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Nanometer resolved real time visualization of acidification and material breakdown

Abstract. Localized surface reactions in confinement are inherently difficult to visualize in

real time. Herein we extend multiple-beam-interferomtry (MBI) as a real-time monitoring

tool for corrosion of nanometer confined bulk metallic surfaces. We demonstrate capa-

bilities of MBI and compare the initial crevice corrosion mechanism on confined nickel

and a Ni75Cr16Fe9 model materials in real time. Therefore, surfaces were confined by a

mica surface. The initiation of crevice corrosion was visualized in real time during linear

sweep polarization in a 1 mM NaCl solution. Pre- and post experiment analysis was per-

formed to complementary characterize the degraded area with AFM, optical microscopy,

nano-Laue diffraction, SEM/EBSD and XPS. Overall, the alloy displays a better corrosion

resistance, however, real time MBI imaging reveals 200 nm deep severe localized corrosion

of the alloy in the crevice opening. Chromium rich passive films formed on the alloy con-

tribute to accelerated corrosion of the confined alloy by a strongly acidifying dissolution

of the passive film in the crevice opening. Nano-Laue diffraction further reveals preferen-

tial crystallographic defect and corrosion migration planes during corrosion. MBI provides

nanometer accurate characterization of topologies and degradation in confined spaces. The

technique enables understanding initial crevice corrosion mechanism and testing modeling

approaches and machine-learning algorithms.

Keywords: Crevice corrosion, Nickel, Passive films, SFA, Laue diffraction
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I. INTRODUCTION

Due to their high corrosion resistance in various aggressive environments nickel and nickel

alloys are widely used in different sectors of industry, including e.g. petrochemistry or power gen-

eration. However, in the presence of chloride, these materials display considerable susceptibility

to corrosive degradation1,2. Despite the enormous body of literature and work that was performed

over recent decades on corrosion of Ni-based alloys, crevice and pitting attacks, which take place

in confined and localized spots respectively, are very difficult to detect and to study in real time3–9.

Further, it is currently not yet possible to quantitatively predict localized corrosion due to a limited

mechanistic understanding of initial steps. In order to prevent or limit localized corrosive attacks,

nickel can be alloyed with different elements to improve resistance10 against localized corrosion.

Chromium as an alloying element reduces the corrosion rate by passivating the surface of the

metal and increases the pitting potential. The breakdown of the passivity of the material is then

related to the local dissolution of the passive chromium oxide film from the surface11. In this case,

literature suggests that the chromium oxide film generally hinders the diffusion of oxygen from

solution to the active metal surface and increases the anodic dissolution potential12–19.

The initiation and growth of pitting corrosion should be observed in aerated halide solutions

only in those metals whose critical potential is lower than the reversible oxygen electrode (ESHE

= 0.8 V). For example, metals like Cr and Ti that have their critical potential over 1 V are not

expected to suffer from pitting corrosion20.

However, there is a different situation in the case of crevice corrosion, where the media are

stagnant and the concentration of aggressive species can accumulate. With proceeding corrosion

reactions a simultaneous decrease in pH, increase in Chloride concentration and depletion of oxy-

gen occurs. This results in a breakdown of the passivity and enhanced corrosion in a crevice, as

well as generally lower critical corrosion (i.e. passivity breakdown) potentials for most alloys. For

instance, for stainless steels, according to Fujimoto and Newman21, a threshold concentration of

around 10% Chromium is required, so that a stable layer of Cr2O3 can form to protect an alloy

from corrosion. Ebrahimi et al.22 and Marcus et al.23 showed through XPS measurements that the

resistance of the passive film is controlled by Cr2O3 and that once the transpassive potential region

is reached, the resistance of the film decreases with a parallel increment of Cr(OH)3 content in the

film. Once the passive film breaks down, and dissolution becomes stable, the role of the Chromium

is to effectively repassivate the crevice. Nagarajan et al.24 also observed that superaustenitic stain-
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less steels shows an increase of the roughness inside the crevice using optical and atomic force

microscopy imaging25. For materials that exhibit an active-to-passive transition the IR-drop that

develops inside of a tight crevice can further explain the location of corrosion initiation26–30. Ac-

cording to this model pioneered by Pickering31, inside a crevice a potential drop (IR drop) and

hence a specific local potential distribution occurs due to increased resistance and/or increased

passive currents due to changes of the solution chemistry32 inside of a crevice. This IR-drop can

essentially shift the local potential from the passive into the active region of a material.

While literature on crevice corrosion is vast and well advanced,26,33–35 development of methods

to view crevice corrosion in real time and at initial stages are notoriously difficult to develop.

We recently36 developed an interferometric technique for studying the initial crevice corrosion of

vapor deposited or sputtered metal thin films (with thicknesses in the range of 20-60 nm) under the

influence of confined geometries by using a modified transmission mode surface forces apparatus

(tSFA). This setup provides valuable information to explore the initiation of pitting and crevice

corrosion36 of thin films. However, thin films often have a distinctly different microstructures

compared to bulk alloys. The limitation of the tSFA is thus a drawback that greatly restricts the

investigation of commercially available alloys, and effects of microstructure. In this work we

resolved this shortfall, and designed a reflection mode equipped surface forces apparatus (rSFA)

for operation with non-transparent bulk metal samples. The idea of the rSFA was first tested by R.

