, Naive Zero, Naive Mean and Lag1.

5.2 Stage II - Control Area Imbalance

In stage II of the model the influences of explanatory variables on the necessary

amount of energy in the control area is examined. Two mathematical methods

(multiple linear regression and quantile regression) are considered in order to

analyze the absolute control area imbalance. The aim of this section is to analyze

the balancing energy demand (except FCR) with a focus on renewable energies

(solar and wind). The results from stage I for the load, solar and wind forecast

errors are used in order to be able to describe their influence on the absolute

control area imbalance.

As already mentioned in 4.2 the data on the control area imbalance was taken

from the APG website [APG, 2020]. From now on the data for the control area

imbalance from 2019 and 2020 is used. The following section gives a complete

overview about the mathematical models that are used, including all explana-

tory variables. Later on some insights into different ways of estimating the

unknown coefficients are presented and the chapter concludes with an in-depth

analysis of model results and compares the outcomes using the MAE and RMSE.
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5.2.1 Mathematical Model

It can be observed that expected value of the control area imbalance is zero,

due to the fact that ”demand = generation” must be respected at all times.

This is one major regulatory requirement that is continuously verified by the

E-Control. Otherwise the control area would be unbalanced from the beginning,

which could be accounted for without the need for balancing energy. This entails

that predicting the direction of the control area imbalance (if there is a surplus or

deficit during that specific hour) could potentially be impossible. Therefore the

absolute deviation from zero of the control area imbalance is considered. Since

this corresponds to a surplus or deficit of energy during a specific timeframe it

is still a matter of high importance - even if the direction is not defined - since

the magnitude plays a large role for various fields (e.g. power grid security and

stability could be at risk if the predicted amount exceed the already procured

balancing capacity).

In order to be able to examine the absolute control area imbalance using a

multiple linear regression and a quantile regression, first of all the mathematical

model that is used in stage II is defined. This model is intended to describe the

endogenous variable (absolute control area imbalance) by exogenous variables

that are listed below. The chosen explanatory variables were selected based on

the results from chapter 4 and from section 5.1.

The thesis is based on the assumption that the absoluteload, solar and wind

forecast errors have an influence on the absolute control area imbalance. That

is also the reason for the detailed consideration in stage I. Thus these absolute

forecast errors are also used as explanatory variables for the construction of the

mathematical model. Both the absolute forecast errors of the corresponding

day and those of the previous day are used as explanatory variables. That the

absolute forecast error of the previous day could have a significant influence is

concluded from the autocorrelation in figure 4.2 of the control area imbalance.

The realized forecast errors values are used to build the model on the training

data. Since these realized values are obviously not available during prediction

(that happens during the evening of the day ahead of delivery), these values are

replaced by the ”best estimate”. This best estimate is the result calculated by

the models developed in stage I.

Besides the forecast errors, the absolute load, solar and wind forecasts are in-

cluded to control for any direct effects of these variables. Similar, the day ahead

price is include as exogenous variable. It is not immediately obvious at this

point, whether this market price exhibits any explanatory power. As a precau-

tion it is therefore taken into account and its significance is evaluated later on,
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based on the results of the regression models (table 5.9 and 5.10 show that the

inclusion of the day ahead price makes sense).

Finally, the descriptive analysis of the control area imbalance suggests that the

considered hour and the respective weekday and month also have a different

influence on the absolute control area imbalance. Therefore, these variables are

included. To capture individual temporal effects (instead of only describing a

direct linear relationship), these are included as dummy variables (similar to

stage I) in the mathematical model. Table 5.8 lists the used abbreviations.

Table 5.8: Abbreviations - Stage II

Abbreviation Description

FCi Forecast of various variables: i ∈ {Load, Solar,Wind}
FCEi Forecast Error of various variables: i ∈ {Load, Solar,Wind}
FCEi,day−1 Lagged Forecast Error of various variables i ∈ {Load, Solar,Wind}.

This uses the forecast error that occured on the previous day during

the same hour (therefore ”day − 1”).

