
Entwicklung eines Data Citation
Frameworks für RDF* Stores

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

066 926 Wirtschaftsinformatik

eingereicht von

Filip Kovacevic, BSc
Matrikelnummer 01227213

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Mitwirkung: Projektass. Dr.techn. Mag. Tomasz Miksa

Wien, 31. August 2021
Filip Kovacevic Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Designing a Data Citation
Framework for RDF* stores

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

066 926 Business Informatics

by

Filip Kovacevic, BSc
Registration Number 01227213

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Assistance: Projektass. Dr.techn. Mag. Tomasz Miksa

Vienna, 31st August, 2021
Filip Kovacevic Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der Arbeit

Filip Kovacevic, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Wien, 31. August 2021
Filip Kovacevic

v

Acknowledgements

To my family: thank you for providing me with your love and support during my studies and
thank your for believing in me.

To my friend Alek: Thank your for all your helpful tips and suggestions for my master thesis
and for your overwhelming encouragement when I was about to give up.

To Tomasz: Thank you for offering me such an interesting topic and for all your good deeds
including the arrangement of workspace and notebook, helping me to structure my thoughts,
your tips, suggestions and guidance during my thesis even outside of office hours.

Last but not least to Andreas Rauber: Thank you for pushing me to finish my thesis and giving
me a lifetime opportunity to continue my studies as a PHD student.

vii

Kurzfassung

Um zitierbare Daten und reproduzierbare Ergebnisse zu ermöglichen hat die RDA Data Ci-
tation Working Group 14 Empfehlungen veröffentlicht. Diese Empfehlungen wurden von
Datenzentren für verschiedene Backend-Technologien übernommen. Bisher befinden sich
RDF*-Stores bzw. Triple-Stores nicht unter diesen Backend-Technologien. In dieser Masterar-
beit behandeln wir die Empfehlungen im Bezug auf RDF*- und Triple-Stores, designen ein
RDF* Data Citation Framework, implementieren einen Prototypen des vorgestellten Frame-
works und evaluieren ihn. Um Versionierung & Timestamping auf Triple-Ebene, mit dem
Ziel die Anzahl der zusätzlich notwendigen Triples gering zu halten, zu implementieren,
verwenden wir RDF* und SPARQL*. Mit Funktionstests zeigen wir, dass unser Prototyp den
Empfehlungen genügt. Zusätzlich stellen wir Tests und Ergebnisse zur Laufzeit-Performance
und zum Speicherverbrauch zu Abfragen von Live- und historischen Daten zur Verfügung,
welche auf zwei versionierte RDF*-Datenbasen (FHIR und DBPedia) ausgeführt werden. Als
RDF*-Store und Ablage für die zwei Datenbasen verwenden wir GraphDB. Die Ergebnisse
deuten darauf hin, dass RDF* and SPARQL* für Versionierung & Timestamping verwendet
werden können und dass Datenbasen, die über die Zeit unterschiedlich angereichert wurden
(Insert vs Update) sich auch unterschiedlich auf die Performance der Abfragen auswirken.
Zu weiteren Einflüssen zählen die Implementierung der Filter und Joins in der Abfrage (engl.
Timestamped Query) und die Größe der Daten- und Ergebnismenge.
Um die “Query Uniqueness”-Empfehlung zu implementieren, welche darauf abzielt seman-
tisch identische Abfragen mittels Normalisierung der Abfrage zu entdecken, zeigen wir, die
SPARQL-Query-Algebra vom W3C im Normalisierungsprozess eingesetzt werden kann. Wir
behandeln und erwägen “Query Containment Solver” vom Stand der Kunst als Alternative, um
semantisch identische Abfragen zu erkennen. Wir evaluieren zwei Query Containment Solver,
JSAC und SpeCS, und vergleichen diese mit unserer SPARQL-Query-Algebra-basierten Imple-
mentierung. Die Ergebnisse deuten darauf hin, dass unsere Implementierung die höchste
Abdeckung für SPARQL Abfragen der Version 1.1 hat und dass JSAC ein potenzieller Kandidat
für die Implementierung von “Query Uniqueness” ist, sollte dieser “SPARQL 1.1”-konform
werden.

Unsere Implementierung ist auf Github verfügbar:
https://github.com/GreenfishK/DataCitation

ix

https://github.com/GreenfishK/DataCitation

Abstract

To facilitate citable data and reproducible results The RDA Data Citation Working Group
published 14 recommendations. These recommendations were adopted by data centers for
different back-end technologies. So far, RDF* stores or triple stores are not among these
back-end technologies. In this thesis we discuss the recommendations for RDF* and triple
stores, design an RDF* Data Citation Framework, implement a prototype of the proposed
framework and evaluate it. To implement the versioning & timestamping recommendations
on triple-level, with the aim to keep the number of additionally required triples low, we employ
RDF* and SPARQL*. With functional tests we show that our prototype is in accordance with
the recommendations. We furthermore provide runtime performance and memory demand
tests and results on querying live & historical data from two versioned datasets, namely FHIR
and a DBPedia dataset. We imported the datasets into GraphDB, which we use as RDF* store.
The results suggest that RDF* and SPARQL* can be used for versioning & timestamping and
that the perfomance differs for datasets that were enriched with insert statements from those
were update statements were used, even though the number of additionally added triples is
the same for both. The performance furthermore depends on the way filters and joins are
used in the timestamped query and on the dataset & result set size.
To implement the Query Uniqueness recommendation, which aims to detect semantically
identical queries by means of query normalization, we show how W3C’s SPARQL Query Algebra
can be used in the normalization process. We consider and discuss state-of-the-art Query
Containment Solvers as alternative approach to detecting semantically equivalent queries. We
evaluate two of them, namely JSAC and SpeCS, and compare them with our SPARQL Query
Algebra based implementation. The results suggest that our implementation has the highest
coverage for SPARQL 1.1 queries and that JSAC has the potential to be used for implementing
Query Uniqueness, once it becomes SPARQL 1.1 compliant.

Our implementation is available on Github:
https://github.com/GreenfishK/DataCitation

xi

https://github.com/GreenfishK/DataCitation

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim and Scope . 2
1.4 Methodological Approach . 3
1.5 Thesis Structure . 3

2 Related Work 5
2.1 RDA Data Citation Recommendations . 5
2.2 RDA Data Citation Implementations . 6
2.3 RDF Metadata Representations . 9

2.3.1 Standard Reification . 9
2.3.2 Named Graphs . 10
2.3.3 Singleton Property . 11

2.4 Statement-level metadata with RDF* . 11
2.5 Query Containment Solvers for SPARQL . 13

2.5.1 AFMU . 14
2.5.2 SPARQL Algebra . 15
2.5.3 JSAC . 15
2.5.4 SpeCS . 15

2.6 Creating automated citation snippets . 16
2.7 Dataset Identification . 18

3 Design 19
3.1 Requirements and Constraints . 19

3.1.1 Product requirements . 20
3.1.2 Constraints . 26
3.1.3 Non-functional requirements . 27

xiii

3.2 RDF* Data Citation Framework . 28
3.2.1 RDF* Store Utilities . 29
3.2.2 Persistent Identification Utilities . 31
3.2.3 Query Store Utilities . 32
3.2.4 Prologue Handler . 33
3.2.5 Query Handler . 34
3.2.6 Query Builder UI . 36
3.2.7 Landing Page . 37
3.2.8 Data Management . 38

3.3 Compliance with RDA Data Citation Recommendations 38
3.4 Summary . 39

4 Implementation 41
4.1 RDF* Data Citation API . 41

4.1.1 rdf_star module . 41
4.1.2 query_store module . 48
4.1.3 persistent_id_utils module . 48
4.1.4 Query_handler module . 58
4.1.5 Prefixes module . 62

4.2 Build and Distribution . 62
4.3 Summary . 63

5 Evaluation 65
5.1 RDF* Data Citation Framework . 65

5.1.1 Functional Tests . 66
5.1.2 Non-functional Tests . 70

5.2 Detecting semantically equivalent queries . 76
5.2.1 SpeCS . 77
5.2.2 JSAC . 79
5.2.3 Results . 81

5.3 Summary . 83

6 Conclusion and Future Work 89
6.1 Conclusion . 89
6.2 Future Work . 91

List of Figures 93

List of Tables 95

Listings 95

Bibliography 99

CHAPTER 1
Introduction

1.1 Motivation

Over the last years data has become increasingly central and critical in both research and in ap-
plication. With the rapid transition towards the fourth paradigm of science (i.e., data-intensive
scientific discovery) [HTT+09], where data is as vital to scientific progress as traditional publi-
cations are, challenges like data provenance, identifying subsets, authorship of data, evolution
of data over time and long-term data preservation become apparent. Overcoming these chal-
lenges is an important cornerstone to reproducibility and verification of research results.
Many contributions have already been made to citing data coming from relational models,
such as using well-established approaches from data-warehousing [Aro07], and XML hierarchi-
cal models [Sil17]. However, addressing citation challenges like versioning and timestamping
with linked data comes with additional problems due to the means that are used to represent
such data. The most common means are RDF (=Resource Description Framework) stores,
which use simple triples (subject, predicate, object) that can be linked with each other for
knowledge representation. To extract knowledge a query language known as SPARQL is com-
monly used in conjunction with RDF stores. Some solutions like the annotation approach
had been proposed in the literature [NDP15]. Important preliminaries to data citation had
been covered by the data citation working group in form of recommendations [vUSP16] and
also been endorsed and adopted by various data centers. So far, no implementation of afore-
mentioned recommendations has been devised for linked data and triple stores [dat19]. To
address the challenges of data citation for triple stores (RDF stores) we propose a data citation
framework which covers the first twelve recommendations by making use of extensions to RDF
and SPARQL, which have recently been introduced, and other concepts from the literature
[Har17].
For the remainder of this document we write recommendations when we refer to the recom-
mendations in [RAVUP16a]. In addition, RDF stores and triple stores are used interchangeably.

1

1. INTRODUCTION

1.2 Problem Statement

The RDA Data Citation Working Group published a set of 14 recommendations [RAVUP16a]
to facilitate citable data and reproducible results. Different data centers [dat19] adopted the
recommendations in very individual and heterogeneous ways. Used storage technologies
include relational databases but also NetCDF files, Git and others. As the recommendations
do not prescribe a specific type of data storage they can also be applied to RDF stores. As
opposed to relational databases, citing linked open data originating from triple stores comes
with a set of difficulties not met in the former storage systems, such as referencing whole
triples, separating data from metadata or identifying subgraphs. There are various RDF-based
proposed solutions [PFF+16], [WCEGL13], [Har17] to tackle the recommendations’ underlying
data-specific problem, such as data versioning, timestamping query and normalization (query
containment solvers).
Even though solutions to these individual challenges exist, adopters would still need to lump
together available methods and techniques on their own and make sure that they are compati-
ble with each other. Moreover, one has to deliberate on an algorithm and thereby consider the
control flow for these recommendations. As of today, there exists no compiled set of routines
nor process model to implement these recommendations for triple stores.

1.3 Aim and Scope

The main goal of this work is to enable data citation within triple stores by creating a con-
ceptual framework with methods and techniques on lessons learned from linked open data
and relational data citation solutions. Furthermore, we want to learn from adopters that
are targeting data citation problems underlying the recommendations by the Data Citation
Working Group. At this point, the distinction between recommendations and recommendation
problems needs to be pointed out. While recommendations answer the question what needs
to be done, they do not always imply how it should be done. Therefore, the theoretical part
elaborates aforementioned methods and techniques by focusing on the how in the context
of RDF stores. It also discusses different approaches, their benefits and potential shortcom-
ings of proposed solutions that can be mapped to individual recommendations (the what).
The practical work builds on this elaboration and results into a prototype of the conceptual
framework which defines routines and functions to be followed and used to implement the
recommendations for RDF stores. This framework enables citing data sets by generating a
citation snippet with a single function call given a SPARQL query. Moreover, we discuss and
evaluate two means to detecting semantically equivalent queries as needed for the R4 - Query
Uniqueness recommendation. One of them is W3Cs Query Algebra 1 and the other are Query
Containment Solvers. We therefore formulate following research questions which we address
in this work:

RQ1: What is the best way to use SPARQL* and RDF* to implement Data Versioning

1https://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html

2

https://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html

1.4. Methodological Approach

and Operation Timestamping with the aim to keep the number of additionally required
triples low?

RQ2: Which of the methods for detecting semantically equivalent queries yields the
highest coverage?

RQ3: Which of the recommendations can be covered by the framework and which ones
remain specific to the target system?

1.4 Methodological Approach

We follow the approach from [Hev07] which is specific to design sciences and defines three
cycles - the relevancy cylce, the rigor cycle and the design cycle. During the relevancy cycle
we research and collect technical requirements of triple store vendors and also requirements
related to metadata collection and representation. Moreover, we seek out problems and
opportunities from the target environment, which might encompass people like data operators
and researchers but also technical interfaces like landing pages and triple store query editors.
As the relevancy cycle also stipulates measuring improvement we define evaluation scenarios,
measures and functional tests to be used during the field testing and evaluation processes.
In the rigor cycle we draw knowledge from state of the art theories and solutions that are
either related to specific recommendations problems or were already used to solve them. This
endows us with the right tools, techniques and methods not only to answer RQ1 but also to
incrementally build our prototype. New methods to implement the recommendations that
arise from our research, as a result, is added to the scientific knowledge base.
With the requirements from the relevancy cycle and the grounding from the rigor cycle we
enter the design cycle where we incrementally build our RDF Data Citation Framework and
furthermore an API (=Application Programming Interface) as an executable instance. Upon
every evaluation of the API we refine the framework and repeat this feedback loop until all
defined requirements from the field studies are fulfilled. While the evaluation during the
feedback loop focuses on functionality and features the subsequent evaluation measures the
performance of the API. During the design cycle and more particular evaluation process we
dedicate our research to questions RQ2 and RQ3.

1.5 Thesis Structure

We introduce the RDA data citation recommendations and relevant concepts revolving around
them in Chapter 2. These include RDF* and SPARQL* as well as query containment solvers
for SPARQL which are fundamental for our main contribution of this work and part of the
design cycle. In Chapter 3 we start with setting the scope by defining use cases and setting
requirements and constraints to our RDF* Data Citation Framework. Right after we give an
overall view of the framework’s design and subsequently elaborate its components, thereby
explaining its required inputs and offered features & functions. At the end of this chapter we
exhibit how our framework fits into the RDA data citation recommendations. In Chapter 4

3

1. INTRODUCTION

Figure 1.1: The Design Science Research Cycles [Hev07]

we instantiate the RDF* Data Citation Framework by means of rigor and concept from the
previous respective chapters. We specifically show how we implemented the interfaces from
Chapter 3 and how we solved different recommendations underlying problems for RDF* stores.
This implementation we evaluate in 5 in two steps. First, we provide functional tests to lay
out its core functionalities. Second, we outline evaluation scenarios we used for our runtime
and memory performance evaluation and also present the evaluation results. We furthermore
evaluate two Query Containment Solvers as means to R4 - Query Uniqueness. Finally, we
revisit the research questions and give an outlook of our future work, which contain new ideas
related RDF* Data Citation and also improvement possibilities of our current artefacts.

4

CHAPTER 2
Related Work

2.1 RDA Data Citation Recommendations

The RDA Data Citation Recommendations [RAVUP16b] are the backbone of our work. They
were introduced in 2016 by the RDA Data Citation Working Group with the goal to keep
research experiments reproducible even if the data source is continuously evolving. Repro-
ducing and verifying research results is necessary for the research method in general and it is
inevitable for assessing the validity of the experiment. The recommendations are based upon
versioned data, timestamping and a query subsetting mechanism and are grouped into four
areas which we show in Table 2.1.
The first area prepares the data for identification which is achieved by means of versioning and
operation timestamping, latter comprising create, update and delete operations. It moreover
sets up a query store for storing query and associated metadata. These metadata data are
among others results from operations included in the next two areas.
The next area can be considered as a subgoal of reproducible research results, namely Persis-
tently Identifying Specific Datasets. This area comprises several means which take query or
dataset as input and produce a piece of information which helps in achieving this subgoal.
We found that some of the recommendations from this are can be related to specific studies
or research fields. R4 - Query Uniqueness is closely related to Query Containment Solvers,
which we elaborate in 2.5. Assigning a PID to the query (R8) is the RDA DCWG’s approach
to the dataset identification problem. In the literature other proposals can be found, such as
Research Resource Identifiers (RRID) [BBG+16] or named graphs [C+14]. Latter we discuss in
Section 2.3.2. Creating automated citation snippets (R10) has been defined as a computation
problem [BDF16] and been solved using an approach called citation views [ACD+17].
In the third area - Resolving PIDs and Retrieving the Data, we find ourselves on the presenta-
tion layer. The idea is to present data and metadata to both - humans (R11) and machines (R12)
in a human-readable and machine-actionable way, respectively. Usually, the metadata comes
from the query store while the data is retrieved upon query re-execution. The re-execution is

5

2. RELATED WORK

triggered by a download button on the landing page. Data and metadata need to be further
processable, e.g. by workflow engines, without the interaction of humans, hence the machine-
actionable representation.
The fourth area completes the change management as it considers that next to data, technol-
ogy can change, too. This includes rewriting the queries and re-computing fixity information
if the data gets migrated to a new environment. Each migration, of course, needs to be verified,
thus it must be ensured that the queries are re-executable and yield the same result as before
the migration.
By now, we should have a solid understanding of how the recommendations contribute to
making and keeping research experiments reproducible and can proceed with specific imple-
mentations by adopters in the next section.

Table 2.1: RDA Data Citation recommendations[vUSP16]

Area RDA Data Citation Recommendation

Preparing the Data and
Query Store

R1 – Data Versioning

R2 – Timestamping.
R3 – Query Store Facilities

Persistently Identifying
Specific Datasets

R4 – Query Uniqueness

R5 – Stable Sorting
R6 – Result Set Verification
R7 – Query Timestamping
R8 – Query PID
R9 – Store Query
R10 – Automated Citation Texts

Resolving PIDs and Re-
trieving the Data

R11 – Landing Page

R12 – Machine Actionability
Upon modifications to
the Data Infrastructure

R13 – Technology Migration

R14 – Migration Verification

2.2 RDA Data Citation Implementations

The RDA Data Citation Recommendations are since their publication in 2016 being adopted
by various data centers across different science domains ranging from the geo science, over
biomedical science to forest ecosystems. We also found distinct data and dataset types by each
of the adopters which might be drivers to their heterogeneous implementation approaches.
In the following we are going to outline the most noticeable characteristics of the respective
solutions and at the end of this section we show a table of addressed recommendations by the
individual adopters.

6

2.2. RDA Data Citation Implementations

The Washington University Center for Biomedical Informatics implemented Dynamic Data
Citation for their Electronic Health Records (EHR) datasets. They approached Versioning and
Timestamping by employing Postgre’s temporal_tables extension. For each live data table that
should be versioned there is a paired history table where records are moved to when newer
versions of these records are created. The period as of which the record is valid is given by a
timestamp range which is stored in a single column [GZR+17].
The Vermont Monitoring Cooperative used two forms of versioning for their Ecosystem Moni-
toring Collaborator Network, namely Dynamic Subsetting and Provenance Tracking. While
they apply former method only to tables, latter form of versioning is applied to all types of data
(tables, binary files, images, ...). They use a step tracking table, which can be related to the
query store, to record every state of a table. The way this table is implemented is reminiscent
of a doubly linked list. Each record in the step tracking table has two DML statements attached
in separate columns - one for moving to the previous state and one for moving to the next state.
E.g. if the difference between st ate1 and st ate2 is one additional record in st ate2 then a
delete statement is attached to st ate2 deleting that record and an insert statement is attached
to st ate1 to add that additional record and restore st ate2. Their solution also allows to switch
off versioning allowing for more changes to the dataset without tracking them [JD].
The Climate Change Centre Austria adopted the recommendations for their weather and
climate data services. They use HTTP GET requests as queries to retrieve NetCDF files as
geospatial datasets of high resolution climate scenarios. The queries have a small fixed set
of required arguments and these are also reflected in the query’s persistent identifier (query
PID). In their solution it is also possible to create a new semantically identical subset version
based on a different version of the original data. On the landing page, they display the citation
snippet, metadata the subset version history and a link to the superset [SB19].
Gößwein et al. managed to introduce and implement Dynamic Data Citation at the Earth
Observation Data Centre. The main characteristic is that versioning and timestamping was
not only implemented for data but also for the execution environment where certain jobs are
run. These jobs might produce different results when the environment changes, even though
the input data stays the same. They achieved this by employing VFramework’s context model
to store static and dynamic data collected on the environment and job execution [GMRW19].
The Ocean Network Canada offer a GUI to issue queries with the aim to extract information
about their deployed sensing devices. Similar to CCCA, there is a fixed set of arguments, such
as sensor, time range and file format, that guides the user through the query. Every data search
(query) is saved in the database. It is, however, not clear whether they use a separate query
store or not. They define so called versioning tasks to reprocess or replace faulty data after
certain fixes or parameter changes. Every-time such a task is executed a new version is minted
along with a new DOI and linked to the previous version of the dataset. The version history is
then shown on the landing page, along with metadata and a citation snippet. Their metadata
attributes are a subset of attributes from DataCite’s Metadata Schema1[RJ].
The Virtual Atomic and Molecular Data Centre extracts data as so-called VAMDC-XSAMS files.
VAMDC-XSAMS is an extension of the XSAMS format (XML for atoms). It carries the Version

1https://schema.datacite.org/meta/kernel-4.3/doc/DataCite-MetadataKernel_
v4.3.pdf

7

https://schema.datacite.org/meta/kernel-4.3/doc/DataCite-MetadataKernel_v4.3.pdf
https://schema.datacite.org/meta/kernel-4.3/doc/DataCite-MetadataKernel_v4.3.pdf

2. RELATED WORK

element as additional information which stores changes between two data nodes versions.
Latter are federated databases used within the VAMDC infrastructure. The VAMDC-XSAMS
files do not only carry data but also metadata, such as links to datasets that were used to
compose the result, bibliographic information as well as other metadata. These metadata are
stored in a query store using a query store service and associated with an Universal Unique
Identifier (UUID). This service might also delete these metadata after the query has not been
executed for an arbitrarily defined period of time (E.g. 5 years). This is because not every query
that is stored in the query store has been used in published work and therefore has no DOI
assigned. The user needs to manually assign a Digital Object Identifier (DOI) by clicking a
"Get a DOI" button on the query’s landing page and thereby triggering an upload of data and
metadata to ZENODO, a service which the query store is interconnected with. The deletion
process is suspended for all queries that have a DOI assigned [ZMBD19].

