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Kurzfassung

In den letzten Jahren haben fast alle großen Börsen der Welt auf elektronische Orderbücher
umgestellt. Diese speichern eingehende Limit Orders automatisch und führen diese gegen
den bestmöglichen Preis aus. Durch diese Veränderung haben sich auch die Modelle der
Orderbücher geändert. Diese Arbeit befasst sich mit der Analyse und Beschreibung von
verschiedenen Modellen der Orderbücher. In letzter Zeit sind sehr viele Publikationen zu
diesem Thema veröffentlicht worden. Ziel dieser Diplomarbeit ist es daher verschiedene
Varianten der Modelle zu erklären und diese zu vergleichen. Aufgrund der großen Menge
an verschiedenen Ansätzen wird in dieser Arbeit der Fokus auf drei verschiedene gelegt.
Der erste beruht auf der Theorie der Markov-Prozesse und auf diesem Ansatz bauen die
ersten drei Modelle der Arbeit auf. Danach wird ein Modell präsentiert was das Orderbuch
als Warteschlange simuliert. Die letzten Modelle, die behandelt werden, verwenden Hawkes
Prozesse, um die Orders zu beschreiben.



Abstract

In recent years, almost all major exchanges in the world have switched to electronic order
books. These automatically store incoming limit orders and execute them against the best
possible price. Due to this change, the models of order books have also changed. This
thesis deals with the analysis and description of different order book models. Recently,
many papers have been published on this topic. Therefore, the aim of this thesis is to
explain and compare different variants of these models. Because of the large number of
different approaches, this thesis will focus on three different concepts. The first one is based
on the theory of Markov processes and on this approach the first three models of the thesis
are built. After that, a model is presented which simulates the order book as a queueing
system. The last models discussed use Hawke’s processes to describe the orders.
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1 Introduction

In this first chapter some required definitions are going to be repeated. Most of the results
are from the theory of stochastic processes which are necessary for further understanding
of this work. However theorems and proofs are dispensed but can be looked up in the
literature as Øksendal [14] and Bass [3]. In the second part of the introduction the limit
order book in general will be explained.

1.1 Mathematical Background

For the whole thesis let (Ω,F ,P) be a complete probability space. Furthermore let T ⊂
R̄ := R ∪ {∞} be an arbitrary non-empty index set for the time parameter. The next few
definitions are mostly known but are needed quite often therefore this short review should
help to recall them.

Definition 1.1.1. A filtration F = (Ft)t∈T of F is defined as an increasing collection of
sub-σ-algebras of F , such that Ft ⊂ F for each t and Fs ⊂ Ft if s < t.

Definition 1.1.2. Let (U,U) be a measurable space. A process X : T × Ω → U is called
F-progressive if for every t ∈ T its restriction to {s ∈ T |s ≤ t}×Ω is B({s ∈ T |s ≤ t})⊗Ft-
measurable.

Definition 1.1.3. Let (Ω,F ,P) be a probability space and T an index set with T ∈
{N, R+}. Then a real-valued stochastic process is a collection of random variables {Xt :
t ∈ T} defined on (Ω,F ,P) with index set T . So, to every t ∈ T corresponds a random
variable:

Xt : Ω → R
(t, w) !→ Xt(ω).

Definition 1.1.4. Let (S,S) be a metric space, T ⊂ R and X : T × Ω → S a stochastic
process. If X is right-continuous and for every ω ∈ Ω the path X(·, ω) → S has left hand
side limits for every t ∈ T \ {inf T}
The same is true if the process is left-continuous except the then right hand side limits

have to be for every t ∈ T \ {supT} The consecutive definitions are about stochastic
processes which are later on used to model incoming orders or cancellations.

Definition 1.1.5. Let (U,U) be a measurable space. An F-adapted U -valued process X =
(Xt)t∈T on (Ω,Ft,F ,P) is called a Markov process with respect to the filtration F if for all
t ≤ s in T the random variable Xs is conditionally independent of Ft given Xt.

1



1 Introduction

Therefore a Markovian process at a state depends only on the outcome of the previous
stage and not on the ones it was before.

Definition 1.1.6. Let F be a filtration. A Poisson process with parameter λ > 0 is a
stochastic process X satisfying the properties:

• X0 = 0 a.s.

• The paths of Xt are right continuous with left hand side limits

• If s < t then Xt −Xs is a Poisson random variable with parameter λ(t− s)

• If s < t then Xt −Xs is independent of Fs

Definition 1.1.7. A Hawkes process Xt is a point process whose conditional intensity can
be written as

λ(t) = µ(t) +

� t

−∞
v(t− s)dXs

where v : R+ → R+ is a kernel function which describes the influence of past events on the
intensity process λ(t) and µ(t) is a deterministic function.

The upcoming definitions helps to specify Markov processes in terms of their behavior at
each point. This is done with the infinitesimal generator which is a linear operator which
is unbounded in general.

Definition 1.1.8. For a Markov process (Xt)t≥0 the generator L defined as

Lf(x) := lim
t→0

Ex(f(Xt))− f(x)

t

whenever the limit exists in (C∞, || · ||∞). Here Ex denotes the expectation with respect to
the semi-group of (Xt)t≥0.

1.2 Limit Order Book

In stock exchanges nowadays orders are matched and executed by computer systems. The
unmatched orders are stored in the so called limit order book. Each limit order book has
two sides, the ask side and the bid side. The ask side represents sell limit order and the
bid side buy limit orders. There exist two different kind of orders in the market. Those
follow the upcoming terms

• Market order: An order to buy or sell a certain amount of a stock for the best available
price

• Limit order: An order to buy or sell a certain amount of a stock for a specified price

2



1 Introduction

Market orders are matched immediately at the best available price whereas limit orders
are stored in the book if it is not executable at the arrival. A limit order is then either
executed by a market order or is canceled after some time by the issuer. Otherwise it will
remain in the limit order book. The best quote on the ask side is referred as best ask price
whereas the best quote on the bid side is called best bid price. In these circumstances best
means for each side something different. The best ask price is therefore the lowest price for
which a stock can be paid. On the bid side the best quote means it is the highest prices
someone is willing to pay for a stock. In further consequence the best ask price at time t
will denoted by Pa(t) and the best bid price at t by Pb(t). The minimum price movement
in a limit order book is called tick size and is denoted by δx. All orders have to arrive with
a price specified to the tick size. The difference between best bid and ask price is called the
spread. For further information about limit order books can be recommended the paper
”Limit order books” [6].
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2 Empirical Illustrations

In this section some illustrations of a real limit order book are shown. The data for those
illustration is provided by LOBSTER which is an online limit order book data tool and
provides high-quality limit order book data. In these example plots data of the Google
stock from the NASDAQ stock exchange is used. The data contains 10 levels which refers
to the first ten non empty entries standing in the order book. So that means that the
distance between two levels in the data is the minimum tick size. Simply because if there
is no volume standing at a certain price it does not count as level and it is therefore not
in the data. For the illustration of the price dynamics during a day a whole day is used
for a better understanding how prices change during a day. To show the standing volume
in the limit order book a certain point during the same trading day as before is chosen
randomly. The day which was chosen to illustrate the real data is the 21.05.2012. The first
figure shows the best ask price and also the best bid price evolution during a trading day.
The plot already suggests that it is pretty difficult model those dynamics.

Figure 2.1: Price Dynamics
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2 Empirical Illustrations

The x-axis needs further explanation because it shows the number of events taking place
during the trading day and the trading day is limited from 09:30 to 16:00. To be register
as an event in the data counts for example a submission of a new limit order, a market
order, a cancellation of a standing order and executions of limit orders. The spread in this
example varies during the day from 0.01$ to 2.30$.
The next figure shows the volume standing in the limit order book. The y-axis is the
number of shares standing in the limit order book at each price. As already mentioned
the first ten levels are shown if there non empty. Here it gets clearer that the levels are
not separated by the tick size. For example here at the best ask price is 575.46$ and the
volume at this price is 100.

Figure 2.2: Standing volume
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2 Empirical Illustrations

The last plot in this section shows the depth of the limit order book. The depth is of great
importance for market participants because it is a measure for liquidity in the market.
The plot describes on which level what percentage of the total volume in the order book
is present. Therefore the y-axis shows the percentage of the total volume and the x-axis
represents the ten levels.

Figure 2.3: Depth in the limit order book
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3 Markovian Limit Order Book Models

3.1 Zero-Intelligence Model

3.1.1 Introduction

The zero-intelligence model uses a general mathematical framework to study properties of
limit order books in a Markovian context. For financial markets participants it is of great
interest to understand the price dynamics. In this relatively simple model some conclusion
about those dynamics can be made. The order flows are described by Markovian point
processes. With the help of this assumption it is possible to derive several mathematical
results considering independent Poisson arrival times. The model also shows that the
cancellation rate cannot be neglected. The price process which is caused by the limit order
book dynamics convergence to a diffusive process at visible time scales. The model largely
follows the presentation in the book ”Limit Order Books” [1, Section 6].

3.1.2 Order Book Dynamics

In the setup for this model the ask and bid side of the limit order book are described by
a finite number of limits N , this means the opposite best quote can be 1 to N ticks away.
The ticks away the difference from the opposite best price to the current price of the order.
Whereby the best price for the ask side is described by Pa and the best price on the bid
size is given by Pb. The amount of available orders at each tick away at time t is described
by

(va(t);vb(t)) := (va1(t), . . . vaN (t); vb1(t), . . . , vbN (t)),

where va(t) := (va1(t), . . . , vaN (t)) belongs to the ask side of the limit order book and
vb(t) := (vb1(t), . . . , vbN (t)) to the bid side. Therefore vai(t) represents the shares standing
in the limit order book on the ask side i ticks away from the opposite best quote. The same
applies to the bid side only that it has negative entries. This means in case of a bid limit
order the sign of the volume is negative. The quantities in this framework take values in
the discrete space qZ, where q ∈ N is the minimum order size. The integrated quantities
represents the shape of the limit order book and in this model the cumulative depth is
presented by

Va(t, i) :=

i�
k=1

vak(t) and Vb(t, i) :=

i�
k=1

|vbk(t)|.

In the context of this mathematical framework the generalized inverse function of the
cumulative market depth is helpful. The inverse function returns for a certain quantity q�
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3 Markovian Limit Order Book Models

of shares the minimum number of ticks to get q� shares

V −1
a (t, q�) := inf{i : Va(t, i) > q�} and V −1

b (t, q�) := inf{i : Vb(t, i) > q�}.

The functions for the ask and bid side are equal for the first non empty entry

V −1
a (t, 0) = V −1

b (t, 0).

If the moving frame of size 2N leaves a price the boundary condition sets in. The boundary
condition ensures that the number of shares outside the frame is constant set to va∞ or
vb∞ for the ask and bid side respectively.
The agents operating on the market can participate with different actions. They can place
market orders or limit orders and also have the possibility to cancel one of their already
existing limit order. Those different events are mathematically described by independent
Poisson processes.

• Ma/b(t): Counting processes of market orders, with constant intensities λMa and λMb

• Li
a/b(t): Counting processes of limit orders at level i, with constant intensities λLa

i

and λLb
i

• Ci
a/b(t): Counting process of cancellations of limit orders at level i, with stochastic

intensities λCa
i vai and λCb

i |vbi |.
The subscript ”a” denotes the ask side and ”b” the bid side. Therefore for example a sell
market order has the subscript ”b” because it takes place on the bid side. All different
kind of orders are by assumption of unit size q. For the cancellation process at level i
the intensity is corresponding to the available amount of orders at that level. The time is
indicated by the letter t. Additionally limit orders arrive always below the best quote of
the opposite side. This is a realistic approach and does not make the model less valuable.
In mathematical terms this means that sell limit orders Li

a(t) are submitted above Pb(t)
and vice versa buy limit orders Li

b(t) are submitted below Pb(t).

3.1.3 Evolution Of The Order Book

To model the outstanding quantities process in the limit order book coupled stochastic
differential equations are used. Depending on which side of the order book is considered
different equations arise. The quantities for each side are described by the following equa-
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3 Markovian Limit Order Book Models

tions:

dvai(t) =− 1{vai (t)�=0}1{Va(t,i−1)=0}qdMa(t) + qdLi
a(t)− qdCi

a(t)

+ (JMb(va,vb)− va)idMb(t) +

N�
i=1

(JLi
b(va)− va)idL

i
b(t)

+

N�
i=1

(JCi
b(va,vb)− va)idC

i
b(t),

dvbi(t) =1{vbi (t)�=0∧Vb(t,i−1)=0}qdMb(t)− qdLi
b(t) + qdCi

b(t)

+ (JMa(va,vb)− vb)idMa(t) +
N�
i=1

(JLi
a(vb)− vb)idL

i
a(t)

+

N�
i=1

(JCi
a(va,vb)− vb)idC

i
a(t).

One should bear in mind that the bid size is modeled in negative terms, therefore the
absolute value is needed. The first term of the equations refers to an incoming market
order. The indicator function checks whether the entry at level i is empty and if the limit
order reservoir is hit. It follows that a market order decreases the available orders by q if
at level i is the first non-zero limit. The second term increases the amount of limits in the
book through an arriving limit order, whereas the third term causes the opposite because
it describes the influence from incoming cancellations. The other three terms describe the
influence of orders arriving at the bid side on the ask side of the order book. The same
is true for the other way around. The new introduced shift operators J ’s rearrange the
level order by incoming events. These operators are defined in the following form using the
inverse functions:

JMb(va,vb) = (0, . . . , 0, va1 , . . . , vaN−k
) with k = V −1

b (t, q)− V −1
b (t, 0)

JMa(va,vb) = (0, . . . , 0, vb1 , . . . , vbN−k
) with k = V −1

a (t, q)− V −1
a (t, 0)

JLi
b(va) = (va1+k

, . . . , vaN , va∞ , . . . , va∞) with k = V −1
a (t, 0)− i

JLi
a(vb) = (vb1+k

, . . . , vbN , vb∞ , . . . , vb∞) with k = V −1
b (t, 0)− i

JCi
b(va,vb) = (0, . . . , 0, va1 , . . . , vaN−k

) with k = V −1
b (t, q)− V −1

b (t, 0)

JCi
a(va,vb) = (0, . . . , 0, vb1 , . . . , vbN−k

) with k = V −1
a (t, q)− V −1

a (t, 0).

