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Kurzfassung

Die logistische Regression ist eine weithin gebräuchliche Klassifizierungsmethode, die
zur Modellierung einer binären abhängigen Variable verwendet wird. Viele beispielhafte
Fälle solch einer binären logistischen Regression verwenden Datensätze, die eine unaus-
gewogene Verteilung der abhängigen Variable aufweisen und zudem oftmals sogenannte
Ausreißer inkludieren – dies sind atypische Beobachtungen in den zugehörigen Daten.
Sowohl die Ausreißer als auch die unausgewogene Verteilung der abhängigen Variable
können allerdings die Prognosequalität des Models stark verringern. Daher verlangen
derartige Datenstrukturen eine robuste Methode, die für das Problem eines unausgewo-
genen statistischen Lernprozesses geeignet ist.

Diese Arbeit schlägt daher eine logistische Regression für unausgewogene Datensätze
basierend auf dem Bianco-Yohai-Schätzer vor, welcher als höchst robuste Methode für
logistische Regressionen angesehen werden kann. Das Problem einer unausgewogenen
Verteilung der abhängigen Variable wird dabei angegangen, indem kostensensitive Eigen-
schaften in die Zielfunktion zur Parameterbestimmung integriert werden. Daher inkludiert
die Umsetzung die Adaption eines iterativen Algorithmus zur Berechnung des Bianco-
Yohai Schätzers. Die Arbeit stellt zudem auch eine zusätzliche Methode zur Erkennung
von sogenannten Hebelpunkten vor, welche für die gewichtete Version des Algorithmus
vonnöten und dabei auch von immenser Bedeutung für die Anwendung des Bianco-Yohai-
Schätzers sind, da auf diese Weise dessen Anwendbarkeit sichtlich erweitert wird.

Die erhaltenen kostensensitiven Formen des Bianco-Yohai-Schätzers, sowohl in der
gewichteten als auch in der Originalfassung, werden anschließend mit den jeweiligen
nicht-robusten und nicht-kostensensitiven Formen verglichen. Die Ergebnisse der Sim-
ulation sowie die Anwendungsbeispiele mit einem unausgewogenen Datensatz aus dem
Bereich der Kreditwürdigkeitsprüfung zeigen folgende Charakteristiken: Für unausge-
wogene Datensätze erhöht die Berücksichtigung der Kosten die Qualität des Bianco-
Yohai-Schätzers sowohl in den originalen als auch den gewichteten Versionen signifikant.
Zudem bietet diese Methode auch eine weitaus bessere Prognosequalität im Vergleich zur
logistischen Regression, wenn die Daten schlechte Hebelpunkte enthalten. Somit bietet
die kosten-sensitive Form des Bianco-Yohai-Schätzers sowohl in seiner ursprünglichen als
auch in seiner gewichteten Version eine statistisch zuverlässige Klassifikationsmethode
für die Modellierung unausgewogener Daten mit gegebenen Ausreißern.



Abstract

Logistic regression represents a widely used classification method for modeling a binary
response variable. Many exemplary cases of binary logistic regression employ data sets
with an imbalanced distribution of the output variable and often include outliers – atyp-
ical observations in the data. Both outliers and an imbalanced class distribution can
greatly reduce the predictive power of the classifier. Therefore, such data structures
require a robust method suitable for imbalanced learning problems.

This thesis proposes a robust logistic regression for imbalanced data sets based on the
Bianco-Yohai estimator, a highly robust method for logistic regression. The imbalance
learning problem is addressed by including the cost-sensitive features in the objective
function for parameter estimation. Thus, the implementation involves adapting the it-
erative algorithm for computing the Bianco-Yohai estimator. The paper also proposes
an additional method for detecting leverage points required for the weighted version of
the estimator, which significantly expands the data domain in which the Bianco-Yohai
estimator is applicable.

The obtained cost-sensitive forms of the Bianco-Yohai estimator, in the weighted and
original versions, are compared with the corresponding non-robust and non-cost-sensitive
forms. The results of the simulation experiments and the use case with the imbalanced
data set employed for credit scoring indicate the following. For imbalanced data sets,
the inclusion of cost significantly improves the performance of the Bianco-Yohai estima-
tor in both the original and weighted versions. Moreover, the methods provide better
performance compared to logistic regression when the data contain bad leverage points.
Thus, the cost-sensitive form of the Bianco-Yohai estimator, in both its original and
weighted versions, provides a statistically reliable classifier for modeling imbalanced data
containing outliers.
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1. Introduction

With the rapid pace of technological change, data collection techniques have improved
significantly and the utilization of data processing methods has likewise increased. Sta-
tistical learning is an example of such data processing techniques and refers to methods
that use statistical inference to derive conclusions based on data at hand. In the case that
the statistical learning task involves the prediction of a measurement belonging to one
of several possible categories, the task can be characterized as classification. One of the
firmly established and common statistical learning methods for classification is logistic
regression. The advantages of logistic regression include high model interpretability and
the determination of the class membership probabilities instead of a mere class predic-
tion. Moreover, due to the adequate formal model definition, many statistical inference
methods also allow for further model analysis. Therefore, logistic regression is often
preferred over state-of-the-art machine learning models in a diverse range of fields.

A frequent challenge in logistic regression, but also in other binary classification meth-
ods where the output measurement only features two possible categories, arises when one
class is observed more frequently than another. Typical applications include modeling
credit scores in finance or predicting the risk of diseases in healthcare. Such classifica-
tion tasks should be modeled using imbalance learning methods, given that the resulting
classifier could otherwise entail a poor predictive performance, especially for the minority
class. The two most common approaches in imbalance learning include sampling meth-
ods and cost-sensitive learning, whereby the latter approach incorporates cost features
into the classification paradigms. In the context of imbalance learning, cost-sensitive
methods typically introduce different costs for majority and minority class observations.

Another obstacle regarding the application of learning techniques to various data struc-
tures concerns the fact that all statistical methods require a set of assumptions, which
are rarely satisfied in real-world modeling problems. These assumptions usually include
requirements on data distribution. Applying a statistical learning model to data that
does not meet the distributional requirements often results in unacceptably low statisti-
cal efficiency of the resulting estimates. Classical statistical methods refer to modeling
techniques assuming that all observations conform to the desired distribution. Although
theoretically and computationally convenient, classical statistics often do not provide a
suitable tool for the statistical application in data analysis. In most cases, the majority
of data points offer the assumed distributional characteristics, yet however, a minority of
observations frequently follow a different pattern or no pattern at all. Such data points
are called outliers. Thus, the objective of robust statistics is is the development of meth-
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1. Introduction

ods that that provide reliable statistical estimates when the data contain a fraction of
outliers. In practice, almost all data sets encompass outliers of some sort.

A data set with an imbalanced distribution of an output variable and a proportion
of outliers should be modeled by considering both imbalance learning methods and a
robust approach. Cost-sensitive features or robust methods were included in the logistic
regression model since a long time, yet many statistical modeling tools do not provide
cost-sensitive modeling of the robust logistic regression. Hence, this paper focuses on the
implementation of a robust logistic regression model suitable for imbalance learning prob-
lems. The method proposed within this work incorporates the observation costs into the
Bianco-Yohai estimator, a robust logistic regression model. The method implementation
is based on the algorithm for the Bianco-Yohai estimator proposed by Croux and Haes-
broeck in [1]. The paper also proposes another outlier detection method integrated into
the algorithm, which renders the robust estimator more suitable for real-world settings.
Thus, it hopes to contribute to a better parameter estimation in the case of imbalanced
data sets containing outliers.

This thesis is organized as follows. Chapter 2 defines the logistic regression and shows
the algorithm for estimating the parameters. Next, Chapter 3 addresses cost-sensitive
learning for data sets with an unbalanced distribution of the output variable. The cost-
sensitive form of logistic regression is defined, followed by a proposal for model evaluation
metrics for imbalanced data sets. In Chapter 4, the main concepts of robustness are
explained and the Bianco-Yohai estimator for logistic regression is introduced. Chapter 5
presents the existing iterative algorithm for the Bianco-Yohai estimator, followed by the
algorithm modification to account for the imbalance learning costs. Chapter 6 reports
empirical evaluation, whereby in Section 6.1 the parameters of the estimator are evaluated
using a simulation example, and in Section 6.2 the estimation is analyzed using credit
scoring data. Finally, Chapter 7 summarizes conclusions based on the evaluation results.
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2. Logistic Regression Model for
Classification

Statistical learning refers to methods that learn from data by drawing new conclusions
based on the data at hand, using statistical inference. If the objective of a statistical
learning task is is the prediction of an outcome measurement by using one or more input
(or explanatory) variables, then the task can be characterized as supervised learning.
Moreover, based on the type of the outcome variable, the supervised learning methods can
be divided into regression and classification problems. In a regression task, the outcome
variable is numeric (or quantitative), whereas in a classification task, the outcome variable
is categorical. Logistic regression is an example of a classification problem where the
output variable falls into one of the K classes. This work focuses on the logistic regression
with a binary output variable, which has only two classes. [2]

2.1. Definition of the Logistic Regression Model

Logistic regression models a binary random variable Y that takes on the value one if an
observed event has happened and zero in the absence of the event. For a p-dimensional
input variable X , the probability of an event is denoted as

π := P(Y = 1 | X = x),

and the outcome variable Y follows the Bernoulli distribution with the probability func-
tion

P(Y = y | π) = πy(1− π)1−y, y ∈ {0, 1}.
The logit function is a transformation of the posterior probability π and it is defined as
follows:

logit(x) = log
π

1− π
= log

P(y = 1 | X = x)

P(y = 0 | X = x)
. (2.1)

Logistic regression models the logit transformation with the linear function of the inputs

logit(x) = β0 + β1,1x1 + β1,2x2 + · · ·+ β1,pxp

= β0 + βT
1 x,

(2.2)

with x = (x1, · · · , xp)T , β0 ∈ R and β1 = (β1,1, · · · , β1,p)T ∈ Rp.
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2. Logistic Regression Model for Classification

The posterior probability terms arise from Equation (2.2) together with the condition
P(Y = 0 | X = x) + P(Y = 1 | X = x) = 1:

P(Y = 1 | X = x) =
exp( β0 + βT

1 x )

1 + exp( β0 + βT
1 x )

(2.3)

P(Y = 0 | X = x) =
1

1 + exp( β0 + βT
1 x )

(2.4)

2.2. Fitting Logistic Regression Models

Logistic regression parameters are mainly estimated with the maximum likelihood method.
Maximum likelihood is appropriate for parameter estimation of the non-normal models,
such as the logistic regression with a Bernoulli distributed outcome variable. [3]