To provide a tangible summary of the covered recommendations by the mentioned adopters
we created Table 2.2. An "x" in this matrix suggests that the adopter/implementation either
directly addresses the corresponding recommendation or shows and discusses a concept
that is closely related to the recommendation or can be easily mapped to it (e.g. VMC’s step
tracking table, naming it UUID instead of query PID). A empty cell means that to the best
of our knowledge we could not find any evidence for the coverage of this recommendation.
It is noticeable that none of the adopters addressed R13 and R14. The reason might be that
technology migration has not been their main concern when firstly implementing Dynamic
Data Citation because the implementations where carried out with fixed technologies. Though,
it is something they might consider in future either because of preventive measures in place or
because technology migration is due.

Table 2.2: Recommendations and adopters/implementations

RDA Recommen-
dation

WU cen-
tre

VMC CCCA EODC ONC VAMDC

R1 x x x x x x
R2 x x x x x
R3 x x x x x x
R4 x x x x
R5 x
R6 x x
R7 x x x x x
R8 x x x x x x
R9 x x x x x x
R10 x x x x x
R11 x x x x x
R12 x x x
R13
R14

8

2.3. RDF Metadata Representations

As we see, the Data Citation Recommendations are not limited to specific storage systems or
datasets and could thus also be applied to RDF stores. However, when it comes to versioning
and timestamping on statement-level we face challenges to optimize measures like query
performance and required storage as we see in the next section.

2.3 RDF Metadata Representations

When it comes to representing metadata in RDF a few prominent approaches have been dis-
cussed and used so far, which include standard reification 2, named graphs [nam14], singleton
properties [NBS14] and others. While standard reification and named graphs exploit proper-
ties of RDF and do not need the data triples to be stored in a certain way, the singleton property
relies on a certain data representation. Experiments and evaluations have been conducted
on different graphs, such as Wikidata, and different triple store vendors, such as GraphDB,
Jena, Virtuoso and others [HHK15][OGO21] to compare their performances in terms of data
retrieval but also memory consumption. Due to the need of additional triples and verbose
query constructs to match the metadata none of the approaches are suited for real world
scenarios where big datasets are used. In the following subsections we discuss their concepts,
benefits and shortcomings before moving on to an alternative and more recent approach
which offers significant benefits over these three standard methods (See in Section 2.4).
For the remainder of this chapter we use following running example and show how the different
approaches could be used to represent facts about data triples:

Natural language statement: "Obama was a president between 20.01.2009 and 20.01.2017"
Data triple: :Obama :occupation :president
Facts about triple representation:?

We refer to this data triple also as our example dataset. We use the term entities when referring
to single triple parts independently of what those parts actually are. E.g. ":Obama" is an
entity. When we write about the grammatical constructs subject, predicate and object in an
abstract way we refer to them as components. E.g. ":Obama" is an entity and this entity is
a subject. A subject is a component of a triple. Usually, entities are represented using IRIs
(Internationalized Resource Identifiers) 3. One example would be http://example.com/Obama.
It is common practice to abbreviate IRIs by using a prefix that resolves to the IRI’s namespace,
for example: ex:http://example.com/. "ex" is the prefix and the http://example.com the
namespace. We can then abbreviate our example IRI with: ex:Obama. To explain certain
concepts we do not need to outline the namespace. That is why we leave out the prefix in our
running example.

2.3.1 Standard Reification

Standard reification is a way to "zoom out" of triples and represent each fact about them along
with other facts on the same level. This approach exploits the blank node property of RDF

2https://www.w3.org/TR/rdf-schema/#ch_reificationvocab
3https://www.w3.org/TR/rdf11-concepts/#section-IRIs

9

https://www.w3.org/TR/rdf-schema/#ch_reificationvocab
https://www.w3.org/TR/rdf11-concepts/#section-IRIs

2. RELATED WORK

graphs where blank nodes (= nodes without an URI or literal) are used as subjects to refer to
the triples’ entities literally using their components (subject, predicate, object) as predicates.
To add metadata to a triple these blank nodes can then be stated together with key-value
pairs to form additional triples. We say that a triple is reified when it is rewritten using four
additional triples as follows:

_:x1 rdf:type rdf:Statement .
_:x1 rdf:subject :Obama .
_:x1 rdf:predicate :occupation .
_:x1 rdf:object :president .

Now, we can add the presidential term as metadata to the reified triple:

_:x1 :from "2009-01-20"ˆˆxsd:date .
_:x1 :until "2017-01-20"ˆˆxsd:date .

If we would like to reify a second triple we would use the same procedure and just choose
another blank node, e.g. _:x2.
We see that we did not need to introduce any new syntax to reify the triple and add metadata
to it, which is what makes this approach compliant to the RDF standard. However, we create
inefficiencies in terms of storage which is why this approach is discouraged in Linked Open
Data [KCG16] [Har17] [met] [OGO21] [HHK15].

2.3.2 Named Graphs

A named graph is an RDF graph that has a name assigned in the form of an Internationalized
Resource Identifier (IRIs). IRI is an extension of URI where characters from an universal charac-
ter set are allowed instead of being limited to ASCII. This name or IRI can then be referenced in
other graphs, e.g to add metadata onto it. Named graphs are closely related to Quad Semantics
which use a fourth component to add context to triples. In fact, named graphs can be seen
as a reformulation of Quad Semantics where the fourth component is moved to a distinct
name property [CBHS05a]. This allows for a clearer distinction between the data and the
context. Though, either formulations have the same expressiveness when IRIs are used. Using
named graphs or quad semantics to express our running example would look like the following:

//Named graphs
ex:x1 {
:Obama :occupation :president.
}
//Adding metadata
ex:x1 :from "2009-01-20"ˆˆxsd:date .
ex:x1 :until "2017-01-20"ˆˆxsd:date .

//Quad semantics
:Obama :occupation :president ex:x1
//Adding metadata
ex:x1 :from "2009-01-20"ˆˆxsd:date .
ex:x1 :until "2017-01-20"ˆˆxsd:date .

Compared to standard reification we see a reduction in the number of triples and improvement

10

2.4. Statement-level metadata with RDF*

in readability as the data triple does not need to be re-expressed. The benefit becomes more
visible if we add more data triples to the named graph and then use the graph’s IRI to describe
all triples within that graph at once, instead of describing every reified triple individually. One
disadvantage that named graphs might have is the potential confusion due to different use
cases of the name property. It can be used as a graph identifier, as we did it, but also as a
means of identifying the document and as a retrieval URL or source of the triples [CBHS05b].
Named graphs have also been proposed for Data Citation to uniquely identify data sets by
means of so called "Citation meta-graphs". Figure 2.1 illustrates this idea in a three-step
approach using Quad Semantics. In step 1 we assign distinct names to all triples, that belong
to a graph we want to cite using the fourth component, thus the name property, labeled
"Name" in this figure. As a consequence, named graphs are created, each consisting of exactly
one triple. In the second step we create the citation meta-graph, an directed cycle graph with
the named graphs from step 1 being connected by a predicate pα in arbitrary order so that
each named graph has exactly one incoming and one outgoing edge. This citation meta-graph
is also a named graph and gets the name ci t X assigned. Finally, in step 3, we can associate
metadata to the citation meta-graph ci t X and thereby create a reference graph named r e f A.
r e f A is an IRI which makes it possible to access the machine-readable metadata [Sil15].

2.3.3 Singleton Property

As in Standard Reification, the Singleton Property also uses formal semantics to define a
model for representing data in triple stores that allows for a simple metadata representation.
The idea is to have unique relationships between entities that represent each statement. "A
singleton property is a property instance representing one specific relationship between two
particular entities under one specific context"[NBS14]. Similar to blank nodes in standard
reification, these instances can then be used for metadata annotations[NBT+15][NBS14]. With
every instance one metadata attribute needs to be added that links the instances to their
generic properties. In [NBS14] this metadata attribute or link is called singletonPropertyOf.
Our running example modelled with the Singleton Property would look like this:

:Obama :occupation#1 :president .
:occupation#1 rdf:singletonPropertyOf :occupation .
:occupation#1 :from "2009-01-20"ˆˆxsd:date .
:occupation#1 :until "2017-01-20"ˆˆxsd:date .

Even though singleton properties are easy to query, they do not perform well for known
graph databases, such as Virtuoso as evaluated in [HHR+16]. One reason is because it is
untypical for RDF to have "a large number of unique predicates" and thus "disadvantageous
for commonly-used SPARQL optimization heuristics" [Har17].

2.4 Statement-level metadata with RDF*

Statement-level metadata refers to metadata that is associated with a single statement or triple,
e.g. :Obama :occupation :president. These metadata can be added in the form of key-value

11

2. RELATED WORK

Figure 2.1: The three-step methodology for citing LOD subsets

pairs and linked to statements. While graph databases have edge properties as means for
statement-level metadata, RDF or triple stores, which present another graph-based approach,
do not natively support this. As outlined in the previous section one can either define formal
models based on existing RDF 1.1 syntax that require data and metadata statements to follow
certain semantics or exploit RDF properties to add this feature to triple stores. On top, queries
also need to be designed and written in a cumbersome way in order to match data and
corresponding metadata triples for the respective metadata representation models [Har17].
RDF* and SPARQL*, as proposed in [Har17], work with a paradigm that we can encounter
in various concepts from the informatics and mathematics domain, such as SQL & SPARQL

12

2.5. Query Containment Solvers for SPARQL

queries, XML and first-class functions. This paradigm are nested triples which allow for nesting
a whole triple into the subject or object of another triple. Moreover, it introduces a new syntax
which we show below:

«:Obama :occupation :president» :from "2009-01-20"ˆˆxsd:date .
«:Obama :occupation :president» :until "2017-01-20"ˆˆxsd:date .

In order to query data and metadata from our example graph above with SPARQL* we can
follow the same semantics as in SPARQL just that the subject is now a nested triple written in
the same syntax as in RDF*:

select ?name ?occupation ?valid_from ?valid_until where {
<<?name ?p ?occupation>> :valid_from ?valid_from;

:valid_until ?valid_until.
}

An RDF* graph G* can be both - redundant and redundant free. In the former version a data
triple t � that is contained in a metadata triple t would also be directly contained in G*. Let us
first illustrate this below with the triple from our running example as t �:

//Redundant graph
:Obama :occupation#1 :president
«:Obama :occupation :president» :from
"2009-01-20"ˆˆxsd:date .
«:Obama :occupation :president» :until
"2017-01-20"ˆˆxsd:date .

//Redundant-free graph
«:Obama :occupation :president» :from
"2009-01-20"ˆˆxsd:date .
«:Obama :occupation :president» :until
"2017-01-20"ˆˆxsd:date .

Regardless of whether t � is directly contained in G* or not, there is no difference in terms of
information content. Hence, G* is redundant if t � and t are both contained in G* [Har17].
SPARQL* and RDF* can be reduced to SPARQL and RDF respectively. More importantly, it is
possible to map RDF* to Standard RDF Reification. Casting our eyes over to R13 - Technology
Migration, it could be desired to automatize reducing and mapping of SPARQL* and RDF*
when migrating to a technology where "the star extension" is not supported [Har17].

2.5 Query Containment Solvers for SPARQL

Query containment solvers answer the question whether one query is subsumed by another.
If this is reciprocally true, we can say that two queries are equivalent. So, query contain-
ment solvers are a fitting means to tackle R4 – Query Uniqueness, next to their other pur-
pose which is optimizing queries. To the best of our knowledge, five SPARQL query contain-
ment solvers have been proposed in the literature. Four of them deal with SPARQL queries
[SVJ20][CEGL18][LPPS13]4 whereas one deals with XPath. Latter we will not discuss as XML
is out of scope of this work. queries[GL06]. The query containment solver based on AFMU

4https://github.com/SmartDataAnalytics/jena-sparql-api/tree/develop/
jena-sparql-api-query-containment

13

https://github.com/SmartDataAnalytics/jena-sparql-api/tree/develop/jena-sparql-api-query-containment
https://github.com/SmartDataAnalytics/jena-sparql-api/tree/develop/jena-sparql-api-query-containment

2. RELATED WORK

Table 2.3: Query Containment Solvers and supported features for SPARQL-Algebra, AFMU,
TreeSolver [WCEGL13] and two more recent Solvers

Solver projection union optional blanks cycles RDFS

SPARQL-
Algebra

x x

AFMU x x x x

TreeSolver x x x x

JSAC x x ? x ?

SpeCS x x ? x x x

[CEGL18] is only a theoretical foundation but there exists no implementation so far. SPARQL
Algebra, a query solver using trees that resemble a query execution plan, was also realized and
published. A link to this solver is available but broken [SVJ20]. This solver stays inaccessible at
the time of writing.
An evaluation of supported features by the different solvers has been done in 2013 for solvers
available at that time using a query containment benchmark [WCEGL13]. The features in-
cluded in the benchmark were picked with respect to the capability of these solvers, namely:
projection, union, blank nodes, andquery containment under RDFS reasoning. Within this
benchmark suite three test suits were designed with each containing multiple queries charac-
terized by these features. OPTIONAL and cycles were not included in the benchmark design
as SPARQL-Algebra was the only solver able to deal with these paradigms at time of evaluation.
In Table 2.3 we extended the original table presented in the evaluation [WCEGL13] by two,
more recent, solvers, JSAC and SpeCS. Both solvers were evaluated using aforementioned
benchmark suite. For neither of them we could not conclude whether OPTIONAL is supported.
However, Spasić et al argue that the SMT (=Satisfiability modulo theories) solver they employ
for SpeCS can deal with cycles by nature [SVJ20].

2.5.1 AFMU

The "AFMU Query Containtment Solver" is based on the alternation-free (AF) fragment of the
modal µ-calculus introduced in 1982 which can be used to describe properties of transition
systems [HKP82]. Chekol et al turned an RDF graph into a transition system (p is the transition
between s and o) and encoded queries and schema axioms as µ-calculus formulae. These for-
mulas are then interpreted over the transition system. Overall, they reduced the containment
problem to a satisfiability and validity problem [CEGL18]. To solve the satisfiability problem
of the µ-calculus (nominal, functional and backwards) they employed the decision procedure
developed by Tanabe et al and thereby mainly focused on nominal and backwards modalities
[TTY+05]. The query containment solver cannot solve any given two queries but does support

14

2.5. Query Containment Solvers for SPARQL

only following features: blank nodes, acyclic union conjunctive queries, projection and RDFs.
It is also just a theoretical work with no accessible online tool or prototype at the time of
writing [CEGL18].

2.5.2 SPARQL Algebra

While the SPARQL Algebra is already part of the SPARQL 1.1. W3C recommendation 5 there
is another work [LPPS13] also describing an algebra for SPARQL which is seemingly not con-
nected to W3C’s algebra. However, the ideas are closely related as both represent graph
patterns as trees. One important use-case that the authors in [LPPS13] outline is the construc-
tion of query execution plans. The tree patterns they design are reminiscent of such execution
plans known from SQL and should form a basis for query optimization in SPARQL. The au-
thors establish syntactic an semantic relationships between pattern trees and SPARQL graph
patterns. They furthermore define rules which are applicable on query trees to e.g. "eliminate
redundancy". Hence, these rules help to normalize these trees. They also discuss containment
and equivalency and bring out that containment can be used to test for equivalency but is not
recommended as containment problems are more complex (πP

2 -complete vs NP-complete)
[LPPS13]. SPARQL-Algebra supports OPTIONAL and cycles but does not feature UCQs, blank
nodes and RDFS. A link is available to an online implementation of SPARQL-Algebra, however,
the web-page is not accessible anymore.

2.5.3 JSAC

JSAC Query Containment Solver is a subgraph isomorphism checker. It uses a "bottom-up
algebra-tree matching approach" to solve the problem of query containment. It thereby takes
two trees, the "normalized algebra expression tree" and "a subtree of a superquery" to check
for a subgraph isomorphism 6. A tool is available on github 7 and it includes a feature which
can be seen as an approach to R4 - Query Uniqueness. Instead of normalizing queries and
computing checksums one could use the tool’s query containment solver in combination
with a feature called transparent sub graph isomorphy cache which detects whether prior
result sets fit into a current query. On their github page there is no information about which
SPARQL features the JSAC query containment solver supports. Though, we can see from the
benchmark test in [SVJ20] that it does support union, projections and blank nodes but does
not support RDFS.

2.5.4 SpeCS

The SpeCS query containment solver[SVJ20] builds on similar ideas as AFMU as it also uses
logic and reduces the containment problem to a satisfiability problem. In contrast to the

5https://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html
6https://github.com/SmartDataAnalytics/jena-sparql-api/tree/develop/

jena-sparql-api-query-containment
7https://github.com/SmartDataAnalytics/jena-sparql-api/tree/develop/

jena-sparql-api-query-containment

15

https://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html
https://github.com/SmartDataAnalytics/jena-sparql-api/tree/develop/jena-sparql-api-query-containment
https://github.com/SmartDataAnalytics/jena-sparql-api/tree/develop/jena-sparql-api-query-containment
https://github.com/SmartDataAnalytics/jena-sparql-api/tree/develop/jena-sparql-api-query-containment
https://github.com/SmartDataAnalytics/jena-sparql-api/tree/develop/jena-sparql-api-query-containment

2. RELATED WORK

propositional modal logic used with the µ-calculus SpeCS relies on theories in first order logic.
It transforms SPARQL queries to a first order logic formula and then runs a SMT (satisfiability
modulo theories) solver to check for containment. The authors in [SVJ20] also see the equiva-
lency problem as a containment problem where reciprocal containment means equivalency.
However, they do not make mention of the unequal complexities between containment and
equivalency as the SPARQL Algebra authors do [LPPS13]. Their own evaluation showed that
SpeCS performs better then the previously discussed solvers in terms of execution time and
number of solved test cases. The test cases include following features: projection, union, blank
nodes, cycles and RDFS. Their solver 8 is also available online for download.

2.6 Creating automated citation snippets

A citation snippet in the sense of Data Citation is a collection of information that identify the
dataset (e.g. title, query PID [vUSP16]) and give attribution to contributors (e.g. authorship,
ownership, date, ...) [BDF16]. Researcher did on the one side investigate the dependencies
of a citation snippet and argued that the query is a means of identifying the dataset and also
provides context information, which is why the citation pre-dominantly depends on it. The
dataset can be empty or a bunch of image files, which is why it is not a reliable source of
information for the citation snippet [BDF16][ACD+17].
On the other side, the creation of citation snippet templates and citation formats for specific
subsets has been investigated. As subsets (or subgraphs in RDF) do vary in their granularity
and contained information there is no "one fits it all" citation snippet template which always
uses the same attributes, like we know it from citing books or articles. Buneman et al [BDF16]
have demonstrated how to specify citable units, such as certain subsets, using databse views
and create citations using a rule-based language on two databases, namely GtoPdb [gto] and
MODIS [SBM06]. Alawini et al propose a similar solution with a citation framework which
they applied to the eagle-i RDF dataset to proof their concept. They define view queries which
predefine the dataset to be cited, citation queries which query information that are associated
with the dataset and citation functions which use the output from citation queries and format
it for the citation snippet [ACD+17].
Both solutions are similar in the way that they use views to define subsets and functions
or rules to create citation snippets. However, Alawini et al also formalizes the extraction of
citation data with the use of citation queries. We prepared an example to illustrate this idea.
Instead of using an abstract language for the view and citation queries as Alawini et al did,
we used SPARQL*. In Listing 2.1 and 2.2 we have two view queries. Both represent a specific
subset and these subsets are also disjoint. Our example dataset, which by now also includes
metadata, is now matched against these views (we do not show the matching process here).
Only the view query from 2.1 would return a non-empty dataset. Therefore, the corresponding
citation query, which we show in Listing 2.3, fires to extract the citation data. Note how the
aliases or citation attributes from the other citation query in Listing 2.4 would differ from the
first one. Lastly, a function would take these citation data as an input and produce an output

8www.math.rs/~mirko/SpeCS.tar.gz

16

www.math.rs/~mirko/SpeCS.tar.gz

2.6. Creating automated citation snippets

as shown in Listing 2.5. For comparison, the citation snippet for the second view query would
look slightly different, as we can see in Listing 2.6.