It should be considered that the cancellation of a limit order at the best quote has the
same impact on the dynamic as a market order. In the following the concept of the zero-
intelligence model will be explained on the basis of an simple example.

9



3 Markovian Limit Order Book Models

3.1.4 Illustration of the Zero-Intelligence Model

The following figures and explanations make the model more understandable and imagin-
able. Let the boundary condition or the size of the moving frame be denoted by 2N and
let N = 10. Therefore 10 ticks away of the opposite best quote the last volume is standing
in the limit order book before the boundary condition sets in. The minimum order size
q = 1 and the tick size δx = 1. Furthermore va∞ or vb∞ are 4 and -4 respectively. Pa and
Pb are standing for the best ask price or rather best bid price. The spread between them
is denoted by S. Knowing that the order book can be described. The initial shape of the
order book is such that va = (0, 0, 0, 0, 0, 3, 5, 2, 5) and vb = (0, 0, 0, 0, 0,−1,−4,−3, 0,−6).

Figure 3.1: Limit Order Book

Assume that a ask limit order comes in. This order is placed at va3 therefore it is
an order placement within the spread. This triggers the shift operator JLi

a(vb). Af-
ter that the new shape of the limit order book is va = (0, 0, 1, 0, 0, 3, 5, 2, 5) and vb =
(0, 0,−1,−4,−3, 0,−6,−4,−4,−4). Assume that the next order which is submitted is
a sell market order. This would activate the shift operator operator JMb(va,vb). The
shape of the order book would become afterwards va = (0, 0, 0, 1, 0, 0, 3, 5, 2, 4) and vb =
(0, 0, 0,−4,−3, 0,−6,−4,−4,−4). The last thing occurring is a cancellation at vb10 . This
would just change the bid side and does not have any influence on the ask side. The volume
at the bid side would then be given by vb = (0, 0, 0,−4,−3, 0,−6,−4,−4,−3). The visual
illustrations to those events can be seen on the upcoming page. The first plot shows the
incoming ask order inside the spread. Afterwards the execution of the market order is
shown in the figure. And the last plot shows the cancellation of limit order on the bid side.
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3 Markovian Limit Order Book Models

Figure 3.2: Incoming ask limit order

Figure 3.3: Execution of market order

Figure 3.4: Cancellation on the bid side
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3 Markovian Limit Order Book Models

3.1.5 Infinitesimal Generator and Price dynamics

The infinitesimal operator is derived using the theory of Markovian processes and Poisson
processes. For the dynamics of the order book in this model the operator L denotes the
infinitesimal generator. The infinitesimal operator is then given by:

L f(va,vb) = λMa
�
f([vai − (q − Va(t, i− 1))+]+; J

Ma(va,vb))− f
�

+

N�
i=1

λLa
i

�
f(vai + q; JLi

a(vb))− f
�

+

N�
i=1

λCa
i vai

�
f(vai − q; JCi

a(va,vb))− f
�

+ λMb
�
f(JMb(va,vb); [vbi + (q − Vb(t, i− q))+]−)− f

�
+

N�
i=1

λLb
i

�
f(JLi

b(va); vbi − q)− f
�

+

N�
i=1

λCb
i |vbi |

�
f(JCi

b(va,vb); vbi + q)− f
�
.

The notation for the subscript + or - at the brackets denote in this formula the max and
minimum function defined by (x)+ := max(x, 0) and (x)− := −min(x, 0). To describe the
price dynamics stochastic differential equations are used. The best ask prices is denoted
by Pa(t) and the best bid price by Pb(t), meaning the lowest ask respectively highest bid
price and the dynamic of them is described by:

dPa(t) = ΔP
	
(V −1

a (t, q)− V −1
a (t, 0))dMa(t)

−
N�
i=1

(V −1
a (t, 0)− i)+dL

i
a(t) + (V −1

a (t, q)− V −1
a (t, 0))dCV −1

a (t,0)
a

�
dPb(t) = −ΔP

	
(V −1

b (t, q)− V −1
b (t, 0))dMb(t)

−
N�
i=1

(V −1
b (t, 0)− i)+dL

i
b(t) + (V −1

b (t, q)− V −1
b (t, 0))dC

V −1
b (t,0)

b

�
.

Here it becomes apparent that the price dynamics depend on three different events. The
first thing to mention is that the price is influenced by market orders which consume
liquidity at the top of the order book. By consuming liquidity the reduction of available
orders at the top of the order book is meant. Another factor influencing the price is if a
limit order is placed inside the spread. Through such orders the price moves the distance
of the previous best quote to the new order which arrive within the spread. The last event
which can influence the price is a cancellation of a limit order at the best price which has
the same effect as a market order. Knowing these dynamics, it is now possible to derive
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3 Markovian Limit Order Book Models

the midprice and the spread. First let us look at the midprice:

dP (t) =
ΔP

2



(V −1

a (t, q)− V −1
a (t, 0))dMa(t)− (V −1

b (t, q)− V −1
a (t, 0))dMb(t)

−
N�
i=1

(V −1
b (t, 0)− i)+dL

i
a(t) +

N�
i=1

(V −1
a (t, 0)− i)+dL

i
b(t)

+ (V −1
a (t, q)− V −1

a (t, 0))dCV −1
a (t,0)

a (t)− (V −1
b (t, q)− V −1

b (t, 0))dC
V −1
b (t,0)

b (t)

�
.

The spread indicates the difference between best ask price and best bid price. The impor-
tance of the spread lies in the fact that it describes the cost of each transaction for the
agents. In this model the spread has the following dynamic:

dS(t) = ΔP



(V −1

a (t, q)− V −1
a (t, 0))dMa(t) + (V −1

b (t, q)− V −1
a (t, 0))dMb(t)

−
N�
i=1

(V −1
b (t, 0)− i)+dL

i
a(t)−

N�
i=1

(V −1
a (t, 0)− i)+dL

i
b(t)

+ (V −1
a (t, q)− V −1

a (t, 0))dCV −1
a (t,0)

a (t) + (V −1
b (t, q)− V −1

b (t, 0))dC
V −1
b (t,0)

b (t)

�
.

Those equations are interesting in the sense that they link the price dynamics to the order
flow. The conditional infinitesimal drifts of the mid-price and the spread can explain
what the expected shape of the limit order book at time t might be. Mathematically the
expectations are denoted by:

IE[dP (t)|(va,vb)] =
ΔP

2
[(V −1

a (t, q)− V −1
a (t, 0))λMa − (V −1

b (t, q)− V −1
b (t, 0))λMb

−
N�
i=1

(V −1
a (t, 0)− i)+λ

Li
a +

N�
i=1

(V −1
b (t, 0)− i)+λ

Li
b

+ (V −1
a (t, q)− V −1

a (t, 0))λCa

V −1
a (t,0)

vV −1
a (t,0)

− (V −1
b (t, q)− V −1

b (t, 0))λCb

V −1
b (t,0)

|vV −1
b (t,0)|]dt,

IE[dS(t)|(va,vb)] = ΔP [(V −1
a (t, q)− V −1

a (t, 0))λMa + (V −1
b (t, q)− V −1

b (t, 0))λMb

−
N�
i=1

(V −1
b (t, 0)− i)+λ

L+
i −

N�
i=1

(V −1
a (t, 0)− i)+λ

Li
b

+ (V −1
a (t, q)− V −1

a (t, 0))λCa

V −1
a (t,0)

vV −1
a (t,0)

+ (V −1
b (t, q)− V −1

b (t, 0))λCb

V −1
b (t,0)

|vV −1
b (t,0)|]dt.

3.1.6 Ergodicity And Diffusive Limit

In this subsection two important questions will be answered. The first question is if the
order book is stable and the second one is what the stochastic process limit of the price at

13
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large time scales is. To answer this questions the transition probability function at time t
of the Markov process St is given by Qt(S, ·) is used. Furthermore for the total variation
norm of a probability measure µ denoted by the symbol �µ� is needed. Through theses
assumptions and definitions the following statement holds.

Theorem 3.1.1. If λC := min1≤i≤K{λCa/b
i } > 0, then (S(t))t≥0 = (va(t);vb(t))t≥0 is an

ergodic Markov process and has a unique stationary distribution Π. The rate of convergence
to this stationary distribution of the order book is exponential. In case there exists r, 0 <
r < 1 and R < ∞ such that

�Qt(S, ·)−Π(·)� ≤ RrtV ((S)

with t ∈ R+, (va(t);vb(t)) ∈ S and V ((va;vb) :=
�N

i=1 ai +
�N

i=1 |bi| + q which are the
total number of shares in the book plus q shares.

Proof. See [1, Section 6].

In the assumptions for the Theorem it first can be observed how important a positive
cancellation intensity is for the convergence. Additionally for the spread it can be stated
that it has a well-defined stationary distribution.
To answer the second question about the asymptotic of the re-scaled centered price process
some theory needs to be recalled. Mainly theory about ergodicity of Markovian processes
and the martingale convergence theorems are needed where the books of Øksendal [14] and
Bass [3] can be used to refresh ones memory. The arrival times are Poisson arrival times
and this should be kept in mind. In general terms the prices process has the form

Pt =

� t

0

�
i

Fi(S(u))dN
i(u).

In this formula N i’s are the point processes driving the events affecting the limit order
book as market orders, limit orders submitted inside the spread and cancellations at the
top of the book. The yi ≡ yi(va,vb) is the intensity of N i which can by definition depend
on the state of the order book. The different Fi are the jumps in the price of interest always
when also the process driving the order book jumps. Using this notation and the ergodic
theorem in combination with the martingale theorem the following proposition holds.

Proposition 3.1.1. The price process given by P (t) =
� t
0

�
i Fi(S(u))dN

i(u) and intro-

ducing the sequence of martingales P̂n resulting from the centered, re-scaled price

P̂n(t) ≡ P (nt)−Q(nt)√
n

where Q is the predictable compensator of P

Qt =
�
i

� t

0
yi(S(s))Fi(S(s))ds

14
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If those are fulfilled P̂n converges in distribution to a Brownian motion σ̂B where the
volatility of this process is given by

σ̂2 = lim
t→+∞

1

t

�
i

� t

0
yi(S(s))(Fi(S(s)))

2ds

=
�
i

�
yi(S)(Fi(S))

2Π(d(S))

It remains still difficult to make precise forecasts about the re-scaled price dynamics.
To make such it is important to understand the behavior of its compensator Qnt. And
although Qnt satisfies itself an ergodic theorem and assuming that the asymptotic variance
is not insignificant with respect to nt, it is not possible to state from the previous Proposi-
tion that the re-scaled price P (nt)/

√
n behaves like a Brownian motion with deterministic

drift. The following Theorem however provides a more detailed answer under more general
assumptions regarding ergodicity.

Theorem 3.1.2. Let the price process be defined by

P (t) =
�
i

� t

0
Fi(S(s))dN

i(s)

and the corresponding predictable compensator of the price process is given by

Q(t) =
�
i

� t

0
yi(S(s))Fi(S(s))ds.

Furthermore let h be the sum over all jumps of the process times the respective intensity

h =
�
i

yi(S)Fi(S)

and let α be defined as

α =
a.s.
lim

t→+∞
1

t

�
i

� t

0
yi(S(s))Fi(S(s))ds

=

�
h(S)Π(d(S)).

For the solution to the Poisson equation g is introduced and solves

L g = h− α.

The associated martingale for the Poisson equation is given by

Zt = g(S(t))− g(S(0))−
� t

0
L g(S(s))ds

≡ g(S(t))− g(S(0))−Q(t)− αt.

15
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Thus the re-scaled centered price

P̂n(t) ≡ P (nt)− αnt√
n

converges in distribution to a Brownian motion σ̄B. The asymptotic volatility σ̄ satisfies
the identity

σ̄2 = lim
t→+∞

1

t

�
i

� t

0
yi(S(s))((Fi −Δi(g))(S(s)))2ds

=
�
i

�
yi(S)((Fi −Δi(g))(S))2Π(d(S))

where Δi(g)(va;vb) denotes the jump of the process g(va;vb) when the process N i jumps
and the limit order book is in the state (va;vb)

Proof. See [1, Section 6].

One difficulty in using the formula is to find the stationary distribution of the order
book. However all the derived results hold also under less strong restrictions. In order to
still arise the same outcome Lyapunov functions are used to model cancellations.

16



3 Markovian Limit Order Book Models

3.2 Weak Law Of Large Numbers For A Limit Order Book

3.2.1 Introduction

This model builds on the Markovian theory. The order flow dynamics are Markovian and
this brings the advantage that the type of order, the order size and the price at which the
order is placed can all depend on the current state of the order book. The state of the
limit order book is the combination of the price and the standing volumes. The main result
derived in this model is a limit for a fully state dependent Markovian order book dynamics.
The obtained theorem shows that if the amount of orders submitted in a fixed time scale
goes to infinity, while the number of active orders, the tick size as well as the number
of active orders tend to zero the dynamics of the price dynamics and the volume density
functions converge to the unique solution of a coupled ODE/PDE system which is non
linear. The model described in this chapter is following the paper ’A Weak Law of Large
Numbers for a Limit Order Book Model with Fully State Dependent Order Dynamics’ [10].

3.2.2 Setup

In this model only the buy side of the limit order book will be analyzed. This is just to
ease notation to obtain both sides of the limit order book one has just to define the sell side
analogous. Another restriction which is made but can be relaxed due to the time changing
theorem is that the order arrival times are deterministic. All random variables which will
occur in this section are defined on a common complete probability space (Ω,F ,P). The
cádlág process S(n) = (S(n)(t))0≤t≤T describes the dynamics of the limit order book. The
values that process can take are in the Hilbert space

E := R× L2(R), �α�E := |α1|+ �α2�L2 .

Changes of the state of the order book can occur due to market or limit orders. The amount
of such events in the n-th model are given by �T/Δt(n)�. For the times those events take
place

t
(n)
k := kΔt(n), k = 1, . . . ,



T

Δt(n)

�
is defined where Δt(n) is a scaling parameter converging to zero as n → ∞ and t

(n)
0 = 0.

For the state of the order book S
(n)
k is defined. The k stands for the amount of events that

happened in the n-th model. In detail the state of the book is given by

S(n)(t) := S
(n)
k := (P

(n)
k , v

(n)
k ) for t ∈ [t

(n)
k , t

(n)
k+1].