Horn37 to study the interface between mica and a mercury droplet. Unlike the tSFA, the observed

fringes of equal chromatic order (FECO) produce an intensity decrease of the interference pattern

in rSFA due to the optical arrangement and light absorption within the interferometer cavity. Yet

still, the information available about the confinement geometry can be calculated to the same

precision as tSFA. The rSFA can however be used to study any sufficiently reflecting bulk material,

including most commercial alloys.

Here, we discuss the newly designed rSFA, which is specifically tailored for generating crevices

with well defined geometries. We test its performance using pure Nickel and a Ni75Cr16Fe9

model alloy and we complement this work by extensive pre- and post analysis of the samples

used, utilizing optical microscopy, topography analysis using an atomic force microscope. We

also characterize the samples using Electron Back Scattering Diffraction (EBSD) and nano-Laue

diffraction38,39, to characterize local crystal orientation40, grain boundaries41 and deformation

around pits forming42 at the corroding crevices.
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II. METHODS AND MATERIALS

a. Chemicals and materials. High purity sodium chloride was purchased from Sigma

Aldrich and a 1 mM solution was prepared with Milli-Q (Millipore) water with a resistivity

>18 MW·cm and a total organic carbon (TOC) value <2 ppb. Optical grade V1 ruby-mica was

obtained from S&J Trading Company as sheets of about 20 cm ⇥ 20 cm and 2 mm thickness.

Surfaces were prepared using 5-10 cm2 mica sheets with thicknesses ranging from 2 to 5 µm,

which were hand-cleaved from raw sheets and used for the experiments43. These highly flexible

sheets of mica, back-coated with silver, were then glued to cylindrical silica disks of nominal

radius of curvature R = 7-15 mm.

b. Preparation of model alloys Alloys were prepared at the Max-Planck-Institut für Eisen-

forschung. The single elements have a high purity above 99.99% and they are cast in an oven.

Cast ingots were used as is, cut into pieces with a total width of 5 mm. The metal blocks were

then first ground with sand paper of different grain size (from P80 to P2500), then polished with

diamond paste of 0.05 µm and and final polishing with a colloidal silica suspension to a mirror

finish. Afterwards samples were extensively cleaned and sonicated in pure water. XPS results

(below) indicated no contamination above 2-3 % of a monolayer coverage equivalent.

c. Surface Forces Apparatus Crevice corrosion experiments were performed in a confined

geometry generated in a newly designed rSFA. The setup and its optics were home build using

components from Thorlabs, including a sCMOS camera (2.1 Megapixel), a laser line filter 532 ±1

nm, two beam splitters (10/90 and 90/10), objective with a 4x magnitude, an Andor spectrograph

coupled with an IXON 3 EMCCD camera, and a MWWHL4 LED as white light source (WL).

Figure 1 shows a sketch of the major components of this setup. Here, we briefly discuss materials

and methods used for crevice formation, below we will discuss the optical setup and general

considerations in more detail.

Figure 1a shows the typical confining surface layout used as a crevice former. Specifically, a

molecularly-smooth, back-silvered muscovite mica surface is glued on a glass cylinder. Using the

layered-silicate muscovite mica provides a molecularly smooth and transparent crevice former that

can be produced with very small thickness by manual cleavage43. The silver coating at the back-

side is semi-transparent (40 nm silver thickness) and provides the mirror surface for generating

an interferometer. As shown in Figure 1b, the apposing metal blocks (Ni, Alloy) with 5 mm

height and 5 mm diameter were mounted on the top sample holder with their fine polished surface
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apposing the crevice former. With these two mirrors, a 2-layer interferometer is generated. Any

changes in the separation distance between the Ag and the metal mirror, due to e.g. ingress of

water, or shift of the metal mirror surface by corrosion (conversion into oxide or dissolution), can

be tracked with time by analyzing standing waves in the optical cavity that is generated. Further

details on white light interferometry can be found here44.

Once corrosion occurs, clear changes in the wavelength of standing waves in the interferometer

cavity (e.g. due to shift of the reflecting surfaces due to corrosive consumption of the metal)

as well as changes of the light intensity of the Newton’s rings (NRs) can be detected with an

optical microscope of 4x magnitude by projecting the image on a CCD camera and a spectrometer

equipped with a sCMOS sensor (Andor, Zyla), respectively.

d. Atomic force microscopy AFM images were recorded in tapping mode with an Asylum

Research Cypher AFM using photo thermal excitation to oscillate the cantilever . The measure-

ments were performed with gold coated cantilevers (Arrow-UHF-AuD, Nano World) with a length

of 35 µm, resonance frequency of 0.7 -2 MHz. The images were post-processed using plane lev-

eling implemented in the Asylum software package.

e. Nano Laue diffraction Synchrotron experiments were performed at Taiwan Photon

Source (TPS) Beamline 21A at the National Synchrotron Radiation Research Center (NSRRC),

Taiwan. This beamline is dedicated to white-light Laue diffraction for structural analysis (e.g.

phase identification, grain orientations, residual strain, stress, and dislocation mappings). A

schematic of the beamline capabilities is provided in the Supporting Information (Figure S1). The

estimated spatial resolution for such measurements can regularly reach 80 ⇥ 80 ⇥ 50 nm at this

beamline. Therefore, the beamline utilizes a pre-shaped Kirkpatrick-Baez mirror pair to focus the

polychromatic X-ray beam with energies ranging from 5,000 to 30,000 eV.

