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Abstract

This thesis discusses potential mitigation actions for a pandemic, based on a SIRD model
using lockdowns. On the one hand for individuals and on the other hand from the perspec-
tive of a social planner. The latter has 4 types of mitigation actions available. Conditions
are given under which a lockdown would be reasonable. These conditions vary and de-
pend on the type of people affected by the lockdown. Finally, vaccinations are included in
the model and potential changes are compared with previous results. The basic model is
based on a paper by Lukasz Rachel from December 2020, which I adapted and modified.

Zusammenfassung

Diese Arbeit behandelt potentielle Eindämmungsmöglichkeiten einer Pandemie, anhand
eines SIRD Modells mittels Lockdowns. Einerseits für Individuen und andererseits aus
der Sicht einer/s sozialen Planerin/sozialen Planers. Letzterer/em stehen 4 Typen von
Milderungsmaßnahmen zur Verfügung. Es werden Voraussetzungen angegeben unter de-
nen ein Lockdown sinnvoll wäre. Diese Bedingungen variieren je nach Art der Betroffenen
des Lockdowns. Schließlich werden Impfungen in das Modell aufgenommen und poten-
tielle Änderungen mit den bisherigen Ergebnissen verglichen. Das Basismodell, basiert
auf einem paper von Lukasz Rachel aus dem Dezember 2020, welches von mir adaptiert
und verändert wurde.
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Chapter 1 Introduction

1 Introduction

We have all been affected by the COVID-19 pandemic over the last year and a half. With

over 200,000,000 people now infected and more than 4 million deaths1, we are still in the

midst of the pandemic. Overflowing hospitals and exhausted medical staff around the

world have been one of the consequences. Each of us has done our part to contain the

Coronavirus, initially individually, later with government mandates. Several measures to

keep infection rates low and thus relieve hospitals have been deployed, including manda-

tory masks in public transportation and retail, as well as social distancing and lockdowns.

The first strict lockdown in Austria in March 2020, with the goal to ”flatten the curve,”

was quite successful. We learned that many of us can do our jobs just as productive from

home. These restrictions were relaxed over time until summer when the second wave

of infections arrived in September. This was followed by two more, not quite as severe

lockdowns in November and December the same year.

What does it depend on whether a lockdown should be imposed or not? How strict does

an effective lockdown have to be? When do you lift the lockdown?

These topics are the main focus of my master thesis. However, lockdowns and other

precautionary measures not only help to stop the spread of a disease, at the same time

they also hurt the economy. A global recession was the result of the numerous measures.

International tourism could not take place as usual, restaurants and cinemas remained

closed for a long period of time or only opened to a limited extent to avoid social gath-

erings. Even some professions, which could not be done from home, did not make any

profit. To find an optimal lockdown strategy, we use a Susceptible, Infected, Recovered

and Deceased model, SIRD model in short, to maximize the respective lifetime utilities

for individuals and society as a whole. This model was analyzed in a paper by Rachel

[2020, Dec] on which this master thesis is based. At first we take a look at the prob-

lem for individuals, who start with a strict lockdown which lessens over time until it is no

longer necessary. Then in the form of a benevolent social planner, we solve the centralized

problem for the various mitigation options.

In our model, we do not distinguish between different risk groups as, for example, Ace-

moglu et al.[2020] did in a multi-risk (MR) SIR model. In the MR-SIR model there

are three groups ”young”, ”middle aged” and ”old” with different risk parameters and

lockdown policies. The argument to create different groups is that the high mortality

of the elderly, together with a high value of life, leads to stricter and longer lockdowns.

1source: https://covid19.who.int/, from 12.08.2021
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Chapter 1 Introduction

Therefore, targeted lockdowns on the different groups are more effective than a lockdown

for all. In the model under assessment in this thesis, the cost of death is simply calculated

by using the forgeone lifetime consumption utility.

Another issue that has preoccupied us in recent months is the availability of a vaccine,

which has been a target since the beginning of the pandemic. By now, more than 62%

of the population in Austria has been vaccinated at least once2. In the original paper by

Rachel [2020, Dec] vaccinations are briefly mentioned with the scenario that at a certain

point in time a vaccine will be available. This results in two options for a social planner,

either to suppress the infections until a vaccine is availalbe or follow the same strategy

as before the introduction of vaccines. We will take a closer look at a model that also

includes vaccinations from the beginning in chapter 3.

The thesis is strucured as follows: the next section focuses on the description of the model

as well as on the different mitigation actions by individuals and a social planner. In section

3 we take a closer look on how to expand the base model by Rachel [2020, Dec], followed

by a final conclusion.

2 https://info.gesundheitsministerium.at/, as of 13.09.2021
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Chapter 2 Model description

2 Model description
The model is based on the SIR-model (susceptible-infected-removed) of Kermack and

McKendrick [1927]. This epidemiological model describes the spread of contagious dis-

eases with immunization, such as Covid-19. In the baseline model it is assumed that an

individual can only get the disease once and (if recovered) develops an immunity for life.

Rachel used a variant of the baseline model that includes the number of deaths caused by

the disease (D). The goal is to find the optimal intensity of a lockdown as an individual

as well as for a benevolent social planner. For this aspect it is assumed that a fraction

of new infections can be prevented by social distancing and a lockdown of parts of the

population. This deliberately simple model has a few drawbacks for modeling Covid-19:

the immunity after recovery from a Covid-infection does not last a lifetime, the initial

population has no way of increasing (no births), limitations in health care for intensive

care patients are not considered and vaccinations are not incorporated. The last point will

be the focus in section 3 where I extend the model in this regard. The following model and

representations are based on the paper ”An Analytical Model of Covid-19 Lockdowns”

by Rachel [2020, Dec] and follows his notation.

2.1 Definition

The model is characterized by the following system of equations:

Ṡ = −βSI (1)

İ = βSI − γI (2)

Ṙ = γrI (3)

Ḋ = γdI (4)

with γ = γr+γd and S(0) = 1− , I(0) = where is small but positive, R(0) = D(0) = 0.

Where γr and γd respectively denote the share of infected that recover or die from the

disease.

It is assumed that part of the infections can be mitigated βn and the rest β0 cannot be

avoided. Therefore the infection rate β is constructed as follows:

β = βnλSλI + β0 (5)

where λS and λI denote the share of susceptibles and infected that are part of the active

labour market. No lockdown would mean that λS = λI = 1 whereas a total lockdown

would mean that either λS and/or λI would be 0. The idea behind this is that only

Viktor Sommer
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Chapter 2 Model description

the infections in the workplace can be eliminated and the share β0 would represent the

essential part of the economy that cannot be shut down or cannot work from home e.g.

medical staff, food industry, etc. Another way to interpret the share β0 would be as the

part of the infections that cannot be reduced by behaviour. As units of time ”weeks” are

chosen.

Another important figure is the herd immunity threshold, which describes the level of

susceptibles that have to be reached to no longer have rising infections I (assuming I > 0

before reaching that threshold). Let R0 be the basic reproduction number, then this

threshold is defined as the inverse of the basic reproduction number:

S̄ :=
γ

β
=

1

R0

(6)

As soon as the number of susceptibles falls below this threshold, a sufficient amount of

people have developed immunity to preventing further spread of the disease. In our model

we have no influence on the recovery rate and aim to shift S̄ to the right by reducing the

infection rate β.

Viktor Sommer
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Chapter 2 Model description

Figure 1: Phase Diagram with and without lockdown measures.
Paramethers: γr = 0.99 7

10
, γd = 0.01 7

10
, βn = 0.8, β0 = 0.4, λ = 0.55, = 0.0003

Analyzing the model in a phase diagram in the S − I space, see Figure 1, we start with a

large proportion of susceptibles (close to 1) and a small amount of infected (positive but

close to 0), see bottom right corner. The blue curve represents the case where no social

distancing and remote work is practiced. The corresponding herd immunity threshold S̄

is represented by the blue vertical line and marks the point where infections are no longer

increasing. A lockdown would increase this threshold and shift the vertical line to the

right marked by the straight green line in Figure 1. This would lead to a decrease of

total infections (and therefore less deaths) and only a small portion of susceptibles would

get the disease, see green curve. The blue and green arrows show the dynamics of the

respective versions for any initial point. It is obvious that for a large initial number of

infected the spread of the disease is faster and slower for a low number of infected at the

initial point.

To ensure that a lockdown is effective enough to reduce the reproduction number R0

Viktor Sommer
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below unity, it is assumed that:

Assumption 1: γ > β0

That means that if total lockdown is imposed, which in our model means λS = λI = 0,

the rate of new infections will be lower than the rate by which individuals recover or pass

away from the disease.

2.2 Decentralized equilibrium

For the decentralized problem all individuals are faced with the following maximization

problem before the pandemic:

max
λ∈[0,1]

∞

0

e−ρt(λuW + (1− λ)uL)dt (7)

where ρ is a discount factor and uW := u(w, 1) and uL := u(h, 0) denote utility of going

to work or staying at home respecively that depends on consumption and labour supply.

We assume that utility u(c, n) depends on consumption c and labour supply n. Here

λ is equal to the probability of working, i.e. λ = 1 going to work as usual and λ = 0

working from home. If an individual decides to work from home she/he would receive an

income h otherwise a wage w.3 It is assumed that individuals prefer going to work over

staying at home uW > uL, which would result in λ = 1 before the pandemic. We do not

distinguish between skilled and unskilled workers and just assume that everyone has the

same utility functions. This basic model has a linear production function (Y ) in labour

and the government taxes on labour income with a tax rate τn. Here N = S+I+R is the

total number of workers. Wages are then given by the marginal product of labour minus

the taxes:

Y = AN

G = τnAN

w = A(1− τn)

where A is the production technology factor and G is goverment income. For the market to

clear, aggregated income has to equal aggregated expenditure (8), household expenditure

(C) must equal houshold income (9) and the effective amount of labour (N) must equal

3Income h is made up of three parts: working from home, home production and government transfer,
where the respective shares can be summed to one ψWFH + ψHPR + ψGOV = 1
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Chapter 2 Model description

the labour input of people going to work and working from home (10).