The best bid price after k events in the n-th model is denoted with P
(n)
k . The buy side

volume density function relative to the best quote is denoted by v
(n)
k where again k stands

for the number of events that took place in the n-th model. The number of available stocks

which are j ∈ N ticks away from the best price at time t
(n)
k is described by� x

(n)
−j

x
(n)
−j−1

v
(n)
k (x)dx,

17
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where x
(n)
j := jΔx(n) for j ∈ Z and n ∈ N. To be able to model also limit orders placed

inside the spread the function v
(n)
k , k ∈ N, is defined over the whole real line. The orders

standing in the order book at a positive distance of the best price are referred as shadow
book. This helps to model the distribution of sizes from orders that were placed inside the
spread such that those orders enhance the current volume density function of the order
book which is visible in a ’smooth’ way to the right. The dynamics of the shadow book
and the visible one are the same. Moreover the shadow book becomes a part of the visible
book trough prices changes. At time t = 0 the state of the order book is known for all
models with n ∈ N and is defined as

S
(n)
0 = (P

(n)
0 , v

(n)
0 ) ∈ R× L2(R).

The translation operators T
(n)
+ and T

(n)
− work for every n ∈ N and are needed to claim the

convergence condition on the sequence of initial states. Those operators act on functions
f : R → R the following way

T
(n)
+ (f)(· · · ) := f(·+Δx(n)), T

(n)
− (f)(·) := f(· −Δx(n)).

Furthermore it is to consider that the translation operator is isometric for all f ∈ L2!!!T (n)
+ (f)

!!!
L2

= �f�L2 .

Moreover, in this model M > 0 is a fixed constant.

Assumption 3.2.1. The initial volume function v
(n)
0 is a non-negative step-function taking

values on the grid {x(n)j , j ∈ Z}. It is uniformly bounded by the constant M and has compact

support for all n ∈ N in the interval [−M,M ]. Furthermore, let v0 ∈ L2 be a non-negative
continuously differentiable function in such a way that!!!v(n)0 − v0

!!!
L2

= O(Δx(n)).

Besides that let the initial price P0 ∈ R+ such that P
(n)
0 → P0. The initial state is then

denoted by S0 := (P0, v0) ∈ E.

There are three events that affect the state of the limit order book. Those three events
change the limit order book if one of the upcoming points hold.

• An arriving market sell order has the same size as the volume standing at the best
price in the limit order book. In this situation the best price would decrease by one
tick. Events of this type are referred as A type events. Such an event shifts the
relative volume density function by one tick to the right.

• An arriving buy limit order which is submitted one tick above the best current price.
Therefore the price would increase by one tick. This type of events belong to the B
type events. And for the relative density function this means that it will be shifted
one tick to the left.

18
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• An arriving buy limit order of size (Δv(n)/Δx(n))w
(n)
k at price p

(n)
k . In the case that

w
(n)
k < 0 it corresponds to a cancellation of an existing order in the book. Those

events are assigned in group C.

The scaling parameter Δv(n) specify the size of a particular submission or cancellation.
Events of type A and B lead to price changes whereas events of type C do not change
the price. Assuming that for category A submitted market orders equal the size of the
standing volume at the best price is made for convenience and can be relaxed because the
framework is flexible enough. In the case there stands more volume than a market order
at the top of the book an incoming market order would be treated as a cancellation.

The different types which can occur are described by a field of random variables (φ
(n)
k )k,n∈N.

These random variables are taking values in {A,B,C}. For the size and price at which
an order submission or cancellation is made is modeled by the different field of random

variables (w
(n)
k , p

(n)
k )k,n∈N. However for the size and price the following assumption is

needed.

Assumption 3.2.2. There exist a field of random variables (π
(n)
k )k,n∈N which are living in

the compact interval [−M,M ] with probability one and

p
(n)
k := P

(n)
k + jΔx(n) for φ

(n)
k ∈ [x

(n)
j−1, x

(n)
j ).

In addition there also exist a field of random variables (w
(n)
k )k,n∈N with the property w

(n)
k ∈

[−M,M ] for all k, n ∈ N.

The random variables π
(n)
k with k, n ∈ N0 describe the price levels relative to the best

quote of order submissions respectively cancellations. In the case where p
(n)
k = P

(n)
k the

submission or cancellation is happening at the best price of the buy side. For the case

p
(n)
k < P

(n)
k the events appear deeper in the order book. The events which occur at a price

p
(n)
k > P

(n)
k are taking place in the shadow book. Due to price changes and the resulting

shift of the relative volume density function v(n) the shadow book connects with the visible
part of the book.

To avoid negative volumes because of cancellations one can assume that w
(n)
k is dependent

on π
(n)
k . The advantage of this model is that the conditional distribution of the random

variables (φ
(n)
k ), w

(n)
k , π

(n)
k can be dependent on the present price and volumes. In order

to continue, further notations need to be presented. For instance the σ-field F (n)
k :=

σ(S
(n)
j , j ≤ k) which is defined for every n ∈ N and k = 0, 1, . . . , �T/Δt(n)�. Furthermore,

for each n ∈ N it is assumed that S(n) is a Markovian process with its own filtration. The
space E� := {s = (P, v) ∈ E : v ∈ C1} is necessary for the upcoming assumption.

Assumption 3.2.3.

• There exists Lipschitz continuous functions pA, pB : E → [0, 1] with Lipschitz con-
stant L. In addition there exists a scaling parameter Δp(n) such that for all n ∈ N
and k ≤ �T/Δt(n)�

P[φ(n)
k = I|F (n)

k ] = Δp(n)pI [S
(n)
k ] a.s. for I = A,B.
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• There exists a Lipschitz continuous function f (n) : E → L2 for n ∈ N with Lipschitz
constant L > 0 fro all n ∈ N such that for all k ≤ �T/Δt(n)�

f (n)[S
(n)
k ](·) = 1

Δx(n)
IE



w

(n)
k

�
j∈Z

1{π(n)
k ∈[x(n)

j ,x
(n)
j+1)}

(·)1C(φ
(n)
k )|F (n)

k

�
a.s.

and

sup
s∈E

!!!f (n)[s](·)
!!!
∞

≤ M.

Additionally a function f : E → L2 exists with

sup
s∈E

!!!f (n)[s]− f [s]
!!!
L2

= S(Δx(n))

where f [s](· · · ) : R → [−M,M ] is continuously differentiable in x for all s ∈ E�. The
derivation of this function is uniformly bounded in absolute value by the constant M .

To simplify notation some definitions will be introduced in order to then define the full
dynamics of the limit order book for this model. For I ∈ {A,B,C} and k, n ∈ N the event
indicator variable is given by

1
(n),I
k := 1I(φ

(n)
k ).

Moreover, the shorthand notation I = A,B is used

p(n),I [·] := Δp(n)pI [·], p(n),B−A := p(n),B − p(n)A,

pB−A := pB − pA, 1
(n),B−A
k := 1

(n)B
k − 1

(n),A
k .

Definition 3.2.1. The dynamics of the state process of the limit order book S(n) = (P (n), v(n))

for each n ∈ N is denoted by S
(n)
0 := s

(n)
0 and for k = 1, . . . , �T/Δt(n)� it is defined by

P
(n)
k = P

(n)
k−1 +Δx(n)1

(n),B−A
k−1

v
(n)
k = v

(n)
k−1 + (T

(n)
− − I)(v

(n)
k−1)1

(n),A
k−1 + (T

(n)
+ − I)(v

(n)
k−1)1

(n),B
k−1 +Δv(n)M

(n)
k−1,

where

M
(n)
k (·) := 1

(n),C
k

w
(n)
k

Δx(n)

�
j∈Z

1{π(n)
k ∈[x(n)

j ,x
(n)
j+1)}

(·).

In order to be able to use the law of large numbers some assumptions regarding the
scaling parameters needs to be chosen. For limit order arrivals and cancellations are fast
time scales selected. In contrast a comparatively slow one is picked for arriving market
orders and limit orders which are placed inside the spread.

Assumption 3.2.4. There exist constants c0, c1, c2 > 0 and β ∈ (0, 1) such that

lim
n→∞

Δx(n)Δp(n)

Δt(n)
= c0, lim

n→∞
Δv(n)

Δt(n)
= c1, lim

n→∞
Δx(n)

(Δt(n))β
= c2.
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Without loss of generality it can be assumed that the constants c0, c1 and c2 are all
equal to one for the upcoming part.
Through the weak law of large numbers it can be stated that the state process of the order
book converges in probability to a deterministic limit. This limit is the solution of a system
of nonlinear differential equations depending on an initial boundary condition.

Theorem 3.2.1. Assuming the assumptions 3.2.1, 3.2.2, 3.3.3 and 3.2.4 hold and there
exists a deterministic process S : [0, T ] → E such that for all ! > 0

lim
n→∞P



sup

0≤t≤T

!!!S(n)(t)− S(t)
!!!
E
> !

�
= 0.

The function S = (P, v) is the unique solution of the following coupled ODE/PDE initial
boundary value problem:

S(0) = s0

dP (t) = pB−A[S(t)]dt, t ∈ [0, T ],

vt(t, x) = pB−A[S(t)]vx(t, x) + f [S(t)](x), (t, x) ∈ [0, T ]× R.

Proof. See [10].
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3.3 Second Order Approximations For Limit Order Books

3.3.1 Introduction

This model allows to work with an infinite dimensional limit order book. The dynamics
of incoming orders are permitted to depend on the current price along with a volume
indicator. Two different cases are studied which differ in the scaling regime. In the first
case price changes hardly take place. This leads to a constant first order approximation of
the price process and a stochastic differential equation for the volume process in the second
order approximation. In the other case a slower rescaling rate is chosen. Which results in
a different first as well as second order approximation. The first order approximation then
becomes non-degenerate and for the second order approximation this leads to a partial
differential equation with random coefficients. The model discussed in this chapter is
following the paper of Horst and Kreher [11].

3.3.2 Setup

Because of the nearly symmetric sides of the limit order book and with the aim to keep it
clear only the bid side of the book is discussed. Therefore the extension of the model to
both sides is not that difficult. The random variables are as always defined on a complete
probability space (Ω,F ,P). The cádlág process S(n) = (S(n)(t))0≤t≤T describes the state
of the bid side of the order book in the nth model. The process takes values in the Hilbert
space

E := R× L2(R), �α�E := |α1|+ �α2�L2 .

The change of the limit order book happens due market and limit orders but also due to
cancellations. The amount of such events taking place is denoted by Tn := �T/Δt(n)� where
the n stands for the n-th limit order book model. The times in which those events occur
is denoted by

t
(n)
k := kΔt(n), k = 1, . . . , Tn

where Δt(n) describes a scaling parameter. This parameter converges to 0 as n → ∞ and

the starting point t
(n)
0 = 0 is fixed. At time t the state of the order book becomes

S
(n)
k (t) := (P

(n)
b (t), v

(n)
b (t)) for t ∈ [t

(n)
k , t

(n)
k+1] ∩ [0, T ].

Whereas P
(n)
b describes the best bid price process and is real-valued and v

(n)
b is the volume

density function on the buy side. It should be noted that the volume process is L2-valued
and that the density is relative to the best price process. While after k events the state of

the order book is described by S
(n)
k := (P

(n)
k , v

(n)
k ). Due only one side is modeled and for

clarity reasons the subscript b is omitted.

The tick size δ
(n)
x leads to the price grid denoted by x

(n)
j := jδ

(n)
x for j ∈ Z, n ∈ N. For all

n ∈ N and all x ∈ R an interval I(n)(x) is defined as

I(n)(x) := (x
(n)
j , x

(n)
j+1] for x

(n)
j < x < x

(n)
j+1.

22



3 Markovian Limit Order Book Models

For any k = 0, . . . , Tn the random variable v
(n)
k is L2-valued and it is assumed that the

variable is a cádlág step function on the set of prices {x(n)j : j ∈ Z}. The volume standing

in the limit order book at time t
(n)
k and at price level x

(n)
j , j ∈ Z can be obtained by

� x
(n)
j

x
(n)
j−1

v
(n)
k (x)dx = δ(n)x v(n)(x

(n)
j ).

Starting at t = 0 the state of the limit order book is known for all n ∈ N. The state at the
beginning is defined as

S
(n)
0 = (P

(n)
0 , v

(n)
0 ) ∈ R× L2(R).

The events driving the limit order book are described below. Those events can take place

at each time t
(n)
k , k = 1, . . . , Tn and they change the state of the order book if

• a market sell order arrives which has size of δ
(n)
x v

(n)
k−1(0). This equals by assumption

the volume at the top of the book. Therefore if such an event occurs the best price
declines by one tick. Thereby the volume density function is shifted one tick to the
right. The set of theses events is defined as A.

• a buy limit order is submitted within the spread. It is assumed that the order is
just one tick above the best quote and therefore the price increases just by one tick.
For the volume density function this leads to a shift to the left by one tick. Events
associated to this type are in the set B.

• a buy limit order is placed with size Δv(n)w
(n)
k at price level η

(n)
k . Should w

(n)
k be

smaller than 0 this results in a cancellation of volume. All kind of those events are
in the set C.

The assumption that market orders have exactly the size of the volume standing at the
best price has primarily mathematical reasons but there is evidence in the literature that
supports that [5]. With this restriction the price changes just by one tick after an arriving
market order. If a market order is submitted and has a lower size than the volume at the
top of the book it is treated as a cancellation. Given that the size of the market order is
larger than the liquidity available at the top of the book it is split up into smaller orders
where each of this small orders change the price just by one tick. Retrieved from the
assumption that market orders can change the price just by one tick the breakdown of a
large market order has to be done.
In the definition of the last action driving the state of the order book Δv(n) describes
a scaling parameter. This parameter specify the amount of a limit order submission or

cancellation. A restriction on the tick δ
(n)
x is that if n → ∞ then Δv(n) → 0. The

relative price level of a limit order submission or placement is described by the random

variable η
(n)
k . The random variable η

(n)
k is defined on the price space {x(n)j : j ∈ Z}.

The exact size of orders is defined by the random variable w
(n)
k . Furthermore the sign of

w
(n)
j determines if it is a limit order placement or cancellation. Therefore such an event
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affects the volume standing in the order book at price level η
(n)
k which is the integral

of u
(n)
k−1 over I(n)(η

(n)
k ) by the size Δv(n)w

(n)
k . The step function v(n)(x) can change by

Δv(n)w
(n)
k /δ

(n)
x for all x ∈ I(n)(η

(n)
k ). For this model η

(n)
k := δ

(n)
x �φ(n)

k /δ
(n)
x � with π

(n)
k is

a random variable which takes real values. Through that the interval I(n)(η
(n)
k ) can be

written as I(n)(π
(n)
k ). Additionally the events introduced last can be written as (w

(n)
k , π

(n)
k )

rather than (w
(n)
k , η

(n)
k ).