FCEi,day−7 Lagged Forecast Error of various variables i ∈ {Load, Solar,Wind}.
This uses the forecast error that occured on the same day of the last

week during the same hour (therefore ”day − 7”).

priceDA Day ahead price published on EPEX Spot

CAI Control area imbalance; it equals the algebraic sum of all balancing

group deviations (aFRR, mFRR, unintentional exchange).

hour Hour of the day

hourh hourh = 1 if hour = h, 0 otherwise

month Month of the year

monthh monthh = 1 if month = h, 0 otherwise

wdayd wdayd = 1 if the day of the week is d, 0 otherwise

u Residuals
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The chosen model for the absolute control area imbalance is as follows (later also

called ”full” model in this thesis, to describe the fact that all available variables

are used):

|CAI| = β0 + β1 · FCWind + β2 · FCSolar

+ β3 · FCLoad + β4 · priceDA

+

24�
h=1

β5,h · hourh +

12�
m=1

β6,m ·monthm

+

7�
d=1

β7,d · wdayd

+ β8 · |CAIday−1|+ β9 · |CAIday−7|
+ β10 · |FCELoad|+ β11 · |FCELoad,day−1|
+ β12 · |FCESolar|+ β13 · |FCESolar,day−1|
+ β14 · |FCEWind|+ β15 · |FCEWind,day−1|+ u

(5.4)

In the first step, a multiple linear regression and a quantile regression are applied

to the ”full” model defined above. Some estimated coefficients of the explana-

tory variables are clearly not significant in the respective mathematical methods

(multiple linear regression, quantile regression: coefficients are estimated for the

50% quantile) that are used (see also results in table 5.9 and 5.10, explained in

more detail later in this thesis). Variables that have insignificant coefficients3

are deleted for the respective method used. This results in two new ”short”

mathematical models (5.5) and (5.6) which are explained below. When consid-

ering the Akaike-Information-Criterion4 (AIC) for the ”full” models (multiple

linear regression and quantile regression) as well as the two ”short” models (one

for the multiple linear regression (5.5) and the other one for the quantile regres-

sion (5.6)), it can be seen that the AIC for the ”full” model (5.4) is larger than

for the ”short” models (5.5) and (5.6). This fact underlines the usefulness of

the additional consideration of the ”short” models (5.5) and (5.6), since a lower

AIC indicates possibly better performance.

3Where ”insignificant” is determined by a p-value greater than 0.05. For the quantile
regression this only looks at the p-values of the considered 50% quantile.

4The AIC is used to compare different model candidates. The smaller the AIC, the better
the chosen model. A detailed description of the AIC can also be found in [Sakamoto et al.,
1986].
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The resulting ”short” mathematical model for the multiple linear regression is

as follows:

|CAI| = β0 + β1 · FCWind + β2 · priceDA

+

24�
h=1

β3,h · hourh +

12�
m=1

β4,m ·monthm

+

7�
d=1

β5,d · wdayd

+ β6 · |CAIday−1|
+ β7 · |FCEWind|+ β8 · |FCEWind,day−1|+ u

(5.5)

The resulting ”short” mathematical model for the quantile regression (of the

50% quantile) is as follows:

|CAI| = β0 + β1 · FCWind + β2 · priceDA

+

24�
h=1

β3,h · hourh +

12�
m=1

β4,m ·monthm

+

7�
d=1

β5,d · wdayd

+ β6 · |FCESolar|+ β7 · |FCEWind|+ u

(5.6)

5.2.2 Estimating Coefficients

Two mathematical methods are used to estimate the coefficients of the defined

mathematical models for the absolute control area imbalance. On the one hand

multiple linear regression and on the other hand quantile regression are used.

The more precise theoretical explanation of the two regression models is already

given in section 5.1.2. The implementation of the multiple linear regression and

the quantile regression is done in R [R Core Team, 2013].

5.2.3 Results

As conclusion of the results from section 4.5 on descriptive data analysis, the

data from 2019 and 2020 is considered for the previously introduced models

(multiple linear regression and quantile regression as explained theoretical in

section 5.1.2). The data of 2019 is being used as so-called training data, i.e. to

build the models. The data of 2020 is then used as test data to evaluate the
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quality of the models. It is important that the training data and test data are

disjoint, so as not to test on data that was used to build the models.5

Furthermore, the results from stage I for the absolute load, solar and wind

forecast errors were used to generate two additional test datasets. In the original

test dataset (data from 2020), the real absolute load, solar and wind forecast

errors were replaced by the results (predicted forecast errors) of the multiple

linear regression (stage I) and in the second dataset by the results (predicted

forecast errors) of the quantile regression (just the estimated coefficients for

the 50% quantile are used, stage I). This resulted in two more test datasets in

addition to the original one featuring the realized (historic) forecast errors.