The sample was navigated inside the chamber with an online real-time scanning electron mi-

croscopy (SEM) with a spatial resolution of 4 nm, allowing the correlation of locations to SFA

measurements. The station mount allows the sample position to be adjusted in three dimensions,

and is situated on an active vibration isolation table. All measurements were performed in vacuum.

The specimen was mounted on a special designed sample stage with 45� pre-tilted angle relative

to the incident X-ray beam.

Diffraction patterns are collected using a high sensitivity hybrid pixel array detector (PAD,

PILATUS3-X-6M), located on at the focus point above the sample (angle resolution better than

0.018 �). Diffraction patterns were analyzed using the XMAS software package45 to identify the
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crystal phases, while the mapped images of total intensity, crystal orientation, and peak width were

calculated using a LabVIEW-based code.

f. Electrochemistry All measurements were performed in 1 mM NaCl solution. Every Pt

pseudo reference used in rSFA experiments was referenced against a standard 3N Ag|AgCl elec-

trode, showing a difference of about + 200 mV with typical variations of 50-80 mV depending on

the Pt wire used. All data is referenced to the Ag|AgCl potential for comparison.

To ensure that the recorded electrochemical signal in the rSFA is related to the polished surface,

all samples were first sealed with epoxy glue, and then polished to the desired surface finish. In

the rSFA corrosion experiments were conducted using a three-electrode system with platinum

wires as both reference and counter electrodes, and Ni or the alloy block as the working electrode.

Experiments were reproduced multiple times with similar outcomes. All potential ramp rates were

1 mV/s, and were initiated at Ei: -0.1 V vs. open circuit potential (OCP), and scanned to an upper

limit of E f = 1.5 V vs. Ere f , if not stated otherwise below. An emStat 3+ potentiostat (Palmsense)

was used for all electrochemical measurements.

g. Scanning electron microscopy and electron backscatter detection SEM and EBSD anal-

ysis was performed at the USTEM facility at Vienna University of Technology, working on a FEI

Quanta 250 FEG with a beam energy of 10 keV.

h. X-ray photo-electron spectroscopy All XPS measurements were performed with a Quan-

tum 2000 (Physical Electronics). Spectra were measured using the implemented high power mode,

where photoelectrons are generated by a continuous scanning of a 100 x 100 µm2 sized X-ray spot

(100 W) over an area of 100 x 1000 µm2 in order to minimize X-ray damage to the sample. Pass-

energy and scan steps were 22.5 eV and 0.2 eV for high resolution element scans, and 104 eV and

0.4 eV for survey spectra acquisition. To obtain a good signal-to-noise ratio, 15 and 30 sweeps for

the C 1s and metal signals, were used respectively. All binding energies are referenced against the

adventitious C 1s signal at 284.8 eV.

i. Operating principle and construction of a Surface Forces Apparatus for reflection mode

application Since its invention several decade ago the SFA principle has been used in different

geometries, and for generating confined spaces. Several groups pioneered the utilization of SFA to

study degradation, dissolution36 and more general chemical reactivity in confined spaces.46 Figure

1 shows the major components of the newly designed rSFA adapted for operation with bulk metal

samples. The crevice former in Figure 1a consist of a molecularly smooth back-silvered mica (for

details refer to methods and materials) glued to a glass cylinder with a nominal radius R = 1 cm.
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FIG. 1. a) Detailed view of the compliant crevice former. b) Detailed schematic of the sample arrangement

(c.f. see text for details). Ac and Ao indicate the area of contact and the area outside of confinement where

the apposing surfaces are separated by less then a few µm. Upon contact with the metal block, the glued

mica layer can comply with the surface topology of the metal, forming a flat confined contact area with

elliptic shape. c) Schematic view of a surface forces apparatus in reflection mode (rSFA). The white light

path is represented by the red line, it is guided through a beam splitter where 10% of incident achromatic

white light is reflected onto the interferometer (mica/sample). The objective simultaneously focuses onto

and collects the light from the sample, at the second (10/90 T/R) beam splitter 10% is projected onto the

CCD camera for Newton’s rings observation. The other 90% is collected at the spectrometer, where the

Fringes of Equal Chromatic Order (FECO) are observed. The sample acts as the working electrode, Pt

wires are used as both counter and reference electrodes. A goniometer together with a set of XY-translation

stages are used to fine tune the tilt angle and contact position of the sample.

Mica as a crevice former mimics a typical insulator/metal interface, while mica may exhibit higher

surface charges compared to other ceramic materials. The crevice former is compliant due to the

deformable glue. If the cylindrical shaped crevice former is pressed against a flat mirror polished

metal surface (see Figure 1b)

undulations of the glued mica surface and compliance result in flat elliptical contact zones,
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while small variations of the metal grain heights (e.g. due to polishing effects) can also result in

confining the highest grains that are in contact with the apex of the cylinder.

Typical major and minor axis diameters of the confined area are in the range of 300 µm and 100

µm, respectively, resulting in confined areas of AC = 0.03 mm2. The typical electrolyte thickness

T f l in the confined area can be directly measured using white light interferometry and is within

the range of 0.5 to 3 nm, which also depends on the electrochemically applied charging conditions

within the crevice36,

i.e. applied potentials vary the electric double layer thickness at a given normal load. In gen-

eral, cylinder on flat experiments cannot apply pressure that are high enough to fully dehydrate

hydrophobic interfaces.