A further assumption is that only one event can take place at a time. The events that can

occur are described by the random variables (φ
(n)
k )k,n∈N and take values in one of the three

sets described before . The restriction that only one event at a time is taking place is not
just for mathematical convenience it is also compatible with the real world. Because it is
not possible to execute more than one order at a time. For the events of set C a placement
operator is introduced and is defined by

M
(n),C
k (·) := 1C(φ

(n)
k )

w
(n)
k

δ
(n)
x

1
I(n)(π

(n)
k )

(·).

That operator describes the change of the volume density function if a event of type C
occurs. Due to the fact that the volume density function is defined on the real line and
that it shifts one tick either to the left if a limit order is placed inside the spread or to the
right if a market order is submitted, the influence on the limit order book due to a price

change can be described by translation operators T
(n)
− and T

(n)
+ . Those act on functions

f : R → R in the following way

T
(n)
− (f)(·) := f(· − δ(n)x ),

T
(n)
+ (f)(·) := f(·+ δ(n)x ).

The dynamics of the limit order book can now be described by a stochastic differential
equation.

Definition 3.3.1. The dynamics of the process S(n) = (P (n), v(n)) is given by S
(n)
0 := s

(n)
0

for each n ∈ N and for every k = 1, . . . , Tn,

P
(n)
k = P

(n)
k−1 + δ(n)x (1B(φ

(n)
k )− 1a(φ

(n)
k ))

v
(n)
k = v

(n)
k−1 + (T

(n)
− − I)(v

(n)
k−1)1A(φ

(n)
k ) + (T

(n)
+ − I)(v

(n)
k−1)1B(φ

(n)
k )

+ Δv(n)M
(n),C
k .

For the purpose to derive the first order approximation some other assumptions on the
initial value of the stochastic differential equation and the random variables driving the
limit order book are required.

Assumption 3.3.1. The volume density function v(n) at time 0 is a step function on the

price grid {x(n)j : j ∈ Z}. Moreover the function is uniformly bounded through M and

24



3 Markovian Limit Order Book Models

in [−M, M ] it has compact support for all n ∈ N. In addition a differentiable function

v
(n)
0 ∈ L2(R) exists and V

(n)
0 ∈ R such that!!!v(n)0 − v0

!!!
L2

= O(δ(n)x )

|P (n)
0 − P

(n)
0 | = o(Δt(n))1/2.

The function v
(n)
0 and the corresponding constant P

(n)
0 are jointly specified as s0 =

(P0, v0) ∈ E.

Assumption 3.3.2. There exists a constant M greater than 0 such that for all n ∈ N and
k ≤ Tn

P[|π(n)
k | > M ] = P[|w(n)

k | > 0] = 0.

For every n ∈ N and for k = 1, . . . , Tn a σ-field F (n)
k := σ(S

(n)
j , j ≤ k) is defined. It is

assumed that for every n ∈ N the state process S(n) first conditional moment relies on a
volume indicator and the price at that time. The volume indicator is denoted with Y (n).
To define the volume indicator a function h ∈ L2(R) is fixed which has support in R−. And
with the help of h and the inner product the volume indicator is given by

Y
(n)
k := �h , v

(n)
k 
, k = 0, . . . , Tn, n ∈ N.

The upcoming assumption is the reason why this limit order book model has a Markovian
structure. As a result of the conditional first moments of order placements or cancellations
as well as price changes the Markovian structure is received.

Assumption 3.3.3.

• For all n ∈ N there exist Lipschitz continuous functions

p(n),A, p(n),B : R× R → [0, 1]

with the Lipschitz constant L which is independent of n and scaling parameter Δp(n)

such that for all k = 1, . . . , Tn the following equation holds

P[φ(n)
k = I|F (n)

k−1] = Δp(n)p(n),I(P
(n)
k−1, Y

(n)
k−1) a.s. for I = A,B.

Besides that there exist functions pA, pB : R× R → [0, 1] such that

sup
(b,y)∈R2

|p(n),I(b, y)− pI(b, y)| = o(Δx(n))1/2

• Let f (n) : R × R → L2(R), n ∈ N be Lipschitz continuous functions with mutual
Lipschitz constant L > 0 such that for all k = 1, . . . , Tn the equation

δ(n)x f (n)(P
(n)
k−1, Y

(n)
k−1; ·) := IE[1C(φ

(n)
k )w

(n)
k 1I(n)(π(n))(·)|F (n)

k−1] a.s.
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holds and in addition

sup
(b,y)∈R2

!!!f (n)(b, y; ·)
!!!
∞

≤ M

for a constant M . Further a function f : R× R → L2 exists and it is such that

sup
(b,y)∈R2

!!!f (n)(b, y)− f(b, y)
!!!
L2

= O(Δx(n))

whereby the function f(b, y; ·) : R → [−M,M ] is continuously differentiable in x for
all (b, y) ∈ R × R. The derivative of that is then uniformly bounded by the absolute
value of the constant M .

3.3.3 First Order Approximation

Under an appropriate scaling assumption the state of the order book process S(n) can
be approached by a deterministic process S = (P, v). This process solves an ODE-PDE
system. In order to derive the approximation two different time scales are necessary. One
for the changes in volume which requires a fast time scale and a slower one for price changes.
The intention behind deriving the first order approximation is that the expected impact on
the volume of orders in the book is given by Δt(n), since the number of order book events
is given by Tn = �T/Δt(n)�. The probability of a price change is O(Δp(n)). If a price

change occurs this will move the volume density function by δ
(n)
x . Therefore the expected

impact is of dimension Δp(n)Δx(n) and it is also required that Δp(n)δ
(n)
x = O(Δt(n)) holds.

An event of category C, which are cancellations and order placements affect the volume

density function in size O(Δv(n)/δ
(n)
x ) on the interval relying on the price level at which

the submission appears. The expected impact of such on the volume in the limit order
book is Δv(n). The following scaling assumption refers to that.

Assumption 3.3.4. There exist α ∈ (0, 1) and β ≥ 1−α in such a way that the following
holds

Δt(n) = Δv(n), δ(n)x = (Δt(n))α, Δp(n) = (Δt(n))β .

If β = 1 − α this would refer to the critical case where a non-trivial prices process
occurs for the first order approximation. While β > 1 − α relates to the case where price
movements hardly occur and therefore the price process is constant.

Theorem 3.3.1. Under the assumptions 3.3.1-3.3.4 there exists a deterministic process
S : [0, T ] → E such that ∀! > 0

lim
n→∞P[ sup

0≤t≤T

!!!S(n)(t)− S(t)
!!!
E
> !] = 0.
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3 Markovian Limit Order Book Models

Additionally is the process S = (P, v) the unique solution for the ODE-PDE system:
∀(t, x) ∈ [0, T ]× R,

Pt = P0 + 1{α=1−β}
� t

0
pB−A(Ps, Ys)ds,

v(t, x) = v0(x) +

� t

0
f(Ps, Ys;x)ds+ 1{1=1−β}

� t

0
pB−A(Ps, Ys)δxv(s, x)ds,

Yt = �h, v(t; ·)


Proof. See [11].

To write pA − pB = pA−B the weak law of large numbers is used. It should be noted
that the volume function v(n) is not positive for sure in this setting except there are no
cancellations. Two different approaches help to cope with this problem. The first is that
the volume density function v(n) describes logarithmic volumes rather than actual volume.
In this constellation negative entries would be legit. The other approach to guarantee a
positive volume function but only for short time horizons is letting v0 be positive and since
the first order approximation is deterministic the volume function will be positive. That is
why v(n) will be positive for large n and a short time scale with a high probability.

3.3.4 Second Order Approximation

The intention now is to obtain a second order approximation for S(n) = (P (n), v(n)) which
denotes the state process. The complexity in doing so is that the price process and the
volume process have different time scales. The amount of order placements and cancella-
tions is expected around T/Δt(n), whereas the amount of prices changes is in the range
of TΔp(n)/Δt(n). In consequence of the dependency of the volume density process on the
price process it is necessary that the same scaling parameters are used for the re-scaled
deviation processes, P (n) − P and v(n) − v. Subsequently δXk describes the increment
Xk −Xk−1 for a stochastic process (Xk)k∈N in discrete time.
For simplicity another scaling parameter is introduced Δ(n) which will get linked to the
other scaling parameters later. The re-scaled discrete fluctuation best price process and
the volume process are defined as

Z
(n),P
k :=

P
(n)
k − P (t

(n)
k )

(Δ(n))1/2
,

Z
(n),v
k :=

v
(n)
k (·)− v(t

(n)
k , ·)

(Δ(n))1/2

for k = 0, 1, . . . , Tn. The fluctuations of the volume indicator is given by

Z
(n),Y
k :=

Y
(n)
k − Y (t

(n)
k )

(Δ(n))1/2
=

�h, v(n)k − v(t
(n)
k )


(Δ(n))1/2
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for k = 0, 1, . . . , Tn. Modifying the definitions for any time t ∈ [0, T ] they become

Z(n),P (t) :=
P (n)(t)− P (t

(n)
k )

(Δ(n))1/2
,

Z(n),v(t) :=
v(n)(t, ·)− v(t, ·)

(Δ(n))1/2

Z(n),Y (t) := �h, Z(n),v(t)
.

This definitions lead to the following useful lemma.

Lemma 3.3.2. If Δt(n) = o(Δ(n))1/2 then

sup
k≤Tn

sup
t∈[t(n)

k ,t
(n)
k+1]

|Z(n),P (t)− Z
(n),P
k | → 0

sup
k≤Tn

sup
t∈[t(n)

k ,t
(n)
k+1]

!!!Z(n),v(t)− Z
(n),v
k

!!!
L2

→ 0.

For the rest of this model Hm with m ∈ N describes the Sobolev space of order m. The
norm for the Sobolev space is the usual Sobolev norm. Furthermore let H−m stand for the
dual of Hm and H0 := L2. Then

E � :=
 
m

H−m ⊆ · · · ⊆ H−1 ⊆ L2 ⊆ H1 ⊆ · · · ⊆
�
m

Hm =: E ⊆ C∞(R).

The second order approximation will later on converge weak in the Skorokhod space
D([0, T ];R × H−3) with the normally used Skorokhod metric. But to show the second
order approximation of the volume part of the state process the next lemma is fundamen-
tal.

Lemma 3.3.3. If φ ∈ H3 then

sup
t≤T

""""� 1

Δ(n)
(T

(n)
+ − I)(v(n)(t)), φ

�
− �δxv(t), φ


"""" = oP(�φ�H2)

and

sup
t≤T

"""" 1

(Δx(n))2
�(T (n)

+ − I)(v(n)(t)), (I − T
(n)
+ )(φ)
+ �δxv(t), φ�


"""" = oP(�φ�H3)

Thereby φ ∈ H3 has to be required in order to obtain the second order approxima-
tion. Furthermore it is then just possible to show convergence in the Skorokhod space
D([0, T ];R×H−3).

Assumption 3.3.5. There exists h ∈ H3 that satisfies Y (n) := �v(n), h
 for all n ∈ N.

The following assumptions are about the differentiability of pA, pB and f . Those as-
sumptions are necessary because the fluctuations of the price and volume indicator have
an impact on the dynamics of S due to those functions.
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Assumption 3.3.6. The functions pA and pB are twice continuously differentiable in both
arguments and for I = A,B

sup
b,y

(|pIb(b, y)|+ |pIy(b, y)|+ |pIbb(b, y)|+ |pIby(b, y)|+ |pIyy(b, y)|) < ∞

Assumption 3.3.7. The function f is twice continuously differentiable in the first two
arguments and

sup
b,y

( �f(b, y)�L2 + �fb(b, y)�L2 + �fy(b, y)�L2

+ �fbb(b, y)�L2 + �fby(b, y)�L2 + �fyy(b, y)�L2) < ∞

Another assumption which is required to derive the main result will follow after the
introduction of the function

p(n)(b, y) := (Δt(n))1/2−α(p(n),B(b, y)− p(n),A(b, y))

which is defined for all n ∈ N.

Assumption 3.3.8. There exists a Lipschitz-continuous function p : R × R → R such
that

sup
(b,y)∈R2

|p(n)(b, y)− p(b, y)| → 0.

The next assumption is about second moments of order placements or rather cancella-
tions. Those are required to guarantee convergence of the volume fluctuations.

Assumption 3.3.9. There exist measurable functions g(n) : R×R → L1(R), n ∈ N, such
that for all k = 1, . . . , Tn

Δx(n)g(n)(Vk−1, Y
(n)
k−1; ·) = IE[1C(φ

(n)
k )(w

(n)
k )21

I(n)(π
(n)
k )

(·)|Fk−1] a.s.

Besides that there exists a constant C > 0 and a Lipschitz continuous function g : R×R →
L1(R) with

sup
b,y

!!!g(n)(b, y)!!!
∞

≤ C ∀n ∈ N

sup
b,y

�
R
|g(n)(b, y;x)− g(b, y;x)|dx → 0.

With all the assumptions introduced the main result of this model can be presented and
it is formulated in the following theorem.

Theorem 3.3.4. Let the assumptions 3.3.1-3.3.4, 3.3.6 and 3.3.7 be fulfilled and the func-
tion σB is defined as σB := (pA + pB)1/2.
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• If Δ(n) = Δt(n), α > 1/2 and β = 2(1 − α) and let also the assumptions 3.3.8 and
3.3.9 hold then there exists a function µ such that the process Z(n) = (Z(n),P , Z(n),v)
converges weakly in D([0, T ];R×H−3) to (ZP , Zv). This is the unique solution, which
is starting from ZP = 0 and Zv(0, ·) = 0 to the infinite-dimensional SDE

dZB(t) = µ(Yt)dt+ σP (P0, Yt)dB
P
t

dZv(t) = fb(P0, Yt)Z
P (t)dt+ fy(V0, Yt)�Zv(t), h
dt

+ δxv(t)dZ
P (t) + dMt

where BB is a standard Brownian motion and M is an L2 valued martingale which
covariance depends on (P, Y ).