The aim is to create a forecast for the absolute control area imbalance and the

absolute load, solar and wind forecast errors are used as explanatory variables.

Since these values are not known at the time of the forecast, therefore it is

necessary to predict these forecast errors (see explanations in stage I) and to

generate these two additional test datasets.

In order to evaluate the quality of the forecast of the absolute control area imbal-

ance (using the predicted forecast errors), the MAE and RMSE are calculated

on the test data 2020 using the real forecast errors as benchmark.

Similar to stage I a Durbin-Watson-Test was applied to check for autocorrela-

tion of the residuals. For all four models (multiple linear regression and quantile

regression for the 50% quantile; both times for the ”full” as well as the ”short”

model) the test clearly (p-value < 3 · 10−16) rejects the null-hypothesis, indicat-

ing that the alternative hypothesis (stating that the autocorrelation is greater

than zero) is most likely true.

Graphic Differences

In figure 5.8 two scatter plots for the multiple linear regression and the quantile

regression (using the 50% quantile) for the predicted and historic |CAI| for the
”full” mathematical model (5.4) are shown. In figure 5.8 for the multiple linear

regression the test data using the results of the multiple linear regression in

stage I is considered. For the quantile regression the test data using the results

of the quantile regression (50% quantile) in stage I is considered.

5This results in all timestamps starting at 2019-01-01 00:00:00 until 2019-12-31 23:00:00
belonging to the training set - the set of data that all models are built on - and all timestamps
starting at 2020-01-01 00:00:00 until 2020-12-31 23:00:00 making up the test set - the set that
the model performance is being evaluated on.
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(b) Quantile Regression

Figure 5.8: Predicted versus realized absolute control area imbalance (”full”
models). Both models fail to predict deviations greater than 200 MW.

In figure 5.9 two scatter plots for the multiple linear regression and the quantile

regression (using the 50% quantile) for the predicted and historic |CAI| of the
”short” mathematical models (5.5) and (5.6) are shown. For the multiple linear

regression the test data using the results of the multiple linear regression in

stage I is considered. For the quantile regression the test data using the results

of the quantile regression (50% quantile) in stage I is considered.
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(b) Quantile Regression

Figure 5.9: Predicted versus realized absolute control area imbalance (”short”
models). Both models fail to predict deviations greater than 200 MW.

The other combinations of scatterplots like for example using the test data with

the results of the multiple linear regression in stage I for the quantile regression

and the other way around are not shown here, because those figures do not differ

significantly.

Figure 5.10 compares the estimated coefficients of the multiple linear regression

and quantile regression model and is only generated for the ”full” mathemat-

ical model (5.4), because the ”full” model is the same for the multiple linear
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regression and the quantile regression, so it is possible to compare the estimated

coefficients for some explanatory variables. In case of the two different ”short”

models (5.5) and (5.6) for the multiple linear regression and the quantile regres-

sion a comparison like this is not useful.

The red solid line marks the estimator of the coefficient for the respective ex-

ogenous variable in the multiple linear regression, while the red dashed line

shows the respective standard error. Since in the multiple linear regression the

estimator does not differ for the individual quantiles, it is clear that it must be

a constant value for the estimator. The blue dashed line shows the respective

estimator of the coefficient for the respective quantile in the quantile regression.

The gray area indicates the respective standard error. For the quantile regres-

sion, all quantiles were calculated with an interval of 5%, starting with the 5%

quantile and ending with the 95% quantile.

Influence of the Variables in the Model

The most important results for the multiple linear regression for the ”full” model

(5.4) and ”short” mathematical model (5.5) are shown in table 5.9. It turns

out that the load and solar forecasts are not significant. The |FCESolar| of the
respective day or the previous day is also not significant and is therefore removed

in the short model. However, FCWind and |FCEWind| for the current day are

significant. priceDA and |FCELoad,day−1| are also significant. The results for

the ”full” mathematical model (5.4) led to the ”short” mathematical model

(5.5) by ”clearing” the ”full” model (deleting the explanatory variables, which

do not have significant coefficients). In table 5.9 it can be seen that the results

between the ”full” model (5.4) and the ”short” model (5.5) do not differ much

concerning the signs and magnitudes of the estimated coefficients and that the

coefficient of determination is the same for both models.