Sampled data can be expressed by a model matrix X ∈ Rn×(p+1), where each row i
represents a p-dimensional multivariate observation x i with an intercept term included,
and each column j = 1 represents an n-dimensional sample of the input variable. The first
column of the model matrix X is X.,1 = (1, · · · , 1)T ∈ Rn and represents the intercept
term. Each observation x i has an outcome yi ∈ {0, 1}. The likelihood function L(β)
represents the joint probability of y1, · · · , yn, written as the function of the parameter β,

L(β) =

n

i=1

πyi(xi,β)

with πyi(xi,β) = P(Y = yi | X = xi) and

β =
β0
β1

∈ R(p+1). (2.5)

A maximum likelihood estimator maximizes the likelihood function. In practice, the
logarithm of the likelihood is more convenient and results in the log-likelihood function
denoted as l(β). Maximizing the log-likelihood is equivalent to maximizing the likelihood
function itself, and therefore, the maximum likelihood estimator can be defined as:

β̂ = argmax
β∈R(p+1)

l(β).
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2. Logistic Regression Model for Classification

The log-likelihood function can be depicted in the following way:

l(β) =
n

i=1

log πyi(x i,β)

=
n

i=1

{yi log π (xi,β) + (1− yi) log [1− π (xi,β)]} .
(2.6)

The common way to formally describe the maximum likelihood estimator for logistic
regression is as a minimizer of the sum of deviances di:

β̂ = argmin
β∈R(p+1)

n

i=1

di(x
T
i β; yi) (2.7)

with
di(x

T
i β; yi) = −yi log π (xi,β)− (1− yi) log [1− π (xi,β)] . (2.8)

Once the logistic regression parameters are known, the posterior probabilities are com-
puted by applying formulas in Equation (2.3) and Equation (2.4). Afterwards, the esti-
mated probabilities π̂ are compared with a cut-off value c, where the output value of a
new observation is predicted as one if π̂ > c, and zero if otherwise. The common cut-off
value is 0.5, but different cut-off values can be used for specific settings.

The parameter β is usually estimated with the Newton-Raphson algorithm. Combining
the log-likelihood function as shown in Equation (2.6) with the posterior probabilities
from Equation (2.3) and Equation (2.4), the objective can be further rewritten as

l(β) =

n

i=1

yi log
exp β xi

1 + exp (β xi)
+ (1− yi) log

1

1 + exp (β xi)

=

n

i=1

yiβ xi − yi log 1 + exp β xi − (1− yi) log 1 + exp β xi

=
n

i=1

yiβ xi − log 1 + exp β xi .
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2. Logistic Regression Model for Classification

Since the maximum likelihood method involves maximizing the objective log-likelihood,
the first derivative is set to zero. The resulting first-order equations are also called score
equations:

∂l(β)

∂β
=

n

i=1

yixi − 1

1 + exp (β xi)
exp β xi xi

=
n

i=1

[yi − π (xi,β)]xi = 0.

(2.9)

The score equations are nonlinear in β and are therefore solved in an iterative manner,
by reweighting the ordinal least-square. The second derivative or Hessian matrix of the
log-likelihood is likewise required for the method:

∂2l(β)

∂β∂β
= −

n

i=1

π (xi;β) [1− π (xi;β)]xixi . (2.10)

Starting from βold , the updated value βnew corresponds to

βnew = βold − ∂2l

∂β∂β
(βold)

−1
∂l(β)

∂β
. (2.11)

The Newton-Raphson algorithm obtains a simpler formulation in a matrix representation.
The multivariate form of the required variables is listed below:

• y ∈ Rn×1 vector of the yi,

• X ∈ Rn×(p+1) data matrix containing observations xi,

• π ∈ [0, 1]n×1 vector of estimated probabilities π (xi,βold ),

• W ∈ Rn×n diagonal matrix with weights π (xi,βold ) (1− π (xi,βold )) in the di-
agonal.

Accordingly, the first and second derivatives of the log-likelihood function given by Equa-
tion (2.9) and Equation (2.10), respectively, can be expressed in matrix notation as

∂l(β)

∂β
= X (y − π),

∂2l(β)

∂β∂β
= −X WX.
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2. Logistic Regression Model for Classification

Thus, the update step of the Newton-Raphson algorithm described in Equation (2.11)
leads to the following expression in matrix form:

βnew = βold + X WX
−1

X (y − π)

= X WX
−1

X W Xβold +W−1(y − π)

= X WX
−1

X W

weighted LS

z,

with the adjusted response

z = Xβold +W−1(y − π)

adjustment

). (2.12)

The Newton-Raphson algorithm is also referred to as iteratively reweighted least-square
(IRLS) algorithm because each iteration solves the weighted least-squares problem,

βnew = argmin
β

(z −Xβ) W (z −Xβ).
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3. Cost-sensitive Learning for the Class
Imbalance Problem

Given the augmentation of new data amounts and the simultaneous increase of the respec-
tive data utilization, new challenges have emerged in the data-driven area of statistical
learning. As a result, various statistical methods evolved to solve commonly occurring is-
sues, such as for instance imbalanced learning. Generally, imbalanced learning is defined
as the learning process for data representation and information extraction with severe
data distribution skews to develop effective decision boundaries to support the decision-
making process [4]. Given a binary classification, an imbalanced problem refers to highly
imbalanced class distributions of an output variable, introducing the terms of positive
and negative classes for the minority and majority class, respectively [5]. If the class im-
balance problem is not considered in advance or during the implementation of a statistical
learning method, the resulting classifier could result in poor predictive performance, par-
ticularly for the minority class. The common approaches in imbalanced learning involve
sampling methods and cost-sensitive learning, but diverse learner-specific methods also
include kernel-based learning, active learning, one-class learning, and ensemble methods
[4].

Sampling methods tackle the class imbalance problem before applying a statistical
learning model in a straightforward manner and thereby dominate the imbalance learn-
ing approaches available [4]. In general, sampling methods refer to the modification of an
imbalanced data set by a given mechanism in order to provide a balanced distribution,
and thereby include random oversampling, random undersampling, synthetic sampling
with data generation, cluster-based sampling methods, and integration of sampling and
boosting [4]. In comparison, cost-sensitive learning methods target the problem of imbal-
anced learning by using different cost matrices that describe the costs for misclassifying
any particular data example [4]. There are three broad approaches to implement cost-
sensitive learning for imbalanced data. The first approach applies misclassification costs
to the data set as a form of data-space weighting – these techniques are essentially cost-
sensitive bootstrap sampling approaches where misclassification costs are used to select
the best training distribution. In the second approach, cost-minimizing techniques are
applied for the combination schemes of ensemble methods. Finally, the third approach
incorporates cost-sensitive features directly into classification paradigms to fit the cost-
sensitive framework into the classifiers [4]. This work focuses on the latter approach
by implementing the costs into the logistic regression model and simply refers to it as
"cost-sensitive learning".
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3. Cost-sensitive Learning for the Class Imbalance Problem

3.1. Cost-sensitive Logistic Regression

In a common cost-sensitive learning method, each observation i acquires a corresponding
cost ci. When a cost-sensitive model is used for the imbalance data problem in a binary
classification, there are usually two different cost values for the output variable classes.
The cost matrix is employed to express the different classification error costs, as shown
in Table 3.1. The value cFN represents the weights that classify a positive class as a
negative class, whereas the weights that categorize a negative class as a positive class
correspond to the value cFP .

True Positive yi = 1 True Negative yi = 0

Predicted Positive ŷi = 1 0 cFP

Predicted Negative ŷi = 0 cFN 0

Table 3.1.: The cost matrix for the binary classification task

The misclassification costs are further incorporated into the logistic regression model
and the log-likelihood function in Equation (2.6) is therefore modified, resulting in the
cost-sensitive loss function for the logistic regression:

l(β) =
n

i=1

ci log πyi(x i,β) (3.1)

with

ci =
cFP , for yi = 0

cFN , for yi = 1

Accordingly, the maximum likelihood estimator for the cost-sensitive logistic regression
is defined as:

β̂ = argmin
β∈R(p+1)

n

i=1

ci · di(xT
i β; yi) (3.2)

where di are deviances defined in Equation (2.8).

Comparable to the non-cost-sensitive setting, the maximum likelihood estimator β̂ for
cost-sensitive logistic regression with the log-likelihood given in Equation (3.1) can be
estimated using the IRLS algorithm. For a vector c ∈ Rn containing the cost ci in the
i-th entry, the first and second derivatives of the log-likelihood can be expressed in a
matrix notation as

9



3. Cost-sensitive Learning for the Class Imbalance Problem

∂l(β)

∂β
= X Diag(c) (y − π),

∂2l(β)

∂β∂β
= −X Diag(c)WX,

with Diag(c) defined as the square diagonal matrix with the elements of the vector c on
the main diagonal. Therefore, the update step of the IRLS algorithm converts to

βnew = βold + X Diag(c)WX
−1

X Diag(c)(y − π)

= X Diag(c)WX
−1

X Diag(c)W Xβold +W−1(y − π)

= X Wc X
−1

X Wc z,

with Wc := Diag(c)W and the adjusted response z as in Equation (2.12). Thus, each it-
eration of the IRLS algorithm for the cost-sensitive logistic regression solves the weighted
least squares problem

βnew = argmin
β

(z −Xβ) Wc(z −Xβ).

3.2. Model Evaluation for Imbalanced Data Sets

Analyzing the performance of a classifier by means of evaluation metrics plays a central
role in the quality assessment of the given statistical learning model. In imbalanced
learning, the choice of the evaluation metrics is crucial, as some evaluation metrics could
deliver misleading results. In general, the performance of binary classifiers is initially
examined with a confusion matrix shown in Table 3.2. The values in a confusion matrix
represent the following measures:

• TP is the number of positive observations correctly classified as positive (True
Positives),

• FP is the number of negative observations incorrectly classified as positive (False
Positive),

• FN is the number of positive observations incorrectly classified as negative (False
Negatives),

• TN is the number of negative observations correctly classified as negatives (True
Negatives).

10



3. Cost-sensitive Learning for the Class Imbalance Problem

True Positive True Negative
Predicted Positive TP FP
Predicted Negative FN TN

Table 3.2.: Confusion matrix for the binary classification task. The columns represent
the actual class, and the rows show the class as predicted by the model.

Many standard evaluation metrics can be derived from the confusion matrix, and some
of the most common are defined below:

Accuracy =
TP + TN

TP + FP + FN + TN
, (3.3)

True Positive Rate (TPR) or Sensitivity =
TP

TP + FN
, (3.4)

False Positive Rate (FPR) =
FP

TN + FP
. (3.5)

Accuracy is the evaluation measure used most frequently for model quality assessment,
yet it is an inappropriate measure for imbalanced data since dummy classifiers predicting
the majority class achieve high accuracy with poor predictive ability [6].