Listing 2.1: View Query1 example

Select ?s {
?s :occupation "president".

}

Listing 2.2: View Query2 example

Select ?s {
?s :occupation "formula-one-driver".

}

Listing 2.3: Citation Query1 example

Select (?s as ?president)
(?x as ?president_from)
(?y as ?president_until) {

<<?s :occupation "president">>
:valid_from ?x.

<<?s :occupation "president">>
:valid_until ?y.

}

Listing 2.4: Citation Query2 example

Select (?s as ?driver)
(?x as ?career_from)
(?y as ?career_until) {

<<?s :occupation "formula-one-driver">>
:valid_from ?x.

<<?s :occupation "formula-one-driver">>
:valid_until ?y.

}

Listing 2.5: Citation Snippet formatted with a
Citation Function example1

{presidet: "Obama",
president_from: 2009-01-20,
president_until: 2017-01-20}

Listing 2.6: Citation Snippet formatted with a
Citation Function example2

{driver: "Alonso", career_from: 2001-01-01}

Citation snippets might sometimes carry too little information or be underspeciefied. One
example for underspecification is when different versions of the dataset were used but it is
not clear which one. To automatically include all versions or linked datasets [MB15] proposed
an ontology where citation snippets, subsets and supersets can all be linked. Links between
subsets and supersets can then be inferred and underspecified citation snippets could then be
enriched with information that is now available due to the network of datasets and citation
snippets.

Sometimes data citation snippets would get too long and a trade-off would need to be made
between completeness and length. If there are over 100 contributors to one dataset the
citation snippet cannot include all of them. How does the algorithm decide where to make
the cut? [FKS19] addressed this problem in the course of creating a data citation framework
for nanopublications. They argues that metadata is not the only input needed for the citation
snippets but "nanopubs curators" must also provide policies which define selection & ordering
and operations on the data citation snippets. Moreover, they also define via the presentation
component how the citation snippets are going to be presented which is reminiscent of citation
functions in [ACD+17].

17

2. RELATED WORK

2.7 Dataset Identification

Most solutions from the literature propose a persistent identifier (PID) to identify datasets. The
term PID is used as an umbrella term for all kinds of concrete implementations of persistent
identifiers, such as DOIs, Digital Unique Identifiers (DUI), "named graph URI", Universal
Numeric Fingerprint (UNF) and Research Resource Identifiers (RRID). Gianmaria Silvello
outlines literature and solutions in [Sil18] in which these PIDs are used.
One option to use PIDs is to assign them to digital objects to be identified themselves. This
includes datasets but also segments of data, XML nodes, subgraphs or single triples [Sil18].
Latter is the method used in the nanopublication model [GGV10]. Another option is to assign
PIDs to queries associated with the digital object. More specific, we can assign a PID to a query
that is used to retrieve the dataset. This is the solution preferred by [RAVUP16a]. The authors
do not suggest any specific PID system, however, they do mention DOI and ARK as examples.
In Section 2.3.2 we have discussed named graphs in the context of statement-level annotations
with the aim to enrich triples with metadata. As mentioned in this section, named graphs have
also been proposed as a means of identifying RDF graphs. At this point, we need to outline the
distinction between RDF datasets and RDF graphs and named RDF graphs.

"An RDF graph is defined as a set of triples" [CBHS05c]

"A Named Graph is an RDF graph which is assigneda name in the form of a URIref."
[CBHS05c]

"An RDF dataset is a set = G , (u1,G1), (u2,G2), ...(un,Gn) where G and each Gi are
graphs, and each ui is a URI. Each ui is distinct. G is a called the background graph. Gi

are namedgraphs." [PS05]

These distinctions are necessary to see that an RDF dataset can consist of multiple graphs,
hence, we cannot rely on a single named graph URI to identify RDF datasets. Besides identifica-
tion, other uses cases relatable to Data Citation, such as "ontology versioning and evolution",
"Signing RDF graphs" and "Data syndication", have been outlined in [CBHS05c].

18

CHAPTER 3
Design

In this chapter we outline components of the proposed RDF* Data Citation Framework and
their relationships to each other with respect to RDF* requirements and constraints. We
start with examining use cases that are driving the motivations of this work. Next, we set
product requirements to a Data Citation system where we already get a first indication of what
a Data Citation Framework must cover. These requirements are accompanied by constraints
in order to exclude potentially bad design choices and to ensure the coverage of the RDA Data
Citation recommendations. We continue with the definition of three quality goals, which can
be seen as non-functional requirements, that narrow the scope for design choices later to
come. After having discussed the prerequisites, we illustrate our Data Citation Framework
as a component diagram and afterwards explicate its components in detail. Last, we revisit
our Data Citation Framework components and assess their compliance with the RDA Data
Citation Recommendations.

In the following we use the terms Data Citation Framework and Data Citation System where
latter should be understood as an implementation of the former which uses the framework’s
components and fulfills its requirements. By implementation we do not think of a single
piece of software or API but the overall system including stakeholders that is needed for the
functioning of Data Citation for RDF stores.

3.1 Requirements and Constraints

As the main motivation of this work goes, we want to foster reproducible results and therefore
grant the researchers access to data that other researchers used in their experiments at a
certain point in time. One approach would be to provide a link to datasets which lie in (public)
repositories where researchers have uploaded them. This comes with some caveats, such as
broken links after the repository moves to another domain or evolved datasets. Based on the
recommendations we created a use case diagram (see Figure 3.1), that depicts typical use cases
and involved actors. The diagram shows that publishing a dataset is not necessary because

19

3. DESIGN

the dataset should already be (publicly) available and retrievable by means of queries. This
also involves data curators or operators to offer an access point to data that researches might
want to use. In terms of RDF* stores a SPARQL query must be used for the purpose of retrieval.
Researchers must then be able to retrieve these datasets using information provided in the
citation snippet. This implies that the system must be able to query historical data to extract
the dataset as it existed at the time of citation snippet creation. In addition to researchers,
(RDF) Data operators are involved who are required to update their triple stores, e.g. when
new data is available or errors in the data need to be corrected. This might also require them to
query live and historical data, compare different dataset versions and make the right change
decisions.

Figure 3.1: Data Citation Framework Use Case Diagram

3.1.1 Product requirements

Now that we covered the depicted use cases we should have a high-level view of the require-
ments. This brings us to the next step of breaking down the use cases into smaller pieces. In the
following we link the Use Case diagram in Figure 3.1 to the RDA Data Citation Recommenda-
tions and discuss which of these recommendations can be turned into product requirements
to our RDF Data Citation Framework (=product). Furthermore, we argue why they are required
in order to meet our use case goals. On top, we add additional requirements, not covered by
the RDA Data Citation Recommendations, quality goals (non-functional requirements) where
some of them arise due to the nature of RDF* stores.

20

3.1. Requirements and Constraints

In Table 3.1[vUSP16] we see that all of the first three recommendations are required. Arguably,
they are the foundation for enabling data citation by allowing for querying a specific dataset
version (live or historical) with timestamp-based queries.
In Tables 3.2 and 3.3[vUSP16] the recommendations mainly revolve around the use case Re-
trieve minted dataset. Only one of them, namely R4 - Query Uniqueness, is not required to
satisfy this use case.
Table 3.4 again focuses on retrieving PID-minted datasets. We argue that retrieving PID-minted
datasets in one or another way is a minimum requirement to satisfy use case Retrieve PID-
minted dataset.
The requirements in Table 3.5 are not the focus of our framework design as we build on specific
data infrastructure (RDF* and SPARQL*). However, we needed to discuss what modifications
to the data structure could possibly mean with regards to RDF and SPARQL. We see that migra-
tion within a certain frame of technologies (e.g. data representations) does not always require
actions recommended in R13 and R14. It goes even so far, that SPARQL query migration might
not even be wanted upon an ontology update (new schema) as it would yield different datasets,
which is against the idea of reproducible results.

Table 3.1: Preparing the Data and the Query Store[vUSP16]

RDA Recommendation Degree of require-
ment

Argument

R1 – Data Versioning: Apply version-
ing to ensure earlier states of data sets
can be retrieved.

Required Use Cases Query live data and Query
historical data would not be met with-
out versioning. In addition to this rec-
ommendation/requirement we ask
for statement-level versioning. Thus,
every triple in the RDF store must be
versioned.

R2 – Timestamping: Ensure that op-
erations on data are timestamped, i.e.
any additions, deletions are marked
with a timestamp.

Required Closely coupled with versioning (R1):
Each versioning activity must be doc-
umented with a timestamp.

R3 – Query Store Facilities : Provide
means for storing queries and the
associated metadata in order to re-
execute them in the future.

Required Without a query store, PID-minted
datasets could not be retrieved as
the query and execution timestamp
would be missing. These are neces-
sary information to generate a times-
tamped query.

Next to the RDA Data Citation Recommendations, where most of them are required for our
Framework, we have following additional functional and product requirements.

21

3. DESIGN

Table 3.2: Persistently Identify Specific Data Sets[vUSP16]

RDA Recommendation Degree of require-
ment

Argument

R 4 – Query Uniqueness : Re-write
the query to a normalised form so
that identical queries can be detected.
Compute a checksum of the normal-
ized query to efficiently detect identi-
cal queries.

Recommended This recommendation does not
match any of our use cases. Its
absence does, however, imply redun-
dancy within the query store, thus
consuming more memory. On top,
researchers might gain less credit
as their contribution to the dataset
does get less likely discovered. The
user, who executes the new query,
does not get notified about the
existence of an identical query and its
contributer/publisher.

R5 – Stable Sorting: Ensure that the
sorting of the records in the data set
is unambiguous and reproducible

Required The use case "Retrieve minted
dataset" would not be met if a query
produces ambiguous sorts and hence
yields a differing dataset from the
minted one. This would also violate
the reproducibility principle.

R6 – Result Set Verification: Compute
fixity information (checksum) of the
query result set to enable verification
of the correctness of a result upon re-
execution.

Required To check whether the retrieved
minted dataset is the same as when it
was minted.

R7 – Query Timestamping: Assign a
timestamp to the query based on the
last update to the entire database (or
the last update to the selection of data
affected by the query or the query ex-
ecution time). This allows retrieving
the data as it existed at the time a user
issued a query.

Required This is trivially required in order to Re-
trieve minted datasets, Query live data
and Query historical data. The easi-
est and most efficient way is to use
the execution timestamp as the other
two options would require additional
queries to find the last update.

Verify unique sort index

A primary key is needed for sorting the result set. This constraint, however, does not exist in
RDF stores. Therefore, the user needs to provide a primary key or unique sort index. The Data
Citation System then needs to verify its uniqueness. This can be done either on the client side,
e.g. when issuing the query to mint a new PID or centrally checked by a central framework
component.

22

3.1. Requirements and Constraints

Table 3.3: Persistently Identify Specific Data Sets[vUSP16]

RDA Recommendation Degree of require-
ment

Argument

R8 – Query PID: Assign a new PID to
the query if either the query is new
or if the result set returned from an
earlier identical query is different due
to changes in the data. Otherwise, re-
turn the existing PID.

Required Assigning query PIDs is crucial for
persistently identifying and retrieving
specific datasets.

R9 – Store Query: Store query and
metadata (e.g. PID, original and nor-
malized query, query and result set
checksum, timestamp, superset PID,
data set description, and other) in the
query store.

Required Without metadata, such as query,
query PID and timestamp, minted
datasets could not be identified.

R10 – Automated Citation Texts: Gen-
erate citation texts in the format
prevalent in the designated commu-
nity for lowering the barrier for citing
the data. Include the PID into the ci-
tation text snippet.

Required To fulfill the goals of the use case
"Mint RDF Dataset" we do need a ci-
tation text snippet. Moreover, to re-
trieve the dataset we need its corre-
sponding query PID.

RDA Recommendation Degree of require-
ment

Argument

R11 – Landing Page: Make the PIDs
resolve to a human readable landing
page that provides the data (via query
re-execution) and metadata, includ-
ing a link to the superset (PID of the
data source) and citation text snippet.

Required Minted datasets must be somewhere
accessible in order to retrieve them.
However, none of the use cases would
require a human readable landing
page, as long as the dataset can be
accessed or downloaded.

R12 – Machine Actionability: Provide
an API / machine actionable landing
page to access metadata and data via
query re-execution

Required This is trivially required in order to
retrieve minted datasets.

Table 3.4: Resolving PIDs and Retrieving the Data[vUSP16]

Query live and historical data

There must be a way for the user (Data Operator, Researcher, Publisher) to query data by
passing a timestamp in addition to the query. A query processor must then return the version
of the data that corresponds to the timestamp. If no timestamp is provided, the processor

23

3. DESIGN

RDA Recommendation Degree of require-
ment

Argument

R13 – Technology Migration: When
data is migrated to a new represen-
tation (e.g. new database system, a
new schema or a completely different
technology), migrate also the queries
and associated fixity information.

Partially Required A migration would be needed if an-
other RDF query language, such as
DQL or XQuery, or a completely dif-
ferent technology, such as NoSQL or
SQL, is used. When migrating from
one RDF representation to another,
e.g. from n3 to json, there is no
need to migrate the SPARQL query
as it is independent of the underly-
ing representation. A query migra-
tion is also not need across different
Triple Store Vendors. This holds true
as long as RDF is used for data repre-
sentation and SPARQL to query data.
Another case when queries do not
need to be migrated is a schema mi-
gration. As data and metadata (se-
mantics) are stored within the same
physical storage a schema migration
simply means updating the metadata
triples and timestamping them. As a
consequence, the old schema is still
kept but marked as outdated. Thus,
the historical queries still returns the
minted datasets.

R14 – Migration Verification: Ver-
ify successful data and query migra-
tion, ensuring that queries can be re-
executed correctly.

Required SPARQL queries will always be re-
executable as long as the RDF store
supports the same SPARQL version as
before or is backward compatible. Re-
sult sets of old and new system need
to be compared and assured to be
identical.

Table 3.5: Upon Modifications to the Data Infrastructure [vUSP16]

should extract live data (most recent version) from the RDF store.

Insert triples, Update triples, Outdate triples

RDF Data Operators must be able to perform write operations against triple stores which
links to the use case Update Graph. In compliance with R1 and R2 recommendations every

24

3.1. Requirements and Constraints

write operation must come with additional metadata triples (Statement-level versioning) to
ensure that the operations are versioned. The Insert Triples operation simply inserts one or
more triples into the RDF* store, either serially or as bulk insert. The triple, of course, must
be compliant with the underlying RDF representation (e.g. n3 or turtle). The Update Triples
operation must update the object of the triple. We chose the term Outdate triples to make it
clear that no actual deletions may occur under normal circumstances. Unusual circumstances
would be if the RDF data operator accidentally inserted an unusually great number of corrupt
records which noticeably compromise read and write operations which also occur when a
user cites a dataset. Another reason would be deletions that are required by law, which need to
be documented and traceable as source for irreproducibility.

Flexible metadata interface

The use case Mint RDF dataset requires the Publisher to provide metadata such as provenance
information. There are a couple of Metadata schemata to consider as a guideline, like Dat-
aCite’s Metadata Schema 1 or the ones proposed in [FCG+19], [BCDC+15]. A minimum set of
metadata should be recommended to the user but over and above that the user should not be
restricted in providing further metadata.

Mint RDF dataset

An interface must be in place which lets researchers mint datasets and thereby receive a
citation snippet including a resolvable query PID that points to a landing page. The dataset
must have been extracted in a previous step using a SPARQL query. The query must be linkable
to the dataset and vice versa. When researchers mint datasets they must also provide metadata,
as described in subsection 3.1.1 - Flexible metadata interface.

Describe dataset

A data set description must be available for every query PID. It is either required that a central
component of the system derives a description using query text and dataset or the user simply
provides a description on his own. Both methods can also be used in conjunction.

Handle SPARQL query prefixes

A SPARQL query most often comes with a prologue at the beginning of the query, which
includes IRI prefixes that are used in the query. These prefixes must be resolved when nor-
malizing the query. Furthermore, there might be the need to extended the prologue with
custom prefixes or split prologue and query for easier query parsing and enrichment, e.g.
when building a timestamped query.

1https://schema.datacite.org/meta/kernel-4.3/doc/DataCite-MetadataKernel_
v4.3.pdf

25

https://schema.datacite.org/meta/kernel-4.3/doc/DataCite-MetadataKernel_v4.3.pdf
https://schema.datacite.org/meta/kernel-4.3/doc/DataCite-MetadataKernel_v4.3.pdf

3. DESIGN

3.1.2 Constraints

In this section we want to explicitly state constraints to the design of the RDF Data Citation
Framework. We already mentioned some in the product requirements, such as that actual
deletion of records is not allowed.

Dataset source

The source of the dataset must be an RDF store. A user may only mint datasets that he/she
extracted from the triple store that is used within the Data Citation System using an RDF query
(e.g. SPARQL). This is to avoid system designers to create environments where RDF datasets,
which have been extracted from other sources, can be uploaded/published and cited where a
query is either not available or it cannot be verified that the query returns the published result
set because the user could not issue the query him/herself.

SPARQL as query language

The RDF query language must be SPARQL. The first reason for this restriction is that SPARQL
is a W3C standard 2 and seemingly the most used language to query RDF stores. Based on a
search using the keywords of eight known RDF query languages we found that SPARQL has
the most entries in Google scholar (see Table 3.6) The second and more important reason is
that we are focusing our research on RDF* in combination with SPARQL*. Though, we might
open up this restriction in future and aim for a more generic RDF Data Citation design.

RDF query language Number of results

SPARQL 67.300
XQUery 30.600
SquishQL 472
RDQL 4.140
TriQL 522
RQL 24.000
SeRQL 1.820
eRQL 450

Table 3.6: Search results from Google Scholar for individual RDF query languages on 16.06.2021
13:10 CEST

Query Handler algorithm

There must be an algorithm which implements R4-R10 of the RDA Data Citation Recommen-
dations in a workflow manner and handles following distinct cases:

2https://www.w3.org/TR/sparql11-query/

26

https://www.w3.org/TR/sparql11-query/

3.1. Requirements and Constraints

1. The dataset’s query already exists in the Query Store and the result set has not changed
since the last execution time.

2. The dataset’s query is new and a query PID has just been minted for it.

3. The dataset’s query already exists in the Query Store but the result set has changed since
the last execution time.

Updating only objects

Alternatively to updating the object, one could want to update the predicate or subject instead.
To show what this could possible mean, we first transcend into the domain of relational
databases and tables and construct an example, similar to the one in [PB08] which illustrates
a mapping between a SQL database table and RDF triples. The Table in 3.7 shows a database
table on the left and its RDF representation on the right. The transformation starts with
defining two prefix URIs, one to be used for subjects and one for predicates. Either prefix
URI contains the table name. The one for the subject is used exclusively for the primary key
(assuming there are no composite keys). We see how id 123 becomes celebN:123 in the RDF
representation and this way preserving the link between table and primary key. Next to the
primary key, we have two other columns lastNAme and occupation. These are represented
as predicates in RDF using the second prefix and thereby also preserving the association
between the same table and its non-key attributes. What is left from the table on the left are
the non-key attribute values and these are simply objects linked to the right subject/IDs and
predicates/attributes in the RDF representation.
We can therefore conclude that updating the subject would either be a table name change, if
we update the prefix URI or primary key value change if we update the part of the URI which
comes after the prefix. In this example we could e.g update the prefix URI of celebN, which
is <http://example.com/DB/Celebrity/>, to <http://example.com/DB/People/>. This would
mean that the table is no longer called Celebrity but People. Both, table name and ID changes
is something that rarely occurs. In the RDF domain former could mean a change of context or
resource.
As we saw that predicates are used to represent table name + attribute we can say that a
predicate update in RDF refers to Data Definition Language (DDL) in the context of relational
tables. In RDF this might be wanted if one wants to switch to another ontology that uses
different terms.
While both component updates might be desired we restrict ourselves to updates on objects
only as this is in our opinion the most common use case and changing the context or ontologies
needs further research which e.g. includes assurance that all triples with a common prefix URI
are updated and not just a subset.

3.1.3 Non-functional requirements

In this section we set three quality goals (this term is taken from the arc42 documentation) or
non-functional requirements to the RDF Data Citation System.

27

3. DESIGN

id lastName occupation

123 Obama author
456 Alonso formula-

1-driver

@prefix celebN <http://example.com/DB/Celebrity/>
@prefix celebP <http://example.com/DB/Celebrity#/>
celebN:123 celebP:lastName "Obama"
celebN:123 celebP:occupation "president"
celebN:456 celebP:lastName "Alonso"
celebN:456 celebP:occupation "formula-1-driver"

Table 3.7: Database table Celebrity (left) and its RDF representation (right)

Compatibility - Replaceability

Alternative algorithms such as checksum computation, normalization approaches, minting
new query PIDs or citation snippet generation must be implementable without limiting
or hazarding the solutions functionalities. System designers may exchange whole system
components, such as RDF store technologies, landing pages and data management tools as
long as the requirements for the components themselves are met.