Y + (1− λ)h = C +G (8)

C = λw + (1− λ)h (9)

N = λ+ (1− λ)ψWFH
h

A(1− τn)
(10)

To get the labour input coming from people working from home in (10), we simply divide

income from working from home, ψWFHh, by post tax income, A(1− τn).

In the following chapters we set our initial population at time t = 0 to 1. This allows us

to interpret all quantities of individuals, i.e. S, I, R,D as shares of the initial population.

We assume that households maximize their expected lifetime utility at time t = 0. Addi-

tionally we assume that individual preferences do not change after the pandemic outbreak.

Since this model has no altruism, infected and recovered individuals would maximize their

utility by always going to work since they would not face the risk of infection anymore

λI = λr = 1. Otherwise, assuming that λI = 0 would result in an automatic supression

of infections without the need of susceptibles to work from home and participate in social

distancing.

Susceptibles are now faced with the following problem:

max
λ(t)∈[0,1]

∞

0

e−ρt ps(t)(λ(t)u
W + (1− λ(t))uL) + (pi(t) + pr(t))u

W dt (11)

subject to:

ṗs = −ps(t)(βnλ(t) + β0)I(t) (12)

ṗi = ps(t)(βnλ(t) + β0)I(t)− γpi(t) (13)

ṗr = γrpi(t) (14)

λ(t) ∈ [0, 1] (15)

where ps, pi, pr denote the probabilities of being susceptible, infected or recovered at time

t, respectively. This problem can be solved using Pontryagins Maximum Principle, deriva-

tion of all results below can be found in the appendix B, subsection 7.2.1.

At the beginning and end of the pandemic there is no social distancing, i.e. λ = 1. After

the initial outbreak the number of infected is rising until it peaks at a point in time

T0 > 0. At this level the risk of getting infected is high and individuals rather work from

home and accept a utility loss. The optimal proportion of going to work at time t (λ∗(t))

Viktor Sommer
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mainly depends on how much of the spread of the disease can be prevented by lockdown

(βn) and on the current number of susceptibles (S(t)). For a small enough discount rate

ρ, an approximation for λ∗ is given by (see appendix B, subsection 7.2.1, equation (75)):

λ∗(t) ≈ γ−β0S(t)
βnS(t)

As susceptibles decrease over time, due to infections, λ∗ will increase over time until

working from home is no longer deemed necessary and herd immunity is reached at T1 <

∞. This can clearly be seen in figure 3 e). During the lockdown, in the interval [T0, T1], the

number of infected can be approximated by (see appendix B, subsection 7.2.1, equation

(71)):

I(t) =
uW − uL

βn(ηs(t)− ηi(t))

From this result it follows that the share of infected individuals is determined by utility

loss when working from home divided by the effectiveness of the lockdown times the

difference of shadow values of beeing susceptible or infected. Since it is easier to work

without the costates (ηs and ηi) we approximate I(t) with (see appendix B, subsection

7.2.1, equation (81)):

I(t) ≈ S(t)
uW−uL

uW ρ

βn · S̄ · IFR

where IFR := γd
γ
is the infection fatality rate. Since people no longer go to work as usual,

but work almost exclusively from home, the number of infected immediately decreases,

as can be seen in figure 3 c). The amount of infected is so small that the number of new

infections roughly matches the number of recovered individuals, this can be seen in the

constant level of infected during the time of the lockdown, see figure 2. As soon as the

herd immunity threshold is reached and enough people have developd an immunity, the

disease cannot spread any further and people no longer have to work from home.

With individual response to the pandemic the number of susceptibles decreases much

slower over time and finally stays at a considerable higher level than without any be-

havioural response, which is clearly visible from the less steep green curve compared to

the blue one in figure 3 a). Recovered and deceased individuals both remain at a slightly

lower level than without any social distancing, see figure 3 c) and d). In figure 3 b) rather

than an initial peak in infections, we see that the level of infected individuals remains the

same until it decreases much later than without an individual lockdown.

If each individual maximizes her/his own expected lifetime utility by deciding to go to

work or not, she/he reduces the total number of infected and consequently reduces deaths.

Even though it would take longer to reach herd immunity compared to the scenario where

no one decides to work from home and practice social distancing, the goal to ”flatten the

Viktor Sommer
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curve” has been reached and essentially, lives have been saved.

Figure 2: S − I phasediagram, with and without self isolation,
Source: own calculation, see appendix A for parameter values
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(a) susceptibles (b) infected

(c) recovered (d) deceased

(e) Probability of working, λ

Figure 3: Dynamics of the subpopulations S, I, R and D as well as λ over time in the
decentralized problem,
Source: own calculation, see appendix A for parameter values
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2.3 Centralized problem - social planner view

In this section we put ourself in the position of a social planner and determine an opti-

mal lockdown strategy. Our goal is to maximize the present value lifetime utility of all

individuals. We are now taking a closer look at the following mitigation actions and their

optimal lockdown strategies:

• Type 1: isolation of the infected: planner sets λi(t) ∈ [0, 1]. λs(t) = λr(t) = 1∀t
• Type 2: susceptibles-only mitigation: planner sets λs(t) ∈ [0, 1].λi(t) = λr(t) = 1∀t
• Type 3: immunity passports: planner sets λs(t) = λi(t) ∈ [0, 1]. λr(t) = 1∀t
• Type 4: all-in mitigation: planner sets λs(t) = λi(t) = λr(t) ∈ [0, 1]

2.3.1 Type 1: isolation of infected

Assuming that tests to detect infected individuals are already available and the results

can be evaluated in a reasonable amount of time, a social planner could decide to only

isolate infected individuals. For that the following problem has to be solved. Please

note that the objective function differs from the one used by Rachel [2020, Dec]. The

amount of deceased at time t multiplied by the potential utility they would produce if

they were cured or still susceptible, is now subtracted from the maximization problem, i.e.

−uWD(t). This term was added so that death has a negative impact in this optimization

problem in the form of utility loss. Since we are considering a lockdown for infected only,

we assume that susceptibles and recovered are going to work as usual.

max
λ∈[0,1]

T̂

0

e−ρt S(t)uW+I(t)(λuW+(1−λ)uL)+R(t)uW−D(t)uW dt+e−ρT̂ (S(T̂ )+R(T̂ ))
uτ

ρ

subject to (1), (2), (3), (4) and taking S0, I0, R0 as given. Here uτ := u(w − τ, 1) is

the post-pandemic instantaneous utility flow and τ is the Corona-tax collected by the

government from the survivors of the pandemic. The collection of this tax starts at T̂

when I(t) is negligible small and mitigation actions are no longer necessary. At this time

the goverment would start to collect taxes from the survivors to fund the debt caused by

the pandemic, e.g. goverment aid for businesses that could not operate during a lockdown.

Therefore we added the final term and replaced the infinite time horizon with a finite one,

that ends at T̂ .

Furthermore it has to be noted that instead of probabilities we now work with population

shares for the centralized problem. Another difference compared to the decentralized

problem is that only infected individuals are considered for mitigation actions.

Viktor Sommer
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Again with the help of Pontryagins Maximum Principle we can solve this problem, arriving

at the following results4, (derivation of results can be found in appendix B, section 7.2.2):

If the identification of infected is possible, intuitively the immediate supression of infected

at the start of the pandemic makes sense, therefore λ = 0 ∀t. But this raises the question
when a lockdown is necessary. Clearly not every outbreak of a disease would result in a

lockdown. We determined that the two main factors to justify an immediate lockdown

of infected are the infection fatality rate IFR = γd
γ

and the effectiveness of a lockdown

βn. A lockdown would be optimal if the infection fatality rate (IFR) is greater than (see

appendix B, subsection 7.2.2, equation (93)):

uW − uL

uW

ρ

2γβn

ρ+ γ − β0 − βn (16)

Since the utility cost of a lockdown, uW−uL

uW , are smaller than 1 we can argue that IFR is

greater than (16) if:

IFR >
ρ

2γβn

ρ+ γ − β0 − βn

If βn is large enough, i.e. βn ≥ (ρ+γ−β0) this inequality will always be true for a positive

IFR, since the right hand side will be smaller or equal to 0. Let’s take a closer look at

the effectiveness of the lockdown. If the discount rate ρ is small, we see that a lockdown

becomes more likely if there are too many new infections that cannot be prevented and

infected people do not recover fast enough. Assumption 1, i.e. γ > β0, again ensures that

βn > 0.

This result makes sense from a social planners point of view, a highly ineffective lockdown

for a pandemic or disease with a very low fatality rate would not be reasonable5. On the

other hand a high fatality rate would almost always lead to a lockdown of infected. This

result also shows the intuitive conclusion that if the lockdown is not effective, βn ≈ 0, a

lockdown of infected would not make sense, since the spread of the disease will not be

stopped by this measure.

In figure 4, the dynamics for a high enough fatality rate of infected and a sufficiently

effective lockdown are pictured. As expected a large outbreak of the disease can be

prevented. It is worth mentioning that the lockdown keeps the number of infected and

deceased individuals at a minimum but lengthens the duration of the pandemic compared

to no lockdown, 24 weeks vs 46 weeks.

4Our derivation of results slightly deviates from the one by Rachel [2020, Dec]. Nevertheless similar
qualitative results were obtained. An immediate lockdown is optimal if the IFR is sufficiently large.