• If Δ(n) = δ
(n)
x , α < 1/2 and β = 1−α and let assumption 3.3.6 be additionally fulfilled

then Z(n) = (Z(n),P , Z(n), v) converges weakly in D([0, T ];R×H−3) to (ZP , Zv). This
is the unique weak solution, which is starting from ZP

0 = 0 and Zv(0, ·) = 0, to the
system

dZP (t) = pB−A
b (Pt, Yt)Z

P (t)dt+ pB−A
y (Pt, Yt)�Zv(t), h
dt

+ σP (Pt, Yt)dBt

dZv(t) = fb(Pt, Yt)Z
P (t)dt+ py(Pt, Yt)�Zv(t), h
dt

+ δxv(t)dZ
P (T ) + δxZ

v(t)dBt

Proof. See [11].
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4 Queueing System Models

4.1 Introduction

This model develops further the idea of zero-intelligence models with the main difference
that random sized orders are allowed. The advantage that this model has compared to the
first is that the relationship between incoming order sizes and the shape of the order book
can be studied. Where the shape of the order book refers to a function which gives for
any price the amount of shares standing at this price in the limit order book. To keep the
entry simple one-sided order book models will be introduced. These are then subsequently
extended to random order sizes on both sides. This model follows mostly the representation
in the book ”Limit Order Books”[1, Section 7].

4.2 Link Between the Flows of Orders and the Shape of an
Order Book

4.2.1 One-sided Queueing System

This order book model builds on the theory of queueing system. As already mentioned
for the beginning just one side of the order book will be discussed. One-sided means for
this model that all limit order are ask limit orders, all market orders are buy orders and
all cancellation are on the ask side. Therefore the side which is presented is the ask side
but all results would also hold for the bid side of the book. As a consequence that only
the ask side will be modeled the bid side will be hold fixed at zero. An immediate result
of this assumption is that the spread always equals the best ask prize. Throughout the
one-sided model the subscript a, b standing for ask or buy side is dropped because all the
activity takes place on the ask side. Pa(t) denotes as always the best ask price at time t.
The price process {Pa(t), t ∈ [0,∞)} is a continuous time stochastic process which takes
values in the discrete set {1, . . . , N}. The price could be interpreted as number of ticks,
whereby the tick size is described by δx. The upper bound is given by the highest price
N this can be chosen very large, without affecting the shape of the order book at lower
prices. All ask limit orders at price i ∈ {1, . . . , N} submitted follow a Poisson process
with parameter λL

i . The arriving orders are assumed to be mutually independent. That
assumption allows orders submitted at prices 1, . . . , r to be summarized to one Poisson
process with parameter ΛL

r :=
�r

i=1 λ
L
i . The limits standing in the order book can be

canceled and the intervals those limits are standing in the order book before being deleted
form a set of mutually independent random variables. These are identically exponential
distributed with parameter λC > 0. At random times buy market orders can be placed
and that arises according to a Poisson process with parameter λM . A further limitation
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for this model is that the size of orders which is of unit size.
The amount of limit orders standing in the order book at prices 1, . . . , k at time t is following
a stochastic process which is described by {Va(t, k)(t), t ∈ [0,∞)}. The cumulative shape
of the order book is the amount of available orders between the best limit and price k. The
cumulative shape in this model will be denoted by the process Va(t, k). Under the use of
queueing systems theory, Va(t, k) can be viewed as a M/M/1 +M queueing system. The
arrival rate for this system is ΛL

k , the service rate is given by λM and the reneging rate
is λC . The queueing system will be referred as the ”1 → k” queueing system to illustrate
the ticks. Knowing that Va(t, k) is ergodic it follows from theory that it has a stationary
distribution πVa(t,k)(·) whenever the cancellation rate is strict positive λC > 0 which it
is by assumption. In consequence it is possible to come up with the matrix form of the
infinitesimal generator���

−ΛL
k ΛL

k 0 0 0 · · ·
λM + λC −(ΛL

k + λM + λC) ΛL
k 0 0 · · ·

0 λM + 2λC −(ΛL
k + λM + 2λC) ΛL

k 0 · · ·
...

...
...

...
...

. . .

��� .

The equations leading to this matrix are given by

ΛL
kπi−1 − (ΛL

k + λM − (i− 1)λC)πi + (λM + iλC)πi+1 = 0

for every i. The πVa(t,k) represent the stationary probability and can be written for all
n ∈ N as

πVa(t,k)(n) = πVa(t,k)(0)
n�

i=1

ΛL
k

λM + iλC
.

Specify the summation over all n of the stationary probabilities to one,
�∞

n=0 πVa(t,k)(n) = 1
provides the following for πVa(t,k)(0)

πVa(t,k)(0) =

� ∞�
n=0

n�
i=1

ΛL
k

λM + iλC

�−1

With the normalization of the rates, which happens by dividing the parameters by the can-
cellation rate, the parameters become Λ̄L

k = ΛL
k /λ

C and λ̄M = λM/λC . Taking into account
the newly introduced definitions and doing some rearrangement as well as simplifications
the equation develops into

πVa(t,k)(n) =
e−Λ̄L

k (Λ̄L
k )

λ̄M

λ̄MΓΛ̄L
k
(λ̄M )

n�
i=1

Λ̄L
k

i+ λ̄M

where Γy(x) is the incomplete Euler-gamma function

Γy : R+ → R, x !→
� y

0
tx−1e−tdt.
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The price in this model equals k exactly then when the ”1 → k − 1” queueing system is
empty but the ”1 → k” system is not. Subsequently if the cumulative shape of the limit
order book Va(t, k) is distributed according to the invariant distribution πVa(t,k) the price
Pa can be written for the first and last tick as

πPa(0) = 1− e−Λ̄L
1 (Λ̄L

1 )
λ̄M

λ̄MΓΛ̄L
1
(λ̄M )

πPa(N) =
e−Λ̄L

K−1(Λ̄L
K−1)

λ̄M

λ̄MΓΛ̄L
K−1

(λ̄M )

for all the k’s in between, so k ∈ {2, . . . ,K − 1}, the distribution of the price has the
following form

πPa(k) =
e−Λ̄L

k−1(Λ̄L
k−1)

λ̄M

λ̄MΓΛ̄L
k−1

(λ̄M )
− e−Λ̄L

k (Λ̄L
k )

λ̄M

λ̄MΓΛ̄L
k
(λ̄M )

.

If the expectation is applied to the shape of the order book Va(t, k) it is possible to obtain
the average size IE[Va(t, k)] of the ”1 → k” queueing system. By further transformations
the average is given by

IE[Va(t, k)] = Λ̄L
k −

ΓΛ̄L
k
(1 + λ̄M )

ΓΛ̄L
k
(λ̄M )

.

In order to get the amount of limit orders standing in the book at price k ∈ {1, . . . , N}
one hast to take the difference between Va(t, k) and Va(t, k − 1). The number of orders
available is then defined by vak = Va(t, k)− Va(t, k− 1). If the expected value is applied to
vak the average shape of the order book at price k becomes

IE[ak] = λ̄L
k −

�ΓΛ̄L
k
(1 + λ̄M )

ΓΛ̄L
k
(λ̄M )

−
ΓΛ̄L

k−1
(1 + λ̄M )

ΓΛ̄L
k−1

(λ̄M )

�

where λ̄L
k =

λL
k

λC .

4.2.2 Continuous Extension of The Basic Model

The extension concerns the price which can be any positive real number. The market
order process is as before a Poisson process with parameter λM . No changes are made
regarding the size of market orders, those are still of unit size. The elimination of existing
limit orders standing in the order book take place after some time which is exponentially
random distributed with parameter λC . Due to the continuity the submission of limit order
changes. As of now the price follow a spatial Poisson process on the positive quadrant R2

+.
The intensity for this process is given by λL(p, t) which is a non negative function. With
that intensity for the spatial Poisson process the arrival of limit orders will be simulated.
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The first entry p refers to the price whereas the second entry t indicates the arrival time
of orders. About the process is assumed that it is time homogeneous. Furthermore it is
assumed that the process is price and time separable. The spatial intensity function of
the limit orders which are random events is defined by hλL : R+ → R+. The intensity
for arrival of limit orders is expressed by λL(p, t) = αhλL(p). For any price p ∈ [p1, p2]
with p1 < p2 ∈ [0,∞) the limit order at that price is a homogeneous Poisson process with
intensity

� p1
p1

λL(p, t)dp. The cumulative size of the order book is described by A([0, p]).
This describes the shares standing in the book from zero up to price p ∈ R+. This can again
be seen as aM/M/M+1 queueing system. The arrival rate for this system is α

� p
0 hλL(u)du,

the service rate is λM and reneging is in this setting denoted by cancellations which have
rate λC . Using the new introduced definitions and the results from the zero-intelligence
model it is possible to get the average cumulative shape of the limit order book

IE[Va([0, p])] =

� p

0
λ̄L(u)du− f

�
λ̄M ,

� p

o
λ̄L(u)du

�
.

Whereby the two following definitions were used to keep it clear

λ̄L =
αhλL(u)

λC

f(x, y) =
Γy(1 + x)

Γy(x)
.

In addition let Λ̄L(p) =
� p
0 λ̄L(u)du be the normalized arrival rate of limit orders up to

price p. For the cumulative shape of the order book IE[Va([o, p])] the expression V (p) will
be used. The average shape of the limit order book is the deviation of the cumulative shape
according to the price, a(p) = ∂A(p)/∂p. So that it is the average shape of the order book
per price unit. Differentiating the formula for the average cumulative shape of the order
book with respect to the price leads to the upcoming proposition.

Proposition 4.2.1. In a continuous order book framework with homogeneous Poisson ar-
rival of market orders with intensity λM , spatial Poisson arrival of limit orders with in-
tensity αhλL(p) and exponentially distributed time between submitting limit orders and the
cancellation of those with parameter λC . The average shape in such an environment for
the limit order book model is computed for all p ∈ [0,∞) by:

a(p) = λ̄L(p)[1− λ̄M (gλ̄M ◦ Λ̄L)(p)[1− λ̄M [Λ̄L(p)]−1[1− (gλ̄M ◦ Λ̄L)(p)]]]

where

gλ̄M =
e−yyλ̄

M

λ̄MΓy(λ̄M )
.

The function gλ̄M (Λ̄L(p)) can be seen as the probability that the limit order book is
empty up to price p. Letting λM → 0, which means no more market orders are submitted,
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4 Queueing System Models

leads to the average shape a(p) → λ̄L(p) in view of the proposition. This result is not really
a surprise because without market orders the average shape of the order book would only
depend on the normalized arrival rate of limit orders. Letting p → ∞ the average shape
has an approximation a(p) ∼ kλ̄L(p) with some constant k. This result will be investigated
in the following proposition.

Proposition 4.2.2. The shape of the limit order book can be written as

va(p) = λ̄L(p)C(p)

where C(p) denotes the probability that a limit order submitted at price p will be canceled
before executed.

It can be concluded that the shape of the order book corresponds to the fraction of
arriving limit orders that will be canceled. The difference between the flows of limit orders
and the order book can be exactly described by the fraction of arriving limit orders that
will be traded.
Using the equation for the average shape of the order book, carry out some computations
and with some results of the theory for queueing systems, the fraction Ck of limit orders
submitted at price k in the discrete framework which are canceled is

Ck = 1− λ̄M

Λ̄L
k

(gλ̄M (Λ̄L(p))− gλ̄M (Λ̄L(p+ !))).

The proportion of canceled limit orders at a price in the interval [p, p+ !] in the setting of
the continuous model and with the average cumulative shape given by A(p) is denoted by

1− λ̄M

Λ̄L(p+ !)− Λ̄L(p)
(gλ̄M (Λ̄L(p))− gλ̄M (Λ̄L(p+ !))).

To gain the fraction C(p) which describes the limit orders submitted at price p which are
canceled, one has to let ! → 0. If this is done the following equation for C(p) is obtained

C(p) = 1− λ̄Mg �̄λM (Λ̄L(p))

= 1− λ̄M (gλ̄M ◦ Λ̄L)(p)

�
1− λ̄M

Λ̄L(p)
(1− (gλ̄M ◦ Λ̄L)(p))

�
.

Taking this formula into consideration the relationship between the shape of the order
book and the flows of arrival limit orders can be examined. For high prices two main cases
exist which can be analyzed. The first case assumes a positive finite constant α for the
total arrival rate of limit orders. Then the proportional constant C∞ for p → +∞ which
describes the relation between the shape of the order book a(p) and the normalized limit
order flow λ̄M (p) is defined as

C∞ = lim
p→∞C(p) = 1− λ̄Mgλ̄M (α)

�
1− λ̄M

α
(a− gλ̄M (α))

�
< 1.

In this case the shape of the order book does not equal the normalized rate of arrival limit
orders λ̄L(p) it is just proportional to it. The proportion of canceled limit orders does not
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4 Queueing System Models

go to 1 as the price tends to infinity. One can deduce from that market orders play an
important role for the shape of limit order books even at high prices. The other case is
where limp→∞ Λ̄L(p) = ∞ and in this setting market orders do not reach the highest prices.
This affects the tail of the limit order book because the order book behaves like there are
no market orders at all, a(p) ∼ λ̄L(p) as p → +∞.

4.3 Varying Size Of Limit Orders

This model allows random sized limit orders in the framework of the one sided model. Just
remark that all limit orders are ask orders, market orders are buy orders and cancellations
just hit the ask side. Although a significant assumption changes particularly the order size
most of the other assumptions remain. For the size of the limit orders it is assumed that
these are independent random variables. A further assumption for sizes of limit orders
is that they are identically distributed if they are submitted at a given price. To put it
in more general terms the distribution depends on the price level and it can also depend
on the price itself. To describe the probability that a limit order is submitted at price k
is of size n the function gkn is introduced. This function is defined for any price k ∈ N
and any order size n ∈ N. The average over all submitted orders at price k is defined
by ḡk and is assumed to be finite. The arrival rate of limit orders of size n at price k is
denoted by λL

i g
i
n. Using then the summation property of the independent Poisson process

it is possible to write
�k

i=1 λ
L
i g

i
n for the arrival of limit orders at size n with a price up

to k. To describe the probability of a limit order with a price up to k and size n is

Gk
n =

�k
i=1

λL
i

ΛL
k

gin. Straightforward the mean size of a limit order is then ḠK =
�k

i=1
λL
i

ΛL
k

ḡi.