Efficiency in terms of query performance and triple store memory usage

Adding metadata with respect to versioning to the triple store when performing write op-
erations must be as efficient as possible in terms of storage. This can be measured in the
number of additionally added triples. As saving store might be inversely related with query
performance we want to find a trade-off in terms of efficiency. Whether to aim for better
query performance or less storage consumption is dependent on external factors like storage
capacity and number of citations per hour and should be decided by Data Citation System
designers.

Operability

The designed RDF Data Citation System should be easy to use for all involved stakeholders.
Automation helps improving operability and should be applied wherever possible and thereby
minimize the required user input. Possible applications are automatically collecting the user’s
provenance information and other metadata when minting a dataset, deriving a unique sort
index and sparing the user from providing a primary key or deriving a dataset description from
the dataset and query text.

3.2 RDF* Data Citation Framework

In this section we illustrate and elaborate our RDF* Data Citation Framework. The categorical
building blocks we used to compose our framework do resemble a classical software archi-
tecture stack, that is, a persistence layer, a business logic and a (graphical) user interface.
The modular composition allows system engineers and developers to focus on each module
separately and enhance them or replace them without corrupting other modules/components.
This framework should fulfill the product requirements from the previous section and thus be

28

3.2. RDF* Data Citation Framework

compliant with the recommendations and also promote the achievement of non-functional
requirements, which, however, in the very end depend on the implementation of the data
citation system. The overall idea is to have user interfaces for our stakeholders (researchers
and data operators) where they can publish and access data & metadata or operate on them, a
central system or API comprised of several components that enable persisting and retrieving
specific datasets by several means (versioning, checksums, normalization, ...) and foster
machine-actionability by the use of prevalent formats. In the persistence layer we need two
stores - RDF* store for data and a query store for metadata. The RDF* store as data store is not
an arbitrary choice but is, in fact, the main contributor to versioning RDF data. In Figure 3.2
we give a high-level view of our framework and the components, which we breakdown in the
subsequent sections.

Figure 3.2: RDF Data Citation Framework and its components

3.2.1 RDF* Store Utilities

The RDF* Store Utilities define basic read and write operations to the triple store and a possible
way to implement them to be compliant with R1 and R2 RDA Data Citation Recommendations.
Every write operation must come with additionally added nested metadata triples where a
versioning timestamp (object) is linked to the data triple (subject). The predicate, which does
the linking between subject and object, can be one of following two conceptual properties:
valid_from which defines the start date from which on the new triple is valid and valid_until
which sets an expiration date to the triple. Both terms should preferably be IRIs from the
semantic web. However, further research is needed here and an IRI might be proposed in
future (see 6.2). This kind of statement-level annotation is possible with the use of RDF* to
represent nested triples and SPARQL* to query them, which we put into service in our design.
The example in Table 3.8 shows an RDF* triple set after insert, update and outdate have been
consecutively performed.
Given a timestamp, the read operation (query) uses both aforementioned properties to filter

for triples that lie in between two dates. This implies that all triples must have both versioning

29

3. DESIGN

Table 3.8: Example of a dynamic RDF* dataset that changes over time and is versioned using
RDF*’s nested triples

RDF* set Version

:Obama :occupation "president".
Initial
Version

«:Obama :occupation "president"» :valid_from "2009-01-20 12:00"
«:Obama :occupation "president"» :valid_until "2017-01-20 12:00"
:Obama :occupation "president".

Version
1
(after
insert)

«:Obama :occupation "president"» :valid_from "2009-01-20 12:00"
«:Obama :occupation "president"» :valid_until "2017-01-20 12:00"
:Obama :occupation "author".
«:Obama :occupation "author"» vers:valid_from "2018-01-01 14:53"
«:Obama :occupation "author"» vers:valid_until "9999-12-31 12:00"
:Obama :occupation "president".

Version
2
(after
update)

«:Obama :occupation "president"» :valid_from "2009-01-20 12:00"
«:Obama :occupation "president"» :valid_until "2017-01-20 12:00"
:Obama :occupation "author".
«:Obama :occupation "author"» vers:valid_from "2018-01-01 14:53"
«:Obama :occupation "author"» vers:valid_until "9999-12-31 12:00"
«:Obama :occupation "author"» vers:valid_until "2019-05-06 17:53"
:Obama :occupation "film_producer".
«:Obama :occupation "film_producer"» vers:valid_from "2019-05-06 17:53"
«:Obama :occupation "film_producer"» vers:valid_until "9999-12-31 12:00"
:Obama :occupation "president".

Version
3
(after
outdate)

«:Obama :occupation "president"» :valid_from "2009-01-20 12:00"
«:Obama :occupation "president"» :valid_until "2017-01-20 12:00"
:Obama :occupation "author".
«:Obama :occupation "author"» vers:valid_from "2018-01-01 14:53"
«:Obama :occupation "author"» vers:valid_until "9999-12-31 12:00"
«:Obama :occupation "author"» vers:valid_until "2019-05-06 17:53"
:Obama :occupation "film_producer".
«:Obama :occupation "film_producer"» vers:valid_from "2019-05-06 17:53"
«:Obama :occupation "film_producer"» vers:valid_until "9999-12-31 12:00"
«:Obama :occupation "film_producer"» vers:valid_until "2021-05-06 11:12"

properties attached to them in the triple store. However, if one starts to version a non-empty
triple store, only the newly added triples are annotated with these properties. This is why the
RDF* Store Utilities employs one more function, namely version_all_rows(), which has the
purpose to also version existing triples, before inserting any new ones. We propose two ways
to do this. The first one is to attach a start and an end date to all existing triples, meaning
that two additional metadata triples per data triple are added. For the start date the current
system timestamp could be used and the end date should be an end date that lies far in the

30

3.2. RDF* Data Citation Framework

future. The second approach is to only set the end date and leave out the start date, thus, one
additional metadata triple per data triple. Figure 3.3 illustrates the interface we just discussed.

Figure 3.3: RDF* Store Utilities to enable communication between triple store and user.

3.2.2 Persistent Identification Utilities

The Persistent Identification Utilities component bundles all functions that are discussed
in Section "Persistently Identify Specific Data Sets" in [vUSP16] except for R9 - store query.
Moreover, we added two additional functions, namely describe and create_sort_index to foster
operability and minimize the needed input from users. Describe takes both - dataset and
query - as arguments. While it might be intuitive to take the dataset for knowledge extraction
the query itself can be seen as an description of the dataset already. E.g. if we use a filer
?name = "Obama" one could suggest that this dataset "is about" the former president of the
U.S.A. Create_sort_index only takes the dataset as an argument and ideally returns one unique
sort index. However, there are cases where more than one unique sort indexes are possible and
it is not easily decidable which one to take. An example can be found in Table 3.9. We see that
possible unique sort indexes, which require a minimum number of columns, are (’column2’,
’column4’) and (’column3’, ’column4’). In such cases, any of these offered indexes can be
chosen by the algorithm to minimize user input. Last we have a flexible Metadata constructor
that offers optional arguments from the mandatory fields of DataCite’s Metadata Schema 3

plus a dataset description and further arguments to be used for additional Metadata. These
are all utilities that can and should be employed in the query builder algorithm and they are
summarized in Figure 3.4.

3https://schema.datacite.org/meta/kernel-4.3/doc/DataCite-MetadataKernel_
v4.3.pdf

31

https://schema.datacite.org/meta/kernel-4.3/doc/DataCite-MetadataKernel_v4.3.pdf
https://schema.datacite.org/meta/kernel-4.3/doc/DataCite-MetadataKernel_v4.3.pdf

3. DESIGN

Table 3.9: Theoretical example of a dataset where multiple unique sort indexes are possible.

column1 column2 column3 column4

1 1 1 1
1 1 1 2
1 2 1 3
1 1 2 3
1 1 1 5

Figure 3.4: RDF Data Persistent Identification Utilities to be used in the query builder algo-
rithm.

3.2.3 Query Store Utilities

The Query Store Utilities, similar to RDF* Store Utilities provide functions for read and write
operations that can be issued against the Query Store. However, the difference is that the
read and write statements are predefined with certain parameters being the only variables
within the statements. Functions and parameters are shown in Figure 3.5. get_query retrieves
a query and its metadata by the query PID. Subsequently, this information can be presented
on a landing page, as recommended in R12 and the query can be used for re-execution.
get_last_execution retrieves a query and its metadata by the query checksum. The purpose of
this function is to compare a new query and the returned live dataset, that a researcher is about
to mint, with the latest version of it (the last execution), as one query_checksum can have
multiple PIDs. store stores query and metadata. If the query is new, all the associated metadata
(query-specific & dataset-specific metadata, provenance metadata, ...) is stored. If the query is
found in the query store but the result set changed, only the result set relevant metadata is

32

3.2. RDF* Data Citation Framework

stored and attached to a new query PID. The schema in Figure 3.6 depicts a normalized query
store schema where information that change more frequently, which are result set related
information, citation metadata and the timestamped query, are found in a separate table
query_satellite. Query related metadata are less prone to changes, which we collect in the
query_hub table.

Figure 3.5: Query Store Utilities

Figure 3.6: Normalized Query Store Schema

3.2.4 Prologue Handler

The Prologue Handler is an optional component which provides useful functions to accommo-
date for the usage of namespaces (base and prefix declarations) in SPARQL. This component
is not designed for end users, thus, actors we saw in Figure 3.1 but rather for system engineers

33

3. DESIGN

and developers which might want to use this framework to implement an RDF Data Citation
System. Prologues in SPARQL queries are optional and each query which uses them can be
rewritten into a "prologue-free" form. This comes in handy when we want to normalize queries
and thereby resolve prefixes. Resolving prefixes can be seen as a normalization step. This is
because prefixes are just arbitrary labels which can be different between two queries but yield
the same IRIs when resolved. Another use case developers might encounter is to split prologue
and query body in order to operate on them separately. Prefixes could then be extended with
additional versioning-related prefixes and re-attached to the query. Also note that we store
query prefixes in the Query Store (see 3.6). If migrating to a new ontology it could suffice to
just modify the prefix IRIs, which is also why we have them separated from the query body.
Alternatively, custom query parsers or regular expressions could be used to inject code either
in the prologue or query body section. We cast the discussion above into an interface displayed
in Figure 3.7 and provide an example in Figure 3.8 of how these functions could be used to
add prefixes that might be used for Versioning and Timestamping. Briefly, the example we
show first splits a query (upper left) into two parts - Prologue and Query Body (upper rights)
whereas the query is stored as string and the prefixes and corresponding IRISs in a dictionary.
Then we extend the dictionary by two prefixes vers and xsd (lower left) and attach them to
the original query (lower right). What would be left as a further step is to transform the query
body into a timestamped query body where the newly defined prefixes would actually be used.
This, however, we leave for the example in Section 4.1.3 where we treat timestamped queries
in more detail.

Figure 3.7: Prologue handler interface

3.2.5 Query Handler

The Query Handler can be considered as the core component of our framework which directly
relates to the use cases Mint RDF Dataset and Retrieve Minted Dataset. It makes use of Query
Store Utilities, and Persistent Identification Utilities and RDF* Store Utilities to return citation
snippets, metadata and minted datasets via re-execution. As the recommendations go, citing
datasets means persistently identifying them. That is why recommendations R4-R10 have to
be part of the query handler algorithm. To include them, we can use the component Query
Store Utilities for R9 and Persistent Identification Utilities for remaining ones. Dataset utilities
like Sort Dataset, Compute Result Set Checksum, Create Sort Index and Describe Dataset need
the dataset as input, which we get by executing read(query, timestamp) from the RDF* Store
Utilities. The current system timestamp can be passed to the timestamp parameter which,
in fact, means querying live data. Theoretically, there could be updates made to the triple

34

3.2. RDF* Data Citation Framework

query = "
PREFIX ex: <http://example.com/>
select ?s ?p ?o
where {

?s ?p ?o .
filter(?s = ex:Obama)

}"

prefixes = {ex: "<http://example.com/>"}

query_body = "
select ?s ?p ?o
where {

?s ?p ?o .
filter(?s = ex:Obama)

}"

prefixes =
{ex: "<http://example.com/>",
vers: "<http://example.com/versioning/>",
xsd: "<http://www.w3.org/2001/XMLSchema#>"}

query_body = "
select ?s ?p ?o
where {

?s ?p ?o .
filter(?s = ex:Obama)

}"

query = "
PREFIX vers: <http://example.com/versioning/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ex: <http://example.com/>

select ?s ?p ?o
where {

?s ?p ?o .
filter(?s = ex:Obama)

}"

Figure 3.8: Prologue handler example usage to add Versioning and Timestamping prefixes

store between the point the system timestamp was returned and the query execution. This is,
however, not a problem as the updates receive a later timestamp. The utilities we discussed
so far can be fit into a procedure. But when it comes to storing the query and its metadata
into the query store (R9) a decision logic needs to be set up which matches the requirements
stated in Section 3.1.2. Table 3.10 describes cases and actions for R9 - store query. With
generate_query_pid from Persistent Identification Utilities we only compute a technical query
PID which needs to be further processed and turned into an URL that resolves to a landing
page. To do this we included the parameter create_identifier(query_pid) whereas we did not set
any constraints on how to create the URL. This URL should be assigned to DataCite’s identifier
(see 4.1.3).

Table 3.10: Cases as describe in Section 3.1.2

Case Tables with a new entry

The dataset’s query already exists in the Query Store and
the result set has not changed since the last time.

{}

The dataset’s query is new and a PID has just been
minted.

{query_hub, query_satellite}

The dataset’s query already exists in the Query Store but
the result set has changed since the last time.

{query_satellite}

Once a query PID has been minted for the dataset it can be retrieved using the very same

35

3. DESIGN

query PID. To achieve this we can use two components we already outlined, namely Query
Store Utilities for retrieving metadata including the query and RDF* Store Utilities for retrieving
the dataset via re-execution. The functions should return both - dataset and metadata - to the
caller in a machine-actionable format, such as json. As we see in Figure 3.9 the query handler
component is rather short in terms of offered functions but vital for the RDF Data Citation
Framework.

Figure 3.9: Query Handler interface

3.2.6 Query Builder UI

In our design the term Query Builder UI refers to a user interface which researchers use to
create datasets and mint a resolvable query PID for it. In this section we define obligatory and
optional features this component must include. The first and most important feature is the
query editor which allows for writing queries and executing them. As described in Section 3.1.2
- Dataset source, we must constrain our dataset to come from an accessible and queryable RDF
store. This query editor does not necessarily need to be a text editor for SPARQL queries but
can also be implemented as a graphical query builder. In this case, the graphical query must
be translated into a SPARQL query nonetheless. In conjunction with a query editor we need
either a result set viewer or the possibility to download the result set so that the user can verify
the result sets correctness. Only then a user can issue a command to mint a query PID for the
dataset which triggers mint_query_pid from the Citation component and returns a citation
snippet. As seen in Section 3.2.5 the mint_query_pid function also requires metadata as input
and therefore the Query Builder UI needs a metadata interface. Here the system engineers
have the option to either let the user populate required metadata field or automatically derive
them (desired). Latter can be tackled by first grouping metadata into a way that attributes
that share common or similar sources are assigned to the same group and then treating each
group separately. Table 3.11 shows our choice of metadata categories & mapped metadata
attributes from the MetaData constructor of the Persistent Identification Utilities component
and possible sources from where these attributes can be derived. The last mandatory feature
is a viewer for the returned citation snippet.

A well-engineered system should inform users about their actions and wrong inputs. That is
why we highly recommend to return following additional information to the user:

• Did I provide a unique sort index in the "order by"-clause of the query?

• Did I, by accident, use multiple order-by clauses? (In SPARQL this is allowed compared
to most known SQL languages)

36

3.2. RDF* Data Citation Framework

Table 3.11: Metadata attributes mapped to categories and sources they could be automatically
collected from

Metadata category Attribute Metadata source

User-specific creator Not considered in our design. We can-
not know who initially wrote the SPARQL
query.

publisher From the publisher’s account
Dataset-specific title Inferred from the dataset and query text

resource type "Dataset" is a resourceTypeGeneral in Dat-
aCite’s Metadata schema. The subtype
could be inferred from the dataset and
query text.

identifier Returned by a function that creates a per-
sistent landing page URL from the query
PID.

result set description Could be inferred from the dataset and
query text.

Citation-specific Publication year Execution timestamp.

• Did I provide an "order-by"-clause at all?

• Is this a new query PID?

• If the query is not new: Did the dataset change since the last execution?

3.2.7 Landing Page

The landing page is a component which we can directly link to the use case retrieve minted
dataset and the R11 recommendation. We already expressed our view in Table 3.4 that a
landing page is recommended but not necessary if we look at the use case Retrieve minted
dataset in a narrow way, thus, if we assume that researchers just want to access data and
metadata in any possible way by following a PID from a citation snippet. This PID could
therefore resolve to a repository where the dataset and metadata have been uploaded or
trigger a download. However, there are a few issues with such alternative approaches. Former
approach generates a high workload as possibly terabytes of data must be uploaded. It also
increases redundancy as the dataset would be available twice - once in the Triple Store and
once in a new directory. Latter one again forces the user to wait until the download is finished,
which can take unnecessarily long if the dataset is big enough. This is why we also stick to the
data retrieval via query re-execution and presentation on the landing page as this seems to be
the most efficient way to access data and metadata.
This information can be retrieved using the retrieve function from the Citation component
(see Section 3.2.5). In our framework we do not set any restrictions on the landing page visual

37

3. DESIGN

design. We, though, suggest it to be a web page that can be accessed through a resolvable
query PID (e.g. DOI) via any browser.
The Landing page component is also the right place to include access control. Data citation is
not restricted to research data but this idea can also be implemented by corporations with
sensitive data where datasets need to be persistently identifiable, e.g. to reproduce certain
reports, but should only be accessible by certain user groups. DataCite’s metadata attributes
publisher or creator can be used for this purpose and mapped to these user groups. The
component diagram in Figure 3.10

Figure 3.10: Landing page and access control

3.2.8 Data Management

Data management is a component that comes on top of RDF* Store Utilities and can be seen
as a UI for data operators. It can be implemented either as a GUI or CLI. System engineers
are free to add more functionality to the Data Management interface than what is provided in
RDF* Store Utilities. This extra functionality can encompass job schedulers, batch and stream
processing or schema and ontology validations. Data operators use this component to curate
the RDF* store whereas versioning and timestamping operations are abstracted from them as
they are handled within the RDF* Store Utilities component.

3.3 Compliance with RDA Data Citation Recommendations

In Section 3.1.1 we expressed recommendations as product requirements to the RDF* Data
Citation Framework. In Table 3.12 we enumerated all recommendations in the first column
and explain in the second column how they were considered in the framework. We employed
RDF* as data representation model together with SPARQL* as query language in RDF* Store
Utilities as a means to R1 and R2. To store and retrieve query & metadata (R3, R9) we designed
the Query Store Utilities component. To cover recommendations R4-R8 we packed various

38

3.4. Summary

functions into Persistent Identification Utilities. These functions are then used by the Citation
component to persistently identify a specific dataset and by the end generate a new or return
an existing Citation Snippet (R10). Moreover, this component offers users a function to
retrieve data & metadata including query from the RDF* store and query store respectively in
a machine-actionable way (R12). We fulfill R11 - Landing Page using a component of the same
title. R13 & R14 are not covered by our framework.

3.4 Summary

In this chapter we designed an RDF* Data Citation Framework that is compliant with R1-
R12 of the recommendations. We turned these recommendations into product requirements
and designed functions and features to meet them. Furthermore, we outlined additional
product and non-functional requirements (quality goals) to aim for a comprehensive system
where not only researchers but also data operators are involved. We broke down necessary
components from the high-level view and used depictions of interfaces and component
diagrams to show their functionalities. Last we assured that the framework design is compliant
with the recommendations.

39

3. DESIGN

Table 3.12: RDA Data Citation Recommendations and how they were fit into the RDF* Data
Citation Framework

Recommendation Fit within the framework

R1 – Data Versioning We design the RDF* Store Utilities component in a way to en-
able versioning via statement-level annotations using RDF* and
SPARQL*.

R2 – Timestamping The Write operations in RDF* Store Utilities use the metadata at-
tributes valid_from and valid_until to timestamp any write opera-
tion. The read operation in RDF* Store Utilities queries data where
the provided timestamp lies between valid_from and valid_until.

R3 – Query Store Facili-
ties

Query Store Utilities offers functions to store and retrieve queries
& associated metadata.

R4 – Query Uniqueness We design functions normalize_query(original_query) and com-
pute_query_checksum(normalized_query) as Persistent Identifica-
tion Utilities to ensure query uniqueness. These utilities can be
used within the query handler algorithm.

R5 – Stable Sorting We argued that stable sorting needs a unique sort index either
provided by the user or, if possible, derived from the dataset.
Therefore, we define two functions, namely, create_sort_index and
sort_dataset, which our found in Persistent Identification Utilities.
Ideally, the publisher should provide a unique sort index already
in the query’s "order-by" clause.