5For example, the common cold is not fatal enough to warrant a lockdown

Viktor Sommer
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(a) S-I phasediagram

(b) susceptibles (c) infected

(d) recovered (e) deceased

Figure 4: Dynamics of the subpopulations S, I, R and D over time for the social planner
problem with immediate lockdown of infected.
Source: own calculation, see appendix A for parameter values
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As mentioned above this would be the ideal scenario, where tests to detect the disease

are available, fast to evaluate and easily produced. In figure 5 an example is shown where

we assume that mass testing is only available seven weeks6 after the outbreak and this

type of mitigation action would be feasible. For this we simply set λ = 0 after seven

weeks, when we finally can distinguish between susceptibles, infected and recovered. As

expected infections would increase the same way as without any lockdown but as soon

as testing is possible and infected individuals are immediatley placed in quarantine, a

supression of the disease follows. Compared to an immediate lockdown a delay of mass

testing would significantly increase the number of infected. In the next sections we will

see that a similar strategy can be optimal to prevent a second wave of infections.

Figure 5: S−I Phase-diagram with no lockdown, immediate lockdown and lockdown after
7 weeks. Source: own calculation, see appendix A for parameter values

6This length of the delay is randomly chosen for demonstration purposes.
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2.3.2 Type 2: susceptibles-only mitigation

This type of mitigation is very similar to the decentralized problem, since both times

we focus on the susceptible population. Additionally to the decentralized problem, we

integrate deceased individuals in the objective function. For deceased individuals we again

consider the utility loss that this group would have gotten if they survived the infection.

Hence we are faced with the following problem:

max
λ∈[0,1]

T̂

0

e−ρt S(t)(λ(t)uW+(1−λ(t))uL))+ I(t)+R(t)−D(t) uW dt+e−ρT̂ (S(T̂ )+R(T̂ ))
uτ

ρ

subject to (1), (2), (3), (4) and taking S0, I0, R0 as given. Similar to type-1-mitigation,

we again have a finite time horizon and the Corona-tax at the end of the pandemic. For

this type of mitigation action we assume that infected as well as recovered individuals are

free to go to work as usual and only susceptibles are subject to a possible lockdown.

The idea behind the solution is to reach the herd immunity threshold at the exact time

when there are no longer any infected left, to ensure another outbreak cannot happen

and an additional lockdown is not needed. This is achieved by initially not imposing any

restrictions and, as soon as a certain level of susceptibles has been infected, take strict

measures to contain the disease. This level of susceptibles is given by, (see appendix B,

subsection 7.2.3, equation (109)):

S∗ = exp
1− S̄ + S̄Llog(S̄)

S̄L − S̄
(17)

In figure 6 (a) it can be clearly seen that up to the point S∗ the paths with and without

lockdown are identical. As soon as the number of susceptibles fall below S∗, a strict

lockdown starts, i.e. λ = 0. The point S∗ is chosen in such a way that a strict lockdown

will reduce the number of infected until no infected are left (I = 0) at exactly the level

of susceptibles where the ”natural” herd immunity threshold (S̄) is reached. This is to

ensure that there is no potential second wave in case of a new outbreak of the disease.

The point (S∗) is optimal because a lockdown at a higher level of susceptibles would

increase the duration of the lockdown and would not ensure that the herd immunity

threshold is reached. Therefore risking a second wave, which would increase the number

of deceased individuals even further. A lockdown at a later point in time would only

increase the number infected unnecessarily and risk additional deaths.

Taking a look at the number of susceptibles, infected, recovered and deceased in figure

6, it is nice to see that the peak of infections is reached two weeks earlier than without

Viktor Sommer
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any mitigation actions, and the level of deceased and recovered is lower while susceptibles

remain at a higher level than without a lockdown. Further, the final level of susceptibles

is now exactly when herd immunity is reached, i.e. S = S̄. In figure 6 a) and b) we

can explicitly see that fewer susceptibles have been infected compared to a no lockdown

strategy. The level of infected and therefore recovered and deceased individuals as well,

could be reduced when imposing a lockdown at S∗, see figure 6 c), d) and e)

Since we make the same assumptions for type 1 and type 2 mitigation, that we can

immediately distinguish between infected and susceptibles, we can easily compare the two

methods. The number of individuals that would be affected by a lockdown is obviously

higher for a susceptible only lockdown (type 2) compared to an infected only lockdown

(type 1). Hence, the costs of this lockdown would be greater as well. A benefit of this

susceptible only lockdown would be that herd immunity is reached and a further outbreak

could be prevented without any additional costs. In sections 2.3.3 and 2.3.4 we no longer

have to differentiate between susceptibles and infected giving us a more realistic approach

for our model.
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(a) S-I phasediagram

(b) susceptibles (c) infected

(d) recovered (e) deceased

Figure 6: Dynamics of the subpopulations S, I, R and D over time for the social planner
problem with susceptible only lockdown.
Source: own calculation, see appendix A for parameter values
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2.3.3 Type 3: immunity passports

Type 3 and type 4 mitigation actions will always affect susceptible and infected individuals

together. Therefore, we combine λS and λI in equation (5) to λ and are again faced with

a linear problem in λ.

The solutions to these two types are quite similar in nature as well. First let’s take a

look at the possibility of immunity passports. Assuming that only recovered individuals

are free to work (λr = 1), provided that it is easy to prove an individual has recovered.

Whereas, susceptibles and infected can be placed under lockdown. To find the optimal

severity of this lockdown we have to solve the following problem:

max
λ∈[0,1]

T̂

0

e−ρt (S(t)+I(t))(λuW+(1−λ)uL)+R(t)uW−D(t)uW dt+e−ρT̂ (S(T̂ )+R(T̂ ))
uτ

ρ

subject to (1), (2), (3), (4) and taking S(0), I(0), R(0) and D(0) as given.

Since the derivation of type 3 and type 4 are not directly part of the original paper by

Rachel [2020, Dec], I decided to include the derivation of the results in the main text.

The Hamiltonian for this problem is given by:

H = (S+I)(λuW+(1−λ)uL)+R(t)uW−D(t)uW −ηs(βSI)+ηi(βSI−γI)+ηrγrI+ηdγdI

where β = βnλ+ β0. With the following FOC:

dH

dλ
= (S + I)(uW − uL)− (ηs − ηi)SIβn = 0

ψ = (uW − uL)(S + I)− (ηs − ηi)SIβn

(18)

dH

dS
= λuW + (1− λ)uL − (ηs − ηi)(βnλ+ β0)I = ηsρ− η̇s (19)

dH

dI
= λuW + (1− λ)uL − (ηs − ηi)(βnλ+ β0)S − γηi + ηrγr + ηdγd = ηiρ− η̇i (20)

dH

dR
= uW = ηrρ− η̇r (21)

dH

dD
= −uW = ηdρ− η̇d (22)

and transversality conditions:

ηs(T̂ ) = ηr(T̂ ) =
uτ

ρ
(23)

In the final steady-state equilibrium, which implies that the time derivative of the costates
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are zero, we gather from equation (21) and (22) that:

ηd = −uW

ρ
= −ηr (24)

Further, comparing (23) with (24) for consistency we conclude that uτ ≡ uW .

First assume that λ ∈ (0, 1) and ψ = 0 over a longer period of time, which gives us:

(ηs − ηi)SIβn = (S + I)(uW − uL)

Taking the derivative of both sides with respect to time t results in:

(η̇s − η̇i)SIβn + (ηs − ηi)βn(ṠI + Sİ) = (Ṡ + İ)(uW − uL)

with equation (19) and (20) we obtain the following

⇒ SIβn (ηs − ηi)ρ− γηi +
uW

ρ
(γr − γd)− (ηs − ηi)γ) = −γI(uW − uL) (25)

detailed derivation of (25) can be found in the appendix B, section 7.2.4.

From (25) we see that λ is no longer part of this optimization and we conclude that the

solution is not singular and has to be bang-bang.

λ(t) =

1 if ψ > 0 ⇔ (S + I)(uW − uL) > (ηs − ηi)βnSI

0 if ψ < 0 ⇔ (S + I)(uW − uL) < (ηs − ηi)βnSI
(26)

From (26) we obtain that the condition whether λ is 0 or 1 is determined by the dynamics

of S+I on the left side and SI on the right side of the inequality. At the beginning of the

pandemic SI is close to 0 whereas S+I is close to 1. Since Ṡ+ İ = −γI, S+I is declining

over time, whereas SI initially increases, peaks roughly when S = S̄ and decreases again,

as can be seen in figure 7.
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Figure 7: progression of S + I and SI over time, parameters: β = 1.45, γ = 0.7, = 0.05

Since (uW − uL) is constant, the plot for the left hand side of (26) will qualitatively look

the same as the blue line in figure 7 but shifted up or down depending if (uW − uL) is

greater or smaller than 1. On the other hand (ηs − ηi) changes over time and depending

on its value we can determine conditions for a lockdown to be optimal.

Assuming ψ < 0 for λ = 0, we can derive a condition when an immediate lockdown is

plausible. For easier calculation we use an approximation for the initial values of S(0) ≈ 1

and I(0) ≈ 0 to derive an approximation of the initial ηs and ηi from (19) and (20), (note

that, we assume that η̇s ≈ 0 and η̇i ≈ 0 at the start of the pandemic).