Regarding the cancellation the mechanism the main properties remain. Limit orders can
be canceled once standing in the limit order book although not all at once but unit by unit.
The time intervals between submission of a limit order and cancellation of that order are
assumed to be mutually independent random variables identically distributed according to
an exponential distribution with parameter λC > 0. For market orders nothing changes
in this model, they are still of unit size and are submitted at random times following a
Poisson process with parameter λM .
The cumulative shape of the limit order book Va(t, k) is modeled by a stochastic process
{Va(t, k), t ∈ [0,∞)} describing the number of limit orders in the book at prices 1, . . . , k. In
the context of a queueing system this would be a Mx/M/1+M queueing system. The bulk
arrival rate is the normalized limit order rate ΛL

k , the bulk volume distribution is (Gk
n)n∈N,

the service system for this system is λM and the cancellations are the reneging rate λC .
The infinitesimal generator for the cumulative shape Va(t, k) is�����

−ΛL
k ΛL

kG
k
1 ΛL

kG
k
2 ΛL

kG
k
3 ΛL

kG
k
4 . . .

λM + λC −(ΛL
k + λM + λC) ΛL

kG
k
1 ΛL

kG
k
2 ΛL

kG
k
3 . . .

0 λM + 2λC −(ΛL
k + λM + 2λC) ΛL

kG
k
1 ΛL

kG
k
2 . . .

0 0 λM + 3λC −(ΛL
k + λM + 3λC) ΛL

kG
k
1 . . .

...
...

...
...

...
. . .

����� .
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The stationary distribution πVa(k) = (πVa(k)(n))n∈N of Va(k) is the solution to the system
of equations:��

0 = −ΛL
kπVa(k)(0) + (λM + λC)πVa(k)(1) n=0

0 = −(ΛL
k + λM + nλC)πVa(k)(n) + (λM + (n+ 1)λC)πVa(k)(n+ 1)

+
�n

i=1 Λ
L
kG

k
i πVa(k)(n− i) n≥ 1.

This system of equations is solved with the help of probability generating functions. Before
the theory of moment generating functions can be used those need to be defined. Therefore
let ΦVa(k)(z) =

�
n∈N πVa(k)(nz

n) and let ΦGk(z) =
�

n∈NGk
nz

n. The normalized market

parameter λ̄M = λM/λC and Λ̄L = ΛL
k /λ

C which is the normalized parameter for limit
orders, where the limit order rate gets divided by the cancellation rate, are going to be
used. Multiplying the n−th line by zn of the previous system of equations and summing
over all n results in the differential equation

∂

∂z
ΦVa(k)(z) +

�
λ̄M

z
− Λ̄L

kφGk(z)

�
ΦVa(k)(z) =

λ̄M

z
πVa(k)(0)

with φGk = (1− ΦGk(z))/(1− z). Solving this equation for ΦVa(k) leads to the following

ΦVa(k)(z) = z−λ̄M
λ̄MπVa(k)(0)e

Λ̄L
k

� z
0 φ

Gk (u)du

� z

0
vλ̄

M−1e−Λ̄L
k

� v
0 φ

Gk (u)dudv.

Using the property of moment generating functions that ΦVa(k)(1) = 1 results in

πVa(k)(0) =

�
λ̄M

� 1

0
vλ̄

M−1eΛ̄
L
k

� 1
v φ

Gk (u)dudv

�−1

.

Substituting this into the general solution formula yields

ΦVa(k)(z) = z−λ̄M

� z
0 vλ̄

M−1eΛ̄
L
k

� z
0 φ

Gk (u)dudv� 1
0 vλ̄M−1eΛ̄

L
k

� 1
v φ

Gk (u)dudv
.

If this result in combination with the differential equation from above is considered and
taking the limit when z tends increasingly to 1, the upcoming proposition is obtained.
But before that can be stated some basic properties of moment generating functions are
additionally required namely:

lim
z→1
t<1

ΦVa(k)(z) = 1

lim
z→1
t<1

∂

∂z
ΦVa(k)(z) = IE[Va(k)]

lim
z→1
t<1

φGk(z) = Ḡk.

Thus the following proposition can be derived.
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Proposition 4.3.1. In the discrete limit order book model were orders are only submitted
at one side with Poisson arrival rate λM for market orders with unit size, Poisson arrival
of limit order with rate λL

k and random size which is distributed according to (gkn)n∈N, the
life span of limit orders which are not executed is exponential distributed with parameter
λC , the average cumulative shape of the order book up to price k is then given by:

IE[Va(k)] = Λ̄L
k Ḡ

k − λ̄M +

�� 1

0
vλ̄

M−1e
Λ̄L
k

� 1
v φ

Gk (u)du

dv

�−1

.

Let now assume that the size of limit orders are geometrically distributed with parameter
q ∈ (0, 1) and furthermore independent of the price. The price can be any k ∈ N and the
distribution function is given by gkn = (1 − q)n−1q. The moment generating function is
received using the volume distribution for geometrically distributed variables. In further
consequence the moment generating function is given by φGk(z) = 1/(1− (1− q)z). Thus
the average cumulative shape of the order book is described by

IE[Va(k)] =
Λ̄L
k

q
− λ̄M +

λ̄Mq
Λ̄L
k

1−q

2F1(λ̄M ,
−Λ̄L

k
1−q , 1 + λ̄M , 1− q)

where 2F1 is the hyper-geometric function

2F1(a, b, c, z) =
∞�
k=0

Γ(a+ k)Γ(b+ k)Γ(c)zk

Γ(a)Γ(b)Γ(c+ k)k!
.

The price in the limit order book model is still continuous and the limit orders are submitted
following a spatial Poisson process with intensity λL(p, t) = αhλL(p). For hλL it is assumed
that it is a real non-negative function with positive support and it describes the spatial
intensity of arrival rates. Therefore the amount of limit orders submitted in the limit order
book in a price range [p1, p2] is a homogeneous Poisson process with rate

� p”
p1

αhλL(u)du.
If the definitions introduced in this special case are used the cumulative shape of the
continuous order book at a price p ∈ [0,∞) is given by

Va(p) =
1

q
Λ̄L(p)− λ̄M +

λ̄Mq
Λ̄L(p)
1−q

2F1(λ̄M ,
−Λ̄L

k
1−q , 1 + λ̄M , 1− q)

.

Taking the derivative with respect to p of the cumulative shape results in the average
shape of the order book va(p). The result of this derivation is contained in the subsequent
proposition.

Proposition 4.3.2. In a continuous one-sided limit order book model with homogeneous
Poisson arrival market orders with intensity λM and unit order size, spatial Poisson rate
for arriving limit orders with intensity αhλL(p) at price p, geometric distribution of the
limit order sizes with parameter q and life span of limit orders which are not executed is
exponential distributed with parameter λC , the average shape of the limit order book v is
then computed for p ∈ [0,∞) by:

va(p) =
λ̄L(p)

q
+

∂

∂p

�
λ̄Mq

Λ̄L(p)
1−q

2F1(λ̄M ,
−Λ̄L

k
1−q , 1 + λ̄M , 1− q)

�

38



5 Hawkes Processes Models

5.1 Limit Order Book Driven by Hawkes Processes

5.1.1 Introduction

Hawkes processes are widely used nowadays in all different areas of finance [2, 9]. The
advantage of Hawkes processes is that they allow for a great flexibility and versatility in
models for processes that mutually excite each other. Hawkes processes were first intro-
duced in the pioneering work of Hawkes and belong to the class of point processes [7, 8].
The first model which will be introduced using Hawkes processes is mainly from the book
”Limit Order Book” [1, section 8].

5.1.2 Hawkes Processes and Model Set Up

For this limit order book model multivariate Markovian Hawkes processes are required.
Therefore some definitions and results will be introduced at the beginning. Thus let N =
(N1, . . . , ND) be a D-dimensional point process with intensity vector λ = (λ1, . . . , λD).

Definition 5.1.1. The D-dimensional point process N = (N1, . . . , ND) is called a multi-
variate Hawkes process with exponential kernel if there exists (λi

0)1≤i≤D ∈ (R+)
D, (αij)1,≤i,j≤D ∈

(R+)
D2

and (βij)1≤i,j≤D ∈ (R+)
D2

such that the intensities of the process satisfy the fol-
lowing set of relations:

λM (t) = λM
0 +

D�
j=1

αmj

� t

0
e−βmj(t−s)dN j(s)

for 1 ≤ m ≤ D.

This particular kernels are chosen in order to satisfy the requirements for the following
proposition.

Proposition 5.1.1. If the process µij is defined as

µij(t) = αij

� t

0
e−βij(t−s)dN j(s)

for 1 ≤ i, j ≤ D and µµµ = {µij}1≤i,j≤D. It follows that the process (N,µµµ) is Markovian.

Stability for multivariate Hawkes processes in the form they were just introduced is in
general given [13]. Furthermore it can be shown that a Lyapunov function exists for such
processes. Due to the existence of a Lyapunov function exponential convergence against
the stationary distribution can be concluded.
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Proposition 5.1.2. Let the matrix A be defined as

Aij =
αij

βij

for 1 ≤ i, j ≤ D. Further let A be a positive matrix and that is spectral radius ρ(A) fulfills
the condition

ρ(A) < 1

Then, there exits a (unique) multivariate point process N = (N1, . . . , ND) whose intensity
is given by

λM (t) = λM
0 +

D�
j=1

αmj

� t

0
e−βmj(t−s)dN j(s)

In addition this process is stable and converges exponential in total variation norm against
its unique stationary distribution.

Three different type of events can occur and influence the limit order book. First new
limit orders can arrive, those are described by mutually exciting Hawkes processes. The
second event that can appear are new arrivals of market orders, again described by mutually
exciting Hawkes processes. The last event which can influence the limit order book are
cancellations of limit orders already standing in the limit order book. The time those limit
orders are standing in the order book is modeled by a Poisson process. Summarized and
with mathematical notation processes are given by:

• Ma/b(t): Hawkes processes of market orders which either can be a buy or sell order

with constant intensities λMa and λMb

• Li
a/b(t): Hawkes processes of limit orders at level i, with constant intensities λLa

i and

λLb
i

• Ci
a/b(t): Counting process for cancellations of limit orders at level i, with intensities

λCa
i ai and λCb

i |bi|.
Where the ”a” stands for events happening on the ask side and ”b” for the events affecting
the bid side.
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5.1.3 Infinitesimal Generator And Stability

The intensities of market and limit orders arrivals are described by a Markovian (2N +2)-
dimensional Hawkes process. The limit order book as a whole is represented by the D-
dimensional process (va;vb;µµµ). In this process the available quantities standing in the
order book and the intensities of the Hawkes process are included. The dimension of the
state space is given by D and equals D = (2N +2)2+2N . The evolution of the limit order
book is characterized by the infinitesimal generator and has the subsequent form

L f(va;vb;µµµ) = λMa
�
F ([ai − (q − Va(i− 1))+]+; J

Ma(va,vb);µµµ+ΔMa(µµµ))− F
�

+

N�
i=1

λLa
i

�
F (Vai + q; JLi

a(vb);µµµ+ΔLi
a(µµµ))− F

�
+

N�
i=1

λCa
i vai

�
F (vai − q; JCi

a(va,vb);µµµ)− F
�

+ λMb
�
F (JMb(va,vb); [vbi + (q − Vb(i− 1))+]−;µµµ+ΔMb(µµµ))− F

�
+

N�
i=1

λLb
i

�
F (JL−

i (va); vbi − q;µµµ+ΔLi
b(µµµ))− F

�
+

N�
i=1

λCb
i |vbi |

�
F (JCi

b(va,vb); vbi + q;µµµ)− F
�

=

N�
i,j=1

βijµ
ij ∂F

∂µij
.

The bid side volume is modeled by negative numbers therefore the absolute value is nec-
essary. The J ’s are the shift operators introduced in the zero-intelligence model. For
convenience F (vai ;vb;µµµ) is written instead of F (va1 , . . . , vai ; . . . , van ;vb;µµµ). By the same
reasoning the process and the corresponding state variable in the state space have the same
symbol. The newly introduced Δ(... )(µµµ) describes the jump of the intensity vector µµµ when-
ever the process N (... ) jumps.
The infinitesimal operator L is a combination of standard difference operators and drift
terms. The standard difference operators come from the arrival or cancellation of orders at
every level and the shift operators J which are indicating the movements at the best limits.
In contrary the drift term comes from the mean-reverting behavior property of intensities
for Hawkes processes between jumps.
In the following part of this chapter the stability and long-term behavior of the order
book will be discussed. To investigate the long-term behavior a Lyapunov function is con-
structed. Under the assumption that the spectral radius of the matrix A is smaller than
one in combination with the existence of the Lyapunov function can be concluded that the
limit order book is ergodic. The following proposition will describe this more in detail.

Proposition 5.1.3. Under the assumptions regarding the Hawkes processes of arriving
limit orders, market orders and the process for cancellations of limit orders and the as-
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sumption that the spectral radius for A is smaller than one the limit order book process S
is ergodic. Moreover it converges exponential towards its unique stationary distribution Π.

The for this result required Lyapunov function is generated by the following Lemma.

Lemma 5.1.1. For η > 0 small enough, the function V defined by

V (va;vb;µµµ) =
N�
i=1

vai +
N�
i=1

|vbi |+
1

η

(2N+2)�
i,j=1

δijµ
ij

≡ V1 +
1

η
V2

where V1 is a function just depending on (va;vb) and V2 corresponds to µµµ, is a Lyapunov
function which satisfies the geometric drift condition

L V ≤ −ζV + C

for some ζ > 0 and C ∈ R. The coefficients δij are defined by the Perron-Frobenius theorem
and it holds that: ∀i, !i > 0

δij = !i
µij

βij
.

5.1.4 Large Scale Limit of the Price Process

The long-term behavior of the price process is for researchers and market participants from
great interest. Because based on that, you can infer the volatility in the market. However,
to study the long-term behavior of the price process also the stochastic behavior of the
intensities of the point processes which set off the order book events is included. The
equation for the price dynamics is given by

Pt =

� t

0

�
i

Fi(S(u))dN
i(u)

where S = (va,vb,µµµ) is the Hawkes process which also describes the state of the order
book. The N i, with have state-dependent intensities yi(S), are the Poisson and Hawkes
processes describing the events which in turn determine the evolution of the order book.
The Fi are bounded function due to the limitation of price changes. Since prices can only
change by the amount of limits in the order book, as the non-zero boundary conditions
va∞ , vb∞ holds.
The following theorem summarizes the main findings in this model driven by Hawkes pro-
cesses about the price dynamics. It describes the convergence speed and the deterministic
centered price.
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Theorem 5.1.2. Let the price process be defined as

P (t) =
�
i

� t

0
Fi(S(s))dN

i(s)

and the corresponding predictable compensator of the price process is given by

Q(t) =

� t

0

�
i

yi(S(s))Fi(S(s))ds.