R6 – Result Set Verifica-
tion

To compute a result set checksum we simply use com-
pute_resultset_checksum from Persistent Identification Utilities.

R7 – Query Timestamp-
ing

We can generate a timestamped query by simply providing the
query and the timestamp to function timestamp_query(query,
timestamp from Persistent Identification Utilities.

R8 – Query PID To compute a technical query PID, we make use of function gener-
ate_query_pid(query_checksum, timestamp) from Persistent Iden-
tification Utilities.

R9 – Store Query We design the component Query Store Utilities which offers the
function store(query, metadata) to be compliant with R9.

R10 – Automated Cita-
tion Texts

To print out a citation text we design the mint_query_pid function
that among others takes metadata as an argument, whereas it is
the user’s choice which citation metadata should result into the
citation snippet.

R11 – Landing Page In our design, the landing page sticks to the recommendation R11.
We do not set any restrictions on the visuals. However, we did
include an access control component targeting corporations so
that only certain user groups can access the data and metadata.

R12 – Machine Action-
ability

The machine actionability is reached through the output of func-
tion retrieve from the Citation component which next to the
dataset returns metadata in a machine-readable format, such
as JSON. This very same data can be parsed and presented in a
human-readable way.

R13 and R14 – Technol-
ogy Migration and Veri-
fication

We discussed Technology Migration and Verification in 3.3 and
covered some possible migration cases. However, in Section 3.1.1
we mentioned that we do not incorporate these recommendations
into our framework design by means of functions or features of
specific components.

40

CHAPTER 4
Implementation

We implemented the prototype in such a way that each of the components described in
Chapter 3 has its corresponding python module. Hence, in this chapter, we discuss specific
modules and use the term "modules" instead of components as it aligns better with the terms
used in the language of our choice, namely Python. For each module in Section 4.1 we give
an overview, provide implementation details in form of code snippets, lay out dependencies
to other modules and show how it conforms to the proposed RDF* Data Citation Framework.
In Section 4.2 we write about how we built and distributed our python API via Anaconda and
Github.

4.1 RDF* Data Citation API

Instead of component, we are going to use the term module hereinafter which comes from
the programming language that we used, namely Python. In general, the components from
the high level view in Figure 3.2 match our API modules from this chapter. However, the
nested components "Metadata Handler" and "SPARQL statement wrapper" were not directly
translated into modules. We used a python class inside a module with a constructor as interface
for former and text templates together with replace functions for latter component.

4.1.1 rdf_star module

The rdf_star module implements all functions from the RDF* Store API component and two
distinct implementations of versioning where one has runtime performance and the other has
low storage space consumption benefits. For convenience, we also included two additional
functions, namely reset_all_versions and _delete_triples which are helpful when testing the
solution to reset the database to an initial state. For each write operation (insert, update,
outdate) we use SPARQL* templates that ensure that operations are being timestamped on
statement-level. Each template has placeholders where the actual write operation is fit. The

41

4. IMPLEMENTATION

read operation makes use of the persistent_id_utils module to create a timestamped query
which is then sent to GraphDB’s (post) endpoint to retrieve the data. In the following we
illustrate and reveal how we used SPARQL* to implement each of the read and write operations
and also explain the two different versioning modes, namely Q_PERF and SAVE_MEM. We also
answer the question how many parameters are needed to connect this module to the examined
RDF stores thereby get a fully operational RDF* interface for read and write operations.

SPARQL service endpoints

Before we dive into the implementations of individual read and write statements from our
framework, we want to outline a fundamental concept that is used within every of these
operations and which makes this implementation work with all RDF stores. The goal is to
make read and write statements executable against any RDF store by finding an interface
which is common for every RDF store. The interfaces that we found are usually referred to
as SPARQL service endpoints and come from the idea of federated queries 1 In Listing 4.1 we
present such a query which uses the SERVICE keyword to fetch triples from a remote graph.
The argument that SERVICE takes is the location of the remote graph. If we break down the
location we provided as an argument, we can easily read out that the remote graph comes
from a respository named DataCitation_FHIR and runs on localhost with port 7200. In fact,
this is the read-endpoint returned by GraphDB for this repository. We tested this query by
executing it from Stardog’s2 query editor to get data from GraphDB 3. The same principle
can be applied to make write operations, just in this case, there is usually a second endpoint.
Moreover, authentication can be required for some RDF stores. SPARQLWrapper is a library
that provides the functionality to execute queries against remote triple stores with or without
basic or digest authentication. This is the core library that we use in our implementation.

In practice, we tested our prototype with three data backends 4,5,6 and were successful along
the connectivity dimension. However, we were not successful with Stardog in terms of re-
trieving data. This might be due to incompatible interfaces between SPARQLWrapper and
Stardog. Further investigation is needed here. In the following sections we discuss read and
write operations that can be executed once the service endpoints (and credentials) are set.

Listing 4.1: Federated query

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX fhir: <http://hl7.org/fhir/>
select ?s ?p ?o
where {

SERVICE <http://128.131.205.115:7200/repositories/DataCitation_FHIR> {
?s ?p ?o .
filter(?s = fhir:Identifier)

1https://www.w3.org/TR/sparql11-federated-query/
2https://www.stardog.com/
3https://www.ontotext.com/products/graphdb/
4https://www.ontotext.com/products/graphdb/
5https://jena.apache.org/
6https://www.stardog.com/

42

https://www.w3.org/TR/sparql11-federated-query/
https://www.stardog.com/
https://www.ontotext.com/products/graphdb/
https://www.ontotext.com/products/graphdb/
https://jena.apache.org/
https://www.stardog.com/

4.1. RDF* Data Citation API

}
} order by ?s ?p ?o

Insert

As mentioned in Section 3.2.1 we make use of the two attributes valid_from and valid_until to
mark a start and end date of a triple. When we insert a triple we know what the start date is but
we do not know the end date. It is valid until further notice. That is why we choose an artificial
end date. The two attributes need to be enhanced with a prefix as in RDF stores we are working
with IRIs. We constructed the unique prefix IRI <https://github.com/GreenfishK/DataCitation/versioning/>
which is our Github repository for this project plus "/versioning/".
Listing 4.2 shows the template we use for insert with the placeholders marked as {number}.
This snippet demonstrates the employment of SPARQL* and its statement-level annotation
capability. SPARQL’s function now() creates a valid_from date as of execution time. The
valid_until date is an artificial date and is set for all triples using insert_all_rows function
(See later in Section 4.1.1). Upon calling insert(new_triples, prefixes) the placeholders get
replaced with the actual entities from the provided triple. For each triple one insert statement
is executed against the triple store. In future we might consider bulk inserts.
In Listing 4.3 we demonstrate how the template is populated if we execute the insert function
and thereby plug in a new triple ex:Obama ex:occupation "author" with ex:<http://example.com/>
as prefix. Notice how two additional prefixes vers and xsd were inserted by the use of the prefix
handler (see later in Section 4.1.5).

Listing 4.2: Insert template for versioned triples

Prefixes
{0}

Insert statement
insert {
{1} {2} {3}.
<<{1} {2} {3}> vers:valid_from ?newVersion.
<<{1} {2} {3}>> vers:valid_until "9999-12-31T00:00:00.000+02:00"^^xsd:dateTime.
}
where {

BIND(xsd:dateTime(NOW()) AS ?newVersion).
}

Listing 4.3: Filled out insert template example for versioned triples

Prefixes
PREFIX vers: <https://github.com/GreenfishK/DataCitation/versioning/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ex: <http://example.com/>

Insert statement
insert {

ex:Obama ex:occupation "author".
<<ex:Obama ex:occupation "author">> vers:valid_from

?newVersion.
<<ex:Obama ex:occupation "author">> vers:valid_until

"9999-12-31T00:00:00.000+02:00"^^xsd:dateTime.
}

43

4. IMPLEMENTATION

where {
BIND(xsd:dateTime(NOW()) AS ?newVersion).

}

Update

We implemented the update function to update the object of a provided triple and in fact
replace it with a new object. The old triple does not get deleted, as this would be against
the versioning principle, but gets outdated. Simultaneously, a triple with the new object gets
inserted and versioned. So, updated can be seen as a combination of insert and outdate where
it does not matter which one gets executed first. The template that incorporates this logic can
be inspected in Figure 4.4.
We continue our example from the previous section in Figure 4.5. Obama now has a new job
as a film producer as he is tired of writing books. That is why we need to update his occupation
"author" by replacing the artificial end date of this triple with the current timestamp, inserting
a new triple with "film_producer" as object, and versioning this new triple with by setting
valid_from to the current timestamp and valid_until to the artificial end date.

Listing 4.4: Update template for versioned triples

prefixes
{0}

delete {
<<?subjectToUpdate ?predicateToUpdate ?objectToUpdate>> vers:valid_until

"9999-12-31T00:00:00.000+02:00"^^xsd:dateTime
}
insert {

outdate old triple with date as of now()
<<?subjectToUpdate ?predicateToUpdate ?objectToUpdate>> vers:valid_until ?newVersion.
update new row with value and timestamp as of now()
?subjectToUpdate ?predicateToUpdate ?newValue. # new value
assign new version.
<<?subjectToUpdate ?predicateToUpdate ?newValue>> vers:valid_from ?newVersion

;vers:valid_until "9999-12-31T00:00:00.000+02:00"^^xsd:dateTime.
}
where {

bind({1} as ?subjectToUpdate)
bind({2} as ?predicateToUpdate)
bind({3} as ?objectToUpdate)
bind({4} as ?newValue). #new Value
versioning
<<?subjectToUpdate ?predicateToUpdate ?objectToUpdate>> vers:valid_until ?valid_until.
filter(?valid_until = "9999-12-31T00:00:00.000+02:00"^^xsd:dateTime)
BIND(xsd:dateTime(NOW()) AS ?newVersion).
nothing should be changed if old and new value are the same
filter(?newValue != ?objectToUpdate)

}

Listing 4.5: Filled out update template example for versioned triples

prefixes
PREFIX vers: <https://github.com/GreenfishK/DataCitation/versioning/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ex: <http://example.com/>

44

4.1. RDF* Data Citation API

delete {
<<?subjectToUpdate ?predicateToUpdate ?objectToUpdate>> vers:valid_until

"9999-12-31T00:00:00.000+02:00"^^xsd:dateTime
}
insert {

outdate old triple with date as of now()
<<?subjectToUpdate ?predicateToUpdate ?objectToUpdate>> vers:valid_until ?newVersion.
update new row with value and timestamp as of now()
?subjectToUpdate ?predicateToUpdate ?newValue. # new value
assign new version.
<<?subjectToUpdate ?predicateToUpdate ?newValue>> vers:valid_from ?newVersion

;vers:valid_until "9999-12-31T00:00:00.000+02:00"^^xsd:dateTime.
}
where {

bind(ex:Obama as ?subjectToUpdate)
bind(ex:occupation as ?predicateToUpdate)
bind("author" as ?objectToUpdate)
bind("film_producer" as ?newValue). #new Value
versioning
<<?subjectToUpdate ?predicateToUpdate ?objectToUpdate>> vers:valid_until ?valid_until .
filter(?valid_until = "9999-12-31T00:00:00.000+02:00"^^xsd:dateTime)
BIND(xsd:dateTime(NOW()) AS ?newVersion).
nothing should be changed if old and new value are the same
filter(?newValue != ?objectToUpdate)

}

Outdate

To outdate a triple means that it is not be returned anymore when we query live data or data
that is past the outdate event. This is established by simply changing the artificial end date
to a system timestamp as of execution time. "Changing" means deleting the annotation and
appending a new annotation to the same triple. Trivially, only triples from the live data subset
can be outdated. Live data can be easily filtered as all triples that are marked with an artificial
end date correspond to it.
In Listings 4.6 and 4.7 we show the template and its population at runtime respectively and
thereby finish our story line with Obama who retires at this point. Therefore, we outdate the
inserted triple with "film_producer" as the object by actualy deleting the metadata triple with
the artificial end date and inserting a new metadata triple with the current timestamp as end
date. This means, that Obama currently has no occupation and querying live data to find out
Obama’s current occupation would return an empty dataset.

Listing 4.6: Outdate template for versioned triples

prefixes
{0}

Delete and insert statements
delete {

<<?subjectToOutdate ?predicateToOutdate ?objectToOutdate>> vers:valid_until
"9999-12-31T00:00:00.000+02:00"^^xsd:dateTime

}
insert {

outdate old triples with date as of now()
<<?subjectToOutdate ?predicateToOutdate ?objectToOutdate>> vers:valid_until ?newVersion.

45

4. IMPLEMENTATION

}
where {

bind({1} as ?subjectToOutdate)
bind({2}as ?predicateToOutdate)
bind({3} as ?objectToOutdate)
versioning
<<?subjectToOutdate ?predicateToOutdate ?objectToOutdate>> vers:valid_until
"9999-12-31T00:00:00.000+02:00"^^xsd:dateTime .
BIND(xsd:dateTime(NOW()) AS ?newVersion).

}

Listing 4.7: Filled out update template example for versioned triples

prefixes
PREFIX vers: <https://github.com/GreenfishK/DataCitation/versioning/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ex: <http://example.com/>

Delete and insert statements
delete {

<<?subjectToOutdate ?predicateToOutdate ?objectToOutdate>> vers:valid_until
"9999-12-31T00:00:00.000+02:00"^^xsd:dateTime

}
insert {

outdate old triples with date as of now()
<<?subjectToOutdate ?predicateToOutdate ?objectToOutdate>> vers:valid_until ?newVersion.

}
where {

bind(ex:Obama as ?subjectToOutdate)
bind(ex:occupation as ?predicateToOutdate)
bind("film_producer" as ?objectToOutdate)
versioning
<<?subjectToOutdate ?predicateToOutdate ?objectToOutdate>> vers:valid_until
"9999-12-31T00:00:00.000+02:00"^^xsd:dateTime .
BIND(xsd:dateTime(NOW()) AS ?newVersion).

}

Versioning Modes

In Section 3.2.1 we already introduced two possible ways how to initialize versioning in a triple
store. The question boils down to whether to initially include a start date on the triples that
existed prior to versioning where we potentially do not know the real start date. Including both,
start and end date makes queries retrieving a specific dataset version simpler compared to the
second approach, which is to initially only have an end date on triple level. Latter approach,
however, saves memory as only one additional metadata triple per data triple is added. We
included both approaches in the rdf_star module and called them Versioning Modes. The
function version_all_rows asks for either Q_PERF MEM_SAVE which correspond to the first
and second approach, respectively. Depending on the versioning mode this function either
sends the insert statement in Listing 4.8 or the one in Listing 4.9 to the RDF store update
endpoint to version all triples in the triple store.

46

4.1. RDF* Data Citation API

Listing 4.8: Query performance ver-
sion_all_rows

{prefixes}
insert
{

<<?s ?p ?o>> vers:valid_from
?currentTimestamp.
<<?s ?p ?o>> vers:valid_until
"9999-12-31T00:00:00.000+02:00"
^^xsd:dateTime.

}
where
{

?s ?p ?o .
BIND(xsd:dateTime("{1}"^^xsd:dateTime)
AS ?currentTimestamp).

}

Listing 4.9: Memory saving ver-
sion_all_rows

{prefixes}
insert
{

<<?s ?p ?o>> vers:valid_until
"9999-12-31T00:00:00.000+02:00"
^^xsd:dateTime.

}
where
{

?s ?p ?o .
}

Next we explain how queries that employ versioning (also called timestamped queries) are
affected by these two versioning modes. Let us first describe the basic idea of our timestamping
queries approach. Each SPARQL query has a basic graph pattern (BGP) which consists of triple
statements. These triple statements can be considered as joins like in relational SQL. If we
think of joining tables with versioned data where the timestamp is part of the primary key we
need to include the timestamp attribute in every JOIN-condition where tables are joined. This
effectively means for SPARQL that we need to narrow down the set of data triples for each triple
statement by using their versioning labels, valid_from and valid_until, as additional triple
statements combined with a filter to select only those triples where the provided timestamp
lies in between the start and end date. This must be done inside every basic graph pattern,
which can occur multiple times and be nested.
Code snippets in Listings 4.11 and 4.10 show the extensions templates that we need to attach
to every BGP. We see that in the Q_PERF mode we need to provide two nested triple statements
for the versioning and one filter to state that the time of execution must lie somewhere between
the start and end date. In the MEM_SAVE mode we need to lower the restrictions on the nested
triple statement which carries the valid_from by saying that it is optional. The filter operation
splits into two filter operations: One that check whether execution timestamp lies before the
end date and one that goes hand in hand with the optional statement, asking for the execution
timestamp to be after the valid_from date but only if such a date exists. As the MEM_SAVE
mode uses a left join we assume that the Q_PERF mode is faster, hence the name. In the
Section 4.1.3 we show an example of a timestamped query where these versioning extensions
are put into use.

47

4. IMPLEMENTATION

Listing 4.10: Query performance SPARQL
template

<<{datatriple}>> vers:valid_from
{valid_from}.
<<datatriple>> vers:valid_until
{valid_until}.
filter(?valid_from <= ?TimeOfExecution &&
?TimeOfExecution_{BGP_index} < ?valid_until)

Listing 4.11: Memory saving SPARQL tem-
plate

<<{datatriple}>> vers:valid_until
{valid_until}.
filter(?TimeOfExecution_<BGP_index> <
{valid_until})
optional {<<{datatriple}>>>
vers:valid_from {valid_from}.}
filter (!bound({valid_from}) ||
{valid_from} <= ?TimeOfExecution_{BGP_index})

4.1.2 query_store module

The query_store module implements all functions and the database schema described in
the design chapter. We use python’s sqlite3 as lightweight query storage and sqlalchemy as
database API. Let us briefly describe each of these functions.
The store function, next to storing query and metadata, implements a case distinction for
queries that are new and those that are not. The decision whether a query is new or not
happens outside of this function, thus, it is a flag that needs to be set by the caller. As already
mentioned in Section 3.2.3 we use the table query_hub to collect information that are valid
for the query even if the dataset changes after a query PID has been minted. We write to this
table only if the query is new. Additionally, we insert a row into query_satellite if the query is
not new to update dynamic metadata (result set checksum, query PID, timestamped query,
publisher, ...).
get_query retrieves query and metadata by the query’s PID. Here we get all the information
from both query store tables.
get_last_execution is what we need to return the latest available information to a stored query.
Here we use the query’s checksum to find the query in query_hub and then retrieve the latest
metadata for that query by last_execution_timestamp. We use latter attribute to retrieve the
associated row from the query_satellite table.

4.1.3 persistent_id_utils module

Next to the functions from the design chapter we employ, among other helper functions, one
that is crucial for query normalization and query timestamping as it revolves around SPARQL’s
query algebra 7 which was a huge research focus during the implementation. We outline its
usage in the subsequent Sections Timestamp query and Normalize query and In the remaining
sections we shortly explain basic ideas of the other utilities and provide code snippets where
needed.

7https://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html

48

https://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html

4.1. RDF* Data Citation API

Normalize query

To normalize a query one first needs to identify equivalent semantics, thus, different ways
to write a query without changing the outcome. Common examples are labels like variable
names and prefixes, optional syntax like brackets or specific keywords and abbreviations.
Specifically in SPARQL we have different types of paths, such as sequence paths, inverted
paths and alternative paths. These can all be rewritten using only triple statements and logical
operators. Then we also have a few options to filter for data where equal filter expressions are
seemingly hard to check for equality. For latter, consider the two equivalent queries in Listings
4.12 and 4.13. To normalize what is inside the concat function we would need to employ
different techniques that actually compute the results of these expressions and then compare
them. That is why we limit the query normalization function to the equivalent expressions
described Table 4.1. This table aims to capture semantics and structures that are commonly
used in general but more specifically to simplify queries, e.g. by leaving out the where clause,
writing "a" instead of "rdf:type" and using sequence paths. To each equivalent expression we
add normalization measures in Table the second column which we perform when we call the
function normalize_query_tree. The suffix "tree" in the function name refers to the query’s
"SPARQL algebra tree" which is the main tool we use for normalization and we are going to
discuss it in the following lines.

Listing 4.12: Example query

select ?x ?y {
?x ?y ?o
filter(?o = concat(str(12 + 4),

"abc"))
}

Listing 4.13: Equivalent example query

select ?x ?y {
?x ?y ?o
filter(?o = concat(str(1 + 15),

"ab",
"c"))

}

SPARQL queries can be broken down into individual elements and these elements can be fit
into an n-ary tree, where the number n could be defined by the number of triples or variables
as either are nodes in such a tree. Once we have such a structure we can traverse the tree and
perform operations on existing nodes or insert new nodes into the tree. In SPARQL algebra
there is a well-defined grammar in EBNF notation8. We can therefore set conditions for specific
nodes while traversing the tree and perform our normalization measures. To get such a tree
we translate the query using python’s RDF library rdflib. After normalization we translate the
query tree back into query text and save either in the query store.
Let us look at a simple example query 4.14 and its query algebra in 4.15. The query tree
reveals how all the query elements are nested into the tree. Usually, in the leaf nodes we find a
basic graph pattern with triple statements which also might encompass paths. We can find it
notated as p = BGP in the tree. On the same level we have a RelationalExpression node, which
is the expression in our filter. Both, the BGP and the expression are filter inputs in the tree
representation. The BGP being an input to the filter expression might be a bit counter-intuitive

8https://www.w3.org/TR/sparql11-query/#grammar

49

https://www.w3.org/TR/sparql11-query/#grammar

4. IMPLEMENTATION

Table 4.1: Equivalent SPARQL expressions and normalization measures

Semantically equivalent SPARQL phrases Normalization measures

The WHERE clause is optional. A where clause is always inserted.
rdf:type" predicate can be replaced by "a". rdf:type is always replaced by "a".
If the same subject is used multiple times in
subsequent triple statements (separated by
a dot) it can be left out in all the subsequent
triple statements where the subject occurs.
Instead of the subject variable name a semi-
colon is written in subsequent triple state-
ments where the same subject as in the first
statement should be used.