The true positive rate is also labeled specificity, and the true negative rate, given
as 1 − FPR, is usually denominated sensitivity. The latter measures (specificity and
sensitivity), given by Equation (3.4) and Equation (3.5), are used to construct the receiver
operating characteristic (ROC) curve, a standard technique for evaluating classifiers on
data sets that exhibit a class imbalance [6]. Examples of diverse ROC curves are shown in
Figure 3.1. The ROC space opposes the FPR (x-coordinate) and the TPR (y-coordinate).
An ideal classifier would correspond to the (0, 1) point in the ROC space, with all positive
instances correctly classified, and no misclassified negative instances. Moreover, the line
y = x corresponds to a classifier that applies a random prediction to each instance and
as such, provides a lower bound of the ROC space. Each point of an ROC curve is
generated by moving the decision boundary for classification, whereby the points nearer
to the left in the ROC space are the result of requiring a higher threshold for classifying
an instance as positive. Therefore, ROC curves are also used to determine the decision
threshold that gives the best TPR for an acceptable FPR (Neyman–Pearson method)
[6].
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3. Cost-sensitive Learning for the Class Imbalance Problem

Figure 3.1.: Examples of ROC curves. The x-axis represents the FPR, with the TPR on
the y-axis. Each curve represents the performance of a different classifier on
a data set [6].

While ROC curves represent a visual method for assessing the effectiveness of a clas-
sifier, the area under the ROC curve (AUC) presents the corresponding metric used
for evaluating classifiers under imbalance. AUC is useful because it is independent of
the selected threshold and prior probabilities, but also offers a single value to compare
classifiers. This work considers the normalization of the AUC measure, the Gini index:

gini = 2 ·AUC − 1 (3.6)

Gini terminology originally stems from the area of finance and is frequently used for
credit scoring models. The Gini index was introduced in [7] and was initially not derived
from the AUC measure but rather connected via Equation (3.6) ([8] gives some discussion
on the relationship of the Gini index with the AUC). This work will merely consider the
Gini index as a normalization of the AUC measure, with the value range in [0, 1]. Since
the Gini index proportionally depends on the AUC measure, a higher value of the Gini
index points to a better predictive ability.
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4. Robustness

All statistical methods explicitly or implicitly require a set of assumptions. These as-
sumptions aim at formally defining the modeling problem at hand and thereby rendering
theoretically and computationally manageable. However, those assumptions are rarely
satisfactory in real-world modeling problems, and the formal models are only simplifica-
tions of reality trying to provide the best approximate solution.

Modeling assumptions mostly contain requirements on the data distribution, which de-
termine desired statistical properties of the estimators. Such methods are called classical
statistical methods and rely on the assumption that the data distribution holds entirely.
Classical statistics are theoretically and computationally convenient but do not always
deliver an adequate tool for the statistics application in data analysis. In practice, the
data distribution model usually holds approximately and describes most of the data
points, yet a minority of observations often follows another pattern or no pattern at all.
Such atypical data points, which are separated from the majority of the data, are called
outliers, and they can have an immense influence on classical statistics models. For in-
stance, if the data are assumed to be normally distributed but the actual distribution
has heavy tails, then the estimates based on classical statistics methods can result in
unacceptably low statistical efficiency [9].

In contrast to classical statistics, robust statistics aim at deriving methods that produce
reliable statistical estimates. This is not only the case when the data completely follow
a given distribution but also when data contains a fraction of outliers. Robust methods
fit the majority of the data - if data does not contain any outliers, the robust method
approximately gives the same results as the classical method. However, if a proportion
of outliers is present, the robust method approximately delivers the same results as
the classical method applied to the “typical” data. This section thus provides the main
concepts and types of robust estimators required for the implementation of robust logistic
regression [9].
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4. Robustness

4.1. Robust Location and Covariance

In the multivariate location and covariance setting, the sampled data are represented by
a model matrix X = (x1, · · · ,xp) = (x1·, · · · ,xn·)T ∈ Rn×p, where each row i represents
a p-dimensional multivariate observation xi. and each column j an n-dimensional sample
of the j-th input variable xj . The observations are assumed to be sampled from an ellip-
tically symmetric unimodal distribution with two unknown parameters, a p-dimensional
vector µ and a positive definite p× p matrix Σ [10]. A multivariate distribution is called
elliptically symmetric and unimodal if a strictly decreasing real function g exists, so that
the density function can be written in the form

f(x) =
1

|Σ| g d2(x,µ,Σ) , (4.1)

with the statistical distances d(x,µ,Σ) defined as

d(x,µ,Σ) := (x− µ)TΣ−1(x− µ) (4.2)

The parameter µ represents the mean of the distribution, and the parameter Σ the
variance-covariance matrix. Estimation of the latter two measures is of crucial impor-
tance as the parameters of location and covariance represent the initial step in the data
analysis and are also required for nearly all statistical methods.

Classical statistics estimates of location and covariance are the well-known arithmetic
mean and the empirical variance-covariance matrix. The arithmetic mean of the variable
xi is given as

xi =
1

n

n

k=1

xki.

The multivariate estimate of the location parameter µ is a vector of the arithmetic means
of the p input variables

x = (x1, · · · , xp)T . (4.3)

The empirical covariance between two variables xj and xk equals to

sjk =
1

n− 1

n

i=1

(xij − x̄j) (xik − x̄k) . (4.4)

Furthermore, the empirical variance of a variable xj is obtained from Equation (4.4) for
j = k. The classical statistics multivariate estimate of the variance-covariance matrix Σ
has empirical variances and covariances as entries:

Sjk = sjk. (4.5)

14



4. Robustness

There are various robust approaches for estimation of location and covariance, but many
estimates do not have the same algebraic properties as the parameters they represent.
Robust location and covariance estimates should respond in a mathematically convenient
form to specific transformations of the data. For a non-singular p × p matrix A and a
vector b of length p, the linear transformation of the a p-dimensional observation xi. is
given as Axi.+b. When a transformation is applied on all the observations x1., · · · ,xn.,
it can be written in a matrix form XAT + 1nb

T , where 1n = (1, · · · , 1)T ∈ Rn. The
robust estimate of location µ̂R should therefore fulfill:

µ̂R XAT + 1nb
T = µ̂R(X)AT + b, (4.6)

and the robust estimate of the variance-covariance matrix Σ̂R should satisfy the criterion

Σ̂R XAT + 1nb
T = AΣ̂R(X)AT . (4.7)

The robust estimators that meet the requirements given by Equation (4.6) and Equa-
tion (4.7) are called affine equivariant estimators. These estimators transform orderly
considering changes of the origin, the scale, or under rotations.

The difference between the classical and robust estimates of location and covariance
is illustrated in a two-dimensional setting. The corresponding bivariate data contains
110 points, where 100 points are sampled from a standard normal distribution, and ten
outliers are added apart from the data cloud. Figure 4.1 shows the scatter plot of the
obtained data.

Furthermore, Figure 4.1 also displays two ellipses. The classical tolerance ellipse is
defined as a set of p-dimensional points x whose Mahalanobis distance

MD(x) = d(x,x,S) = (x− x)TS−1(x− x) (4.8)

equals χ2
p,0.975. The Mahalanobis distance showcases the distance of an observation

from the center of the data cloud relative to its size and shape. In contrast, the robust
tolerance ellipse is based on the robust distances

RD(x) = d x, µ̂R, Σ̂R (4.9)

where µ̂R is the robust estimate of location and Σ̂R is the robust covariance estimate.

The classical tolerance ellipse (red) attempts to encompass all observations, and the
outliers severely influence the covariance structure. On the contrary, the robust tolerance
ellipse (blue) encapsulates the non-outlining data points, it is thus more compact and
reflects the structure of the majority of the respective data. Based on Figure 4.1, the ro-
bust tolerance ellipse seems to better describe the data formation, hence it is statistically
more informative.
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4. Robustness

Figure 4.1.: A Scatter plot of simulated bivariate data with the indices of outliers printed
next to the outlying points; the red ellipse shows the non-robust tolerance
ellipse, and the blue ellipse represents the corresponding robust tolerance
ellipse.

4.1.1. Minimum Covariance Determinant (MCD) Estimator

The Minimum Covariance Determinant (MCD) estimator is one of the first affine equiv-
ariant and highly robust estimators of multivariate location and covariance [10].

The raw Minimum Covariance Determinant estimator (µ̂0, Σ̂0) of location and covari-
ance with a tuning constant h ∈ [n2 , n] fulfills the following:

1. the set of h observations that generate the minimum determinant of the empirical
variance-covariance matrix is identified,

2. the location estimate µ̂0 is given as the arithmetic mean of the identified h points

3. the covariance estimate Σ̂0 is the empirical variance-covariance matrix of the iden-
tified h points, multiplied by a consistency factor c0.

The factor c0 is generated to obtain the consistency of the normal distribution and
equals to α/Fχ2

p+2
(qα) with α = limn→∞ h(n)/n, and qα the α-quantile of the the χ2

p

distribution. Moreover, a finite-sample correction factor can be incorporated as well.

16



4. Robustness

The MCD estimator is the most robust for a constant h = [(n + p + 1)/2], where [a]
is the largest integer with [a] ≤ a. At the population level, this corresponds to α = 0.5,
yet such values of α result in a very low efficiency of the MCD estimator. The common
value of α is 0.75, as it expresses a compromise between efficiency and robustness.

As a way of increasing efficiency, whilst also retaining high robustness, the weighting
step is applied on the raw MCD estimator, yielding the MCD estimates for location and
covariance

µ̂MCD =
n
i=1W d2i xi
n
i=1W d2i

(4.10)

Σ̂MCD = c1
1

n

n

i=1

W d2i (xi − µ̂MCD) (xi − µ̂MCD)
T (4.11)

with di = d(x, µ̂0, Σ̂0), W as appropriate weighting function, and c1 a consistency factor.

A simple and effective choice for the weight function W is

W (d2) =
1, if d2 χ2

p,0.975

0, otherwise.

S-estimator

Compared to the MCD estimator, the S-estimator offers a different approach to address
the problem of robust location and covariance estimation. The essence of the S-estimator
lies in another robust estimator, namely the M -estimator of scale [9].

In the following, the univariate observations xi, i ∈ {1, · · · , n} are assumed to satisfy
the multiplicative model

xi = σui, (4.12)

with ui as independent and identically distributed (i.i.d) random variables with density
function f0 and a positive, unknown scale parameter σ. Density distribution functions
of the random variables xi as defined in Equation (4.12) establish a scale family with the
density

1

σ
f0(

xi
σ
).

Various distributions form a scale family, such as the exponential family with
f0(x) = exp(−x)1(x > 0) or the normal family N(0, σ2).

The ML estimator of the parameter σ satisfying Equation (4.12) is therefore

σ̂ = argmax
σ

1

σn

n

i=1

f0
xi
σ

. (4.13)
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Differentiating the log-likelihood function obtained from Equation (4.13) with respect to
σ results in

1

n

n

i=1

ρs
xi
σ

= 1,

with
ρs(t) := −t

f0(t)

f0(t)
.

