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Abstract

In most Peer-to-Peer networks, peers are placed randomly or based on their geographical
position. This can lead to a performance bottleneck and thus, performance in such
networks can be extremely poor. This problem can be solved by using peer clustering
algorithms, aiming at grouping peers, which have certain characteristics in common,
together as neighbors.

This thesis provides a benchmarking framework, which allows the systematic benchmark-
ing, evaluation and comparison of peer clustering algorithms. The resulting application
is based on the Peer Model, a coordination-based programming model. Furthermore, the
framework provides extensive configuration possibilities and easy exchangeability of the
applied peer clustering algorithms.

As additional contributions, two innovative algorithms, Slime Mold and Slime Mold K-
Means, based on the life-cycle of the Dictyostelium discoideum slime mold are implemented.
Those two algorithms are presented and described in detail in Chapter 5. They are
competitively benchmarked, evaluated and compared to the following nine well-known
conventional and swarm-based algorithms: Artificial Bee Colony, Artificial Bee Colony
combined with K-Means, Ant-based Clustering, Ant K-Means, Fuzzy C-Means, Genetic
K-Means, Hierarchical Clustering, K-Means and Particle Swarm Optimization.
Slime Mold and Slime Mold K-Means outperform all other swarm-inspired algorithms
in terms of execution time and quality of the clustering solution. Although they are
usually midranged, they never provide unwanted massive increase or decrease in clustering
effectiveness results, unlike other peer clustering algorithms.
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Kurzfassung

In den meisten Peer-to-Peer Netzwerken werden Peers zufällig oder anhand ihrer geogra-
fischen Position verbunden. Das kann zu einem Leistungsengpass führen, worunter die
Performanz eines solchen Netzwerkes leiden kann. Dieses Problem kann durch die Nutzung
von Peer Clustering Algorithmen, welche die Peers anhand bestimmter Charakteristika
gruppieren, gelöst werden.

Diese Diplomarbeit liefert ein Framework, das systematische Benchmark-Tests von Peer
Clustering Algorithmen, deren Auswertung und Vergleich ermöglicht. Die resultierende
Applikation basiert auf dem Peer Model, einem koordinationsbasierten Programmiermo-
dell. Außerdem bietet das Framework vielfältige Konfigurationsmöglichkeiten und erlaubt
die einfache Austauschbarkeit der verwendeten Peer Clustering Algorithmen.

Als weiterer Beitrag werden zwei innovative Algorithmen, Slime Mold und Slime Mold
K-Means, die auf dem Lebenszyklus des Dictyostelium discoideum Schleimpilzes basieren,
implementiert. Die beiden Algorithmen werden in Kapitel 5 vorgestellt und detailliert
beschrieben. Diese werden kompetitiv gemessen, evaluiert und mit den neun folgenden,
bekannten konventionellen und schwarm-basierten Algorithmen verglichen: Artificial
Bee Colony, Artificial Bee Colony combined with K-Means, Ant-based Clustering, Ant
K-Means, Fuzzy C-Means, Genetic K-Means, Hierarchical Clustering, K-Means and
Particle Swarm Optimization.
Slime Mold und Slime Mold K-Means übertreffen sämtliche andere schwarm-basierten
Algorithmen in Bezug auf Ausführungszeit und Qualität der Clustering Lösung. Denn
obwohl sie sich meist im Mittelfeld befinden, zeigen sie, im Gegensatz zu anderen
Algorithmen, keine extremen, unerwünschten Schwankungen bezüglich der Clustering
Effektivität.
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CHAPTER 1
Introduction

This Chapter provides an introduction to the thesis and discusses the problem statement.
Additionally, the expected results and the methodological approach to accomplish these
results are clarified. Finally, this Chapter provides the structure of the thesis.

1.1 Problem Statement
Peer-to-peer (P2P) networks have evolved over the recent years and thus, have been an
interesting field in the research area of distributed systems [10]. In the internet there
exist many popular file-sharing applications like Gnutella [12] or Napster [12], which were
designed as P2P networks. Established patterns like load balancing [40] or load clustering
[29] can be used in such a system when suffering from high loads. Unfortunately, these
patterns are not ideal, if the positioning of the peers is the performance bottleneck. This
is not unusual, due to the fact that in most P2P networks peers are placed randomly
or based on their geographical position [35]. Consequently, the performance in such
networks can be extremely poor.

The purpose of clustering is to group a collection of observations into clusters. Thus,
somehow similar elements belong to the same cluster, whereas dissimilar elements belong
to another cluster [29].
As the name already indicates, peer clustering aims at grouping peers, which have certain
characteristics in common, together as neighbors [41].
Due to the fact that peers are leaving and entering the network dynamically, also peer
clustering has to be a dynamic procedure. With peer clustering query performance can
be significantly improved compared to a random network topology. This is the case as
requests are routed more efficiently and only to nodes which are likely to fit the request.
Besides, if a cluster containing a node, which is likely to fit the request, can be found,
query flooding through the whole network is not necessary. Consequently, this means that
workload on nodes, which are probably not fitting the request, can be reduced [41, 10].
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1. Introduction

Furthermore, on top of peer clustering load balancing and load clustering can be imple-
mented, respectively. Thus, load can be shifted within a cluster of peers, such that it is
not necessary to scan the whole network for an under-loaded node.
Additionally, workload can be sent directly to an appropriate cluster. Hence, when the
required computational power for a task is known, the workload will not be forwarded to
a peer having far more computational power than required to avoid resource wastage.
Also, it should not be forwarded to a node which has far less computational power than
required, as this either is time consuming or the task even has to be shifted to a node
having more resources available.

The mentioned benefits emphasize the importance of peer clustering in P2P networks. But
there exist many different algorithms and approaches for peer clustering (cf. section 2.3
and section 2.4).
Thus, finding the best suiting algorithm for a specific problem can be a time-consuming
process. This fact encourages the need for a general framework to compare different peer
clustering algorithms, facilitating the search for the most suitable one.
Unfortunately, no such general pattern to describe peer clustering was found. As a
consequence, for each network peer clustering has to be implemented individually and
currently, for this problem does not exist a general solution.
Thus, the main goal of the thesis is to describe and implement a generic pattern for peer
clustering.

1.2 Aim of the Work

The main expected result of this work is to develop a benchmarking framework for
unstructured P2P networks, called SIPCA, standing for “Self-Initiative Peer Clustering
Agents”, in the course of this thesis. This involves not only a theoretical description
of the framework, but especially its actual implementation. The framework shall allow
the plugging of different peer clustering algorithms, such that easy exchangeability of
the applied algorithms is possible, and enable systematic benchmarking and comparison
of these algorithms. Furthermore, the framework shall be problem independent, as it
should be used to find the best suiting algorithm for a specific problem. Moreover, the
implementation shall be based on the Peer Model [27], a coordination-based programming
model, which is presented in more detail in section 2.2.

For the benchmarking process different algorithms will be applied, i.e. for this framework
a set of clustering algorithms is going to be implemented (cf. section 2.3). This includes
conventional algorithms, like K-Means [21], as well as intelligent algorithms, such as Ant
K-Means [30]. The evaluation part at the end of this work provides a comparison of these
clustering algorithms and is expected to show which algorithms perform particularly well
in certain scenarios.

2



1.3. Methodological Approach

1.3 Methodological Approach
To achieve the expected results the following methodologies are applied:

1. Literature Review: The main goal of this step is to gather information in respect
to the technical background of the topic, related work and state-of-the art.

2. Implementation: In this step the modeling and implementation of the frame-
work takes place. For this purpose, firstly, the environment of the framework is
implemented, such that the clustering algorithms can be implemented in a Plug &
Play manner. Then, the clustering algorithms for benchmarking are implemented.

3. Evaluation: The evaluation of the clustering algorithms includes the benchmarking
of different algorithms. Thus, the algorithms, including fine tuning of parame-
ters, are compared in terms of performance, i.e. absolute execution time, and
effectiveness.

1.4 Structure of the Thesis
This thesis is structured as follows:
In Chapter 2 the technical background of the thesis and the related work are discussed.
This includes a short overview over the implemented algorithms.
Chapter 3 covers the general structure of the benchmarking framework, including its
architecture, its pattern composition and its components, whereas Chapter 4 deals with
the actual implementation, the framework configuration and its execution.
In Chapter 5 the implemented swarm-inspired peer clustering algorithms are discussed
thoroughly. In Chapter 6 the benchmark methodology is defined and the benchmark
results are evaluated. Finally, Chapter 7 discusses possible future improvements to the
proposed framework.
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CHAPTER 2
Technical Background & Related

Work

This Chapter contains the the description of the technical background of the thesis and
its related work. It is divided into four parts.
First of all, general information about P2P networks is provided. Next, the Peer Model is
described. Afterwards, the implemented peer clustering algorithms are shortly discussed.
Finally, related state-of-the-art approaches are presented.

2.1 P2P Networks
Overall, it can be said there exist various different definitions of peer-to-peer, as it is just
pointed out by Androutsellis-Theotokis and Spinellis [1]. Therefore, they propose their
own definition as follows:

“Peer-to-peer systems are distributed systems consisting of interconnected
nodes able to self-organize into network topologies with the purpose of sharing
resources such as content, CPU cycles, storage and bandwidth, capable of
adapting to failures and accommodating transient populations of nodes while
maintaining acceptable connectivity and performance, without requiring the
intermediation or support of a global centralized server or authority.”
[1, p. 337]

This definition leads to the following characteristics which make a distributed system a
peer-to-peer system. One of the most frequently mentioned characteristics is the ability
to share computer resources directly while avoiding the usage of a central server for
the mediation between individual nodes. Furthermore, P2P systems have the capability
of self-organization and fault-tolerance. This also implies the demand for an adaptive
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2. Technical Background & Related Work

network topology due to churn, the fact that nodes may enter or leave the network
anytime [1, 6].
Additionally, Buford and Yu [6] state the characteristic of symmetry, meaning all partic-
ipants in a P2P network take equivalent roles such that every node acts as client and
server at the same time.
However, both, Androutsellis-Theotokis and Spinellis [1] and Buford and Yu [6], point
out, that not every P2P system includes every mentioned characteristic, especially the
symmetry of peers as many P2P systems are using super peers or other special peer roles.

P2P systems play an important role in research in the field of distributed system and
have become a notable technology for collecting, publishing, distributing and sharing
data, especially because of their high scalability, their low entry barrier and the fact that
they are applicable for different application types [6].

2.1.1 P2P Overlay Networks

The network of a P2P system is an overlay network because a virtualized network is
formed over the physical network [6].
There exist different approaches to classify a P2P overlay network. In [1] they are
distinguished by centralization and structure, respectively. They declare the following
three categories to describe the degree of centralization:
In a Purely Decentralized Architecture full symmetry of roles is given, meaning that every
node acts as both, server and client, and there exists no central coordination.
The basis of Partially Centralized Architectures is the same as of purely decentralized
architectures. But some of the nodes fulfill a more important role, supporting coordination
and collaboration within the network. As these supernodes are assigned and replaced
dynamically, they are not seen as single points of failure.
In a Hybrid Decentralized Architecture the interaction between peers is facilitated by
a central server by maintaining metadata and performing lookups. Consequently, this
central server is a single point of failure. This also implies, that these systems are not as
scalable as the other architectures mentioned above.

Classification by the means of network structure is distinguished by Androutsellis-
Theotokis and Spinellis [1] the following way:
In an Unstructured network a peer, which joins the network, has no knowledge of the
network’s topology [33]. The placement of peers, and thus also content, is often random.
This means, typically, content has to be located. Therefore, many searching algorithms
exist, e.g. flooding the network with queries in a breadth-first or depth-first manner.
Popular examples for unstructured P2P networks are Napster or Gnutella.
In contrast, in a Structured network it is specified where a file shall be located. For this
purpose a distributed routing table is provided, to map the content to its location. Thus,
queries can be routed more efficiently.
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2.2 Peer Model

Kühn et al. presented the Peer Model, a coordination-based programming model, in
[27] and [28]. It is a space-based middleware meant to close the gap between design and
implementation. Due to the asynchronous, blackboard-based communication, enabled
by a virtually shared memory, a high level of decoupling is provided by the Peer Model.
This ensures that the autonomy of peers is maintained [27, 28].

The main component of the Peer Model is a peer, existing in a Peer Space.
Every peer has a unique name (URI) and two containers: an input space peer-in-container
(PIC) and an output space peer-out-container (POC). A peer receives request entries via
its PIC, takes them out to process them, and then puts the replies into its POC.
Consequently, inter-peer collaboration takes place between a peer’s POC and the PIC of
a foreign peer [27].

Peers are nested entities, meaning a peer, a so called sub-peer, can be created within the
scope of another peer. Furthermore, there exist space peers, specialized peers having the
functionality of a space container, such that its PIC and POC are melted and all entries
are stored in one place. It can be used to store data for the purpose of sharing it between
concurrent processes [27].

Wirings are contained in a peer and serve for the transportation of entries between PIC
and POC containers. They are the system’s only active part. A wiring consists of the
three following parts: guards, service calls and actions [27].
Guards represent conditions and use space operations to receive entries from a container.
A service is called if all guards are fulfilled. Therefore, the received entries are used as
input parameters and the service possibly produces result entries. In the end, actions are
executed. They deliver the resulting entries to a container using a write operation [28].

According to [44], for the movement of entries the following space operations, which are
used by the guards, are available: read, take, delete, none and test.
Using the read and take operation, respectively, one or more entries are received. Whilst
the take operation removes the entry from the PIC container of a peer, the read operation
does not. This means the take operation is a consuming get operation, whereas the
read operation is a non-consuming get operation. Also the usage of the delete operation
removes an entry from the PIC, but in this case it is not passed to the service.
The none operation ensures the non-existence of an entry of a specific type, whereas with
the test operation the availability of an entry with a specific type can be verified. Both
of these operations do not provide an entry to a service.

Furthermore, the subsequent entry properties are provided:
If an entry has a time-to-start (TTS) property, a guard must not take it until the TTS
is reached.
An entry with a time-to-live (TTL) property has a defined life-time. When the TTL
expires, the entry is wrapped in a timeout exception [28].

7



2. Technical Background & Related Work

2.2.1 Peer Model Notation
For the purpose of illustration an example instance of a peer is shown in figure 2.1. The
graphical notation, which is used in the thesis, to depict peers and other components of
the Peer Model is based on [9].

Figure 2.1: Example for a peer, including a sub-peer, a space peer and a wiring.

A peer, with its PIC and POC, is represented by rectangles. Sub-peers are contained
within peers and have the same notation. Pink colored squares illustrate wirings, whereas
a service called by a wiring is visualized by a blue shaded square. The incoming arrows of
a wiring represent its guards and the outgoing ones embody its actions. A guard specific
query is depicted by a boolean expression in square brackets.
Entries are embodied by circles, where in the upper half of the circle the entry type is
stated. In case of a guard, the lower half of the circle declare the link count. In case of
an action, it specifies how many entries of this type are produced by the wiring. The
coloring of the entries represent the link operation: white is the read operation, green is
the take operation, red is the none operation and yellow is the test operation.

2.3 Clustering Algorithms
There exist many different algorithms coping with the problem of clustering. This
includes conventional, as well as swarm-inspired algorithms. Therefore, the following
eleven clustering algorithms are used for the benchmarks and discussed in the following
section.

2.3.1 Conventional Algorithms
In this section three of the most widely used and well known conventional clustering
algorithms are presented: Hierarchical Clustering, K-Means and Fuzzy C-Means.
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2.3. Clustering Algorithms

2.3.1.1 Hierarchical Clustering

Hierarchical Clustering builds a hierarchy of clusters, which can be done basically in two
ways: Agglomerative [16] and Divisive [17]. The first approach creates a cluster for
each element to be clustered. Then, these clusters are merged together iteratively until the
expected number of clusters is reached. This procedure is chosen for the implementation
and therefore, described in more detail below. The second one starts with having all
elements in one cluster, which is iteratively split until the expected number of clusters is
reached.

The Agglomerative Hierarchical Clustering algorithm proceeds the following way:

1. Start with m clusters, each containing one element, where m is the number of
elements to be clustered

2. Calculate the distance of all clusters

3. Merge the two closest clusters

4. Recalculate the cluster mean

5. Repeat 2. - 4. until the expected number of clusters is reached

2.3.1.2 K-Means

According to Jain et. al. [21] and Tan et. al. [43], the K-Means algorithm is one of the
simplest and commonly used clustering algorithms. Firstly, k centroids are created, where
k is the expected number of clusters. Then, each element to be clustered is associated
with the cluster containing the nearest centroid. From this association, in the next step,
k new centroids are calculated. The step of reassigning the elements and recalculating
the centroids is repeated, until the centroids do not move anymore.

In detail, the K-Means algorithm proceeds as follows:

1. Create k clusters, populated with one random element as representative (i.e. cen-
troid)

2. Compute the distance between each element and each of the centroids

3. Assign each element to the cluster with the nearest centroid

4. Recalculate the centroid of each cluster (i.e. cluster mean)

5. Repeat 2. - 4. until the centroids do not change anymore

9
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2.3.1.3 Fuzzy C-Means

The Fuzzy C-Means [13, 3, 4] algorithm is similar to the K-Means algorithm. The main
difference lies in the fact that an element is allowed to belong to more than one cluster.
Therefore, the degree of membership has to be calculated as a measure for choosing the
best suiting clusters.

The Fuzzy C-Means algorithm proceeds the following way:

1. Create c clusters, populated with one random element as representative (i.e. cen-
troid)

2. Compute the distance dij between each element and each of the centroids

3. Calculate the degree of membership uij of an element i to a certain cluster j, using
the fuzzifier m

uij = 1
c
r=1( dij

dir
)

2
m−1

; 1 ≤ i ≤ N ; 1 ≤ j ≤ c; m ≥ 1 (2.1)

4. Assign an element to all clusters, where the degree of membership exceeds a certain
value

5. Recalculate the centroid of each cluster (i.e. cluster mean)

6. Repeat 2. - 5. until the centroids do not change anymore

2.3.2 Swarm-inspired Algorithms

Swarm-based algorithms are inspired by nature and aim at imitating the behavior of
life forms organized in swarms, such as ant or bee colonies, and apply it to the solution
of problems. Due to the fact that such colonies are also perceived to be decentralized
and self-organized systems, similar to peer-to-peer systems, they are likely to provide
satisfying results [19].

2.3.2.1 Artificial Bee Colony (ABC)

The Artificial Bee Colony (ABC) algorithm [22] is based on the foraging behavior of
honey bees and each food source embodies a possible solution. Each food source has a
certain amount of nectar representing the quality or fitness, respectively, of a food source.
The bees check the quality of the food sources in order to find the best one and thus,
also the best solution.

10



2.3. Clustering Algorithms

2.3.2.2 Combination of Artificial Bee Colony Algorithm and K-Means
(ABCK)

The ABCK algorithm [2] is a combination of the Artificial Bee Algorithm (cf. 2.3.2.1) and
classical K-Means (cf. 2.3.1.2). Thus, the procedure is basically the same as the procedure
of ABC, only differing in the fact that each solution of ABCK is locally optimized by the
execution of K-Means.

2.3.2.3 Ant-Based Clustering

Ant-Based Clustering [34] is inspired by the behavior of ants. The ants act on a two-
dimensional grid which is populated randomly with the items to be clustered. An ant is
empowered to execute one of two actions: An unloaded ant can pick up an element lying
on a field currently visited by the ant. An ant carrying an element can drop it on a free
cell. These actions are decisions influenced by the ants perception of the environment.

2.3.2.4 Ant K-Means

The Ant K-Means algorithm, proposed by Kuo et. al. [30], is based on combining
conventional K-Means clustering with ant colony optimization. Ant colonies leave a trail
of pheromones, which is used by real ants to communicate with each other. Pheromones
are left by an ant following a certain path. The more ants take this trail, the more
pheromones lay on the trail. Consequently, this trail becomes more attractive for other
ants and the shortest route can be obtained.
Thus, the conventional K-Means is modified in such a way, that the elements to be
clustered are located in a cluster using a probability modified by the emitted pheromones.

2.3.2.5 Genetic K-Means

The Genetic K-Means algorithm [26] is a combination of classical K-Means and an
algorithm based on the theory of evolution. Therefore, for the algorithm an initial
population of clusters is used which gets evolved over several generations. While in
evolutionary algorithms two genetic operations, namely mutation and crossover, are used,
in Genetic K-Means the crossover operator is replaced by the K-Means operator, i.e. a
one-step K-Means algorithm.
Until the maximum number of generations is reached, the following steps are performed
over the population:

1. Selection

2. Mutation

3. K-Means Operator
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2.3.2.6 Particle Swarm Optimization (PSO)

In Particle Swarm Optimization [37] an individual grouped into a swarm is referred to as
a particle. A swarm can be seen as a flock of birds flying towards an optimum. Therefore,
a particle searches for the best solution, using the best position encountered by itself and
its swarm. Thus, a wide area can be searched while heading towards an optimum.