The elliptic shape of an established crevice also results in different crevice opening angles for

the major and minor elliptical axis. Depending on the radius of the disc used, the contact radius

of the confining crevice former, can be varied from 5 mm < R < 40 mm, allowing control of

the opening angle of the minor axis within a limited range between 5 and 15°. As can be seen

from Figure 1b, we also indicate an area around the confined zone, where the crevice opening is

typically increasing the distance between the apposing surfaces to some hundreds of nanometers,

characterized by an area of AO.

Figure 1c shows the optical setup, the major motion degrees of freedom and the electrochemi-

cal cell. First, the sample, a Pt-CE and a Pt-RE are connected to a potentiostat, as described in the

methods section. Second, a contact is established and aligned using a sample stage with coarse and

piezo-based fine motion in xyz. A goniometer allows us to align the apex of the crevice forming

cylinder parallel with respect to the flat metal surface. The metal sample is additionally mounted

to springs equipped with strain gauges for measuring lateral and normal forces to (1) assist with

the alignment, and (2) to set a normal force and hence a pressure at the contact zone. Typical

applied pressures in this work are around 2-3 bar. Third, interference microscopy and white light

interferometry are realized using a home built reverse microscope setup, with an LED white light

(WL) source. Collimated WL is guided into a 4x microscope objective using a beamsplitter with

a 90 to 10 splitting, for transmission out of the path, and reflection into the confined zone and

interference cavity, respectively. The light reflected from the interferometer cavity using a beam

splitter (ratio 10/90) is then guided through an additional beam splitter to simultaneously record

both (1) a microscopic interference image on a CCD camera, and (2) fringes of equal chromatic

order (FECO) in a spectrometer. The optical path is filtered through a green 532 nm laser line
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filter to specifically visualize the standing waves at 532 nm, i.e. to visualize so called Newton’s

rings (NR) generated by the interferometer cavity. Both, NR and FECO provide a measure for the

dimensions of the confined area, with NR only providing a thickness resolution of about 2-5 nm44,

while FECO are accurate to within a few tens of pm. Finally, a Mercury reference lamp is guided

into the spectrometer in parallel, in order to verify and calibrate the spectrometer.

III. RESULTS AND DISCUSSION

A. Crevice corrosion of nickel and a Ni75Cr16Fe9 alloy

To test the performance of the newly designed rSFA (for details see methods section) we studied

two different material types that are prone to crevice corrosion. Specifically, we use pure nickel

and a Ni75Cr16Fe9 model alloy. Addition of chromium results in the formation of a very stable

Cr-rich passive layer, and a lower susceptibility to corrosion is expected for the alloy. Standard

anodic linear sweep voltametry (LSV) with a scan rate of 1 mV/s (Supporting Figure S2) confirm

the expected behaviour with a shift of the critical potential of the Ni75Cr16Fe9 to more anodic

potentials by about 250 mV compared to pure Ni, indicating the increased corrosion resistance of

the alloy.

1. Crevice formation and overview of the recorded crevice corrosion process in an rSFA.

In Figure 2 we first demonstrate the crevice formation for both materials in the newly designed

rSFA. Specifically, Figure 2a and b show how rSFA may be used to generate a confined area

with precise control for Nickel and the Ni75Cr16Fe9, respectively. Generally, the local elliptical

geometry of the crevice can be well-controlled in terms of the confined area, AC, which is adjusted

to a major axis diameter of about 300 µm for both examples.

The opening angle depends on the local curvature of the crevice former and indicates the ex-

pected larger opening angle along the minor axis of the ellipse. In general the opening angle is

slightly variable within 0.5°due to gluing the crevice former onto a glass disc. Experimentally,

opening angles along the minor axis can be varied by varying the glass disc radius, which is an

aspect that we did not study in detail in this work. The measured contact geometry of the confine-

ment geometry is indicated as a relief map in the figure as well. Irrespective of the lack in very

precise control of the opening angle, the major advantage of interference microscopy is that it al-
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FIG. 2. Establishing and characterization of confined zones. Newton’s rings of mirror polished surfaces

of (a) nickel and (b) Ni75Cr16Fe9 confined by a cylindrical mica surface. The Newton’s Rings (NR) were

color-coded to indicate a contact geometry based on a NR analysis. Confinement geometries are further

illustrated as inset figures of (a,b) showing typical FECO recorded for the samples. (c,d) Grain boundaries

on these optical images are indicated with white dashed lines based on EBSD characterizations, shown as

inset figures for (c) Nickel and (d) Ni75Cr16Fe9. (e,f) Samples after corrosion, respectively. Samples were

washed with milli-Q water and dried in a flow of N2 prior to image acquisition.

lows us to directly and precisely measure any established confinement geometry. Opening angles

and contact reliefs can be measured based on a nanometer precision, interference-based, distance

measurement between the apposing surfaces at any point of the sample contact during the experi-

ment. Even grain boundaries and differences in grain heights can be well resolved. This is clearly

visible in the enlarged image of the established Ni-contact shown in the supporting information

(Figure S3).

The small inset in Figure 2a and 2b shows the wavelength resolved interference pattern (fringes

of equal chromatic order, FECO) recorded across the contact as indicated. The constant wave-

length of each standing wave in the center of the contact, marked by the dotted blue lines, indicates

that the confined zone is flat to within the roughness of the metal surface. Using the shift of these

standing waves with respect to the dry contact allows us to directly calculate the thickness of the

fluid film in confinement, which is estimated to be between 2.5 nm and 3.5 nm at OCP.
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Prior to starting a corrosion experiment, all samples were routinely characterized by using

electron-backscattering diffraction (EBSD) and optical microscopy. Figure 2c and d show an

overview of the optical images together with the corresponding EBSD pattern and grain orienta-

tions recorded for the same area where the confined area is established. The Ni sample appears

to have considerably larger grains compared to the alloy. We can now correlate grain sizes and

orientation to the confined area corroded in experiments.

