
D I P L O M A R B E I T

Explainable Artificial Intelligence
Methods for Modeling Categorical

Responses

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Statistik und Wirtschaftsmathematik

unter der Anleitung von

Univ.-Prof. Dipl.-Ing. Dr.techn. Peter Filzmoser

eingereicht von

Marcus Mayrhofer

Matrikelnummer 01607509

ausgeführt am Institut für Stochastik und Wirtschaftsmathematik

der Fakultät für Mathematik und Geoinformation

an der Technischen Universität Wien

Wien, am 13.09.2021

(Unterschrift Verfasser) (Unterschrift Betreuer)

Abstract

Artificial Intelligence (AI) and Machine Learning (ML) are technologies that are not only
among the top fields of research, but their areas of applicability are also rapidly increasing.
For instance, complex non-linear or non-parametric ML models are already being applied
to support key decisions in sectors like health care, criminal justice, or finance. However,
while using ML or AI in critical sectors can be viewed as favorable due to their generally
high predictive performance and power, the main drawback for human users is that drawing
inference, detecting bias or retracing the basis for the different models’ decisions is often
hard, if not impossible. The field of Explainable AI addresses exactly this prevalent lack
of interpretability of various complex machine learning models – and multiple proposals
on how to solve this issue have already been made. In this work we discuss three different
methods of Explainable AI, which allow for an interpretation of complex models in a way
that is accessible to humans. Moreover, we compare the methods in terms of performance
and applicability on a use-case scenario, namely to predict the electricity imbalance price
for Austria, using data collected from the Transparency Platform, which is operated by the
European Network of Transmission System Operators for Electricity (ENTSO-E). Specifi-
cally, the considered methods are Local Interpretable Model-agnostic Explanations (LIME),
Shapley values for model explainability, and SHapley Additive exPlanations (SHAP), for
all of which the focus is placed on their application in the context of classification tasks. Re-
garding the classification of the electricity imbalance price, we analyze the time-dependent
electricity market data from Austria and explore multiple modeling strategies. While all
three methods of Explainable AI discussed in this work provide model-agnostic explanation
procedures for individual observations, only the model-specific Tree SHAP algorithm from
the SHAP framework offers efficient implementations that enable us to fully explain all
predictions of tree-based models. The final model for the classification of the electricity
imbalance price is based on an online learning approach utilizing boosted tree ensemble
models, for which we employ the methods of Explainable AI to interpret the model. Fur-
thermore, tree-based methods do not only yield the best results for the currently available
data, but also possess the highest potential for improvement should the data quality or
availability improve in the future.

Kurzfassung

Künstliche Intelligenz (KI, englisch: Artificial Intelligence) und Maschinelles Lernen (ML,
englisch: Machine Learning) erfreuen sich seit einigen Jahren an einer noch nie dagewe-
senen Popularität und einem enormen, stetig wachsenden Interesse, sowohl vonseiten der
Wissenschaft als auch seitens des Wirtschaftssektors. Die hohe Nachfrage nach den Me-
thoden von KI und ML zeichnet sich vor allem an dem rasanten Wachstum und an der
zunehmenden Relevanz ihrer Anwendungsgebiete ab. Bereits jetzt kommen beispielsweise
komplexe nicht-lineare oder nicht-parametrische ML-Modelle oftmals im Gesundheitswe-
sen, Strafjustizsystem oder dem Finanzsektor zum Einsatz, um kritische Entscheidungen
zu treffen oder die Richtigkeit dieser zu bekräftigen. Die Anwendung von ML oder KI in sol-
chen systemrelevanten Sektoren bringt sowohl Vor- als auch Nachteile mit sich: Einerseits
weisen die erstellten Modelle oft eine sehr hohe Prognosegenauigkeit auf, andererseits muss
jedoch auch berücksichtigt werden, dass menschliche Anwender die Entscheidungen der
oftmals komplexen Modelle nur schwer bis gar nicht nachvollziehen können. Darüber hin-
aus kann die fehlende Interpretierbarkeit der Modelle auch die Aufdeckung von etwaigen
systematischen Verzerrungen deutlich erschweren. Um Lösungswege für eben jene Pro-
blemstellungen zu finden, wurde im Feld der KI die untergeordnete Sparte der erklärbaren
künstlichen Intelligenz (englisch: Explainable Artifcial Intellegence) geschaffen, aus welcher
bereits mehrere Herangehensweisen und Lösungsansätze hervorgegangen sind. Der Fokus
der vorliegenden Arbeit liegt auf drei dieser möglichen Ansätze, welche eine Interpretati-
on komplexer Modelle auf eine für den Menschen zugängliche Weise ermöglichen sollen.
Darüber hinaus werden die jeweiligen Methoden anhand eines realen Anwendungsbeispiels
in Bezug auf ihre Leistungsfähigkeit und Anwendbarkeitseigenschaften miteinander ver-
glichen und analysiert. Zu diesem Zweck soll auf Basis von erhobenen Energiedaten der
Transparancy Platform des Verbands Europäischer Übertragungsnetzbetreiber (englisch:
European Network of Transmission System Operators for Electricity, ENTSO-E) der Para-
meter des Ausgleichsenergiepreises für den österreichischen Strommarkt vorhergesagt wer-
den. Konkret beschäftigen wir uns mit folgenden drei Methoden der erklärbaren KI in
Bezug auf Klassifikationsprobleme: Local Interpretable Model-agnostic Explanations (LI-
ME), Shapley values zur Modellinterpretierbarkeit, sowie SHapley Additive exPlanations
(SHAP). Alle drei der betrachteten Methoden können zur Erklärung individueller Beobach-
tungen mittels modellunabhängiger Erklärungsverfahren für Menschen verwendet werden.
Jedoch bietet nur der Tree SHAP Algorithmus aus dem SHAP Framework eine effizien-
te Implementierungsmöglichkeit, welche eine vollständige Erklärung aller Beobachtungen
Modellen auf Grundlage von Entscheidungsbäumen (englisch: decision trees) erlaubt. Die
Methode zur Klassifizierung des Ausgleichsenergiepreises besteht darin, ein schrittweises
Prognoseverfahren zu entwickeln, welches anhand der genannten Methoden der erklärbaren
KI analysiert wird. Es stellt sich heraus, dass auf Entscheidungsbäumen basierende Model-

le nicht nur die höchste Prognosegenauigkeit für die bisher verfügbaren Daten aufweisen,
sondern dass sie darüber hinaus auch das stärkste Verbesserungspotential besitzen, sofern
sich die Datenqualität zukünftig verbessern sollte oder die Energiemarktdaten zeitnäher
verfügbar werden.

D

Acknowledgement

During the writing process of this thesis, I received a lot of support and encouragement.

I would like to thank my supervisor Univ.-Prof. Dipl.-Ing. Dr.techn. Peter Filzmoser,
Vienna University of Technology. Your expertise and insights were invaluable and enabled
me to bring my work to a higher level.

I also would like to express my gratitude to Mag. Jürgen Zeindl, MBA, voestalpine Stahl
GmbH. Thank you for your advice, encouragement and for giving me the opportunity to
collaborate with the Applied Statistics Department at voestalpine Stahl GmbH.

Further, I want to acknowledge the pleasant, motivating work environment, created by
all colleagues in the Applied Statistics Department at voestalpine Stahl GmbH. I am gra-
teful for the opportunity to intern in this department and want to thank you for your
collaboration, support, and sustained interest in my work.

Finally, I would also like to thank my family and friends for their love, council, and their
sympathetic ear. I could not have completed this thesis without you. I would particularly
like to thank Alena Rottensteiner for her invaluable council, patience, and encouragement.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 13.09.2021
Marcus Mayrhofer

Contents

1. Introduction 1

2. Methods of Explainable Artificial Intelligence 3

3. Local surrogate models 5
3.1. Introductory example to local surrogate models 5
3.2. Overview and introduction . 6
3.3. Algorithm and specific implementations . 7

3.3.1. Interpretable feature representation and sampling 8
3.3.2. Proximity measure . 10
3.3.3. Local surrogate model and explanations 11

3.4. Examples . 11
3.5. Summary . 13

4. Shapley values 14
4.1. Notation . 14
4.2. Feature attributions for linear regression . 14
4.3. Feature attributions for general models . 15

4.3.1. Cooperative game theory . 16
4.3.2. Connection to model agnostic feature importance 20
4.3.3. Approximation of Shapley values . 23

4.4. Summary . 25

5. SHAP framework 26
5.1. Additive feature attribution methods . 26
5.2. Kernel SHAP – model agnostic approximation 30
5.3. Linear SHAP . 34
5.4. Tree SHAP . 35
5.5. Implementations, visualization and global feature importance 36

5.5.1. Visualizations for individual observations 37
5.5.2. Global feature importance . 38

5.6. Summary . 41

6. Electricity markets and data description 42
6.1. Data analysis and feature engineering . 44

6.1.1. Data availability . 45
6.1.2. Final values . 46
6.1.3. Most recent values . 47

i

Contents

6.1.4. Restricted timespan . 47
6.2. Exploratory data analysis . 49

7. Model and Explainable AI 53
7.1. Modeling approaches . 53

7.1.1. Emulating better data availability 56
7.2. Online learning . 56
7.3. Explainable AI . 60

7.3.1. Analysis of all observations . 60
7.3.2. Analysis of a single prediction . 62

8. Discussion and conclusions 67

Bibliography 68

A. Gower similarity 73

B. Parameter names 74

ii

1. Introduction

Computational science has become an integral and ever-increasing part of our modern-day
life, as it is overtaking more and more tasks from humans because it can not only automate
and speed up very basic processes, but also because of its potential for creating more
efficient and sophisticated data-driven solutions. Machine Learning (ML) and Artificial
Intelligence (AI) are two scientific domains that are specifically designed to meet those
demands and their respective areas of application are rapidly expanding. Starting from the
advertisements we see on Social Media Sites, an email spam filter, or the weather forecast,
over to autonomous cars – ML and AI are not only employed as subsidiary tools but are
on the same level or even exceeding the performance of humans for many tasks (Molnar,
2019). The astonishing accomplishments of ML and AI are based on the use of non-linear
or non-parametric ML models like random forests, gradient boosting or neural networks
– which are oftentimes referred to as black-box models. While those methods frequently
outperform traditionally used parametric models like linear or logistic regression, their
structure and predictions are comparatively harder to trace or interpret. Since ML models
and especially black-box models steadily increase to find applications in critical areas like
health care, criminal justice or the financial sector, a high performance is oftentimes not the
only desired objective – we also want to be able to comprehend the decisions of those models
(Lipton, 2018; Biran and Cotton, 2017). Therefore, a crucial part of Machine Learning is
to explain and understand the used models as well as their resulting predictions. This
task is commonly referred to as Explainable Artificial Intelligence or Interpretable
Machine Learning (IML) (Molnar et al., 2020). In this work we particularly focus on
three methods of Explainable AI: Local Interpretable Model-agnostic Explanations (LIME)
(Ribeiro et al., 2016), Shapley values for model explainability (Štrumbelj and Kononenko,
2010, 2014), and SHapley Additive exPlanations (SHAP) Lundberg and Lee (2017), which
are discussed in Chapters 3, 4 and 5, respectively.

Before we introduce our use-case, which poses as a feasibility study for employing the meth-
ods of Explainable AI on a real-world task, we want to motivate the corresponding topic:
Economic prosperity as well as everyday life in the twenty-first century are heavily depen-
dent on the access to electricity. Regarding power generation, the focus is shifting from
fossil fuels to sustainable and renewable energy sources. While this transition is of extreme
importance, it can induce problems with the stability of the power supply, as outlined in
Chapter 6. In that chapter we also describe the datasets based on the Austrian energy
market data, which can be accessed via the Transparency Platform operated by European
Network of Transmission System Operators for Electricity (ENTSO-E). Moreover, we dis-
cuss multiple modeling strategies to predict the energy imbalance price for Austria, based
on the previously mentioned datasets in Chapter 7, before utilizing the methods of Explain-

1

1. Introduction

able AI to interpret the most promising model. Furthermore, we want to note that this
work was conducted in cooperation with the applied statistics department of voestalpine
Steel Division1, hereafter referred to as voestalpine. Not only does voestalpine provide the
specification of the use-case scenario concerning the Austrian energy market as well as the
corresponding data, but they also shared the results of previous research concerning the
energy market as well as Explainable AI.

Unless stated otherwise, we use R (R Core Team, 2021) for all computational tasks and
the ggplot2 (Wickham, 2016) package for the different visualizations. While we will not
include R code in this work, it is worth mentioning that all code associated with this thesis
is provided by the author for voestalpine. This includes but is not limited to the code
that was used to produce the results discussed within this thesis. To directly access and
interact with the database from voestalpine with R, we use the packages DBI (R Special
Interest Group on Databases (R-SIG-DB) et al., 2021), odbc (Hester and Wickham, 2021)
and dbplyr (Wickham et al., 2021). For data processing purposes, we mainly utilize the
packages included in the tidyverse (Wickham et al., 2019), additionally we work with
lubridate (Grolemund and Wickham, 2011) to handle date and time related data as well
as janitor (Firke, 2021) for data cleaning. As a general model building framework, we use
caret (Kuhn, 2021), in addition we work with glmnet (Simon et al., 2011) as well as nnet
(Venables and Ripley, 2002) for multinomial logistic regression. For boosted tree ensemble
models, we apply xgboost (Chen et al., 2021), and ranger (Wright and Ziegler, 2017) for
random forests. While it is not a focus of this thesis, we work with keras (Allaire and
Chollet, 2021) to create neural networks. To allow for a more efficient implementation of
computationally intensive tasks, we use the libraries foreach (Microsoft and Weston, 2020),
future and doFuture (Bengtsson, 2020) for parallelization, additionally doRNG (Gaujoux,
2020) helps us generate reproducible results while using parallel computing. To keep track
of the progress of all parallel computation tasks, we use progressr (Bengtsson, 2021). The
original implementations for most of the Explainable AI concepts discussed in this thesis
are implemented in Python (Van Rossum and Drake, 2009) and we access those methods
directly by using reticulate (Ushey et al., 2021) as an interface from R to Python. In R we
can for example use the packages iml (Molnar et al., 2018) and lime (Pedersen and Benesty,
2021) to fit local surrogate models. For a model-agnostic computation of Shapley values
we may also use iml or fastshap (Greenwell, 2020a), and the xgboost package includes a
model-specific procedure to compute Shapley values. For a more detailed overview of the
R packages related to Explainable AI, we refer to Maksymiuk et al. (2020).

1voestalpine Stahl GmbH, voestalpine-Straße 3, 4020 Linz, Austria, https://www.voestalpine.com/

stahl/en

2

https://www.voestalpine.com/stahl/en
https://www.voestalpine.com/stahl/en

2. Methods of Explainable Artificial
Intelligence

When dealing with Explainable AI, the first objective should be to familiarize oneself with
the terminology used in this context. Concerning this topic, we want to note that at
the time this thesis is written, there is a lot of ongoing research in this area, but there
does not yet exist a common taxonomy used for Explainable AI, which is a topic that is for
instance addressed in Doshi-Velez and Kim (2017); Lipton (2018); Biran and Cotton (2017).
Arguably the most important term related to this topic is interpretability. To the best
of the author’s knowledge, there is no formal mathematical definition of interpretability.
In this thesis we want to state two definitions which fall in line with the objective of the
methods which are discussed afterwards:

• Interpretability is the degree to which an observer can understand the cause of a
decision (Miller, 2019).

• Systems are interpretable if their operations can be understood by a human, either
through introspection or through a produced explanation (Biran and Cotton, 2017).

As stated in Molnar et al. (2018), the goal of the methods of IML lies in making the
actions and predictions of Machine Learning systems understandable to humans. In this
work we focus on post-hoc explanation methods for supervised learning ML models with
an emphasis on classification, which aim to generate interpretable explanations for model
predictions, after a model is fitted.

Before we introduce those methods, we want to provide some examples and motivation
why model interpretability of ML models is important. As mentioned in Doshi-Velez and
Kim (2017), interpretability can be used to assess some important characteristics of ML
models, some of which are listed below:

• Fairness or Unbiasedness: Those properties imply that there is no implicit or explicit
discrimination against protected groups.

• Privacy: This assures that sensitive information in the data is protected.

• Reliability or Robustness: Models adhering those properties are not unduly affected
by variations of inputs.

• Causality: Ideally, causal relationships are the main drivers of the model.

• Trust: For humans it is easier to trust in a system that provides explanations for its
decisions.

3

2. Methods of Explainable Artificial Intelligence

Oftentimes we do not only want to understand how a model works, but also why it makes
certain decisions. For example, we could utilize Explainable AI to investigate whether a
credit scoring method is discriminatory against minorities.

In the following sections we first introduce local surrogate models, focusing on Local In-
terpretable Model-agnostic Explanations (LIME), as proposed in Ribeiro et al. (2016).
Moreover, we analyze the concept of Shapley values from cooperative game theory and
relate it to the context of model explanations, following Štrumbelj and Kononenko (2010,
2014). Furthermore, we discuss SHapley Additive exPlanations (SHAP), particularly dis-
cussing Kernel SHAP, which is a method that unites the ideas of LIME and Shapley values
(Lundberg and Lee, 2017). Finally, we examine a computationally efficient method to com-
pute Shapley values for tree-based models, as described in Lundberg et al. (2018, 2020).

4

3. Local surrogate models

The idea behind local surrogate models is to explain individual predictions of a Machine
Learning model by local approximation with an intrinsically interpretable model. Local
Interpretable Model-agnostic Explanations (LIME), proposed in Ribeiro et al. (2016),
suggest a concrete implementation, which is applicable to tabular, text and image data.

3.1. Introductory example to local surrogate models

Since the focus of the current thesis is on classification tasks, we introduce the concept of
local surrogate models with a binary classification example, which is visualized in Figure
3.1. Suppose we have two predictors x1, x2 ∈ R and want to predict whether an observation
x = (x1, x2) ∈ X ⊆ R2 belongs to class y ∈ {A, B}, where class A is represented by blue
dots and class B by red triangles. For this simple example we assume that an observation
x is classified according to

y =

�
blue f(x) ≤ 0

red f(x) > 0
with f(x) = 2 · sin(x1)− 1x1>0(x1)− x2.