The normal scale family where f0 is the density function of the standard normal distri-
bution N(0, 1) yields ρs(t) = t2 and σ̂ = 1

n
n
i=1 x

2
i , the eminent root-mean-square

estimate (RMS).

In general, an estimate satisfying the criterion

1

n

n

i=1

ρs
xi
σ

= δ (4.14)

with a positive constant δ is called M -estimator of scale. The necessary condition for
the existence of a solution in Equation (4.14) is 0 < δ < ρs(∞). Thus, for a bounded
function ρs the assumption

ρs(∞) = 1, δ ∈ (0, 1)

holds without loss of generality. Moreover, the derivative of the function ρs, ψs := ρs
is typically used instead of the function ρs itself, since the root of the derivative ψs

corresponds to the minimum of the function ρs and often provides a clearer mathematical
representation [11].

A common choice of the function ρs is the Tukey’s biweight function, with derivative
ψs given below:

ψs(y) =

y 1− (y/c0)
2

2
, if |y| < c0

0, if |y| ≥ c0.
(4.15)

The M -estimator of scale is usually computed as the weighted RMS estimate. Namely,
for the weights W (x) defined as

W (x) =
ρs(x)/x

2 if x = 0
ρs(0) if x = 0

Equation (4.14) converts to

σ2 =
1

nδ

n

i=1

W
xi
σ

x2i ,

which is the solution of the weighted RMS.
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4. Robustness

M -estimators of scale do not fulfill Equation (4.7) and are therefore not affine equiv-
ariant, yet they satisfy the homogeneity of degree one

σ̂(c x) = c σ̂(x).

Finally, the S-estimator aims at minimizing the statistical distances using M -estimators.
For the estimators of location and covariance t and C, respectively, the squared statistical
distances of the multivariate observations

d2(xi, t,C) = (xi − t)TC−1(xi − t), i ∈ {1, · · · , n}

should be minimized. Small statistical distances are achieved with the M -estimator of
scale

σ̂ d2(x1, t,C), · · · , d2(xn, t,C)

under the restriction on the determinant of C, det(C) = 1.

4.2. Outlier Detection

This section introduces two different methods for outlier detection using robust estimates
of location and covariance. Section 4.2.1 presents the usual procedure for detecting
outliers using any location and covariance estimator, focusing on the difference in outlier
detection when applying classical and robust estimates, in the latter case using the MCD
estimator. In contrast, Section 4.2.2 provides the PCDist algorithm proposed by Shieh
and Hung [11], which first performs data preprocessing before computing the robust
estimates of scale and covariance.

4.2.1. Outlier Detection using MCD Estimator

An important application of the MCD estimator is not only to provide robust versions
of the location and covariance estimates, but also to detect outliers in multivariate data.

In order to illustrate the difference between the Mahalanobis and robust distances used
to identify the outlying points in data, Figure 4.2 shows both types of distances obtained
from the data presented in Figure 4.1. Figure 4.2a shows the Mahalanobis distances,
whereas Figure 4.2b depicts the robust distances of the data. The red line displayed
on both subfigures is at a height of χ2

p,0.975, and the data points above the line are
considered outliers. According to the non-robust Mahalanobis distances, seven out of ten
outliers are detected, in contrast to the robust distances, which correctly identified all
ten outliers. Moreover, the Mahalanobis distances of the outlying points are very close
to the red border line. This illustrates the so-called masking effect, which emerges when
classical estimates are strongly affected by contamination, so that diagnostic tools, such
as the Mahalanobis distances, are incapable to detect outliers.
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4. Robustness

(a) Mahalanobis distances (b) Robust Distances

Figure 4.2.: Two different types of distances derived from classical (a) and robust (b)
statistics; the x-axis represents the index of the observation, and the y-axis
the corresponding distance; the red line has a height of χ2

p,0.975; the indices
of outliers are displayed next to the outlying points

Since the robust distances are not sensitive to the masking effect, the outlier detection
using the MCD estimator can provide more reliable outlier diagnostics compared to
classical variance-covariance estimates [10].

4.2.2. The PCDist Algorithm for Outlier Detection

Most data sets originating from real-world settings contain various explanatory variables,
rendering the use of direct statistical methods computationally impractical or even im-
possible. For instance, the inverse of a covariance matrix required for the statistical
distances in Equation (4.2) often does not exist due to the singularity of the matrix. The
singularity of the covariance matrix mainly stems from the multicollinearity between in-
puts, which is not directly related to the number of variables, yet most high-dimensional
data sets cannot provide the inverse of the covariance matrix. Moreover, as shown in
Section 4.2.1, typical methods for detecting outliers rely on computing a distance func-
tion for each observation. However, due to the data sparsity in high dimensions, these
distances are practically meaningless [11]. Therefore, a dimension reduction performed
before applying the robust methods can enable and improve the outlier detection. The
PCDist algorithm performs a principal component analysis (PCA) as a first step towards
outlier detection.
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For a data matrix X ∈ Rn×p with n observations and p variables, classical PCA
projects the data on the n principal components, which are a linear combination of the
input variables

wi = Xvi

that maximize the variance
vi = argmax

vT v=1

(Xv)

subject to the constraint of orthogonality

Cov(wi,wj) = 0, ∀j < i, i, j ∈ {1, · · · , n}.

The principal components are organized by the amount of variance in the data that
they explain. Essentially, PCA transforms the data space into an orthogonal space where
higher principal components explain more variance in the data. Although PCA generates
n principal components, typically only m < n principal components are employed, which
explain an adequate amount of the variance, thereby reducing the dimensionality of
the data. There are several methods for adjusting the required number of principal
components, yet an automatic selection method based on the scree plot from [12] is used.

In addition, the PCDist algorithm also allows for data grouping. When the data are
arranged into distinct classes, the outlier detection can be performed for each class sepa-
rately, which improves the outlier detection in case of different distributions between the
groups. The PCDist algorithm uses the S-estimator and can be summarized as follows
[13]:

1. Dimension reduction. The first step consists of performing PCA on the entire data,
ignoring the class structure. An adequate number of principal components m is
automatically attained, and the subsequent algorithm steps are performed in the
reduced PCA space.

2. Each class j in the selected low-dimensional space is subjected to outlier detection:

• Robust multivariate location and covariance estimates (t,C) are computed
using the S-estimator.

• The robust distances RDi = d(xi, t,C) are calculated according to Equa-
tion (4.2).

• Robust distances RDi are compared to a threshold χ2
p,0.975. The outliers in

the class j are observations with RDi > χ2
p,0.975.

3. The final outlier set is defined as the union of the outliers from each group j.

21



4. Robustness

4.3. Robust Logistic Regression

The outlier detection in regression imposes new challenges compared to simply identifying
outliers in a data set. First and foremost, the regression context enables the categoriza-
tion of outliers, as described in Section 4.3.1. The outlier types affect the regression
estimates differently and are therefore managed in another manner. This section defines
the Bianco-Yohai estimator, a highly robust M -type estimator for logistic regression.
The first M -type estimator for regression, defined for the linear regression and used as
a basis for other regression types, is defined in Section 4.3.2. Finally, the Bianco-Yohai
estimator for logistic regression is presented in Section 4.3.3.

4.3.1. Outliers in Regression

In a supervised statistical learning setting with an input matrix X ∈ Rn×p and an output
vector y ∈ Rn, the outliers can be divided into three groups. An outlying observation
(xi., yi) ∈ Rp × R can therefore be specified as follows:

1. Vertical outlier. Observation xi is in the usual data range, but the corresponding
output variable yi does not fit the model,

2. Good leverage point. Observation xi is an outlier, thus unusual in the x-space of
the explanatory variables, but the corresponding output variable yi fits the model,

3. Bad leverage point. Observation xi is an outlier, thus unusual in the x-space of
explanatory variables, and the corresponding output variable yi does not fit the
model

The three types of outliers in regression are illustrated in the case of simple linear
regression. In general, the linear regression model is defined as

yi = xT
i β + ri, ri ∼ f0(0, σ

2). (4.16)

Simple linear regression refers to the linear regression model with only one input variable.
An example of a data set for simple linear regression containing all three types of outliers
is shown in Figure 4.3.
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4. Robustness

Figure 4.3.: Scatter plot of a data set suited for simple linear regression with one ex-
planatory variable x on the x-axis and the output variable y on the y-axis.
The types of outliers are denoted in the plot.

4.3.2. M-estimator for Linear Regression

The M -estimator for linear regression is based on a similar concept as the M -estimator
of scale introduced in Section 4.1.1. For the linear regression model as defined in Equa-
tion (4.16), the variables yi have the density function

1

σ
f0

yi − xT
i β

σ
.

Differentiating the log-likelihood function results in the definition of the M -estimator for
regression:

β̂ = argmin
β

1

n

n

i=1

ρ0
ri(β)

σ̂
, (4.17)

with function ρ0 defined as ρ0 := − log f0. An analogue to the normal equations emerges
by setting the derivative of the term in Equation (4.17) to zero

n

i=1

ψ0
ri(β)

σ̂
xi = 0, (4.18)

where ψ0 := ρ0. For W (r) := ψ0(r)/r and wi = W (ri(β)/σ̂), Equation (4.18) converts
to

n

i=1

wi yi − xi β xi = 0. (4.19)
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The M -estimator for regression can thus be characterized as weighted least-square and
is therefore computed using the iterative reweighted least-squares algorithm. Let β̂0

be the initial solution and β̂m be the approximation at iteration m, then the residuals
ri = ri(β̂m) in iteration m provide the weights wi = W (ri/σ̂). The estimate for the
next iteration β̂m+1 is the solution of Equation (4.19). It is important to start with the
robust estimator β̂0, as the algorithm could converge to a non-robust solution otherwise.

4.3.3. Bianco-Yohai Estimator for Logistic Regression

As mentioned in Section 2.2, the maximum likelihood estimator for logistic regression is
a minimizer of the sum of deviances:

β̂ML = argmin
β∈R(p+1)

n

i=1

di(x
T
i β; yi), (4.20)

with deviances di given by Equation (2.8).

Although the ML method implies the most efficient statistical estimators, the efficiency
does not persist in presence of outliers. The robust alternative for logistic regression is
achieved by replacing the deviance function with another one, resulting in

β̂ = argmin
β∈R(p+1)

n

i=1

ϕ(xT
i β; yi). (4.21)

In the cost-sensitive setting, in accordance to Equation (3.2), the robust estimator of
interest is defined as

β̂ = argmin
β∈R(p+1)

n

i=1

ci · ϕ(xT
i β; yi), (4.22)

with the misclassification costs ci.