The most important results for the quantile regression (50% quantile) for the

”full” model (5.4) and ”short” mathematical model (5.6) are shown in table

5.10.
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Table 5.9: Results: Multiple linear regression (”full” vs. ”short”). Coefficients
missing are due to insignificant variables being omitted from the short model.

Dependent variable:

|CAI|
(full) (short)

FCWind 0.007∗∗∗ 0.007∗∗∗

(0.001) (0.001)

FCSolar 0.005

(0.009)

FCLoad 0.003

(0.002)

priceDA −0.639∗∗∗ −0.566∗∗∗

(0.111) (0.094)

|CAIday−1| 0.025∗∗ 0.021∗∗

(0.011) (0.010)

|CAIt−7| 0.013

(0.010)

|FCEWind| 0.155∗∗∗ 0.154∗∗∗

(0.005) (0.005)

|FCEWind,day−1| −0.005

(0.005)

|FCESolar| 0.193

(0.234)

|FCESolar,day−1| −0.021

(0.230)

|FCELoad| 0.004

(0.004)

|FCELoad,day−1| −0.012∗∗∗ −0.011∗∗∗

(0.004) (0.004)

Constant 76.202∗∗∗ 93.606∗∗∗

(12.596) (7.464)

Observations 8,760 8,760

R2 0.161 0.161

Adjusted R2 0.156 0.156

Residual Std. Error 81.248 (df = 8707) 81.246 (df = 8714)

F Statistic 32.197∗∗∗ (df = 52; 8707) 37.063∗∗∗ (df = 45; 8714)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 5.10: Multiple linear regression vs. quantile regression - control area
imbalance (”full” model). While |FCESolar| shows an overlap of the two esti-
mators (indicating that it is not clear whether they differ significantly between
the two models), clear differences can be observed e.g. for |FCEWind|. These
entail a widening of the estimated distribution (”increased uncertainty”) linked
to higher absolute wind forecast errors.
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Table 5.10: Results: Quantile regression (”full” vs. ”short”). Coefficients miss-
ing are due to insignificant (for the estimation of the 50% quantile) variables
being omitted from the short model. Estimators are more similar compared
to the outcome of shortening the MLR. Coefficients for both listed models are
estimated for the 50% quantile.

Dependent variable:

|CAI|
(full) (short)

FCWind 0.008∗∗∗ 0.008∗∗∗

(0.001) (0.001)

FCSolar 0.003

(0.009)

FCLoad 0.002

(0.002)

priceDA −0.408∗∗∗ −0.371∗∗∗

(0.112) (0.090)

|CAIday−1| 0.011

(0.010)

|CAIt−7| −0.0001

(0.011)

|FCEWind| 0.124∗∗∗ 0.124∗∗∗

(0.006) (0.006)

|FCEWind,day−1| −0.003

(0.005)

|FCESolar| 0.362∗∗∗ 0.335∗∗∗

(0.118) (0.107)

|FCESolar,day−1| −0.008

(0.164)

|FCELoad| −0.002

(0.004)

|FCELoad,day−1| −0.004

(0.004)

Constant 67.459∗∗∗ 71.717∗∗∗

(11.747) (6.878)

Observations 8,760 8,760

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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It turns out that FCLoad is not significant. The |FCESolar| of the respective day
(in comparison to the multiple linear regression) and FCWind are significant.

priceDA is also significant. The results for the ”full” mathematical model (5.4)

led to the ”short” mathematical model (5.6) by ”clearing” the ”full” model

(deleting the explanatory variables, which do not have significant coefficients

for the 50% quantile). In table 5.10 it can be seen that the results between the

”full” and the ”short” model do not differ much.

Quantitative Differences

In order to be able to better assess the previously presented results of the models,

the following highlights qualitative differences. The mean absolute error (MAE)

and the root mean squared error (RMSE) like in stage I are calculated.