In contrast to most real-world applications, where the decision boundary is produced by
a ML model and is not intrinsically interpretable, the decision boundary is explicitly de-
fined by f(x) in this example. Our objective is to approximate f with an intrinsically
interpretable model g.

First, we generate an artificial dataset, containing 20 observations, by sampling x1 from a
normal distribution with mean equal to zero and a standard deviation of three, denoted
as N (0, 3), and x2 according to N (0, 4) and classifying those observations using f . Those
samples are displayed in the top left plot of Figure 3.1, with the decision boundary f
being represented by the thick black line and the classification regions being colored re-
spectively. Proceeding to the top right panel, we choose the observation of interest x, which
is represented by the big yellow dot. Additionally, 200 new observations are sampled using
univariate normal distributions with the sample means and standard deviations of x1 and
x2 and can be seen as gray dots in the plot. To get a local explanation for the observation
of interest, we fit a weighted logistic regression model to approximate f in the proximity of
x. For this purpose, the sampled observations are weighted according to the exponential
kernel πx, given by

πx(z) = exp

�
−
x− z

(
√
2 · 0.75)2

�
,

5

3. Local surrogate models

Figure 3.1.: Intuitive visualization of the concept behind local surrogate models and LIME.

which computes the weight for a sampled observation z with respect to x. Those samples
are then classified by f , as displayed in the bottom left plot. In the bottom right diagram,
we display the decision boundary generated by the weighted logistic regression model g and
the sampled observations which are classified according to this model.

3.2. Overview and introduction

As already mentioned, the goal of local surrogate models is to approximate a ML model f
in the neighborhood of a single observation x with an interpretable model g. When LIME
was originally proposed by Ribeiro et al. (2016), the authors motivated the introduction of
their method with three desirable properties of explanations, which we will discuss before
introducing the notation and the optimization task connected to LIME.

The first property is interpretability, which we already discussed in Chapter 2. An im-
portant consideration regarding interpretability is that it always depends on the audience
which models, methods or explanations are considered to be interpretable. For example,
a person who is not familiar with statistics might consider the visualization of a shallow
decision tree interpretable, while the parameters and p-values (Schervish, 1996) of a sparse
linear model might be less helpful to them. Likewise, even a professional might struggle
to interpret the parameters of a linear model with thousands of significant features. This
motivates the inclusion of a complexity constraint to the objective function in Equation
(3.1). The second property, local fidelity, means that the model should be a good approx-
imation of the ML model f in the locality of the observation of interest. In LIME this is
ensured by the structure of the loss function and the resulting minimization problem, given
in Equation (3.2). Another desirable characteristic of an explanation method is its appli-

6

3. Local surrogate models

cability to any kind of Machine Learning model, hence that it is model agnostic. Since
the local behavior of the ML model f is approximated using a perturbed version of the
training dataset, as described in Section 3.3, it is not necessary to make any assumptions
for the underlying model.

At this point we want to introduce the formal notation for LIME: First, let g ∈ G denote the
local surrogate model, where G is the class of potentially interpretable models. Since not
every model g ∈ G has to be simple enough to be humanly interpretable, Ω(g) is introduced
as a measure of complexity for the given model g ∈ G. Moreover, the proximity measure
(weight function) πx defines the locality around the observation x. The loss function
L(f, g, πx) is a measure of unfaithfulness of g approximating f in the locality given by πx.

Considering that we want to get an interpretable model which is locally faithful (local
fidelity), L(f, g, πx) is minimized, while Ω(g) ensures that g ∈ G is simple enough to attain
humanly interpretable models (interpretability). Therefore, the objective function to obtain
an explanation ξ is given by

ξ(x) = argmin
g∈G

�
L(f, g, πx) + Ω(g)

�
. (3.1)

In practice, the optimization problem in Equation (3.1) can be simplified by limiting G to
models with the same complexity, e.g., linear models with the same number of parameters
or decision trees with the same depth. By following this approach, Ω(g) is the same for
every model g ∈ G and can be omitted from the minimization task in Equation (3.1).

An important mathematical detail of this approach is that f and g can be defined on
different domains. While the model f : X → R operates on the p-dimensional feature
space X, the local surrogate model g : X � → R is defined on the q-dimensional space of
interpretable representations X �. As in Lundberg and Lee (2017), let hx : X � → X
denote the function which relates interpretable feature representations x� with the original
features x = hx(x

�). Since hx is specific to the observation of interest x, the transformation
works even though x� might contain less information than x.1

3.3. Algorithm and specific implementations

In this section we cover the necessary steps to obtain explanations using LIME and compare
different existing implementations. First, we present Algorithm 1 for local surrogate models
and describe the original implementation (Ribeiro et al., 2016). Subsequently, we perform
a more detailed analysis of all the steps in the algorithm, along with a comparison of

1When LIME was first introduced, there was no concise description of how the relation between X and X �

is defined. In this work, we want to describe this relation using the simplified input mapping, intro-
duced in Lundberg and Lee (2017) for the formulation of SHAP as mentioned in Chapter 5. The term
simplified input is another name for interpretable representation. More details about the interpretable
representations and the simplified input mapping are given in Section 3.3.1.

7

3. Local surrogate models

the original implementation2 to the realizations in the lime package in Python and the
procedure for local surrogate models included in the iml package in R (Molnar et al.,
2018).

Algorithm 1: Local surrogate model

Input: Observation to be explained x, interpretable representation x�

Input: Machine Learning model f , function hx, proximity measure πx
Input: Complexity parameter K, sample size N
Output: Explanation ξ

1 for i ← 1 to N do
2 z�i ← sample around(x�)
3 zi ← hx(z

�
i)

4 yi ← f(zi)
5 wi ← πx(zi)

6 g ← weighted model(y, z�, w,K)
7 ξ ← interpret(g)
8 return ξ

3.3.1. Interpretable feature representation and sampling

The fact that the local surrogate model g can use different features than the original model f
is a big advantage, especially if the original features are non-interpretable. Nevertheless, it
is important to note that the interpretable representations X � are derived from the original
feature space X. To fit the locally interpretable model g in the space of interpretable
representations X � and learn the behavior of the model as the inputs vary, we need a
sufficiently large number of observations in the proximity of the observation of interest
x. Before new instances are generated, an interpretable feature representation has to be
selected. In the original implementation the simplified inputs are given by a binary vector
x� ∈ X � = {0, 1}q, which is dependent on the input space as described below.

In the case of tabular data, the dimensions of X and X � are equal and the interpretable
feature representation of the instance of interest x is given by a vector of ones. A new
sample z� is generated by selecting a subset of elements of x�, which are changed to zero
uniformly at random, resulting in a new instance z� ∈ {0, 1}p. Let S be the indices of the
non-zero elements of z and S̄ = {1, ..., p} \ S the indices of the zero elements, so we have
z�S = 1 and z�S̄ = 0. At this point the simplified input mapping hx is used to map z� to
the original input space X. For the non-zero elements z�S we have hx(z

�
S) = xS , while the

zero elements z �̄
S
are drawn depending on the type of the feature. Numerical features are

mapped to a random sample drawn from a normal distribution with mean and standard
deviation of the training data of the corresponding feature, while categorical features are
sampled according to the training distribution.

2We want to mention that the lime package in Python was developed by Ribeiro et al. (2016) and since some
details on the sampling procedure are not explicitly explained in the paper, we refer to the documentation
of their Python implementation.

8

3. Local surrogate models

Figure 3.2.: This figure from Biecek and Burzykowski (2021) illustrates the sampling strat-
egy used to create explanations for image data. In the first frame we see the
original image, which is then segmented into 100 superpixels. In the last step
we see 4 new pictures where only a subset of the 100 superpixels is present.

The default setting in the Python implementation of LIME in the lime package is to dis-
cretize continuous features (for example using quantiles) to categorical variables, followed
by binary encoding for each variable. With this setting the permutation strategy for cat-
egorical features would be applied to all features, but this behavior can be changed to
use the original representation for continuous variables. On the one hand this approach
ensures that we obtain a dataset that includes observations which clearly differ from the
observation of interest, hence we should be able to produce an explanation. But, on the
other hand, it does not account for correlations in the data and can lead to the inclusion
of unrealistic data points, with the help of which we then learn the model for the local
explanation. To preserve the original data distribution, the R version in the iml package
uses the original data instead of generating a new dataset by permutation. From this we
conclude that the best strategy depends on the particular use case, since both approaches
have their benefits and drawbacks.

The binary feature representation is especially important and useful for text and image
classification. If we think of a text classifier using word embeddings as features, a possible
interpretable representation could be a binary vector indicating the presence or absence of
a word. For image classifications we could for example consider a picture with a size of
100× 100 pixels, which is represented in three color channels, which can be represented by
a vector x ∈ R30,000. As a humanly interpretable alternative we can use a segmentation of
the picture into 100 superpixels. The local model can then operate on the binary feature
space, that indicates the presence or absence of a superpixel, as illustrated in Figure 3.2.
However, since the focus of this thesis is placed on classification of tabular data, we will
not go into further details concerning the sampling strategies for image or text data.

9

3. Local surrogate models

3.3.2. Proximity measure

The proximity measure proposed in Ribeiro et al. (2016) is given by

πx(z) = exp

�−D(x, z)2

κ2

�
,

where D is a distance function and κ is the kernel width. This formulation introduces an
additional parameter κ that can be very influential for the final prediction, as visualized in
Figure 3.3.

Figure 3.3.: To display the influence of the kernel width κ =
√
p ·w, p = 2, we use different

values of w to derive the weights for the samples as described in the introduc-
tory example in Section 3.1. Here we can observe that w and hence κ has a
major effect on the approximation. When we choose a too small kernel width,
as illustrated in the graphs in the first column, we generate a misleading expla-
nation. While the approximation displayed in the second columns provides a
good local estimation, the plots in the last column are biased towards a global
estimation. We can easily fix the problem by visualization in this example, but
it might lead to unstable explanations for higher dimensional datasets.

In the Python implementation this kernel is used by default as proximity measure, with D
denoting the Euclidean distance and the kernel width given by κ =

√
p · 0.75. To ensure

that an explanation created with LIME is actually meaningful and valid, we have to try
different kernel widths. A different approach is described in Molnar et al. (2018), where the
Gower similarity is used as a proximity measure by default, but it can still be changed to
an exponential kernel. The similarity coefficient introduced in Gower (1971) is described in
Appendix A. While the Gower similarity has the advantage that it does not introduce an
additional parameter, it offers less flexibility and may bias the local model g more towards
a global approximation.

10

3. Local surrogate models

3.3.3. Local surrogate model and explanations

Since our objective is to get interpretable explanations, we want to use a simple local
surrogate model g ∈ G with a limited complexity. Some of the most popular choices are
linear or logistic regression models with some sort of variable selection strategy. Another
possibility are decision trees with a constrained depth.

In the original implementationG is limited to the class of linear models and feature selection
is done by Lasso regression, where the minimization problem is given by

β̂lasso = argmin
β

�1

2

n�
i=1

(yi − β0 −
p�

j=1

xijβj)
2 + λ

p�
j=1

|βj |
�
. (3.2)

To obtain a simple explanation containing the K most influential parameters, the penalty
parameter λ in the Lasso objective function in Equation (3.2) is adjusted, such that only
K variables remain. For classification tasks f : Rp → [0, 1] models the class probability
and in the case of multiple classes f(x) models the probabilities for the respective classes
and each class is explained separately. This choice for the local model has a drawback for
classification problems since probabilities are estimated with a linear regression model. In
the current Python implementation of LIME it is possible to distinguish between regression
and classification problems and choose appropriate models and variable selection methods,
where one of the available options is the procedure described above. In the R version
implemented in iml, the local model is fitted using Lasso and, depending on the task,
either a linear or logistic regression model is applied.

In the final step the interpretable explanation ξ is returned to the user. In the case of linear
or logistic regression models we have to decide whether we want to return the coefficients
or the effects of the local model g. Returning the coefficients as proposed in Ribeiro
et al. (2016) can induce problems with interpretation, if we do not use a binary vector as
simplified feature representation. This is because a negative coefficient still has a positive
influence on the prediction if the feature value is negative as well. It is also worth mentioning
that the stability of the explanations created with LIME can be an issue (Alvarez-Melis and
Jaakkola, 2018). To reduce the variance of the procedure, we could for example increase the
sample size or repeat the procedure multiple times, which comes at the cost of an increased
computation time. Moreover, we note that we can intentionally create explanations with
LIME to hide biases, as shown in Slack et al. (2020).

3.4. Examples

We will now present two explanations generated by LIME, the first one is for image clas-
sification, taken from Ribeiro et al. (2016). In this example the authors trained a classifier
to predict whether a Husky or a wolf is displayed in an image. They purposefully biased
the training set such that all images containing wolfs have snow in the background.

11

3. Local surrogate models

In Figure 3.4 we see a Husky, wrongly classified as a wolf along with the explanation created
by LIME. This highlights, that the model actually acts as a snow detector and should not
be trusted to distinguish between Husky and wolf. The authors even conducted a small
study with 27 participants of which ten trusted the wrong classification before seeing the
explanation, while only three of them trusted the prediction after seeing the explanation
visualized in Figure 3.4.

Figure 3.4.: In the left image we see a Husky which is wrongly classified as a wolf and on
the right side the explanation produced by LIME.

For the second example, we consider a multinomial classification task based on the iris
dataset from Fisher (1936), which consists of 150 observations and five variables named
Sepal.Length (S.L), Sepal.Width (S.W), Petal.Length (P.L), Petal.Width (P.W), and
species ∈ {setosa, versicolor, virginica}. We use 105 randomly selected instances
as a training set and fit a random forest to predict the parameter species, given the
remaining four variables. Then we use the LocalModel function from the R iml package
to create a local surrogate model to explain one observation from the test set, where we
limit the number of features to two. As described in Section 3.3, this approach uses the
original data instead of a permuted dataset, as suggested in the original implementation
of LIME. The effects are given by the feature value multiplied by the coefficient, which
are displayed in Figure 3.5. Since we consider a multinomial classification task in this
example, we have to explain each species separately. The plot in the left panel shows
the effects for the prediction of species = virginica and in the right panel we display
the effects for species = versicolor. From this comparison we can see that S.W = 2.4
has a positive effect on the prediction for species = virginica, while it has a negative
effect for species = versicolor. Moreover we note that for species = virginica the
most important feature is P.W = 1, whereas S.W = 2.4 is the most important feature when
species = versicolor.

12

3. Local surrogate models

Figure 3.5.: Feature effects of the local surrogate models for species = virginica (left)
and species = versicolor (right) created with the R iml package.

3.5. Summary

An outstanding benefit of local surrogate models and LIME is, that the underlying method
is intuitive and easy to understand: We approximate a ML model locally with an inter-
pretable model, to gain insights on its behavior, in the proximity of the observation of
interest. This should improve our understanding of the ML model. Moreover, explanations
created with LIME have the significant advantage that they are straightforward to inter-
pret, even when used by people without a sophisticated background knowledge of statistics
or machine learning. Additionally, LIME is a model-agnostic method that can be used to
explain not only tabular, but also text and image data. We can also use different features
in the local surrogate model than those we used in the original ML model. While the idea
of LIME is rather uncomplicated, the question on how we should choose the neighborhood
for tabular data remains. We have to be very careful, and we should analyze different
settings, since the proximity measure has a major influence on the explanation, as we have
seen in the example in Section 3.4. Furthermore, we have to choose an adequate sampling
strategy to generate a dataset on which we fit the local model. At this point, problems can
occur if we generate unrealistic instances, since those might bias the explanations. Finally,
not only the stability of the explanations created with LIME can be an issue (Alvarez-Melis
and Jaakkola, 2018), but explanations created with LIME can also be manipulated to hide
biases, as shown in Slack et al. (2020).

13

4. Shapley values

In this section we introduce another model agnostic-method, that allows us to explain
predictions for single observations, which can be aggregated to obtain global feature im-
portance measures.1 This approach relies on Shapley values, a concept which originated in
cooperative game theory. There exist several proposals on how to use this method in the
context of Explainable AI, however, here we focus on the method introduced in Štrumbelj
and Kononenko (2010, 2014). The results and formulations of their work are also used as
a foundation in Lundberg and Lee (2017) to introduce SHAP, which is another method
based on Shapley values and will be described in Chapter 5.

Intuitively, one might ask at this point: How is cooperative game theory related to ex-
plaining model predictions? To answer this question, we first look at how we can compute
feature attributions for a single observation in the setting of linear regression, before in-
troducing the theory behind Shapley values from cooperative game theory and ultimately
relating them to model agnostic feature importance.

4.1. Notation

For the remainder of this chapter, the set N = {1, 2, ..., p} represents the p features present
in a ML model f : Rn → R. For classification tasks the function f : Rn → [0, 1] models the
class probability whereas in the case of a multinomial classification problem f(x) models the
probabilities for the respective classes. The p-dimensional vector x = (x1, ..., xp) represents
an instance from the p-dimensional feature space X = (X1, ..., Xp). Furthermore, XS =
(Xj : j ∈ S) and xS = (xj : j ∈ S) are subsets of X and x, respectively, where S ⊆ N is a
subset of features.

4.2. Feature attributions for linear regression

In the context of linear regression, it is comparatively simple to answer the question of
how each feature affects the prediction of a specific instance x = (x1, ..., xp), or in other

1The global feature importance measures were introduced in Lundberg et al. (2018) and we will describe
them in Section 5.5

14

4. Shapley values

words how much each feature contributes to the prediction of x. The prediction of a linear
regression model for a single instance x can be expressed as

f(x) = β0 +

p�
j=1

xjβj ,

where each feature value is given by xj and the corresponding weights are given by βj .
The feature effect for the feature value xj is given by βjxj and the feature contribution
φj(f) (Molnar, 2019) for each feature value xj is given by

φj(f) = β0 +

p�
i=1

xiβi − (β0 +

p�
i=1,i�=j

xiβi + βjE[Xj]) = βjxj − βjE[Xj]. (4.1)

We can gather from the definition in Equation (4.1), that the contribution φj(f) of the
feature value xj to the prediction is the difference between the feature effect and the
average effect. If we sum over all the feature contributions φj for the instance x, we obtain

p�
j=1

φj(f) =

p�
j=1

(βjxj − E[βjXj])

= (β0 +

p�
j=1

βjxj)− (β0 +

p�
j=1

E[βjXj])

= f(x)− E[f(X)].