ηs ≈
uL

ρ

ηi ≈
uL(1− β0

ρ
) + uW

ρ
(γr − γd)

ρ+ γ − β0

⇒ ηs − ηi ≈
uL(γr + γd)− uW (γr − γd)

ρ(ρ+ γ − β0)
(27)
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Now substituting (27) in (26) we get:

uL(γr + γd)− uW (γr − γd)

ρ(ρ+ γ − β0)
SIβn > (uW − uL)(S + I)

uL(γr + γd)− uW (γr − γd) >
(uW − uL)(S + I)

SIβn

ρ(ρ+ γ − β0)

γd(u
W + uL)− γr(u

W − uL) >
(uW − uL)(S + I)

SIβn

ρ(ρ+ γ − β0)

γd(u
W + uL) > (uW − uL)

(S + I)

SIβn

ρ(ρ+ γ − β0) + γr

For a small enough ρ the right side simplifies to (uW −uL)γr giving us our final condition

for a lockdown to be optimal at the beginning of the pandemic.

γd
γr

>
(uW − uL)

(uW + uL)
(28)

From this we gather that if the immediate costs of a lockdown (uW − uL) are too big or

if the disease is not deadly enough a lockdown at the beginning of the pandemic would

not make sense in this case. This does not mean that there will be no lockdown at all.

From figure 7 and equation (26) we conclude that even if initially the costs of a lockdown

outweigh its benefits, with rising infections this might change and at a point in time a

lockdown may be beneficial. Since the number of infected I reaches its maximum at S̄

we get a good approximation for the maximum of SI if we multiply Imax with S̄. After

this point we definitely know that SI is decreasing. For a lockdown to be plausible we

have the condition that ψ < 0, if we can show that

(ηs − ηi)βnS̄Imax > (uW − uL)(S̄ + Imax) (29)

then we know that at least at this point the benefits of a lockdown are greater than its

costs. Otherwise, if the left hand side, at its approximate maximum, is not greater than

the right hand side, a lockdown would be unfavorable. Starting with the assumption that

until then λ = 1 we can approximate ηs from (19), at the time when S = S̄, as follows.

(Note that we assume that ηs will not change much at this point in time and therefore
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we assume that η̇s ≈ 0):

ηsρ− η̇s = uW − ηsβImax + ηiβImax

ηs =
uW + ηiβImax + η̇s

ρ+ βImax

ηs ≈
uW

βImax

+ ηi for a small enough ρ (30)

This gives us the very simple approximation for (ηs − ηi) =
uW

βImax
which we can plug into

(29) to get the following condition to impose a lockdown.

(ηs − ηi)βnS̄Imax > (uW − uL)(S̄ + Imax)

βnu
W

β
S̄ > (uW − uL)(S̄ + Imax)

βn

β
>

(uW − uL)

uW
(1 +

Imax

S̄
)

βn

β
>

(uW − uL)

uW
(
1

S̄
+ log(S̄)) (31)

Here we see again that whether a lockdown is imposed or not, depends on its effectiveness

and its costs. As mentioned above S̄Imax is only an approximation of the maximum of

SI. If ψ < 0 at this point then this indicates that a lockdown at an earlier point in time

may be beneficial. Further, every infected individual at this point is basically avoidable

and the costs of a lockdown are less then its benefits. In this case a lockdown at S = S∗,

as in susceptible only mitigation may be the optimal solution to avoid unecessary infected

after the herd immunity threshold is reached.

In the case that the costs always outweigh the benefits of a lockdown, one would not

impose a lockdown.
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2.3.4 Type 4: all-in mitigation

For type 4 we have a similar setup as for type 3 but this time susceptibles, infected and

recovered individuals are affected by a lockdown. Again we assume that deceased indi-

viduals will lose the same utility they would have produced if they survived the infection,

in our case the same utility as the rest of the individuals, which depends on the intensity

of the lockdown. The severity of the lockdown for everyone is again given by λ. Resulting

in the following optimization problem:

max
λ∈[0,1]

T̂

0

e−ρt (S(t) + I(t) +R(t)−D(t))(λuW + (1− λ)uL) dt+ e−ρT̂ (S(T̂ ) +R(T̂ ))
uτ

ρ

subject to (1), (2), (3), (4) and taking S(0), I(0), R(0) and D(0) as given.

Again we solve this problem with Pontryagins Maximum Principle, the Hamiltonian is

given by:

H = (S + I +R−D)(λuW + (1− λ)uL)− ηs(βSI) + ηi(βSI − γI) + ηrγrI + ηdγdI

where β = βnλ+ β0. With the following FOC:

dH

dλ
= (S + I +R−D)(uW − uL)− (ηs − ηi)SIβn = 0

⇒ ψ = (uW − uL)(S + I +R−D)− (ηs − ηi)SIβn

(32)

dH

dS
= λuW + (1− λ)uL − (ηs − ηi)(βnλ+ β0)I = ηsρ− η̇s (33)

dH

dI
= λuW + (1− λ)uL − (ηs − ηi)(βnλ+ β0)S − γηi + ηrγr + ηdγd = ηiρ− η̇i (34)

dH

dR
= λuW + (1− λ)uL = ηrρ− η̇r (35)

dH

dD
= −(λuW + (1− λ)uL) = ηdρ− η̇d (36)

and transversality conditions:

ηs(T̂ ) = ηr(T̂ ) =
uτ

ρ
(37)

In the final steady-state equilibrium, which implies that the time derivative of the costates

are zero, we gather from equation (35) and (36) that:

ηd = −λuW + (1− λ)uL

ρ
= −ηr (38)
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First assume that λ ∈ (0, 1) and ψ = 0 over a longer period of time, which gives us:

(ηs − ηi)SIβn = (S + I +R−D)(uW − uL)

Taking the derivative of both sides with respect to time t results in:

(η̇s − η̇i)SIβn + (ηs − ηi)βn(ṠI + Sİ) = (Ṡ + İ + Ṙ− Ḋ)(uW − uL)

SIβn (ηs − ηi)ρ− γηi +
λuW + (1− λ)uL

ρ
(γr − γd)− (ηs − ηi)γ) = −2γdI(u

W − uL)

SIβn(γr − γd)λ(u
W − uL)

ρ
= −2γdI(u

W − uL)− SIβn ηs(ρ− γ)− ηiρ+
uL

ρ
(γr − γd)

⇒ λ = −
2γdI(u

W − uL)ρ+ SIβn ηsρ(ρ− γ)− ηiρ
2 + uL(γr − γd)

SIβn(γr − γd)(uW − uL)

λ ≈ − uL

uW − uL
< 0 , for ρ small enough (39)

This contradicts our assumption that λ ∈ (0, 1). A negative λ suggests that the optimal

solution is as small as possible, in our case that would mean an immediate lockdown

might be optimal. Again we are faced with a bang-bang solution and with the following

conditions for λ to be either 1 or 0:

λ(t) =

1 if ψ > 0 ⇔ (S + I +R−D)(uW − uL) > (ηs − ηi)βnSI

0 if ψ < 0 ⇔ (S + I +R−D)(uW − uL) < (ηs − ηi)βnSI
(40)

We know that S + I + R + D = 1 and assuming that a majority recoveres from the

disease and only a small part of infected actually dies, i.e. D ≈ 0 we get a conservative

approximation for the left hand side of (40) with (uW −uL) ≷ (ηs− ηi)βnSI. An example

can be seen in figure 8 where we have plotted SI and S + I +R−D over time.
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Figure 8: progression of S + I +R−D and SI over time, parameters: β = 1.45, γ = 0.7,
= 0.05

First, let us look at the option that an immediate lockdown is optimal. Starting again

with the assumption that S(0) ≈ 1 and I(0) ≈ 0 to derive an approximation of the initial

ηs and ηi from (33) and (34), we assume that η̇s ≈ 0 and η̇i ≈ 0 at the beginning of the

pandemic:

ηs ≈
uL

ρ

ηi ≈
uL(ρ− β0 + γr − γd)

ρ(ρ+ γ − β0)

⇒ ηs − ηi ≈
uL

ρ

2γd
ρ+ γ − β0

(41)

Note that, under assumption 1: γ > β0, (ηs − ηi) is greater than 0. We now substitute

(41) into our approximation of (40) to determine a condition that guarantees that an

immediate lockdown is optimal.

uL

ρ

2γd
ρ+ γ − β0

SIβn > uW − uL

IFR =
γd
γ

>
uW − uL

uL

ρ+ γ − β0

2γSIβn

ρ (42)

Again for a disease that is deadly enough and/or a lockdown with low costs, given by

uW − uL, a strict lockdown at the beginning of the pandemic would be optimal.
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Alternativeley if the condition of (42) is not fulfilled and an immediate lockdown would not

be optimal we can again determine if we ever would reach the point at which a lockdown

would be beneficial. Similar as for type 3 mitigations we approximate the highest point

of SI with S̄Imax. The derivation of ηs at this point is exaclty the same as for type 3 and

is given by euqation (30). As above the problem simplifies to:

(ηs − ηi)βnS̄Imax > (uW − uL)

βnu
W

β
S̄ > (uW − uL)

βn

β
>

(uW − uL)

uW

1

S̄
(43)

As before we see, if (43) is fulfilled, that at least at one point in time it will be ideal

to impose a lockdown. The optimal time to reduce the number of infected such that

no infected are left when herd immunity is reached is again given when the number of

susceptibles S falls to S∗, compare (17).
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2.4 Summary

Let us conclude this section by comparing the different results of various methods to

contain the disease, see figure 9 a). For demonstration purposes we assume that for types

2 to 4 a lockdown will be optimal at a certain point in time and therefore have the same

lockdown strategy, i.e. total lockdown as soon as S falls to a level S∗.

An early, strict lockdown for those who are infected will be a good solution to keep the

disease in check at the start of the pandemic, i.e. type 1 mitigation action depicted by the

green curves in figure 9. This comes with the assumption that tests, to detect infected

individuals, are available at the beginning of the pandemic and mass testing is possible.