2.4 Related Work
The target area of the state-of-the-art are general frameworks for peer clustering in P2P
networks. In the following section different approaches for clustering peers are discussed.

In [10] a Semantic Overlay Network (SON) is created. For this purpose peers with
similar contents, like music genre, are connected to each other and consequently, building
a semantic cluster. Therefore, the peers, the queries and the documents themselves,
respectively, have to be classified in order to determine to which cluster(s) they belong.
Thus, queries can directly be routed to the respective SON, actually improving the search
performance.

Khambatti, Ryu and Dasgupta [25] propose a model for forming groups of peers implicitly,
called communities, based on common interests. Those communities are formed as peers
claim their interests analogous to social networks and are possibly overlapping. A peer’s
interests can be provided explicitly by the peer or implicitly identified from past queries.
Furthermore they present a search technique which is based on the ability of the peers to
form communities.
In [35] a similar model like in [25] is introduced, but here for the interests a predefined
ontology is used instead of letting the peers claim their interests freely. This makes it
easier for a peer to find other peers with similar interests.
In [32] a peer’s interests are found out by extracting keywords from text documents
in their storage. The keyword extraction affects the global keyword vocabulary and
is treated as a decision problem. Although this is an interesting approach, it is only
applicable for text documents.

In [41] two algorithms are proposed. They aim at creating an overlay network by
clustering similar peers and are based on Schelling’s model. One unique property is used
to cluster peers having this property in common and thus, do not overlap. Schelling’s
model explains the existence of segregated neighborhoods in America. It consists of a
2-dimensional grid where two thirds of the cells are randomly populated with blue and
red turtles. The turtles wish to have at least a certain percentage of neighbors having
the same color as themselves. If this is not the case, the turtle moves to an adjacent cell.
This continues until all turtles are satisfied with their neighbors.

To sum up, there exist many different approaches for peer clustering in P2P networks.
Despite extensive literature review, no general framework using or even benchmarking
different peer clustering algorithms could have been found.
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2.5 Summary
In this Chapter the technical background and the related work of this thesis are discussed.
The technical background is focused on P2P networks. Then, the Peer Model, a
coordination-based programming model is introduced. It closes the gap between design
and implementation and is, due to its high-level decoupling, perfectly suitable for the
implementation of a generic benchmarking framework for peer clustering algorithms.
Afterwards, the eleven implemented peer clustering algorithms are shortly presented.
This includes conventional as well as swarm-inspired algorithms.

As no general framework, which uses or even benchmarks different peer clustering
algorithms, was found, the related work is focused primarily on different approaches for
peer clustering.
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CHAPTER 3
Framework Description

In this Chapter the general structure of the framework is discussed. This includes the
pattern used for a single peer, the pattern composition and the framework composition.
Hence, it explains how the different components of the SIPCA framework cooperate. The
chapter is structured as follows.
First of all, the pattern for a single node in the SIPCA framework is described. Afterwards,
the pattern composition, i.e. the inter-node communication, is discussed. Then, the
description of the framework composition follows. This includes the synchronization
pattern, clustering trigger policies and the statistics pattern. Finally, the framework’s
core and additional components, including their wirings, are introduced.

3.1 Local Peer Pattern
A node in a P2P network has no knowledge about the actual network topology, but
only about its current neighbors. For this purpose it has to store information about
its current neighbors. Furthermore, a node needs to provide information about itself,
such as technical characteristics or interests. All this information is required for the peer
clustering algorithms.

Figure 3.1 shows how the described functionality is mapped to the Peer Model domain:
A node in a P2P network is represented by a Peer in the Peer Model. In the SIPCA
framework there exist four different types of peers:

• Client Peer, a peer making requests to the network

• Coordination Peer, a peer coordinating requests and clustering

• Storage Peer, a peer storing data and processing data queries

15



3. Framework Description

Figure 3.1: Local Peer Pattern.

• Worker Peer, a peer accepting and performing job requests like computations,
elaborated in more detail in section 3.1.1

So each of the peers has a space peer as sub-peer to store before mentioned information.
The Storage Peer also keeps its stored data there. The arrows indicate intra-node
collaboration. How the peers communicate with each other, i.e. the pattern composition,
is described in detail in section 3.2.

3.1.1 Worker Peer Pattern

While the inner structure of all peers in the framework is rather similar, the Worker Peer
slightly differs in its components.

Figure 3.2: Local Worker Peer Pattern.
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As shown in figure 3.1, in contrast to the other peers of the framework, the Worker
Peer has an additional sub-peer, called Job Handler Peer. This sub-peer is responsible
for actually executing an accepted job, while enabling the Worker Peer itself to handle
further incoming job requests.

3.2 Pattern Composition
Actually, the inter-node communication is rather simple.

Figure 3.3: Basic Pattern Composition.

Figure 3.3 illustrates two single peers communicating with each other. As mentioned in
section 2.2, this happens by moving an entry from one peer’s POC to the PIC of another
peer.

The composition of the described local peer patterns (cf. section 3.1) is used to establish
the peer clustering pattern for the SIPCA framework. As there exist different types of
peers in the framework, the actual pattern composition is more complex than the basic
pattern composition described in figure 3.3. Additionally, at this point it is important to
stress that although the framework strictly distinguishes between Storage and Worker
Peers, they are both referred to as Node Peers as their external interaction is exactly the
same.
While the number of Client Peers and Node Peers is not limited, there exists exactly one
Coordination Peer per SIPCA Peer Space instance. A benchmark is run locally, when all
peers of a benchmark exists in the same Peer Space. In this case, there exists only one
Coordination Peer for the whole benchmark.

In figure 3.4 can be seen that, although the concept of communication between peers
basically stays the same, it is more sophisticated in the SIPCA framework, as there are
different types of peers communicating with each other for several reasons.
In a locally run benchmark, the Coordination Peer has two main tasks, a) forwarding
requests, and b) executing the peer clustering algorithm and distributing the results.
Thus, a Client Peer sends a request always to the Coordination Peer, which forwards it
to a Node Peer belonging to the corresponding cluster, as depicted in figure 3.5. The
Node Peer then decides upon certain criteria if a request can be fulfilled or not. If a Node
Peer is able to fulfill the request, the request is accepted and processed. Afterwards, the
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Figure 3.4: Local pattern composition in the framework.

result is sent to the Client Peer, initially sending the request. If a request cannot be
fulfilled by a Node Peer, it is forwarded to one or multiple neighboring Node Peers. Thus,
a job request is forwarded to only one neighbor, whereas a query request is forwarded to
multiple ones. The decision criteria whether a request is fulfillable or not also depends
on the Node Peer’s type; a Storage Peer just looks up if the required file to satisfy the
query is present in its space peer or not, whereas a Worker Peer needs to check if its
currently available computational power suffices for the execution of the demanded job.

If a benchmark is run distributed, meaning that multiple SIPCA Peer Space instances
contain peers, the number of Coordination Peers in the benchmark equals the number
of participating SIPCA Peer Spaces. The role of the Coordination Peers in such a
distributed setting, especially the task of clustering but also other responsibilities, are
addressed in section 3.3.
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Figure 3.5: Local inter-node collaboration with UML-like sequence diagram.

3.3 Framework Composition
On the top-level the framework consists of two types of Peer Spaces; the SIPCA Peer
Space, as discussed in section 3.2, and the Statistics Peer Space, which in fact contains
only one Statistics Peer. The collaboration of the framework’s components is elaborated
in this section.

3.3.1 Synchronization Pattern

In the framework there may exist multiple instances of the SIPCA Peer Space, each
possibly running on an own physical machine. Therefore, those Peer Spaces have to be
synchronized. This is the responsibility of the Coordination Peer of each SIPCA Peer
Space. How they collaborate can be seen in figure 3.6.

Figure 3.6: Distributed composition of two SIPCA Peer Spaces.
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The responsibilities of the Coordination Peer consist of two key objectives: finding the
longest-living Coordination Peer in the framework and clustering the Node Peers. The
actual clustering is performed by the longest-living Coordination Peer, while the other
Coordination Peers provide the longest-living Coordination Peer with information about
the Node Peers in their home Peer Space.

Figure 3.7: Distributed inter-node collaboration on synchronization and clustering.

Figure 3.7 shows the collaboration of peers to keep all instances of SIPCA Peer Spaces
synchronized. Therefore, it is essential to know for each Coordination Peer which one of
them is the longest-living one. Thus, on start-up a Coordination Peer sends its creation
time to all existing Coordination Peers in the framework. They compare it with their
own creation time to decide, which of them is older and send their own creation time
back to the newly created one. By this means, also the newly created Coordination Peer
is able to determine which Coordination Peer is the longest-living one.
Also, when the longest-living Coordination Peer retires, the other Coordination Peers
send each other their creation time in order to find the next longest-living. This means,
if the longest-living Coordination Peer dies for some reason, the second longest-living one
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takes over and so on. This makes the system completely loosely coupled and guarantees
that there is no bottleneck regarding throughput.
A Node Peer sends its stored information about itself to the Coordination Peer in its
home Peer Space, either on start-up or on changes of the information (e.g. currently
available computational power changes on accepting or finishing a job). If the receiving
Coordination Peer is the longest-living, it starts clustering. If it is not the longest-living
one, the information is forwarded to the longest-living Coordination Peer which then
executes the peer clustering algorithm. When clustering is finished, the results are sent
to the respective Node Peer.

3.3.1.1 Clustering Trigger Policies

To sum up, there are different ways to trigger the execution of the peer clustering
algorithm:

• When the longest-living Coordination Peer receives Node Peer information of a
Node Peer of its home SIPCA Peer Space.

• When the longest-living Coordination Peer receives Node Peer information of a
Node Peer of a foreign SIPCA Peer Space, forwarded by another Coordination
Peer.

• When the longest-living Coordination Peer is informed about a retired SIPCA Peer
Space, as the Node Peers of that Space cannot be considered as neighbored nodes
any more.

A Node Peer sends its information to its Coordination Peer in following cases:

• on start-up

• on updates of the information, like changing the currently available computational
power

Furthermore, the framework is adaptable (cf. section 4.6) regarding the number of Worker
Peer information, which shall be available to trigger the execution of the clustering
algorithm. The default value for this is 1.

3.3.2 Statistics Pattern
The Statistics Peer Space exists exactly once in the framework and it contains exactly
one Statistics Peer. It is essential to carry out the benchmark, as it is required to keep
track of the statistical relevant data. Figure 3.8 illustrates the composition of a SIPCA
Peer Space and the Statistics Peer Space.

The Statistics Peer receives data from the Client Peer as well as from the Coordination
Peer. The data received from the Client Peer contains requests and results, whereas the
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Figure 3.8: Distributed composition of a Statistics Peer Space and a SIPCA Peer Space.

information received from the Coordination Peer contains clustering specific data. The
requests and results contain a start and end time, respectively. Thus, the execution time
of a request can be calculated.
Consequently, the Statistics Peer uses received data to calculate required information and
subsequently documents it. When the Statistics Peer does not receive any data for more
than 120 seconds, it is shut down, with the consequence that all SIPCA Peer Spaces also
stop. Hence, a benchmark stops when all requests are handled, for which it was possible
to be processed. For example, when a file, which is just not available in the network, is
queried, processing is not possible.

In figure 3.9 the communication between the peers of a SIPCA Peer Space and the peer
contained in the Statistics Peer Space is exemplified. When a Client Peer sends a request
to the Coordination Peer, as stated in section 3.2, it also sends a copy to the Statistics
Peers. Identically, when the Client Peer receives a result, it transmits a copy to the
Statistics Peer.
Furthermore, the longest-living Coordination Peer sends above mentioned information
about the peer clustering procedure to the Statistics Peer after the algorithm was executed.
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Figure 3.9: Distributed inter-node collaboration on statistics.

3.4 Core Framework Components
The following section describes the components of the proposed framework in detail. The
implementation specifics of the framework, including the description of the services and
interfaces, are discussed in Chapter 4.
For reasons of clear arrangement the space peer might be placed more than once within
a peer in a figure to avoid overlapping arrows.

3.4.1 Entries
The SIPCA framework uses the following types of entries. In brackets, their abbreviations
are declared, which are used in descriptions as well as in figures.

• block clustering entry (blck): As long as this entry is placed in the space
container of a Coordination Peer it is not allowed to execute the clustering algorithm.
It is used to prevent clustering before the longest-living Coordination Peer is
determined. Thus, every wiring triggering the peer clustering execution is blocked
until the Coordination Peers exchanged their creation times. This entry is controlled
by a TTL.

• foreign creation entry (fCrt): Used by a Coordination Peer to send its creation
time to another Coordination Peer.

• foreign storages entry (fStrgs): Used by a Coordination Peer to send its stored
Storage Peer information to the longest-living Coordination. This information is
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then merged with the present information in order to start clustering the Storage
Peers.

• foreign workers entry (fWrks): Used by a Coordination Peer to send its stored
Worker Peer information to the longest-living Coordination. This information is
then merged with the present information in order to start clustering the Worker
Peers.

• instance retired entry (ret): Used to inform the Coordination Peers about the
fact that a Peer Space retired.

• job entry (job): After accepting a job request, the Worker Peers sends this type
of entry to its Job Handler Peer.

• job request entry (jReq): Embodies the request for a job execution, initially
sent from a Client Peer to the Coordination Peer, which then forwards it to a
Worker Peer in the according cluster. Then, it is forwarded from one Worker Peer
to another until it is accepted. This entry contains, inter alia, the originator, an
ID, the minimum required computational power and the job type.

• job result entry (jRes): The corresponding answer to a job request. After job
execution, the Job Handler Peer sends this entry to the originating Client Peer.

• job result for update entry (jru): After finishing a job, the Job Handler Peer
sends this entry to the its Worker Peer, in order to trigger updating the released
resources, i.e. computational power.

• oldest coordination peer entry (old): This type of entry is stored by each
Coordination Peer. It contains the space and creation time of the currently longest-
living Coordination Peer and whether the holding peer is it or not.

• parameters entry (par): On start-up, the Coordination Peer sends this entry
to the Statistics Peer. It contains the configuration parameters (cf. section 4.6)
of a SIPCA Peer Space, such that they can be documented for clarification of a
benchmark.

• peer info entry (pInfo): Each peer, excepting the Client Peer, holds such an
entry. It serves to store personal information, such as peer name, space name, topic
or job interests, etc. The exact content depends on the type of peer storing the
information.

• query request entry (qReq): Wraps the request for a file query, initially sent
from a Client Peer to the Coordination Peer, which then forwards it to a Storage
Peer in the according cluster. Then, it is forwarded from one Storage Peer to its
neighboring Storage Peers until the required file is found. This entry contains, inter
alia, the originator, an ID, the topic and the file name.

24



3.4. Core Framework Components

• query result entry (qRes): The corresponding answer to a query request. After
the required file is found, the Storage Peer sends this entry, embodying the requested
file, to the originating Client Peer.

• resource entry (rsrc): Wraps a file, which can be queried by Client Peers and is
stored by Storage Peers.

• storage clustering result entry (scRes): Sent by the longest-living Coordina-
tion Peer to all other Coordination Peers, Storage Peers and the Statistics Peer to
communicate the result of Storage Peer clustering.

• storage info entry (sInfo): Used by Storage Peers to send their personal infor-
mation to the Coordination Peer of their space.

• storages entry (strgs): Used by Coordination Peers to store Storage Peer infor-
mation.

• supervision entry (sv): Used by the Statistics Peer to monitor when the last
statistical relevant data was received. It is controlled by a TTS.

• worker clustering result entry (wcRes): Sent by the longest-living Coordina-
tion Peer to all other Coordination Peers, Worker Peers and the Statistics Peer to
communicate the result of Worker Peer clustering.

• worker info entry (wInfo): Used by Worker Peers to send their personal infor-
mation to the Coordination Peer of their space.

• workers entry (wrks): Used by Coordination Peers to store Worker Peer infor-
mation.

3.4.2 Coordination Peer

Besides forwarding requests from Client Peers to according Node Peers, the Coordination
Peer performs the key functionality of the framework, the execution of the actual peer
clustering algorithm. Thus, it has by far the most important role and many sophisticated
tasks. To comply with its responsibilities, the Coordination Peer contains eleven wirings,
which are shown in figure 3.10, figure 3.11 and figure 3.12 and described in detail in the
following.

3.4.2.1 W1: Forward Job Wiring

This wiring simply forwards a job request, received from a Client Peer, to a Worker Peer
contained in a cluster, which complies with the request.
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Figure 3.10: Wirings of the Coordination Peer, part 1.

Guards:

1. jReq (take): The job request entries to be forwarded to suitable Worker Peers.

2. wrks (read): The workers entry contains the list of available Worker Peers.

3. pInfo (read): The peer info entry provides required information.

Actions:

1. jReq: The dispatched job request entry.

3.4.2.2 W2: Forward Query Wiring

This wiring simply forwards a query request, received from a Client Peer, to a Storage
Peer contained in a cluster, which complies with the request.

Guards:

1. qReq (take): The query request entries to be forwarded to suitable Storage Peers.

2. strgs (read): The storages entry contains the list of available Storage Peers.

3. pInfo (read): The peer info entry provides required information.
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Actions:

1. qReq: The dispatched query request entry.

Figure 3.11: Wirings of the Coordination Peer, part 2.

3.4.2.3 W3: Handle Storage Info Wiring

This wiring receives information from a Storage Peer and uses it to update the storages
entry. If the Coordination Peer receiving the information is the longest-living, this
triggers the execution of the peer clustering algorithm. Otherwise, the storages entry is
forwarded to the longest-living Coordination Peer.

Guards:

1. sInfo (take): Storage info entries used to update the workers entry.
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2. strgs (take): Storages entry to be updated.

3. old (read): The oldest coordination peer entry provides information about the
longest-living Coordination Peer. It is used to determine, whether the current
Coordination Peer is the longest-living and shall perform clustering or forward the
information to the longest-living Coordination Peer.

4. pInfo (read): The peer info entry provides required information.

5. blck (none): Coordination Peers have to exchange their creation time first, before
they are allowed to trigger clustering.

Actions:

1. strgs: The updated storages entry.

2. fStrgs: The foreign storages entry forwarded to the longest-living Coordination
Peer.

3. scRes: The storage clustering result dispatched to the Storage Peers, other Coor-
dination Peers and the Statistics Peer.

3.4.2.4 W4: Handle Worker Info Wiring

This wiring receives information from a Worker Peer and uses it to update the workers
entry. The used information is a configurable amount of x >= 1 worker info entries. If
the Coordination Peer receiving the information is the longest-living, this triggers the
execution of the peer clustering algorithm. Otherwise, the workers entry is dispatched to
the longest-living Coordination Peer.

Guards:

1. wInfo (take): Worker info entries used to update the workers entry.

2. wrks (take): Workers entry to be updated.

3. old (read): The oldest coordination peer entry provides information about the
longest-living Coordination Peer. It is used to determine, whether the current
Coordination Peer is the longest-living and shall perform clustering or forward the
information to the longest-living Coordination Peer.

4. pInfo (read): The peer info entry provides required information.

5. blck (none): Coordination Peers have to exchange their creation time first, before
they are allowed to trigger clustering.
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Actions:

1. wrks: The updated workers entry.

2. fWrks: The foreign workers entry forwarded to the longest-living Coordination
Peer.

3. wcRes: The worker clustering result dispatched to the Worker Peers, other Coor-
dination Peers and the Statistics Peer.

3.4.2.5 W5: Merge Foreign Storages Wiring

This wiring receives a foreign storages entry from another Coordination Peer, which
is used to merge it with its storages entry and thus, update it. This also triggers the
execution of the Storage Peer clustering.

Guards:

1. fStrgs (take): Received foreign storages entry to merge with workers entry.

2. strgs (take): The storages entry to be updated by merge with the foreign storages
entry.

3. old (read): The oldest coordination peer entry is used to ensure that the receiving
Coordination Peer is the longest-living.

4. pInfo (read): The peer info entry provides required information.

5. blck (none): Coordination Peers have to exchange their creation time first, before
they are allowed to trigger clustering.

Actions:

1. strgs: Updated storages entry.

2. scRes: The storage clustering result dispatched to the Storage Peers, other Coor-
dination Peers and the Statistics Peer.

3.4.2.6 W6: Merge Foreign Workers Wiring

This wiring receives a foreign workers entry from another Coordination Peer, which
is used to merge it with its workers entry and thus, update it. This also triggers the
execution of the Worker Peer clustering.
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Figure 3.12: Wirings of the Coordination Peer, part 3.
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Guards:

1. fWrks (take): Received foreign workers entry to merge with workers entry.