Figure 2e and f show ex-situ optical images of Ni and Ni75Cr16Fe9 samples, respectively, after

corrosion occurred at the confined areas. Interestingly, the corrosion mechanism of both materials

proceeds completely different. Generally, Ni-samples show pitting inside the confined area AC and

in an area AO around the confined area within the crevice opening. In contrast, the Ni75Cr16Fe9

shows considerably less pitting inside of the nanometer confined area AC, but a very pronounced

corrosion in the area AO of the crevice opening. The black region in the optical microscopy is

due to severe corrosion and increased surface roughness in this region, which results in significant

scattering of the incoming light.

a. Detailed real-time view of the corrosion process using rSFA interference pattern. Apart

form establishing very well-characterized confined areas and post-experimental inspection of the

corroded area shown in 2, the rSFA allows us to analyze the corrosion process in real time. There-

fore a time-resolved sequence of interferometric images is recorded during linear sweep polariza-

tion. Images can be recorded with real-time frame rates up to 100 Hz with our equipment. Here,

we typically record with frame rates of 2 Hz, as the recorded processes are comparably slow. Rep-

resentative images of the entire corrosion process are shown in Figure S3 for Nickel and in Figure

3 for the alloy.

The onset of corrosion on nickel and the Ni75Cr16Fe9 appears at around 0.35 V and 0.6 V

vs. Ag|AgCl, respectively. At this critical potential the initiation of crevice corrosion in the NR

pattern was very obvious for the Ni75Cr16Fe9, but it was less pronounced in the Ni sample (see

SI for details), where we find increased pit formation at the confined zone, and less dense pitting

outside. Interestingly, the Ni75Cr16Fe9 displays a much more severe local corrosion mechanism.

Figure 3(a-c) show time-resolved NR patterns recorded during the LSV scan for the alloy, and

Figure 3(d) shows the final corrosion damage recorded after the experiment.

Specifically, the NR in Figure 3(a-c) show a very pronounced change of the standing waves,

which is indicative of progressing local corrosive damage. In addition, a significant decrease of the

light intensity can be visualized at the corroding site, due to roughness increase and resulting scat-
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FIG. 3. Real time corrosion analysis. (a-d) Screen-shots of the video of the corrosion progress at different

times (+1, +5, +10 min and after corrosion). (e) Lateral crevice corrosion progression along the major

elliptical axis (X) and (Y) for Ni75Cr16Fe9 plotted against the time/applied potential. The vertical line

indicates that all directions progress with approximately with similar rates. (f) Schematic of corrosion

mechanism around the area of confinement for both samples. The local pH increase is indicated (red shaded

area).

tering of light. The NR change and intensity changes in the confined zone can be viewed as a finger

print of the changing confinement geometry and ongoing corrosive degradation, respectively.

TABLE I. Lateral propagation rate for the Ni75Cr16Fe9 along the major and minor axes of the confined

zones.

Average Speed (µm/min) X direction Y direction -X direction -Y direction

0-3 min 37.6 ± 4.2 53.4 ± 9.6 17.4 ± 2.6 48.7 ± 2.1

3-10 min 51.1 ± 3.6 34.3 ± 1.1 31.6 ± 2.9 45.9 ±2.3

Detailed analysis of the corrosion behavior of the Ni75Cr16Fe9 shown in Figure 3a-c reveals

several noteworthy characteristics, which are initiation from a single site in the confined area,

directional and grain dependency along with a weakly pronounced potential dependency.
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First, in this example and in general the corrosion of the confined Ni75Cr16Fe9 initiated at a

single specific location (marked by an arrow in the displayed example) within the confined area

Ac for all probed samples. From this location corrosion progressively propagated out in all spatial

directions. This behavior is consistent with the diffusive propagation of an aggressive crevice en-

vironment, starting from a particular initiation site. This is consistent with the strongly acidifying

breakdown of the protective Cr2O3 into soluble chromate, which releases 10 protons per formula

unit as follows:

Cr2O3(s)+5H2O(l)! 2CrO2�
4 (aq)+6e�+10H+(aq). (1)

At the final stage as shown in Figure 3c and Figure 3d after mica has been removed, a very

pronounced dark corroded region on Ni75Cr16Fe9 was observed. This dark region coincides with

the lower intensity that propagated in the realtime NR images and is marked with red dashed lines

in the interferometric images in Figure 3(a-c).

In contrast, on pure Ni (see again Figure 2e) pitted areas were observed inside, and in the close

vicinity of, the confined zone, and general roughening and to a lesser degree pitting was observed

over the entire surface. Interestingly, and as can be seen in the Figure as well, specifically grains

with vicinal orientations close to (111) show an increased pitting also outside of the confined

zone. Considering that the anodic dissolution of nickel only generates 2 protons per unit formula,

the less significant corrosive attack of nickel in the confined zone can be explained by the less

acidic local environment as well. In addition the observed roughening is in good agreement with

weaker protective properties of the passive film on nickel, which dissolves at the applied potentials

according to the nickel Pourbaix diagram.

We additionally performed XPS analysis of the surface chemistry of the corroded region and

outside of the confined regions, for both materials. Data is shown in the SI (Figures S4/S5).