Type 2 to 4 don’t rely on heavy testing at the beginning of the pandmic. To ensure that

herd immunity is reached in case of a second wave, a level of susceptibles S∗ has to be

reached before imposing a strict lockdown, as demonstrated by the red curves in figure 9.

Here you can see that for types 2 to 4 the number of susceptibles, recovered and deceased

lies in the middle between an unrestricted pandemic, blue curves, and an immediate

containment of infections in green. The number of infections will initially be higher than

for type 1, but the duration of the lockdown is shorter than for type 1. This can be seen

in figure 9 c) where the red curve falls under the green curve and reaches zero faster. As

soon as the infected reach zero, a lockdown is no longer necessary. Furthermore, should

type 1 experience one or more renewed outbreaks, additional lockdowns will be necessary

to keep the number of losses low, which will not be the case if herd immunity has already

been reched, as is the case for type 2 to 4.

Finally, in figure 9 f), we see the different durations of the lockdowns for the various

mitigation actions. In this plot, the dashed black line represents λ from the decentralized

solution. It can be seen that the strategies of a social planner always result in a shorter

lockdown than an individual lockdown, which ends in week 85. Additionally, an infected

only lockdown results in a relatively long lockdown period, roughly 62 weeks, compared

to a lockdown of type 2 to 4, which starts 9 weeks after the outbreak and only last for

about 20 weeks.
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(a) S-I phasediagram (b) susceptibles

(c) infected (d) recovered

(e) deceased (f) λ over time

Figure 9: Comparison of the different mitigation actions available for a social planner.
Source: own calculation, see appendix A for parameter values
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3 Extension of the original model - Vaccinations

An important factor in deciding the optimal lockdown intensity, that was not yet part of

the model, is the availability of a vaccine. Depending on the effectiveness of the vaccine

and how fast people get vaccinated, the strategy or conditions for a lockdown might

change. For this we assume that a fixed proportion δ of susceptibles will be vaccinated

each period and will switch directly into the group of recovered individuals. Unlike other

papers, like Rao and Brandea [2021], that focus on the allocation and distribution of

a vaccine, we assume that the factor, δ, is exogenous. Furthermore, we assume that a

vaccine is already available at the beginning of the pandemic. This results in the following

system of equations for our SIRD-model:

Ṡ = −βSI − δS (44)

İ = βSI − γI (45)

Ṙ = γrI + δS (46)

Ḋ = γdI (47)

Note that the dynamics for infected individuals has not changed.

In the S − I phasediagram, see figure 10 blue and green curves, we observe that the two

curves, with and without vaccines, are very similar. In both cases we start with rising

infections until herd immunity is reached, this level has not changed with the introduction

of vaccines, followed by a decrease of infections until we reach zero infections at the same

level of susceptibles. But unlike the standard model, the number of susceptibles will

further decrease as long as people are getting the vaccine. Given enough time, eventually

everyone will be vaccinated. The slope for the standard model without any vaccines

is much steeper, both at the beginning and end of the pandemic. For demonstration

purposes, I added the red curve with a higher rate of vaccination δh. As one can see, the

number of infected does not come near the levels without vaccination. With these low

numbers it might not even be necessary to impose a lockdown, given that enough people

are willing to get vaccinated.

Viktor Sommer
page 29



Chapter 3 Extension of the original model - Vaccinations

(a) S-I phasediagram

Figure 10: S-I Phasediagram with and without the vaccines.
Parameter values: β = 1.3, γ = 0.7, = 0.01, δ = 0.02, δh = 0.1

Even though vaccines help to reduce the number of infected we see that there is still room

for improvement. Let us start again with the decentralized problem that each individual

is faced with. Since utility stays the same, compare equation (11), we only state here the

updated system equations for the probabilities of being susceptible, infected, or recovered,

compare (12), (13) and (14).

ṗs = −ps(t)(βnλ(t) + β0)I(t)− δps(t) (48)

ṗi = ps(t)(βnλ(t) + β0)I(t)− γpi(t) (49)

ṗr = γrpi(t) + δps(t) (50)

The Hamiltonian for this problem is then given by:

H = ps(λu
W+(1−λ)uL)+(pi+pr)u

W−ηsps((βnλ+β0)I−δ)+ηi(ps(βnλ+β0)I−γpi)+ηr(γrpi+δps)

with the necessary FOC:

dH

dλ
= ps(u

W − uL)− ηspsβnI + ηipsβnI = 0 (51)

Viktor Sommer
page 30



Chapter 3 Extension of the original model - Vaccinations

Again the switching function is given by ψ(t) := uW − uL − (ηs − ηi)Iβn ps. The only

difference compared to the original problem, as presented in appendix B, section 7.2.1,

occurs in (52).

dH

dps
= (λuW + (1− λ)uL) + ηs(βnλ+ β0)I + ηi(βnλ+ β0)I + ηrδ = ηsρ− η̇s (52)

Otherwise nothing changes, for completeness the remaining FOCs are given below.

dH

dpi
= uW − ηiγ + ηrγr = ηiρ− η̇i (53)

dH

dpr
= uW = ηrρ− η̇r (54)

Similar to the problem without vaccination, we can derive the optimal lockdown intensity,

λ∗
V , assuming that ψ = 0 over a longer period of time, resulting in the following, (see

appendix B, subsection 7.2.5, equation (118)):

λ∗
V =

I

S
+

1

βnS
[β0(S + I)− γ + ρ] +

I

S

ηrγr − ηiγ + (ηs − ηr)δ

(uW − uL)

λ∗
V ≈

γ − Sβ0 − δ

βnS
(55)

This approximation is positive iff γ > β0S + δ.

Given this result we see that it does not differ much from the approximation of the original

problem λ∗ ≈ γ−Sβ0

βnS
. Initially λ∗

V is smaller than λ∗ but since the number of susceptibles S

is decreasing faster than without vaccines the severity of the optimal lockdown decreases

faster over time as well, as can be seen in figure 11 f). Again we see an initial increase

of infected before individuals decide to self-isolate, see figure 11 c). Compared to the

scenario without vaccines, the number of infections are decreasing slightly faster and the

total amount of deceased individuals could again be further reduced, see figure 11 c) and

e). Another important difference is that almost all susceptibles are vaccinated or have

recovered from the disease and developed immunity. Therefore, in the long run, almost

no susceptibles are left while the majority is now recovered and only a small share died

from the disease, compare figure 11 b), d) and e).
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(a) S-I phasediagram (b) susceptibles

(c) infected (d) recovered

(e) deceased (f) Probability of working, λ

Figure 11: Dynamics of the subpopulations S, I, R and D as well λ over time in the
decentralized problem with vaccines, note that in subfigure f) the blue line
”without lockdown” is constant and equal to 1.
Source: own calculation, see appendix A for parameter values
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In the following we adress the problem with vaccination from a social planner point of

view. The focus here lies on an infected only lockdown or type 1 mitigation as it was

called before, with the inclusion of vaccines. We have the same objective function as in

section 2.3.1 but subject to the system equations (44) - (47).

max
λ∈[0,1]

T̂

0

e−ρt S(t)uW+I(t)(λuW+(1−λ)uL)+R(t)uW−D(t)uW dt+e−ρT̂ (S(T̂ )+R(T̂ ))
uτ

ρ

Therefore, the Hamiltonian for this problem looks slightly different from the one derived

from section 2.3.1, (see appendix B, section 7.2.2) :

H =

S(t)uW + I(t)(λuW + (1− λ)uL) +R(t)uW −D(t)uW

− ηs(βSI + δS) + ηi(βSI − γI) + ηr(γrI + δS) + ηdγdI

where β = βnλ+ β0, with the necessary FOC:

dH

dλ
= IuW − IuL − ηsSIβn + ηiβnSI = 0

with switching function ψ = (uW − uL − (ηs − ηi)Sβn)I
(56)

dH

dS
= uW + (ηi − ηs)(βnλ+ β0)I + (ηr − ηs)δ = ηsρ− η̇s (57)

Here we have the only change compared to the version without vaccines. The last term,

where the vaccination rate δ is multiplied with the difference of shadow values for recovered

and susceptibles, is new.

dH

dI
= uWλ+ (1− λ)uL − ηsβS + ηi[βS − γ] + ηrγr + ηdγd = ηiρ− η̇i

uWλ+ (1− λ)uL + (ηi − ηs)(βnλ+ β0)S − γηi + ηrγr + ηdγd = ηiρ− η̇i

(58)

dH

dR
= uW = ηrρ− η̇r (59)

dH

dD
= −uW = ηdρ− η̇d (60)

The transversality conditions yield:

ηs(T̂ ) = ηr(T̂ ) =
uτ

ρ
(61)
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As can be seen only the FOC for S changes when vaccines are introduced. With this in

mind we can proceed the same way as for the problem without vaccines and derive with

the fact that in the long run equilibrium, where the time derivative of the costates are

zero that ηr =
uW

ρ
= −ηd.

Assume that the switching function ψ can be 0 over a longer period of time and λ ∈ (0, 1).

We can divide the switching function by I > 0, otherwise no lockdown would be necessary,

and get the following equation from (56).

uW − uL

βn

= (ηs − ηi)S (62)

Taking the derivative of (62) with respect to time t yields:

0 = (η̇s − η̇i)S + Ṡ(ηs − ηi) (63)

The term (η̇s − η̇i) can be expressed using equations (57) and (58).