2. wrks (take): The workers entry to be updated by merge with the foreign workers
entry.

3. old (read): The oldest coordination peer entry is used to ensure that the receiving
Coordination Peer is the longest-living.

4. pInfo (read): The peer info entry provides required information.

5. blck (none): Coordination Peers have to exchange their creation time first, before
they are allowed to trigger clustering.

Actions:

1. wrks: Updated workers entry.

2. wcRes: The worker clustering result dispatched to the Worker Peers, other Coor-
dination Peers and the Statistics Peer.

3.4.2.7 W7: Handle Storage Clustering Result Wiring

This wiring deals with the Storage Peer clustering result, received from the longest-living
Coordination Peer, and uses it to update the stored storages entry.

Guards:

1. scRes (take): The received storage clustering result used to update the storages
entry.

2. strgs (take): Storages entry to be updated.

Actions:

1. strgs: The updated storages entry.

3.4.2.8 W8: Handle Worker Clustering Result Wiring

This wiring deals with the Worker Peer clustering result, received from the longest-living
Coordination Peer, and uses it to update the stored workers entry.
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Guards:

1. wcRes (take): The received worker clustering result used to update the workers
entry.

2. wrks (take): The workers entry to be updated.

Actions:

1. wrks: Updated workers entry.

3.4.2.9 W9: Send Creation Time Wiring

This wiring serves to trigger the sending of the own creation time to the Coordination
Peers of other Peer Spaces for the first time after start-up.

Guards:

1. pInfo (take): Peer info entry used to trigger dispatch.

Actions:

1. pInfo: The peer info entry sent to the space container without TTS.

2. fCrt: The foreign creation entry dispatched to the other Coordination Peers.

3.4.2.10 W10: Instance Retired Wiring

This wiring is activated as soon as a Peer Space retires. If the longest-living Coordination
Peer was part of the retired space, the own creation time is sent to all other Coordination
Peers in order to find the next longest-living. Then, if the active Coordination Peer
is currently longest-living Coordination Peer, all Node Peers of the retired space are
removed from the storages and workers list and the peer clustering algorithm is started.

Guards:

1. pInfo (take): The peer info entry provides required information.

2. ret (take): The instance retired entry provides information about the retired Peer
Space.

3. old (take): The oldest coordination peer entry provides information about the
longest-living Coordination Peer.
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Figure 3.13: Wirings of the Coordination Peer, part 4.
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4. wrks (take): The workers entry to be updated.

5. strgs (take): The storages entry to be updated.

6. blck (read): The Coordination Peers have to exchange their creation time first,
before they are allowed to trigger clustering.

Actions:

1. pInfo: The peer info entry is updated with SIPCA Peer Spaces, which are known
at the moment, to guarantee that the creation time is sent only once to a Peer
Space.

2. fCrt: Foreign creation entry dispatched to the other Coordination Peers.

3. old: The updated oldest coordination peer entry.

4. wrks: Updated workers entry.

5. wcRes: The worker clustering result dispatched to the Worker Peers, other Coor-
dination Peers and the Statistics Peer.

6. strgs: Updated storages entry.

7. scRes: The storage clustering result dispatched to the Storage Peers, other Coor-
dination Peers and the Statistics Peer.

8. blck: If the longest-living Coordination Peer retired, a new block clustering entry
is created.

9. fStrgs: The updated storages entry is dispatched to the Coordination Peer’s own
PIC as a foreign storages entry in order to reschedule clustering as soon as the
block clustering entry disappears.

10. fWrks: The updated storages entry is dispatched to the Coordination Peer’s own
PIC as a foreign workers entry in order to reschedule clustering as soon as the block
clustering entry disappears.

3.4.2.11 W11: Determine Oldest Coordination Peer Wiring

This wiring deals with foreign creation entries, received from other Coordination Peers,
in order to determine the new longest-living Coordination Peer. Therefore, creation
times are compared. If a new longest-living Coordination Peer is obtained, workers and
storages entries are dispatched to it.
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Guards:

1. fCrt (take): Foreign creation entries received from other Coordination Peers.

2. pInfo (take): The peer info entry provides required information.

3. old (take): Oldest coordination peer entry to be updated.

4. wrks (read): The workers entry may be required to be sent to the new longest-
living Coordination Peer.

5. strgs (read): The storages entry may be required to be sent to the new longest-
living Coordination Peer.

6. blck (take): If the current Coordination Peer is also the longest-living, the block
clustering entry is removed.

Actions:

1. old: Updated oldest coordination peer entry.

2. pInfo: The peer info entry is updated with SIPCA Peer Spaces, which are known
at the moment, to guarantee that the creation time is sent only once to a Peer
Space.

3. fCrt: Foreign creation entry dispatched to the originator of the received foreign
creation entry.

4. fWrks: Foreign workers entry sent to newly obtained longest-living Coordination
Peer.

5. fStrgs: Foreign storages entry sent to newly obtained longest-living Coordination
Peer.

6. blck: If the current Coordination Peer is not the longest-living, the block clustering
entry is set anew.

3.4.3 Storage Peer
The Storage Peer is a Node Peer in the SIPCA framework. It is supposed to handle file
queries and return the corresponding file. Therefore, the Storage Peer entails two wirings,
depicted in figure 3.14.

3.4.3.1 W1: Handle Query Wiring

This wiring receives a query either from the Coordination Peer or another Storage Peer.
Then, it has to be looked up whether the queried file is available or not. If the file
is available, it is dispatched to the originating Client Peer. Otherwise, the query is
forwarded to neighboring Storage Peers.
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Figure 3.14: Wirings of the Storage Peer.

Guards:

1. qReq (take): Query request entry to be handled.

2. rsrc (read): The resource entries contain files, may corresponding to the query
request.

3. pInfo (read): The peer info entry provides required information.

Actions:

1. qReq: Forwarded query request entry.

2. qRes: The query result entry, dispatched to the querying Client Peer.

3.4.3.2 W2: Update Neighbors Wiring

This wiring uses the received clustering result to update the neighbors of the receiving
Storage Peer.

Guards:

1. scRes (take): The storage clustering result entry contains the new neighbors of
the current Storage Peer.
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2. pInfo (take): Peer info entry to be updated using the new neighbors.

Actions:

1. pInfo: Updated peer info entry with newly obtained neighbors.

3.4.4 Worker Peer
The Worker Peer is a Node Peer in the SIPCA framework. It is supposed to execute jobs,
if possible, requested by Client Peers and return the corresponding job result. Whether
a job can be executed by a Worker Peer or not, depends on the requested job type and
the current available computational power. As can be seen in figure 3.15, the Worker
Peer entails three wirings for this, which are explained hereinafter.

Figure 3.15: Wirings of the Worker Peer.
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3.4.4.1 W1: Handle Job Wiring

This wiring receives a job request either from the Coordination Peer or another Worker
Peer. Then, it has to be examined whether the job execution is possible or not. If it can
be executed, the job is accepted and dispatched to the Worker Peer’s Job Handler Peer.
Otherwise, the job request is forwarded to a neighboring Worker Peer. When accepting
the job, the peer info entry needs to be updated on the allocated resources and sent to
the Coordination Peer.

Guards:

1. jReq (take): Job request entry to be handled.

2. pInfo (take): The peer info entry provides required information.

Actions:

1. jReq: Forwarded job request entry.

2. job: Job entry dispatched to the Job Handler Peer.

3. pInfo: Updated peer info entry with current available computational power.

4. wInfo: Worker info entry sent to the Coordination Peer.

3.4.4.2 W2: Update Peer Info Wiring

This wiring simply updates the peer info on released resources and dispatches a copy to
the Coordination Peer. For this purpose, it receives information about the completed job
from its Job Handler Peer.

Guards:

1. jru (take): Job result for update entry used to update the peer info entry.

2. pInfo (take): The peer info entry to be updated.

Actions:

1. pInfo: Updated peer info entry with current available computational power.

2. wInfo: Worker info entry sent to the Coordination Peer.

3.4.4.3 W3: Update Neighbors Wiring

This wiring uses the received clustering result to update the neighbors of the receiving
Worker Peer.
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Guards:

1. wcRes (take): The worker clustering result entry contains the new neighbors of
the current Worker Peer.

2. pInfo (take): Peer info entry to be updated using the new neighbors.

Actions:

1. pInfo: Updated peer info entry with newly obtained neighbors.

3.4.5 Job Handler Peer
The Job Handler Peer is a sub-peer of the Worker Peer. Its task is the actual execution
of a requested job. For this purpose, the Job Handler Peer contains one wiring, presented
in figure 3.16.

Figure 3.16: Wiring of the Job Handler Peer.

3.4.5.1 W1: Execute Job Wiring

The aim of this wiring is to execute a job, received from its Worker Peer. After finishing,
the job result is dispatched to the originating Client Peer and the Worker Peer has to be
informed about the completion of the job.

Guards:

1. job (take): The job entry to be executed.

2. pInfo (read): The peer info entry provides required information.

Actions:

1. jru: Job result for update entry to notify the Worker Peer.

2. jRes: The job result entry dispatched to the requesting Client Peer.
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3.4.6 Client Peer
The Client Peer sends requests to the Coordination Peer of its home Peer Space and
eventually receives corresponding results, which are then forwarded to the Statistics Peer.
A request can be either a job request or a query request. The Client Peer contains only
one wiring, shown in figure 3.17.

Figure 3.17: Wiring of the Client Peer.

3.4.6.1 W1: Handle Result Wiring

This wiring is activated after receiving a result and simply forwards it to the Statistics
Peer.

Guards:

1. jRes (take): Job result entry to be forwarded.

2. qRes (take): Query result entry to be forwarded.

Actions:

1. jRes: Job result entry dispatched to the Statistics Peer.

2. qRes: Query result entry dispatched to the Statistics Peer.

3.5 Additional Framework Component
The following peer is not directly part of the core framework. Thus, the SIPCA framework
is able to operate smoothly without it, but there won’t be any statistically relevant data
retained.
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3.5.1 Statistics Peer
The Statistics Peer is a peer placed in the Statistics Peer Space. It is meant to receive
statistically relevant data and document it. As figure 3.18 illustrates, the Statistics Peer
contains six wirings described in detail below.

3.5.1.1 W1: Receive Job Result Wiring

This wiring simply looks up if the corresponding job request for a received job result is
available and in this case documents the job result.

Guards:

1. jReq (take): The job request entries to be browsed.

2. jRes (take): The received job result entry.

3. pInfo (read): The peer info entry provides required information.

Actions:

1. jReq: The remaining job request are put back in the PIC of the Statistics Peer.

2. jRes: The job result entry is put back to the PIC of the Statistics Peer if no
corresponding request was found.

3.5.1.2 W2: Receive Query Result Wiring

This wiring looks up if the corresponding query request for a received query result is
available and in this case documents the query result.

Guards:

1. qReq (take): The query request entries to be browsed.

2. qRes (take): The received query result entry.

3. pInfo (read): The peer info entry provides required information.

Actions:

1. qReq: The remaining query request are put back in the PIC of the Statistics Peer.

2. qRes: The query result entry is put back to the PIC of the Statistics Peer if no
corresponding request was found.
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3.5.1.3 W3: Receive Storage Clustering Result Wiring

This wiring simply documents received storage clustering results received from the
longest-living Coordination Peer.

Guards:

1. scRes (take): The received storage clustering result entry.

2. pInfo (read): The peer info entry provides required information.

Actions:

1. scRes: The storage clustering result entry is put back to the PIC of the Statistics
Peer if the result file is locked at the moment.

3.5.1.4 W4: Receive Worker Clustering Result Wiring

This wiring simply documents received worker clustering results received from the longest-
living Coordination Peer.

Guards:

1. wcRes (take): The received worker clustering result entry.

2. pInfo (read): The peer info entry provides required information.

Actions:

1. wcRes: The worker clustering result entry is put back to the PIC of the Statistics
Peer if the result file is locked at the moment.

3.5.1.5 W5: Receive Parameters Wiring

This wiring simply documents received SIPCA parameters received from each Coordina-
tion Peer of the benchmark for clarification reasons.

Guards:

1. par (take): The received parameters entry.

2. pInfo (read): The peer info entry provides required information.
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Actions:

1. par: The parameters entry is put back to the PIC of the Statistics Peer if the
result file is locked at the moment.

3.5.1.6 W6: Check Last Activity Wiring

This wiring is supposed to check when the Statistics Peer was active the last time, i.e
when the last data was received.

Guards:

1. sv (take): The supervision entry triggers this wiring.

2. qRes (none): There must not be a query result entry, which should be recorded
in the result file, in the PIC of the Statistics Peer.

3. jRes (none): There must not be a job result entry, which should be recorded in
the result file, in the PIC of the Statistics Peer.

4. par (none): There must not be a parameter entry, which should be recorded in
the result file, in the PIC of the Statistics Peer.

5. scRes (none): There must not be a storage clustering result entry, which should
be recorded in the result file, in the PIC of the Statistics Peer.

6. wcRes (none): There must not be a worker clustering result entry, which should
be recorded in the result file, in the PIC of the Statistics Peer.

Actions:

1. sv: The supervision entry with newly started timer is put back into the PIC of the
Statistics Peer.
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Figure 3.18: Wirings of the Statistics Peer.
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3.6 Summary
At the beginning of this Chapter the pattern for a single node in the SIPCA framework
is presented. Then, the pattern composition is described. It illustrates how the nodes
interact with each other. Afterwards, the framework composition is discussed, which
includes the synchronization pattern, the clustering trigger policies and the statistics
pattern. Finally, the core components and additional components of the framework are
presented in detail, including their wirings and entries, and modelled using the Peer
Model notation.
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CHAPTER 4
Implementation Details

In this Chapter a more detailed view on the framework implementation is given. The
Chapter is structured the following.
Firstly, changes made to the core Peer Model are presented. After a description of the
services of the framework, important interfaces and classes of the SIPCA framework
are discussed. Furthermore, the metrics which are benchmarked by the framework are
introduced. Finally, a description of the framework execution and configuration follows.

4.1 Peer Model Implementation & Extensions
For the implementation of the framework the Peer Model is used, a coordination-based
programming model, which was introduced in section 2.2. A detailed description of the
Java 8 [49] implementation of the Peer Model is given in [8]. Thus, the SIPCA framework
is built on top of this Peer Model implementation, using the same programming language
and version.
Nevertheless, in order to enable the framework’s full functionality a small extension to the
provided Peer Model implementation had to be made. For this extension no additional
classes were added to the Peer Model implementation, but only an existing class was
extended in their functionality. The added capacity is discussed in detail in the following
subsection.

4.1.1 DefaultPeer

At the moment the Peer Model implementation only allows the creation of default peers,
i.e. a standard peer having a PIC and a POC. As a consequence, it is not possible to
generate a space peer. For this reason additionally to the PIC and POC a new container
was introduced - the space container which serves as a space peer for each default peer.
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4.2 Services

This section presents a detailed description of the services, whereas the wirings, including
their guards and actions, and the framework entry types are described in Chapter 3.
The services are numbered corresponding to the numbering of the wirings in section 3.4
and section 3.5, this means for example Service S1 of the Coordination Peer is executed
by wiring W1 of the same peer.

4.2.1 Coordination Peer

4.2.1.1 S1: ForwardJobService

This service simply dispatches a received job request to a Worker Peer located in an
appropriate cluster without altering it. If no suitable peer is found, the request is put
back into the own PIC with a TTS of 5 seconds to handle it later again.

4.2.1.2 S2: ForwardQueryService

This service simply dispatches a received query request to a Storage Peer located in an
appropriate cluster without altering it. If no suitable peer is found, the request is put
back into the own PIC with a TTS of 5 seconds to handle it later again.

4.2.1.3 S4: HandleWorkerInfoService

This service uses the received worker info entry to update the workers entry. The updated
workers entry is then passed either to the WorkerClusteringService or the SendWork-
ersService, depending on whether the current peer is the longest-living Coordination Peer
or not.

4.2.1.4 S4, S6, S10: WorkerClusteringService

This service is executed by the Handle Worker Info Wiring, the Merge Foreign Workers
Wiring and the Instance Retired Wiring if the current Coordination Peer is the longest-
living. It ensures the actual execution of the clustering algorithm. Then, the workers
entry is updated with the result and put back to the space peer. The result itself is
wrapped into a worker clustering result entry and dispatched to all available Worker
Peers, Coordination Peers and the Statistics Peer.

4.2.1.5 S4: SendWorkersService

This service is executed if the current Coordination Peer is not the longest-living. It is
supposed to wrap the updated workers entry into a foreign workers entry and dispatch it
to the longest-living Coordination Peer.
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4.2.1.6 S3: HandleStorageInfoService

This service uses the received worker info entry to update the storages entry. The updated
storages entry is then passed either to the StorageClusteringService or the SendStor-
agesService, depending on whether the current peer is the longest-living Coordination
Peer or not.

4.2.1.7 S3, S5, S10: StorageClusteringService

This service is executed by the Handle Storage Info Wiring, the Merge Foreign Storages
Wiring and the Instance Retired Wiring if the current Coordination Peer is the longest-
living. It ensures the actual execution of the clustering algorithm. Then, the storages
entry is updated with the result and put back to the space peer. The result itself is
wrapped into a storage clustering result entry and dispatched to all available Storage
Peers, Coordination Peers and the Statistics Peer.

4.2.1.8 S3: SendStoragesService

This service is executed if the current Coordination Peer is not the longest-living. It is
supposed to wrap the updated storages entry into a foreign storages entry and dispatch
it to the longest-living Coordination Peer.

4.2.1.9 S6: MergeForeignWorkersService

Also this service is only called if the current peer is the longest-living Coordination Peer.
It is applied to update the workers entry using the received foreign workers entry. The
updated workers entry is then passed to the WorkerClusteringService.

4.2.1.10 S5: MergeForeignStoragesService

This service is as well only called if the current peer is the longest-living Coordination
Peer. It is used to update the storages entry with the received foreign storages entry.
The updated storages entry is then passed to the StorageClusteringService.

4.2.1.11 S7, S8: HandleClusteringResultService

This service is executed by the Handle Storage Clustering Result Wiring and the Handle
Worker Clustering Result Wiring. It uses the received clustering result entry to update
the storages and workers entry, respectively. Then, the updated entry is put back to the
space peer.

4.2.1.12 S9, S10: SendCreationtimeService

This service is executed by the Send Creation Time Wiring and the Instance Retired
Wiring. It is supposed to wrap the creation time of a Coordination Peer into a foreign
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creation entry and dispatch it to all available Coordination Peers. Furthermore, if this
service is triggered after a Peer Space retired, the list of known instances is updated.

4.2.1.13 S10: RemoveRetiredInstancePeersService

This service is executed only if the current Coordination Peer is the longest-living. It is
applied to remove all Storage Peers of the storages entry and all Worker Peers of the
workers entry, which were contained in the retired Peer Space, as they are not available
as neighbors anymore. Then, the updated storages entry and workers entry is passed to
the StorageClusteringService and WorkerClusteringService, respectively. If clustering is
blocked at the moment by a block clustering entry placed in the PIC, the storages and
workers are wrapped into a foreign storages entry and foreign workers entry, respectively,
which are put in the own PIC to trigger clustering as soon as it is enabled.

4.2.1.14 S11: DetermineOldestCoordService

This service is used to find the longest-living Coordination Peer in the SIPCA framework.
Therefore, received foreign creation entries are compared to the own creation time. The
originator is stored in the known instances list and the own creation time is dispatched
to it, wrapped into a foreign creation entry. Moreover, the longest-living Coordination
Peer is stored in the space peer as oldest coordination peer entry. If a new longest-living
Coordination Peer was obtained, the workers and storages entries are dispatched to it as
foreign storages entry and foreign workers entry.
If the current peer is the longest-living Coordination Peer, the block clustering entry is
not put back to enable clustering immediately. Otherwise, the taken block clustering
entry is put back into the own PIC.

4.2.2 Node Peer
4.2.2.1 S2, S3: UpdateNeighborsService

This service is executed by the Update Neighbors Wiring of the Storage Peer and the
Worker Peer. It is applied to update the neighboring peers in the peer info entry using
the received clustering result.