Table 5.11 shows the results of the multiple linear regression for the ”full” model

(5.4) and the ”short” mathematical model (5.5) using the three different test

datasets. Of course, the MAE and the RMSE are the smallest for the model on

the test data using the historic forecast errors. Since it is the aim to forecast the

absolute control area imbalance without knowing the real value of the forecast

errors, stage I is needed. The MAE and RMSE on the historic test data are

only given as benchmark. In table 5.11 it can be seen that the multiple linear

regression performs the best on the test data using the results of the quantile

regression (50% quantile) and using the ”short” mathematical model (5.5) for

the linear regression.

Table 5.11: Multiple linear regression - MAE and RMSE. Bold values indicate
the best performing model for each row. Both MAE and RMSE are better
the smaller they are. Results using historic forecast errors are given as ”best-
achievable” benchmark.

MLR
Test-Data

(using historic FCE)

Test-Data
(using results MLR

stage I)

Test-Data
(using results QR

stage I)

Full Short Full Short Full Short

MAE 59.74 58.77 60.42 60.36 58.70 58.59

RMSE 78.20 77.12 80.22 80.18 79.31 79.21

Table 5.12 shows the results of the quantile regression for the ”full” model

(5.4) and the ”short” mathematical model (5.6) using the three different test

data. It could be expected that the MAE and the RMSE are the smallest for

the model on the test data using the historic forecast errors. But the MAE

is slightly smaller on the test data using the results of the quantile regression
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(50% quantile) for the ”full” mathematical model (5.4) as well as for the ”short”

model (5.6). The RMSE is the smallest for the ”full” mathematical model (5.4)

on the test data using the results for the multiple linear regression from stage I.

When comparing the results from the two tables 5.11 and 5.12, it can be clearly

seen that both the MAE and the RMSE have significantly lower values for the

quantile regression in stage II and the MAE works best for the ”short” model

(5.6) on the test data using the results of the quantile regression (50% quantile)

from stage I.

Table 5.12: Quantile regression - MAE and RMSE.Bold values indicate the best
performing model for each row. Both MAE and RMSE are better the smaller
they are. Results using historic forecast errors are given as ”best-achievable”
benchmark.

QR
Test-Data

(using historic FCE)

Test-Data
(using results MLR

stage I)

Test-Data
(using results QR

stage I)

Full Short Full Short Full Short

MAE 56.02 56.00 56.10 56.20 55.43 55.51

RMSE 76.81 76.70 78.78 78.85 78.99 79.04

In table 5.13 the results for the naive forecasts are shown. It shows clearly that

the results for the defined models are better than the naive forecasts.

Table 5.13: Naive Forecasts - MAE and RMSE

Naive Forecasts

Naive Zero Naive Mean Lag1

MAE 85.60 62.45 77.88

RMSE 118.03 82.32 111.75

5.2.4 Conclusion

In this chapter, the absolute control area imbalance was examined with the

help of two different regression models (multiple linear regression and quantile

regression) using the results of the absolute load, solar and wind forecast error

from stage I. It has been shown that carrying out these models for the absolute

control area imbalance makes perfect sense, since all three models deliver signifi-

cantly better results than the three naive forecasts (Naive Zero, Naive Mean and

Lag1). Unfortunately, the ”short” model does not perform significantly better

than the ”full” model when measured using the results for the MAE and RMSE.
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It can therefore not be said that removing variables from the initial model im-

proved the models predictive power (but resulted in a smaller model producing

similar results for MAE and RMSE). When applying the quantile regression to

the test data using the results of the quantile regression (50% quantile) on the

defined ”full” mathematical model (5.6), overall the best value for the MAE

is obtained and when applying the quantile regression to the test data using

the results of the multiple linear regression on the defined ”full” mathematical

model (5.4), overall the best value for the RMSE is obtained.
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Chapter 6

Conclusion and Outlook

During the last few years there have been a lot of developments in the elec-

tricity market, which affect the requirements on balancing energy. Rising CO2

emissions and global warming led to an expansion of renewable and sustainable

forms of energy. In particular, electricity generation through wind and solar sys-

tems has become increasingly important. Measures like these are undoubtedly

necessary. However renewable forms of energy are coupled with an increased

volatility - due to uncertain forecasts and unexpected weather events - which

further increases the demand of balancing energy.