(η̇s − η̇i) =

= ηsρ− uW + (ηs − ηi)I(βnλ+ β0) + λuW + (1− λ)uL − (ηs − ηi)(βnλ+ β0)S

+ (ηr − ηi)γr + (ηd − ηi)γd − ηiρ+ (ηs − ηr)δ

= (1− λ)(uL − uW ) + (ηs − ηi)βnλ(I − S) + Θ

where Θ is defined as:

Θ := (ηs − ηi)(ρ+ β0(I − S)) + (ηr − ηi)γr + (ηd − ηi)γd + (ηs − ηr)δ

(Note that Θ is independent of λ )

Here the only change compared to the version without vaccines, is again the term (ηs−ηr)δ,

which is included in Θ. We can now substitute the expression for (η̇s − η̇i) and Ṡ into

equation (63).

0 = S

(η̇s−η̇i)

[(1− λ)(uL − uW ) + (ηs − ηi)βnλ(I − S) + Θ]

+Ṡ

−((βnλ+ β0)SI(ηs − ηi)

0 = (1− λ)
uL − uW

ηs − ηi
− βnλS +

Θ

ηs − ηi
− β0I

Basically we obtain similar results as in the problem without vaccinations, compare section

7.2.2 in appendix B, where we derive equation (91) and conclude that a singular solution

for λ is irrelevant if ψ = 0 over a longer period of time.
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Faced again with a bang-bang solution for λ under the following conditions:

λ(t) =

1 if ψ > 0

0 if ψ < 0

With the same argumentation as before an immediate containment of the disease makes

sense for a social planner. Hence, we again try to determine the condition for a total

lockdown to be optimal at the beginning of the pandemic.

Since infections do not spread so quickly in a lockdown, we can work with S ≈ 1 and

I ≈ 0 to derive an approximation for ηs and ηi. With equation (57), (58) and (59) we get

the following representation for ηs and ηi, (again we assume that η̇s ≈ 0 and η̇i ≈ 0 at the

start of the pandemic):

ηsρ = uw − ηsδ + ηrδ

ηs(ρ+ δ) =
uw

ρ
(ρ+ δ)

ηs =
uw

ρ

and

ηiρ = uL + (ηi − ηs)β0 − ηiγ + ηrγr + ηdγd

ηi(ρ+ γ − β0) = uL − ηsβ0 + γrηr + ηdγd

ηi =
uL + uw

ρ
(γr − γd − β0)

(ρ+ γ − β0)

This is exactly the same initial situation as in the original problem which would result in

the same condition for the infection fatality rate, compare derivation of equation (93) in

appendix B:

IFR =
γd
γ

>
(uW − uL)

uW

ρ

2βnγ
ρ+ γ − β0 − βn (64)

Nevertheless, in figure 12 we can use an example to illustrate the differences between

the two variantes, with and without vaccines. An important difference we notice is that

the number of susceptibles is steadily decreasing even after infected have reached zero,

as expected if individuals keep getting vaccinated. This guarantees that there will be no

second outbreak of the disease, as herd immunity is achieved without having to infect a

large part of the population. Susceptibles are now decreasing much faster than without

Viktor Sommer
page 35



Chapter 3 Extension of the original model - Vaccinations

vaccines, this can be seen in figure 12 a) where the points on the red line are spread

further apart than the points on the green curve. To see the effect of lower infections

from vaccines, we take a look at 12 c), where you can see that with vaccines the number

of infected individuals approach zero even faster than without vaccines. This effect can

also be seen in 12 e), where initially the two paths with and without vaccines are the

same but eventually the number of deaths is lower for the variant with vaccines.
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(a) S-I phasediagram

(b) susceptibles (c) infected

(d) recovered (e) deceased

Figure 12: Dynamics of the subpopulations S, I, R and D over time for the social planner
problem with immediate lockdown of infected and vaccinations.
Source: own calculation, see appendix A for parameter values
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4 Conclusion
To conclude my master thesis, I would like to summarize the main results.

Assuming that all individuals behave in the same way, we see that individuals decide to

self-isolate as soon as the risk of infection becomes too great. The willingness to work

from home slowly decreases over time as infection rates slowly decrease and more and

more people develop an immunity. Similar behaviour can be observed, when a vaccine

is available and a certain proportion of the population is vaccinated. The time spent in

lockdown will be shorter than without vaccines.

For a central planner, the decision of when and for which group to impose a lockdown,

depends on several factors. First, the possibility to detect infected and/or recovered

individuals. Second, the effectiveness and cost of a lockdown have a great impact on the

decision. A short and strict lockdown can stop a pandemic in its early stages, but it

would have to be possible to effectively detect infected individuals. If vaccines are already

available, together with this early lockdown a second outbreak can be avoided without an

additional lockdown. Otherwise, to avoid further outbreaks of the disease, the alternative

would be to impose the lockdown only when enough people have developed immunity to

provide herd immunity. If there is no way to distinguish between the different groups,

this would be a good alternative, as long as the cost of the lockdown is not too high.

Furthermore, it has to be stated that the model used in my thesis takes very basic as-

sumptions about the disease, e.g. that immunity lasts a lifetime. We now know that for

Covid-19 the immunization is not permanent. For the introducion of vaccines, we assumed

that the vaccines are already available at the start of the pandemic and enough people

are willing to get vaccinated. As recent history shows, this is not the case. Further, there

is no risk differentiation between the different age groups. Nevertheless, I hope this thesis

gave some insight on the dynamics and the potential of lockdowns.

Viktor Sommer
page 38



Chapter 5 Acknowledgments

5 Acknowledgments

At this point I would like to thank my supervisor Univ. Prof. Dipl.-Ing.
Dr. techn. Alexia Fürnkranz-Prskawetz for always having a quick response
and advice when I needed it. Further, I want to thank Miguel Sanchez-
Romero for steering me in the right direction and of course Lukasz Rachel
for providing further insight on his paper.

I would not be where I am right now without my familiy and friends,
who supported me throughout my studies and giving me space and time
to recharge my mental batteries. Thank you for always believing in me.

Huge thanks go out to my esteemed friends and colleagues that I met during
my time at TU Wien. We shared much frustration and joy, without them
I would not have finished my studies. I will always cherish the memories
we have, thank you all!

Also I want to thank my dog Kinoko, who forced me to go outside and take
breaks these past few months.

Viktor Sommer
Vienna, September 2021

Viktor Sommer
page 39



Chapter 6 References

6 References
[1 ] Lukasz Rachel: An Analytical Model of Covid-19 Lockdowns, December 2020.

[2 ] Lukasz Rachel: The second wave, preliminary Draft, July 2020.

[3 ] Acemoglu et al.: A Multi-risk SIR model with optimally targeted lockdown,

Nber working paper series, May 2020.

[4 ] Kermack and McKendrick: A contribution to the mathematical theory of

epidemics, Proceedings of the Royal Society of London. Series A, Containing Papers

of a Mathematical and Physical Character, 1927.

[5 ] Isabelle J. Rao and Margaret L. Brandeau: Optimal allocation of limited

vaccine to control an infectious disease: Simple analytical conditions, Elsevier Inc,

Mathematical Biosiences, April 2021.

Viktor Sommer
page 40



Chapter 7 Appendix

7 Appendix

7.1 Appendix A

All quantitative analysis and plots were done in MATLAB R2013b (8.2.0.701), codes can

be sent on request.

The parameters7 for the plots of figure 2, 3 and 11 are provided in table 1 below:

Name Description Value
ρ Discount rate, annualized 4%
γd mortality rate 0.01 7

10

γr recovery rate 0.99 7
10

β0 unavoidable infection rate 0.6
βn preventable infection rate 0.8

share of infected at time 0 0.015
δ share of vaccinated individuals per week 2%

Table 1: parameters for decentralized model

The parameters7 for the plots of figure 4 - 6, 9 and 12 are provided in table 2 below:

Name Description Value
ρ Discount rate, annualized 4%
γd mortality rate 0.01 7

10

γr recovery rate 0.99 7
10

β0 unavoidable infection rate 0.65
βn preventable infection rate 0.9

share of infected at time 0 0.005

Table 2: parameters for the social planner model

7Most of the parameters correspond to the ones used by Rachel [2020, Dec]
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7.2 Appendix B

7.2.1 Proof for decentralized equilibrium

The Hamiltonian:

H = ps(λu
W +(1−λ)uL)+(pi+pr)u

W −ηsps(βnλ+β0)I+ηi(ps(βnλ+β0)I−γpi)+ηrγrpi

with the necessary FOC:

dH

dλ
= ps(u

W − uL)− ηspsβnI + ηipsβnI = 0 (65)

Since we are faced with a linear optimization problem in λ, the solution will either be 0,

1 or singular in [0, 1]. From eq. (65) we define the switching function ψ(t) := uW −uL−
(ηs − ηi)Iβn ps and conclude that λ = 0 for ψ(t) < 0, λ = 1 for ψ(t) > 0 or λ ∈ (0, 1)

when ψ(t) = 0.

dH

dps
= (λuW + (1− λ)uL)− ηs(βnλ+ β0)I + ηi(βnλ+ β0)I = ηsρ− η̇s

(λuW + (1− λ)uL) + (ηi − ηs)(βnλ+ β0)I = ηsρ− η̇s

(66)

dH

dpi
= uW − ηiγ + ηrγr = ηiρ− η̇i (67)

dH

dpr
= uW = ηrρ− η̇r (68)

For t → ∞ and the assumption that η̇s = η̇i = 0 we can derive from equation (66) and

(68) the following:

ηs = ηi =
uW

ρ
(69)

From equation (67) assuming that η̇i = 0 together with (69) we can derive:

ηi =
uW + γr

uW

ρ

ρ+ γ
(70)

For the cases where I ≈ 0 i.e. at the beginning and end of the pandemic, ψ(t) is greater

than zero. That means individual mitigation starts at T0 > 0 and ends at T1 < ∞. We

assume now that ψ(t) = 0 can be sustained over an interval of time for t ∈ [T0, T1], which
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brings us to:

uW − uL = (ηs − ηi)Iβn

(ηs − ηi)I =
uW − uL

βn

(71)

Taking the derivative with respect to time of equation (71) we get:

(η̇s − η̇i)I + İ(ηs − ηi) = 0 (72)

Substituting η̇s and η̇i from equation (66) and (67) into equation (72) and together with

the model definition equation for İ we get the following:

[−(λuW + (1− λ)uL) + (ηs − ηi)(βnλ+ β0)I + ρηs + uW − ηiγ + ηrγr − ηiρ]I

+ (ηs − ηi)[(βnλ+ β0)SI − γI] = 0

⇔(1− λ)(uW − uL) + (ηs − ηi)[(βnλ+ β0)(S + I)− γ + ρ]− ηiγ + ηrγr = 0

Substituting now ηs − ηi from (71) in the equation above yields the following problem,

which we solve for λ.