4.2.3 Storage Peer
4.2.3.1 S1: HandleQueryService

This service browses the Storage Peer’s stored files for the file demanded in the received
query request. If the file is found, it is wrapped in a query result entry and dispatched
to the originating Client Peer. Otherwise, the request is forwarded to all neighboring
Storage Peers in the same cluster, adding the information that the current Storage Peer
does not have the demanded file such that the request is not sent back to it. If no such
peer is available, the request is put back into the own PIC with a TTS of 5 seconds to
handle it later again.
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4.2.4 Worker Peer
4.2.4.1 S1: HandleJobService

This service is supposed to check if a received job request can be handled by the current
Worker Peer or not. If the job type matches with the job type interests of the peer and
the minimum required computational power of the job is smaller or equal to the currently
available computational power of the peer, the job is accepted and put into the PIC of
its Job Handler Peer. Additionally, the peer info is updated with the newly occupied
resources and put into the space peer. This info is also wrapped into a worker info
entry and dispatched to the Coordination Peer. If the job is not accepted, the request is
forwarded to a Worker Peer within the same cluster. Also here the information is added
that the current peer is unable to fulfill the request. But when all neighbors of a peer are
on the list of unable peers, the list is cleared. This means those peers can be addressed
again, as there is the possibility that they have more free resources now. If no suitable
neighbor was found, the request is put back into the own PIC with a TTS of 5 seconds
to handle it later again.

4.2.4.2 S2: UpdateWorkerPeerInfoService

After finishing a job, this service is used to update the peer info with the newly released
resources. Just as in HandleJobService this information is sent to the Coordination Peer.

4.2.5 Job Handler Peer
4.2.5.1 S1: ExecuteJobService

This service receives a job and waits 3 seconds. Then, the job result entry, corresponding
to the job request, is created and dispatched to the originating Client Peer. Furthermore,
a job result for update entry is placed in the PIC of the Job Handler Peer’s Worker Peer
to trigger the update of the Worker Peer’s peer info entry with the released resources.

4.2.6 Client Peer
4.2.6.1 S1: HandleResultService

This service adds an end time to a received job or query result, corresponding to a request
this Client Peer originated, and dispatches it to the Statistics Peer.

4.2.7 Statistics Peer
4.2.7.1 S1, S2: ReceiveResultService

This service is executed by the Receive Job Result Wiring and the Receive Query Result
Wiring. Thus, it receives either a query or job result and looks for the corresponding
request.
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4.2.7.2 S3, S4: ReceiveClusteringResultService

Similar to the ReceiveResultService, this service receives either a storage or worker
clustering result. It calculates some values as required and documents them in a file.

4.2.7.3 S5: ReceiveParametersService

This service simply uses the received parameters of a newly joined SIPCA Peer Space
and documents them in a file to clarify the benchmarks.

4.2.7.4 S6: CheckLastActivityService

This service is executed every 2 minutes to assure the result file was modified during
the last two minutes. If this is not the case, the benchmark is stopped. Otherwise,
the supervision entry is simply put in the Statistics Peer’s PIC again with a TTS of 2
minutes.

4.3 Interfaces and Classes
In this section the interface provided for the implementation of the clustering algorithms
is presented, as well as classes created to store the Node Peers and classes generally
supporting the functionality of the framework.

The NodePeer class, shown in figure 4.1, embodies NodePeers and includes all properties
Storage Peers and Worker Peers have in common. Additionally, it provides methods
useful for both of them, e.g. with isNewer(n) it can be determined, which of two Node
Peers was created later and thus, represents the current status of a peer.
The classes StoragePeer and WorkerPeer are used to represent Storage Peers and
Worker Peers, respectively. Hence, they have attributes in compliance with the respective
type of peer.

In order to have the same conditions for benchmarking the different algorithms, it is
necessary to have exactly the same entries in a SIPCA Peer Space. Therefore, when a
benchmark is started with a random initialization, which can be configured on execution
(cf. section 4.6), the created entries are serialized. Thus, they can be retrieved in the
next benchmark, started with non-random initialization. Figure 4.2 portrays the class
EntrySerialization, serving for this purpose. In fact, this only works if the SIPCA
Peer Space instance is started with the same amount of Worker, Storage and Client
Peers.

The IAlgorithm interface, depicted in figure 4.3, represents the API for the clustering
algorithms. This allows the decision of the respective implementation during runtime.
In order to as well allow to choose between different types of distance measurement
(cf. section 5.2.1) and evaluation methods (cf. section 4.4), the IDistance and
IEvaluation interfaces are implemented. Thus, they can be used and extended easily.
Both interfaces are illustrated in figure 4.4 and figure 4.5.
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Figure 4.1: Class NodePeer with its sub-classes StoragePeer and WorkerPeer. For reasons
of simplicity, getter and setter methods are omitted.
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Figure 4.2: Class EntrySerialization. For reasons of simplicity, getter and setter methods
are omitted.

Figure 4.3: Interface IAlgorithm.

Figure 4.4: Interface IDistance.
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Figure 4.5: Interface IEvaluation.
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4.4 Metrics
As the primary task of the framework is to benchmark peer clustering algorithms, metrics
need to be defined in order to allow the evaluation of these algorithms. Therefore, in this
section the implemented metrics are described and an overview of the output provided
by the framework is given.

4.4.1 Benchmark Output
The outputs, which are provided by the framework after a benchmark has ended, are
described in table 4.1. On the one hand it provides information about the general setup
of the execution and on the other hand, of course, it offers the metrics to evaluate the
benchmark.

4.4.2 Davies-Bouldin index
The Davies-Bouldin index [11] shall indicate the similarity of clusters. Therefore, it uses
the following formula:

DBI = 1
n

n

i=1
maxi=j( Si + Sj

d(ci, cj)) (4.1)

where n is the number of clusters, Si is the average distance between the centroid of
cluster i and all peers within cluster i, and d(ci, cj) is the distance between the centroid
of cluster i and cluster j.
The Davies-Bouldin index is non-negative. The smaller the index, the better is the
clustering result.

4.4.3 Dunn index
The Dunn index [14, 15] is a metric aiming at minimizing the the intra-cluster distance,
while having well-separated clusters (i.e. maximizing the inter-cluster distance). It uses
the following formula:

DI = min1≤i<j≤n(d(i, j))
max1≤k≤n(d (xk, yk)) (4.2)

where d(i, j) is the distance between the clusters i and j, and d (xk, yk) is the distance of
any pair of peers within cluster k.
The higher the Dunn index is, the better is the result of the peer clustering.

4.4.4 Silhouette coefficient
The Silhouette coefficient [39, 23] shall evaluate the validity of a clustering result and is
often used to find the optimal number of clusters. It is calculated as follows:
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a(i) = d(i, j)
|Ci| − 1 (4.3)

which is the average distance of peer i to all other peers within the same cluster Ci.

b(i) = minC=Ci
(d(i, C)) (4.4)

where d(i, C) is the average distance between peer i to all peers of cluster C, for all
clusters C = Ci. Then, those formulas are used to calculate the Silhouette of i s(i):

s(i) = b(i) − a(i)
max{a(i), b(i)} (4.5)

The overall average Silhouette width, here called Silhouette coefficient, s(k) is used to
measure the validity of the clustering result:

s(k) =
n
i=1 s(i)

n
(4.6)

where n is the number of peers which were clustered.
The Silhouette coefficient is ranged between -1 and 1. The higher the coefficient, the
better is the peer clustering result.

4.4.5 Averaged Dissimilarity coefficient
The Averaged Dissimilarity coefficient is a simple metric to evaluate a peer clustering
result and was developed in the course of this thesis. The calculation works as follows:

First, the average distance of a peer i to all other peers in the same cluster Cx is
calculated:

a(i, Cx) =
|Cx|
i=1 d(i, j)
|Cx| − 1 (4.7)

This is done for every peer in the cluster Cx. Then, the average cluster within distance for
cluster Cx is calculated by summing up all object distances and dividing them through
the number of cluster members:

b(Cx) =
|Cx|
i=1 a(i, Cx)

|Cx| (4.8)

After that, the Averaged Dissimilarity coefficient is calculated by:

ADC =
k
x=1 b(Cx)

k
(4.9)

where k is the number of clusters.
Obviously, the smaller the Averaged Dissimilarity coefficient is, the better is the clustering
result.
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Metric Description

clustering algorithm The clustering algorithm which was used for the
benchmark.

number of Worker Peers The overall amount of Worker Peers participating
in the benchmark.

number of Storage Peers The overall amount of Storage Peers participating
in the benchmark.

number of Client Peers The overall amount of Client Peers participating in
the benchmark.

number of query requests The overall amount of query requests sent in the
benchmark.

number of job requests The overall amount of job requests sent in the bench-
mark.

number of worker infos The number of worker info entries which are required
to trigger the execution of the clustering algorithm.

distance Type of distance measurement.

algorithm parameters The parameter settings of the executed peer cluster-
ing algorithm.

number of algorithm
executions (Worker

Peers)

Number of algorithm executions for Worker Peer
clustering during one benchmark.

number of algorithm
executions (Storage

Peers)

Number of algorithm executions for Storage Peer
clustering during one benchmark.

execution time (Worker
Peers)

Accumulated, averaged execution time of Worker
Peer clustering.

execution time (Storage
Peers)

Accumulated, averaged execution time of Storage
Peer clustering.

Davies-Bouldin index
Shows the averaged Davies-Bouldin index of the clus-
tering result. Based on [11] and shortly described
in section 4.4.2.

Dunn index
Shows the averaged Dunn index of the clustering
result. Based on [14] and [15] and shortly described
in section 4.4.3.

Silhouette coefficient
Shows the averaged Silhouette coefficient of the clus-
tering result. Based on [39] and [23], and shortly
described in section 4.4.4.

Averaged Dissimilarity
coefficient

Shows the Averaged Dissimilarity coefficient of the
clustering result, described in detail in section 4.4.5.

Table 4.1: Benchmark metrics.
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4.5 Framework Execution
The framework is provided in two executable jar-files:

• peermodel-sipca-framework-statistics.jar

• peermodel-sipca-framework.jar

The first one is used to run a new Statistics Peer Space instance, whereas the latter starts
a new SIPCA Peer Space instance. The parameters which should be provided to the
peermodel-sipca-framework.jar executable are discussed in detail in Section 4.6.

The peermodel-sipca-framework-statistics.jar must not be executed more
than once per benchmark. By contrast, the peermodel-sipca-framework.jar file
is not restricted regarding the amount of executions, due to the fact that a benchmark
may involves multiple SIPCA Peer Spaces.
Although the execution order of the jar-files is not strictly specified, it is advisable to
start the Statistics Peer Space first, since the SIPCA Peer Spaces dispatch entries to the
Statistics Peer from the beginning of execution.

4.6 Framework Configuration
The SIPCA framework is configured by adding parameters directly or by adding a
configuration file containing the parameters when executing the peermodel-sipca-
framework.jar file. These parameters are described in table 4.2 and table 4.3. To
allow a quick start-up of only one SIPCA Peer Space instance many parameters have a
default value.

Usage Parameter Description

Position 0 instance name

Defines the unique name of the SIPCA Peer
Space instance. With this name the in-
stance can be identified and addressed in
the network.
Default: -

noWorker number of
Worker Peers

Defines the number of Worker Peers hosted
by the created SIPCA Peer Space instance.
Default: 5

noStorage number of
Storage Peers

Defines the number of Storage Peers hosted
by the created SIPCA Peer Space instance.
Default: 5

Table 4.2: SIPCA Peer Space parameters, part 1.

To start a SIPCA Peer Space instance, for example, the command stated in listing 4.1
can be used.
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Usage Parameter Description

noClient number of
Client Peers

Defines the number of Client Peers hosted
by the created SIPCA Peer Space instance.
Default: 5

noJobs number of jobs
Defines the amount of job requests created
by each Client Peer.
Default: 1

noQueries number of
queries

Defines the amount of query requests cre-
ated by each Client Peer.
Default: 1

clusteringAlgorithm clustering
algorithm

Defines the clustering algorithm which shall
be used. For a more detailed explanation
see section 4.6.1.
Default: KMeans

initRandom random
initialization

Defines whether the peers shall be randomly
initialized or not. For a more detailed ex-
planation see section 4.6.2.
Default: true

resourcePath resource path

Defines the path to the required resource
folder. For a more detailed explanation see
section 4.6.3.
Default: -

noWorkerInfos number of
worker infos

The number of worker info entries which
are required to trigger the execution of the
clustering algorithm.
Default: 1

reclusterStorages recluster
Storage Peers

Defines whether the Storage Peers shall be
reclustered or not. For a more detailed
explanation see section 4.6.4.
Default: false

distance
type of
distance

measurement

Defines which type of distance measure-
ment shall be used. The choice is between
Euclidean and Jaccard distance measure-
ment. For a more detailed explanation see
section 5.2.1.
Default: Euclidean

Table 4.3: SIPCA Peer Space parameters, part 2.
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java − j a r peermodel−s ipca −framework . j a r t e s t 5 0 noWorker=50
noStorage=50 noCl ient=50 noJobs=3 noQueries=3
c lu s t e r i ngA lgo r i thm=KMeans initRandom=f a l s e
resourcePath=examplePath/ t e s tda ta /50 noWorkerInfos=1
r e c l u s t e r S t o r a g e s=true noClus te r s=10

Listing 4.1: Command to start a SIPCA Peer Space instance.

Due to the fact that each SIPCA Peer Space instance possibly can execute different clus-
tering algorithms with a different number of worker peer entries triggering this execution,
it is possible to mix clustering algorithms up during the benchmark. Nevertheless, the
benchmarks of this work will not combine different algorithms and thus, use the same
algorithm and amount of required worker infos for each created SIPCA Peer Space.

4.6.1 Clustering Algorithm
The following encodings shall be used for algorithm parameterization:

• ABC: Artificial Bee Colony

• ABCK: Artificial Bee Colony combined with K-Means

• AntClustering: Ant-based Clustering

• AntKmeans: Ant K-Means

• FuzzyCMeans: Fuzzy C-Means

• GeneticKMeans: Genetic K-Means

• Hierarchical: Hierarchical Clustering

• KMeans: K-Means

• PSO: Particle Swarm Optimization

• SlimeMold: Slime Mold

• SlimeMoldK: Slime Mold K-Means

4.6.2 Random Initialization
If peers are initialized randomly, this includes the following. A Storage Peer receives
one to three topic interests, randomly chosen from the available topics of this SIPCA
Peer Space instance stored in the resource folder (cf. section 4.6.3). Additionally, the
resource files also stored in the resource folder are distributed on all available Storage
Peers existing in the respective SIPCA Peer Space.
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Also the one to three job type interests of the Worker Peers are chosen randomly
from the available job types stored in the resource folder. Furthermore, they receive a
computational power between 1 and 5.
Moreover, a Client Peer creates the given number of query and job requests. Therefore,
the demanded file of a query request is chosen randomly from the files stored in the
resource folder. The job type of a job request is chosen the same way, whereas its minimal
required computational power ranges from 1 to 4.5.
All entries containing this information are serialized, such that they can be reused in
another benchmark with non-random initialization. The condition for this to work is
that the same SIPCA Peer Space instance, identified by its name, is started with the
same amount of Worker, Storage and Client Peers.

4.6.3 Resource Folder
The resource folder is an important part of the SIPCA framework, since it contains
resources used for query requests and results, as well as information for peer initialization.
Thus, the resource folder needs to contain a topicList.txt and a jobTypeList.txt
file, both containing a list of keywords. Those files are used to simulate the topics and job
type interests for Storage and Worker Peers. Furthermore, the resources folder contains
files having their related topic somewhere in their file name. This way the files can be
associated to their topic by the framework, as the classification of resources is not within
the scope of this thesis.

4.6.4 Recluster Storage Peers
This parameter was introduced due to the fact, that no churn is simulated during the
benchmarks (cf. section 6.1). Therefore, this parameter can be set true. In this case, each
time a Storage Peer cannot answer a query and there is no suitable peer in its neighbor
hood, the reclustering of Storage Peers can be triggered. This is possible every 5 seconds
and only twice per query request, in order to avoid an infinite loop during a benchmark.

4.7 Summary
In this Chapter, first, a short overview of the Peer Model Java implementation [8] and an
extension made to it is given. After a presentation of the framework’s services, important
classes and interfaces of the SIPCA framework are introduced.
Additionally, the metrics used to evaluate the benchmark are presented. Afterwards,
the framework execution and configuration is explained. While there are many in-depth
configurations offered for advanced users, for the majority of configuration parameters
default values are given. Therefore, new users are able to directly focus on benchmarking.
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CHAPTER 5
Swarm-Inspired Algorithms for

Peer Clustering

Swarm-based algorithms are inspired by nature and aim at imitating the behavior of life
forms organized in swarms and apply it to the solution of problems. The most widely used
group of swarm-inspired clustering algorithms are ant-based algorithms, closely followed
by bee-inspired algorithms. Similar to peer-to-peer systems, swarms are also perceived to
be decentralized and self-organized systems. Thus, swarm-inspired algorithms are likely
to provide satisfying results [19].
This Chapter is focused on defining the resources used in this thesis and the description
of the swarm-inspired algorithms used for peer clustering. Thus, after a general, abstract
explanation of an algorithm, its mapping to the peer clustering problem is discussed in
order to clarify its implementation. These mappings are done in the course of this thesis.
Furthermore, the criteria for clustering are introduced.

5.1 P2P Resource

As mentioned in section 4.6.2, P2P file resources are stored by Storage Peers and requested
via queries by Client Peers. Such a resource in the P2P system can be defined as a
combination of content and its metadata. For reasons of simplicity, only the file name
is taken into account for the formal definition. Therefore, a file resource is defined as a
singleton rf = (xr), where x is the name of the file represented by the resource. A query
request is modeled exactly the same way, namely qf = (xq). Thus, a query is fulfilled if
and only if xr ≡ xq, where r stands for resource and q stands for query.
Sample instances of a request and two file resources are shown below:
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Query Request: ("filename.txt")
Matching File Resource: ("filename.txt")
Non-Matching File Resource: ("file.txt")

In contrast to a file resource, a job is no concrete resource. It is a metaphorical concept,
defined as a combination of a job type, a descriptive categorization of the job, and
a computational power. Nevertheless, it is an important part of the framework as it
represents a Worker Peer, and is therefore defined as a tuple rj = (x1, x2), where x1
depicts the job categories processed by a Worker Peer and x2 is the currently available
computational power of the Worker Peer, i.e. the available resources. Thus, x1 is defined
as an n-tuple of strings xr

1 = (s1, s2, ..., sn), where r stands for resource, n ∈ N and si

is a string. A job request is structured in the same manner, with the difference that x1
is a singleton xq

1 = (s) representing one job category, where q stands for query, and x2
represents the minimal required computational power. Therefore, a Worker Peer can
only accept a job request if and only if xq

1 ∈ xr
1 ∧ xr

2 ≥ xq
2.

In order to clarify the formalism above, an illustrative example is provided by presenting
sample instances of a job resource and three job requests.

Job Resource: ("sorting, optimization", 3.2)
Acceptable Job Request: ("sorting", 2.3)
Non-Acceptable Job Request: ("hash value calculation", 2.3)
Non-Acceptable Job Request: ("optimization", 3.3)

5.2 Clustering Criteria
As indicated by section 5.1, different criteria are used for clustering Storage and Worker
Peers.
For Storage Peers, the main criterion is the topic interest, already mentioned in sec-
tion 4.6.2 and, for reasons of simplicity, reflected by the file name of the respective file
resource. The more topic interests two peers share, the higher is the probability of sharing
the same cluster. For reasons of clarification an example is given below.

Storage Peer 1: ("sorting, optimization")
Storage Peer 2: ("sorting")
Storage Peer 3: ("hash value calculation")

In the example, Storage Peer 1 and Storage Peer 2 would be sharing a cluster, due
to the fact that they have a topic interest in common, whereas Storage Peer 3 would be
placed in another cluster.

On the contrary, for Worker Peers there are two main criteria for clustering: the job types
processed by a Worker Peer and its currently available computational power. Thus, both
of these criteria are taken into account in equal proportions when examining whether
two peers are similar to each other or not. The below given example will illustrate this.
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Worker Peer 1: ("sorting, optimization", 4.4)
Worker Peer 2: ("sorting", 4.3)
Worker Peer 3: ("sorting", 1.2)

In the example given above, Worker Peer 1 and Worker Peer 2 are very likely to
share a cluster. Although Worker Peer 3 also shares the same job type, its probability of
being part of the same cluster as Worker Peer 1 and Worker Peer 2 is not that high as
its computational power is considerably lower.

5.2.1 Distance Measurement

Distance measurement is important for peer clustering, amongst other things, in order
to learn which cluster is most suitable for a certain peer. Thus, the measurement of
how well a peer fits into a cluster, in most algorithms called fitness value, is based
on distance measurement. All measurements are based on the Euclidean distance
formula equation (5.1), which measures the distance between two points p and q in an
n-dimensional space [42].

d(p, q) = d(q, p) =
n

i=1
(pi − qi)2 (5.1)

The smaller the distance is, the more similar are two measurement objects. Vice versa,
the larger the distance between two measurement objects is, the more dissimilar they are.