For the Ni75Cr16Fe9 alloy the data indicates that the oxide composition inside and outside of the

crevice shows a very clear trend of Ni(OH)2 depletion and Cr2O3 as well as Fe2O3 enrichment.

This further confirms the expectation, that a passive Cr2O3 layer is enriched at the surface, and that

its breakdown results in a strong acidification of the crevice environment according to Equation

1. XPS of the Nickel surface revealed the expected formation of a NiO/Ni(OH)2 layer, which may

slowly dissolve in a mildly acidic environment of a crevice on Nickel.
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Second, the shape of the corroded region at the final stage displays a weakly pronounced

anisotropy, which cannot be explained by an isotropic diffusive spreading of aggressive electrolyte.

This may rather be due to both the crevice opening geometry and the grain orientation. As indi-

cated in Figure 3(a-d) this anisotropic progression can be decoupled into individual progression

rates along the four principal directions of the elliptical contact area. Figure 3(e) shows the track-

ing of the boundary position of the corroded region along these directions as a function of the

applied potential/time. From the slope of this plot lateral propagation rates can be calculated (see

Table 1).

Interestingly, corrosion initially propagates slower along the ± X axis compared to the ± Y

direction. In particular, along the -X direction (confined region) the propagation is two times

slower compared to the Y directions, and also significantly slower compared to +X. As sketched

in the schematic in Figure 3(f) this is due to the limited diffusion rate of the aggressive electrolyte

along the fully confined -X direction, caused by the different crevice opening angle, and due to

confinement and, hence, the possible saturation of the only 2-3 nm thick confined electrolyte. At

a potential above 0.78 V the -X direction proceeds faster as well. This may be due to spreading

of the aggressive environment at larger crevice opening distances, where diffusion into the -X

direction is not limited by confinement any longer.

In the later stages it appears that corrosion, due to a slightly slower progression along the

+Y direction, shows a directional tendency (see Figure 3 c, red arrow), that follows the grain

orientation. The preferential propagation direction is in line with the overall orientation of the

grains in this region, which are oriented in (X,Y) to (-X,-Y) direction. Interestingly this suggests

that grain orientation dependency only plays a minor role during the initial spreading of crevice

corrosion, and only evolves at a later stage as a minor influence.

In comparison, it is interesting to summarize that the rSFA data indicates that (1) Ni-corrosion

proceeds as pronounced localized pitting and roughening with statistically more pitting inside the

confined zone and in general on specific grains. For pure nickel, which shows an active-to-passive

transition, the localization of the more severe localized attack within the crevice is fully consistent

with an IR-drop31 driven initiation of the corrosion. Specifically, and as can be observed in Figure

2 e, pitting is maximal at region where the separation distance is around 0.5 - 0.9 µm (compare to

color code an confinement location in Figure 2 e), which may be the area where the local potential

drops into the active region of nickel corrosion. In contrast, (2) the Ni75Cr16Fe9 shows an appar-

ently more severe areal attack in the opening of the confined zone. In this case, the attack proceeds
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from an initial critical breakdown at one specific site. This results is consistent with severe con-

finement acidification and accelerated breakdown of material in the immediate surroundings of

the initial breakdown site due to the spreading aggressive crevice solution. For the alloy it appears

that we can follow the diffusion of the aggressive environment in real time. This is similar to the

behavior found for Ni-thin films in our earlier work36. The alloy also exhibits no active-to-passive

transition at the neutral bulk pH values used in our work. A clear active-to-passive transition only

occurs at pH values below pH = 1 (data not shown). This suggests that for crevice corrosion to

initiate a sufficiently aggressive crevice solution must first develop to initiate breakdown of the

passivity. In our experimental setting this appears to occur at a region where the electrolyte film

is in the 10s of nanometer range (i.e. at the rim of the fully confined zone where only a 2-3 nm

thin electrolyte exists). For such thin electrolytes even the passive current may initiate passivity

breakdown, which can autocatalyze an hence accelarate the breakdown according to equation 1.

This suggests that the critical crevice solution model is better suited to explain the location where

the breakdown occurs. However, the outwards motion of the corrosive attack seems at odds with

such an interpretation as it may not be possible to maintain the acidic conditions while progressing

towards the opening of the crevice. The observed outwards motion during propagation is consis-

tent with an IR-drop driven propagation after initiation. Given the applied linear ramp potential

it is also not clear how the local potentials evolve. To further understand mechanistic aspects and

in order to compare to theoretical models experiments at constant potential are needed. How-

ever, here we focus on the experimental development of the technique and focus our discussion on

demonstrating the in-situ capabilities.

2. Post experiment analysis of the corroded areas.

While interference images along with FECO patterns in the rSFA provide a real time view

into a confined zone, they are also restricted to the Abbe limit of optical microscopy at about 200

nm local resolution. Hence, nano-scaled structure changes during the corrosion process remain

unresolved in-situ. For instance nano-scale roughening, which is a surface modification well below

the Abbe limit, is only visible as an average broadening of the FECO pattern. In this section, we

hence complement the rSFA data with AFM imaging to provide high spatial resolution of both

materials after corrosion, and we recorded nanoscale Laue diffraction of corroded regions after

corrosion to provide further nanoscopic understanding of the processes visualized in rSFA.
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a. High resolution AFM imaging. Figure 4 shows AFM images recorded at different areas

of the corroded region for both materials used. Figure 4(a) and (d) show an optical image of the

corroded regions for the Ni and the Ni-alloy, respectively. The labeled areas indicate where the