Since linear models are additive and therefore features do not interact, they are easy to
interpret.

4.3. Feature attributions for general models

In real-world applications, features can often interact and their relation to the response
might be non-linear, which prompts the use of more complex black-box prediction models.
As mentioned in Štrumbelj and Kononenko (2014), previous approaches like Lemaire et al.
(2008); Robnik-Sikonja and Kononenko (2008) used the formulation

φj(f) = f(x1, ..., xp)− E[f(x1, ..., Xj , ..., xp)] (4.2)

to generalize the idea of feature contributions from linear models, as in Equation (4.2),
to general models f . For example, if we would compute the feature contributions using
Equation (4.2) for the non-linear model f(x1, x2) = max(x1, x2) with x1 and x2 uniformly
distributed on [0, 1], we could run into trouble. Considering the observation x = (1, 1), the
model would yield f((1, 1)) = 1 and the feature contributions φ1(f) and φ2(f) would both
be zero, which would lead to an unintuitive explanation. To avoid this, we account for
interactions by considering all possible subsets of feature combinations. With the aim of

15

4. Shapley values

generalizing Equation (4.1), the prediction of a model f , where only the subset of features
S ⊆ N is known, is defined as

fS(x) := E[f(X)|XS = xS].

For the empty set, the definition reduces to f∅(X) = E[f(X)], which enables us to define
the prediction difference ΔS(x) for each of the 2p subsets of feature values S ⊆ N as

ΔS(x) := fS(x)− f∅(x) = E[f(X)|XS = xS]− E[f(X)]. (4.3)

Thus ΔS(x) is the change in the prediction due to the observation of the feature values
xS . To get p feature contribution values, we have to assign those 2p prediction differences
ΔS to our features using interactions. Since the definition of ΔS(x) in Equation (4.3) still
does not account for possible feature interactions, we implicitly introduce interactions by
defining that each prediction difference ΔS(x) is given by

ΔS(x) =
�
W⊆S

IW (x). (4.4)

The definition of the prediction differences in Equation (4.4) allows us to uniquely charac-
terize interactions in this setting as

IS(x) = ΔS(x)−
�
W⊂S

IW (x), (4.5)

where I∅(x) = 0. Finally, the marginal feature value contribution φj is defined by assigning
it an equal share of all the interactions in which the feature j is participating. Hence, φj

is given by

φj(x) =
�

W⊆N\{j}

IW∪{j}(x)
|W |+ 1

(4.6)

and in Theorem 4.3.3 we will further prove that it can be explicitly expressed as

φj(x)
!
=

�
S⊆N\{j}

|S|!(p− |S| − 1)!

p!

�
ΔS∪{j}(x)−ΔS(x)

�
. (4.7)

4.3.1. Cooperative game theory

In the following we will introduce some formulations from cooperative game theory, to prove
Equation (4.7). The theoretical foundation is based on the book Peters (2008), which can
be recommended for a more detailed introduction to the topic. In cooperative game theory
players can form coalitions which produce a payoff, and they decide on how the proceeds
of their coalitions are distributed.

Definition 4.3.1. (TU-game) A coalitional (cooperative) game with transferable utility
(N, v) is given by a set of players N = {1, 2, ..., p} and the characteristic function v, which
assigns the worth v(S) ∈ R to each coalition S ⊆ N , such that v(∅) = 0.

16

4. Shapley values

In other words, the function v tells us how much collective payoff a coalition S of players
can gain by cooperating. A payoff distribution for the grand coalition N is given by
ϕ(v) = (ϕ1(v), ..., ϕp(v)), where ϕj(v) ∈ R is the payoff to player j. There are several
proposals on how the payoff should be assigned to the players j ∈ N to obtain a fair
distribution. Whilst there are different solution concepts and notions of fairness, we will
focus on the ones introduced by Shapley (1953). The Shapley value is the only payoff
distribution that fulfills Axioms 4.3.1 - 4.3.4, therefore allowing for an axiomatic definition
of a fair payoff distribution for the grand coalition N .

Axiom 4.3.1. (Efficiency) The payoff to the individual players ϕj(v) must sum up to the
worth of the grand coalition v(N), hence

�p
j=1 ϕj(v) = v(N).

Axiom 4.3.2. (Dummy) If a player j in a game (N, v) is a null player, meaning v(S ∪ i)−
v(S) = 0 for every coalition S ⊆ N \ {j}, then ϕj(v) = 0.

Axiom 4.3.3. (Symmetry) If v(S ∪ {j}) = v(S ∪ {k}) holds for all S ⊆ N \ {j, k} for two
players j and k, then ϕj(v) = ϕk(v).

Axiom 4.3.4. (Additivity) For any two games (N, v) and (N,w) it holds that ϕ(v+w) =
ϕ(v) + ϕ(w).

Before we define the Shapley value, we first introduce the notion of the predecessors of a
player, which is then used to describe the marginal contribution of a player to a TU-game
(N, v).

Definition 4.3.2. (Predecessors of a player) Let σ : N → N be a permutation of the
player-set of a TU-game (N, v). The predecessors of player j in σ are defined as the set of
players

Pσ(j) := {l ∈ N |σ−1(l) < σ−1(j)}.

For example, if the set of players is given byN = {1, 2, 3, 4, 5, 6} and σ(N) = {6, 2, 5, 4, 1, 3},
then the set of predecessors of player 1 is given by Pσ(1) = {6, 2, 5, 4}.
Definition 4.3.3. (Marginal vector) For a given permutation σ of the player-set of a
TU-game (N, v), the components of the marginal vector mσ are defined as

mσ
j = v(Pσ(j) ∪ {j})− v(Pσ(j)). (4.8)

This means that every player j receives the marginal contribution, which is created by him
joining the coalition.

Definition 4.3.4. (Shapley value) The Shapley value φ(v) = (φ1(v), ..., φp(v)) of a TU-
game (N, v) is the average of all marginal vectors of the game, hence it is given by

φ(v) :=
1

p!

�
σ∈Π(N)

mσ, (4.9)

where Π(N) is the set of all ordered permutations of N .

17

4. Shapley values

Following an example from Peters (2008), let (N, v) be a three-person game with v(1) =
v(2) = v(3) = 0, v(1, 2) = 4, v(1, 3) = 7, v(2, 3) = 15, and v(1, 2, 3) = 20. The marginal vec-
tors of this game are given in Table 4.1 and the Shapley value is equal to (1/6) · (21, 45, 54).

Table 4.1.: Marginal vectors for the Shapley value computation example in Section 4.3.1.

σ({1, 2, 3}) mσ
1 mσ

2 mσ
3

(1,2,3) 0 4 16
(1,3,2) 0 13 7
(2,1,3) 4 0 16
(2,3,1) 5 0 15
(3,1,2) 7 13 0
(3,2,1) 5 15 0�

21 45 54

Moving on, we state a probabilistic interpretation of the Shapley value as introduced in
Definition 4.3.4. Assuming we are drawing from an urn containing all permutations Π(N)
of the player-set N , a permutation σ ∈ Π(N) will be selected with probability (p!)−1.
Following the order specified by σ, we let the players enter a coalition one by one and
assign each one the marginal contribution created by their respective entrance into the
coalition. The Shapley value assigns each player their expected payoff in the random
procedure described above.

To obtain the formulation of the Shapley value, used in Theorem 4.3.1, we combine equa-
tions (4.8) and (4.9) to rewrite the j-th component of the Shapley value as

φj(v) =
1

p!

�
σ∈Π(N)

v(Pσ(j) ∪ {j})− v(Pσ(j)). (4.10)

It should be noted that the terms inside the sum in Equation (4.10) are of the form

v(S ∪ {i})− v(S),

with S ⊆ N \ {i}. Before we can rewrite the sum with respect to the subsets S, we have
to determine how many orderings it holds that Pσ(j) = S. The number of orderings of the
set S is given by |S|! and for the set N \ (S ∪ {i}) we have (p− |S| − 1)! many, so in total
there are |S|!(p− |S| − 1)! orderings where Pσ(j) = S. This enables us to denote Equation
(4.10) as

φj(v) =
�

S⊆N\{j}

|S|!(p− |S| − 1)!

p!
(v(S ∪ j)− v(S)) . (4.11)

18

4. Shapley values

Theorem 4.3.1. For a TU-game (N, v), there exists a unique payoff distribution ϕ(v)
for the grand coalition N , which fulfills the Efficiency, Dummy, Symmetry and Additivity
axioms: The Shapley value payoff φ(v) = (φ1(v), ..., φp(v)), which is given by

φj(v) =
�

S⊆N\{j}

|S|!(p− |S| − 1)!

p!
(v(S ∪ j)− v(S)) .

Consequently, each player j ∈ N receives their average marginal contribution across all
possible coalitions.

Proof. A detailed proof of Theorem 4.3.1 can be found in Shapley (1953); Peters (2008).

Since the introduction of the Shapley value in Shapley (1953), it has been generalized and
reformulated and we state another characterization, introduced in Young (1985), which is
based on Axioms 4.3.1, 4.3.3 and 4.3.5.

Axiom 4.3.5. (Monotonicity) If for any two games (N, v1) and (N, v2) and all S ⊆ N the
condition

v1(S ∪ {i})− v1(S) ≥ v2(S ∪ {i})− v2(S),

is satisfied, then ϕj(v1) ≥ ϕj(v2).

Theorem 4.3.2. For a TU-game (N, v), the only payoff distribution ϕ(v) which complies
with the Efficiency, Symmetry and Monotonicity axioms is the Shapley value.

Proof. The proof that the Axioms Dummy and Additivity can be replaced by the Axiom
Monotonicity can be found in Young (1985).

Finally, yet another generalization of the Shapley value can be obtained by using the
Harsanyi dividend (Harsanyi, 1963).

Definition 4.3.5. (Harsanyi dividend) Considering a TU-game (N, v), we have that for
each coalition S ⊆ N the Harsanyi dividend is recursively defined as

dv(∅) := 0,

dv(S) := v(S)−
�
W⊂S

dv(W), if |S| ≥ 1.

Using the Möbius transformation or Möbius inverse, dv(S) can be explicitly expressed as
dv(S) =

�
W⊆S(−1)|S|−|W | (Grabisch, 2016). The Shapley value φj(v) for the j-th player

is given by the sum of equally distributed dividends over all coalitions in which player j
participates:

φj(v) =
�

S⊆N :j∈S

dv(S)

|S| .

To summarize, the Shapley value is a method that tells us how the payoff ϕ(v) of a TU-game
(N, v) is assigned to each player j in the grand coalition N , depending on their contribution
to the total payout.

19

4. Shapley values

4.3.2. Connection to model agnostic feature importance

We will now use the results from cooperative game theory to formulate and proof Theorem
4.3.3 and relate the Shapley value to the context of Explainable AI.

Theorem 4.3.3. The set of features N = {1, 2, ..., p}, together with the difference function

ΔS(x) = E[f(X)|XS = xS]− E[f(X)], (4.3, revisited)

define a TU-game (N,Δ(x)) and the marginal feature value contributions φ = (φ1, ..., φp)
introduced in Equation (4.7) correspond to this game’s Shapley value, where the components
are given by

φj(x) =
�

S⊆N\{j}

|S|!(p− |S| − 1)!

p!

�
ΔS∪{j}(x)−ΔS(x)

�
. (4.7, revisited)

Proof. We begin by showing that (N,Δ(x)) actually defines a TU-game as stated in Defi-
nition 4.3.1: Since Δ(x) is defined for every subset S ⊆ N and

Δ∅(x) = f∅(x)− f∅(x) = 0,

we conclude that (N,Δ(x)) can be treated as a TU-game.

To prove that the marginal feature value contributions φj(x) coincide with the Shapley
value of the game (N,Δ(x)), we first rewrite the recursive definition of the interactions
IS(x) given in Equation (4.5) as

IS(x) = ΔS(x)−
�
W⊂S

IW (x) =
�
W⊆S

((−1)|S|−|W |ΔW (x)). (4.12)

The second equality in Equation (4.12) holds since it is equivalent to the conversion from
the recursive to the explicit formulation of the Harsanyi dividend. To obtain a non-recursive
expression for the contributions, we combine equations (4.6) and (4.12) to obtain

φj(x) =
�

W⊆N\{j}

IW∪{j}(x)
|W |+ 1

(4.13)

=
�

W⊆N\{j}

 1

|W |+ 1

�
Q⊆(W∪{j})

((−1)|W∪{j}|−|Q|ΔQ(x))

 . (4.14)

To further simplify the term in Equation (4.14), we count the appearances of ΔQ(x) in the
double sum and distinguish between the cases of j ∈ Q and j /∈ Q. To account for the first
case, we denote Q with j ∈ Q as

Q = (S ∪ {j}) with S ⊆ N \ {j},
and analyze how often ΔS∪{j}(x) occurs. Let MΔS∪{j}(x) be the weighted sum of those

occurrences an let k = (p−|S|− 1) denote the number of elements in the set N \ (S ∪{j}).

20

4. Shapley values

The term ΔS∪{j}(x) occurs only in interactions IW , where (S ∪ {j}) ⊆ W and solely
appears once in such an interaction. For those W we have that |W | = |S|+a, a ∈ {1, ..., k}
and, depending on whether a is even or odd, ΔS∪{j}(x) occurs with alternating signs. In

Equation (4.14) such a set W appears exactly
�
k
a

�
times, because we can combine S with

any a element from the remaining k features in N \ (S ∪ {j}). Next, we sum up all those
terms up to W = N and we have to consider that each interaction IW is divided by |W |,
thus we obtain

MΔS∪{j} =

�
k
0

�
p− k

−
�
k
1

�
p− k + 1

+ ...±
�
k
k

�
p

=
k�

i=0

(−1)i
�
k
i

�
p− k + i

=: V (p, k).

The same approach can be applied for the second case where j /∈ Q. To stay consistent
with the notation used for the previous case, we denote Q as Q = S, S ⊆ N \{j}, count the
number of appearances of ΔS(x) and obtain MΔS

= −V (p, k). The result can be explained
by the fact that the size of the set W , where S ⊆ W , is |W | = |S|+ 1 and hence the sign
in the summation changes.

In the next step, we examine the series V (p, k) and show that it can be rewritten as a beta
function. We start with expanding the binomial (1− x)k as

(1− x)k =

�
k

0

�
− x

�
k

1

�
+ x2

�
k

2

�
− ...± xk

�
k

k

�
=

k�
i=0

(−1)ixi
�
k

i

�
,

then we multiply it with xp−k−1 and obtain

xp−k−1(1− x)k =

k�
i=0

(−1)i
�
k

i

�
xp−k+i−1. (4.15)

By integration over the interval [0, 1], we obtain the beta function on the left-hand side of
Equation (4.15) while the right-hand side corresponds to the series V (p, k).� 1

0
xp−k−1(1− x)kdx� �� �

B(p−k,k+1)

=

� 1

0

k�

i=0

(−1)ixp−k+i−1

�
k

i

��
dx

=

k�
i=0

(−1)i
�� 1

0
xp−k+i−1dx

��
k

i

�

=
k�

i=0

(−1)i
�
k
i

�
p− k + i

= V (p, k)

By rewriting the beta function using gamma functions, the series simplifies to

V (p, k) = B(p− k, k + 1) =
Γ(p− k)Γ(k + 1)

Γ(p+ 1)
=

(p− k − 1)!k!

p!
. (4.16)

21

4. Shapley values

Finally, we can rewrite the marginal feature value contributions as

φj(x) =
�

S⊆N\{j}

�
V (p, k)ΔS∪{j}(x)− V (p, k)ΔS(x)

�
=

�
S⊆N\{j}

|S|!(p− |S| − 1)!

p!

�
ΔS∪{j}(x)−ΔS(x)

�
, (4.17)

which corresponds to the Shapley value’s j-th coordinate for the TU-game (N, v). The
coordinates φj of the Shapley value can be rewritten in terms of the conditional expectations
by combining equations (4.3) and (4.17) to obtain

φj(x) =
�

S⊆N\{j}

|S|!(p− |S| − 1)!

p!

�
E[f(X)|XS∪{j} = xS∪{j}]− E[f(X)|XS = xS]

�
.

The Axioms 4.3.1 - 4.3.4 of the Shapley value can now be interpreted as follows:

• Efficiency: The marginal feature value contributions add up to the prediction dif-
ference between x and the average prediction:

p�
j=1

φj(x) = ΔN (x) = E[f(X)|XN = xN]− E[f(X)] = f(x)− E[f(X)]

• Dummy: If all coalitions satisfy the condition that a feature has no influence on the
prediction when it is added to a coalition, then the feature’s Shapley value is zero:

∀S ⊆ N \ {j} : ΔS∪{j}(x) = 0 =⇒ φj(x) = 0.

• Symmetry: If the prediction differences of two feature values are the same for all
possible coalitions, then their marginal feature value contributions are identical:

∀S ⊆ N \ {j, k} : ΔS∪{j}(x) = ΔS∪{k}(x) =⇒ φj(v) = φk(v).

• Additivity: If a model f is a sum of two other models f1 and f2, then the Shapley
value for f is the sum of the Shapley values of models f1 and f2.

The exact computation of the Shapley values as described in Theorem 4.3.1 involves the
evaluation of all possible feature value coalitions with and without the j-th feature. Con-
sequently, as the number of features increases, the computation time grows exponentially
and solving Equation (4.7) is no longer a feasible approach in practical applications in the
presence of high dimensional data. In the following we will discuss two possible model
agnostic approaches that can be used to speed up the computation time. While the first
method introduced in Štrumbelj and Kononenko (2014) is based on Monte-Carlo sampling,
the second method – called SHAP by Lundberg and Lee (2017) – provides a framework

22

4. Shapley values

that allows us to unify multiple model agnostic feature importance concepts, including
LIME and Shapley values. At this point we want to note that the Shapley value depends
on how we model the prediction difference (value function of the corresponding TU-game)
and for this reason on the sampling strategy. On the one hand, if we use the marginal
distribution of the features for sampling, it might lead to unrealistic instances. On the
other hand, sampling based on the conditional distribution can solve this problem, but
the resulting values are no longer Shapley values, as discussed in Janzing et al. (2020). In
the following we describe the approach based on Monte-Carlo sampling, before discussing
SHAP framework in Chapter 5.