This thesis, in fact, uses the following ways of measuring, where the measurement
type is chosen by the preference of the respective algorithm if there is given any.
To quantify the dissimilarity of strings, a variation of the Levenshtein distance [31] is
used. The Levenshtein distance of strings as well as the numerical distance are expressed
as a percentage, where the latter is based on equation (5.2) [50].

pd(p, q) = |p − q|
p+q

2
(5.2)

Peer-to-peer distance is used to calculate the distance between two Node Peers. An
example of how exactly the calculation is performed is provided below.

65
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Worker Peer 1 (p): ("sorting, optimization", 4.4)
Worker Peer 2 (q): ("sorting", 1.2)

d(p, q) = (p1 − q1)2 + (p2 − q2)2

= (levenshtein("sorting, optimization", "sorting"))2 + (4.4 − 1.2
4.4+1.2

2
)2

= (0.5)2 + (1.14)2

= 1.24

Peer-to-cluster distance is used to calculate the distance between a Node Peer and a
cluster mean. A cluster mean is embodied by its three most frequent keyword occurrences
combined with their frequency of occurrence and the average available computational
power. The calculation of the distance between a Node Peer and a cluster mean is
illustrated below.

Cluster (p): ("sorting: 2, optimization: 1", 4.4)
Worker Peer (q): ("sorting", 1.2)

d(p, q) = (p1 − q1)2 + (p2 − q2)2

= (levenshtein("sorting, sorting, optimization", "sorting"))2 + (4.4 − 1.2
4.4+1.2

2
)2

= (0.33)2 + (1.14)2

= 1.19

cluster-to-cluster distance is used to calculate the distance between two clusters.
This calculation is illustrated by the example given below.

Cluster (p): ("sorting: 2, optimization: 1", 4.4)
Cluster (q): ("validity: 1", 1.2)

d(p, q) = (p1 − q1)2 + (p2 − q2)2

= (levenshtein("sorting, sorting, optimization", "validity"))2 + (4.4 − 1.2
4.4+1.2

2
)2

= (1)2 + (1.14)2

= 1.52

5.2.1.1 Jaccard distance

Additionally to the distance measurement based on the Euclidean distance combined with
the Levenshtein distance of strings, all types of distance measures were also implemented
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using the Jaccard distance, based on the Jaccard index. Although the Euclidean distance is
the default choice for the framework, this way an alternative way of distance measurement
is provided. Furthermore, as the distance measurements are, just as the peer clustering
algorithms, implemented in a Plug & Play manner, they easily interchangeable.
Also in this type of distance measurement, the numerical distance is expressed as
a percentage (cf. equation (5.2)) The formula for the Jaccard distance is given in
equation (5.3).

Jδ(p, q) = 1 − p ∩ q

p ∪ q
(5.3)

To demonstrate the calculation of the peer-to-peer distance using the Jaccard distance
measurement, an example is given below:

Worker Peer 1 (p): ("sorting, optimization", 4.4)
Worker Peer 2 (q): ("sorting", 1.2)

Jδ(p, q) = Jδ(p1, q1) + pd(p2, q2)
2

=
1 − {sorting, optimization}∩{sorting}

{sorting, optimization}∪{sorting} + |4.4−1.2|
4.4+2.2

2

2

=
1 − {sorting}

{sorting, optimization} + 1.14
2

=
1 − 1

2 + 1.14
2

= 0.5 + 1.14
2

= 0.82

The calculation of the peer-to-cluster distance using the Jaccard distance is illustrated
by the example given below:
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Cluster (p): ("sorting: 2, optimization: 1", 4.4)
Worker Peer (q): ("sorting", 1.2)

Jδ(p, q) = Jδ(p1, q1) + pd(p2, q2)
2

=
1 − {sorting, optimization}∩{sorting}

{sorting, optimization}∪{sorting} + |4.4−1.2|
4.4+2.2

2

2

=
1 − {sorting}

{sorting, optimization} + 1.14
2

=
1 − 1

2 + 1.14
2

= 0.5 + 1.14
2

= 0.82

An example how the cluster-to-cluster calculation is performed is provided below:

Cluster (p): ("sorting: 2, optimization: 1", 4.4)
Cluster (q): ("validity: 1", 1.2)

Jδ(p, q) = Jδ(p1, q1) + pd(p2, q2)
2

=
1 − {sorting, optimization}∩{validity}

{sorting, optimization}∪{validity} + |4.4−1.2|
4.4+2.2

2

2

=
1 − {}

{sorting, optimization, validity} + 1.14
2

=
1 − 0

3 + 1.14
2

= 1 + 1.14
2

= 1.07

5.3 Artificial Bee Colony (ABC)
The Artificial Bee Colony (ABC) algorithm [22] is based on the foraging behavior of
honey bees. A possible solution is represented by a food source and the food source’s
nectar amount complies with the fitness or quality of the associated solution. In an
artificial bee hive the foraging tasks are divided between employed bees and onlooker
bees. Employed bees go to the food sources visited by them before, whereas an onlooker
bee waits for the employed bee, giving them quality information about the visited food
source. Then, the onlooker bee chooses a food source to exploit on the basis of the nectar
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quality. The more nectar a food source offers, the larger is the probability to be chosen
by an onlooker bee.
In the ABC algorithm the number of employed bees and onlooker bees equals the number
of food sources. Therefore, each food source is visited by only one employed bee.
The procedure of the ABC algorithm is illustrated in algorithm 5.1 [22].

Algorithm 5.1: Artificial Bee Colony algorithm
Input: number of clusters k, number of food sources noSources, maximum

number of iterations maxIteration
1 initialization;
2 for j := 1 to maxIteration do
3 for each employed bee do
4 produce new solution vi;
5 calculate fitness value;
6 apply greedy selection;
7 end
8 calculate the probability values pi for the solutions;
9 for each onlooker bee do

10 select a solution depending on pi;
11 produce new solution vi;
12 calculate fitness value;
13 apply greedy selection;
14 end
15 memorize the best solution so far;
16 end

In each iteration step, each employed bee produces a modification of the current solution
vi depending on the local information [22]:

vi = zi + φ(zi − zk) (5.4)

where zi is the current solution and zk is a randomly selected food source differing from
zi. φ is a random number between -1 and 1.
After producing the new source its nectar amount is tested. Therefore, the fitness of the
solution is calculated the following way [22]:

fiti = 1
1 + fi

(5.5)

where fi is the sum on all instances of Euclidean distance between an instance and the
associated cluster center, divided by the number of instances.
A greedy selection is then applied to the newly produced solution and the current one,
where the better one is kept in memory.
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After all employed bees have completed the search, the nectar information of the food
sources is shared with the onlooker bees. Therefore, the probability value pi has to be
calculated for each solution:

pi = fiti
SN
n=1 fitn

(5.6)

where SN is the number of food sources equalling the number of employed bees and
onlooker bees.
Based on this probability value, each onlooker bee chooses one food source. The higher
the probability value of a certain solution is, the higher is the chance to be chosen by an
onlooker bee. Thus, if a solution has a very high probability value, it may be chosen by
multiple onlooker bees.
The onlooker bee then produces a new solution based on the selected food source using
equation (5.4). The fitness value of this solution is computed by equation (5.5) and, just
as in the employed bees phase, a greedy selection process is applied between the newly
produced solution and the probabilistically chosen one.

The richest food source shall be memorized across all iterations.

The algorithm is mapped to the peer clustering problem the following way: At the
initialization the given numbers of food sources noSources, i.e. solutions to the clustering
problem, is created. This happens by randomly assigning the peers to be clustered to a
given number of clusters k. This is done in such a way that n

k peers are assigned to each
cluster, where n is the number of peers to be clustered. Then, the rest of the peers are
assigned to a randomly chosen cluster.
Afterwards, in each iteration the following procedure is performed. Each employed bee
creates a new solution based on its own food source and a randomly chosen one. More
specifically, for each peer in both solutions the associated cluster is expressed as a numeric
value. This makes it possible to insert these numeric values into equation (5.4), resulting
in a cluster expressed as a numeric value which shall be associated to the corresponding
peer. Thus, the composition of the newly created solution is such that this is done for
each peer. Next, the fitness value for the bee’s solution and new solution is calculated as
described above. This also applies to the choice of the better solution and the calculation
of the probability value pi for each food source.
Eventually, based on the probability value, each onlooker bee chooses a solution. This
means, the higher the fitness value of a solution is, the higher is pi, and consequently
the higher is the probability to be chosen by an onlooker bee. Then, the onlooker bee’s
procedure is basically the same as the employed bee’s.

The basic characteristics of the ABC algorithm are presented in table 5.1 [38].
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Mechanism of exploration Random initialization.
Mechanism of exploitation Employed and onlooker bees searching the neigh-

borhood.
Feasibility of solution The feasible region is the space of all candidate solu-

tions, i.e. the set of k non-empty clusters inhabited
by all nodes in the considered network.

Table 5.1: Basic characteristics of ABC.

5.4 Combination of Artificial Bee Colony Algorithm and
K-Means (ABCK)

The ABCK algorithm [2] is basically a combination of the procedure of the Artificial
Bee Colony algorithm and classical K-Means. According to Armano and Farmani [2],
the K-Means algorithm is highly dependent on the centroid initialization while being
computationally light, whereas the ABC algorithm is rather time-consuming. Therefore,
a combination of those two algorithms shall complement each other.
The setting of the ABCK algorithm is basically the same as of the ABC algorithm,
regarding employed bees, onlooker bees and the food sources. The procedure differs from
the original one by adding an additional K-Means step, being described in algorithm 5.2
[2].

Every time a bee produced a modification of a solution vi, in the employed bee phase
as well as in the onlooker bee phase, the K-Means algorithm is applied on this solution.
Then, the solution is evaluated by means of a criterion called distortion, introduced by
Armano and Farmani [2] and defined as follows:

E =
K

k=1 zi Ck

zi − Ck
2 (5.7)

where zi is the ith instance belonging into cluster Ck. The distortion sums up the squared
distance between all peers and their associated cluster centers, using the peer-to-cluster
distance mentioned in section 5.2.1. If the distortion is low, the clustering is good, as
it measures the inner distances within each cluster and thus, the distortion shall be
minimized. Therefore, the solution having the smaller distortion is kept in memory.
Also in this procedure, the best solution shall be memorized across all iterations.

Due to the fact that this algorithm is very similar to the pure ABC algorithm, the mapping
to the peer clustering problem is exactly the same as described above (cf. section 5.3),
with the only exception that each newly produced solution is locally optimized by applying
K-Means on it.

The basic characteristics of the ABCK algorithm are presented in table 5.2 [38].
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Algorithm 5.2: Artificial Bee Colony algorithm combined with K-Means
Input: number of clusters k, number of food sources noSources, maximum

number of iterations maxIteration
1 initialization;
2 for j := 1 to maxIteration do
3 for each employed bee do
4 produce new solution vi;
5 apply k-means on vi;
6 calculate distortion;
7 apply greedy selection;
8 end
9 calculate the probability values pi for the solutions;

10 for each onlooker bee do
11 select a solution depending on pi;
12 produce new solution vi;
13 apply k-means on vi;
14 calculate distortion;
15 apply greedy selection;
16 end
17 memorize the best solution so far;
18 end

Mechanism of exploration Random initialization.
Mechanism of exploitation Employed and onlooker bees searching the neigh-

borhood. Application of K-Means in the onlooker
bee’s phase.

Feasibility of solution The feasible region is the space of all candidate solu-
tions, i.e. the set of k non-empty clusters inhabited
by all nodes in the considered network.

Table 5.2: Basic characteristics of ABCK.

5.5 Ant-based Clustering

In Ant-based Clustering [34] the ants act on a two-dimensional grid which is populated
randomly with items. In this algorithm an item represents the object which shall be
clustered. Thus, in the scope of this thesis an item equates to a Node Peer.
In each iteration, an ant is selected randomly. If there is an item at the ant’s current
position and the ant is not carrying one, the selected ant can pick the item. If the location
is free, a carried item can be dropped by the ant. The probability of picking and dropping,
respectively, is influenced by the similarity of the peers placed in the surrounding area,
clarified in equation (5.10). This procedure is illustrated in algorithm 5.3 [34].
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Algorithm 5.3: Algorithm for ant-based clustering
Input: step size of an ant stepsize, maximum number of iterations maxIteration,

picking constant kpick, dropping constant kdrop, scaling parameter α
1 randomly distribute items on the grid;
2 randomly place ants on the grid;
3 for i := 1 to maxIteration do
4 choose ant randomly;
5 move ant randomly by stepsize;
6 if antCarriesItem ∧ cellIsEmpty then
7 pdrop := calculate drop probability;
8 if randomDouble ≤ pdrop then
9 drop item;

10 end
11 end
12 else if ¬antCarriesItem ∧ ¬cellIsEmpty then
13 ppick := calculate pick probability;
14 if randomDouble ≤ ppick then
15 pick item;
16 end
17 end
18 end

The picking and dropping probabilities for a given position i are calculated the following
way [34]:

ppick(i) = ( kpick

kpick + f(i))2 (5.8)

and

pdrop(i) = 2f(i) iff(i) < kdrop,

1 otherwise
(5.9)

where kpick and kdrop are constants and f(i) is the neighborhood function of the current
location i:

f(i) =
1
d2 j(1 − d(i,j)

α ) iff(i) > 0,

0 otherwise
(5.10)

where the sum extends over all locations j in the surrounding area of location i and
d(i, j) is the measurement of dissimilarity between the items located at cells i and j, and
therefore computed by using the peer-to-peer distance (cf. section 5.2.1). α is a scaling
constant and d2 equals the size of the local neighborhood of i to normalize the result.

This algorithm is mapped to the peer clustering problem as follows. Firstly, Node Peers
and ants are randomly distributed on the grid. Then, the ants move the Node Peers as
described above, by picking them up and dropping them at another location. At the end
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of the algorithm, a cluster is formed by all Node Peers which are horizontally, vertically
or diagonally adjacent to each other.

The basic characteristics of the Ant-based Clustering algorithm are presented in table 5.3
[38].

Mechanism of exploration Random position initialization of ants and items.
Mechanism of exploitation Ants picking and dropping items.
Feasibility of solution The feasible region is the space of all candidate so-

lutions, i.e. the set of non-empty clusters inhabited
by all nodes in the considered network.

Table 5.3: Basic characteristics of Ant-based Clustering.

5.6 Ant K-Means
The Ant K-Means algorithm [30] is based on combining ant colony optimization with
conventional K-Means clustering. It is inspired by the natural behavior of ant colonies,
as they leave a trail of pheromones to communicate with each other. Pheromones are left
by an ant following a certain path. Thus, the more ants take the same trail, the more
pheromones lay on the trail. Consequently, this particular path becomes more attractive
for other ants and the shortest route can be obtained.
Thus, the conventional K-Means is modified in such a way, that it utilizes the described
behavior. The procedure of the Ant K-Means algorithm is illustrated in algorithm 5.4
[30].

In each iteration the pheromones of each path have to be updated, using the following
formula by [30]:

τij = (1 − p)τij + Q

TWCV
(5.11)

where p is the pheromone decay parameter, Q is a constant and TWCV is the total
within cluster variance, the sum of the squared distance of each peer to its respective
cluster mean.
Then, each ant m assigns each peer i to a cluster mean j with a probability P m

ij which is
calculated as follows [30]:

P m
ij =

τα
ijηβ

ij

k
c τα

icη
β
ic

(5.12)

where α is the relative importance of the trail and β is the relative importance of the
visibility η, which is the inverse of the distance between peer i and cluster center j, i.e.
ηij = 1

dij
.

Thereafter, the cluster means are updated and the new TWCV has to be calculated. This
procedure is repeated until the TWCV does not change anymore. If the new TWCV is
smaller than the global best TWCV , it is replaced.
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Algorithm 5.4: Algorithm for Ant K-Means
Input: number of clusters k, number of ants noAnts, maximum number of

iterations maxIteration, pheromone decay parameter p, relative
importance of the trail α, relative importance of the visibility β, constant
Q

1 initialization;
2 lay equal pheromone on each path;
3 for l := 1 to maxIteration do
4 for m := 1 to noAnts do
5 while TWCV changed do
6 update pheromones τij ;
7 assign each object to a cluster with probability P m

ij ;
8 update cluster centers;
9 calculate TWCV ;

10 end
11 if TWCV < bestTWCV then
12 bestTWCV := TWCV;
13 end
14 end
15 perturbation;
16 end

Next, a step called perturbation is performed in order to not to get stuck with a local
minimum. Basically, in this step every ant is newly initialized, just as described in the
initialization step below.

The algorithm is mapped to the peer clustering problem the following way: At the
initialization step the given number of ants noAnts is created. As each ant holds its own
solution to the peer clustering problem, this includes the initialization of k cluster means
by randomly assigning peers to it. Afterwards, lay equal pheromone on each path.
Then, in each iteration step, the pheromones of each path are updated and each peer is
assigned to the cluster with the highest probability P m

ij , as described above.

The basic characteristics of the Ant K-Means algorithm are presented in table 5.4 [38].

Mechanism of exploration Random initialization. Perturbation.
Mechanism of exploitation Evaporation and usage of pheromone trails.
Feasibility of solution The feasible region is the space of all candidate solu-

tions, i.e. the set of k non-empty clusters inhabited
by all nodes in the considered network.

Table 5.4: Basic characteristics of Ant K-Means.
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5.7 Particle Swarm Optimization (PSO)
In Particle Swarm Optimization [37] an individual grouped into a swarm is referred to as
a particle. A swarm can be seen as a flock of birds flying towards an optimum. Therefore,
a particle searches for the best solution, using the best position encountered by itself and
its swarm. Thus, a wide area can be searched while heading towards an optimum.
Each particle i represents a complete solution of the clustering problem and has to
maintain the information of its current position xi, its velocity vi and its personal best
position yi, where the personal best position is the position where the particle obtained
the highest fitness value so far. Additionally to the personal best position there is also a
global best position ŷ, determined from the entire swarm. The procedure of the PSO
algorithm is described in algorithm 5.5 [37].

Algorithm 5.5: Algorithm for Particle Swarm Optimization
Input: number of clusters k, number of particles noParticles, maximum number

of iterations maxIteration, constant w1, constant w2
1 initialization;
2 for j := 1 to maxIteration do
3 for i := 1 to noParticles do
4 update velocity vi;
5 update position xi;
6 if f(xi) < f(yi) then
7 yi := xi

8 end
9 if f(xi) < f(ŷ) then

10 ŷ := xi

11 end
12 end
13 end

In each iteration t, the velocity and position of a particle is updated using the following
formulae by [37]:

vi(t + 1) = wvi(t) + c1r1(t)(yi(t) − xi(t)) + c2r2(t)(ŷ(t) − xi(t)) (5.13)

and
xi(t + 1) = xi(t) + vi(t + 1) (5.14)

where w is the inertia weight, c1 and c1 are constants and r1 and r1 are random values
between 0 and 1.
The particle’s fitness at the current position is computed by means of a fitness function
f encapsulating the characteristics of the optimization problem and thus, reflecting the
optimality of the solution. Then, the personal best position is updated by comparing the
fitness value of the current position to the fitness value of the incumbent personal best
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position. If the fitness value of the current position is better, the incumbent personal
best position is replaced by the current one.

This algorithm is mapped to the peer clustering problem as follows. At the initialization
step the given number of clusters k is initialized by randomly assigning one peer to it,
representing the cluster mean.
Then, in each iteration the solution of each particle has to be adapted. This means, each
peer of the solution is assigned to the best suiting (i.e. nearest) cluster. Afterwards, the
fitness of the current solution is calculated. This is done by using the ratio between the
average intra-cluster distance (i.e. peer-to-cluster distance) and the average inter-cluster
distance (i.e. cluster-to-cluster distance).
If the fitness of the current solution is smaller than the fitness of the personal and global
best solution, respectively, the respective best solution is replaced by the current one.
Subsequently, the centroids of each solution have to be updated. This complies with the
above mentioned step of updating the velocity and position of a particle. In order to have
a non-numeric procedure which, at the same time, is in accordance with the formulas of
equation (5.13) and equation (5.14), this is done the following way. The average of the
cluster means of the current solution and the personal best solution is calculated, as well
as of the cluster means of the current solution and the global best solution. Next, the
two results of this operation are averaged again, resulting in the new cluster center. This
way the new position of a particle is always influenced by the personal and global best
solution, aiming at optimizing the current solution.

The basic characteristics of the PSO algorithm are presented in table 5.5 [38].

Mechanism of exploration Random initialization.
Mechanism of exploitation Generation of a new solution based on the current,

the personal best and the global best solution.
Feasibility of solution The feasible region is the space of all candidate solu-

tions, i.e. the set of k non-empty clusters inhabited
by all nodes in the considered network.

Table 5.5: Basic characteristics of PSO.