AFM topographies displayed in panels (b-c) and (e-g) were recorded, respectively. The recorded

AFM images reveal a number of interesting details and highlight the different mechanism observed

for the Ni and the Ni-alloy, as follows (see also schematic interpretation in Figure 4(h)):

First, the region outside of the confined area of the corroded Ni shown in Figure 4(b) indicates

FIG. 4. Post-experiment analysis of the corrosion area with AFM. In (a) Optical image of the confined

area of the nickel. AFM images of the surface of the nickel after the corrosion experiment (b) outside the

confinement, and (c) inside the crevice area. In (c) two lines indicate cross-sections shown on the right

of the image. The red line indicates the cross-section over a pit, while the blue line is a cross-section of

a pit presumably filled with precipitates. (d) Optical image of the Ni75Cr16Fe9 after corrosion. (e) AFM

topography inside the confinement that was not attacked by the corrosion. The surface is still as smooth

as after polishing, in contrast, Ni undergoes significant roughening away from the contact region. (f) is on

the edge of the black region, the two lines indicate the cross-sections and the graph is reported below. (g)

shows an AFM scan over a precipitate filled pit inside the confined region. (h) Schematic representation of

the corrosion process for Ni and Ni75Cr16Fe9 around the crevice former.
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a severe roughening with a roughness of srms ⇡ 22 nm, compared to the initial 2-3 nm before

corrosion (not shown). This indicates a rather uniform dissolution process across the entire surface

of pure nickel, in addition to the increased pitting probability in confinement. The same roughness

level is also found within the confined area shown in Figure 4(c), where denser pit formation is

observed as well. The respective height profiles for Figure 4(c) indicate that corrosion pits are at

least 180-200 nm deep. This depth should be viewed as the lower bound due to possible geometric

restrictions by the AFM tip geometry. Interestingly, apart from roughening and pit formation also

large protrusions up to 180-200 nm appear around pits, or presumably on top of a pit. This may

indicate corrosion products that are precipitating in the confined area during the corrosion process

due to saturation of the electrolyte, ending up in pits filled with precipitated oxide/hydroxide.

Second, and in stark contrast, the AFM topography in Figure 4(e) indicates that Ni75Cr16Fe9

shows no significant roughening, neither outside the corroding area of the crevice opening, nor

in the fully confined zone. However, within the crevice opening, where the surfaces are only a

few 100 nm apart, the corrosion is more severe compared to the pure Nickel. Specifically, at the

progression front, shown in Figure 4(f), severe and dense pitting with pitting depths of about 200

nm occurs. As indicated in Figure 4(g) and the respective height profile pits coalesce into a rough

and approximately 200 nm deep corroded area that extends into all spatial directions initiating

from the rim of the fully confined zone. Pit coalescence was previously observed for other Nickel

base alloys in chloride containing solutions30.

The location of the roughening is consistent with the region that was observed to spread in

the rSFA data. Interestingly, Figure 4(g) and also (d) shows that the fully confined area AC does

not show any roughening, and only pitting with a much smaller density compared to the pure

Ni. It is visible in Figure 4(g) as well, that we again find - presumably precipitate-filled pits -

in this region with a very similar height compared to the Ni case. This is a generally interesting

result and suggests, that the confined zone, where the electrolyte is only 2-3 nm thick, is better

protected, presumably due to saturation of the solution. In addition, the severe reaction within the

crevice opening again suggests that the Chromium contributes to a significant acidification of the

environment according to Equation 1. This, in turn, leads to a faster corrosion in this area, where

exchange with the bulk electrolyte is may still be limited, maintaining a sufficiently aggressive

crevice solution. As discussed above, the propagation may also be driven by an IR-drop model.

b. Crystal structure and defects at corroded areas. Apart from the local geometric factors

in a crevice environment other contributing factors to corrosion are the crystal or grain structure
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FIG. 5. Nano-Laue X-ray diffraction analysis. Characteristic Laue reflections of two characteristic orien-

tations (-1, -1, 3) and (-4, -2, 6) are plotted in (a-c). These patterns were acquired at locations indicated in

the AFM image. Variation of the peak shapes are also shown in (d) as line profiles plotting pixel number

against logarithmic intensity. Any change of the full width (FW) and full width at half maximum (FWHM)

of the scattering peak relates to surface defects and size of crystalline domains, respectively. In (e,f) FW

and FWHMof the Laue peaks are plotted as a function of the location, corresponding to the area shown in

the AFM image. A schematic interpretation of results is illustrated in (g) (c.f. text for details).

and stress. To evaluate how defects contribute to local corrosion we further studied corroded

regions of rSFA samples with nano-Laue diffraction (nano-LD). This method is able to provide

locally resolved stress and dislocation density maps for any crystallographic plane after corrosion

occurred.

Figure 5 shows results of the nano-LD based analysis for the region where corrosion initiated

for the Ni75Cr16Fe9 alloy. The indexed scattering patterns (see Figure S6) confirm that the al-

loy structure is a nickel-based face centered cubic (fcc) crystal structure with some nickel atoms

replaced by chromium and iron ).