4.3.3. Approximation of Shapley values

First, we rewrite Equation (4.7) using the alternative formulation of the Shapley value
given in Equation (4.10) to obtain

φj =
1

p!

�
σ∈Π(N)

�
ΔPσ(j)∪{j}(x)−ΔPσ(j)(x)

�
. (4.18)

Here, Π(N) is the set of all ordered permutations of N and Pσ(j) is the set of predecessors of
the j-th feature in the coalition σ, as introduced in Definition 4.3.2. Since the computation
of the Δ-terms in Equation (4.18) poses a task of exponential computational complexity,
merely using a sampling approach to simplify Equation (4.18) is not sufficient for achieving
an efficient algorithm. In Štrumbelj and Kononenko (2014) they assume that the features
are mutually independent, which allows us to estimate the j-th component of the Shapley
value φj via

φ̂j =
1

M

M�
m=1

�
f(x̃j+)− f(x̃j−)

�
. (4.19)

In Equation (4.19), x̃j+ denotes a combination of the instance of interest x and a random
data point z, where a random number of feature values of x is replaced by feature values
of z, apart from the j-th feature value. The instance x̃j− is almost identical to x̃j+ , the
only difference being that the j-th feature value of x is also replaced by the j-th feature
value of z. Since we are computing the average of the samples in Equation (4.19), those
instances are implicitly weighted by the probability distribution of X. To get an estimate
of the Shapley value, we have to repeat this procedure for all p features.

Algorithm 2 summarizes this approach. First, a random observation z is selected from the
dataset and a permutation σ is generated. Afterwards, two new instances x̃j+ and x̃j−
are assembled as a combination of the permuted instances xσ and zσ.

2 Then we compute
φ̂m
j = f(x̃j+) − f(x̃j−) and average them over the M iterations to get the approximation

φ̂j =
1
M

�M
m=1 φ̂

m
j .

2Assembling instances this way has the drawback that the dependence structure of the data is ignored,
thus this sampling strategy might include feature values that do not make sense for this instance.

23

4. Shapley values

Algorithm 2: Approximation of the Shapley value for one feature value.

Input: Observation to be explained x, feature of interest j
Input: Machine Learning model f , data matrix X, Number of iterations M
Output: Approximation of the Shapley value for the j-th feature value

1 for m ← 1 to M do
2 z ← random sample(X)
3 σ ← random permutation({1, ..., p})
4 xσ ← σ(x) = (x(1), ..., x(j), ..., x(p))

5 zσ ← σ(z) = (z(1), ..., z(j), ..., z(p))

6 x̃j+ ← σ(z) = (x(1), ..., x(j−1), x(j), z(j+1)..., z(p))

7 x̃j− ← σ(z) = (x(1), ..., x(j−1), z(j), z(j+1)..., z(p))

8 φ̂m
j ← f(x̃j+)− f(x̃j−)

9 φ̂j ← 1
M

�M
m=1 φ̂

m
j

10 return φ̂j

As an example, we use estimated Shapley values to explain an instance from the iris dataset,
which we already described in Section 3.4, as visualized in Figure 4.1. The average predicted
class probabilities of the 105 training observations for the three classes setosa, versicolor,
virginica from the species variable are given by (0.34, 0.31, 0.35) and the prediction of
the instance from the test set is (0.04, 0.78, 0.18). The approximated Shapley values that
are visualized in Figure 4.1, explain how much each feature contributes to the difference
between the actual and the average prediction, which is given by (−0.30, 0.47, 0.17).

Figure 4.1.: Estimated Shapley values for a single instance from the iris dataset, created
with the Shapley function from the R iml package Molnar et al. (2018), using
10,000 iterations.

24

4. Shapley values

4.4. Summary

The concept of explaining ML models using Shapley values yields multiple advantages.
Since the Shapley value is based on a solid theory from game theory and we can translate
its properties into the context of Explainable AI, we have a solid foundation to create
explanations. In particular, the Axiom 4.3.1 (Efficiency) guarantees that we obtain a full
explanation of a prediction, which means we can analyze the impact of all features on
the difference between the average and the actual prediction. While this is important for
gaining a full understanding of the model, using all the information does not provide sparse
explanations for high dimensional datasets. In this case we might want to display only a
subset of the most influential features in our final explanation to obtain selective results.
In comparison to LIME, we do not get a local model, which could be used for predicting
similar instances in the neighborhood of the instance of interest. Unfortunately, the biggest
drawback of Shapley values is arguably the fact that the computation of the exact Shapley
values is very time-consuming, since it constitutes a task of exponential computational
complexity. We introduced an approximation method based on Monte-Carlo sampling in
Section 4.3.3, which assumes feature independence. Finally, it is worth mentioning that the
estimated Shapley values are dependent on the sampling approach (Janzing et al., 2020).

25

5. SHAP framework

The idea behind SHapley Additive exPlanations (SHAP) is similar to LIME, in the sense
that an importance value is assigned to each feature to explain predictions of individual
observations. The SHAP framework was introduced in Lundberg and Lee (2017), with one
of the novel components of this method being the representation of Shapley values as an
additive feature attribution method. This approach combines the ideas of the methods
described in the Chapters 3 and 4.

5.1. Additive feature attribution methods

The notation in this chapter is similar to Chapters 3 (Local surrogate models) and 4
(Shapley values). We denote f as the prediction model, g represents the explanation model
and x stands for the instance being explained. The simplified input mapping hx, which
relates x� to x, was actually not used in the original paper (Ribeiro et al., 2016), but was
instead introduced later in Lundberg and Lee (2017). We chose to introduce it earlier on
in this thesis already, since it allows for a clean and more comprehensive notation of the
underlying mathematics.

Definition 5.1.1. (Additive feature attribution method) An additive feature attribution
method is a linear explanation model g with simplified inputs z� ∈ {0, 1}q as features, which
can be written as

g(z�) = φ0 +

q�
j=1

φjz
�
j , (5.1)

where φj ∈ R is the feature attribution of the j-th feature.

The binary vector of simplified inputs z� ∈ {0, 1}q can be related to the interpretable feature
representation in the original formulation of LIME, as described in Section 3.3.1. Moreover,
it can also be interpreted as a coalition of features as explained in Chapter 4, where z�j = 1
and z�j = 0 correspond to the presence or absence of the j-th feature in the coalition vector
z�, respectively.

As in Lundberg and Lee (2017), we introduce Properties 5.1.1 - 5.1.3 that enable us to
uniquely determine the feature attributions φj in Equation (5.1) and relate them to the
Shapley values described in Section 4.

26

5. SHAP framework

Property 5.1.1. (Local Accuracy) For the observation of interest x = hx(x
�), the expla-

nation model g(x�) is equal to the original model f(x):

f(x) = g(x�) = φ0 +

q�
j=1

φjx
�
j

We can now rewrite this property, such that it corresponds to the to the Efficiency axiom
of the Shapley value (Axiom 4.3.1):
If the coalition vector is given by x� with x�j = 1 for j = 1, ..., q and we define φ0 = E[f(x)],
we obtain

f(x) = φ0 +

q�
j=1

φjx
�
j = E[f(x)] +

q�
j=1

φ�
j .

Property 5.1.2. (Missingness) Simplified inputs with x�j = 0 are set to have no impact
on the prediction:

x�j = 0 =⇒ φj = 0

This property is required since the Local Accuracy property is formulated as a linear model
and hence x� could have zero entries. If there exist entries in x� with x�j = 0, the Local
Accuracy property would hold, regardless of the value of φj . The Missingness property
ensures that features with xj = 0, are assigned a feature attribution of zero. In practice,
SHAP does not consider a feature to be missing unless the feature is constant in the whole
background dataset (Molnar, 2019).

Property 5.1.3. (Consistency) Let fx(z
�) = f(hx(z

�)) and z�\k indicate that z�k = 0. For

any two models f1 and f2 that satisfy

f2
x(z

�)− f2
x(z

�
\k) ≥ f1

x(z
�)− f1

x(z
�
\k),

for all inputs z ∈ {0, 1}q, it holds that

φj(f
2, x) ≥ φj(f

1, x).

This property can be rewritten, such that it corresponds to the Monotonicity axiom of the
Shapley value (Axiom 4.3.5):
Let Z = {1, ..., q} be the index set of the simplified features x�. If for two models f1 and
f2 and all S ⊆ (Z \ {j}) the condition

f1
x(S ∪ {j})− f1

x(S) ≥ f2
x(S ∪ {j})− f2

x(S),

holds, then φj(f
1, x) ≥ φj(f

2, x).

27

5. SHAP framework

Theorem 5.1.1. Assuming Feature Anonymity1, there exists only one explanation model g
that follows Definition 5.1.1 and satisfies Properties 5.1.1 - 5.1.3. The feature attributions
φj are given by2

φj(f, x) =
�
z�⊆x�

(|z�| − 1)!(q − |z�|)!
q!

(fx(z
�)− fx(z

�
\j)), (5.2)

where |z�| is the number of non-zero elements of z� and z�\j means that z�j = 0. Moreover,

z� ⊆ x� denotes all binary vectors z� where the non-zero elements are a subset of the non-zero
elements of x�.

As we already know from Chapter 4, the values φj(f, x) in Theorem 5.1.1 are known as
Shapley values. Before we start with the proof, we note that in Equation (5.2) we are
removing the j-th feature, while in Equation (4.7) the j-th feature is added to the feature
set, hence the notation of the weights is slightly different. It is worth mentioning that due
to this fact, the weights are slightly different in the original publication (Lundberg and Lee,
2017):

|z�|!(q − |z�| − 1)!

q!
instead of

(|z�| − 1)!(q − |z�|)!
q!

.

Moreover, Feature Anonymity is implicitly assumed in the proof that is provided in the
supplementary material of Lundberg and Lee (2017), so we added this assumption to the
statement of Theorem 5.1.1. Both issues, the typo in the weights and the missing Feature
Anonymity assumption, are mentioned in the erratum and the latter is extensively discussed
in Fisher (2020). Finally, we want to mention that the Anonymity axiom in the context of
game theory implies the Symmetry axiom, as stated in Peters (2008).

Proof. We show that the Monotonicity axiom also implies the Symmetry axiom in the
setting of models, before demonstrating that Theorem 5.1.1 follows from Theorem 4.3.2.
Let us assume that the only difference between f1 and f2 is that arbitrary two inputs j
and k are interchanged. This implies that for all S ⊆ (Z \ {j, k}) we have

f1
x(S) = f2

x(S) and f1
x(S ∪ {j}) = f2

x(S ∪ {k}). (5.3)

In the remainder of the proof, we can ignore the case that S contains k, because in these
cases we know that f1

x(S \ {k} ∪ {j, k}) = f2
x(S \ {k} ∪ {j, k}). First, we transform Axiom

4.3.5

∀S ⊆ (Z \ {j}) f2
x(S ∪ {j})− f2

x(S) ≥ f1
x(S ∪ {j})− f1

x(S) =⇒ φj(f
2, x) ≥ φj(f

1, x),

using Equation (5.3), to obtain

∀S ⊆ (Z \ {j, k}) fx(S ∪ {j}) ≥ f1
x(S ∪ {k}) =⇒ φj(f

2, x) ≥ φj(f
1, x).

1Feature Anonymity implies that the feature names do not influence their assigned credit. While this
assumption is not mentioned in the original formulation of the theorem in Lundberg and Lee (2017), its
added in the erratum.

2Here we assume that |x�| = q, for a more general formulation we could replace q with |x�| to allow for
zeros in x�. An alternative proof that works without the Missingness axiom is given in Fisher (2020).

28

5. SHAP framework

When we switch j and k and repeat the same rational, the Symmetry axiom follows if we
assume Feature Anonymity:

∀S ⊆ (Z \ {j, k}) f2
x(S ∪ {j}) = f1

x(S ∪ {k}) =⇒ φj(f
2, x) = φj(f

1, x).

According to Theorem 5.1.1 we can uniquely determine the feature attributions φj for an
additive feature attribution method, which satisfies the properties Local Accuracy, Miss-
ingness, and Consistency for a given simplified input mapping hx. This implies that other
additive feature attribution methods like LIME are not optimal with respect to those prop-
erties. We will now introduce SHapley Additive exPlanation (SHAP), which allow us to
unify multiple feature attribution methods, including LIME and Shapley values.

To get SHAP values as described in Lundberg and Lee (2017), we choose the simplified
input mapping as hx(z

�) = zS , where S is the subset of non-zero indices from z� and zS
has missing values for features that are not contained in S. To account for the fact that
most models are not able to handle missing values, f(zS) is approximated by E[f(z)|zS],
therefore we get

fx(z
�) = f(hx(z

�)) = E[f(z)|zS]. (5.4)

Using this setup yields the SHAP values, which satisfy Properties 5.1.1 - 5.1.3, as unique
solutions of Equation (5.2) and we can write them as

φj(f, x) =
�
z�⊆x�

(|z�| − 1)!(q − |z�|)!
q!

(E[f(z)|zS]− E[f(z)|zS\j]). (5.5)

We want to mention that Theorem 4.3.3 and Theorem 5.1.1 are both based on the Shapley
value and both methods use conditional expectations to model the influence of the features.
Due to this fact, the SHAP values in Equation (5.5) and the marginal feature value contri-
butions in Equation (4.7) yield the same solutions. As already discussed for the marginal
feature value contributions in Chapter 4, the exact computation of the SHAP values in
Equation (5.5) is computationally very expensive. Thus, we will now introduce the model
agnostic approximation method proposed in Lundberg and Lee (2017).

For an efficient approximation, the conditional expectation in Equation (5.4) can be sim-
plified when we introduce the following assumptions:

fx(z
�) = f(hx(z

�)) = E[f(z)|zS] simplified input mapping for SHAP (5.6)

= EzS̄ |zS [f(z)] expectation over zS̄ |zS (5.7)

≈ EzS̄ [f(z)] assuming feature independence (5.8)

≈ f((zS ,E[zS̄])) assuming model linearity (5.9)

29

5. SHAP framework

5.2. Kernel SHAP – model agnostic approximation

The approximation procedure proposed in Lundberg and Lee (2017) can be related to LIME
and it is called Kernel SHAP. Considering additive feature attribution methods, we can
uniquely determine the solution of the LIME objective function given in Equation (3.1),
under the condition that it adheres to Properties 5.1.1 - 5.1.3, when we use a linear model to
create the explanations. To achieve this goal, the loss function L, the proximity measure πx�

and the regularization term Ω must be chosen according to the description given in Theorem
5.2.1. Here we note that, in contrast to the original introduction of LIME, the proximity
measure πx� operates on the simplified input x� and not on the original observation x.

Theorem 5.2.1. Considering the additive feature attribution method LIME with the ob-
jective function

ξ(x) = argmin
g∈G

�
L(f, g, πx) + Ω(g)

�
, (3.1, revisited)

the only choices of πx, Ω and L without neglecting the boundaries imposed by Properties
5.1.1 - 5.1.3 are3

πx�(z�) =
q − 1� q

|z�|
� |z�| (q − |z�|) , (5.10)

Ω(g) = 0, (5.11)

L(f, g, πx�) =
�
z�∈Z

�
f(h−1

x (z�))− g(z�)
�2

πx�(z�), (5.12)

where |z�| is the number of non-zero elements in z� and Z are the training data.

Proof. We define the proximity measure (Shapley kernel) πx� from Equation (5.10) for a
simplified input vector z� ∈ {0, 1}q as

πx�(z�) = k(q, s) =


q−1

(qs)s(q−s)
for s ∈ {1, 2, ..., q − 1}

c for s ∈ {0, q}
, (5.13)

where s =
�q

j=1 z
�
j is the number of ones in z�, and c ∈ R+ is a large constant. The

distinction of cases is necessary4 because the fraction in Equation (5.13) is not well defined
for s ∈ {0, q}.
In the next step we compute the Shapley values with weighted linear regression using
the Shapley kernel. We consider the matrix X ∈ {0, 1}2q×q of all possible binary vectors
Xi. ∈ {0, 1}q and let si =

�q
j=1Xi. ∈ {0, 1, ..., q} denote the number of ones in Xi.. The

3Like in Theorem 5.1.1, we implicitly assume that |x�| = q. If we allow zero entries of x�, we have to reduce

the dimension of {0, 1}q to {0, 1}|x�|, which results in omitting the features with zero indices, as is also
mentioned in Jia (2020).

4From an analytical point of view, we could also avoid this by introducing the constraints φ0 = fx(∅) and
f(x) =

�q
j=0 φi.

30

5. SHAP framework

diagonal weight matrix W consists of the Shapley kernels for each row of X and is given
by

W = diag(k(q, s1), k(q, s2), ..., k(q, s2q))) ∈ R2q×2q .

The dependent variable y contains the predictions of f for each row of X, so each element
is given by yi = fx(Xi.). Let us consider the weighted linear regression problem

argmin
φ

���W 1/2(y −Xφ)
���2 ,

for which the parameter estimates are given by

φ̂ = (XTWX)−1XTWy. (5.14)

Moving on, we want to rewrite the terms in Equation (5.14), beginning with analyzing one
component of XTW :

(XTW)i,j =

�
k(q, si) for Xi,j = 1

0 otherwise
.