Furthermore let h be the sum

h =
�
i

yiFi(S)

and α is determined by the following equation

α =
a.s.
lim

t→+∞
1

t

� t

0

�
i

yi(S(s))Fi(S(s)ds

=

�
h(S)Π(d(S).

The solution to the Poisson equation is given by g and it solves

L g = h− α.

The associate resulting martingale is given by

Zt = g(S(t))− g(S(0))−
� t

0
L g(S(s))ds

≡ g(S(t))− g(S(0))−Q(t)− αt.

Through that the deterministic centered, re-scaled price

P̄n(t) ≡ P (nt)− αnt√
n

converges in distribution to a Brownian motion σ̄B. The asymptotic volatility σ̄ fulfills the
identity condition

σ̄2 = lim
t→+∞

1

t

� t

0

�
i

yi(S(s))(Fi −Δi(g)(S(s))2ds

≡
� �

i

yi(S)(Fi −Δi(g)(S))2λΠ(d(S)

Proof. See [1, section 8].
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5.2 Hawkes Random Measures Model

5.2.1 Introduction

This model is based on Hawkes processes and follows a paper published by Horst and
Xu [12]. To be more precise the model uses Hawkes random measures to describe the
order book. Hawkes random measures are an extension of the Hawkes processes previously
presented and can be seen as infinite-dimensional Hawkes process. For the dynamics of
incoming order flows they are not just depending on the present market price but also
on the volume index. With this mathematical framework the incoming order arrival can
depend not only on the past order placements but also on cancellations.

5.2.2 Hawkes Random Measures and Model Set Up

In order to introduce Hawkes random measures a complete probability space (Ω,F ,P)
equipped with a filtration {Ft}t≥0 is required. The filtration has the common properties
as such it is right-continuous. Further let (U,U) be a measurable space endowed with a
measure m(du). In addition let pt be an (Ft)-point process on U . Furthermore let N(dt, du)
be a point measure on [0,∞)× U defined as

N(I, A) = #{s ∈ I : ps ∈ A}, I ∈ B(R+), A ∈ U

where pt is an (Ft)-point process on U and B is the Borel σ-algebra. For further under-
standing and because it is necessary for some definitions it should be explained what is
meant if a real-valued two-parameters process is (F)-progressive. Therefore let

{h(t, x) : t ≥ 0, x ∈ U}

be a real-valued two-parameter process and this process is considered to be (F)-progressive
if for every t ≥ 0 the mapping (w, s, x) → h(w, s, x) limited to Ω× [0, t]× U is measurable
relative to Ft ×B([0, t])×U . Before Hawkes random measures can be introduced, Poisson
random measures are going to be presented. The following definition is about the intensity
processes of those.

Definition 5.2.1. A non-negative (Ft)-progressive process λ(t, u) is called intensity process
of N(dt, du) with respect to the measure m(du) if for any non-negative (Ft)-predictable
process H(t, u) on U ,

IE


 � t

0

�
U
H(s, u)N(ds, du)

�
= IE


 � t

0
ds

�
U
H(s, u)λ(s, u)m(du)

�
.

With all the required definitions known it is possible to define Poisson random measures.
Hence let λ(t, u) be a non-negative (Ft)-progressive process defined on U . For this type
of processes it is achievable to construct a point measure N(dt, du) on [0,∞) × U with
intensity process λ(t, u) such that:

N([0, t], A) =

� t

0

�
A

� ∞

0
1{z≤λ(s,u)}N0(ds, du, dz) t ≥ 0, A ∈ U ,
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with N0(ds, du, dz) is a Poisson random measure on [0,∞) × U × [0,∞) with intensity
dsm(du)dz.
The upcoming definition forms the theoretical basis of this model.

Definition 5.2.2. A random measure N(dt, du) on [0,∞) × U is called Hawkes random
measure if its intensity process λ(t, u) can be written as

λ(t, u) = µ(t, u) +

� t

0

�
U
φ(s, u, v, t− s)N(ds, dv)

with µ(t, u) : [0,∞) × U → [0,∞) and φ(t, u, v, r) : [0,∞) × U2 × [0,∞) → [0,∞) being
(Ft)-progressive.

The newly introduced processes of the definition of Hawkes random measures namely
µ(t, u) and φ(t, u, v, r) designates the exogenous intensity respectively kernel of the Hawkes
random measure N(dt, du).
To ensure the existence of such Hawkes random measures the following Lemma is necessary.
This is of importance to model the limit order book otherwise it could not be stated that
the processes driving the limit order book are well defined.

Lemma 5.2.1. Let (U,U) be a measurable space then for any non-negative (Ft)-progressive
processes µ(t, u) and φ(t, u, v, r) satisfying�

U
µ(t, u)m(du) + sup

u∈U

�
U
φ(t, u, v, s)m(du) ≤ C0

with C0 > 0 for any t ∈ [0, T ] there exists a Hawkes random measure with intensity process

λ(t, u) = µ(t, u) +

� t

0

�
U
φ(s, u, v, t− s)N(ds, dv).

Through this Lemma it is possible to model a limit order book with those measures. To
be able to apply the Lemma further assumptions regarding the processes are needed. Since
the requirements of the Lemma needs to be fulfilled by the processes modeling the events.
All random processes in this chapter are defined on a filtered probability space (Ω,F, {Ft}t∈[0,T ],P).
The dynamics of the n−th order book model will be denoted by a continuous-time stochas-
tic process (S(n)(t))0≤t≤T at any given time horizon T > 0. The stochastic process takes
values in the Hilbert space

S := R2 × (L2(R;R+))
2, �S�2S2 := |pa|2 + |pb|2 + �va�2L2 + �vb�2L2 l.

The state of the limit order book at time t ∈ [0, T ] is described by

S(n)(t) :=
�
P (n)
a (t), P

(n)
b (t), V (n)

a (t), V
(n)
b (t)

�
.

The best ask price is defined by the R-valued process P
(n)
a (t) and therefore the best bid

price is the R-valued process P
(n)
b (t). The V

(n)
a (t) denotes the volume density function at

the ask side and V
(n)
b (t) respectively on the bid side. The volume function is taking values
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in the Hilbert space L2. The tick size in this continuous model is defined by δ
(n)
x . Prices

can become any value in {x(n)j , j ∈ Z}, with x
(n)
j := jδ

(n)
x for j ∈ Z and n ∈ N. The price

interval which includes x ∈ R for all n ∈ N is defined by

Δ(n)(x) := [x
(n)
j ,(n) xj+1) for x

(n)
j ≤ x ≤ x

(n)
j+1.

For any t ∈ [0, T ] the volume density function for the ask side V
(n)
a (t, ·) is a càdlàg step

function on the price grid, the same is true for the volume density function of the bid side

V
(n)
b (t, ·). To get the available volume for trading at price x

(n)
j at time t ∈ [0, T ] the volume

density function V
(n)
a/b has to be integrated over [x

(n)
j , x

(n)
j+1). The state of the book at time

t = 0 is deterministic for all n ∈ N and denoted by S(n)(0). There are eight different event
types in this model which are able to change the state of the state of the limit order book:

• Ma: buy market orders

• Mb: sell market orders

• La: sell limit orders

• Lb: buy limit orders

• L∗
a: sell limit orders inside the spread

• L∗
b : buy limit orders inside the spread

• Ca: cancellations of sell limit orders

• Cb: cancellations of buy limit orders

Two minor assumptions are made regarding the market orders and about the limit orders
placed inside the spread. The assumption about market orders is that these orders are not
larger than the volume available at the top of the order book. This means that market
orders do not lead to a price change. That assumption is just for mathematical convenience.
Should however a market order arriving which is consuming liquidity it will be split up into
smaller orders and be treated like small market orders. For limit orders placed inside the
spread it is assumed that those orders change the price just by one tick.
To keep the model clearly arranged three sets will be defined. First a set which describes
on which side of the order book an event takes place I = {a, b}, where a stands for the ask
side and b for the bid side. Then a set which helps to distinguish between market orders
(”M”) and limit orders placed inside the spread (”L”), J = {M,L}. And the last set is
K = {L,C} which is for limit orders placed outside the spread (”L”) and cancellations
(”C”). So if in the model appear subscripts as I, i, J, j and K, k it is assumed that I, i ∈ I,
J, j ∈ J and K, k ∈ K. The processes driving the events affecting the order book are
now presented for this model. Market orders on the sell side arrive according to an (Ft)-

random point measureN
(n)
aM (dt) which takes values in R+ with intensity ρ

(n)
aM (S(n)(t))µ

(n)
aMdt.

The bid side follows the same random point measure assumptions but the subscript a is
replaced by b and the same is true for the intensity where also the subscript is changed.
The limit order which are placed inside the spread are submitted according to an (Ft)-

random point measure N
(n)
aL (dt) and takes values in R+. The intensity for that measure

is denoted by ρ
(n)
aL (S(t))µ

(n)
aL . Again this is for the ask side to describe the bid side the

subscript a is replaced by b. The timestamp for arriving orders is described by t ∈ [0, T ].
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The deterministic non-negative functions {ρ(n)IJ (S)}I∈I,J∈J are chosen in such a way that
they guarantee that bid and ask prices never cross and are defined on S. Whereby the

non-negative (Ft)-progressive processes {µ(n)
IJ (t)}I∈I,J∈J describe the dependence of price

dynamics due to price changes in the past. For limit orders submitted outside the spread
and cancellations of such it is assumed that those do not change prices. Furthermore
in this model it is assumed that cancellations appear at random distances to the best
price of the same side. Also the volume of the cancellations is random and can take
different amounts of standing limit orders. For the limit orders outside the spread it
is assumed that they also occur at random distance to the best price of the same side
and with random volume. In mathematical detail they are modeled by an (Ft)-random

point measure M
(n)
a/bL(dt, dx, dz) which takes values in R+ × R × R+. The z describes the

order size and x denotes the difference between the best price and the price at which it

is submitted. The intensity of the measure is λ
(n)
a/bL(t, x)dtdxva/bL(dz). Cancellations of

limit orders arrive x ticks away from the best quote on the same side of the book according

to an (Ft)-random point measure M
(n)
a/bC(dt, dx, dz) on R+ × R × R+. The intensity of

the measure for cancellations is given by λ
(n)
a/bC(t, x)dtdxva/bC(dz) and a is the subscript

for the ask side and b describes the bid side. The triple (t, x, z) stands for the time at
which the event arrives, the number of ticks the limit order or cancellation is away from

the best price at the same side and the size of an event. The processes {λ(n)
IK(t, ·)}I∈I,J∈J

are mathematically speaking (Ft)-progressive non-negative functions. Those describe the
intensities of submitted limit orders and cancellations at different prices as a function
depending on past orders and cancellations. The (Ft)-progressive non-negative functions
{vIK(dz)}I∈I,K∈J are probability measures taking values in R+. For these measures it is
assumed that the fulfill vIK(|ez−1|4) < ∞ for each n ∈ N. It is deterministic and it denotes

the size of arriving events. In order to make M
(n)
a/bL(dt, dx, dz) a Hawkes random measure

vIK(dz) has to be a Dirac measure. An overview over the different processes influencing
the order book provides the table below.

Type Ma L∗
a Mb L∗

b

Notation N
(n)
aM (dt) N

(n)
aL (dt) N

(n)
bM (dt) N

(n)
bL (dt)

Space R+ R+ R+ R+

Intensity ρ
(n)
aM (S)µ

(n)
aM (t) ρ

(n)
aL (S)µ

(n)
aL (t) ρ

(n)
bM (S)µ

(n)
bM (t) ρ

(n)
bL (S)µ

(n)
bL (t)

The processes which are not influencing the order book are summarized in that table.

Type La Ca Lb Cb

Notation M
(n)
aL (dt, dx, dz) M

(n)
aC (dt, dx, dz) M

(n)
bL (dt, dx, dz) M

(n)
bC (dt, dx, dz)

Space R+ × R× R+ R+ × R× R− R+ × R× R+ R+ × R× R−
Intensity λ

(n)
aL (t, x)dtdxvaL(dz) λ

(n)
aC (t, x)dtdxvaC(dz) λ

(n)
bL (t, x)dtdxvbL(dz) λ

(n)
bC (t, x)dtdxvbC(dz)

Subsequently, the results are used to derive the dynamics of the order book and this happens
in the upcoming chapter.
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5.2.3 Limit Order Book Dynamics and Scaling Limit

Keeping in mind that the prices can only change by one tick in this model the dynamics
for the price are obtained by

Pa(t) = Pa(0) +

� t

0
δ(n)x N

(n)
aM (ds)−

� t

0
δ(n)x N

(n)
aL (ds),

Pb(t) = Pb(0) +

� t

0
δ(n)x N

(n)
bM (ds)−

� t

0
δ(n)x N

(n)
bL (ds).

That definition of price dynamics allows the spread to become negative. This means that
the best ask price is smaller than the best bid price. Since this is not going to happen in
reality the next condition assures that this also not gonna happen in this setting.

Assumption 5.2.1. Let S = (pa, pb, va, vb) be any element in S with pa − pb < δ
(n)
x then

it holds that

ρ
(n)
aL (S) = ρ

(n)
bL (S) = 0.