Triples are always stated explicitly without
leaving out the subject.

The order of triple statements has no effect
on the query semantics.

Triple statements are ordered by the num-
ber of bindings. In cases where triple state-
ments have equal number of bindings this
might yield two different permutations of
triple statements between two queries.

Aliases via BIND keyword just rename vari-
ables but they do not affect the query result.

Aliases are removed if they are used to re-
name variables. They are not removed if they
are used to label more complex expressions.

Variable names have no effect on the query
semantics.

Variables in the query tree are replaced by
letters from the alphabet. Only up to 26 vari-
ables are supported.

Finding variables that are not bound can
be written in two ways: 1. with the OP-
TIONAL keyword adding the optional triple
combined with filter condition !bound(?var);
2. with "filter not exists (triple statement)".

"filter not exists triple statement" expres-
sions are converted into the "filter + !bound"
expression.

Inverting paths can be achieved in following
ways: 1. Explicitly stating two or more triple
statements. 2. Using the following syntax: ?x
prefix:predicate / ˆprefix:predicate ?y

Inverted paths are resolved to explicit triple
statements.

Sequence paths can reduce the number of
triples in the query statement and are com-
monly used. They can also be rewritten to
common triple statements.

Sequence paths are resolved to explicit triple
statements

Prefixes are just labels and they are replace-
able by any allowed char sequence without
impacting the query semantics.

Prefixes are resolved and full resource names
are stated.

50

4.1. RDF* Data Citation API

but we can think of it as the filter being applied on the BGP, which makes sense. On the same
level as the Filter node we have our projection variables stored in the PV node. Filter and
PV are passed over to Project, whereas PV is always part of the Project node. To reconstruct
the query text we could stop at this level as the higher node SelectQuery, which redundantly
includes the same PV set, is not necessary anymore. This is because only select queries can
have project variables as the other SPARQL query types ASK, CONSTRUCT and DESCRIBE
do not have any project variables at all. Note also that the node _vars is not needed as it also
carries redundant information. So far, we have found this to be true for all our test queries
(see on our Github page 9)

Listing 4.14: Example query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

select ?x ?y {
?x foaf:knows / ^foaf:knows ?y
FILTER(?x != ?y)

}

Listing 4.15: Example query tree

SelectQuery(
p = Project(

p = Filter(
expr = RelationalExpression(

expr = x
op = !=
other = y
_vars = set()
)

p = BGP(
triples = [(rdflib.term.Variable(’x’),
Path(http://xmlns.com/foaf/0.1/knows /
Path(~http://xmlns.com/foaf/0.1/knows)),
rdflib.term.Variable(’y’))]
_vars = {rdflib.term.Variable(’x’), rdflib.term.Variable(’y’)}
)

_vars = {rdflib.term.Variable(’x’), rdflib.term.Variable(’y’)}
)

PV = [rdflib.term.Variable(’x’), rdflib.term.Variable(’y’)]
_vars = {rdflib.term.Variable(’x’), rdflib.term.Variable(’y’)}
)

datasetClause = None
PV = [rdflib.term.Variable(’x’), rdflib.term.Variable(’y’)]
_vars = {rdflib.term.Variable(’x’), rdflib.term.Variable(’y’)}
)

If we apply our normalization measures from Table 4.1 on our query tree, following steps are

9https://github.com/GreenfishK/DataCitation/tree/master/tests/algebra_to_
text/test_data

51

https://github.com/GreenfishK/DataCitation/tree/master/tests/algebra_to_text/test_data
https://github.com/GreenfishK/DataCitation/tree/master/tests/algebra_to_text/test_data

4. IMPLEMENTATION

executed:

1. The sequence path is resolved using a dummy variable ?dummy1.

2. The inverted path is resolved, thereby switching variables ?dummy1 and ?y.

3. Variables ?x, ?y and ?dummy1 in the query tree is replaced by ?a, ?b and ?c.

4. The prefix "foaf" is replaced by its IRI.

5. _vars nodes is cleared because we do not perform any normalization steps on this node.

In Listing 4.16 we can see the result of our normalization and furthermore the back-translation
into the query text in Listing 4.17. Prior to this work translating an algebra tree back into a
query text did not exist as a function in rdflib. We added this functionality by making a pull
request to the official github repository of rdflib 10. We, however, do not discuss this function
in this thesis.

Listing 4.16: Normalized query tree

SelectQuery(
p = Project(

p = Filter(
expr = RelationalExpression(

expr = a
op = !=
other = b
_vars = set()
)

p = BGP(
triples = [(rdflib.term.Variable(’a’),
rdflib.term.URIRef(’http://xmlns.com/foaf/0.1/knows’),
rdflib.term.Variable(’c’)), (rdflib.term.Variable(’b’),
rdflib.term.URIRef(’http://xmlns.com/foaf/0.1/knows’),
rdflib.term.Variable(’c’))]
_vars = set()
)

_vars = set()
)

PV = [rdflib.term.Variable(’a’), rdflib.term.Variable(’b’)]
_vars = set()
)

datasetClause = None
PV = [rdflib.term.Variable(’a’), rdflib.term.Variable(’b’)]
_vars = set()
)

10https://github.com/RDFLib/rdflib

52

https://github.com/RDFLib/rdflib

4.1. RDF* Data Citation API

Table 4.2: Rough estimation of time complexity of query normalization

Step Time com-
plexity

Comment

query –> algebra tree O(2n ∗k) Worst-case assumption. Assuming backtracking algo-
rithm for regex. Variable k is the number of iterations
needed to translate the query and n is the expression
size.

normalizing algebra
tree

O(N ∗ (j − l)) We visit each node of the N nodes once and we do this
j times where j is the number of normalization steps.
There are some normalization steps, such as "optional
where clause" and "rdf:type instead of ’a’", that are im-
plicitly solved by the query algebra and therefore do not
need to be performed.

algebra tree –> query O(N ∗m/2) We visit each node once and translate the node into
query text. To translate the node we need to iterate
through if-conditions until we hit the right one that
matches the node. We assume an average time of m/2
where m is the number of if-conditions.

Listing 4.17: Normalized query

SELECT ?a ?b{
FILTER(?a != ?b) ?a <http://xmlns.com/foaf/0.1/knows> ?c.
?b <http://xmlns.com/foaf/0.1/knows> ?c.

}

Let us roughly estimate the time complexity of this approach and then raise two questions.
In total, we have three steps: 1. Build the query algebra from the query; 2. Normalize the
query algebra; 3. Translate the query algebra into query text. In Table 4.2 we see a complexity
estimation for each step. The two questions are now: Can we optimize this approach and are
there any benefits of doing it? Instead of performing the normalization measures on the query
algebra we could do it directly on the query text by means of regular expressions which were
used to build the algebra tree in the first place. The reason why we decided against it is the
much higher implementation effort. A partial optimization would be to omit the third step
which we explain in Section 4.1.3.

Timestamp query

In Section 4.1.1 we saw how we need to adapt the SPARQL code not only to version all triples
but also to read versioned triples. For either versioning mode we outlined certain additional
triple statements and filters that need to be attached to the query for each triple statement. The
function timestamp_query is the place where we actually implement this. The idea is simple:

53

4. IMPLEMENTATION

For each BGP we need to insert as many dummy triples into the BGP as there are triple state-
ments in the BGP as each triple statement represents another subset (We explained this Section
4.1.1 - Versioning Modes by comparing it to relational tables that are joined). These dummy
triples then get replaced by either snippet in Listing 4.10 or the one in Listing 4.11 with simple
string replacement tools. In listing 4.18 we highlighted the injected versioning extensions from
the MEM_SAVE mode and versioning prefixes. We see that there are two triple statements
and for each of them we have a matching versioning block, highlighted in blue. The variables
for versioning in these blocks are enumerated, such as ?triple_statement_0_valid_from and
?triple_statement_0_valid_until for the first triple statement.
Additionally, we find such an enumeration in the TimeOfExecutionBGP_0 variable. This is be-
cause there could be multiple BGPs and it is easier to insert the same execution timestamp for
each BGP along with the versioning extensions than to define a globally accessible timestamp
within the query. Although, this would be an alternative.

Listing 4.18: Example for a timestamped query in memory saving mode

PREFIX vers: <https://github.com/GreenfishK/DataCitation/citing/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX ex: <http://example.come>

SELECT ?name ?occupation {
?person ex:name ?name.
?person ex:occupation ?occupation.
FILTER(?name = "Barack Obama"@en)

<<?person ex:name ?name>> vers:valid_until
?triple_statement_0_valid_until.
filter(?TimeOfExecutionBGP_0 < ?triple_statement_0_valid_until)
optional {
<<?person ex:name ?name>> vers:valid_from
?triple_statement_0_valid_from.
}
filter (!bound(?triple_statement_0_valid_from)
|| ?triple_statement_0_valid_from <= ?TimeOfExecutionBGP_0)

<<?person ex:occupation ?occupation>> vers:valid_until
?triple_statement_1_valid_until.
filter(?TimeOfExecutionBGP_0 < ?triple_statement_1_valid_until)
optional {
<<?person ex:occupation ?occupation>> vers:valid_from
?triple_statement_1_valid_from.
}
filter (!bound(?triple_statement_1_valid_from)
|| ?triple_statement_1_valid_from <= ?TimeOfExecutionBGP_0)

bind("2021-06-19T16:43:36.882847+01:00"^^xsd:dateTime as ?TimeOfExecutionBGP_0)

}ORDER BY ?mention

54

4.1. RDF* Data Citation API

Compute query and result set checksum

To compute the checksum of the normalized query we employed a simple sha256 algorithm
that computes a hash value out of the input string. Next to the normalized query we also allow
for the normalized query algebra tree as an input. As the normalized query is not meant to be
executed but only serves the purpose to compare a query that is about to be stored against
queries from the query store, we could do this comparison also with the queries’ algebra trees.
This also answers why we would not need to back-translate the normalized query algebra tree
into a query, as hinted in the last paragraph of Section 4.1.3 - Normalize query. Despite the fact,
we still do reverse the algebra tree and thus compute a checksum from the normalized query.
The main reason is that the implementation of SPARQL’s query algebra might change in terms
of node names, tree structure and due to bug fixes. This would make older query algebra trees
incomparable with newer ones. On top, if there is a need to visually compare two normalized
queries and e.g. find out why they are not equal we could easier do this with queries as they are
more compact than query trees. We also believe that generating or retrieving citation snippets
is not time critical and we can therefore trade off performance for stability.

We compute the result set checksum using pandas’ hash_pandas_object function which return
a series (or vector) of integer row hash sums. These we concatenate as strings and compute a
hash sum of the whole string using the same algorithm as for the query checksum.

Generate query PID

As we saw in figure 3.4 we need two inputs to generate a query PID - query checksum and
execution timestamp. Now there are various ways how to cast these two inputs into a PID, such
as computing hash values of either inputs and then concatenating them or first concatenating
them and then computing a hash value. However, we opted for the simplest one and that is
to concatenate both inputs. This PID serves as a primary key in the query_satellite table to
identify citations but is otherwise not used in this not resolvable "raw form". In 4.1.4 we show
an interface that can be used by a Query Builder UI to transform PIDs into landing page URLs.

Describe dataset

Our implementation of describe_dataset uses simple descriptive statistics expressed in natural
language together with one heuristic to create a dataset description from the dataset. The
simple statistics for each column are:

1. number of non-empty values

2. frequencies

3. max values

4. unique values (opposite of frequencies)

55

4. IMPLEMENTATION

If a column has one and the same value in every row, meaning that its frequency equals the
number of rows we assume that the dataset "is about" this value. This does not have to be
necessarily true because one value could occur in every row "by accident" and not because we
filtered for it. This is why the query text comes in handy to derive such information, however,
we have not implemented it yet. In Listing 4.19 we can see an example query from the news
dataset where we filter for "Obama". The derived dataset description is shown in Listing 4.20.
We see that our heuristic inferred that the dataset is not only about Obama but also about the
democratic party because we find this value to be unique in column party_label. Whether this
summary is representative is up to the creator or publisher to decide.

Listing 4.19: Example query from the news dataset where we filter for Obama

PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
PREFIX publishing: <http://ontology.ontotext.com/publishing#>

select ?personLabel ?party_label ?document ?mention where {
?mention publishing:hasInstance ?person .
?document publishing:containsMention ?mention .
?person pub:memberOfPoliticalParty ?party .
?person pub:preferredLabel ?personLabel .
?party pub:hasValue ?value .
?value pub:preferredLabel ?party_label .

filter(?personLabel = "Barack Obama"@en)
} order by ?mention

56

4.1. RDF* Data Citation API

Listing 4.20: Derived dataset description from the dataset

This dataset is about: Democratic Party@en, Barack Obama@en

Each column has following number of non-empty values:
document: 6,
mention: 6,
party_label: 6,
personLabel: 6

For each column following frequencies were observed:
document: 5,
mention: 1,
party_label: 6,
personLabel: 6

Each column has following max/top values:
document: http://www.reuters.com/article/2014/10/10/
us-usa-california-mountains-idUSKCN0HZ0U720141010,
mention: http://data.ontotext.com/publishing#Mention
-96cd9530c126974107c405f240907337db267d369e851e904b21ad75955473af,
party_label: Democratic Party@en,
personLabel: Barack Obama@en

For each column following unique values were observed (opposite of frequencies):
document: 2,
mention: 6,
party_label: 1,
personLabel: 1

Create sort index and sort

In order to sort the dataset we first need a unique sort index. This can either be a primary
key provided by the user or one that is derived from the dataset. To foster automation we
created an algorithm that can accomplish latter option. The idea is to find the "simplest"
possible unique (multi-)index. Simple hereby means that each (multi-)index is a minimum set
of columns. E.g. only one column could be enough to serve as a unique index for sorting. The
algorithm starts by iterating through every single column and checking whether it would make
up a unique index or not. If no unique index is found it goes on by trying out every column
pair combination. If still no unique indexes are found it goes on with triple combinations and
so on.
One challenge we face with the index derivation is that there could be more possible solutions
derived. E.g. there could be two columns where each has only one unique value or two possible
compositions of columns where each composition would yield an unambiguous sort order. To
select the combination that most likely remains valid as a primary key even if further triples
are added we implemented a criteria to further distinguish between the composite keys. For
each composite key the following steps are executed: 1. Count the number of distinct values
for each key attribute (column); 2. Sum up all the counted distinct values. The composite keys
with the maximum sum of distinct key attribute values is returned.

57

4. IMPLEMENTATION

If the number of unique composite sort keys is still greater than one, an exception is raised to
the caller (e.g. publisher) asking to confirm one from the suggested ones or provide his own
unique sort index.

Metadata

The Metadata class comprises metadata attributes to be stored in the query store other than
the ones (checksum, query PID, ...) related to the recommendations. Another distinction to
the recommended metadata attributes is that these do not get automatically derived by the
API. However, in a Data Citation system these can be automatically retrieved. We already
provided possible sources in Table 3.11. We packed all parameters as described in the design
Section 3.2.3 into a constructor (python’s __init__ function) and set them to be optional.
Even though every metadata attribute and value could be provided as a key-value-pair via
the other_citation_data member we wanted to explicitly list DataCite’s manadatory field as
arguments in order to promote this metadata schema. Additionally, we put the data citation
snippet text as member of the init function. The class resides within the citaion_utils module.
We wanted to encapsulate all metadata related classes and functions in one module and
therefore did not create a separate one for Metadata. Instances of this class can be found in
the query handler and query store module where every function of either modules uses it to
either store or retrieve the carried information.
This class furthermore provides two functions to encode and decode its members as JSON,
namely to_json and set_metadata respectively. This is needed because the query store does
not list every possible metadata attribute as column, so we need to use one column for all the
additional attributes. Column citation_data in the query_satellite serves this purpose (see in
Figure 3.6) and is used like in the example in Table 4.3.

One noticeable member of Metadata is identifier. We use query PIDs for identification of our
datasets, however, the query PIDs we generate with persistent_id_utils.generate_query_pid
are no URLs that point to a landing page. That is why we need to store the resolvable PID in
here. In Section 4.1.4 we describe what we additionally do with this member during the query
handler algorithm.

Generate citation snippet

To generate the citation snippet text we use one simple function with a keyworded, variable-
length argument list (kwargs). The idea is to be flexible with what information should be inside
the citation snippet. The parameter values get concatenated and separated by a comma in
the same order they are passed. Currently, there is no validation on the arguments. Possible
validations could be deployed through policies like we explained in Section 2.6.

4.1.4 Query_handler module

The query_handler module can be considered as the core module as it employs functions
from all the modules we have discussed so far to handle queries and and retrieve minted
datasets via query re-execution. It has two functions - mint_query_pid and retrieve - and also

58

4.1. RDF* Data Citation API

Table 4.3: Query Satellite Example

query pid query check-
sum

... citation data

123202100607T12:00:00 123 {"identifier":
"https://doi.example.com/10.1594
/DataCitation.667386",
"creator": "Filip Kovacevic",
"title": "Running Example",
"publisher": "Filip Kovacevic",
"resource_type": "RDF/Dataset",
"other_citation_data": {
"contributer": "Tomasz Miksa"
},

"result_set_description": "All news
articles where Obama has been men-
tioned"
}

a constructor (=__init__) where most importantly the caller must provide SPARQL endpoints
and optionally credentials. On top we enriched this module with boolean attributes to let the
user upon execution of the query handler algorithm know whether the query already exists
and if so, whether the result set has changed.

Mint Query PID

Let us first break down the mint_query_pid function by its arguments. The mint_query_pid
function takes the query as first argument. This is not only a design choice to ensure that the
dataset is actually queryable but it is moreover needed to lookup the query in the query store,
execute the query and then compare result and query checksums.
The metadata argument is of type persistent_id_utils.Metadata and encompasses all metadata
that is provided outside of the API and not covered by the recommendations.
The execution_timestamp is used to timestamp the query as discussed in Section 4.1.3 and
thereby retrieve specific dataset, such as live data or historical datasets with an older timestamp.
We therefore do not set any restrictions on the timestamp but we do recommend to simply
pass the current system timestamp as this guarantees that the newest version of the dataset is
queried.
The create_identifier argument which is a function that takes the query PID as an argument
should be implemented by the user to create a persistent URL. It is applied on the query PID
and the resulting URL is stored in metadata.identifier. If this function is not provided, the
identifier is set to the query PID.
Calling mint_query_pid with the arguments above triggers an algorithm like we illustrated in

59

4. IMPLEMENTATION

Figure 4.1. The algorithm starts off with a sequential flow and thereby creates metadata as
described in R4-R8 including a validation on the query’s "order by"-clause. Then it steps into a
control flow where the three cases as described in Section 3.1.2 are covered. Only if the query
is new a persistent identifier is created by using create_identifier on the query PID followed
by the creation of the citation snippet and the persistence of metadata into the query store.
Finally the citation snippet is returned to the caller.

Figure 4.1: An algorithm for handling queries including recommendations R4-R10 and R12

In Listing 4.21 we show an example of how to use this function to get citation snippet and
query store metadata. We start of by defining how to create a resolvable PID from the technical
query_pid. Latter is computed by the API but it is up to the user to convert the query PID into
an URL that points to a landing page. Next we provide metadata by using the MetaData con-
structor. In addition to the DataCite’s obligatory attributes we also have other_citation_data

60

4.1. RDF* Data Citation API

and result_set_description. In the third step, we define a query that we want to execute. All
these data are now plugged into the mint_query_pid function. Once this function is executed,
one can retrieve citation snippet and metadata from the query_handler object and addition-
ally lookup whether the query was new and whether the dataset has changed since the last
execution.

Listing 4.21: Mint dataset - example

Step 1
def create_identifier(query_pid: str):

Write your own code to create an URL out of a query PID
identifier = "http://www.mylandingpage.com/" + query_pid
return identifier

Step 2
citation_metadata \
= persistent_id_utils.MetaData(identifier="DOI_to_landing_page", creator="Filip Kovacevic",

title="Judy Chu occurences", publisher="Filip Kovacevic",
publication_year="2021", resource_type="Dataset/RDF data",
other_citation_data={"Contributor": "Tomasz Miksa"},
result_set_description = "All news articles where Obama
has been mentioned.")