This enables us to compute any element of the q × q-dimensional matrix XTWX as

(XTWX)i,j = (XTW)i.X.,j =

2q�
l=1

k(q, sl)Xl,iXl,j . (5.15)

We note that for allXl. andXk., where sl = sk = s it holds that k(q, sl) = k(q, sk) = k(q, s).
This means the Shapley kernel only depends on the number of non-zero elements of Xi.

and without loss of generality, we assume that the rows of X are ordered with respect to
si. This means we can rewrite Equation (5.15) as

(XTWX)i,j =

q�
s=0

ns(i, j)k(q, s), (5.16)

where ns(i, j) is the cardinality of the set {Xl.|si = s,Xl,i = Xl,j = 1}, which is given by

ns(i, j) =

��
q−1
s−1

�
for i = j�

q−2
s−2

�
for i �= j

. (5.17)

For the case of k < 0 we set
�
n
k

�
= 0, in the case that i = j we get n0 = 0 and if i �= j we

obtain n0 = n1 = 0. Moreover, for a given s, ns(i, j) does not depend on the specific values
of i and j. Combining equations (5.16) and (5.17) yields

(XTWX)i,j =

��q
s=1

�
q−1
s−1

�
k(q, s) for i = j�q

s=2

�
q−2
s−2

�
k(q, s) for i �= j

. (5.18)

31

5. SHAP framework

In the case that 1 ≤ s < q we get that�
q − 1

s− 1

�
k(q, s) =

�
q − 1

s− 1

�
q − 1�

q
s

�
s(q − s)

=
q − 1

q(q − s)
, (5.19)�

q − 2

s− 2

�
k(q, s) =

�
q − 2

s− 2

�
q − 1�

q
s

�
s(q − s)

=
s− 1

q(q − s)
, (5.20)

and in case of s = q we obtain�
q − 1

s− 1

�
k(q, s) =

�
q − 2

s− 2

�
k(q, s) = c. (5.21)

As mentioned previously, the entries of XTWX given in Equation (5.18) do not depend on
the specific values of i and j. Therefore, XTWX can be written as

XTWX = α1Iq + α2Jq, (5.22)

where α1, α2 ∈ R are constants, Iq is the q-dimensional identity matrix and Jq is a ma-
trix consisting only of ones with dimension q. To determine α1 and α2, we compute the
difference between the diagonal and off-diagonal elements of XTWX:

q�
s=1

�
q − 1

s− 1

�
k(q, s)−

q�
s=2

�
q − 2

s− 2

�
k(q, s) (5.23)

=

q−1�
s=1

q − 1

q(q − s)
−

q−1�
s=2

s− 1

q(q − s)
(5.24)

=
q − 1

q(q − 1)
+

q−1�
s=2

�
q − 1

q(q − s)
− s− 1

q(q − s)

�
(5.25)

=
1

q
+

q−1�
s=2

1

q
=

q − 1

q
. (5.26)

In Equation (5.24) we only sum up to q− 1 because the term of the sum for s = q is equal
to c in both sums. With the above calculations we obtain the coefficient for the diagonal
elements as α1 =

q−1
q and the coefficient for the off-diagonal elements can be written as

α2 =

q�
s=2

�
q − 2

s− 2

�
k(q, s) =

q−1�
s=2

s− 1

q(q − s)
+ c. (5.27)

If c >> 0, one can see from Equation (5.27) that c is dominating the other terms and we
can simplify XTWX to5

XTWX =
q − 1

q
Iq + α2Jq. (5.28)

5In the proof given in the supplementary material of Lundberg and Lee (2017), the factor of for the identity
matrix Ip in Equation (5.28) is incorrect, since it is given by 1/(q − 1). Nevertheless, the asymptotic
inverse is computed correctly. While this fact is not addressed in the erratum, it was already mentioned
in Jia (2020).

32

5. SHAP framework

Next, we show that for q → ∞ the inverse of XTWX approaches q
q−1Ip − 1

q−1Jq and does
not depend on α2: �

q − 1

q
Iq + α2Jq

��
q

q − 1
Ip − 1

q − 1
Jq

�
(5.29)

=
(q − 1)q

(q − 1)q
Iq − q − 1

q(q − 1)
Jq + α2

q

q − 1
Jq − α2

1

q − 1
(Jq)

2� �� �
=qJq

(5.30)

=Iq − 1

q
Jq

q→∞−−−→= Ip. (5.31)

In the following we simply denote the asymptotic inverse of XTWX as (XTWX)−1 and it
is given by

(XTWX)−1 −−−→
q→∞

q

q − 1
Ip − 1

q − 1
Jq. (5.32)

If we multiply XTW by (XTWX)−1, we get the matrix W̃ ∈ Rq×2q containing the weights,
which are applied to y for the computation of φ̂:

W̃j,i = ((XTWX)−1XTW)j,i =

�
q

q − 1
Jp − 1

q − 1
Iq

�
j.

(k(q, si)Xi.)

= k(q, si)

�
q

q − 1
Xi,j − 1

q − 1
si

�
=

q − 1�
q
si

�
si(q − si)

�
q

q − 1
Xi,j − 1

q − 1
si

�
=

(qXi,j − si)(si!(q − si)!)

q!si(q − si)
=

(qXi,j − si)((si − 1)!(q − si − 1)!)

q!

=

�
− (si)!(q−si−1)!

q! for Xi,j = 0
(si−1)!(q−si)!

q! for Xi,j = 1
. (5.33)

Let us consider the binary vectorXi. whereXi,j = 1 and let (Xi.)\j denote the binary vector
that is identical toXi., except that the j-th component is set to zero. Using Equation (5.33),
multiplying W̃j,i with yi results in

W̃j,iyi =
(si − 1)!(q − si)!

q!
fx(Xi.) and W̃j,iyi = −(si − 1)!(q − si)!

q!
fx((Xi.)\j).

To finally compute φ̂j , we sum up all contributions W̃j,iyi to obtain

φj = W̃j.y =
�

Xi.∈{0,1}q |Xi,j=1

(si − 1)!(q − si)!

q!
(fx(Xi.)− fx((Xi.)\j) (5.34)

=
�
z�⊆x�

(|z�| − 1)!(q − |z�|)!
q!

(fx(z
�)− fx(z

�
\j)). (5.35)

The equality of Equation (5.34) and (5.35) holds, since we can include all subsets of x� (and
consequently all rows of X) in the sum without affecting the result, because instances with

33

5. SHAP framework

the j-th entry equal to zero have no impact on the sum. The expression in Equation (5.35)
corresponds to the classic form of the Shapley value, showing that the coefficients of the
weighted linear model approximate the Shapley value.

The Kernel SHAP estimates of the Shapley value can be computed using Algorithm 1,
with the exception that the proximity measure πx� operates on the space of simplified
inputs X � and the model complexity Ω is not restricted. The simplified input mapping
hx relates the coalitions z� to the original feature space. In the case of tabular data,
instead of sampling numerical features from a normal distribution as with LIME (Section
3.3.1), they are sampled directly from the dataset. As a result, we are sampling from the
marginal distribution, which implies that we are ignoring correlations between features.
This may lead to the inclusion of unrealistic instances and the results can get unreliable. As
mentioned in Molnar (2019), this issue could be avoided by sampling from the conditional
distribution. However, such an approach has the disadvantage that the value function of
the corresponding game and therefore also the Shapley value is altered. Moreover, it is
possible to intentionally hide biases in explanations, when using the SHAP framework to
interpret a ML model, as shown in (Slack et al., 2020).

When we compare the proximity functions of LIME and SHAP, we observe weights that
are assigned to the sampled instances are inherently different. While the exponential kernel
used in LIME weighs instance according to their proximity to the observation of interest, the
proximity measure used in Kernel SHAP attributes the weights to instances depending on
their interpretable representation. When we use the exponential kernel in LIME, increasing
the number of ones in z� leads to a higher weight of z.6 According to Equation (5.10),
coalitions z� containing either almost exclusively or almost no ones get assigned the highest
weights. Interestingly, we can use this fact to improve the sampling strategy, as mentioned
in Molnar (2019). We should begin our sampling strategy by choosing the coalitions z�

with |z�| ∈ {1, q − 1}, since those result in the highest weights and contribute the most to
the approximation of the Shapley value. If the sample size allows for more samples, we
continue this approach, sampling coalitions where |z�| ∈ {2, q − 2} and so on.

5.3. Linear SHAP

We already introduced a model specific approximation procedure for Shapley values of linear
regression models in Section 4.2. Here we relate it to the context of an additive feature
attribution method (Definition 5.1.1). To achieve this goal, we set φ0 = β0 +

�p
j=1 βjE[xj]

and φj = βj(xj − E[Xj]), as in Equation (4.1). In this manner the Shapley values are
directly approximated using the parameters βj of the linear model.

6For LIME we can not directly connect the interpretable feature representations to the weights, since the
weights are calculated on the original feature space. Nevertheless, it is more likely that an observation
z = hx(z

�) is similar to x if z� contains many ones.

34

5. SHAP framework

5.4. Tree SHAP

The last approximation procedure we want to discuss in this work can be applied to tree-
based methods. We want to mention that when this method was first introduced in Lund-
berg et al. (2018), it relied on conditional expectations to compute fx(z

�), as in Equation
(5.6). With this approach, the resulting SHAP values failed to satisfy Property 5.1.2 (Miss-
ingness), as described in Janzing et al. (2020). The algorithms have since been updated
and currently use the interventional conditional expectation (Lundberg et al., 2020; Chen
et al., 2018), which corresponds to Equation (5.9). This also shows that the simplifying
assumptions for Kernel SHAP lead to unbiased results.

Here we present a naive algorithm, as discussed in Lundberg et al. (2020), to provide an
introduction into the calculation of Shapley values for trees. Subsequently, we explain the
idea behind a more efficient but also more complex algorithm. An interactive explanation
and visualization for tree-based algorithms can be found in the article by Chen et al. (2018).

Disregarding the computational complexity of the task, we can approximate the Shapley
values by first estimating fx(z

�) = fx(S) for all 2
p possible feature value combinations and

then using Equation (5.2) for the computation. In Algorithm 3 we recap the approximation
approach for fx(S), which is based on a path-dependent perturbation of the features. For
this algorithm we need to supply the information of the tree we want to explain, which we
can summarize as follows:

• Let v be a vector of node values, where internal nodes of the tree are assigned the
value internal.

• We use the vectors a and b to denote the left and right indices of all internal nodes.

• The thresholds for each internal node are stored in the vector t.

• In the vector d we store the indices of the features used for splitting.

• Let r represent the vector that stores the information of how many samples fall in a
subtree for each node.

In Algorithm 3 we define the recursive procedure G(j), which works as follows: In the first
step, we check whether the j-th node is a leaf node or not. Let us consider the case that
it is a leaf node, then we return its value vj and the routine is finished. If it is an internal
node of the tree, we follow the decision path of the instance x if the node is contained in
S, and we compute the weighted average of both branches if it is not included in S. We
estimate fx(S) by starting this recursive algorithm in the first node of the tree.

The computation time of the procedure summarized in Algorithm 3 depends on the number
of leaves l in the tree, which means that in combination with the computation of Equation
(5.2) we get a complexity of O(lp2p). If we explain a tree ensemble model with T trees and
a maximum number of L leaves in any tree, then the complexity is O(TLp2p).

The more sophisticated, but also more efficient Tree SHAP algorithm reduces the expo-
nential computational complexity of the approach described above to O(TLD2), where D
is the maximum depth of any tree. The conceptual idea of this approach is to monitor

35

5. SHAP framework

Algorithm 3: Estimate fx(S) for trees.

Input: Observation to be explained x, subset of features S, Tree = {v,a,b,t,r,d}
Output: Approximation of fx(S)

1 Function G(j):
2 if vj �= internal then
3 return vj
4 else
5 if dj ∈ S ∧ xdj ≤ tj then

6 return G(aj)
7 else if dj ∈ S ∧ xdj > tj then

8 return G(bj)
9 else

10 return
G(bj)raj+G(bj)raj

rj

11 return G(1)

what proportion of all possible subsets S arrives at each of the leaves of the tree. For more
details on this approach, we refer to the literature (Lundberg et al., 2018, 2020).

5.5. Implementations, visualization and global feature
importance

Along with the introduction of the SHAP framework in Lundberg and Lee (2017), the
authors also provide a Python implementation of their methods in the shap package. It
does not only contain all the methods we discussed in this chapter, but also includes
methods for explaining models for image classification or to cluster observations based on
Shapley values, and it provides multiple visualization tools. In R we can estimate Shapley
values, for example by using the previously mentioned iml package (Molnar et al., 2018),
the fastshap package (Greenwell, 2020b), or the xgboost package (Chen and Guestrin,
2016; Chen et al., 2021), the latter of which includes an efficient version of the Tree SHAP
algorithm.

In this section we discuss different visualization tools for Shapley values, using the iris
dataset, which is described in Section 3.4. We work with the xgboost package to build
a boosted tree ensemble model to predict the variable species ∈ {setosa, versicolor,
virginica}, using the other variables as predictors. Moreover, we estimate the Shapley
values with the same package. Subsequently, we create plots to either explain the predicted
probability for one class using Shapley values, or we aggregate the Shapley values of all
classes to analyze the total impact of the explanatory variables on the response. The plots
and graphs displayed in this section were created based on the visualizations published in
the original papers (Lundberg and Lee, 2017; Lundberg et al., 2018, 2020).

36

5. SHAP framework

5.5.1. Visualizations for individual observations

Before we describe and analyze the plots in the following paragraphs, let us recap the
interpretation of the Shapley value:

For a given set of feature values, the Shapley value is the difference between the actual
prediction and the average prediction.

When we use the R xgboost package to derive the Shapley values for multinomial classifica-
tion problems, then they are on the scale of the untransformed margin (Chen et al., 2021).
Hence, Shapley values do not represent the change in probability in this case. Nevertheless,
they still explain how much the actual prediction differs from the average prediction, just
not in terms of probabilities. Moreover, we can either explain each class individually, or
we can sum up the importance scores of all factor levels to analyze the influence across all
classes.

In Figure 5.1 we see the Shapley values of two different observations from the iris dataset.
We list the feature values of the instance of interest on the y-axis, and the x-axis denotes the
Shapley values. Both plots in Figure 5.1 show an explanation for species = versicolor.
For the first instance (left panel) the differences between the actual class probabilities of
the instance of interest and the average probabilities on the training data are given by Δsetosa

Δversicolor

Δvirginica

 =

 0.6
−0.28
−0.33

 =

−0.95
−0.03
0.02

−
0.35
0.31
0.35

 ,

while they are given by Δsetosa

Δversicolor

Δvirginica

 =

−0.26
0.51
−0.26

 =

0.09
0.82
0.09

−
0.35
0.31
0.35

 ,

for the second instance (right panel). For species = versicolor we have to explain a
negative difference of −0.28 for the first observation, whereas for the second instance we
have a positive difference of 0.51. While Petal.Length = 1.4 has a negative influence on
the difference between the predicted and the actual class probability for the first instance
and explains almost the entire prediction, we do not only observe a positive influence of
Petal.Length = 3.5 for the second observation but also see that the other features con-
tribute more to the explanation. We can conclude that for both observations Petal.Length
is the most influential feature when species = versicolor.

To get an overview of the influence of the feature values over all three species, we present
the sum of the absolute Shapley values on the x-axis in Figure 5.2. Here we see that
Petal.Length yields the contribution to explain the difference between the actual predic-
tion and the mean prediction among the four features. When we compare the plots for
both observations, we notice that for the first observation (left panel) the contribution of
Petal.Length is stronger compared to the influence of the other features, than for the
second observation (right panel).

37

5. SHAP framework

Figure 5.1.: Shapley values for two instances where species = versicolor.

Figure 5.2.: Sum of the absolute Shapley values over all species for two observations.

5.5.2. Global feature importance

Having already introduced the theoretical background and the estimation procedures in
Chapters 4 and 5, we can explain individual predictions using Shapley values. If we compute
the Shapley value for every instance of our dataset, we can aggregate the results to analyze
and interpret the behavior of the entire model. The global importance of the j-th feature
with respect to the Shapley values is defined as

Ij =

n�
i=1

���φ(i)
j

��� , (5.36)

where φ
(i)
j is the j-th coordinate of the Shapley value φ(i) from the i-th observation. Since

Property 5.1.1 (Local Accuracy) and Axiom 4.3.1 (Efficiency) imply that the magnitude of
the components of the Shapley value depends on the model f , we are interested in com-
parisons of the relative ratios of the Shapley value. Therefore, features with a comparably
high absolute Shapley value are considered to be important or influential in the model.

38

5. SHAP framework

Figure 5.3.: Global feature importance based on the mean absolute Shapley value, for
species = versicolor (left) and summed over all three species (right).

The global importance with respect to the Shapley values can be summarized in a bar
plot, as displayed in Figure 5.3. In the two plots, the features are listed on the y-axis,
sorted according to their global importance Ij . On the x-axis we display the mean absolute
Shapley value as a measure of global variable importance. In this example we aggregated
over all 45 observations in the test set, and we observe the same results as for the two
observations we considered in Section 5.5.1. It is worth noting, that the global feature
importance based on Shapley values can serve as an alternative to permutation feature
importance for random forests (Hastie et al., 2009), or the model agnostic version called
model reliance, introduced in Fisher et al. (2019).

Figure 5.4.: The SHAP Summary Plots allow us to summarize the information of the Shap-
ley values and the corresponding feature values from all the observations into
one plot. In the left panel we see the Shapley values for species = setosa

and in the right panel we see the sum of the absolute Shapley values for all
species.

Since the Shapley values are calculated for each observation, we are not limited to display
the global variable importance, but we can add more details to the plot, as shown in the

39

5. SHAP framework

SHAP Summary Plot (Lundberg et al., 2018). In Figure 5.4 we combine the feature
importance with the feature effect as follows: First, the features are sorted by their global
importance Ij and listed on the y-axis accordingly. In the next step, dots that represent

the Shapley values φ
(i)
j are plotted on the x-axis and stacked vertically when they overlap,

to visualize the distribution of the Shapley values for each feature. Finally, those dots are
colored with respect to their standardized feature values, from low (blue) to high (red). In
the left panel of Figure 5.4 we can observe, that out of the four features, only Petal.Length

is influential for species = setosa. In contrast to this result we see in the right panel that
the remaining features are also contributing when we aggregate over all three species.

Figure 5.5.: With the SHAP Dependence Plot we can analyze the relationship between the
feature values and the Shapley values. The plot on the left-hand side shows this
relation for Petal.Length when species = virginica, and on the right-hand
side we see the connection between the sum of the absolute Shapley values for
all species and the feature values of Petal.Length.

Finally, the SHAP Dependence Plot (Lundberg et al., 2018) allows us to analyze the
relationship between the feature values and the corresponding Shapley values for a single
feature over all observations, as visualized in Figure 5.5. We are plotting the values of
the feature on the x-axis and the associated Shapley values on the y-axis, which allows
us to investigate how the influence on the prediction changes as the feature values vary.
When we inspect the plot in the left panel of Figure 5.5, where we consider the case that
species = virginica, we see that the Shapley values are negative up to the threshold of
Petal.Length ≈ 4.7, and for feature values that are larger than this threshold, they are
positive. Furthermore, comparing the left and right panel, we observe that as Petal.Length
is increasing, the magnitude of the absolute Shapley values is also rising when species =
virginica, while larger values of Petal.Length lead to a reduction of the absolute Shapley
values when we consider the aggregated results over all three species, displayed in the right
panel.