5.8 Slime Mold
Šešum-Čavić et. al. present a swarm intelligent algorithm in [45], which imitates the life
cycle of the Dictyostelium discoideum slime mold, and is based on the Dictyostelium
discoideum algorithm for numerical optimization proposed in [36]. In this section an
adaption of the Slime Mold algorithm for peer clustering is presented, which is based on
the two mentioned works.

The slime mold Dictyostelium discoideum (Dd) is a social collective of amoebae, using
spores to reproduce. The Dd’s life cycle goes through five stages, depicted in figure 5.1:
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vegetative movement, aggregation, mound, slug movement, and spore dispersal [24].

Figure 5.1: Life cycle of the Dictyostelium discoideum slime mold [20].

At the first stage, vegetative movement, amoebae are searching for food. An amoeba
begins to starve if there is not enough food supply available. Thus, an amoeba remains
in this state until the food supply diminishes.
At this point the aggregation stage begins, where amoebae show the first attempt of
cooperative behavior. In this stage there exist two types of amoebae, namely pacemakers
and aggregating amoebae. A chemical called cyclic Adenosine Monophosphate (cAMP)
is emitted by a pacemaker. The aggregating amoebae aggregate towards pacemakers as
they are attracted by cAMP. By this aggregation amoebae are forming a mound.
At this stage, the amoebae organize themselves into two groups, prestalk and prespore,
based on their fitness level, i.e. how well-fed they are. The prestalk amoebae will be part
of the the fruiting body and, therefore, eventually die, whereas the prespore amoebae
will be dispersed as spores.
Together, the two groups form a slug, divided into a head, composed of prestalk amoebae,
and a tail, formed by prespore amoebae. The slug moves into a direction where the
possibility of a culmination, like a light source, exists.
Then, at the last stage, it starts to form a fruiting body, where the prestalk amoebae
become part of the fruiting body’s stalk and will eventually die. The prespore amoebae
are dispersed as spores, such that the Dd’s life cyle can start again by entering the
vegetative stage [24].
The Slime Mold algorithm is mapped to the peer clustering problem the following way: At
the first stage of the life cycle, the given numbers of amoebae noAmoebae is initialized. As
every amoeba holds its own solution of the clustering problem, this is done by randomly
choosing k cluster means.
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Algorithm 5.6: Algorithm for Slime Mold
Input: number of clusters k, number of amoebae noAmoebae, maximum number

of iterations maxIteration, restriction parameter ε
1 for j := 1 to maxIteration do
2 Procedure vegetativeMovement():
3 initialization of amoebae;
4 end
5 Procedure aggregation():
6 for i := 1 to noAmoebae do
7 while |TWCV − newTWCV | > ε do
8 assign each object to nearest cluster center;
9 update cluster centers;

10 calculate new TWCV;
11 end
12 end
13 end
14 Procedure mound():
15 divide amoebae into prespore and prestalk;
16 end
17 Procedure slugMovement():
18 for i := 1 to noPrespore do
19 combine solutioni with solutionbest;
20 end
21 end
22 Procedure dispersion():
23 remember global best solution solutionbest;
24 end
25 end

In the second stage, aggregation, the clustering begins by assigning each peer to the
nearest cluster center, representing the role of a pacemaker. Afterwards, the cluster
means are updated and the new total within cluster variation (TWCV) is calculated.
This is repeated until the old TWCV and the new TWCV converge to a limit given by ε.
Then, in the mound stage, the one half of the amoebae having the better TWCV is
categorized as prespore, the other half as prestalk.
At the next stage, slug movement, the solution of each prespore amoeba is combined
with the global best solution the same way as described in algorithm 5.5, by averaging
the two cluster means.
At the dispersion stage, the global best solution is remembered by selecting the amoeba
having the smallest TWCV.
In the next iteration of the algorithm, the prespore amoebae are kept, whereas the
prestalk amoebae are replaced by newly initialized amoebae.

79



5. Swarm-Inspired Algorithms for Peer Clustering

The basic characteristics of the Slime Mold algorithm are presented in table 5.6 [38].

Mechanism of exploration Vegetative movement.
Mechanism of exploitation Aggregation. Slug movement.
Feasibility of solution The feasible region is the space of all candidate solu-

tions, i.e. the set of k non-empty clusters inhabited
by all nodes in the considered network.

Table 5.6: Basic characteristics of Slime Mold.

5.9 Slime Mold K-Means
The Slime Mold K-Means algorithm for clustering is based on the same biological approach
as the pure Slime Mold for clustering (cf. section 5.8). Therefore, the setting is basically
the same, but the procedure differs from the original one by adding an additional K-Means
step, which is described in algorithm 5.7.

The mapping to the peer clustering problem of the Slime Mold K-Means algorithm is
very similar to the Slime Mold mapping. However, there are two deviations:

In the aggregation stage, each peer is assigned to the nearest cluster center, which
represents the role of the pacemaker. After that, there is no more local optimization
taking place.
In return, at the end of the dispersion stage, the solutions of all prespore amoebae are
locally optimized by applying K-Means.

The basic characteristics of the Slime Mold K-Means algorithm are presented in table 5.7
[38].
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Algorithm 5.7: Algorithm for Slime Mold K-Means
Input: number of clusters k, number of amoebae noAmoebae, maximum number

of iterations maxIteration
1 for j := 1 to maxIteration do
2 Procedure vegetativeMovement():
3 initialization of amoebae;
4 end
5 Procedure aggregation():
6 for i := 1 to noAmoebae do
7 aggregate towards nearest pacemaker;
8 end
9 end

10 Procedure mound():
11 divide amoebae into prespore and prestalk;
12 end
13 Procedure slugMovement():
14 for i := 1 to noPrespore do
15 combine solutioni with solutionbest;
16 end
17 end
18 Procedure dispersion():
19 remember global best solution solutionbest;
20 for i := 1 to noPrespore do
21 apply k-means;
22 end
23 end
24 end

Mechanism of exploration Vegetative movement.
Mechanism of exploitation Slug movement. Dispersion.
Feasibility of solution The feasible region is the space of all candidate solu-

tions, i.e. the set of k non-empty clusters inhabited
by all nodes in the considered network.

Table 5.7: Basic characteristics of Slime Mold K-Means.

5.10 Summary

At the beginning of this Chapter the P2P resources and clustering criteria are discussed.
In the course of this, also the methods of distance measurement used by the framework
are presented.
Afterwards, multiple swarm-inspired clustering algorithms are discussed in detail and it
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is explained how they are mapped to the peer clustering problem. Such algorithms can
be inspired by a variety of organisms organizing in swarms, such as ants or bees, whereas
the Slime Mold algorithm [45], for example, imitates the life-cycle of the Dictyostelium
discoideum slime mold.
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CHAPTER 6
Evaluation

In this Chapter the Slime Mold and Slime Mold K-Means peer clustering algorithm
adaptions are analyzed and compared to the nine intelligent and non-intelligent clustering
algorithms, which were introduced in prior Chapters of this work.

6.1 Benchmark Methodology
For the subsequent comparison, the Slime Mold and Slime Mold K-Means peer clustering
algorithms, presented in section 5.8 and section 5.9, are benchmarked alongside Artificial
Bee Colony, Artificial Bee Colony combined with K-Means, Ant-based Clustering, Ant
K-Means, Fuzzy C-Means, Genetic K-Means, Hierarchical Clustering, K-Means and
Particle Swarm Optimization. All these algorithms are briefly described in section 2.3.

All benchmarks are carried out on Google Cloud Platform’s Compute Engine [47]. In
particular, a "n1-standard-16" instance was used, which includes 16 vCPUs and 60 GB
RAM. According to [48], the following processors are available for n1 machine types: 2.0
GHz Intel Xeon Scalable Processor, 2.2 GHz Intel Xeon E5 v4, 2.3 GHz Intel Xeon E5
v3, 2.5 GHz Intel Xeon E5 v2 and 2.6 GHz Intel Xeon E5.

The general benchmark setups are the following:

• P2P network nodes: The amount of the nodes is varied in three levels: low (Ln),
medium (Mn), high (Hn), where Ln = 50, Mn = 100 and Hn = 200. This means
for example, that in a network of medium size 100 Storage Peers, 100 Worker Peers
and 100 Client Peers are attendant. Furthermore, it shall be noted, that no churn
is simulated. Thus, there is no fluctuation of node participation.
rewrite

• Requests: For the Sensitivity Analysis the amount of requests per Client Peer
is varied in three levels, also: low (Lr), medium (Mr), high (Hr), where Lr = 1,
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Mr = 5 and Hr = 10 query and job requests per Client Peer.
On the contrary, all competitive benchmarks are executed with exactly three queries
and job requests per Client Peer, as the requests have shown to have no direct
impact on the performance of the peer clustering algorithms.

• ReclusterStorages: As no churn is simulated during the benchmarks, the reclus-
terStorages parameter is set to true, in order to have multiple Storage Peer clustering
results per benchmark execution. For a more detailed explanation see section 4.6.4.

• Benchmark execution: Each configuration of an algorithm is executed ten times,
in order to have a variety of different node initializations as described in detail in
section 4.6.2. Thus, in the result data the average metric values are recorded.

The suggested default values, mentioned in section 4.6, are used for the rest of the
framework parameters.

The metrics used for the evaluation are execution time, the Davies-Bouldin index (DBI),
the Dunn index (DI), the silhouette coefficient (SC) and Averaged Dissimilarity coefficient
(ADC). All metrics are described in detail in section 4.4.
The metric of execution time measures the performance of the algorithms which can be
important, especially in time critical scenarios. In order to examine the quality of the
peer clustering solutions from different perspectives, three established and well-known
metrics are chosen. While the Davies-Bouldin index [11] uses artificial cluster means
to calculate the ratio of the within cluster cohesion to the between cluster separation,
the other two measures use only the distances between individual nodes. Furthermore,
the Dunn index [14, 15] uses the worst case scenarios, i.e. the global minimum distance
between two clusters and the global maximum distance between any pair of peers within
the same cluster, to calculate the ratio between cohesion and separation, whereas the
Davies-Bouldin index and the Silhouette coefficient [39, 23] are calculating with average
values. In contrast to the other two metrics which directly calculate the ratio between
cohesion and separation, the Silhouette coefficient normalizes the result by subtracting
the average within-cluster distance from the minimum between-cluster distance and
dividing the result by the greater of both numbers.
Additionally, one simple metric, the Averaged Dissimilarity coefficient (cf. section 4.4.5),
is introduced in the course of this thesis. It mainly distinguishes from the other metrics
as it only focuses on the cohesion within the clusters, while neglecting the well-separation
of the clusters.

6.2 Sensitivity Analysis
The goal of the Sensitivity Analysis is to find the best combination of parameters for
each benchmarked algorithm. This parameter tuning is performed on the parameter’s
value range recommended by the author of the particular algorithm or determined in
preliminary benchmarks. Thus, a parameter is only subject of the Sensitivity Analysis
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if no precise value is recommended by the author. As for the most benchmarked
algorithms the number of clusters has to be parameterized, a global range for this value
is used, depending on the number of nodes in the network, i.e. number of clusters =
{n ∗ 0.1; n ∗ 0.2; n ∗ 0.3; n ∗ 0.4; n ∗ 0.5}, where n is the number of nodes in the network.
These values were used for the following reasons: As it makes a great difference for the
quality of the clustering solution whether 10 or 100 peers are clustered into 3 clusters,
the number of clusters shall be dependent on the number of nodes. Furthermore, the
upper limit for k is set to n

2 , as otherwise a balanced distribution would be harder to
accomplish. As the number of clusters is required in nearly each benchmarked algorithm
it can be considered to be one of the most important parameters and therefore, five
values are tested, fairly distributed between 10 % and 50 % of the number of nodes to be
clustered.
The number of iterations maxIteration and the number of agents, like noAnts and
noAmoebae, are also parameters occurring more often, therefore for them three global
values are specified to be tested, in case there does not exist an expert recommendation.
For the number of agents the minimum and maximum recommended values from other
algorithms are used as lower and upper limit (10 from PSO and 50 from Genetik K-
Means), whereas the middle value is the average. Thus, the number of agents are tested
for the values 10, 30 and 50. For the number of iterations the lower limit is also defined
by the minimum recommended value (20 from ABCK), whereas the upper limit is set to
100 as it is a value twice recommended (from Genetik K-Means and PSO) and due to
performance reasons. The middle value is set to 50. Thus, maxIteration is tested for the
values 20, 50, 100. Also other non-recommended parameters are tested with three values.
In detail, for all peer clustering algorithm parameters being subject of the Sensitivity
Analysis the optimal parameter value is determined based on the metrics mentioned in
section 6.1 for all combinations of network sizes (Ln, Mn) and request levels (Lr, Mr,
Hr). These optimal values are then used in the competitive benchmarks.

ABC As many other algorithms, the ABC peer clustering algorithm, described in
section 5.3, requires a given number of clusters k, in which to cluster the nodes. Therefore,
as mentioned before, a global range is used which depends on the number of nodes n
participating in the network, i.e. the number of objects to be clustered. Therefore, the
value of k ranges between n

10 and n
2 . The values of all other parameters used for the

competitive benchmark are based on the recommendations in [22].
The parameter values and ranges, respectively, are shown in table 6.1, whereas the results
of the Sensitivity Analysis are depicted in table 6.2.

As can be seen in table 6.2, for each combination of network sizes and request levels, the
value of k performed best with k = n ∗ 0.5. Therefore, in a network consisting of 100
nodes, k = 50.

ABCK Also for the peer clustering algorithm ABCK, which was presented in detail in
section 5.4, the number of clusters k has to be determined. The other parameter values
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Parameter Value (Range) Source

k
n ∗ 0.1, n ∗ 0.2, n ∗ 0.3,

n ∗ 0.4, n ∗ 0.5
preliminary
benchmarks

noSources 20 [22]
maxIteration 1000 [22]

Table 6.1: ABC parameter values before Sensitivity Analysis.

Nodes n Requests k

50 1

n ∗ 0.5

50 5
50 10
100 1
100 5
100 10

Table 6.2: ABC Sensitivity Analysis results.

of the algorithm are recommended by [2].
The parameter values and value ranges are listed in table 6.3.

Parameter Value (Range) Source

k
n ∗ 0.1, n ∗ 0.2, n ∗ 0.3,

n ∗ 0.4, n ∗ 0.5
preliminary
benchmarks

noSources 10 [2]
maxIteration 20 [2]

Table 6.3: ABCK parameter values before Sensitivity Analysis.

In contrast to ABC, the ABCK algorithm performs best with a value of k = n ∗ 0.4 for
each combination setup, which is stated in table 6.4. It may be noticeable that the values
for noSources and maxIteration differ for ABC and ABCK, although the algorithms are
rather similar. This is, as it was decided to use recommended values for each algorithm
if available.

Ant-based Clustering The Ant-based Clustering algorithm, described in section 5.5,
is the only benchmarked algorithm which does not require a parameterized number of
clusters. The values for maxIteration, kpick, kdrop and stepsize are suggested by [5], [18]
and [34], respectively. The only parameter to be determined through Sensitivity Analysis
is the scaling parameter α. α shall be ranged between 0 and 1, and was therefore tested
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Nodes n Requests k

50 1

n ∗ 0.4

50 5
50 10
100 1
100 5
100 10

Table 6.4: ABCK Sensitivity Analysis results.

with the values given below.
The parameter values and value ranges before the Sensitivity Analysis, respectively, can
be seen in table 6.5, whereas its results are shown in table 6.6.

Parameter Value (Range) Source
stepsize 1 [34]

maxIteration max(1000000;
√

2000 ∗ n) [5]
kpick 0.1 [18]
kdrop 0.1 [18]

α 0.3, 0.6, 0.9 preliminary
benchmarks

Table 6.5: Ant-based Clustering parameter values before Sensitivity Analysis.

As presented in table 6.6, for each combination of network sizes and request level, the
value of α = 0.3 outperformed the other inspected values for the scaling parameter α.

Nodes n Requests α

50 1

0.3

50 5
50 10
100 1
100 5
100 10

Table 6.6: Ant-based Clustering Sensitivity Analysis results.

Ant K-Means The Ant K-Means algorithm, which was described in detail in section 5.6,
has three parameter values to be determined, namely k, noAnts and maxIteration. The
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values for the parameters p, α, β and Q are recommended by [30].
The parameter values and value ranges are shown in table 6.7.

Parameter Value (Range) Source

k
n ∗ 0.1, n ∗ 0.2, n ∗ 0.3,

n ∗ 0.4, n ∗ 0.5
preliminary
benchmarks

noAnts 10, 30, 50 preliminary
benchmarks

maxIteration 20, 50, 100 preliminary
benchmarks

p 0.9 [30]
α 0.5 [30]
β 1 [30]
Q 1 [30]

Table 6.7: Ant K-Means parameter values before Sensitivity Analysis.

The results of the Sensitivity Analysis can be seen in table 6.8. It illustrates that the
values k = n ∗ 0.1, noAnts = 10 and maxIteration = 20 performed best across all
combination setups.

Nodes n Requests k noAnts maxIteration

50 1

n ∗ 0.1 10 20

50 5
50 10
100 1
100 5
100 10

Table 6.8: Ant K-Means Sensitivity Analysis results.

Fuzzy C-Means Also for the Fuzzy C-Means algorithm, shorty described in sec-
tion 2.3.1.3, the number of clusters c has to be determined. According to [4], a fuzzifier
m chosen between 1.5 and 3.0 gives good results for most data. The value for the
acceptanceBorder is suggested by [7].
The parameter values and value ranges, respectively, can be seen in table 6.9, whereas
the Sensitivity Analysis results are shown in table 6.10.

As illustrated in table 6.10, for each combination of network sizes and request levels, the
values of c = n ∗ 0.1 and m = 1.5 performed best.
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Parameter Value (Range) Source

c
n ∗ 0.1, n ∗ 0.2, n ∗ 0.3,

n ∗ 0.4, n ∗ 0.5
preliminary
benchmarks

m 1.5, 2.2, 3.0 [4]
acceptanceBorder 1

c [7]

Table 6.9: Fuzzy C-Means parameter values before Sensitivity Analysis.

Nodes n Requests c m

50 1

n ∗ 0.1 1.5

50 5
50 10
100 1
100 5
100 10

Table 6.10: Fuzzy C-Means Sensitivity Analysis results.

Genetic K-Means The Genetic K-means algorithm was shortly described in sec-
tion 2.3.2.5. Most of its parameter values are recommended by [26]. Only the values of
the number of clusters k and the alleleModifier have to be determined by the Sensitivity
Analysis. According to [26], alleleModifier ≥ 1, therefore, its lower limit is 1, whereas
the upper limit is set to 10 due to preliminary benchmarks. Then, the natural number 5
is chosen for the middle value, as it is about the mean.
Table 6.11 shows the values and value ranges, respectively, while the results of the
Sensitivity Analysis can be seen in table 6.12.

Parameter Value (Range) Source

k
n ∗ 0.1, n ∗ 0.2, n ∗ 0.3,

n ∗ 0.4, n ∗ 0.5
preliminary
benchmarks

maxGeneration 100 [26]
nrOfChromosomes 50 [26]

c 2 [26]

alleleModifier 1, 5, 10 preliminary
benchmarks

mutationProbability 0.05 [26]

Table 6.11: Genetic K-Means parameter values before Sensitivity Analysis.
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The Genetic K-Means algorithm performs best with a value of k = n∗0.1 and alleleModifier =
10 for each combination setup. This indicates that the algorithm performs better when
the probability for mutation is higher.

Nodes n Requests k alleleModifier

50 1

n ∗ 0.1 10

50 5
50 10
100 1
100 5
100 10

Table 6.12: Genetic K-Means Sensitivity Analysis results.

Hierarchical Clustering Also for the Hierarchical Clustering algorithm, which was
shortly described in section 2.3.1.1, the number of cluster k has to be determined.
The parameter value range before the Sensitivity Analysis is shown in table 6.13, whereas
its results can be inspected in table 6.14.

Parameter Value (Range) Source

k
n ∗ 0.1, n ∗ 0.2, n ∗ 0.3,

n ∗ 0.4, n ∗ 0.5
preliminary
benchmarks

Table 6.13: Hierarchical Clustering parameter values before Sensitivity Analysis.

Across all combination setups the Hierarchical Clustering algorithm performs best with a
value of k = n ∗ 0.5, shown in table 6.14.

Nodes n Requests k

50 1

n ∗ 0.5

50 5
50 10
100 1
100 5
100 10

Table 6.14: Hierarchical Clustering Sensitivity Analysis results.

K-Means The K-Means algorithm as well only has the number of clusters parameter
k to be determined by the Sensitivity Analysis.
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Therefore, table 6.15 lists the value range, whereas table 6.16 shows the Sensitivity
Analysis results.

Parameter Value (Range) Source

k
n ∗ 0.1, n ∗ 0.2, n ∗ 0.3,

n ∗ 0.4, n ∗ 0.5
preliminary
benchmarks

Table 6.15: K-Means parameter values before Sensitivity Analysis.