The aim of this thesis was to create a forecast of the absolute control area

imbalance. To achieve that the absolute load, solar and wind forecast errors

were used as explanatory variables. The challenge is, that at the time of the

forecast of the absolute control area imbalance, the absolute load, solar and wind

forecast errors are not known. Therefore a two-stage model was developed. In

the first stage, an attempt is made to predict the absolute load, solar and wind

forecast errors. Factors influencing these forecast errors are examined usinig

a multiple linear regression, a tobit model (only for the solar forecast error)

and a quantile regression. Then the results of the first stage (for the predicted

absolute load, solar and wind forecast errors) are used as input variables for the

analysis of the absolute control area imbalance in the second stage.

Unfortunately, many variables that could potentially be of interest are not pub-

licly and freely available. These could contribute to a higher level of modelling

results. In particular, there is an absence of weather- and climate-related vari-

ables. Temperature, wind speed as well as solar irradiance could provide ad-

ditional explanations. As a proxy for these variables the available data from

the ENTSO-E transparency platform (daily wind and solar forecasts) is used.
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Those come with the advantage of (since they are aggregated values) being rep-

resentative for the whole control area. Using data with a higher resolution or

more specific context could also come with downsides. For example, the tem-

perature of a rural region is not representative for the electricity consumption of

a large part of the population. Furthermore, a high proportion of the electric-

ity in Austria is generated by hydropower plants. In practice, data on storage

levels and river levels will have a noticeable impact on awarded quantities of

balancing energy and using these as input for the presented model could result

in predictions improving accordingly. In addition, intraday prices and forecasts

could also be used for short-term forecasts of the control area imbalance. Due

to the fact that the forecast is made on the day before delivery, including intra-

day information would not only improve the forecast quality but also delay the

forecast by many hours. Since this is not the focus of this thesis, the usage of

intraday data is not applied.

Due to the restrictive assumptions of classical regression approaches (MLR and

Tobit) an additional - optimization based - approach, namely the quantile re-

gression (QR) was discussed. To enable a direct comparison between results of

the MLR and tobit model (which look at conditional expected values) the quan-

tile regression was limited to only use the results of considering the median (the

0.5-quantile). However, coefficients were estimated for a wide range of quantiles

(in stage I). These could be incorporated into the stage II model to not only

estimate the median but also predict the expected distribution of control area

imbalances.

To investigate the performance of the two-stage modelling approach, the model

was tested on data from 2020 while only being built on data from 2019. Not only

does this ensure that the testing process is done on completely unseen and new

data, but this also does not in any way unfairly benefit the developed models

since 2020 was - due to COVID-19 - a year with significantly different electricity

profiles (for both demand and therefore generation).

Considering the final results in table 5.11 and 5.12 the different modelling ap-

proaches can be compared regarding their performance:

Using the mentioned QR approach for stage II resulted in a reduction of the

MAE (mean absolute error) of 5.5% and close to 1% increase of performance

considering the RMSE (root mean square error) compared to the MLR ap-

proach. This suggests using the QR model, since it is - as mentioned before

- the one that can easily be further expanded. The input values generated by

stage I show no significant difference in quality - both the MLR and QR input

data perform almost equally.
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Three different benchmarks were defined. Comparing the stage II results of the

QR against these showcases an improved performance by approximately 11%

for the MAE and close to 5% for the RMSE, which shows that considering the

chosen explanatory variables results in a performant model.

The topic of this thesis will become even more important in the future as the

expansion of renewable energies advances and electricity consumption increases

due to an increasing ”electrification” of various sectors. Failures in the power

grids must be avoided as far as possible. If the forecast for renewable energies

(especially wind) is better, there will be fewer fluctuations in the network. Be-

sides grid stability and security, improved forecasts and especially forecasts with

lower absolute deviations from realized values will play an ever more important

role, in order to also increase transparency of electricity markets and prevent

potential situation of abuse (of regulatory or technical market properties) - as

was outlined in the introduction.
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[Kurscheid and Düvelmeyer, 2009] Kurscheid, E. M. and Düvelmeyer, D.
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[Möller et al., 2011] Möller, C., Rachev, S. T., Kim, Y. S., and Fabozzi, F. J.

(2011). Innovation processes in logically constrained time series. Springer.

[R Core Team, 2013] R Core Team (2013). R: A language and environment for

statistical computing.
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Universität Wien, Institut für Stochastik und Wirtschaftsmathematik.

[Schneider, 2019] Schneider, U. (2019). Mikorökonometrie. Technische Univer-
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