ϕ is a positive and almost everywhere differentiable function. Moreover, it needs to
satisfy the condition

ϕ(s, 0) = ϕ(−s, 1) (4.23)

for any score s, where the score is a dot product of the observation and the parameter
vector β, si = xT

i β. Due to the condition in Equation (4.23), later calculations use the
univariate function

φ(s) := ϕ(s, 0)

instead of a bivariate function ϕ for easier computation. A term φ(s), which corresponds
to an observation with y = 0, provides the impact of a score s for the value of the objective
function in Equation (4.21). The function φ should be non-decreasing, as the large values
of the score s should not relate to negative class observations and therefore should receive
a greater weight in the objective minimisation function. Another requirement of the
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function φ is lims→−∞ φ(s) = 0, suggesting that the large negative values of the score s
do not have an impact on the objective function.

An example of the φ function satisfying the latter demands is delineated in Figure 4.4,
compared to the non-robust deviances. The classical deviances are unbounded and reach
high values even for relatively small positive scores, while the robust version of the
deviances remains stable and bounded for all values of scores, preventing significant
impact of outliers on the objective function in Equation (4.21).

Figure 4.4.: Classical and robust version of deviances. The x-axis represents the score
values; the y-axis captures the values of deviances. The color represents
the output variable class of the scores, and the line type distinguishes the
classical (dashed line) vs. robust (full line) estimate.

The robust estimator of interest given by Equation (4.21) belongs to the class of M -
type estimators and follows the same principles as the M -estimator for linear regression
described in Section 4.3.2, thus differentiating Equation (4.21) with respect to β yields
the first-order condition

1

n

n

i=1

Ψ xT
i β; yi xi = 0,

where Ψ(s; 0) = ∂ϕ(s; 0)/∂s and Ψ(s; 1) = −Ψ(−s; 0). Due to the latter property of
Ψ, the function ψ(s) := Ψ(s; 0) = φ (s) is used instead of the bivariate notation. The
ML estimator for logistic regression is an example of the M -estimator with φML(s) =
− ln(1− π(s)).
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Bianco and Yohai [14] proposed a highly robust version of the M -estimator for logistic
regression, defined as

β̂ = argmin
β

n

i=1

ρ d xT
i β; yi + C xT

i β ,

where C(xT
i β) is a bias correction term given by

C(s) = G(π(s)) +G(1− π(s))−G(1),

with

G(t) =
t

0
ρ (− lnu)du.

In particular, the Bianco-Yohai (BY) estimator corresponds to the following univariate
function φ:

φBY(s) = ρ(− ln(1− π(s))) +G(π(s)) +G(1− π(s))−G(1). (4.24)

The function φBY should satisfy the requirement lims→−∞ φ(s) = 0. Obtained from the
formation of the Bianco-Yohai estimator, it is evident that the resulting function φBY

only depends on the choice of the function ρ.

One of the crucial characteristics of any statistical estimator is the set of conditions
required for its existence. As for the ML method, the estimator exists once there is
an overlap between positive and negative observations. Formally, it implies that for
I0 = {i ∈ {1, · · · , n} | yi = 0} and I1 = {i ∈ {1, · · · , n} | yi = 1}, there is no β ∈ Rp,
such that

xT
i β 0 ∀i ∈ I1 and xt

iβ 0 ∀i ∈ I0.

The overlap in data points is likewise required for the existence of M -estimators, yet the
function ψ = φ should meet some additional criteria.

Proposition 1. [1] Let ϕ : R2 → R be a positive function and put φ(s) = ϕ(s; 0) =
ϕ(−s; 1). Assume that φ is a nondecreasing, continuous function with continuous deriva-
tive ψ such that lims→−∞ φ(s) = 0. Let β̂ be the estimator for the parameters of a logistic
regression model with intercept defined in Equation (4.21). If the following conditions:

1. There is an overlap in the sample.

2. There exists L0 such that ψ is increasing on (−∞, L0] and either decreasing or
increasing on [L0,∞).

3. lims→∞ ψ(st)/ψ(−s) = ∞ ∀t > 0,

hold true, then the estimator β̂ exists and is finite in norm.
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The first condition in Proposition 1 is identical with the existence criterion for the
ML method. The second condition captures two different forms of the ψ function -
it is either increasing, as for the ML estimator, or redescending. The third condition
is trivially fulfilled for the increasing ψ, yet for the redescending form, it states that
the function ψ should redescend to zero more quickly on the side of correctly classified
observations (s < 0) than on the side of misclassified data points (s > 0).

The BY estimator given by Equation (4.24) requires the function ρ, which should be
suitable with the conditions on ψ = φ . A function ρ with a derivative presented below
satisfies the existence conditions from Proposition 1:

ρ (t) =
e−

√
d if t d

e−
√
t otherwise,

for a given constant d. The constant d is determined to attain the compromise between
the efficiency and robustness – higher values of d result in the more efficient, but less
robust estimator and vice versa. The typical value of d is 0.5. For the proposed derivative
ρ , analytical forms of the corresponding functions ρ and G are given as

ρ(t) =
te−

√
d if t d,

−2e−
√
t(1 +

√
t) + e−

√
d(2(1 +

√
d) + d) otherwise

and

G(t) =
te−

√− ln t + e1/4
√
πΦ

√
2 1

2 +
√− ln t − e−1/4√π if t e−d

e−
√
dt− e−1/4√π + e1/4

√
πΦ

√
2 1

2 +
√
d otherwise

where Φ is the normal cumulative distribution function. Attained functions φ and ψ of
the BY estimator are shown in Figure 4.5.

An additional method aiming to produce a more robust BY estimator proposes a weight-
ing step to downweight the leverage points. Leverage points can be identified by calcu-
lating statistical distances for a given location and covariate estimate. The classical
location and covariance estimates are very sensitive to outliers and prone to the masking
effect, thus the robust location and covariance versions are used instead. The proposed
method uses the minimum covariance determinant estimator for location and covariance
and identifies the leverage points using robust distances given by Equation (4.9).
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(a) Function φ (b) Function ψ

Figure 4.5.: Functions φ (a) and ψ (b) of the Bianco-Yohai estimator

The weighted version of the Bianco Yohai estimator (WBY) is therefore defined as:

β̂n = argmin
β

n

i=1

ωiϕBY ztiβ; yi (4.25)

where the function ϕBY represents the ϕ function used in the minimization task for the
BY estimator. The weight ωi of the observation xi equals to

ωi =
1, if RD(xi) ≤ χ2

p,0.975

0, otherwise.
(4.26)

28



5. Implementation

This section presents the algorithm for implementing the cost-sensitive Bianco-Yohai
estimator for logistic regression used in imbalanced learning. It is an adaptation of
the non-cost-sensitive algorithm for robust logistic regression using the Bianco-Yohai
estimator introduced by Croux and Haesbroeck [1] and is presented in Section 5.1.

5.1. Algorithm for the Bianco-Yohai estimator

Similar to other M -type estimators, the Bianco-Yohai estimator is computed using an
iterative algorithm. An important advantage of this method is the ability to detect the
so-called explosion of the estimator. Namely, the criteria for the existence of the BY
estimator stated in Proposition 1 require data that contain an overlap between classes,
but the explosion is possible even in the presence of the class overlap, which makes it
difficult to identify in advance.

The parameter of interest β is thus written as

β =
ξ

σ
, (5.1)

with ξ = 1 and σ = 1
β ≥ 0. The parameter ξ lies in the unit sphere of Rp denoted as

S p−1.

The optimization problem at hand, written in terms of the variables ξ and σ, corre-
sponds to

(σ̂, ξ̂) = argmin
(σ,ξ)∈R+×Sp−1

1

n

n

i=1

ϕ xT
i

ξ

σ
, yi . (5.2)

The objective function is minimized by altering between minimizing ξ and σ separately:

• Given the parameter ξ, Equation (5.2) converts to the one-dimensional optimization
problem in σ. Univariate nonlinear optimization problems are well studied and can
be easily solved using established routines. The corresponding solution is denoted
by σ̂1.
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The parameter σ represents the inverse of β and therefore can detect the explo-
sion of the parameter β. In the case of an explosion, the estimate σ̂1 is numerically
indistinguishable from zero, thus the algorithm stops and reports the explosion of
the parameter.

• If the parameter σ is known, the optimization task in Equation (5.2) transforms
into the minimization problem under constraint

min f(ξ) :=
1

n

n

i=1

ϕ xT
i

ξ

σ
, yi under g(ξ) := ξT ξ − 1 = 0. (5.3)

An initial solution of Equation (5.3) is denoted by ξ̂0. In the surrounding of ξ̂0,
the function f can be estimated with

f(ξ̂0 + h) ≈ f(ξ̂0) + grad f(ξ̂0)
Th,

pointing to the largest decrease in the opposite direction of the gradient grad f(ξ̂0).
The gradient algorithm without constraints takes a step h, with h = − grad f(ξ̂0)
and a small value of the scalar . However, the new value ξ̂0 + h should satisfy
the constraint to provide the valid solution to the optimization problem in Equa-
tion (5.3). Therefore, the surface S := {ξ ∈ Rp | g(ξ) = 0} is approximated by the
tangent hyperplane at ξ̂0, given by

S(ξ̂0) = {t ∈ Rp | t = ξ̂0 + v with vT grad g(ξ̂0) = 0}.

In order to find the solution of the optimization task in Equation (5.3), the step
size h should be determined such that ξ̂0+ h approximately satisfies the constraint
as an element of S(ξ̂0), while reaching the smallest value for grad f(ξ̂0)

Th. Such
step size is obtained by projecting − grad f(ξ̂0) onto S(ξ̂0), resulting in

h = − grad f(ξ̂0) +
grad g(ξ̂0)

T grad f(ξ̂0) grad g(ξ̂0)

grad g(ξ̂0)
2 .

Since grad g(ξ̂0) = 2ξ̂0, the step size h turns into

h = − grad f(ξ̂0) + ξ̂T0 grad f(ξ̂0) ξ̂0. (5.4)

The updated value of the estimate ξ̂ is thus given as ξ̂1 = ξ̂0 + h/ h , with h as
depicted in Equation (5.4). For a sufficiently small value of , the decrease of the
objective function can always be found unless ξ̂0 yields the local minimum. The
value of is determined by a step-halving procedure. Starting with = 1, the value
of ξ̂1 is preserved if f(ξ̂1) < f(ξ̂0). If the objective function has not decreased,
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the function value is calculated for

ξ̂1 = ξ̂0 +
1

2

t h

h
, with t ∈ {1, 2, . . . ,maxhalf}.

Once a decrease occurs, the corresponding value of ξ̂1 is maintained. If no decrease
is reached after a given number of halving steps, the procedure reports the local
minimum at (σ, ξ̂1).