40

5. SHAP framework

5.6. Summary

Since feature attributions generated using the SHAP framework correspond to the Shap-
ley values discussed in Chapter 4, they inherit all the advantages of the Shapley values.
Moreover, the Kernel SHAP method connects LIME and Shapley values, which helps us
to solve the problem of the uncertainty involved in the choice of the neighborhood when
we use LIME: Theorem 5.2.1 provides the theoretical background on how we should define
the neighborhood of the instance of interest. In addition to the local explanations, we can
aggregate Shapley values to gain a global understanding of the model, if we compute them
for a large number of instances. However, this might lead to long computation times for the
model-agnostic estimation procedures. Fortunately, the Tree SHAP algorithm provides an
efficient approximation method for tree-based models. Finally, we want to mention, that
the SHAP frameworks also suffers from the drawback that we have to choose a sampling
strategy for the computation of the Shapley values and the feature attributions can be
manipulated to hide biases (Slack et al., 2020).

41

6. Electricity markets and data description

Life as we know it would not be even remotely possible without the access to electricity –
and if the current state of the world economy and lifestyle is any indication, our demand will
only increase (Lewis and Nocera, 2006). What is more, factors like climate change, price
and decreasing access to the remaining fossil fuels (Mcglade and Ekins, 2015) have been
the main drivers for the research and development of renewable energy sources regarding
our mobility factors (cars, trains etc), which means the energy market is on the brink of
receiving an even larger amount of interest.

While transitioning from an energy market that is powered by fossil resources to a sustain-
able and non-polluting energy generation is of uttermost importance, market integration
and maximizing the full potential of renewable energy sources while preserving supply se-
curity and the physical grid’s reliability presents new problems. Not only are wind and
solar parks spatially dispersed and often located in remote areas further away from large
consumption centers, but we also have to consider the difficulty of accurately forecasting
their electrical output, or other technical obstacles when compared to fossil fuels. As a
result, ensuring system stability with high shares of renewable energy sources significantly
changes the market, product, process, and coordination schemes (ENTSO-E, 2021a). To
lead life as we know it, we depend on a stable power supply that is resistant towards black-
outs and system failures. To ensure this, the European energy market is coordinated by
the European Network of Transmission System Operators for Electricity (ENTSO-E). It is
an organization responsible for the cooperation between the European transmission system
operators (TSOs), which currently encompasses 42 members representing 35 countries. Ac-
cording to their website (ENTSO-E, 2021a), the objective of ENTSO-E can be summarized
as follows: Ensuring the security of the interconnected power system in all time frames at
pan-European level and the optimal functioning and development of the European inter-
connected electricity markets, while enabling the integration of electricity generated from
renewable energy sources and of emerging technologies.

In this work we focus on the Austrian energy market, which is a part of the European
power grid – the largest interconnected electrical grid in the world (ENTSO-E, 2021a). We
want to provide a broad outline of electricity markets, thereby introducing the ENTSO-E
Transparency Platform (TP) (ENTSO-E, 2021b), which we use as source for the electricity
market data that is analyzed in this thesis. With the collected information we can create
various datasets and pursue multiple modeling strategies, as outlined in Section 6.1 and
Chapter 7, respectively. Afterwards, we apply and adapt the methods of Explainable AI
to the final online modeling approach in Section 7.3.

42

6. Electricity markets and data description

Figure 6.1.: This figure from Meeus (2020) shows a visual representation of the electricity
market sequence in Europe.

The ENTSO-E operate the Transparency Platform (ENTSO-E, 2021b), which stores and
provides access to the European electricity system and market data. As outlined in Hirth
et al. (2018), the purpose of this platform is to support market members, such as energy
generators, retailers, and traders, and to provide equal opportunities for all participants,
regardless of company size, net worth or economic power of the individual actors. Each
TSO is required to provide information about the energy market for their geographic region
in the form of data instances, which can be divided into six categories: Load, Generation,
Transmission, Balancing, Outages and Congestion Management. This information can for
example be accessed via the website of the TP or via an API (Application Programming
Interface) to collect the data instances and store them in a database.

As outlined in Schittekatte et al. (2020), we have to consider the three physical charac-
teristics time, location, flexibility of electricity, when discussing electricity markets. To
guarantee a stable energy supply and to maintain the utility frequency of the electricity
system, supply and demand must be balanced at all times. In comparison to other com-
modities such as gold or oil, we are currently not able to store electricity in large volumes,
which leads to a high variability of the value and price of electricity over time. Moreover,
the transmission capacities are limited, and transmission components must be operated
with respect to safe limits, hence the cost and value of electricity is also dependent on the
location. Ultimately, the flexibility of the electricity market must be considered, as there is
not only a high fluctuation in the demand of electricity, but also the possibility of sudden
power station failures or other technical difficulties. As a result, the capacity to quickly ad-
just power generation or consumption is extremely valuable. This motivates the electricity
market sequence, which is illustrated in Figure 6.1. From this figure we can observe that

43

6. Electricity markets and data description

the trading of electricity can start years before the actual delivery of the energy. However,
in this thesis our focus is on the balancing energy market, which operates close to real time
and helps to ensure that energy supply and demand are always balanced. On this market
Balancing Service Providers specify the price they wish to receive, to raise or reduce their
energy injection into or withdrawal from the power grid in real-time. Specifically, we want
to create a predictive model for the imbalance price, which has the unit EUR/MWh. In
the case of Austria, energy market data are published for timeframes with a validity of 15
minutes on the TP. It is imperative to note, that the data instances are oftentimes updated
retrospectively and that such updates are possible until a legally mandated deadline is
reached. We will follow up on this aspect of the energy market with an analysis in Section
6.1, once we have discussed the Austrian energy market in general terms. For further in-
formation about the ENTSO-E TP and more details on the European energy market, we
refer to ENTSO-E (2021b); Hirth et al. (2018); Meeus (2020); Schittekatte et al. (2020).

6.1. Data analysis and feature engineering

At voestalpine, energy market data are collected from the ENTSO-E TP and stored in a
database. The data used for this thesis is provided by voestalpine and it concerns a period
of nine months, starting in August 2020 and ending with April 2021. In Table 6.1 we
exemplary list 20 out of the 2, 028, 659 available database entries.

From the column labeled time we can see for which time interval tb, where tb denotes
the beginning of each 15-minute interval, a parameter value pv is valid. Each parameter
corresponds to an identification number pid, which is stored in the column id with the
respective value stored in column the value. The parameter with pid = 85 corresponds
to the imbalance price, which is our factor of interest. This means, that parameter
values pv with pid = 85 represent the dependent variable y in our models, which will be
further subdivided into into three classes later. The remaining parameters with pid �= 85
represent the explanatory variables, which we denote as xpid . In Appendix B in Table B.1
we list the parameter names corresponding to the parameter id pid, for a more detailed
description of the parameters we refer to the website of the TP (ENTSO-E, 2021b). The
column query timestamp contains the timestamp tq at which the respective entry was
stored in the database, which matches the publishing time on the TP up to a negligible
number of seconds. Since parameter values can be updated until the legally fixed deadline
is reached, we keep track of those updates by storing the update number nup in column
update. Additionally, we derive the time difference between the time the price became valid
and the time it was queried as Δ = tb − tq, which we find in column time difference. It
is worth mentioning that we limit ourselves to the energy market data from Austria in this
work, but it would be possible to include information regarding the neighboring countries
of Austria, or even from all members of the ENTSO-E, as a further step in subsequent
works.

To get a better understanding of the updating procedure, we examine the parameter with
pid = 95 as an example, the corresponding entries in Table 6.1 are highlighted with a gray
background color. We observe three entries for tb = 2020-08-01 00:15:00. The first and

44

6. Electricity markets and data description

the second instance were published before tb, while the third update arrived 42.18 minutes
after tb.

Table 6.1.: Longitudinal data, as stored in the database along with an additional column
for the time difference between tb and tq.

time

tb

id

pid

value

pv

query timestamp

tq

update

nup

time

difference

Δ = tb − tq

2020-08-01 00:15:00 82 5.00 2020-08-01 00:45:12 1 30.20 min
2020-08-01 00:15:00 82 32.00 2020-08-05 07:53:13 2 6218.22 min
2020-08-01 00:15:00 85 42.97 2020-09-24 09:03:12 1 78288.20 min
2020-08-01 00:15:00 86 42.98 2020-07-31 08:03:11 1 -971.82 min
2020-08-01 00:15:00 87 -1497.00 2020-07-31 08:03:11 1 -971.82 min

2020-08-01 00:15:00 88 1889.00 2020-07-31 08:03:11 1 -971.82 min
2020-08-01 00:15:00 89 9.30 2020-07-31 08:03:11 1 -971.82 min
2020-08-01 00:15:00 90 15.00 2020-08-01 00:37:11 1 22.18 min
2020-08-01 00:15:00 91 0.00 2020-08-01 00:37:11 1 22.18 min
2020-08-01 00:15:00 92 0.00 2020-07-30 10:01:12 1 -2293.80 min

2020-08-01 00:15:00 93 176.00 2020-07-30 09:03:11 1 -2351.82 min
2020-08-01 00:15:00 93 196.00 2020-07-31 05:51:12 2 -1103.80 min
2020-08-01 00:15:00 93 184.00 2020-07-31 15:51:11 3 -503.82 min
2020-08-01 00:15:00 94 0.00 2020-07-30 10:01:12 1 -2293.80 min
2020-08-01 00:15:00 95 192.00 2020-07-31 22:57:11 1 -77.82 min

2020-08-01 00:15:00 95 160.00 2020-07-31 23:57:12 2 -17.80 min
2020-08-01 00:15:00 95 120.00 2020-08-01 00:57:11 3 42.18 min
2020-08-01 00:15:00 96 0.00 2020-08-01 03:01:11 1 166.18 min
2020-08-01 00:15:00 97 120.00 2020-08-01 04:01:11 1 226.18 min
2020-08-01 00:15:00 98 0.00 2020-08-01 01:27:11 1 72.18 min

6.1.1. Data availability

To create datasets on which we can build a predictive model for the imbalance price, we
need to spread the data into a wide format, such that each parameter associated with a
specific pid has its own column, where the respective parameter value pv is stored for every
time interval tb. This results in a dataset of the form (X, y) ∈ Rn×p+1, with n observations,
p features and the dependent variable y. The matrix X consists of all parameters with
pid �= 85 and the elements of the vector y correspond to pid = 85. To reach this objective,
we need to filter the available instances, so that we are left with a unique value for each
combination of a parameter identification pid and a time interval tb. We use δ(t), t ∈ N to
describe the relation between the row number of the dataset and the time interval tb. A
time interval of interest is selected with tb = δ(t) and tb = δ(t ± s) denotes a shift of ±s

45

6. Electricity markets and data description

times 15-minutes. If we use the notation tb = δ(tcur), tcur ∈ N we assume that there is no
information available that is published later than tb.

Before we construct the datasets, we analyze the time differences between the final1 entries
of the explanatory variables xpid and the dependent variable y:

• For the imbalance price we get a minimum time difference of about half an hour,
Δmin = 26.18 min, and the median is given by approximately 39 days, Δmed =
56620.68 min. Finally, the update with the highest time difference was published al-
most two months belatedly with respect to the time interval tb, Δmax = 84217.17 min.
Due to this fact, we avoid modeling y as a time series based on previous observations
of y, as in a moving average model for example, but choose a supervised learning
approach to model the prediction task.

• Considering the explanatory variables, we analyze all entries with pid �= 85 and ob-
serve a minimum time difference of approximately negative two and a half days,
Δmin = −3643.80 min, while the maximum is almost two weeks or exactly Δmax =
20104.18 min. This means that, on the one hand, some final parameter entries are
published up to two and a half days in advance, for example the solar power produc-
tion forecast x92. On the other hand, the final entries for some explanatory variables
are published with a delay of almost two weeks. This poses a problem when we con-
sider the predictive power of the model built on this information, since our objective
is to construct a model that enables us to forecast the imbalance price y given X for
the current time period starting at tb = δ(tcur). Our problem is therefore that we
cannot simply construct a matrix of explanatory variables X that consists of the final
values, since those values are unknown if Δ > 0. To create a matrix of explanatory
variables X, where each parameter has its own column with one entry for each time
interval tb, we outline three different approaches in Sections 6.1.2, 6.1.3 and 6.1.4.

6.1.2. Final values

If we want to describe the relationship between the parameters in their final state, we
construct the matrix Xfinal as follows:

1. For every combination of parameter id pid, where pid �= 85, and time interval tb, we
select the entry with the highest number in the update column to get the final value.

2. Next, we spread the data into a wide format.

3. If this data preparation process leads to parameters with missing values, we replace
them with the last available value.

With Xfinal we can draw inference on the relationship between the explanatory variables
and the imbalance price y, but as already mentioned earlier, we cannot use it for predic-
tion since at tb = δ(tcur) we do not have the final values available.

1Final entry means that for every combination of parameter id pid and time interval tb, we select the entry
with the highest number in the update column, which corresponds to the most recent date.

46

6. Electricity markets and data description

6.1.3. Most recent values

Another approach of constructing a matrix of explanatory variables that can be used for
prediction is based on using the most recent available value for each parameter. This results
in the matrix Xcur, which is provided by voestalpine and could be replicated as follows:

1. In the first step, we remove all the entries where Δ > 0.

2. For every combination of parameter id pid, where pid �= 85, and time interval tb, we
select the entry with the highest number in the update column to get the final value.

3. Next, we spread the data into a wide format.

4. This process will introduce missing values; therefore we replace a missing parame-
ter values for given time period tb with the most recent parameter value pv that is
available at tb.

In practice, the dataset is not constructed using the filtering approach as described above,
but every minute we check if new values are available for any parameter pid for the current
time period tb = δ(tcur) and when this is the case, those parameter values are updated. If
there is a time period tb = δ(t) where no parameter has changed compared to the previous
time period tb = δ(t− 1), there is no new row created in the matrix Xcur. However, this is
not a problem, as long as the model always uses the last available row of Xcur for prediction.
For the data considered in this thesis, this leads to a matrix consisting of 34 columns and
25, 849 rows.

Concerning the modeling approach, on the one hand, we can train a model, using the
matrix Xfinal that only consists of the final instances for the explanatory variables, and
test the model on Xcur. Since some of the parameters are updated up to almost two weeks
belatedly, we expect a significant drop in predictive power when we compare the evaluation
of the training dataset to the test dataset. On the other hand, we could train and evaluate
the model based on Xcur, which should lead to comparable results for the training and test
datasets. Nevertheless, Xcur contains columns that represent explanatory variables that
are updated two weeks belatedly, and hence might contain unreliable feature values.

6.1.4. Restricted timespan

The last method to construct a matrix of explanatory variables that we consider, works as
follows:

1. We begin by selecting a time threshold t̃.

2. Given this threshold, we only keep entries for which Δ < t̃.

3. Subsequently, we select the parameters where the average time difference is smaller
than t̃.

4. Next, we spread the data into a wide format.

5. Finally, missing values get replaced with the last available value.

47

6. Electricity markets and data description

Analyzing the time difference Δ for each parameter individually, we observe that for the
majority of parameters it holds that the median as well as the third quantile of the time
difference Δ is smaller than 30 minutes. Following steps one to five from above, we con-
struct a matrix of explanatory variables X30min, with t̃ = 30. Since this matrix includes
observations that are not available for prediction at tb = δ(tcur), we create a lagged (shifted)
version Xlag2 : The t-th row of X30min corresponds to row t + 2 of Xlag2 , as illustrated in
Table 6.2. With the matrix Xlag2 of time-shifted explanatory variables at hand, we can
build and evaluate a model using the dataset (Xlag2 , y). The matrix of explanatory vari-
ables Xlag2 consists of 26 features and 26, 048 observations, while the matrices Xfinal and
Xcur are composed of 34 columns.

Table 6.2.: Illustration of how the matrix Xlag2 is created out of X30min and the relation
to the dependent variable y, the subscripts denote the rows of X30min and the
elements of y.

X30min Xlag2 y

X30min
1 − y1

X30min
2 − y2

X30min
3 X30min

1 y3
X30min

4 X30min
2 y4

X30min
5 X30min

3 y5
X30min

6 X30min
4 y6

X30min
7 X30min

5 y7
...

...
...

To implement this approach in a practical application, we can follow a similar procedure as
forXcur. For the prediction of the imbalance price of the current time period tb = δ(tcur),
we consider parameter values for tb = δ(tcur−2), including all updates of those parameters
up to tb = δ(tcur). Since we only consider parameters where the average time difference
Δ is smaller than 30 minutes, unreliable feature values should not constitute the same
problem as for Xcur. Moreover we can consider the following two scenarios: Firstly, we
might include additional lags in the dataset and analyze their influence on the predictive
quality of the model, e.g., adding the parameters with a lag of three, meaning that we not
only consider the parameters for tb = δ(tcur − 2), but also tb = δ(tcur − 3) to construct
Xlag2−3 . Secondly, we can consider a hypothetical scenario to analyze the influence of a
better data availability, e.g., if we would observe that the median time difference is lower
than 15 minutes, we could consider the time threshold of t̃ = 15, and use a lag of one
to construct the matrix of explanatory variables Xlag1 , see Section 7.1.1. While the first
scenario is already viable for the case at hand, the second approach might become more
relevant in the future when it is applicable in practice, since the energy market is constantly
evolving, and data quality and availability are improving continuously.

48

6. Electricity markets and data description

6.2. Exploratory data analysis

In Section 7.1 we will see that the dataset based on Xlag2 yields the most promising results,
hence we will only include a more detailed analysis of the dataset (Xlag2 , y). As mentioned
previously, this dataset consists of 26, 048 observations and 26 features and in this section
we analyze all observations with descriptive statistics, without further splitting the dataset
into separate training and test sets. The motivation for this approach is twofold: Firstly,
the validation procedure for model selection in Chapter 7, does not rely on the insights we
gain from analyzing all observations in this chapter. Secondly, we neither perform manual
feature selection nor statistical tests, but focus on an analysis of the final model with
Explainable AI in Section 7.3.

Figure 6.2.: Visualization of the autocorrelation of the imbalance price (left panel) and
histogram of the imbalance price, based on those observations where its value
is in between the 0.01 and 0.99 percent sample quantile (right panel).