The Sensitivity Analysis shows that K-Means also performs best with a parameter value
of k = n ∗ 0.5.

Nodes n Requests k

50 1

n ∗ 0.5

50 5
50 10
100 1
100 5
100 10

Table 6.16: K-Means Sensitivity Analysis results.

PSO Also for the PSO peer clustering algorithm, presented in detail in section 5.7,
only the number of clusters parameter k has to be determined, as all other parameter
values used for the competitive benchmark are recommended by [37].
The parameter value and value ranges before the Sensitivity Analysis, respectively, are
listed in table 6.17, while its results are presented in table 6.18.

Parameter Value (Range) Source

k
n ∗ 0.1, n ∗ 0.2, n ∗ 0.3,

n ∗ 0.4, n ∗ 0.5
preliminary
benchmarks

noParticles 10 [37]
maxIteration 100 [37]

w1 0.5 [37]
w2 0.5 [37]

Table 6.17: PSO parameter values before Sensitivity Analysis.

As can be seen in table 6.18, for each combination of network sizes and request levels,
the PSO algorithm’s value of k performs best with k = n ∗ 0.5.
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Nodes n Requests k

50 1

n ∗ 0.5

50 5
50 10
100 1
100 5
100 10

Table 6.18: PSO Sensitivity Analysis results.

Slime Mold The Slime Mold peer clustering algorithm, which was described in detail
in section 5.8, has multiple parameter values to be investigated by the Sensitivity analysis.
Those parameter value ranges are presented in table 6.19. The threshold value ε has to be
carefully chosen, as it is important for the local optimization. If the lower limit is chosen
too small, the algorithm could stuck at local optimization at the expense of performance,
therefore it is set to 0.3. If the upper limit is chosen too big, the local optimization ends
too early which may affect the quality of the clustering solution negatively. Therefore,
the upper limit is set to 0.9, whereas the mean 0.6 is taken for the middle value. The
results of the Sensitivity Analysis can be seen in table 6.20.

Parameter Value (Range) Source

k
n ∗ 0.1, n ∗ 0.2, n ∗ 0.3,

n ∗ 0.4, n ∗ 0.5
preliminary
benchmarks

noAmoebae 10, 30, 50 preliminary
benchmarks

maxIteration 20, 50, 100 preliminary
benchmarks

ε 0.3, 0.6, 0.9 preliminary
benchmarks

Table 6.19: Slime Mold parameter values before Sensitivity Analysis.

Also the Slime Mold algorithm performs best with the same values for all combination of
network sizes and request levels, i.e. k = n ∗ 0.5, noAmoebae = 10, maxIteration = 20
and ε = 0.6.

Slime Mold K-Means Just like the Slime Mold algorithm, all of the Slime Mold
K-Means algorithm’s parameter values have to be determined. Slime Mold K-Means was
presented in detail in section 5.9.
The parameter values and value ranges are listed in table 6.21.
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Nodes n Requests k noAmoebae maxIteration ε

50 1

n ∗ 0.5 10 20 0.6

50 5
50 10
100 1
100 5
100 10

Table 6.20: Slime Mold Sensitivity Analysis results.

Parameter Value (Range) Source

k
n ∗ 0.1, n ∗ 0.2, n ∗ 0.3,

n ∗ 0.4, n ∗ 0.5
preliminary
benchmarks

noAmoebae 10, 30, 50 preliminary
benchmarks

maxIteration 20, 50, 100 preliminary
benchmarks

Table 6.21: Slime Mold K-Means parameter values before Sensitivity Analysis.

The results of the Sensitivity Analysis can be seen in table 6.22. It shows that the
values k = n ∗ 0.5, noAmoebae = 10 and maxIteration = 20 performed best across all
combinations of network size and request level.

Nodes n Requests k noAmoebae maxIteration

50 1

n ∗ 0.5 10 20

50 5
50 10
100 1
100 5
100 10

Table 6.22: Slime Mold K-Means Sensitivity Analysis results.

6.3 Raw Result Data
In the following tables the raw result data of the competitive benchmarks are shown:
ABC in table 6.24, ABCK in table 6.25, Ant-based Clustering in table 6.26, Ant K-Means
in table 6.27, Fuzzy C-Means in table 6.28, Genetic K-Means in table 6.29, Hierarchical
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Clustering in table 6.30, K-Means in table 6.31, PSO in table 6.32, Slime Mold in
table 6.33 and Slime Mold K-Means in table 6.34.

The tables contain the average result for each network size and shows separate results for
Worker Peer clustering, Storage Peer clustering and the average of both. For reasons of
representation, the metrics discussed above (cf. section 6.1) are abbreviated. Table 6.23
provides the corresponding explanations.

Abbreviation Explanation
type Specifies, whether the results are from Worker Peer clustering,

Storage Peer clustering or the average of both.
nodes Number of Worker Peer, Storage Peer and Client Peer nodes

participating in the benchmark.
time Average execution time of one algorithm execution in seconds.

Rounded to 2 decimals.
DBI Average Davies-Bouldin index of one clustering result.

Rounded to 4 decimals.
DI Average Dunn index of one clustering result. Rounded to 4

decimals.
SC Average Silhouette coefficient of one clustering result.

Rounded to 4 decimals.
ADC Average Averaged Dissimilarity coefficient of one clustering

result. Rounded to 4 decimals.

Table 6.23: Metric abbreviation explained for competitive benchmark.

type Nodes time DBI DI SC ADC

worker
50 25.20 sec 1.5053 0.2619 0.0662 0.6160
100 85.14 sec 1.7040 0.2287 0.0037 0.7146
200 278.20 sec 1.6696 0.2247 -0.0458 0.8456

storage
50 25.77 sec 1.4112 0.4041 0.0429 0.5350
100 87.53 sec 1.5507 0.3165 -0.0261 0.6021
200 263.67 sec 1.6591 0.4167 -0.1685 0.9457

all
50 25.48 sec 1.4583 0.3330 0.0545 0.5755
100 86.34 sec 1.6274 0.2726 -0.0112 0.6583
200 270.93 sec 1.6643 0.3207 -0.1072 0.8957

Table 6.24: ABC raw result data.
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type Nodes time DBI DI SC ADC

worker
50 2.10 sec 1.1258 0.3534 0.2230 0.6745
100 8.27 sec 1.1541 0.3273 0.2102 0.6581
200 37.53 sec 1.1948 0.3233 0.1979 0.6403

storage
50 1.87 sec 1.0744 0.6046 0.3326 0.4196
100 7.81 sec 1.1352 0.5528 0.3207 0.4499
200 36.61 sec 1.2013 0.5086 0.2908 0.4471

all
50 1.98 sec 1.1001 0.4790 0.2778 0.5470
100 8.04 sec 1.1447 0.4400 0.2654 0.5540
200 37.07 sec 1.1980 0.4160 0.2443 0.5396

Table 6.25: ABCK raw result data.

type Nodes time DBI DI SC ADC

worker
50 0.51 sec 2.2532 0.3566 -0.0826 1.2113
100 0.55 sec 2.3191 0.3311 -0.1141 1.2045
200 0.57 sec 2.3400 0.3061 -0.1303 1.1831

storage
50 1.17 sec 1.9799 0.5667 -0.0443 0.9695
100 2.01 sec 2.0073 0.7000 -0.0640 0.9593
200 2.11 sec 2.1104 0.6000 -0.0655 0.9437

all
50 0.84 sec 2.1165 0.4617 -0.0634 1.0986
100 0.79 sec 2.1632 0.5156 -0.0891 1.1002
200 0.83 sec 2.2252 0.4531 -0.0979 1.0802

Table 6.26: Ant-based Clustering raw result data.
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type Nodes time DBI DI SC ADC

worker
50 6.18 sec 1.5582 0.4922 0.0711 1.0180
100 66.94 sec 1.6239 0.4426 0.0512 1.0069
200 524.95 sec 1.7113 0.5143 0.0324 0.9760

storage
50 5.19 sec 1.5636 1.0000 0.0798 0.8721
100 42.82 sec 1.6277 0.9539 0.0704 0.8941
200 482.40 sec 1.6542 0.9333 0.0567 0.9176

all
50 5.68 sec 1.5609 0.7461 0.0755 0.9472
100 54.88 sec 1.6258 0.6982 0.0608 0.9531
200 503.68 sec 1.6828 0.7238 0.0445 0.9407

Table 6.27: Ant K-Means raw result data.

type Nodes time DBI DI SC ADC

worker
50 0.02 sec - 0.0182 -0.0789 1.1150
100 0.09 sec - 0.0041 -0.0462 1.1076
200 0.79 sec - 0.0015 0.0135 1.0900

storage
50 0.09 sec - 0.7500 0.000 0.9696
100 0.29 sec - 0.5333 0.000 0.9877
200 1.68 sec - 0.5667 0.000 0.9940

all
50 0.05 sec - 0.3841 -0.0395 1.0423
100 0.19 sec - 0.2687 -0.0231 1.0476
200 1.23 sec - 0.2841 0.0068 1.0420

Table 6.28: Fuzzy C-Means raw result data.
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type Nodes time DBI DI SC ADC

worker
50 10.38 sec 1.5802 0.3919 0.0773 0.8903
100 35.31 sec 1.5587 0.3918 0.0767 0.8950
200 138.773 sec 1.5644 0.3876 0.0707 0.8877

storage
50 10.14 sec 1.6621 0.7243 0.1535 0.7294
100 38.46 sec 1.6271 0.7113 0.1576 0.7627
200 139.21 sec 1.6046 0.7124 0.1436 0.7441

all
50 10.26 sec 1.6212 0.5581 0.1154 0.8099
100 36.89 sec 1.5929 0.5515 0.1172 0.8289
200 138.99 sec 1.5845 0.5500 0.1071 0.8159

Table 6.29: Genetic K-Means raw result data.

type Nodes time DBI DI SC ADC

worker
50 0.14 sec 0.8281 0.3958 0.4112 0.3437
100 0.67 sec 0.8781 0.3698 0.4158 0.3194
200 3.86 sec 0.9201 0.3490 0.4166 0.3359

storage
50 0.14 sec 0.8965 0.6504 0.4558 0.2547
100 0.70 sec 0.9485 0.6155 0.4557 0.2835
200 4.22 sec 0.9489 0.5729 0.4294 0.2858

all
50 0.14 sec 0.8623 0.5231 0.4335 0.2992
100 0.68 sec 0.9133 0.4927 0.4358 0.3015
200 4.04 sec 0.9345 0.4610 0.4230 0.3108

Table 6.30: Hierarchical Clustering raw result data.

97



6. Evaluation

type Nodes time DBI DI SC ADC

worker
50 0.01 sec 1.0458 0.2785 0.2777 0.5110
100 0.03 sec 1.0726 0.2300 0.2770 0.5056
200 27.02 sec 1.1965 0.3663 0.2494 0.4940

storage
50 0.01 sec 0.9889 0.4886 0.3791 0.3080
100 0.04 sec 1.0378 0.4637 0.3825 0.3363
200 27.56 sec 1.2395 0.6393 0.3107 0.3279

all
50 0.01 sec 1.0173 0.3835 0.3284 0.4095
100 0.04 sec 1.0552 0.3469 0.3298 0.4210
200 27.29 sec 1.2180 0.5028 0.2801 0.4109

Table 6.31: K-Means raw result data.

type Nodes time DBI DI SC ADC

worker
50 4.07 sec 0.9781 0.2625 0.2792 0.4929
100 17.34 sec 1.0523 0.1916 0.2670 0.5047
200 70.54 sec 1.1410 0.1282 0.2559 0.5131

storage
50 4.00 sec 0.9397 0.4874 0.3780 0.3060
100 17.29 sec 1.0413 0.4699 0.3766 0.3284
200 72.33 sec 1.1066 0.4671 0.3580 0.3067

all
50 4.04 sec 0.9589 0.3749 0.3286 0.3994
100 17.31 sec 1.0468 0.3307 0.3218 0.4165
200 71.43 sec 1.1238 0.2977 0.3069 0.4099

Table 6.32: PSO raw result data.
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type Nodes time DBI DI SC ADC

worker
50 0.79 sec 1.2406 0.3168 0.1701 0.6459
100 2.93 sec 1.2816 0.3035 0.1596 0.6467
200 11.39 sec 1.3102 0.2678 0.1599 0.6403

storage
50 0.81 sec 1.2235 0.5935 0.2416 0.5136
100 2.97 sec 1.2519 0.5462 0.2379 0.5450
200 11.55 sec 1.2716 0.4995 0.2190 0.5215

all
50 0.80 sec 1.2320 0.4552 0.2058 0.5798
100 2.95 sec 1.2667 0.4249 0.1988 0.5959
200 11.47 sec 1.2909 0.3837 0.1895 0.5809

Table 6.33: Slime Mold raw result data.

type Nodes time DBI DI SC ADC

worker
50 0.92 sec 1.2091 0.3210 0.1933 0.6436
100 3.88 sec 1.2328 0.2965 0.1893 0.6362
200 16.67 sec 1.2422 0.2545 0.2067 0.6155

storage
50 0.87 sec 1.1828 0.6008 0.2678 0.5047
100 3.61 sec 1.1815 0.5531 0.2792 0.5258
200 16.01 sec 1.2160 0.5186 0.2487 0.5216

all
50 0.89 sec 1.1960 0.4609 0.2305 0.5742
100 3.75 sec 1.2071 0.4248 0.2342 0.5810
200 16.34 sec 1.2291 0.3865 0.2277 0.5685

Table 6.34: Slime Mold K-Means raw result data.
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6.4 Competitive Analysis
In this section, the result data of the competitive benchmarks showed above (cf. sec-
tion 6.3) is evaluated.

There is one peer clustering algorithm that falls out of line regarding the Davies-Bouldin
index and the Dunn index. The Fuzzy C-Means algorithm is the only benchmarked
algorithm which allows peers to be in multiple clusters at the same time. As both, the
Davies-Bouldin index and the Dunn index, measure the separation between clusters, the
Fuzzy C-Means algorithm shows extraordinary high results for the Davies-Bouldin index
and rather volatile results for the Dunn index.

In figure 6.1 the execution time for all benchmarked algorithms is depicted. Due to the
fact, that five algorithms have a shorter execution time than 20 seconds considering each
network size level, figure 6.2 provides a closer look into these algorithms.
Those five algorithms, Fuzzy C-Means, Ant-based Clustering, Hierarchical Clustering,
Slime Mold and Slime Mold K-Means, are quite close to each other. The Ant-based
Clustering algorithm shows a very constant execution time for each network size level.
This effect is due to the fact that it is the only benchmarked algorithm which does not
depend on the number of peers to be clustered. Its complexity is only dependent on
the number of iterations and the number of ant agents moving across the grid. The
Ant-based Clustering algorithm is also the only one, where the execution time of Worker
Peer clustering and Storage Peer clustering differs notably, as Storage Peer clustering
takes about twice as long as Worker Peer clustering.
While Fuzzy C-Means stands out with a low execution time, it is more than 3 times
faster than the Hierarchical Clustering algorithm, which may be due to its nature of
having overlapping clusters. However, it increases by 3.8 times (Ln to Mn) and by 6.5
times (Mn to Hn), whereas Hierarchical Clustering’s execution time increases by a factor
of 4.9 (Ln to Mn) and a factor of 5.9 (Mn to Hn).
Furthermore, the Slime Mold algorithm outperforms the Slime Mold K-Means algorithm,
which could be caused by the application of K-Means during the dispersion phase. As
mentioned below, K-Means does not scale very well which could affect the Slime Mold
K-Means algorithm. While they start with a comparable execution time at network size
level Ln, Slime Mold is 21 % faster at level Mn and 30 % faster at level Hn. Thus, the
execution time of Slime Mold increases by 3.7 times (Ln to Mn) and by 3.9 times (Mn to
Hn), while the execution time of Slime Mold K-Means increases by a factor of 4.2 (Ln to
Mn) and by a factor of 4.4 (Mn to Hn). Thus, the Slime Mold algorithm outperforms all
other algorithms, except Ant-based Clustering, in terms of scalability related to execution
time.
Interestingly, while K-Means scales rather good from network size level Ln to Mn, it then
shows an increase by a factor of about 682 to level Hn, which may be due to the fact
that the algorithm is repeated until no more cluster changes occur.

Consequently, six algorithms require more than 20 seconds for their execution, first and
foremost Ant K-Means with an average execution time of 503.68 seconds for a network
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size of level Hn. Thus, in terms of execution time Ant K-Means scales definitely worst
with a time increase of about ten times each network size level, as it is also repeated
until no peer changes its cluster anymore.

As execution time is an important factor for clustering algorithms, but by far not the only
one, four metrics measuring the quality of the peer clustering result are now discussed.

Figure 6.1: Execution time results for both Node Peer types and all network size levels.

Figure 6.2: Execution time results zoomed in.
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Figure 6.3 presents the overall results for the Davies-Bouldin index for all benchmarked
algorithms. In figure 6.4 the comparison of the Davies-Bouldin index results between
Worker and Storage Peer clustering is depicted for ABC, ABCK, Ant-based Clustering
and Ant K-Means, whereas in figure 6.5 it is shown for Genetic K-Means, Hierarchical
Clustering, K-Means, PSO, Slime Mold and Slime Mold K-Means.
As mentioned in section 4.4.2, the smaller the Davies-Bouldin index is, the better is the
clustering result.
The Hierarchical Clustering algorithm shows the best results for the Davies-Bouldin
index, including a low increase rate of 6 % (Ln to Mn) and 2 % (Mn to Hn). It is
followed by PSO, K-Means and ABCK, where PSO and K-Means scale rather poorly
in comparison. While ABCK increases by 4 % (Ln to Mn) and 5 % (Mn to Hn), PSO
increases by 9 % and 7 % per network size level and K-Means even by 4 % and 15 %.
This may be due to the fact that in Hierarchical Clustering, in contrast to the other
algorithms, no random cluster initialization is made, but instead the two globally best
matching clusters are merged together, starting with each peer having its own cluster.
Slime Mold K-Means and Slime Mold follow immediately, scaling fairly well with an
increase of 1 % (Ln to Mn) and 2 % (Mn to Hn), and 3 % and 2 %, respectively. Thus,
also with regard to the Davies-Bouldin index Slime Mold and Slime Mold K-Means may
not show to perform best in absolute numbers during the benchmarks which were set up,
but impress in terms of scalability regarding effectiveness.
The algorithm which definitely performed worst regarding the Davies-Bouldin index is
the Ant-based Clustering algorithm. Also it is the algorithm which shows the most
discrepancy between Worker Peer clustering and Storage Peer clustering, with Storage
Peer clustering being 12 % (50 nodes), 13 % (100 nodes) and 10 % (200 nodes) more
effective than Worker Peer clustering. This could be caused by the randomness of how
the peers are distributed on the grid on which the ants move around.
Overall, Genetic K-Means and Hierarchical Clustering are the only benchmarked al-
gorithms which show better results for Worker Peer clustering than for Storage Peer
clustering.
Furthermore, K-Means performs better in Storage Peer clustering on network size levels
Ln and Mn, but shows better results for Worker Peer clustering on a network consisting
of 200 nodes.
In figure 6.6 the Dunn index results for all benchmarked algorithms are depicted. Fig-
ure 6.7 provides the comparison of the Dunn index results between Worker Peer clustering
and Storage Peer clustering for ABC, ABCK, Ant-based Clustering, Ant K-Means and
Fuzzy C-Means, while figure 6.8 provides it for Genetic K-Means, Hierarchical Clustering,
K-Means, PSO, Slime Mold and Slime Mold K-Means.
As mentioned in section 4.4.3, the higher the Dunn index is, the better is the clustering
result.
By far, the Ant K-Means algorithm shows the best results for the average Dunn index,
as it is 34 % (50 nodes), 27 % (100 nodes) and 32 % (200 nodes) more effective than its
successor Genetic K-Means, indicating that Ant K-Means has less worst case scenario
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Figure 6.3: Davies-Bouldin results for both Node Peer types and all network size levels.

Figure 6.4: Comparison of Davies-Bouldin index results between Worker and Storage
Peers for ABC, ABCK, Ant-based Clustering and Ant K-Means for all network size
levels.

solutions, i.e low cohesion and well-separation. By contrast, Genetic K-Means has only
an average decrease rate of 1 %, whereas Ant K-Means first decreases 6 % (Ln to Mn),
but then again increases 4 % (Mn to Hn). This indicates, that Genetic K-Means is much
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Figure 6.5: Comparison of Davies-Bouldin index results between Worker and Storage
Peers for Genetic K-Means, Hierarchical Clustering, K-Means, PSO, Slime Mold and
Slime Mold K-Means for all network size levels.

more stable than Ant K-Means.
Slime Mold and Slime Mold K-Means are midranged with very similar results for the
Dunn index. They have a decrease around 7 % from network size level Ln to Mn and a
decrease around 9 % from network size level Mn to Hn.
Fuzzy C-Means and ABC share the last rank, showing a similar unstable behavior as
Ant K-Means.
Interestingly, K-Means first exhibits a decrease of 9 % (Ln to Mn), but then extraordinarily
increases by 45 % (Mn to Hn).