Thus, the algorithm iterates as follows. Starting from the initial solution β̂0, the values
of ξ̂0 and σ̂0 are determined, and the global solution is obtained by switching between
the latter two minimization subproblems. It is crucial that the initial parameter β̂0 is
robust to ensure the robustness of the final solution (in case of convergence).

5.2. Cost-sensitive Bianco-Yohai estimator

The cost-sensitive version of the Bianco-Yohai estimator, as defined in Equation (4.22),
must include the costs ci in the algorithm presented in Section 5.1. For a parameter
β defined as in Equation (5.1), the cost-sensitive optimization problem that adopts the
minimization task in Equation (5.2) transforms to

(σ̂, ξ̂) = argmin
(σ,ξ)∈R+×Sp−1

1

n

n

i=1

ci · ϕ xT
i

ξ

σ
, yi , (5.5)

where ci denotes the cost for the imbalance learning of the observation i.

As shown in Section 5.1, the algorithm alternates between minimizing ξ and σ. The
changes in the minimization task for ξ and σ include the following:

• Given the parameter ξ, the univariate parameter σ is the solution of the adjusted
optimization problem from Equation (5.5)

• If the parameter σ is known, the minimization problem under constraint from
Equation (5.3) converts to

min f(ξ) :=
1

n

n

i=1

ci · ϕ xT
i

ξ

σ
, yi under g(ξ) = ξT ξ − 1 = 0. (5.6)

The gradient algorithm under constraint is performed likewise to the non-cost-
sensitive case, with

grad f(ξ̂0) = Diag(c) grad f(ξ̂0),

and vector c containing the cost ci in the i-th entry.
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As suggested in [1], the weighted ML estimator is used as the initial solution. The
weighted ML estimator is the minimizer of the objective function

l(β) =

n

i=1

wi log πyi(x i,β), with wi ∈ {0, 1}. (5.7)

The weights wi are assigned to the observations depending on their position in the input
space. The algorithm allows for two different calculations of the leverage points:

1. using the MCD estimator from Section 4.1.1 and identifying the outliers as in
Section 4.2.1

2. using the PCDist algorithm presented in Section 4.2.2, relying on the S-estimator
presented in Section 4.1.1.

Both methods compute robust distances RDi = RD(xi) which are then compared to a
cut-off value χ2

p,0.975. The weight of the observation xi is thus given as

wi =
1, if RD(xi) ≤ χ2

p,0.975

0, otherwise.
(5.8)

The values in Equation (5.8) also serve as weights for the weighted Bianco-Yohai estima-
tor defined in Equation (4.26).

The algorithm is implemented in the programming language R [15]. It is a modification
of the existing functions BYlogreg, glmrobBY, and glmrob from the R package robustbase
[16]. The relevant parts of the code described in this section can be found in Appendix A.
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The performance of the implemented cost-sensitive Bianco-Yohai estimator in original
and weighted form is analyzed in comparison to non-cost-sensitive and non-robust esti-
mators. The comparison includes a total of six estimators, the logistic regression (LR),
the Bianco-Yohai estimator and the weighted Bianco-Yohai (WBY) estimator, both in
non-cost-sensitive and cost-sensitive form, respectively. The cost-sensitive form of the
estimators is determined using the class proportions. Namely, for a data set with n ob-
servations, where n0 denotes the number of observations with the output variable yi = 0,
and n1 denotes the number of observations with yi = 1, the cost of an observation i is
defined as

ci :=
n0
n , if yi = 1
n1
n , if yi = 0.

(6.1)

By defining the cost in this way, the majority class is simultaneously downweighted and
the minority class is upweighted, depending on the imbalance proportion of the classes.

Section 6.1 provides the evaluation based on the estimated parameters using a simu-
lation example with artificial data, while Section 6.2 analyzes the performance of the
algorithms with the imbalanced data set used for credit scoring [17].

6.1. Simulation with the Artificial Data

The performance of the implemented cost-sensitive forms of the BY and the WBY es-
timators is determined based on parameter estimates in a simulation experiment. The
simulation includes data configurations with different settings depending on the number
of explanatory variables, the type of outliers and the imbalance proportion. The number
of explanatory variables is set to p = 2 and p = 10, resulting in a low-dimensional and a
higher-dimensional data set. The true values of the parameter β are initially determined
and equal to β = (0, 2, 2)T for p = 2 and β = (0, 1, · · · , 1)T ∈ R11 for p = 10. Four dif-
ferent types of data sets are constructed to compare the estimators based on the outlier
type:

I For n = 5000 observations, the explanatory variables are distributed according to
a standard normal distribution N(0, 1). The dependent variable yi is generated
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according to the following model equations:

yi =
0, if xT

i β + i ≤ c

1, if xT
i β + i > c,

(6.2)

with a positive constant c and error terms i following a logistic distribution logis(0, 1)
with scale parameter s = 1. This data set serves as a baseline, and the other three
configurations build on the corresponding data points.

II For a data set as described in configuration I, 10% of the observations are converted
to bad leverage points. The observations are sampled from the majority class and
their output value is not altered, but their coordinates in the input space are trans-
formed as follows. The first p−1 entries of a sampled observation xi are not altered
and are therefore distributed according to a standard normal distribution, while the
p-th entry is modified to satisfy the equation of the hyperplane

xTβ = c+ 5
√
p,

where c is a positive constant from Equation (6.2). Thus, the bad leverage points
are added in parallel to the decision hyperplane.

III 10% of the data points in configuration I are mislabeled. The observations are
sampled from the majority class with the output variable yi = 0 and converted to
the minority class by setting yi = 1 to create vertical outliers.

IV This configuration represents the combination of the configurations II and III. 10%
of the data points in configuration I are modified, of which 5% of the data points
are converted to bad leverage points as in configuration II, and the other 5% are
mislabeled as in configuration III. All modified observations are sampled from the
majority class.

The constant c from Equation (6.2) is set to obtain different imbalance proportions,
yielding approximately 20%, 10%, 5%, or 1% of the observations from the minority class
in the data configuration I, also referred to as positives. The resulting data configurations
are shown in Figure 6.1 for p = 2 explanatory variables and 20% of minority class
observations.

The algorithm allows for two different leverage-point detection methods - the method
based on the MCD estimator and the method using the PCDist algorithm. Leverage-
point detection is required for the weighting process in the initial solution and the weights
in the WBY estimator. The method for identifying leverage points does not affect the
original BY estimator because it is only used for the initial solution to obtain a robust es-
timator, but further iterations of the algorithm converge to the final solution regardless of
the initial parameter. Therefore, the simulation includes the WBY estimator computed
using both leverage-point detection methods, whilst the BY estimator is computed em-
ploying only the MCD estimator.

34



6. Evaluation

Figure 6.1.: An example of four data configurations. The color of the points indicates
the class of the output variable, and the dashed line represents the decision
boundary.

The simulation consists of m = 500 runs, with new data points randomly generated in
each run. The data configurations I-IV are used to train the classifiers, and the classifier
performance is evaluated based on bias and mean square error, comparing the estimated
coefficients with the true parameter. Given a parameter estimate β̂i of the i-th simulation
run, the bias and the mean square error (MSE) are calculated as

Bias =
1

m

m

i=1

β̂i − β and MSE =
1

m

m

i=1

β̂i − β
2
,

where . denotes the Euclidean norm.
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The resulting values of bias and MSE for the total of eight estimators and various
imbalance proportions are shown in Table 6.1 and Table 6.2 for p = 2 and p = 10,
respectively. All simulation settings – regardless of the number of explanatory variables,
the data configuration, or the imbalance proportion – show the remarkable decrease
in bias and MSE for all cost-sensitive estimators compared to their non-cost-sensitive
forms. Thus, further analysis focuses on the performance of the cost-sensitive forms of
the estimators. Unsurprisingly, all classifiers yield approximately the same values for bias
and MSE for data configuration I. Adding leverage-points in data configuration II resulted
in quite a different behaviour of the BY and the WBY estimator. The BY estimator does
not lead to better performance compared to the logistic regression. In contrast, the WBY
estimator shows better performance at 20% and 10% positives and worse performance at
5% and 1% positives. The values of bias and MSE for the data configuration III show
no significant difference in classifier performance. In data configuration IV, both robust
methods, the BY estimator and the WBY estimator, outperform the logistic regression
model in all imbalance simulation settings. The WBY estimator yields the lowest values
for bias and MSE.

In summary, based on the simulation results, the following can be stated. In general,
the cost-sensitive algorithms significantly improve parameter estimation in an imbalance
learning problem. The number of explanatory variables did not affect the behaviour of the
robust estimators, except in the case of the WBY estimator, where the leverage detection
methods perform differently in low and higher dimensional spaces. In a low-dimensional
space, the WBY estimator computed by using the weights of the MCD estimator notably
outperforms the WBY estimator using the weights of the PCDist algorithm. However, in
a higher dimensional space, both leverage detection methods provide equivalent results.
Moreover, the utilization of leverage detection methods on data without outliers degrades
the performance of the model. In the case of pure vertical outliers, both robust estimators
provide similar estimation compared to the logistic regression. However, in the presence
of leverage points, the BY estimator provides more accurate or at least similar estimates
compared to logistic regression, depending on data contamination. The WBY estimator
yields notably better results, with an exception in settings with extremely imbalanced
data, where the performance of the classifier significantly decreases. One possible reason
for the poorer performance of the WBY estimator is the potential exclusion of positives
after the leverage detection, which severely affects the methods in case of a very small
number of positive observations.
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Configuration I II III IV
Bias MSE Bias MSE Bias MSE Bias MSE