(1− λ)(uW − uL) +
uW − uL

βnI
[(βnλ+ β0)(S + I)− γ + ρ]− ηiγ + ηrγr = 0 (73)

To get to the desired λ∗ we start by dividing by (uW − uL)

0 = 1− λ+
1

βnI
[(βnλ+ β0)(S + I)− γ + ρ] +

ηrγr − ηiγ

(uW − uL)

λ− S + I

βnI
βnλ = 1 +

1

βnI
[β0(S + I)− γ + ρ] +

ηrγr − ηiγ

(uW − uL)

−λ
S

I
= 1 +

1

βnI
[β0(S + I)− γ + ρ] +

ηrγr − ηiγ

(uW − uL)

λ∗ =
I

S
+

1

βnS
[β0(S + I)− γ + ρ] +

I

S

ηrγr − ηiγ

(uW − uL)
(74)

In equilibrium the proportion of infected to susceptible is small and for a small enough

discount rate ρ we get a good enough approximation for λ∗

λ∗ ≈
γ

Sβn

− β0

βn
(75)
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The stringency of social distancing is decreasing over time:8:

dλ∗

dt
=

dλ∗

dS

dS

dt
= − γ

S2βn

Ṡ > 0 (76)

To get an approximation of the infection rate, let p be the cumulative probability of

getting infected in the future. Susceptible individuals will either become infected or stay

susceptibles. In the long run we know that ηs = ηr, compare equation (69). Therefore,

if we ignore discounting, the shadow value for being susceptible can be approximated by

the following:

ηs ≈ pηi + (1− p)ηr (77)

p is given by, the number of infections that will happen, (which is then given by the

current susceptible level minus the long run susceptible level), divided by the amount of

current susceptibles, this we approximate as follows, note S̄ := γ
β
:

p =
S − S∞

S
≈

S − S̄

S
= 1− S̄

S
(78)

where S∞ is the long-run level of susceptibility in equilibrium. From equation (67) we get

an approximation for the steady-state ηi:

ηi =
uW + γrηr

ρ+ γ
=

ηrρ+ γrηr
ρ+ γ

=
ηr(ρ+ γ − γd)

ρ+ γ
= ηr(1− γd

ρ+ γ
) ≈ ηr(1− IFR)

(79)

Note that IFR = γd
γ
is the infection fatality rate. Combining equation (77), (78) and (79)

we get:9

ηs − ηi ≈
S̄

S
ηrIFR (80)

which implies from equation (71) and ηr =
uW

ρ
:

I(t) =
uW − uL

βn(ηs − ηi)
≈ S

ρuW−uL

uW

βn · S̄ · IFR
(81)

.

8In the work-in-progress paper from Rachel [2020, Dec], there is a minor difference when taking the
derivative of λ∗. The conclusions, that λ∗ increases over time, stays the same though.

9In the proof by Rachel [2020, Dec] S and S̄ were accidentially switched in the following equation, but
were fixed in the subsequent equations.
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7.2.2 Proof of infected only isolation

We are now faced with the following Hamiltonian :

H = S(t)uW+I(t)(λuW+(1−λ)uL)+R(t)uW−D(t)uW −ηs(βSI)+ηi(βSI−γI)+ηrγrI+ηdγdI

where β = βnλi + β0. Note that since λs = λr = 1 we drop the subscript for λi from here

on. The necessary FOC are:

dH

dλ
= IuW − IuL − ηsSIβn + ηiβnSI = 0

with switching function ψ = (uW − uL − (ηs − ηi)Sβn)I
(82)

dH

dS
= uW − ηs(βnλ+ β0)I + ηi((βnλ+ β0)I = ηsρ− η̇s

uW + (ηi − ηs)(βnλ+ β0)I = ηsρ− η̇s

(83)

dH

dI
= uWλ+ (1− λ)uL − ηsβS + ηi[βS − γ] + ηrγr + ηdγd = ηiρ− η̇i

uWλ+ (1− λ)uL + (ηi − ηs)(βnλ+ β0)S − γηi + ηrγr + ηdγd = ηiρ− η̇i

(84)

dH

dR
= uW = ηrρ− η̇r (85)

dH

dD
= −uW = ηdρ− η̇d (86)

The transversality conditions give us:

ηs(T̂ ) = ηr(T̂ ) =
uτ

ρ
(87)

In the final steady-state equilibrium, which implies that the time derivative of the costates

are zero, we gather from equation (85) and (86) that:

ηd = −uW

ρ
= −ηr (88)

Further, comparing (88) with (87) for consistency we conclude that uτ ≡ uW . Assume

that the switching function ψ can be 0 over a longer period of time and therefore λ ∈ (0, 1)

we can divide by I > 0, otherwise no lockdown would be necessary, and get the following

equation from (82).

⇒ uW − uL

βn

= (ηs − ηi)S (89)
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Taking the derivative of (89) with respect to time t gives us:

0 = (η̇s − η̇i)S + Ṡ(ηs − ηi) (90)

First consider the term (η̇s − η̇i) which we can get from (83) and (84).

(η̇s − η̇i) =

= ηsρ− uW + (ηs − ηi)I(βnλ+ β0) + λuW + (1− λ)uL − (ηs − ηi)(βnλ+ β0)S

+ (ηr − ηi)γr + (ηd − ηi)γd − ηiρ

= (1− λ)(uL − uW ) + (ηs − ηi)βnλ(I − S) + Θ

where Θ is defined as:

Θ := (ηs − ηi)(ρ+ β0(I − S)) + (ηr − ηi)γr + (ηd − ηi)γd

(Note that Θ is independent of λ )

We can now substitute the expression for (η̇s − η̇i) and Ṡ into equation (90).

0 = S

(η̇s−η̇i)

[(1− λ)(uL − uW ) + (ηs − ηi)βnλ(I − S) + Θ]

+Ṡ

−((βnλ+ β0)SI(ηs − ηi)

In the first step we assume that S = 0 and divide by S.

0 = (1− λ)(uL − uW ) + (ηs − ηi)βnλ(I − S) + Θ− (ηs − ηi)βnλI − (ηs − ηi)β0I

Afterwards the two expressions with βnλI(ηs − ηi) cancel each other out and to get to

the final line we divide by (ηs − ηi).

0 = (1− λ)
uL − uW

ηs − ηi
− βnλS +

Θ

ηs − ηi
− β0I

Now we solve for λ.

λ(βnS +
uL − uW

ηs − ηi
) =

uL − uW

ηs − ηi
+

Θ

ηs − ηi
− β0I (91)

If we substitute now for (ηs− ηi) with what we know from (89), the left hand side is zero.

0 = −βnS +
ΘβnS

uW − uL
− β0I

We now see that a singular solution for λ ∈ (0, 1) is irrelevant in this optimization problem.

That means that only a bang-bang solution for λ is eligible. With the switching function
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ψ from equation (82) we know that:

λ(t) =

1 if ψ > 0

0 if ψ < 0

It is obvious that an immediate and total lockdown of individuals at the start of the

pandemic, when the number of infected individuals is low, which will keep the lockdown

relatively short as well, would be optimal i.e. λ = 0. Stopping the spread of the disease

before the majority of individuals get infected and keeping the number of infected people

low will also decrease the costs for a broader lockdown.

At the beginning of the pandemic S is close to but below 1 and under Assumption 1

(γ > β0), we know that İ = β0IS − γI < 0, meaning that infected won’t increase over

time. Therefore, we work with S ≈ 1 and I ≈ 0 to derive an approximation for ηs and

ηi. With equation (83), (84) and (85) we get the following representation for ηs and ηi,

(note that, we assume that η̇s ≈ 0 and η̇i ≈ 0 at the start of the pandemic):

ηsρ = uw ⇔ ηs =
uw

ρ

and

ηiρ = uL + (ηi − ηs)β0 − ηiγ + ηrγr + ηdγd

ηi(ρ+ γ − β0) = uL − ηsβ0 + γrηr + ηdγd

ηi =
uL + uw

ρ
(γr − γd − β0)

(ρ+ γ − β0)
(92)

With equation10 (92) and ψ(t) = uW − uL − (ηs − ηi)βn < 0 we can now derive the

conditions for the lockdown to be optimal. Substituting for ηi and ηs in (ηs−ηi) we have:

ηs − ηi =
uW

ρ
− uL + uW

ρ
(γr − γd − β0)

ρ+ γ − β0

=
(uW − uL)ρ+ 2γdu

W

ρ(ρ+ γ − β0)

10The derivation of ηi differs noticeably from the version found in the proof of prop. 2 in the paper by
Rachel [2020, Dec].
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substituting this in the inequality from above we get:

(ηs − ηi)βn > uW − uL

(uW − uL)ρ+ 2γdu
W >

(uW − uL)ρ(ρ+ γ − β0)

βn

2γdu
W > (uW − uL)