For the purpose of describing the size of an order or cancellation in the n-th model δ
(n)
v

is used. To obtain the dynamics of the volume density function one should consider an
assumption made in advance. That is limit orders are submitted at a random price from
which follows that the distance to the best quote of the same side is also random. For this
reason and the fact that limit order placements are additive and cancellations are not but
proportional to the volume standing in the order book the volume density functions are
given by

V (n)
a (t, x) = V (n)

a (0, x) +

� t

0

�
Δ(n)(x−P

(n)
a (s−))

�
R+

δ
(n)
v

δ
(n)
x

(ez − 1)M
(n)
aL (ds, dy, dz)

+

� t

0

�
Δ(n)(x−P

(n)
a (s−))

�
R+

δ
(n)
v

δ
(n)
x

V (n)
a (s−, y + P (n)(s−))(e−z − 1)M

(n)
aC (ds, dy, dz),

V
(n)
b (t, x) = V

(n)
b (0, x) +

� t

0

�
Δ(n)(P

(n)
b (s−)−x)

�
R+

δ
(n)
v

δ
(n)
x

(ez − 1)M
(n)
bL (ds, dy, dz)

+

� t

0

�
Δ(n)(P

(n)
b (s−)−x)

�
R+

δ
(n)
v

δ
(n)
x

V
(n)
b (s−, P

(n)
b (s−)− y)(e−z − 1)M

(n)
bC (ds, dy, dz).

Orders which influence the state of the limit order book arrive with a rate of |δ(n)n |−2. The

events that do not have an impact on the limit order book arrive at rate |δ(n)v |−1. The
assumptions of arrival rates are important in order to get a diffusive limiting dynamics for
the price process and to receive a deterministic limiting dynamics for the volume density
functions. To use the main advantage of Hawkes random measures clustering and cross-
dependencies between orders have to be explained. For order arrivals it is allowed that
the intensities depend not only on past price movements but also on past limit order
placements and cancellations. This means that the model takes into account that limit
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orders are influenced by past events. That past events are influencing the order book is
for example in [4]. Mathematically this dependence on past events is considered by the
following arrival intensities

µ
(n)
IJ (t) =

1

|δ(n)x |2
µ̂
(n)
IJ (t,S(n)(t−)) +

�
i∈I,j∈J

� t

0
φ
(n)
IJ,ij(t− s)N

(n)
ij (ds)

�
i∈I,k∈K

� t

0

�
R

�
R

|δ(n)x |2
δ
(n)
v

Φ
(n)
IJ,ik(y, t− s)M

(n)
ik (ds, dy, dz)

and

λ
(n)
IK(t, x) =

1

δ
(n)
v

λ̂IK(t,S(n)(t−), x) +
�

i∈I,j∈J

� t

0

|δ(n)x |2
δ
(n)
v

ψIK,ij(x, t− s)N
(n)
ij (ds)

+
�

i∈I,k∈K

� t

0

�
R

�
R
ΨIK,ik(x, y, t− s)M

(n)
ik (ds, dy, dz).

For further understanding some terms will be presented. First the exogenous densities µ̂
(n)
IK

and λ̂IK are going to be explained. Those densities depend just on the current state of the
limit order book. Therefore these intensities take into account at what price level the order

book is at the moment for the next submitted orders. The kernels φ
(n)
IJ,ij and Φ

(n)
IJ,,ik describe

the influence of past events that have occurred on the price dynamics. Whereas the kernels

ψ
(n)
IK,ij and Ψ

(n)
IK,ik define the effect of former events which did not influence the state of the

book on placements and cancellations. The subscripts of the functions can be explained

using φ
(n)
bM,aL. Sticking with this example, it measures the influence of an ask limit order

placed within the spread at time s on the intensity of a sell market order submitted at
time t. The functions ψbL,bL(x, t − s) and ψbC,bL(x, t − s) describe the quantities. In this
case it determine the impact of a bid side limit order x ticks away from the best bid quote
at time s on the intensity of a bid side limit submitted order respectively cancellation at
the same distance x from the at time t current price. The last function which needs to be
explained is ΨbC,bL(x, y, t − s) and this function provides information about the quantity.
It measures the influence of an bid side limit order submission in the price interval δ(n)(y)
which contains y at time s at the event of a cancellation of a bid order at price level δ(n)(y)
at time t.
In order to derive the scaling limit for the order book some conditions and assumptions need
to be made. The main assumptions concern the arrival intensities and the Hawkes kernels.
Those guarantee in further consequence the convergence in law of the limit order book
model consisting of stochastic differential equations and ordinary differential equations.
The stochastic differential specifies the limiting price dynamics. The ordinary differential
equation on the contrary describes the limiting volume dynamics. The first condition is
about the convergence and moment on the initial states.
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Assumption 5.2.2. There exists a constant C0 > 0 so that for any n > 1 and I ∈ I,

IE


 !!!S(n)(0)
!!!2
S2

�
+ IE


 !!!V (n)
I (0, ·)

!!!4
L4

�
≤ C0.

Further let S(0) be an S-valued random variable which for n → ∞ satisfies

IE


 !!!S(n)(0)− S(0)
!!!2
S2

�
→ 0.

Additionally assumptions are required regarding the order arrival intensities for market
orders and limit orders placed inside the spread. These intensities have the product form

ρ
(n)
IJ µ̂

(n)
IJ . For those assumptions are required to assure the convergence of the drift and

volatility of the price process. Considering the difference between market order and sub-
mission inside the spread arrival intensities one get the expected increments of the ask and
bid side

|δ(n)x |−1
�
ρ
(n)
IM (S)µ̂

(n)
IM (t, S)− ρ

(n)
IL (S)µ̂

(n)
IL (t, S)

�
.

This difference can be rewritten and it becomes

<
(n)
I (S)µ̂

(n)
IM (t, S) + ρ

(n)
IL (S)β̂

(n)
I (t)

with

<
(n)
I (S) := |δ(n)x |−1

�
ρ
(n)
IM (S)− ρ

(n)
IL (S)

�
,

β̂
(n)
I (t) := |δ(n)x |−1

�
µ̂
(n)
IM (t, S)− µ̂

(n)
IL (t, S)

�
.

That condition assures subsequently the convergence of the factors to a continuous limit.

Assumption 5.2.3.

• The functions (ρ
(n)
IJ , <

(n)
I ) are uniformly bounded.

• The functions {(ρ(n)IJ , <
(n)
I )}n≥0 converge uniformly to Lipschitz continuous functions

(ρIJ , <I).

Due to the condition and assumption 5.2.1, that the spread never gets negative it can be
concluded that

ρI := ρIM = ρIL.

In combination with the second condition follows that orders placed within the spread and
market orders are on average equally probable

µ̂I := µ̂IM = µ̂IL.

The following condition ensures that the limitation of intensities for the processes.

Assumption 5.2.4.
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• There exists a constant C0 so that for every p ∈ {1, 2, 4},

sup
t∈[0,T ],S∈S

�
|µ̂(n)(t, S)|+ |β̂(n)

I (t, S)|+
!!!λ̂IK(t, S, ·)

!!!
Lp

�
≤ C0

and for any ! > 0, t, t� ∈ [0, T ], S, S� ∈ S,!!!λ̂IK(t�, S�, ·+ !)− λ̂IK(t, S, ·)
!!!
Lp

≤ C0(!+ |t− t�|+ !!S − S�!!
S2)

• Let µ̂IJ(t, S) and β̂I(t, S) be Lipschitz continuous functions such that

sup
t∈[0,T ],S∈S

�
|µ̂(n)

IJ (t, S)− µ̂IJ(t, S)|+ |β̂(n)
I (t, S)− β̂I(t, S)|

�
→ 0

Scaling conditions on Hawkes kernels are still missing.The excepted price increments
contain in this model an extra term. The additional part originates from the impact of
past events on orders influencing the order book and those new parts are given by

θ
(n)
I,ij(t) := |δ(n)x |−1

�
φ(n)iIM,ij(t)− φ

(n)
IL,ij(t)

�
,

Θ
(n)
I,ik(y, t) := |δ(n)x |−1

�
Φ
(n)
IM,ik(y, t)− Φ

(n)
IL,ik(y, t)

�
.

The last condition remaining provides regularity conditions on the Hawkes kernels. Es-
pecially the kernels describing the impact of past events on limit order submissions and
cancellation arrivals. Moreover the condition ensures the convergence of Hawkes kernels
characterizing the influence of past events on prices to regular functions.

Assumption 5.2.5.

• For any ! > 0, p ∈ 1, 2, 4 there exists a constant C0 such that

sup
t∈[0,T ],y∈R

�
�ψIK,ij(·, t)�Lp + �ΨIK,ik(·, y, t)�Lp

�
< C0,

sup
t∈[0,T ],y∈R

�
�ψIK,ij(·+ !, t)− ψIK,ij(·, t)�Lp

+ �ΨIK,ik(·+ !, y, t)−ΨIK,ik(·, y, t)�Lp

�
≤ C0!

• The functions

κ(n)(y, t) :=
�
φ
(n)
IJ,ij(t),Φ

(n)
IJ,ij(y, t), θ

(n)
I,ik(t),Θ

(n)
I,ik(y, t)

�
I,i∈I,J∈J ,k∈K

are uniformly bounded and furthermore converge consistently to the following func-
tions

κ(y, t) :=
�
φIJ,ij(t),ΦIJ,ij(y, t), θI,ik(t),ΘI,ik(y, t)

�
I,i∈I,J∈J ,k∈K

which are uniformly Lipschitz continuous in the variable t that specify the time

sup
t∈[0,T ],y∈R

|κ(n)(y, t)− κ(y, t)| → 0.
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With the aid of this condition and the definitions of θ
(n)
I,ij and Θ

(n)
I,ik it can be claimed that

φI,ij := φIM,ij = φIL,ij ,

ΦI,ik := ΦIM,ik = ΦIL,,ik.

Due to this mathematical deduction it follows that the impact of market orders from the
same side and limit orders placed inside the spread are equal. In order to derive the main
result of this model some more definitions need to be introduced. Therefore let

αiL = vIL(e
z − 1), αiC(e

−z − 1)

and

φ̄Ii = φI,iM + φI,iL, ψ̄IK,i = ψIK,iM + ψIK,iL, θ̄Ii = θI,iM + θI,iL.

The effect of events which drive the price on themselves is defined by φ̄Ii. Whereas the
influence of those on events that do not change the price is measured by ψ̄IK,i. The impact
of price determining events on the price dynamics is expressed by θ̄Ii. In order to better
present the main result the following functions are used

β
(n)
I (t) := δ(n)x (µ

(n)
IM (t)− µ

(n)
IL (t)),

D(n)(t, S) :=

�
|δ(n)x |2µ(n)

ij (t, S), δ(n)v λ
(n)
ik (t, S, ·)

�
i∈I,j∈J ,k∈K

.

Whereby the latter needs some more explanation. It concerns the vector D(n)(t, S) which
exists in the space D := R4× (L1(R;R+)∩L2(R;R+))

4 for every n ∈ N. Furthermore with
the norm �·�D2

1,2
:= �·�D2

1
+ �·�D2

2
, where �·�Dp

q
is defined for any p, q ∈ Z+ and for every

D := (D1, . . . , DS) ∈ D by

�D�pDp
q
=

4�
k=1

|Dk|p +
8�

k=5

�Dk�pLq

the space D becomes a Banach space. Now it is possible to state the main result regarding
the convergence of the limit order book.

Theorem 5.2.2. Assuming that the conditions 5.2.2-5.2.5 hold then it can be stated that�
S(n),D(n), β(n)

a , β
(n)
b

�
⇒ (S,D, βa, βb)

weakly in D(R+,S × D × R2), with S = (Pa, Pb, Va, Vb) and D = (µijλik)i∈I,j∈J ,k∈K with
µi := µiM = µIL for i ∈ I. Additionally the limit solves the following stochastic dynamic
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system

Pa(t) = Pa(0) +

� t

0



ρa(S(s))βa(s) + <a(S(s))µa

�
ds+

� t

0

�
2ρa(S(s))µa(s)dBa(s),

Pb(t) = Pb(0)−
� t

0



ρb(S(s))βb(s) + <b(S(s))µb

�
ds+

� t

0

�
2ρb(S(s))µb(s)dBb(s),

Va(t, x) = Va(0, x) +

� t

0



αaLλaL(s, x− Pa(s)) + αaCλaC(s, x− Pa(s))Va(s, x)

�
ds,

Vb(t, x) = Vb(0, x) +

� t

0



αbLλbL(s, Pb(s)− x) + αbCλbC(s, Pb(s)− x)Vb(s, x)

�
ds,

where (Ba, Bb) is a standard two-dimensional Brownian motion as explained in the theo-
retical part of this thesis, and

µI(t) = µ̂I(t,S(t)) +
�
i∈I

� t

0
φ̄Ii(t− s)ρi(S(s))µi(s)ds

+
�

i∈I,k∈K

� t

0

�
R
ΦI,ik(y, t− s)λik(s, y)dsdy,

λIK(t, x) = λ̂IK(t,S(t), x) +
�
i∈I

� t

0
ψ̄IK,i(x, t− s)ρi(S(s))µi(s)ds

�
i∈I,k∈K

� t

0

�
R
ΨIK,ik(x, y, t− s)λik(s, y)dsday,

βI(t) = β̂(t,S(t)) +
�
i∈I

� t

0
θ̄Ii(t− s)ρi(S(s))µi(s)ds

�
i∈I,k∈K

� t

0

�
R
ΘI,ik(y, t− s)λik(s, y)dsdy.

Proof. See [12].
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[13] L. Massoulié. Stability results for a general class of interacting point processes dynam-
ics, and applications. Stochastic Processes and their Applications, 75:1–30, 1998.

[14] B. Øksendal. Stochastic Differential Equations. Springer-Verlag, Berlin, Heidelberg, 3
edition, 1992.

54


	Introduction
	Mathematical Background
	Limit Order Book

	Empirical Illustrations
	Markovian Limit Order Book Models
	Zero-Intelligence Model
	Introduction
	Order Book Dynamics
	Evolution Of The Order Book
	Illustration of the Zero-Intelligence Model
	Infinitesimal Generator and Price dynamics
	Ergodicity And Diffusive Limit

	Weak Law Of Large Numbers For A Limit Order Book
	Introduction
	Setup

	Second Order Approximations For Limit Order Books
	Introduction
	Setup
	First Order Approximation
	Second Order Approximation


	Queueing System Models
	Introduction
	Link Between the Flows of Orders and the Shape of an Order Book
	One-sided Queueing System
	Continuous Extension of The Basic Model

	Varying Size Of Limit Orders

	Hawkes Processes Models
	Limit Order Book Driven by Hawkes Processes
	Introduction
	Hawkes Processes and Model Set Up
	Infinitesimal Generator And Stability
	Large Scale Limit of the Price Process

	Hawkes Random Measures Model
	Introduction
	Hawkes Random Measures and Model Set Up
	Limit Order Book Dynamics and Scaling Limit


	Bibliography