20 % positives
LR 2.808 7.684 2.779 7.508 1.913 3.562 2.548 6.313
LR. c.s. 1.425 1.995 2.104 4.306 1.707 2.834 2.175 4.600
BY 2.807 7.677 2.773 7.480 1.858 3.361 2.548 6.314
BY. c.s. 1.425 1.998 2.171 4.591 1.661 2.687 2.154 4.512
WBY (MCD) 2.807 7.679 2.675 6.976 1.860 3.369 1.969 3.777
WBY. c.s. (MCD) 1.425 1.999 1.292 1.649 1.654 2.664 1.317 1.693
WBY (PCDist) 2.913 8.277 2.757 7.418 1.813 3.204 2.049 4.098
WBY. c.s. (PCDist) 1.543 2.346 1.410 1.964 1.503 2.205 1.133 1.265
10 % positives
LR 4.294 17.960 3.557 12.308 2.493 6.045 3.010 8.812
LR. c.s. 2.106 4.357 2.138 4.450 2.059 4.124 2.298 5.135
BY 4.295 17.975 3.530 12.124 2.454 5.859 3.017 8.852
BY. c.s. 2.106 4.360 2.140 4.494 2.051 4.093 2.324 5.257
WBY (MCD) 4.296 17.988 4.176 16.995 2.468 5.926 2.752 7.372
WBY. c.s. (MCD) 2.107 4.364 1.989 3.895 2.058 4.122 1.758 3.011
WBY (PCDist) 4.492 19.670 4.308 18.100 2.442 5.800 2.840 7.854
WBY. c.s. (PCDist) 2.329 5.350 2.208 4.819 1.999 3.888 1.606 2.522
5 % positives
LR 5.542 29.934 4.373 18.609 2.883 8.083 3.368 11.028
LR. c.s. 2.624 6.803 2.214 4.786 2.314 5.209 2.444 5.810
BY 5.542 29.945 4.316 18.131 2.833 7.804 3.373 11.060
BY. c.s. 2.625 6.811 2.157 4.702 2.320 5.236 2.470 5.935
WBY (MCD) 5.548 30.018 5.435 28.811 2.875 8.038 3.169 9.773
WBY. c.s. (MCD) 2.628 6.828 2.516 6.271 2.344 5.344 2.101 4.298
WBY (PCDist) 5.891 33.856 5.631 30.939 2.820 7.733 3.196 9.940
WBY. c.s. (PCDist) 2.971 8.777 2.853 8.109 2.304 5.165 2.047 4.084
1 % positives
LR 8.499 70.912 6.679 43.583 3.421 11.379 3.920 14.942
LR. c.s. 3.891 16.288 2.564 6.709 2.692 7.050 2.778 7.507
BY 8.501 71.117 6.556 42.023 3.409 11.303 3.910 14.868
BY. c.s. 3.992 17.512 2.611 8.347 2.693 7.056 2.762 7.420
WBY (MCD) 8.654 74.183 8.469 70.792 3.471 11.715 3.821 14.208
WBY. c.s. (MCD) 4.052 18.405 3.932 17.343 2.737 7.289 2.648 6.823
WBY (PCDist) 11.201 126.469 9.600 91.763 3.442 11.526 3.784 13.943
WBY. c.s. (PCDist) 5.881 47.092 5.685 43.795 2.720 7.197 2.624 6.705

Table 6.1.: The values of Bias and MSE obtained from 500 simulation runs for p=2 . The
columns represent different data configurations and the rows represent the three
types of estimators, both cost-sensitive (c.s.) and non-cost-sensitive, using a differ-
ent imbalance proportion. Leverage detection for the initial solution in the logistic
regression and the BY estimator was performed using the MCD estimator, and the
WBY estimator was calculated using both methods, indicated in parentheses.
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Configuration I II III IV
Bias MSE Bias MSE Bias MSE Bias MSE

20 % positives
LR 3.057 9.204 2.801 7.721 2.151 4.547 2.332 5.347
LR c.s. 1.676 2.804 1.645 2.688 1.994 3.909 1.919 3.625
BY 3.063 9.244 2.785 7.638 2.069 4.208 2.330 5.338
BY c.s. 1.680 2.821 1.633 2.652 1.937 3.690 1.858 3.401
WBY(MCD) 3.064 9.251 2.933 8.480 2.070 4.215 2.138 4.503
WBY c.s. (MCD) 1.682 2.827 1.549 2.411 1.935 3.682 1.554 2.386
WBY(PCDist) 3.094 9.438 2.963 8.656 2.052 4.143 2.148 4.548
WBY c.s. (PCDist) 1.712 2.933 1.582 2.514 1.904 3.567 1.526 2.307
10 % positives
LR 4.681 21.553 4.165 17.058 2.736 7.351 2.975 8.693
LR c.s. 2.501 6.238 2.167 4.676 2.368 5.510 2.238 4.931
BY 4.691 21.665 4.135 16.820 2.678 7.045 3.023 8.981
BY c.s. 2.511 6.295 2.153 4.624 2.358 5.466 2.205 4.787
WBY(MCD) 4.692 21.679 4.575 20.611 2.684 7.076 2.948 8.541
WBY c.s. (MCD) 2.513 6.311 2.397 5.757 2.360 5.476 2.047 4.131
WBY(PCDist) 4.743 22.159 4.613 20.966 2.671 7.008 2.963 8.634
WBY c.s. (PCDist) 2.564 6.578 2.443 5.982 2.341 5.386 2.020 4.028
5 % positives
LR 6.016 35.613 5.357 28.235 3.124 9.584 3.392 11.298
LR c.s. 3.146 9.939 2.659 7.093 2.628 6.784 2.497 6.136
BY 6.047 36.015 5.317 27.829 3.059 9.189 3.428 11.545
BY c.s. 3.173 10.136 2.661 7.119 2.634 6.817 2.489 6.095
WBY(MCD) 6.050 36.064 5.938 34.752 3.071 9.263 3.366 11.136
WBY c.s. (MCD) 3.179 10.182 3.074 9.547 2.640 6.851 2.397 5.660
WBY(PCDist) 6.132 37.060 5.995 35.424 3.053 9.156 3.378 11.215
WBY c.s. (PCDist) 3.258 10.716 3.141 9.978 2.625 6.771 2.376 5.564
1 % positives
LR 8.891 78.301 8.028 63.740 3.635 12.971 3.984 15.591
LR c.s. 5.153 29.301 4.189 19.089 2.983 8.741 2.923 8.409
BY 9.135 83.016 8.079 64.782 3.613 12.816 3.951 15.339
BY c.s. 6.030 46.699 4.729 28.966 2.985 8.754 2.927 8.430
WBY(MCD) 9.205 84.456 9.081 82.186 3.637 12.983 3.913 15.050
WBY c.s. (MCD) 6.203 50.584 6.198 52.685 2.999 8.834 2.886 8.202
WBY(PCDist) 9.451 89.169 9.226 84.924 3.617 12.846 3.899 14.945
WBY c.s. (PCDist) 6.551 56.143 6.639 65.142 2.987 8.766 2.872 8.125

Table 6.2.: The values of Bias and MSE obtained from 500 simulation runs for p=10 . The
columns represent different data configurations and the rows represent the three
types of estimators, both cost-sensitive (c.s.) and non-cost-sensitive, using a differ-
ent imbalance proportion. Leverage detection for the initial solution in the logistic
regression and the BY estimator was performed using the MCD estimator, and the
WBY estimator was calculated using both methods, indicated in parentheses.
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6.2. Example with the Credit Score Data

The "Give me some credit" data contains demographic and financial information of
150,000 borrowers used in "Give Me Some Credit" Kaggle Competition [17], [18]. The
characteristics of the individuals are represented by ten explanatory variables. The out-
put variable SeriousDlqin2yrs indicates whether a client will experience financial distress
in the next two years. The distribution of the dependent variable SeriousDlqin2yrs in
terms of absolute and relative frequencies is shown in Table 6.3, implying high class
imbalance.

SeriousDlqin2yrs Absolute Frequency Relative Frequency (%)
0 111,912 93.051
1 8,357 6.949

Table 6.3.: Frequency of the output variable SeriousDlqin2yrs

The data variables are listed and described in Table 6.4, and the univariate distribution
of explanatory variables for each output variable class is presented in Figure 6.2. The
univariate distribution of most input variables exhibits strong skewness – the asymmet-
ric shape of the density plots, which deviates from the symmetric bell curve. Therefore,
modelling was performed with two forms of the data set, the original data and the
log-transformed data. The logarithm transformation was performed on the variables
with skewed distribution – it includes all input variables except for variables age, Num-
berOfOpenCreditLinesAndLoans, and NumberOfDependents. The resulting distribution
of transformed explanatory variables for each output class is shown in Figure 6.3. The
logarithm transformation rendered the distribution of the explanatory variables more
symmetric and provided better separation between output classes in the transformed
variable distribution.
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Variable Type Description

SeriousDlqin2yrs Binary Person experienced 90 days past due
delinquency or worse

MonthlyIncome Numeric Monthly income

DebtRatio Numeric Monthly debt payments, alimony, living
costs divided by monthly gross income

Age Numeric Age of borrower in years

NumberOfDependents Numeric Number of dependents in family exclud-
ing themselves (spouse, children, etc.)

NumberOfOpenCredit-
LinesAndLoans Numeric

Number of open loans (installment like
car loan or mortgage) and lines of credit
(e.g. credit cards)

NumberRealEstate-
LoansOrLines Numeric

Number of mortgage and real estate
loans including home equity lines of
credit

RevolvingUtilizationOf-
UnsecuredLines Numeric

Total balance on credit cards and per-
sonal lines of credit except real estate and
no installment debt like car loans divided
by the sum of credit limits

NumberOfTime30-
59DaysPastDueNotWorse Numeric

Number of times borrower has been 30-
59 days past due but no worse in the last
2 years

NumberOfTime60-
9DaysPastDueNotWorse Numeric

Number of times borrower has been 60-
89 days past due but no worse in the last
2 years

NumberOfTimes90DaysLate Numeric Number of times borrower has been 90
days or more past due

Table 6.4.: Description of the variables from the data set "Give me some credit" [18]

The observations used for modelling include only the instances without missing values
in the input variables, resulting in a total number of 120,269 observations. Both forms
of the data set, the original and the log-transformed, were divided into a training set
and a test set with 75% and 25% of observations, respectively. The training set was
used to model the six classifiers – the logistic regression, the BY estimator and the
WBY estimator, both in cost-sensitive and non-cost-sensitive forms, respectively. For
the cost-sensitive form, the costs defined in Equation (6.1) are considered. The leverage
detection method used for the BY and the WBY estimator was performed using the
PCDist algorithm, since the MCD estimator could not be computed. The performance
of the classifiers was evaluated using the Gini index for the predictions of the test set.

40



6. Evaluation

Figure 6.2.: Distribution of variables from the data set "Give me some credit" depending
on the output variable class. The red color represents the majority class and
the blue color represents the minority class. The mean values of the variables
for each class are displayed with the dashed line.
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Figure 6.3.: Distribution of log-transformed variables from the data set "Give me some
credit" depending on the output variable class. The red color represents the
majority class and the blue color represents the minority class. The mean
values of the variables for each class are displayed with the dashed line.
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Data set Original Log-transformed
LR 0.399 0.661
LR c.s. 0.595 0.695
BY 0.237 0.638
BY c.s. 0.160 0.666
WBY 0.571 0.629
WBY c.s. 0.639 0.666

Table 6.5.: The values of the Gini index for the original and the log-transformed data
set. Leverage detection for the initial solution and the WBY estimator is
performed using the PCDist algorithm.

Table 6.5 shows the values of the Gini index for the original data and the log-transformed
data. For the original data, the BY estimator has the worst performance, whilst the WBY
offers the best results. Introducing imbalanced learning costs in the case of logistic re-
gression and the WBY estimator notably improves the values of the Gini index. The
large difference between the values of the Gini index for the BY and the WBY estimator
indicates a considerable number of bad leverage points in the explanatory variable space.
In contrast, the values of the Gini index for the log-transformed data are very similar
for all six classifiers, with the cost-sensitive methods providing slightly better results.
The classifier with the best performance is the cost-sensitive logistic regression. Similar
values of the Gini index for the BY and the WBY estimator suggest the small number
of bad leverage points in the space of explanatory variables for the log-transformed data.
The possible absence of outliers explains the similar performance of all six estimators.