ρ

βn

ρ+ γ − β0 − βn

IFR =
γd
γ

>
(uW − uL)

uW

ρ

2βnγ
ρ+ γ − β0 − βn (93)

Therefore, an immediate lockdown of infected would be optimal if the infection fatality

rate is greater than uW−uL

uW
ρ

2γβn
ρ + γ − β0 − βn , which mainly depends on lockdown

efficiency βn, unavoidable infections β0 and removal rate of infected (either recovered or

deceased) γ. Assuming a positive IFR a full lockdown would definitely be optimal for a

sufficiently effective lockdown, βn ≥ (ρ + γ − β0), since the right hand side of (93) will

then be smaller or equal to zero. For a less effective lockdown inequality (93) has to be

fulfilled to make the lockdown beneficial. .
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7.2.3 Proof of susceptible only mitigation

The Hamiltonian for susceptible only mitigation looks as follows:

H = S(λuW + (1− λ)uL) + (I +R−D)uW − ηs(βSI) + ηi(βSI − γI) + ηrγrI + ηdγdI

where β = βnλs + β0. Again we drop the subscript for λs from here on. The necessary

FOC are:

dH

dλ
= S(uW − uL)− ηsSIβn + ηiβnSI = 0

⇒ ψ = uW − uL − (ηs − ηi)Iβn S
(94)

dH

dS
= uWλ+ (1− λ)uL − (ηs − ηi)(βnλ+ β0)I = ηsρ− η̇s (95)

dH

dI
= uW − (ηs − ηi)(βnλ+ β0)S − ηiγ + ηrγr + ηdγd = ηiρ− η̇i (96)

dH

dR
= uW = ηrρ− η̇r (97)

dH

dD
= −uW = ηdρ− η̇d (98)

The transversality conditions again give us:

ηs(T̂ ) = ηr(T̂ ) =
uτ

ρ
(99)

In the final steady-state equilibrium, which implies that the time derivative of the costates

are zero, we gather from equation (97) and (98) that:

ηd = −uW

ρ
= −ηr (100)

Further, comparing (100) with (99) for consistency we conclude that uτ ≡ uW . We

assume now that the switching function ψ = 0 over a longer period of time, which yields

the following:

(ηs − ηi)I =
uW − uL

βn

(101)
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Taking the derivative of (101) with respect to time and substitute with what we know

from (95) and (96):

0 = (η̇s − η̇i)I + (ηs − ηi)İ =

= [(1− λ)(uw − uL) + (ηs − ηi)(βnλ+ β0)(I − S)− ηiγ + ηrγr + ηdγd + ρ(ηs − ηi)]I

+ (ηs − ηi)[(βnλ+ β0)SI − γI]

A possible solution would be I = 0, let’s assume that I > 0 and divide by I. Which yields

the following equation

0 = (1− λ)(uW − uL) + (ηs − ηi)(βnλ+ β0)I − ηiγ + ηrγr + ηdγd + (ρ− γ)(ηs − ηi)

Substituting for (ηs − ηi) from (101) delivers us:

(1− λ)(uw − uL) +
(uw − uL)(βnλ+ β0)

βn

− ηiγ + ηrγr + ηdγd +
(uw − uL)

βnI
(ρ− γ) = 0

if we divide by (uW − uL) it is clear that both λ cancel each other out.

1− λ+ λ+
β0

βn

+
(ρ− γ)

βnI
+

ηdγd − ηiγ + ηrγr
(uw − uL)

= 0 (102)

Similar to the infected only mitigation we conclude that ψ cannot be 0 over a longer

period of time and only a bang-bang solution for λ is optimal. Again we get:

λ(t) =

1 if ψ > 0 ⇔ S(uW − uL) > (ηs − ηi)βnIS

0 if ψ < 0 ⇔ S(uW − uL) < (ηs − ηi)βnIS

If we divide both sides of the condition above by S > 0, we see that the left hand side is

constant and always positive. Now it all depends on (ηs−ηi)βnI which starts out very low

since I(0) ≈ 0 which means we begin with λ = 1. The number of infected will increase

over time as long as no lockdown is imposed, which means λ will remain 1 until then. We

know that I reaches its maximum (Imax) at S̄ with that we can derive an approximation

of ηs − ηi. Assuming that until now no lockdown was imposed, which means λ = 1, from

(95) we get, (note that for approximation purposes we assume that η̇s ≈ 0 at this point
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in time):

ηs =
uW + ηiβImax

ρ+ βImax

≈
uW

βImax

+ ηi

⇒ ηs − ηi ≈
uW

βImax

(103)

We can now substitute (103) in our condition for ψ < 0 and get :

uW − uL < (ηs − ηi)βnImax = uW βn

β
(104)

For a sufficiently effective lockdown, i.e. β0(
uW

uL − 1) < βn, at a certain point in time, the

right hand side of (104) will surpass (uW − uL) and λ will switch to zero. This means

that there is a point, at least once, where a lockdown would make sense. We now want

to determine a time at which a lockdown would be optimal, so that it stops exactly when

herd immunity is reached and is not too late and does not cause unnecessary deaths. Let

S∗ and I∗ be the levels of susceptibles and infected at this specific point in time. To

determine the point (S∗, I∗), similar as Rachel [2020,Jul], we divide the equations for İ

by Ṡ and get a first order ordinary differential equation:

İ

Ṡ
=

dI
dt
dS
dt

=
βSI − γI

−βSI

dI

dS
= −1 +

S̄

S

⇔
t

0

1dI =
t

0

− 1 +
S̄

S
dS

⇔ I(t) = −S(t) + S̄log(S(t)) + I(0) + S(0)− S̄log(S(0)) (105)

The point (S∗, I∗) is now determined by two equations both derived by (105). First we

start from the initial conditions λ = 1 and S(0) = 1 − and I(0) = or rather with

its approximations S(0) ≈ 1 and I(0) ≈ 0, which will end at the desired point (S∗, I∗)

resulting in:

I∗ = −S∗ + S̄log(S∗) + 1− S̄log(1) (106)

The second equation is given by (S∗, I∗) as starting point and λ = 0 and the final point is

given by S̄ with the desired level of infected I(t) = 0. This gives us the following equation

again derived from eq. (105), here S̄L = γ
β0

and denotes the herd immunity threshold

level if a lockdown is imposed:

0 = −S̄ + S̄Llog(S̄) + I∗ + S∗ − S̄Llog(S
∗) (107)
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We can now substitute equation (106) for I∗ in eq. (107):

0 = −S̄ + S̄Llog(S̄) + S̄log(S∗) + 1− S̄Llog(S
∗) (108)

This equation can now be solved for S∗ to determine to what level susceptibles have to

fall before a total lockdown is imposed.

S∗ = exp
1− S̄ + S̄Llog(S̄)

S̄L − S̄
(109)

.
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7.2.4 Derivation of equation (25)

Starting with:

(η̇s − η̇i)SIβn + (ηs − ηi)βn(ṠI + Sİ) = (Ṡ + İ)(uW − uL) (110)

with equation (19) and (20) we obtain the following for η̇s − η̇i:

η̇s − η̇i = (ηs − ηi)β(I − S) + (ηs − ηi)ρ− γηi +
uW

ρ
(γr − γd) (111)

For ṠI + Sİ and Ṡ + İ we use equations (1) and (2) to get:

ṠI + Sİ = SI(β(S − I)− γ)

Ṡ + İ = −γI (112)

Equation (111) and (112) can now be substituted in (110) and we get the following:

(ηs − ηi)(β(I − S) + ρ)− γηi +
uW

ρ
(γr − γd) SIβn + (ηs − ηi)βnSI(β(S − I)− γ)

= −γI(uW − uL)

SIβn (ηs − ηi)ρ− γηi +
uW

ρ
(γr − γd)− (ηs − ηi)γ) = −γI(uW − uL) (113)

Equation (113) is now equivalent to equation (25)
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7.2.5 Derivation of λ∗
V

With the Hamiltonian and the first order conditions as stated in section 3, we assume

again that the switching function ψ can be 0 over a longer period of time giving us the

following equation:
uW − uL

βn

= (ηs − ηi)I (114)

taking the derivative of both sides with respect to time t results in:

(η̇s − η̇i)I + İ(ηs − ηi) = 0 (115)

Substituting now (52) and (53) into (115) we get:

− (λuW + (1− λ)uL) + (ηs − ηi)(βnλ+ β0)I + (ηs − ηr)δ + ηsρ+ uW − ηiγ + ηrγr − ηiρ I

+ (ηs − ηi)I((βnλ+ β0)S − γ) = 0

(1− λ)(uW − uL) + (ηs − ηi)[(βnλ+ β0)(S + I)− γ + ρ] + (ηs − ηr)δ − ηiγ + ηrγr = 0

(116)

Substituting now (114) for (ηs − ηi)I:

0 = 1− λ+
1

βnI
[(βnλ+ β0)(S + I)− γ + ρ] +

ηrγr − ηiγ + (ηs − ηr)δ

(uW − uL)

λ− S + I

βnI
βnλ = 1 +

1

βnI
[β0(S + I)− γ + ρ] +

ηrγr − ηiγ + (ηs − ηr)δ

(uW − uL)

−λ
S

I
= 1 +

1

βnI
[β0(S + I)− γ + ρ] +

ηrγr − ηiγ + (ηs − ηr)δ

(uW − uL)

λ∗
V =

I

S
+

1

βnS
[β0(S + I)− γ + ρ] +

I

S

ηrγr − ηiγ + (ηs − ηr)δ

(uW − uL)
(117)

Since I
S
is small in equilibrium and for a small enough ρ we can get a good approximation

for λ∗
V

λ∗
V ≈

γ − β0S − δ

βnS
(118)
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