Before we divide the imbalance price into three categories, we visualize the auto corre-
lation function and the histogram in Figure 6.2. While the minimum and maximum of
the imbalance price are given by −2, 198.04 and 3, 017.78, respectively, the majority (98
percent) of the observations are contained in the interval [−52.88, 198.97]. The histogram
of those 98 percent of the observations is visualized in the right panel of Figure 6.2. More-
over, we observe a strong autocorrelation of the imbalance price, but we cannot use this
information for prediction due to the publishing time delay, as pointed out in Section 6.1.1.

In the next step we analyze the correlation structure in the dataset. The two explana-
tory variables that have the highest absolute correlation to the imbalance price are the
TRADED AMOUNT (pid = 80 81) and the SPOT PRICE D 1 (pid = 84), with a Pearson correla-
tion coefficient of −0.26 and 0.18, respectively. In Figure 6.3 we observe high correlations
between explanatory variables, for example the two parameters related to solar power gen-
eration, with pid = 92 and pid = 96, are highly correlated. The same relation holds true for
the parameters which contain the information about wind power generation, with pid = 93
and pid = 97, although the correlation is less extreme. We want to note, that we analyzed
the effect of removing one of the features on the modeling procedure described in Chap-
ter 7 and we did not observe a change in predictive power. Therefore, we included both

49

6. Electricity markets and data description

parameters to analyze the effect of highly correlated variables on the feature importance
based on Shapley values.

Figure 6.3.: Correlation analysis based on the Pearson correlation coefficient for the
imbalance price and the 26 explanatory variables.

While we carried out an in-depth analysis of all features in R, we only include the histograms
of the TRADED AMOUNT (pid = 80 81) and the SPOT PRICE D 1 (pid = 84) as examples in
Figure 6.4. The TRADED AMOUNT, displayed in the right panel, is the total aggregated volume
of the imbalance for each 15-minute time period and is given in MWh. We observe positive
as well as negative feature values, which represent either an energy surplus or deficit.
The imbalance price for energy deficits is based on the TSO’s payment to the balancing
service provider. The price for energy surplus refers to the payment made to the TSO by the

50

6. Electricity markets and data description

Figure 6.4.: Histograms of the TRADED AMOUNT (left panel) and the SPOT PRICE D 1 (right
panel).

balancing service provider. A negative price denotes the acquisition of energy in exchange
for a monetary payment (ENTSO-E, 2021b). In the right panel we display the day-ahead
spot price (x84), with the unit EUR/MWh, and we observe mostly positive values for this
feature.

The objective of the models, discussed in Chapter 7, is to predict the imbalance price,
which is split into the three categories. The information on how to split the imbalance

price into classes, was provided by voestalpine. The resulting dependent variable y is
defined by

y :=

��
low if imbalance price ∈ (−∞, 10)

medium if imbalance price ∈ [10, 70)

high if imbalance price ∈ [70,∞)

. (6.1)

In Figure 6.5 we summarize the class counts of y in the left panel, where we observe that
most observations correspond to class medium. Nevertheless, none of the three classes seems
to be underrepresented. In the right panel of Figure 6.5 we show the estimated densities
of the TRADED AMOUNT for each class and note that while those are overlapping, we see that
this explanatory variable seems to offer some form of separation between the classes.

To emphasize the time dependence of our dataset, we analyze the class counts of y for each
week in Figure 6.6. We observe that the class high is dominating in the year 2021, while
class medium is more frequently observed in 2020.

51

6. Electricity markets and data description

Figure 6.5.: The plot in the left panel summarizes the class counts for of y and in the right
panel the densities of the TRADED AMOUNT are displayed for each class.

Figure 6.6.: This plot displays the weekly class counts of y.

52

7. Model and Explainable AI

Our objective is to create a model to predict the imbalance price class, as defined in
Equation (6.1), and analyze it with the methods of Explainable AI, introduced in Chapters
3, 4 and 5. Formally speaking, we want to predict y based on the currently available energy
market data. The remainder of this chapter is structured as follows: First we compare dif-
ferent modeling approaches in Section 7.1, before we introduce an online learning procedure
in Section 7.2 for further model improvement. Last, but certainly not least, we analyze our
best-performing model using Explainable AI in Section 7.3.

7.1. Modeling approaches

In this section, we compare four strategies to predict y, using the datasets (Xfinal, y),
(Xcur, y) and (Xlag2 , y) that were introduced in the previous chapter, and compare them
to a baseline accuracy. The four approaches we consider are listed below:

Approach 1: Train on (Xfinal, y) and test on (Xfinal, y) – not feasible in practice.

Approach 2: Train on (Xfinal, y) and test on (Xcur, y).

Approach 3: Train on (Xcur, y) and test on (Xcur, y).

Approach 4: Train on (Xlag2 , y) and test on (Xlag2 , y).

We use the following validation procedure to compare the four approaches: In the first step
we use the first 2, 000 observations as training data and the subsequent 1, 000 observations
for testing. We do not use random sampling to select those instances due to the fact that
the problem has an interwoven time-dependence. Randomly selecting data would mean
that we could in fact mix future observations into the training dataset, which in turn might
lead to unreliable accuracy estimations as training the model on normally not yet existent
data is obviously not a realistic use-case situation. In the second step of the validation
process we use observations 1 to 3, 000 for training and observations 3, 001 to 4, 000 for
testing and every subsequent step follows the same pattern, expanding the training set
observations by 1, 000 and predicting the following 1, 000 instances, until the last row of
our dataset is reached.

While there is a wide variety of ML models that would be applicable to our problem,
we restrict ourselves to the five models listed below. We want to note that we used the

53

7. Model and Explainable AI

standard (hyper)-parameters for most instances, except for the adjustments denoted in the
list below1:

1. Multinomial logistic regression without variable selection, referred to as LR, using
the R package nnet (Venables and Ripley, 2002).

2. Multinomial logistic regression with variable selection, denoted as LR lasso, em-
ploying the R package glmnet (Simon et al., 2011) and applying the “one SE” rule to
decide on the model used for prediction.

3. Random forest RF, utilizing the R package ranger (Wright and Ziegler, 2017), where
we only used 50 trees to limit computational time.

4. Boosted tree ensemble XGB, employing the R package xgboost (Chen et al., 2021)
with 10 boosting rounds.

5. Multilayer perceptron MLP, using the R package keras (Allaire and Chollet, 2021).
We use two hidden layers with 3p and 6p + 3 neurons, each followed by a dropout
layer with a dropout rate of 50 percent, and a softmax activation function.2

The results of the models are displayed in Table 7.1 and Figure 7.1. First, we note that all
models perform better than the median (0.383) and mean (0.438) of the baseline model,
which predicts the majority class of the training data for all test data. Comparing the dif-
ferent datasets, we observe that only Approach 1, which is based on training and evaluating
the model on Xfinal, yields a significantly higher accuracy for all models compared to the
model performance on the remaining datasets. Unfortunately, this approach is infeasible in
practice due to the lack of availability of future data points, but it nonetheless serves as a
scenario on how the model performance could improve, if we had enhanced data availability
and quality at our disposal. Moreover, looking at Table 7.1, we conclude that tree-based
models perform best on this dataset.

Moving on, we observe that that we cannot detect a substantial difference in test set accu-
racy between the models based on Approach 2, Approach 3 and Approach 4. Nevertheless,
tree-based models yield a slightly higher and more stable prediction quality on the test
data. Additionally, keeping Approach 1 in mind, they have the highest potential for im-
provement, if we could have better data availability and/or quality at hand in the future.3

We will focus on the XGB model, since the xgboost package comes with an efficient ver-
sion of the Tree SHAP algorithm and tree-based models are the most promising in this

1While other (hyper)-parameter choices might lead to different and possibly better results, we want to
mention that we used (hyper)-parameter tuning to explore hundreds of different settings for the models
using Xlag2 , but we hardly saw any change in accuracy on the test data.

2The number of neurons in the hidden layers is motivated by Bölcskei et al. (2017), where this number
of hidden layers and neurons is proposed for a regression task. Even tough we are confronted with a
multiple classification task, this choice provided good results. We tried various specifications for the
MLP, but we did not overall achieve better results with different approaches.

3One could also argue that the LR model yields a similar prediction accuracy compared to the XGB model
and has the advantage that it is inherently interpretable. However, choosing the tree-based model and
using Shapley values does not only fit better to the goal of this thesis, but also possesses a higher
potential for improvement.

54

7. Model and Explainable AI

Table 7.1.: Average model performance in terms of test set accuracy. The standard errors
are given in parentheses.

Average test set accuracy

Model Approach 1 Approach 2 Approach 3 Approach 4

LR (lasso) 0.68 (0.022) 0.531 (0.013) 0.525 (0.018) 0.514 (0.019)
MLP 0.727 (0.027) 0.526 (0.015) 0.457 (0.021) 0.488 (0.018)
LR 0.657 (0.023) 0.516 (0.015) 0.513 (0.017) 0.512 (0.02)
RF 0.838 (0.008) 0.548 (0.012) 0.53 (0.016) 0.54 (0.018)
XGB 0.841 (0.007) 0.547 (0.012) 0.55 (0.015) 0.559 (0.018)

Figure 7.1.: Box plots for each model and dataset, to compare the performance of the
different models, based on test set accuracy.

55

7. Model and Explainable AI

scenario. Hence, the XGB model does not yield high accuracy, but also allows us to inter-
pret the model using Shapley values. Regarding the choice of the dataset: Approach 2 has
the drawback that it uses two different datasets for training and testing the model, which
results in a major difference between in-sample and out-of-sample performance (comparing
Approach 1 to Approach 2). The decision between Approach 3 and Approach 4 is harder
since the performance of the models on both datasets is very similar. However, Xlag2 con-
tains fewer parameters (p = 26) than Xcur (p = 33), since we only consider parameters for
which the median time difference Δ is lower than 30 minutes, while it yields approximately
the same prediction quality. Moreover, it allows us to consider the scenario that we have
Xlag1 available, as described in Section 7.1.1. Due to those reasons, we choose Approach 4
for further analysis.

One could also model y as an ordinal response, since its definition imposes an inherent hier-
archy, as we can see in Equation (6.1). Hence, misclassifying an observation by two classes
– class low instead of high and vice versa, is worse than a classification error by just one
class. It is worth noting, that we also investigated ordinal classification models, however,
those methods did not match the accuracy, nor did they reduce the misclassifications by
two classes, compared to the methods discussed in this work. Moreover, we analyzed the
effect of parameter tuning on model performance, and it showed negligible effects on the
dataset (Xlag2 , y). Since the focus of this thesis is to analyze the methods of Explainable AI
for categorical responses, we choose not to include the results of our research into modeling
y as an ordinal response here. However, applying an online learning approach yields a
comparably higher accuracy, as will be discussed further in Section 7.2.

7.1.1. Emulating better data availability

Let us consider the scenario where the median time difference across all features is lower
than 15 minutes while maintaining the same data quality. We emulate this case by con-
structing Xlag1 based on X30min and the results are given in Table 7.2. As expected,
tree-based models still yield the best results, reinforcing our choice to use the gradient
boosted ensemble models for further analysis.

Table 7.2.: The average model performance in terms of test set accuracy with the standard
errors in parentheses, regarding the matrix of explanatory variablesXlag1 , which
emulates better data availability.

XGB LR LR (lasso) RF MLP

0.63 (0.014) 0.569 (0.019) 0.564 (0.019) 0.607 (0.017) 0.546 (0.023)

7.2. Online learning

In contrast to a classic supervised learning approach, as illustrated in Figure 7.2, the online
learning procedure refits the ML model in every time step t to predict yt+1, as depicted

56

7. Model and Explainable AI

0 1 . . . t − s . . . t t + 1 . . . t + s̃

Training Test

Figure 7.2.: Illustration of the standard supervised learning approach, using a training and
test dataset.

0 1 . . . t − 2 t − 1 t t + 1

Prediction

Training

Lag

0 . . . t − w − 2 . . . t − 2 t − 1 t t + 1

Prediction

Training

Lag

Figure 7.3.: Schematic of the online learning approach based on Xlag2 , using all previous
observations (top) and using a training set of fixed length w (bottom).

in Figure 7.3. Applying this strategy to the energy market data is possible since the data
instances on the TP are published and updated in a sequential procedure. Hence, we can
refit the model whenever new data becomes available.

The classical supervised learning approach (Figure 7.2) uses a training set for model build-
ing and a test set for model evaluation. We used this procedure to select the model (XGB)
and to decide on which dataset the model should be applied (Xlag2), since it is computa-
tionally less expensive compared to the online learning approach. This is because we only
fit the model once for each training set and not for every prediction.

For the online learning approach, we use the last 24, 048 observations of our dataset one step
at a time. While the prediction of the 24, 048 instances is computationally more expensive
following the online learning approach, when compared to the standard supervised learning
procedure with test sets consisting of 1, 000 observations, fitting the XGB model only takes
a few seconds in each step, thanks to the efficient implementation. Therefore, we can still
use it in a real-world scenario, where the model is refitted whenever a new data instance
becomes available. We can either use all previous observations to fit the model (top panel
of Figure 7.3) or limit the training data to a fixed length (bottom panel of Figure 7.3). On

57

7. Model and Explainable AI

the one hand, the latter approach has the advantage that it adapts faster to market changes
– the fewer observations in the training set the faster the adjustment. On the other hand,
the former approach might be advantageous since it can pick up on seasonal trends, which
might be particularly useful when the training set includes observations over a timespan of
at least a year.

As in Section 7.1, we apply the same validation approach for the online learning procedure
like for the previous model comparisons. For the online learning models with a fixed
training set length, we start by selecting an optimal number of observations in the training
set. In Figure 7.4 we see a box plot for each training set length, and we conclude that 500
observations yield the highest median accuracy.

Figure 7.4.: Box plots of the accuracy of the XGB model, using an online learning approach
with a limited length of the training set, where the box plot with the highest
median is highlighted in red.

In Figure 7.5 and Table 7.3 we compare the optimal limited training set model with the
online model using all previous observations and the classic training and test set approach.
Comparing all modeling results for the prediction of the imbalance price, we conclude
that the optimal modeling strategy is based on the Xlag2 dataset and the XGB model,
employing an online learning approach with 500 observations in each training set. The
accuracy of all models visualized in Figure 7.5 is varying greatly over time. We not only
observe time periods where we correctly classify about 80 percent of the observations, but
we also see periods with an accuracy of about 50 percent. As soon as we have observations
of more than a whole year available, we could check if there are seasonal trends and adapt
the model accordingly.

58

7. Model and Explainable AI

Figure 7.5.: Evolution of the aggregated accuracy for the three modeling approaches.

Table 7.3.: Average accuracy for the three modeling approaches, denoting the average
model performance in terms of test set accuracy with the standard errors in
parentheses.

Model Accuracy

Classic 0.559 (0.018)
Online 0.6 (0.015)
Online 500 0.612 (0.015)

59

7. Model and Explainable AI

7.3. Explainable AI

Since the online learning approach based on XGB models with 500 training observations
resulted in the best overall model performance, we want to analyze this model using Shapley
values. We predict 24, 048 observations using this approach, meaning we have to compute
and analyze the Shapley values of 24, 048 XGB models. While we cannot use the default
explanation methods to analyze multiple models, we can still calculate a global variable
importance based on Shapley values if we aggregate them over all models.

7.3.1. Analysis of all observations

First, we start with a global variable importance plot, where we compare the variable
importance based on Shapley values between training and test sets, as visualized Figure
7.6. Analyzing this figure, we observe that there are only marginal differences between
both approaches. Those plots help us to detect the most influential features across all
models. The four most influential features based on averages across all models, according
to both training and test data, are x84 (SPOT PRICE D 1), x80 81 (TRADED AMOUNT), x93
(WIND SHALL D 1), and x74 (aFRR PRICE UP). Additionally, the second feature related to
wind power generation WIND SHALL is also assigned a high importance. As pointed out
in Section 6.2, we purposefully retained the highly correlated variables, which contain the
information for wind and solar power generation, to analyze the effect on the global feature
importance based on Shapley values. When we repeat the online learning procedure without
the variables x92 and x93, the accuracy drops from 0.612 to 0.599 and the variables x96
(SOLAR SHALL) and x97 (WIND SHALL) are assigned a higher importance score. However, the
combined effects of x92 and x96 as well as x93 and x97 are comparably stronger than the
case where only x96 as well as x97 are included in the model, as we can observe in Figure
7.7. Therefore, we conclude that retaining both variables provide reliable importance scores
and yields a better model performance, but in spite of these facts one should be aware of
the correlation structures in the dataset when interpreting the global variable importance
based on Shapley values.

Moreover, we can monitor the Shapley values over time with the plot displayed in Figure
7.8, where we list the mean absolute Shapley values based on the test observations on the
left y-axis and the date on the x-axis. Additionally, we included the model accuracy on the
right y-axis. For this plot, we use moving averaged smoothing to obtain a comprehensible
visualization of the 24, 048 observations. The diagram allows us to monitor changes in
variable importance. Such variations could for example be due to seasonal trends or new
market policies. Since we are using an online learning approach, trained on the 500 most
recent observations, we expect that the model would adapt quickly to new market policies
or guidelines, and with the help of the Shapley values we can monitor and detect such
changes.

60

7. Model and Explainable AI

Figure 7.6.: Global feature importance based on the mean absolute Shapley value: The plot
on the left is based on the mean over the average absolute Shapley values of the
500 training instances of the XGB model, while we used the test observation
for the computation in the right plot.

Figure 7.7.: Global feature importance based on the mean absolute Shapley value for the
test observation: While all features are considered in the plot in the left panel,
the variables x92 and x93 are removed in the graph in right panel.

61

7. Model and Explainable AI

Figure 7.8.: Smoothed mean absolute Shapley values based on the test observations are
given on the left y-axis and the date is denoted on the x-axis. The dotted
black line illustrates the smoothed model accuracy over time.

7.3.2. Analysis of a single prediction

If we are interested in a single prediction, we can analyze the respective model which was
used to predict this instance. We can either compute the Shapley values for the 500 training
set observations or the single test observation. As an example, we analyze the model that
was used for prediction at 23:45:00 on 2021-02-10, corresponding to the 18, 567-th instance
in our dataset. For this instance, the model correctly labeled the observation as high,
with class probabilities of 0.034 (low), 0.074 (medium) and 0.892 (high). For this single
prediction we use Shapley values as well as a local surrogate model for analysis.