A detailed analysis of nano-LD intensity and specifically of the shape and distribution of the

pattern on the 2D-detector further provides information on Full Width area (FW), corresponding
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to the surface defect density, and Full Width Half Maximum area (FWHM) corresponding to the

size of ideally crystalline domains. Specifically, the increase of the FW, which characterizes the

low intensity broadening of the diffraction peak, is due to surface defects. Furthermore, internal

stress in grains leads to the distortion of the entire bulk crystal structure resulting in a broadening

of the FWHM. Therefore, for FW and FWHM, an increased value indicates an increased surface

defect density and an increased bulk deformation, respectively. For more details on the method

the reader is refered to relevant literature.47,48

For the alloy, Figures 5(a-c) compare the Laue peak shapes for specific reflections (-1, -1, 3)

and (-4, -2, 6) recorded at the points indicated in the AFM image, shown as reference. Among

all the diffraction peaks collected by the detector, characteristic peaks Figure 5(a-c) are represen-

tative for all observed peaks (see supporting information Figure S7 for further collected Bragg

reflections). These patterns indicate two interesting aspects.

First, these representative reflections show a very stark difference. Reflection (-4, -2, 6) shows

hardly any low intensity broadening of the FW at different locations, while the FW of reflection

(-1, -1, 3) is very sensitive to the location. Specifically, (-1, -1, 3) indicates a significant increase

of the FW, i.e. a low intensity peak broadening, in the region at the central pit. A comparison

of line scans (marked by the white indication line in (a-c) of the recorded intensity profile further

illustrates this effect in Figure5(d). Second, and in stark contrast to the FW, the FWHM decreases

within the pit compared to outside of the pit for this facet.

Figure 5(e,f) show a mapping of the FW and FWHM over the entire region shown in the AFM

image, respectively. This provides a 2D overview of surface defect densities and bulk lattice dis-

tortions. The results further detail how the surface defect density (FW) is significantly increased

inside the pit. It is interesting, that this localized defect increase only appears for particular re-

flections, specifically (-1, -1, 3) and (-3, -1, 5) (see again Figure S7). In contrast, e.g. for (-4,

-2, 6) and many other reflections, the analysis indicates that the pit is "invisible" as compared in

Figure S7). This is a very interesting observation and general phenomenon that suggests that cor-

rosion in the pit is fueled by surface defect migration and corrosion progression along particular

crystallographic facets as indicated in the schematic in Figure 5(g).

Hence, we can conclude that corrosion proceeds along a particular facet of the alloy, which

accumulates a higher surface defect density.

The non-intuitive finding that the FWHM appears significantly less broad in the pit region is

also interesting (see Figure 5(f)). This suggests that a locally deeper probe volume, where corro-
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sive damage is not yet detectable, contributes to the recorded signal. This may be due to the lower

scattering cross-section of the corrosion products within the pit, suggesting corrosion products that

are amorphous. This interpretation is supported by the fact that there are no additional peaks that

relate to corrosion products deposited within the pit. As such, the corrosion products, that appear

to be within the filled pits observed in the AFM scan, are very likely amorphous, which fits a fast

reprecipitation reaction after supersaturation of the local environment in a pit.

IV. CONCLUSIONS

rSFA is a unique real-time tool for making very well-characterized confined areas on real sam-

ples for testing corrosion in confinement. It provides a detailed in-situ view into a corroding

crevice on reflective bulk metals. Together with a complementary set of extensive post-corrosion

analyses it is possible to generate a detailed understanding of the corrosion of any bulk material.

The measured confinement geometry in an rSFA may serve as a very well defined experimental

reference for testing modeling approaches.

For the studied model systems, namely Ni and the Ni75Cr16Fe9 we can summarize the following

conclusions:

• The corrosion mechanism of pure Ni proceeds via severe roughening (from srms = 2-3 nm to

srms = 20 nm) and pitting over the entire surface, with an increased pitting density of about

200 nm deep pits in the vicinity of and inside the nanometer confined zone, which is fully

consistent with an IR-drop model. In contrast Ni75Cr16Fe9 shows no significant corrosion

outside the confined area.

• Ni75Cr16Fe9 exhibits two distinctly different areas in the confined region. In the fully con-

fined area no severe corrosion occurs and only pitting at much lower density compared to

Ni is found. In contrast, within the crevice opening severe corrosion via coalescence of

very dense pits results in a severely rough area with about 200 nm deep material loss. It is

peculiar, that pitting seems to consistently propagate 200 nm into the material, irrespective

of the gap size. This may be due to a progressing local saturation of the crevice solution,

or due to significant defect accumulation in the first 200 nm of the surface due to polishing.

The latter seems unlikely based on the nano-Laue data.

• Severe crevice corrosion of the alloy may be attributed to the local auto catalytic acidifica-
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tion, which was visualized in real time with rSFA. Local acidification spreads with a lateral

progression rate of 17-50 µm/min, due to fast and significant proton release during pas-

sive film breakdown which may maintain a sufficiently aggressive crevice solution. How

the local potential evolves, and to which degree the IR-drop drives the propagation remains

unclear, and potentiostatic experiments will be essential in future work.

• Similar to transmission mode SFA, reflection mode experiments may provide a path into

analyzing refractive indices of the crevice solution in-situ. Such a capability may allow

more detailed views into initiation conditions and modelling.

• Based on the material loss and in-situ lateral progression rate of the corrosion recorded using

the rSFA we can estimate the local current of Ni75Cr16Fe9 corrosion in the crevice opening

to be at least > 0.1 A/cm2.

• Nano-LD results reveal that pit propagation proceeds along particular facets of the alloy,

and corrosion products deposited in pits do not show any crystalline structure, indicating a

fast precipitation due to saturation of the local environment.
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