For a better understanding of the resulting models, the distribution of score values for
each model is presented in the form of box-plots in Figure 6.4. The score values are
grouped according to the class of the output variable, resulting in two box-plots per
classifier, which is shown in Figure 6.4a for the original data and in Figure 6.4b for the
log-transformed data. In general, a good classifier should result in a good distributional
separation between the scores of the two output variable classes, ideally providing mostly
negative scores for the majority class and mostly positive scores for the minority class,
since such scores provide small values of deviances, as illustrated in Figure 4.4. In case
of the original data, the box-plots of the scores obtained from the cost-sensitive logistic
regression and the cost-sensitive WBY show favourable behaviour, while both the non-
cost-sensitive and cost-sensitive forms of the Bianco-Yohai estimator fail to separate the
distribution between the scores of the two classes. Concerning the log-transformed data,
all classifiers lead to good distributional separation between classes, which explains the
similar values of the Gini index. However, only the cost-sensitive methods achieve the
desired property of obtaining mostly positive scores for the minority class and mostly
negative scores for the majority class. Therefore, a good classification of the non-cost-
sensitive classifiers would require the additional verification of an appropriate threshold
for predicting the scores, different from a default value of zero.
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(a) Original Data (b) Log-transformed Data

Figure 6.4.: Box-plots of the score values si = xT
i β̂ resulting from the models with the

original data (a) and the log-transformed data (b). The score values are
grouped according to the class of the output variable.

The evaluation using the Gini index shows an application of the implemented classifiers
in a real-world setting. Given a data set with an unbalanced distribution of the output
variable and a similar distribution of explanatory variables across two output classes,
the use of imbalance learning costs notably improves the value of the Gini index. In
the additional presence of bad leverage points, a cost-sensitive robust classifier such
as WBY can provide best performance, as shown in the case of the "Give me some
credit" data set. When the distribution of explanatory variables provides separation
between output classes, the cost-sensitive methods do not necessarily provide a large
performance improvement in terms of the Gini index value, but they do lead to more
accurate classifiers. In absence of outliers, the robust methods such as the BY or the
WBY estimator provide performance results similar to the non-robust methods, as shown
in the case of the "Give me some credit" data set with log-transformed explanatory
variables.
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With the immense increase regarding the utilization of statistical learning techniques in
numerous disciplines, statistical methods need to be modified to ensure good statistical
efficiency for various data structures. Logistic regression represents one of the first meth-
ods to model a binary response variable and hence it is widely used in many domains,
mainly because the model interpretability and the additional class probabilities make
human reasoning of the model straightforward. Many application cases of binary logistic
regression employ data sets with an imbalance between the two classes of the output
variable. Moreover, the data used for modeling often contain atypical observations that
are separated from the majority of the data points and can greatly reduce the predictive
power of the resulting classifier. Therefore, such data structures require a robust method
suitable for imbalance learning problems.

This thesis proposes a cost-sensitive robust logistic regression model for imbalanced data
sets based on the Bianco-Yohai estimator. The Bianco-Yohai estimator aims to replace
the deviances of logistic regression with the bounded function of scores in the minimiza-
tion objective for parameter estimation. In order to address the problem of imbalanced
learning, the observation costs are included in the objective function. The implementa-
tion involves adapting the iterative algorithm introduced by Croux and Haesbroeck [1],
which starts from a robust solution and converges to the Bianco-Yohai estimator. As
a simple initial solution, the authors propose a weighted logistic regression, where the
weights of the leverage points, computed based on the MCD estimator, are set to zero.
The MCD estimator is affine equivariant and highly robust, but cannot be computed in
practice quite often. Therefore, the implementation includes an additional method for
detecting leverage points based on the S-estimator, the PCDist algorithm. The weights
based on the leverage points are also used to obtain the weighted Bianco-Yohai estimator.
Introducing the PCDist algorithm for leverage detection significantly increases the data
domain in which the Bianco-Yohai estimator is applicable.

The obtained cost-sensitive forms of the Bianco-Yohai estimator, in the weighted and
original versions, are compared with their non-cost-sensitive forms and the logistic regres-
sion as the corresponding non-robust method. The evaluation was based on simulation
experiments and an imbalanced data set used for credit scoring. In the simulation ex-
ample, the parameter estimates are compared with the true value of the parameter at
different settings for the number of explanatory variables, outlier types and imbalance
proportions. The simulation results show that including imbalanced costs remarkably im-
proves the performance of the Bianco-Yohai estimator in both the original and weighted
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versions. Moreover, compared to logistic regression, the Bianco-Yohai estimator gener-
ally provides a better parameter estimate when the data contain bad leverage points,
but does not improve the estimate in the case of vertical outliers. In the example of the
credit score data set, the performance of the estimators is analyzed using the Gini in-
dex. Based on the values of the Gini index, the cost-sensitive robust regression provides
the best estimate for imbalanced data with outliers compared to the non-robust and
non-cost-sensitive methods. Thus, the cost-sensitive form of the Bianco-Yohai estimator,
in both its original and weighted versions, provides a statistically reliable classifier for
imbalanced data that maintains its performance in the presence of outliers.
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A. The code for the Algorithm
Implementation

The full implementation code can be found here: https://github.com/sanjapriselac/
Cost-sensitive-Robust-Logistic-Regression-in-R

The following code snippet presents the crucial implementation steps described in Chap-
ter 5.

1 ## x0 - the data matrix X with the values of the input variables
2 ## y - the output variable
3 ## initwml (TRUE or FALSE) - the initial solution as the weighted ML
4 ## weights - the costs for the imbalance learning
5
6 ## Computation of the initial value of the optimization process
7 gstart <-
8 if(initwml) {
9 if (outmethod == "mcd") {

10 mcd <- covMcd(x0 , alpha =0.75, tolSolve = 1e-20)
11 D <- mahalanobis(mcd$X, mcd$center , mcd$cov)
12 vc <- qchisq (0.975 , p-1)
13 wrd <- D <= vc
14
15 if (method == "WBY") {
16 wby <- as.numeric(wrd)
17 }
18 } else {
19 outpcd <- OutlierPCDist(x0 , grouping = as.factor(y))
20 wrd <- as.logical(outpcd@flag)
21
22 if (method == "WBY") {
23 wby <- outpcd@flag
24 }
25 }
26 glm.fit(x[wrd ,], y[wrd], weights = weights[wrd], family=family)$coef
27 } else {
28 if (method == "WBY") {
29 if (outmethod == "mcd") {
30 mcd <- covMcd(x0 , alpha =0.75, tolSolve = 1e-40) #SP commented
31 D <- mahalanobis(mcd$X, mcd$center , mcd$cov)
32 vc <- qchisq (0.975 , p-1)
33 wby <- as.numeric(D <= vc)
34 } else {
35 outpcd <- OutlierPCDist(x0 , grouping = as.factor(y))
36 wby <- outpcd@flag
37 }
38
39 }
40 glm.fit(x, y, weights = weights , family=family)$coef
41 }
42
43 if (method == "WBY") {
44 weights <- weights * wby
45 }
46
47 sigma1 <- 1/sqrt(sum(gstart ^2))
48 xistart <- gstart*sigma1
49 stscores <- x %*% xistart
50
51 ## Initial value for the objective function
52 oldobj <- mean(phiBY3(stscores/sigma1 , y, const) * weights)
53
54
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A. The code for the Algorithm Implementation

55 converged <- FALSE
56 kstep <- 1L
57
58 while(kstep < kmax && !converged)
59 {
60 unisig <- function(sigma) mean(phiBY3(stscores/sigma , y, const) * weights)
61 optimsig <- optimize(unisig , interval = c(0, 10^10))
62 if(trace.lev) cat(sprintf("k=%2d, s1 =%12.8g: => new s1= %12.8g",
63 kstep , sigma1 , optimsig$minimum))
64 sigma1 <- optimsig$minimum
65
66 if(sigma1 < sigma.min) {
67 if(trace.lev) cat("\n")
68 warning(gettextf("Implosion: sigma1 =%g became too small", sigma1))
69 kstep <- kmax #-> *no* convergence
70 } else {
71 scores <- stscores/sigma1
72 newobj <- mean(phiBY3(scores , y,const) * weights)
73 oldobj <- newobj
74 grad.BY <- colMeans ((( derphiBY3(scores ,y,const)*weights) %*% matrix(1,ncol=p))*x)
75 h <- -grad.BY + as.numeric(grad.BY %*% xistart) *xistart
76 finalstep <- h/sqrt(sum(h^2))
77
78 if(trace.lev) {
79 if(trace.lev >= 2) cat(sprintf(", obj =%12.9g: ", oldobj))
80 cat("\n")
81 }
82
83 xi1 <- xistart+finalstep
84 xi1 <- xi1/sum(xi1 ^2)
85 scores1 <- (x %*% xi1)/sigma1
86 newobj <- mean(phiBY3(scores1 ,y,const) * weights)
87
88 ## If ’newobj ’ is not better , try taking a smaller step size:
89 hstep <- 1.
90 jhalf <- 1L
91 while(jhalf <= maxhalf & newobj > oldobj)
92 {
93 hstep <- hstep/2
94 xi1 <- xistart+finalstep*hstep
95 xi1 <- xi1/sqrt(sum(xi1^2))
96 scores1 <- x %*% xi1/sigma1
97 newobj <- mean(phiBY3(scores1 ,y,const) * weights)
98 if(trace.lev >= 2)
99 cat(sprintf(" jh=%2d, hstep =%13.8g => new obj =%13.9g\n",

100 jhalf , hstep , newobj))
101 jhalf <- jhalf+1L
102 }
103
104 converged <-
105 not.improved <- (jhalf > maxhalf && newobj > oldobj)
106 if(not.improved) {
107 ## newobj is "worse" and step halving did not improve
108 message("Convergence Achieved")
109 } else {
110 jhalf <- 1L
111 xistart <- xi1
112 oldobj <- newobj
113 stscores <- x %*% xi1
114 kstep <- kstep+1L
115 }
116 }
117 } ## while( kstep )
118
119 if(kstep == kmax) {
120 warning("No convergence in ", kstep , " steps.")
121 }
122 gammaest <- xistart/sigma1 # SP the estimator
123 V <- vcovBY3(x, y, const , estim=gammaest , addIntercept=FALSE)
124 list(convergence=TRUE , objective=oldobj , coefficients=gammaest ,
125 cov = V, sterror = sqrt(diag(V)),
126 iter = kstep)
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