Step 3
query_test =
"""
PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
PREFIX publishing: <http://ontology.ontotext.com/publishing#>

select ?personLabel ?party_label ?document ?mention where {
?mention publishing:hasInstance ?person .
?document publishing:containsMention ?mention .
?person pub:memberOfPoliticalParty ?party .
?person pub:preferredLabel ?personLabel .
?party pub:hasValue ?value .
?value pub:preferredLabel ?party_label .
filter(?personLabel = "Barack Obama"@en)

}
"""

Step 4
citation_data = query_handler.mint_query_pid(
select_statement=query_text,
citation_metadata=citation_metadata,
create_identifier=create_identifier)

Step 5 - Retrieve metadata and citation snippet
citation_snippet = query_handler.citation_metadata.citation_snippet
citation_metadata = query_handler.citation_metadata
dataset_metadata = query_handler.result_set_utils
query_metadata = query_handler.query_utils
yn_query_exists = query_handler.yn_query_exists
yn_result_set_changed = query_handler.yn_result_set_changed

61

4. IMPLEMENTATION

Retrieve

Retrieve does nothing more than retrieving the query and metadata by the query PID from
the query store, taking the timestamped query to re-execute it against the RDF* store and
returning dataset and metadata to the caller. The metadata gets encoded as JSON object. We
thereby categorize metadata into query metadata, dataset metadata, citation metadata and
the citation snippet. The citation snippet can include metadata from every of the former three
categories and therefore cannot be fit into one of these. Hence, it is on the same level as the
other categories in the JSON tree. In 4.22 we continue the example from 4.21 and show the
usage of retrieve.

Listing 4.22: Retrieve minted dataset - example

query_pid = citation_data.query_utils.pid
dataset, meta_data = query_handler.retrieve(query_pid)

4.1.5 Prefixes module

The prefixes module is an instance of the prologue handler and a helper module that provides
useful functions to deal with query prefixes that are declared in the prologue of the query.
During our research we implemented three functions but ended up using only one of them
in the citation API, which we briefly describe. The function versioning_prefixes enriches a
prologue with two additional prefixes & IRIs that are essential for each read and write function
listed in the rdf_star module and moreover in the timestamp_query function.

PREFIX vers: <https://github.com/GreenfishK/DataCitation/versioning
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

The prefix vers is used in front of valid_from and valid_until, which we use to version and read
versioned data. The prefix xsd resolves to the datetime from W3C’s XML schema and is again
needed for aforementioned versioning predicates but also for the new version timestamp
whenever data is written into the RDF* store.

4.2 Build and Distribution

To show our practical work we decided to make a build from the source and distribute it online.
What we included in the build is a collection of python modules, which we described in Section
4.1, templates that are used by the rdf_star and query_utils module, a query_store.db and
several prepared sql statement files that are used by the query_store module.

To build, publish and install the package we used conda:

Listing 4.23: Build and install RDF* Data Citation API

conda build <project folder name> --croot Distribution/build/conda
conda install -c greenfish rdf_data_citation

The project folder where the source code resides must be passed to the build command. The
build is then available in Distribution/build/conda. The build command takes settings from

62

4.3. Summary

four files, namely meta.yaml, setup.py, conda_build_config.yaml and MANIFEST.in. These
files can be inspected on our Github page 11.

The install command can be executed like it is shown above. However, the build has been only
configured for and tested on Linux. For Windows one needs to download the package from
https://anaconda.org/Greenfish/rdf_data_citation and install it manually.
Our project is licensed under the GNU General Public License.

4.3 Summary

In this chapter we showed our practical work, which encompasses a python API that imple-
ments all business logic components from the design chapter. Moreover, a query store is
implemented and embedded within the project structure. The implementation is in accor-
dance with the RDA Data Citation recommendations and fulfills the product requirements we
outlined in Section 3.1.1. We showed our contribution to versioning data on statement-level
using RDF* and SPARQL* in 4.1.1 with two different versioning modes - query performance
and memory saving. We collected all functions that can be interpreted from requirements
R4-R8 and R10 in the persistent_id_utils module. There we also discussed query normaliza-
tion and how we tackled it using SPARQL’s query algebra where we performed normalization
measures on the query tree. Furthermore, we explained how we extend queries query with
additional joins and filters to make it a timestamped query and persistently identify datasets.
To create a dataset description we used a mix of descriptive statistics and one heuristic that is
applied on the dataset. As in RDF we do not use primary keys we discussed how we can derive
a unique sort index from the dataset and how in general we can make the user aware of it. In
Section 3.9 we described how to mint datasets and retrieve PID-minted datasets & metadata
and showed example code snippets. Finally, we described the build and installation process
and where our work can be accessed and downloaded.

11https://github.com/GreenfishK/DataCitation

63

https://anaconda.org/Greenfish/rdf_data_citation
https://github.com/GreenfishK/DataCitation

CHAPTER 5
Evaluation

In this chapter we evaluate the performance of the RDF* Data Citation Framework Prototype
and also evaluate two methods for detecting semantically equivalent queries.
We start off with listing functional tests in Section 5.1.1 including description and test results
for the RDF* Data Citation Framework. The functional tests are structured into four packages.
The first two, namely SPARQL Query Algebra to Query Text Translation and Normalization deal
with our implementation of R4 – Query Uniqueness, which is the first method for detecting
semantically equivalent queries. The Versioning test package revolves around timestamped
write operations and queries on live and historical data for two different versioning modes
(R1 and R2). The Query Handler package finally presents tests for minting RDF datasets and
retrieving them via query PID (R1-R10). In Section 5.1.2 we present evaluation scenarios
and evaluation metrics that we used to measure the runtime and memory performance of
functions from the rdf_star module (R1 and R2). Subsequently, we present the results of this
evaluation.
In Section 5.2 we evaluate two Query Containment Solvers, that we already discussed in
Section 2.5 of Chapter 2, with regards to detecting semantically equivalent queries. The results
from the evaluation of this second method is then compared to the results from the first
method. Finally, we conclude what this means for R4 – Query Uniqueness.

5.1 RDF* Data Citation Framework

As we built the RDF* Data Citation Framework API with the intention to publish and offer
it to users who are looking for a Dynamic Data Citation Solution for RDF* stores and graph
databases we need to among other things provide a documentation of its functionality. Test
Cases are a good means of documentation as they show conditions and scenarios under which
the solution works and for which it does not. As SPARQL queries are the main input for this
API and they can be written in many different ways we decided for most of our functional tests
to revolve around queries and show the coverage for different constructs and keywords.

65

5. EVALUATION

The non-functional tests on the other hand give insights to the performance of this API so that
users can consider them when making decisions about hardware or if query executions are
time critical.

5.1.1 Functional Tests

The functional tests we provide in this chapter reflect our research coverage and are motivated
by the Use Cases that we discussed in Chapter 3 (cf. Figure 3.1). While the first three sections (=
test packages) use different queries as test objects to test conversion between query and query
algebra tree, normalization and versioning, the fourth section (Query handler) tests scenarios
(see alternative scenarios in query handler algorithm 4.1) and erroneous user inputs when
minting a dataset. We used the "News Dataset" for all functional tests, which is the default
Graph that comes with GraphDB. In each section we provide examples of the executed tests
from the corresponding test packages. All test cases can be found on our Github page 1

SPARQL Query Algebra to Query Text Translation

This test package has the most tests as it covers all keywords from RDF 1.1 within 39 syn-
thetically constructed queries. There is one test case per query and in each test case the
corresponding query is translated into its algebraic form and then back translated using the
translate_algebra function from the persistent_id_utils module, which we suggested via pull
request to be included in rdflib module 2. Maintainers of the rdflib module reviewed it and
merged it. To put it more formal, we have following pipe of functions:

quer y � = tr ansl ate_al g ebr a(tr ansl ateQuer y(quer y))

There are now two ideas how to test the translation. One is to execute quer y and quer y � and
see if both yield the same result. The other is to apply the same procedure on quer y � and
make sure that the derived quer y �� is equal to quer y �, thus, that this function is idempontent.
Our test cases currently only use the latter approach. The tests are divided into following
categories:

• functions: date functions, numeric functions, string functions, ...
• graph patterns: BGP, Join, Union, Group, Having, ...
• operators: arithmetic, conditional, relational, ...
• property paths: alternative paths, inverse paths, sequence paths, ...
• solution modifiers: distinct, project, order by, reduced, ...
• others: SERVICE, VALUES

In Listing 5.1 we can see a query from the category propert path. In Listing 5.2 we see the
output, quer y � where two things happend: 1. OFFSET 0 was added and the prefixes where
resolved, thus, the full resource names are stated. This is why we consider this procedure as

1https://github.com/GreenfishK/DataCitation/tree/master/tests
2https://github.com/RDFLib/rdflib

66

https://github.com/GreenfishK/DataCitation/tree/master/tests
https://github.com/RDFLib/rdflib

5.1. RDF* Data Citation Framework

"pre-normalization" because some normalization measures like these are already applied.
Computing quer y �� now from quer y � yields the same query string. Further examples can be
found on our Github page.

Listing 5.1: Property path test query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
select * where
{

?x foaf:mbox <mailto:alice@example> .
?x foaf:knows/foaf:knows/foaf:name ?name .

}
limit 100

Listing 5.2: Output of function trans-
late_algebra(translateQuery(query))

SELECT ?x ?name{
?x

<http://xmlns.com/foaf/0.1/mbox>
<mailto:alice@example>.

?x <http://xmlns.com/foaf/0.1/knows>
/<http://xmlns.com/foaf/0.1/knows>

/<http://xmlns.com/foaf/0.1/name> ?name.
}OFFSET 0 LIMIT 100

Normalization

The test cases for normalization are structured as follows: For each entry in Table 4.1 we define
two semantically identical queries. We then normalize both queries using the normalization
function from the persistent_id_utils module and afterwards compute their checksums. The
test passes if the checksums are equal, otherwise it fails. To show an example we exhibited a
query pair in Listings 5.3 and 5.4. There we can see that the first query joins triple statements
in the usual way while the second query uses a sequence path as a shortcut. The normalized
form of both queries can be inspected in Listing 5.5. Note that letters are used as variables and
the sequence path is resolved, which are both measures we defined in Table 4.1.

Listing 5.3: Sequence paths - alternative 1

PREFIX pub:
<http://ontology.ontotext.com/taxonomy/>
PREFIX publishing:
<http://ontology.ontotext.com/publishing#>

select ?personLabel ?party_label where {
?person pub:memberOfPoliticalParty ?party .
?party pub:hasValue ?value .
?value pub:preferredLabel ?party_label .
?person pub:preferredLabel ?personLabel .
filter(?personLabel = "Barack Obama"@en)

}

Listing 5.4: Sequence paths - alternative 2

PREFIX pub:
<http://ontology.ontotext.com/taxonomy/>
PREFIX publishing:
<http://ontology.ontotext.com/publishing#>

select ?personLabel ?party_label where {
?person pub:memberOfPoliticalParty

/ pub:hasValue
/ pub:preferredLabel ?party_label.

?person pub:preferredLabel ?personLabel .
filter(?personLabel = "Barack Obama"@en)

}

Listing 5.5: Sequence paths - normalized query

SELECT ?a ?b{
FILTER(?a = "Barack Obama"@en)
?c <http://ontology.ontotext.com/taxonomy/hasValue> ?d.
?d <http://ontology.ontotext.com/taxonomy/preferredLabel> ?b.
?e <http://ontology.ontotext.com/taxonomy/memberOfPoliticalParty> ?c.
?e <http://ontology.ontotext.com/taxonomy/preferredLabel> ?a.

}

67

5. EVALUATION

Our solution recognizes 9/10 query pairs as semantically identical. Later, in section 5.2 we use
the same test cases to test the two query containment solvers and finally compare the results
with our solution.

Versioning

In this package we wrote tests for read and write operations of the rdf_star module. The
general idea for write operations is to define beforehand what changes to expect in the triple
store. If a new triple is inserted, we expect that two additional nested triples come along. By
querying the result before and after the changes we can easily make comparisons and assert
our expectations. We have a relatively high number of test cases for update compared to the
other functions. This is because update is the most complex operation and has a bigger impact
on the existing triples, while insert does not affect existing triples.
The general idea for testing the read operation is to construct queries with different place-
ments of BGPs, as the "versioning extensions" get inserted right into the BGPs and then check
whether the timestamped queries return correct results. BGPs can occur multiple times in a
query, at the same or different level as other BGPs (e.g. union of two BGPs or subselects).

Test name: test_insert: two_consecutive_inserts
Test case description: Make two consecutive inserts and retrieve the dataset

as it was before, between and after the inserts. Check
that the datasets reflect the right information as of each
timestamp.

Expected result: 2
Actual result: 2

Test passed: True

Test name: test_update_single: add_new_triple
Test case description: After a single triple update four additional triples must

be added. One of them must be the new triple with the
new object value.

Expected result: 1_http://ontology.ontotext.com/resource/tsk8e8v43mrk
Actual result: 1_http://ontology.ontotext.com/resource/tsk8e8v43mrk

Test passed: True

68

5.1. RDF* Data Citation Framework

Test name: test_outdate: outdate_triples
Test case description: Test if the number of triples in the RDF store after outdat-

ing a set of triples did not change. Moreover, test if the
result set after the triples have been outdated is empty.

Expected result: number of triples in db: 190718; number of rows in
dataset after outdate: 0

Actual result: number of triples in db: 190718; number of rows in
dataset after outdate: 0

Test passed: True

Query Handler

This test package contains tests that on the one hand describe and check different scenarios
that can occur while handling a query, e.g. dataset has changed or semantically equivalent
query exists already. Our general approach is to generate citation snippets "by hand" that we
expect as an outcome and to compare them with the actual citation snippets that are returned
by the query handler. On the other hand we are testing different error scenarios that may
occur with the sort variables. The tests for now do not cover retrieving data and metadata by a
given query PID for now but they can easily be added in the same manner later on. Below we
show three example test cases.

Test name: Empty dataset
Test case description: Test if an empty dataset can be cited and a citation snip-

pet is returned.
Expected result: This is an empty dataset. We can-

not infer any description from it.
ea6af57430c9bfeb6d23cb9c70cbf5722bc3e5d9eba7ff0d44
447fed917d879e2021-04-30T12:11:21.941000+02:00,
Filip Kovacevic, Obama occurrences as Republican, Filip
Kovacevic, Dataset/RDF data

Actual result: This is an empty dataset. We can-
not infer any description from it.
ea6af57430c9bfeb6d23cb9c70cbf5722bc3e5d9eba7ff0d44
447fed917d879e2021-04-30T12:11:21.941000+02:00,
Filip Kovacevic, Obama occurrences as Republican, Filip
Kovacevic, Dataset/RDF data

Test passed: True

69

5. EVALUATION

Test name: Changed dataset
Test case description: Test if a new query PID is created if the dataset has

changed since the last execution and the query stayed
the same (=same query checksum).

Expected result: fdb137f830ad12f4641d755ca86c966a01288d80c586418ee
7457cff69a81a662021-04-30T12:11:21.941000+02:00,
Filip Kovacevic, Obama occurrences, new mention, Filip
Kovacevic, Dataset/RDF data
fdb137f830ad12f4641d755ca86c966a01288d80c586418ee
7457cff69a81a662021-08-13T13:27:58.676957+02:00,
Filip Kovacevic, Obama occurrences, new mention, Filip
Kovacevic, Dataset/RDF data
checksum:fdb137f830ad12f4641d755ca86c966a01288d80
c586418ee7457cff69a81a66

Actual result: fdb137f830ad12f4641d755ca86c966a01288d80c586418ee
7457cff69a81a662021-04-30T12:11:21.941000+02:00,
Filip Kovacevic, Obama occurrences, new mention, Filip
Kovacevic, Dataset/RDF data
fdb137f830ad12f4641d755ca86c966a01288d80c586418ee
7457cff69a81a662021-08-13T13:27:58.676957+02:00,
Filip Kovacevic, Obama occurrences, new men-
tion, Filip Kovacevic, Dataset/RDF data check-
sum:fdb137f830ad12f4641d755ca86c966a01288d80c586418
ee7457cff69a81a66

Test passed: True

Test name: Non-unique sort
Test case description: Test if a query with a non-unique order by clause written

by the user throws a NoUniqueSortIndexError exception.
Expected result: The "order by"-clause in your query does not yield a

uniquely sorted dataset. Please provide a primary key or
another unique sort index

Actual result: The "order by"-clause in your query does not yield a
uniquely sorted dataset. Please provide a primary key or
another unique sort index

Test passed: True

5.1.2 Non-functional Tests

In this section we evaluate the most time and memory consuming operations of our RDF* Data
Citation Framework Prototype, namely retrieving live and historical data from a versioned
RDF* store. We are interested in comparing the two different versioning modes which we
defined in 4.1.1 and test our hypothesis that in the query performance mode (Q_PERF) the

70

5.1. RDF* Data Citation Framework

queries run faster while having more metadata triples loaded into the RDF store and the
opposite statement is true for the memory saving mode (MEM_SAVE). This way we want to
support decision-making when applying the API for the first time on a non-empty triple store
and a versioning mode needs to be chosen. If e.g. a triple store is only rarely updated one
would probably rather consider to use the memory saving mode. However, if a triple store is
constantly updated, the set of triples without a start date, which is the case in aforementioned
mode, would become relatively small over time and overhead due to left joins and additional
filters would be generated in this mode. In this case the query performance mode would be
considered under the assumption that our hypothesis is true.
In the following subsections we first outline and describe our evaluation setup and process.
We thereby explain the parameters we used during the evaluation process and scenarios that
we evaluated. Next, we define metrics that we used to measure the different scenarios. Last, we
show the results for each scenario, present interesting findings and make conclusions about
the performance and hypothesis.

Evaluation setup and process

Our evaluation process is shown in Figure 5.1. Referring to this figure, we define a scenario in
our evaluation setup is an instance (parameter values) of the fixed parameters and parameter
values in the upper left corner. One scenario can be seen as one non-functional test. For each
scenario we incrementally increase the size of the database by adding new triples until 10
increments are reached. The triples that are added are randomly created. The data triples
together with the metadata triples make up 30% of the initial number of triples of the corre-
sponding dataset and are inserted either due to a timestamped insert or timestamped update
operations. The parameters from the figure are describe as follows:

• write operation: A normal insert, timestamped insert or timestamped update. Times-
tamped means that triples are written to the triple store with a version timestamp, as
discussed in Section 4.1.1.

• dataset: Can be either small or big. The small one is the FHIR ontology 3 and contains
74190 triples. The big one is a DBPedia dataset 4 and contains 1372410 triples.

• versioning mode: Can be the query performance mode (q_perf) or memory saving
(mem_sav) as introduced in Section 4.1.1.

• query: Can be either a simple query or a complex query (see Listings 5.6 and 5.7). We
used the same queries for both datasets to make the results more comparable. This is
possible as the RDF schema triples are inferred by the inference engine for both datasets.
The simple query contains the following elements: BGP, Projection, Filter, String Func-
tion.
The complex query contains the following elements: BGP, Projection, Filter, String
function, Order By, Join, Union, Aggregation.

3https://www.hl7.org/fhir/downloads.html
4http://downloads.dbpedia.org/2016-10/core-i18n/en/category_labels_wkd_

uris_en.ttl.bz2

71

https://www.hl7.org/fhir/downloads.html
http://downloads.dbpedia.org/2016-10/core-i18n/en/category_labels_wkd_uris_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/category_labels_wkd_uris_en.ttl.bz2

5. EVALUATION

• procedure to evaluate: We defined two procedures "retrieve live data" and "retrieve
history data" based on the get_data function from the python API where we provide a
timestamp as of initial database state for the latter and the system timestamp for the
former.

– retrieve_live_data(query): Retrieves the life data by using get_data from the rdf_star
module with the current system timestamp. The result set grows bigger upon every
increment simulating a dynamic dataset.

– retrieve_history_data(query, current_timestamp): Retrieves data with a timestamp
that is created at the time of initial database state. The dataset stays unchanged,
even if new triples are added.

Figure 5.1: Evaluation process of the rdf_star module

Thus, we only evaluate the rdf_star_module. Further possible procedures we could evaluate
would be minting a new PID and retrieving data and metadata from the query_handler module.
However, these again include querying live and historical data which are the most time
consuming operations. Querying metadata from the query store might be time consuming,
too. However, we currently have no data about the typical size of a query store in practice,
which is why we leave this evaluation for the future.

72

5.1. RDF* Data Citation Framework

Listing 5.6: Simple query

select ?s ?p ?o
where {

?s ?p ?o .
filter(?p = rdfs:label

&& strends(?o, "new_value"))
}

Listing 5.7: Complex query

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select
?s ?p (count(?o) as ?cnt_new_values)
?y ?z ?m (count (?x) as ?cnt_x)
where {

{
?s ?p ?o .

filter(?p = rdfs:label && strends(?o, "new_value"))
}
union
{

?x ?y ?z.
?x rdf:type ?m.

}
} group by ?s ?p ?y ?z ?m
order by ?s ?p

We created the dataset to be added on every increment by using an insert statement combined
with a SPARQL query. In Listing 5.8 we show the versioned insert statement we used for the
FHIR dataset.
As a triple store we use GraphDB-free 9.5 5, which runs on Java 11, for all evaluation scenarios.
To import a dataset one first needs to create a repository, which we did separately for each
dataset. We used the default settings. The most important ones are shown in Table 5.1.