Before we analyze this model in more detail, we want to remind ourselves of the inter-
pretation of the Shapley value: For a given set of feature values, the Shapley value is the
difference between the actual prediction and the average prediction. Moreover, we keep in
mind that the Shapley values calculated with the xgboost package do not represent the
change in probability but are given on the scale of untransformed margin (Chen et al.,

62

7. Model and Explainable AI

2021). They do, however, indicate how far the actual prediction departs from the average
prediction, just not in terms of probability.

In Figure 7.9 we analyze the absolute Shapley values summarized across all tree classes,
based on the 500 training instances. In the left panel we display the SHAP Sum-
mary Plot and in the right panel the SHAP Dependence Plot for the variable x84
(SPOT PRICE D 1). Comparing the feature importance from this model to the importance
scores across all models, we observe that x84 is still the most important variable, while
the importance of the remaining features changed noticeably. For example, in comparison
to the aggregated feature importance scores across all models, x92 (SOLAR SHALL D 1) is
assigned a higher importance than x93 (WIND SHALL D 1). From the SHAP Dependence
Plot we see that high feature values of x84 pose the highest difference between the actual
prediction and the average prediction.

Figure 7.9.: SHAP Summary Plot (left panel) and SHAP Dependence Plot (right panel)
visualizing the absolute Shapley values summarized across all three classes,
based on the 500 training instances.

Moving on, each of the Figures 7.10, 7.11 and 7.12 is used to analyze the prediction of the
single test instance, for class low, medium, and high, respectively. Each figure includes the
model effects of a local surrogate model created with the iml package in the left panel, and
in the right panel we display the Shapley values. Considering the local surrogate models,
for each of the three classes a separate sparse logistic regression model with six features is
fitted to explain the prediction of the XGB model. For the Shapley values, we explain the

63

7. Model and Explainable AI

difference between the actual class probabilities of the test instance and the average class
probabilities on the training data: Δlow

Δmedium

Δhigh

 =

−0.152
−0.185
0.337

 =

0.034
0.074
0.892

−
0.186
0.259
0.555

 .

The local surrogate model provides a quick overview, but we should keep in mind that the
prediction of the local model and the actual prediction differ for all three classes, while the
Shapley values provide a full explanation.

Figure 7.10.: Model analysis for class low: The left plot shows a visualization of the effects
from the local surrogate model for the test observation and the right plot
displays the Shapley values for this instance.

64

7. Model and Explainable AI

Figure 7.11.: Model analysis for class medium: The left plot shows a visualization of the
effects from the local surrogate model for the test observation and the right
plot displays the Shapley values for this instance.

65

7. Model and Explainable AI

Figure 7.12.: Model analysis for class high: The left plot shows a visualization of the
effects from the local surrogate model for the test observation and the right
plot displays the Shapley values for this instance.

66

8. Discussion and conclusions

In the theoretical part of this work we discussed the theory behind Local Interpretable
Model-agnostic Explanations (LIME), Shapley values for model explainability, and SHapley
Additive exPlanations (SHAP). Since LIME is based on local surrogate models, it enables us
to provide concise explanations of individual observations. The methods based on Shapley
values have the advantage that they are based on a solid theory and that they do not only
provide a full explanation of individual instances, but they can also be aggregated to obtain
feature importance scores. While the model-agnostic calculation of the Shapley values is
computationally expensive, the Tree SHAP algorithm provides an efficient implementation
for tree-based models.

Regarding the prediction of the energy imbalance price of the Austrian energy market, we
compared multiple supervised classification techniques and concluded that tree ensembles
provide the most promising results. Moreover, we observed that using an online learning
approach improves the prediction accuracy. Concerning the feasibility study on the ap-
plicability of the methods of Explainable AI on this classification problem, we conclude
that we can not only employ those methods to analyze supervised learning tasks, but also
adapt them to explain an online learning model. Since voestalpine is participating in the
balancing market, those improvements in predictive power and model explainability can be
used to optimize decision-making processes and contribute to the goal of voestalpine, to be
one step ahead.

In future works one could for example use the energy market data of all members of the
European Network of Transmission System Operators for Electricity (ENTSO-E), since this
might improve the accuracy of the model as the power grid in Europe is interconnected.
Furthermore, one could investigate the effects of under- or oversampling the training data
in each step of the online learning procedure.

67

Bibliography

Allaire, J. and Chollet, F. (2021). keras: R Interface to ’Keras’. https://CRAN.R-project.
org/package=keras.

Alvarez-Melis, D. and Jaakkola, T. S. (2018). On the robustness of interpretability methods.
arXiv preprint arXiv:1806.08049, abs/1806.08049.

Bengtsson, H. (2020). A unifying framework for parallel and distributed processing in R
using futures. arXiv preprint arXiv:2008.00553.

Bengtsson, H. (2021). progressr: An Inclusive, Unifying API for Progress Updates. R
package version 0.8.0, https://CRAN.R-project.org/package=progressr.

Biecek, P. and Burzykowski, T. (2021). Explanatory Model Analysis. Chapman and
Hall/CRC, New York.

Biran, O. and Cotton, C. (2017). Explanation and justification in machine learning: A
survey. In IJCAI-17 workshop on explainable AI (XAI), volume 8, pages 8–13.

Bölcskei, H., Grohs, P., Kutyniok, G., and Petersen, P. (2017). Optimal approximation
with sparsely connected deep neural networks. http://arxiv.org/abs/1705.01714.

Chen, H., Lundberg, S. M., and Lee, S.-I. (2018). Understanding shapley value explanation
algorithms for trees. https://hughchen.github.io/its_blog/index.html. (accessed:
10.08.2021).

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, page 785–794, New York, NY, USA. Association for Computing
Machinery.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell,
R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., and Li, Y. (2021). xgboost:
Extreme Gradient Boosting. R package version 1.4.1.1.

Doshi-Velez, F. and Kim, B. (2017). Towards a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608.

ENTSO-E (2021a). Entso-e mission statement. https://www.entsoe.eu/about/

inside-entsoe/objectives/. (accessed: 10.08.2021).

ENTSO-E (2021b). Entso-e transparency platform. https://transparency.entsoe.eu/.
(accessed: 10.08.2021).

68

https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=progressr
http://arxiv.org/abs/1705.01714
https://hughchen.github.io/its_blog/index.html
https://www.entsoe.eu/about/inside-entsoe/objectives/
https://www.entsoe.eu/about/inside-entsoe/objectives/
https://transparency.entsoe.eu/

Bibliography

Firke, S. (2021). janitor: Simple Tools for Examining and Cleaning Dirty Data. R package
version 2.1.0, https://CRAN.R-project.org/package=janitor.

Fisher, A. (2020). The uniqueness of shap depends on how you handle external information.
https://aaronjfisher.github.io/SHAP-Symmetry.html. (accessed: 10.08.2021).

Fisher, A., Rudin, C., and Dominici, F. (2019). All models are wrong, but many are
useful: Learning a variable’s importance by studying an entire class of prediction models
simultaneously. J. Mach. Learn. Res., 20(177):1–81.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7(2):179–188.

Gaujoux, R. (2020). doRNG: Generic Reproducible Parallel Backend for ’foreach’ Loops.
R package version 1.8.2, https://CRAN.R-project.org/package=doRNG.

Gower, J. C. (1971). “A general coefficient of similarity and some of its properties”. Bio-
metrics, 27(4):857–871.

Grabisch, M. (2016). Set Functions, Games and Capacities in Decision Making. Springer,
Berlin.

Greenwell, B. (2020a). fastshap: Fast Approximate Shapley Values. R package version
0.0.5, https://CRAN.R-project.org/package=fastshap.

Greenwell, B. (2020b). fastshap: Fast Approximate Shapley Values. R package version
0.0.5.

Grolemund, G. and Wickham, H. (2011). Dates and times made easy with lubridate.
Journal of Statistical Software, 40(3):1–25. https://www.jstatsoft.org/v40/i03/.

Harsanyi, J. C. (1963). A simplified bargaining model for the n-person cooperative
game. International Economic Review, 4(2):194–220. http://www.jstor.org/stable/
2525487.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, New York.

Hester, J. and Wickham, H. (2021). odbc: Connect to ODBC Compatible Databases (using
the DBI Interface). R package version 1.3.2, https://CRAN.R-project.org/package=
odbc.

Hirth, L., Mühlenpfordt, J., and Bulkeley, M. (2018). The entso-e transparency platform –
a review of europe’s most ambitious electricity data platform. Applied Energy, 225:1054–
1067. https://www.sciencedirect.com/science/article/pii/S0306261918306068.

Janzing, D., Minorics, L., and Blöbaum, P. (2020). Feature relevance quantification in
explainable ai: A causal problem. In International Conference on Artificial Intelligence
and Statistics, pages 2907–2916. PMLR.

Jia, E. (2020). Explaining explanations and perturbing perturbations. Bachelor’s thesis,
Harvard College. https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364690.

69

https://CRAN.R-project.org/package=janitor
https://aaronjfisher.github.io/SHAP-Symmetry.html
https://CRAN.R-project.org/package=doRNG
https://CRAN.R-project.org/package=fastshap
https://www.jstatsoft.org/v40/i03/
http://www.jstor.org/stable/2525487
http://www.jstor.org/stable/2525487
https://CRAN.R-project.org/package=odbc
https://CRAN.R-project.org/package=odbc
https://www.sciencedirect.com/science/article/pii/S0306261918306068
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364690

Bibliography

Kuhn, M. (2021). caret: Classification and Regression Training. R package version 6.0-88,
https://CRAN.R-project.org/package=caret.

Lemaire, V., Feraud, R., and Voisine, N. (2008). Contact personalization using a score un-
derstanding method. In 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence), pages 649–654.

Lewis, N. S. and Nocera, D. G. (2006). Powering the planet: Chemical challenges in solar
energy utilization. Proceedings of the National Academy of Sciences, 103(43):15729–
15735.

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the
concept of interpretability is both important and slippery. Queue, 16(3):31–57.

Lundberg, S. M., Erion, G., Chen, H., Degrave, A., Prutkin, J. M., Nair, B., Katz, R.,
Himmelfarb, J., Bansal, N., Lee, S.-I., and et al. (2020). From local explanations to global
understanding with explainable ai for trees. Nature Machine Intelligence, 2(1):56–67.

Lundberg, S. M., Erion, G. G., and Lee, S.-I. (2018). Consistent individualized feature
attribution for tree ensembles. arXiv preprint arXiv:1802.03888.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R., editors, Advances in Neural Information Processing Systems 30, pages
4765–4774. Curran Associates, Inc.

Maksymiuk, S., Gosiewska, A., and Biecek, P. (2020). Landscape of R packages for ex-
plainable artificial intelligence. arXiv preprint arXiv:2009.13248.

Mcglade, C. and Ekins, P. (2015). The geographical distribution of fossil fuels unused when
limiting global warming to 2 °C. Nature, 517:187–190.

Meeus, L. (2020). The evolution of electricity markets in Europe. Edward Elgar Publishing.

Microsoft and Weston, S. (2020). foreach: Provides Foreach Looping Construct. R package
version 1.5.1, https://CRAN.R-project.org/package=foreach.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence, 267:1–38. https://www.sciencedirect.com/science/article/
pii/S0004370218305988.

Molnar, C. (2019). Interpretable Machine Learning. https://christophm.github.io/

interpretable-ml-book/.

Molnar, C., Casalicchio, G., and Bischl, B. (2018). iml: An R package for interpretable
machine learning. Journal of Open Source Software, 3(26):786.

Molnar, C., Casalicchio, G., and Bischl, B. (2020). Interpretable Machine Learning – A
Brief History, State-of-the-Art and Challenges. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 417–431. Springer.

70

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=foreach
https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

Bibliography

Pedersen, T. L. and Benesty, M. (2021). lime: Local Interpretable Model-Agnostic Expla-
nations. R package version 0.5.2, https://CRAN.R-project.org/package=lime.

Peters, H. (2008). Game Theory. Springer, Berlin Heidelberg.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

R Special Interest Group on Databases (R-SIG-DB), Wickham, H., and Müller, K. (2021).
DBI: R Database Interface. R package version 1.1.1, https://CRAN.R-project.org/
package=DBI.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why Should I Trust You?” explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135–1144.

Robnik-Sikonja, M. and Kononenko, I. (2008). Explaining classifications for individual
instances. Knowledge and Data Engineering, IEEE Transactions on, 20:589 – 600.

Schervish, M. J. (1996). P values: What they are and what they are not. The American
Statistician, 50(3):203–206.

Schittekatte, T., Reif, V., and Meeus, L. (2020). The EU electricity network codes (2020
ed.). European University Institute.

Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games,
2(28):307–317.

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011). Regularization paths for
cox’s proportional hazards model via coordinate descent. Journal of Statistical Software,
39(5):1–13.

Slack, D., Hilgard, S., Jia, E., Singh, S., and Lakkaraju, H. (2020). Fooling lime and shap:
Adversarial attacks on post hoc explanation methods. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, pages 180–186.

Ushey, K., Allaire, J., and Tang, Y. (2021). reticulate: Interface to ’Python’. R package
version 1.20, https://CRAN.R-project.org/package=reticulate.

Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer,
New York, fourth edition.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer, New York.
https://ggplot2.tidyverse.org.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grole-
mund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache,
S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K.,

71

https://CRAN.R-project.org/package=lime
https://www.R-project.org/
https://CRAN.R-project.org/package=DBI
https://CRAN.R-project.org/package=DBI
https://CRAN.R-project.org/package=reticulate
https://ggplot2.tidyverse.org

Bibliography

Vaughan, D., Wilke, C., Woo, K., and Yutani, H. (2019). Welcome to the tidyverse.
Journal of Open Source Software, 4(43):1686.

Wickham, H., Girlich, M., and Ruiz, E. (2021). dbplyr: A ’dplyr’ Back End for Databases.
R package version 2.1.1, https://CRAN.R-project.org/package=dbplyr.

Wright, M. N. and Ziegler, A. (2017). ranger: A fast implementation of random forests for
high dimensional data in C++ and R. Journal of Statistical Software, 77(1):1–17.

Young, H. (1985). Monotonic solutions of cooperative games. International Journal of
Game Theory, 14:65–72.

Štrumbelj, E. and Kononenko, I. (2010). An efficient explanation of individual classifica-
tions using game theory. Journal of Machine Learning Research, 11:1–18.

Štrumbelj, E. and Kononenko, I. (2014). Explaining prediction models and individual
predictions with feature contributions. Knowledge and Information Systems, 41:647–665.

72

https://CRAN.R-project.org/package=dbplyr

A. Gower similarity

The calculation of the Gower similarity between the observations xi = (xi1, ..., xip) and
xj = (xj1, ..., xjp) is given by

Pij =

�p
k=1 sijkδijk�p

k=1 δijk
,

where sijk are the similarity scores for the comparison of observations xi and xk considering
the k-th variable, and the weights δijk ∈ {0, 1} indicate whether a comparison is possible
or not. The definition of the score sijk depend on which type of variables xi and xj are
and can be classified as follows:

• Binary variables are considered to be asymmetric, hence

sijk =

�
1 xik = xjk = 1

0 otherwise
.

• For categorical variables the scores are given by

sijk =

�
1 xik = xjk

0 otherwise
.

• Finally, numerical variables are treated as interval-scaled variables and the scores are
obtained via

sijk = 1− |xik − xjk|
Rk

,

where Rk is the range of the k-th variable.

The weights δijk ∈ {0, 1} allow us to obtain a similarity measure, even if missing variables
(NAs) are present in the data set. The weights are only set to zero in two cases: On the one
hand, if either xik or xjk is missing, and on the other hand if the variable is an asymmetric
binary where xik = xjk = 0.

73

B. Parameter names

The parameter names in Table B.1 are based on the following acronyms: manual Frequency
Restoration Reserve (mFRR), automatic Frequency Restoration Reserve (aFRR), Cross
Border Balancing (CoBA), and “D 1” stands for day ahead. Volumes are measured in
terms of MWh and the unit for prices is EUR/MWh.

Table B.1.: Names of the most important parameters.

pid parameter names

66 mFRR PRICE UP
67 mFRR PRICE DOWN
68 mFRR VOLUME UP
69 mFRR VOLUME DOWN
70 mFRR SUPPLY VOLUME UP

71 mFRR SUPPLY VOLUME DOWN
74 aFRR PRICE UP
75 aFRR PRICE DOWN
76 aFRR VOLUME UP
77 aFRR VOLUME DOWN

80 81 TRADED AMOUNT
84 SPOT PRICE D 1
86 CoBA PRICE MIN UP
87 CoBA PRICE MIN DOWN
88 CoBA PRICE MAX UP

89 CoBA PRICE MAX DOWN
90 CoBA VOLUME UP
91 CoBA VOLUME DOWN
92 SOLAR SHALL D 1
93 WIND SHALL D 1

96 SOLAR SHALL
97 WIND SHALL

124 CoBA VOLUME POOLED UP
125 CoBA VOLUME POOLED DOWN

74

	Introduction
	Methods of Explainable Artificial Intelligence
	Local surrogate models
	Introductory example to local surrogate models
	Overview and introduction
	Algorithm and specific implementations
	Interpretable feature representation and sampling
	Proximity measure
	Local surrogate model and explanations

	Examples
	Summary

	Shapley values
	Notation
	Feature attributions for linear regression
	Feature attributions for general models
	Cooperative game theory
	Connection to model agnostic feature importance
	Approximation of Shapley values

	Summary

	SHAP framework
	Additive feature attribution methods
	Kernel SHAP – model agnostic approximation
	Linear SHAP
	Tree SHAP
	Implementations, visualization and global feature importance
	Visualizations for individual observations
	Global feature importance

	Summary

	Electricity markets and data description
	Data analysis and feature engineering
	Data availability
	Final values
	Most recent values
	Restricted timespan

	Exploratory data analysis

	Model and Explainable AI
	Modeling approaches
	Emulating better data availability

	Online learning
	Explainable AI
	Analysis of all observations
	Analysis of a single prediction

	Discussion and conclusions
	Bibliography
	Gower similarity
	Parameter names