Overall it can be said, that according to the Dunn index results every benchmarked
algorithm performs by far better for Storage Peer clustering than for Worker Peer
clustering.

Figure 6.9 presents the overall results for the Silhouette coefficient for all benchmarked
algorithms. In figure 6.10 the comparison of the Silhouette coefficient results between
Worker and Storage Peer clustering is depicted for ABC, ABCK, Ant-based Clustering,
Ant K-Means and Fuzzy C-Means, whereas in figure 6.11 it is shown for Genetic K-Means,
Hierarchical Clustering, K-Means, PSO, Slime Mold and Slime Mold K-Means.
As mentioned in section 4.4.4, the higher the Silhouette coefficient is, the better is the
clustering result.

Just like for the Davies-Bouldin index results, the Hierarchical Clustering algorithm also
shows the best results for the Silhouette coefficient. It is about 32 % (50 and 100 nodes)
and 51 % (200 nodes) more effective than K-Means, which follows right behind. However,
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Figure 6.6: Dunn index results for both Node Peer types and all network size levels.

Figure 6.7: Comparison of Dunn index results between Worker and Storage Peers for
ABC, ABCK, Ant-based Clustering, Ant K-Means and Fuzzy C-Means for all network
size levels.

Hierarchical clustering increases by 0.5 % (Ln to Mn) and then slightly decreases by
3 % (Mn to Hn), whereas K-Means has an increase of 0.4 % (Ln to Mn) and then a
decrease of 15 % (Mn to Hn). The reason for the effectiveness of Hierarchical Clustering
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Figure 6.8: Comparison of Dunn index results between Worker and Storage Peers for
Genetic K-Means, Hierarchical Clustering, K-Means, PSO, Slime Mold and Slime Mold
K-Means for all network size levels.

is mentioned above and applies also here.
The Slime Mold and Slime Mold K-Means algorithms are again placed in the upper
midrange, where Slime Mold K-Means outperforms Slime Mold by 12 % (50 nodes), 18
% (100 nodes) and 20 % (200 nodes). Thus, Slime Mold K-Means first slightly increases
by about 2 % from network size level Ln to Mn, then decreases by 3 % from network
size level Mn to Hn, while Slime Mold has a decrease of 3 % from network size level Ln

to Mn and 5 % from network size level Mn to Hn. This, also considering the results of
the Davies-Bouldin index and execution time, indicates, that the application of K-Means
in the dispersion phase instead of the optimization by convergence to threshold value ε
in the aggregation phase requires more time but seems to be more efficient.
As well as for the Davies-Bouldin index results, the Ant-based Clustering algorithm also
performs worst regarding the Silhouette coefficient, which, as already mentioned, could
be caused by its randomness.
While Fuzzy C-Means starts off with the second-worst rank, it then massively increases
by 42 % (Ln to Mn) and 129 % (Mn to Hn). The contrary behavior shows the ABC
algorithm, which also already starts with the third-worst result, but then even shows a
drastical decrease of 121 % (Ln to Mn) and 857 % (Mn to Hn).

Additionally, ABC is the only algorithm which shows better Silhouette coefficient results
for Worker Peer clustering than for Storage Peer clustering.

In figure 6.12 the Averaged Dissimilarity coefficient results for all benchmarked algorithms
are depicted. Figure 6.13 provides the comparison of the Averaged Dissimilarity coefficient
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Figure 6.9: Silhouette coefficient results for both Node Peer types and all network size
levels.

Figure 6.10: Comparison of Silhouette coefficient results between Worker and Storage
Peers for ABC, ABCK, Ant-based Clustering, Ant K-Means and Fuzzy C-Means for all
network size levels.

results between Worker Peer clustering and Storage Peer clustering for ABC, ABCK,
Ant-based Clustering, Ant K-Means and Fuzzy C-Means, while figure 6.14 provides it for
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Figure 6.11: Comparison of Silhouette coefficient results between Worker and Storage
Peers for Genetic K-Means, Hierarchical Clustering, K-Means, PSO, Slime Mold and
Slime Mold K-Means for all network size levels.

Genetic K-Means, Hierarchical Clustering, K-Means, PSO, Slime Mold and Slime Mold
K-Means.
As mentioned in section 4.4.5, the smaller the Averaged Dissimilarity coefficient is, the
better is the clustering result.

Also for the Average Dissimilarity coefficient Hierarchical Clustering shows the best result,
being by 25 % (50 nodes), 28 % (100 nodes) and 24 % (200 nodes) more effective than
its successor PSO, which is followed immediately by K-Means with similar results.
Again, Slime Mold and Slime Mold K-Means are placed in the midfield. They provide
rather similar results, while both slightly have a increase of 3 % and 1 % for network
size level Ln to Mn and then a decrease of 3 % and 2 % for network size level Mn to Hn,
respectively.
The Ant-based Clustering algorithm again performs worst regarding the Average Dissimi-
larity coefficient, just as for the Davies-Bouldin index and the Silhouette coefficient.
While all benchmarked peer clustering algorithms scale rather fairly regarding the Aver-
aged Dissimilarity coefficient, ABC falls out of line and increases massively by 14 % (Ln

to Mn) and 36 % (Mn to Hn), which may be caused by the fact that the algorithm does
not apply any local optimization such as an additional K-Means step like its modification
ABCK.

Furthermore, ABC, just like all other algorithms, first shows better results for Storage
Peer clustering than for Worker Peer clustering, but for 200 nodes has better performance
when clustering Worker Peers.

108



6.4. Competitive Analysis

Figure 6.12: Averaged Dissimilarity coefficient results for both Node Peer types and all
network size levels.

Figure 6.13: Comparison of Averaged Dissimilarity coefficient results between Worker and
Storage Peers for ABC, ABCK, Ant-based Clustering, Ant K-Means and Fuzzy C-Means
for all network size levels.
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Figure 6.14: Comparison of Averaged Dissimilarity coefficient results between Worker
and Storage Peers for Genetic K-Means, Hierarchical Clustering, K-Means, PSO, Slime
Mold and Slime Mold K-Means for all network size levels.
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6.5 Statistical Significance of the Results

In order to evaluate and compare Slime Mold and Slime Mold K-Means to the other
benchmarked peer clustering algorithms profoundly, a statistical analysis as described in
[46] is done.

In detail, one-way ANOVA tests are performed with the following setup [46]:
H0 is the null-hypothesis, which states that no significant difference between metric M of
the two algorithms A and B exists, whereas H1 is the corresponding alternative-hypothesis.
Consequently, if H0 is rejected, there is not enough data available to determine whether
algorithm A or B is significantly better than the other one. Furthermore, H1 is concluded
if H0 is rejected [46].

Slime Mold and Slime Mold K-Means are tested separately for all combinations of
network size levels (Ln, Mn, Hn) and exactly three queries and job requests (cf. sec-
tion 6.1). As metric M the Averaged Dissimilarity coefficient, explained in detail in
section 4.4.5, is chosen, as it was especially developed in the course of this thesis and it
particularly focuses on the cohesion within the clusters. The significance level for the
ANOVA tests is chosen as α = 0.05 [46].

At first, Slime Mold is taking the role of algorithm A, whereas all other benchmarked
algorithms, including Slime Mold K-Means, embody algorithm B. Table 6.35 shows the
results of these tests.
After that, Slime Mold K-Means embodies algorithm A, while all other benchmarked
algorithms, including Slime Mold, take the role of algorithm B. These test results are
shown in table 6.36.
For both result tables it applies, if H0 is concluded, the column h in the table has the
value 0. If there is a significant difference between the tested peer clustering algorithms,
i.e. H0 is rejected, h takes the value 1 if algorithm A performs significantly better than
algorithm B, otherwise h has the value -1.

Example For a network size of 100 nodes, Slime Molds Averaged Dissimilarity coeffi-
cient is 0.5959 with a standard deviation of 0.0002. For the same configuration, ABC
has an Averaged Dissimilarity coefficient of 0.6583 with a standard deviation of 0.0003.
The result of the one-way ANOVA test is p = 0.001271288.
The significance level is α = 0.05 and as α > p, the null hypothesis H0 is rejected. Thus,
the alternative-hypothesis H1 is concluded.
The test proves that there exists a significant difference of the Averaged Dissimilarity
coefficient metric values. Therefore, Slime Mold performs significantly better than ABC
at this configuration and h is set to 1.

As shown in table 6.35, while for a network size of 50 nodes, no significant differ-
ence between Slime Mold and ABC and ABCK, respectively, can be determined, Slime
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Mold performs significantly better than ABC but is outperformed by ABCK on network
levels Mn and Hn. For all other benchmarked algorithms the result is the same for
all network size levels: While Slime Mold performs significantly better than Ant-based
Clustering, Ant K-Means, Fuzzy C-Means and Genetic K-Means, it is outperformed
by Hierarchical Clustering, K-Means and PSO in terms of the Averaged Dissimilarity
coefficient.
As can be seen in table 6.36, Slime Mold K-Means achieves rather similar results but
exactly the same final outcomes regarding significant differences.
Also on each network size level no significant difference between Slime Mold and Slime
Mold K-Means exists.
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6.5. Statistical Significance of the Results

mean ± stdev p-value h
50 nodes

ABC 0.5755 ± 0.0008 0.790185171 0
ABCK 0.5470 ± 0.0008 0.073269084 0

Ant-based Clustering 1.0986 ± 0.0007 5.77062E-10 1
Ant K-Means 0.9472 ± 0.0001 5.65653E-10 1

Fuzzy C-Means 1.0423 ± 0.0001 5.55717E-11 1
Genetic K-Means 0.8099 ± 0.0003 6.20493E-08 1

Hierarchical Clustering 0.2992 ± 0.0003 1.21269E-08 -1
K-Means 0.4095 ± 0.0005 1.84906E-06 -1

PSO 0.3994 ± 0.0003 4.03503E-07 -1
Slime Mold 0.5798 ± 0.0004 - -

Slime Mold K-Means 0.5742 ± 0.0002 0.63865944 0
100 nodes

ABC 0.6583 ± 0.0003 0.000417622 1
ABCK 0.5540 ± 0.0001 0.001271288 -1

Ant-based Clustering 1.1002 ± 0.00023 1.65439E-11 1
Ant K-Means 0.9531 ± 0.0002 2.38008E-10 1

Fuzzy C-Means 1.0476 ± 2.57904E-05 5.79645E-12 1
Genetic K-Means 0.8289 ± 0.0002 9.53206E-09 1

Hierarchical Clustering 0.3015 ± 0.0001 6.28362E-10 -1
K-Means 0.4210 ± 0.0001 3.0251E-08 -1

PSO 0.4165 ± 0.0003 1.6151E-07 -1
Slime Mold 0.5959 ± 0.0002 - -

Slime Mold K-Means 0.5810 ± 0.0001 0.130135878 0
200 nodes

ABC 0.8957 ± 0.0220 0.001496328 1
ABCK 0.5396 ± 0.0004 0.004216221 -1

Ant-based Clustering 1.0802 ± 0.0003 3.19957E-11 1
Ant K-Means 0.9407 ± 2.90152E-05 1.03927E-11 1

Fuzzy C-Means 1.0420 ± 1.15583E-05 9.97955E-13 1
Genetic K-Means 0.8159 ± 0.0002 2.82205E-09 1

Hierarchical Clustering 0.3108 ± 7.25302E-05 2.23741E-10 -1
K-Means 0.4109 ± 5.80434E-05 6.94393E-09 -1

PSO 0.4099 ± 7.33879E-05 8.5432E-09 -1
Slime Mold 0.5809 ± 0.0002 - -

Slime Mold K-Means 0.5685 ± 0.0001 0.136412571 0

Table 6.35: Slime Mold ANOVA results.
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6. Evaluation

mean ± stdev p-value h
50 nodes

ABC 0.5755 ± 0.0008 0.927539959 0
ABCK 0.5470 ± 0.0008 0.095272996 0

Ant-based Clustering 1.0986 ± 0.0007 2.14993E-10 1
Ant K-Means 0.9472 ± 0.0001 6.28834E-11 1

Fuzzy C-Means 1.0423 ± 6.00725E-05 4.33966E-12 1
Genetic K-Means 0.8099 ± 0.0003 1.15244E-08 1

Hierarchical Clustering 0.2992 ± 0.0003 3.06358E-09 -1
K-Means 0.4095 ± 0.0005 8.33325E-07 -1

PSO 0.3994 ± 0.0003 1.16171E-07 -1
Slime Mold 0.5798 ± 0.0003 0.63865944 0

Slime Mold K-Means 0.5742 ± 0.0002 - -
100 nodes

ABC 0.6583 ± 0.0003 4.63782E-05 1
ABCK 0.5540 ± 0.0001 0.005729103 -1

Ant-based Clustering 1.1002 ± 0.0002 4.18507E-12 1
Ant K-Means 0.9531 ± 0.0002 5.35059E-11 1

Fuzzy C-Means 1.0476 ± 2.57904E-05 5.68231E-13 1
Genetic K-Means 0.8289 ± 0.0002 2.01672E-09 1

Hierarchical Clustering 0.3015 ± 0.0001 2.38163E-10 -1
K-Means 0.4210 ± 0.0001 1.38983E-08 -1

PSO 0.4165 ± 0.0003 1.36687E-07 -1
Slime Mold 0.5959 ± 0.0002 0.130135878 0

Slime Mold K-Means 0.5810 ± 0.0001 - -
200 nodes

ABC 0.8957 ± 0.0220 0.001170781 1
ABCK 0.5396 ± 0.0004 0.018074686 -1

Ant-based Clustering 1.0802 ± 0.0003 1.49938E-11 1
Ant K-Means 0.9407 ± 2.90152E-05 1.54553E-12 1

Fuzzy C-Means 1.0420 ± 1.15583E-05 1.29002E-13 1
Genetic K-Means 0.8159 ± 0.0002 8.03541E-10 1

Hierarchical Clustering 0.3108 ± 7.25302E-05 8.94089E-11 -1
K-Means 0.4109 ± 5.80434E-05 3.17742E-09 -1

PSO 0.4099 ± 7.33879E-05 4.31318E-09 -1
Slime Mold 0.5809 ± 0.0002 0.136412571 0

Slime Mold K-Means 0.5685 ± 0.0001 - -

Table 6.36: Slime Mold K-Means ANOVA results.
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6.6. Summary

6.6 Summary
In the beginning of this Chapter the benchmark methodology is described. Thereafter,
an extensive Sensitivity Analysis is presented, which serves to find the optimal parameter
combination for each benchmarked algorithm. Those parameter values are then used
for the competitive benchmarks. Then, the results of the competitive benchmarks are
presented, which include eleven peer clustering algorithms, all shortly introduced in
section 2.3.

While the Ant-based Clustering algorithm impresses with its very constant execution
time, it sticks out with bad quality results compared to the other algorithms.
On the contrary, Slime Mold and Slime Mold K-Means at first glance never belong to
the algorithms providing the most effective clustering results, but are always midranged.
Nevertheless, they scale very well in terms of effectiveness and time, as they never
appear to show unwanted massive increases or decreases in clustering effectiveness results.
Therefore, they are likely to provide very satisfying results in larger scaled environments.
As the Hierarchical Clustering algorithm is one of the conventional algorithms, it definitely
impresses with short execution times. Furthermore, it also shows to be rather effective,
especially when examining the Davies-Bouldin index, the Silhouette coefficient and
the Average Dissimilarity coefficient results. Regarding the Dunn index, it was only
outperformed by Ant K-Means and Genetic K-Means, which both have shown to be
lacking in terms of execution time.
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CHAPTER 7
Conclusion and Future Work

In this Chapter possible improvements to the SIPCA framework, which could be made
in the future, are discussed. Afterwards, a final conclusion to this thesis is drawn.

7.1 Future Work
After the completion of this thesis, there are still some possible topics for future research
work with regard to the SIPCA framework:

• Combination of different algorithms: As mentioned in section 4.6, the SIPCA
framework would offer the possibility to mix different peer clustering algorithms.
Therefore, it would be possible to investigate the combination of algorithms, for
example, in order to determine whether two algorithms obtain great results as they
are able to complement each other.
Thus, the combination of different algorithms would offer an interesting field of
research.

• Combination of different approaches: As briefly addressed in section 1.1, a
topic of interest is to investigate the effectiveness of combining peer clustering with
load balancing and load clustering, as it would offer even more sophisticated ways
of resource allocation.

• Churn: In section 6.1 it is mentioned, that no churn (i.e. the fluctuation of
node participation, cf. section 2.1) is simulated during the benchmark execution.
Nevertheless, as the fact of peers entering and leaving the network dynamically
is a major topic in real-world applications, this would offer an interesting field of
research, especially with the above mentioned combination of algorithms.
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• Usability & Output Visualization: Especially regarding the usability of the
framework is room for advancement. The development of a graphical user interface
would be a huge improvement of the user experience, as it would facilitate the
configuration and execution of benchmarks in the framework.
Furthermore, a great advantage would be the addition of more default output
options of the benchmark results, such as the automatic creation of plots. This
visualization of the benchmark output would allow the user to immediately obtain
an overview of the benchmark results without investing time for visualization.

• Large Scale Tests: The benchmark results, presented in Chapter 6, show that
multiple algorithms, notably Hierarchical Clustering, Slime Mold and Slime Mold
K-Means, perform well in terms of time and quality, even when the amount of
network nodes increases.
An interesting point of research would be the investigation, if this trend is able
to continue as the network size keeps increasing. Thus, benchmarks in larger
environments would be of great interest.

Regarding the implementation of Slime Mold and Slime Mold K-Means the following
aspects could lead to an improvement when being researched:

• Vegetative Movement: In the vegetative movement phase amoebae are initialized
randomly, i.e. the given number of cluster means are initialized randomly, as it
is done for many other algorithms. An interesting approach to analyze would
be to investigate the algorithms’ behavior and performance when using a more
sophisticated way of cluster mean initialization.

• Combination with Hierarchical Clustering: Although the Slime Mold com-
bination with K-Means shows fairly satisfactory results, a combination of Slime
Mold with Hierarchical Clustering would be an interesting research issue, as the
Hierarchical Clustering algorithm thoroughly provides top results in terms of time
and effectiveness.

7.2 Conclusion
The main goal of this thesis is the creation of a Peer Model based peer clustering
framework. It shall allow the fair and systematic benchmarking and comparison of
peer clustering algorithms. Furthermore, the framework shall enable the plugging of
different peer clustering algorithms, in such a way that easy exchangeability of the applied
algorithms is possible.

The framework is implemented on top of the Peer Model, which allows the frameworks
component-based architecture. Additionally, while there are many extensive in-depth
configurations offered by the framework for advanced users, for the majority of configu-
ration parameters default values are given. This allows new users to directly focus on
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benchmarking.
The algorithms are implemented using generic interfaces. Therefore, the algorithms can
be exchanged easily. Also methods for distance measurement and metrics to evaluate the
clustering results are implemented in such a Plug & Play manner. Thus, other types of
distance measurements and metrics can be added without great effort.

While many well-known conventional and swarm-based clustering algorithms are imple-
mented for benchmarking, also two innovative algorithms imitating the life-cycle of the
Dictyostelium discoideum slime mold are implemented, namely Slime Mold and Slime
Mold K-Means. They are based on a swarm intelligent algorithm Šešum-Čavić et. al.
present in [45].
All implemented algorithms are benchmarked and evaluated using the SIPCA bench-
marking framework.

Although Slime Mold and Slime Mold K-Means at first glance never belong to the most
effective peer clustering algorithms according to the benchmark results, they scale very
well regarding execution time and effectiveness. They are always midranged, but never
seem to provide unwanted massive variation in clustering effectiveness results.
On the contrary, many other algorithms either show unwanted increase or decrease, or
while impressing with great effectiveness, showing bad results in terms of execution time,
or vice versa.
Surprisingly, the Hierarchical Clustering algorithm outperforms all other implemented
algorithms. As it is a conventional algorithm, it definitely impresses with short execution
times. But it also shows to be rather effective, especially when investigating the results
for the Davies-Bouldin index, the Silhouette coefficient and the Averaged Dissimilarity
coefficient.

This work shows that it is possible to provide a framework allowing the systematic
evaluation and comparison of peer clustering algorithms. Furthermore, two innovative
peer clustering algorithms are presented which outperform all other swarm-inspired
algorithms.
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