Listing 5.8: Versioned random data that gets inserted on query increment

PREFIX rdfs:
<http://www.w3.org/2000/01/rdf-schema#>
PREFIX dc:
<http://purl.org/dc/elements/1.1/>
PREFIX xsd:
<http://www.w3.org/2001/XMLSchema#>
PREFIX vers:
<https://github.com/GreenfishK/DataCitation/
versioning/>

insert {
?s ?p ?new_label.
<<?s ?p ?new_label>> vers:valid_from ?newVersion.
<<?s ?p ?new_label>> vers:valid_until "9999-12-31T00:00:00.000+02:00"^^xsd:dateTime.

} where
{

{select ?s ?p (concat(str(rand()), "_new_value") as ?new_label)
where {

?s ?p ?o .
filter (?p = rdfs:label

|| ?p = dc:title)
}
limit 7418

}
BIND(xsd:dateTime(NOW())

5https://www.ontotext.com/products/graphdb/graphdb-free/

73

https://www.ontotext.com/products/graphdb/graphdb-free/

5. EVALUATION

AS ?newVersion).
}

Table 5.1: GraphDB settings

Parameter Value

Type GRAPHDB-FREE
Ruleset RDFS-Plus (Optimized)

Supports SHACL validation false
Base URL http://example.org/owlim#

Entity index size 10000000
Use predicate indices true

Cache literal language tags true
Use context index false

Enable literal index true
Check for inconsistencies false

Throw exception on query time-out false
Read-only false

Entity ID bit-size 32

All the scripts and prepared statements we used for evaluation are available in a separate
project on Github 6

Evaluation Metrics

During our evaluation process we measure execution time and peak memory consumption of
the isolated procedures (E.g. retrieve_live_data) for each scenario and during each increment.
The code snippet in Listing 5.9 shows the employment of modules time and tracemalloc. We
started recording before the execution of these procedures, which we see in the first code block.
In the second code block the function is picked based on the passed "procedure_to_evaluate"
parameter and the current parameter set (scenario) is passed to the function. In the third
code block we stop the recording and save the results in simple variables, which are later on,
together with the parameters, added to a dataframe and plotted (see results).

Listing 5.9: Random data that gets inserted on query increment

time_start = time.perf_counter()
tracemalloc.start()

func = procs[procedure_to_evaluate][0]
func_params = procs[procedure_to_evaluate][1]
func(*func_params)

time_elapsed = (time.perf_counter() - time_start)
memMB = tracemalloc.get_traced_memory()[1] / 1024.0 / 1024.0
tracemalloc.stop()

6https://github.com/GreenfishK/DataCitation_Evaluation

74

https://github.com/GreenfishK/DataCitation_Evaluation

5.1. RDF* Data Citation Framework

Table 5.2: Hardware specifications

Architecture: x86_64
CPU(s): 8

CPU Model name: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz
RAM: 2x 4096 MB; DDR3

SSD Model Number: CT240BX500SSD1
SSD Interace: SATA 6Gb/s

SSD Read: 540MB/s
SSD Write: 500MB/s

Hardware specifications

We executed the non-functional tests on our local machine which has hardware specifications
as shown in Table 5.2. This list is not exhaustive and we only provide the specifications which
we believe have the most impact on the performance. Also, we compare the scenarios relatively
to each other and do not comment on specific performance figures/numbers.

Results

We first outline general characteristics of the small and big dataset with regards to runtime
performance. Then we discuss peculiar observations and refer to figures for visual comparison.
Afterwards we discuss the memory consumption. For each dataset we have eight figures. All
figures have the same parameters and chart elements. The parameters that are present in the
figures for each dataset are: procedure_to_evaluate, query (type) and write operation. In each
figure we show the number of triples for both versioning modes as barplots and the runtime
and memory consumption as lines. We additionally show the number of triples in the result
set as grey barplots. They can be seen as a "there of"-position. The runtime performance is
shown in the upper subplot and the memory consumption in the lower.
Runtime performance: For the small dataset and timestamped inserts we can spot a signifi-
cantly higher runtime performance in the Q_PERF mode and increasing deviation between
the two versioning modes when querying historical data. Querying live data, on the other
hand, has only negligible performance differences. (see Figures 5.2, 5.3, 5.4 and 5.5). For the
small dataset and timestamped updates the same is true for querying historical data as for
timestamped inserts (see Figures5.6 and 5.8).
When only timestamped updates are done, live data queries in the MEM_SAVE mode perform
better for the simple query when passing 100k triples and the runtime performance equalizes
at the 400k triples mark for the complex query (see Figures 5.9 and 5.7). The observation about
the better runtime performance and lower storage needs in the MEM_SAVE mode for live
data queries when only timestamped updates are present is also made for the big dataset (see
Figures 5.17 and 5.15). In latter Figure we can also see how complex live data queries in the
MEM_SAVE mode surpass the Q_PERF mode after the 400k triples mark.
One obvious observation is the peak in runtime performance (=low runtime performance) in
Figure 5.5. This happened during the very first query and we have one possible explanation for

75

5. EVALUATION

this phenomenon. GraphDB had no optimized index structure before the very first execution
and only then reworked the indices. While we cannot be sure whether this is true we only see
it occurring once and therefore consider it as irrelevant for the overall picture of the runtime
performance.
Memory consumption: The behavior of the memory consumption is mostly explained by
the size of the result set (grey bars). The more triples we have in our result set the higher the
memory consumption. We can see that the number of triples in the result set stays the same
upon every increment when querying historical data, which is an expected behavior. For live
data queries where the result set changes upon every increment we also see a linear increase in
memory consumption. In some plots, such as in Figure 5.8, the lines look fuzzy, which is only
due to the higher zoom on the memory consumption scale (right y-axis). We can conclude
that memory consumption does not significantly differ between the Q_PERF and MEM_SAVE
mode, which makes sense, as the modes do not affect the result sets.
Conclusion: There is no general answer to which versioning mode should be chosen as it
depends on many factors, such as the frequency of inserts and updates, the result set size
and whether it is affected by the dataset changes and the frequency of live and history data
queries. If no estimations about these factors can be made, the MEM_SAVE mode should be
preferred as it has clear benefits when only timestamped updates are present. However, if one
can estimate the read and write frequencies, evolution of datasets & result sets and storage
capacities our evaluation results can make it easy to decide about the versioning mode. More
importantly, our evaluation results give an impression about how queries perform against
versioned datasets inside an RDF* store. The results suggest that datasets, that have been
enriched over time by insert statements, have a different impact on query performance than
datasets where update statements were used, even though the number of inserted triples is
the same for both operations. Further variables that influence the runtime performance are
the dataset & result set size and the way joins and filters are used in the timestamped query
(compare Q_PERF vs MEM_SAVE).

5.2 Detecting semantically equivalent queries

For this part of evaluation we take the queries as in Section 4.1.3 as input for the two Query
Containment Solvers. These are also the queries we used to test the normalization function.
We need to check the reciprocal containment of these queries in order to verify their equiv-
alency. However, if for any reason the Query Containment Solvers report that one query is
not contained in the other, the test fails immediately and we do not need to check the other
direction. As for the metric, we use a simple metric which is either true if the a query pair
gets recognized as semantically identical, false if it does not and "not compilable" if the solver
cannot compile the query, e.g. because specific syntax is not supported. In the following two
sections we use the test rdf_type_predicate, which conforms to the second row in Table 4.1, as
example to show the different inputs and outputs. The remaining test cases are available in
two, for each solver separately defined, Github repositories 7 8. For both solvers and for the

7https://github.com/GreenfishK/SpeCS_Evaluation
8https://github.com/GreenfishK/JSAC_Evaluation

76

https://github.com/GreenfishK/SpeCS_Evaluation
https://github.com/GreenfishK/JSAC_Evaluation

5.2. Detecting semantically equivalent queries

Figure 5.2: Measuring runtime and memory consumption of retrieving historical data with the
complex query against the small dataset which was incremented with timestamped inserts in
both versioning modes

query algebra approach from our Data Citation API we show and explain the results in Section
5.2.3.

5.2.1 SpeCS

To evaluate the SpeCS solver we executed six steps which we describe in the following. First,
first downloaded it from www.math.rs/~mirko/SpeCS.tar.gz. Unfortunately, we dis-
covered that the download package is not available anymore via this link. Second, we extracted
the source files and built the application with the provided make files. Next, we created the
input files for the solver where we placed the queries in a specific syntax. We took the same
queries as for the algebra solver in our Data Citation API and for each query pair we created a
pair of input files. In one file we state one query as superquery and the other as subquery and
in the other file we switch the roles. In Listings 5.10 and 5.11 shows one test case as example of
such pair of input files for the solver. Finally, we run the solver via CLI where we pass an input
file that lies in a sub-directory with the following command:

./specs -file test_queries/<input_file.txt>

Some of the original test queries where not recognized by the solver, which is why we made
following modifications to the queries:

1. The solver needs a where keyword in the query. Include the where-clause in every test
query except for the optional_where_clause test.

77

www.math.rs/~mirko/SpeCS.tar.gz

5. EVALUATION

Figure 5.3: Measuring runtime and memory consumption of retrieving live data with the
complex query against the small dataset which was incremented with timestamped inserts in
both versioning modes

2. Remove language suffix @en such as is in "Obama"@en.

These modifications do not affect the test cases in their scenarios. Nevertheless, we can tell that
the solver is not SPARQL 1.1 compliant as such modifications would not be needed otherwise.

Listing 5.10: SpeCS input file pair example -
first file

Superquery:
PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select ?s ?o where {

?s rdf:type ?o .
} order by ?s

Subquery:
select ?s ?o where {

?s a ?o .
} order by ?s

Listing 5.11: SpeCS input file pair example -
second file

Superquery:
select ?s ?o where {

?s a ?o .
} order by ?s

Subquery:
PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select ?s ?o where {

?s rdf:type ?o .
} order by ?s

78

5.2. Detecting semantically equivalent queries

Figure 5.4: Measuring runtime and memory consumption of retrieving historical data with the
simple query against the small dataset which was incremented with timestamped inserts in
both versioning modes

5.2.2 JSAC

The evaluation on JSAC was performed using their very own test suite where one can create
unit tests to check the containment of two queries. The project is available on Github 9 and is
implemented in Java. We first forked the project into our own Github page and then wrote
a test case for each query. A test case loads a pair of files, where the semantically equivalent
queries are placed, into a string and checks the containment using the a function which takes
two queries as input. Similar to the evaluation of SpeCS, this function is called twice where the
queries are switched in the second call. Listing 5.12 shows an example with the same test case
we showed for SpeCS.

Listing 5.12: SpeCS input file pair example - first file

@Test
public void testRDFTypePredicate() throws IOException {

String vStr = Files.readString(Path.of(url_test_dir +
"/test_normalization__rdf_type_predicate_alt1.txt"));
String qStr = Files.readString(Path.of(url_test_dir +
"/test_normalization__rdf_type_predicate_alt2.txt"));
printOutQueryContainments(vStr, qStr);
printOutQueryContainments(qStr, vStr);

}

9https://github.com/SmartDataAnalytics/jena-sparql-api/tree/develop/
jena-sparql-api-query-containment

79

https://github.com/SmartDataAnalytics/jena-sparql-api/tree/develop/jena-sparql-api-query-containment
https://github.com/SmartDataAnalytics/jena-sparql-api/tree/develop/jena-sparql-api-query-containment

5. EVALUATION

Figure 5.5: Measuring runtime and memory consumption of retrieving live data with the
simple query against the small dataset which was incremented with timestamped inserts in
both versioning modes

Again, we needed to modify some queries so that the test case does not fail because semantics
that we are not testing. We also found the lack of support for following query semantics:

1. The solver does not support order-by clauses and throws a syntax error if there is one
in the query. We removed all order-by clauses from the test queries. They were initially
provided due to the R5 recommendation but then dropped for evaluationg JSAC and
SpeCS as the order-by clause is not part of any of these tests (It is, however, part of some
functional test).

2. Aliases are neither supported using BIND in the query body nor using AS in the select
statement. Unfortunately, we have one test case where aliases are tested. Therefore, we
could not remove it from this one as the test would miss its purpose.

3. (Inverted) sequence paths are not recognized.

JSAC also employs algebra trees, which are dissimilar to rdflib’s implemenation of the W3C
SPARQL query algebra, to solve the containment problem and prints it for each executed test
case. In Listing 5.13 we show the algebra for the same super- and sub-query in Listing 5.10,
which turns out to be the same. We can e.g. see next to ?v_2 that the predicates rdfs:type and
"a" are resolved the same way, which is what we expect for that test case.

Listing 5.13: Normalized index entry algebra expression for the test case rdf_type_predicate

Normalized index entry algebra expression:
(OpDistinctExtendFilter (filter true

(OpExtConjunctiveQuery ConjunctiveQuery
[projection=VarInfo [projectVars=[?s, ?o],

80

5.2. Detecting semantically equivalent queries

Figure 5.6: Measuring runtime and memory consumption of retrieving historical data with the
complex query against the small dataset which was incremented with timestamped updates
in both versioning modes

distinctLevel=0],
qfpc=<quads=[[?v_1 ?s ?v_2 ?o]],
filterDnf=[[(= ?v_2 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>)]]>]

)
)

)

5.2.3 Results

Table 5.3 presents the result for each solver and 10 test cases. We can see that SpeCS managed
to recognize only one query pair as semantically identical. Moreover, some semantics are not
known to this solver, like sequence paths and the optional where clause. JSAC managed to solve
6/10 query pairs whereas only one actually failed and three of them threw an Exception as they
could not be compiled, which is the same issue as SpeCS had. Our solution from the RDF* Data
Citation API passed 9/10 tests. None of the solutions could solve variables_not_bound and the
reason for this is probably that the two equivalent expressions are too heterogeneous and hard
to tell that they are equal. The SPARQL algebra tackles this problem by matching one of the
two expressions and transforming it into the other (also see Table 4.1). The reason for the test
to still fail is bug in the normalization procedure which we will manage to resolve in near future.

The conclusion we can draw for R4 - Query Uniqueness is that evidently JSAC would be an
alternative as it uses a similar approach to check for query containment as we do. A possibility

81

5. EVALUATION

Figure 5.7: Measuring runtime and memory consumption of retrieving live data with the
complex query against the small dataset which was incremented with timestamped updates
in both versioning modes

Table 5.3: Detecting semantically identical queries - test results

Testcase SpeCS JSAC SPARQL Algebra

optional_where_clause � � �
rdf_type_predicate � � �
leave_out_subject_in_triple_statements ✗ � �
order_of_triple_statements ✗ � �
alias_via_bind ✗ � �
variable_names ✗ � �
variables_not_bound ✗ ✗ ✗

inverted_paths � � �
sequence_paths � � �
prefix_alias ✗ � �

for the future would be to employ this Java module in our python framework to compute
normalized query algebras under the premise that it gets fully SPARQL 1.1 compliant. The
benefit would also be that JSAC is already an established module and part of the jena-sparql-
api project Github where it has an active community.

82

5.3. Summary

Figure 5.8: Measuring runtime and memory consumption of retrieving historical data with the
simple query against the small dataset which was incremented with timestamped updates in
both versioning modes

5.3 Summary

In this Chapter we evaluated the RDF* Data Citation Prototype, which is written in python,
by means of functional and non-functional tests. We structured the functional tests into
four test packages, namely, SPARQL Query Algebra to Query Text Translation, Normalization,
Versioning and Query Handler and discussed them in Section 5.1.1. We provided examples for
each test package and a Github link to the full test documentation. The test cases cover recom-
mendations R1-R10 and R12 and thereby ensured the functioning of our citation-enabling
Prototype. In Section 5.1.2 we evaluated runtime performance and memory consumption of
a simple and a complex query that retrieves live and historical data from a small and a big
versioned RDF* dataset, that we stored in GraphDB. We focused on comparing the two ver-
sioning modes Q_PERF and MEM_SAVE and gave an impression how these queries behave in
such a versioned environment by visually analyzing different plots. We came to the conclusion
that queries in the Q_PERF mode do not perform better for scenarios where timestamped
updates are used and therefore triples should initially just be annotated with an end date
(=MEM_SAVE), if there are no estimations about expected read & write frequencies and the
evolution of result sets.
In Section 5.2 we evaluated two Query Containment Solvers by checking how many seman-
tically equivalent queries based on the expressions in Table 4.1 can be detected. The test
queries we used for the solvers we also used earlier in the Normalization test package to
test our solution of R4 - Query Uniqueness. Finally, we compared these three solutions and

83

5. EVALUATION

Figure 5.9: Measuring runtime and memory consumption of retrieving live data with the
simple query against the small dataset which was incremented with timestamped updates in
both versioning modes

concluded that our solution has the most coverage. However, we considered the JSAC Query
Containment Solver for the future as it has a well-established project on Github, test suite and
active community.

84

5.3. Summary

Figure 5.10: Measuring runtime and memory consumption of retrieving historical data with
the complex query against the big dataset which was incremented with timestamped inserts
in both versioning modes

Figure 5.11: Measuring runtime and memory consumption of retrieving live data with the
complex query against the big dataset which was incremented with timestamped inserts in
both versioning modes

85

5. EVALUATION

Figure 5.12: Measuring runtime and memory consumption of retrieving historical data with
the simple query against the big dataset which was incremented with timestamped inserts in
both versioning modes

Figure 5.13: Measuring runtime and memory consumption of retrieving live data with the
simple query against the big dataset which was incremented with timestamped inserts in both
versioning modes

86

5.3. Summary

Figure 5.14: Measuring runtime and memory consumption of retrieving historical data with
the complex query against the big dataset which was incremented with timestamped updates
in both versioning modes

Figure 5.15: Measuring runtime and memory consumption of retrieving live data with the
complex query against the big dataset which was incremented with timestamped updates in
both versioning modes

87

5. EVALUATION

Figure 5.16: Measuring runtime and memory consumption of retrieving historical data with
the simple query against the big dataset which was incremented with timestamped updates in
both versioning modes

Figure 5.17: Measuring runtime and memory consumption of retrieving live data with the
simple query against the big dataset which was incremented with timestamped updates in
both versioning modes

88

CHAPTER 6
Conclusion and Future Work

In this final chapter we first conclude our work by revisiting the research questions from
Section 1.3 of Chapter 1 and by summarizing our findings. We thereby refer to single chapters
and sections where the research questions have been addressed. Next we lay out future work
which for one part are new ideas for future contributions and for the other part possible
improvements.

6.1 Conclusion

All our research questions where accompanied by the RDA Data Citation recommendations,
which we introduced in Section 1.3 of Chapter 1. RQ1 and RQ2 addressed recommendations
R1 & R2 and R4 more thoroughly by discussing and applying RDF* & SPARQL* and the W3C’s
SPARQL query algebra within a proposed RDF* Data Citation Framework and API. Later
Framework and API are the results motivated by RQ3 which also subsume conceptual and
practical results from RQ1 and RQ2.

RQ1

What is the best way to use SPARQL* and RDF* to implement Data Versioning and Operation
Timestamping with the aim to keep the number of additionally required triples low?
We defined the predicates vers:valid_from and vers:valid_until in Section 3.2.1 of Chapter 3
to connect triple and timestamp and thereby enabling versioning by version timestamps. In
Section 4.1.1 of Chapter 4 we illustrated templates of RDF* write operations, which employ
these two predicates, and showed examples how they can be used to update an RDF* triple
store. The number of additional triples during an insert or update is exactly two and three
in total. To further lower the number of additionally required triples on database level we
introduced the MEM_SAVE versioning mode in Section 4.1.1 of Chapter 4, which initializes a
dataset by only attaching one additional (metadata) triple that carries an end date that lies far

89

6. CONCLUSION AND FUTURE WORK

in the future. We showed that this initial version of the dataset can be persistently identified,
even if the start date is missing and further versioned triples are added to the triple store, by
designing versioning extensions (=snippets) that are injected into a query and transforming it
into a timestamped query (see Section 4.1.3 of Chapter 4). In a late stage of our research we
realized that the number of additionally required triples can even be further lowered, which
we will discuss in Section 6.2 of this Chapter.

RQ2

Which of the methods for detecting semantically equivalent queries yields the highest cover-
age?
One method of detecting semantically equivalent queries is to normalize the queries first,
then compute a checksum and finally compare their checksums, as the R4 recommendation
suggests. We approached this by first translating the query into an algebra tree, then operated
on the tree nodes to normalize the tree and finally translated the tree back into a query to
compute its checksum. We used python’s rdflib package to translate the query into the W3C’s
SPARQL query algebra and implemented a translator that does the reverse job. We discussed
this approach and showed an example in Section 4.1.3 of Chapter 4. Another method is to use
Query Containment Solvers and to check whether two queries are contained in each other.
The methods which the Query Containment Solvers use vary. We outlined and explained the
solvers available at the time of writing in Section 2.5 of Chapter 2. In Section 5.2 of Chapter 5
we evaluated the solvers by using test queries that we created based on the semantically equiv-
alent expressions in Table 4.1.3. We did the same evaluation for our implementation of the R4
recommendation as part of functional tests (see Section 5.1.1 of Chapter 5) and compared the
results. While our solution yields the highest coverage (see Table 5.3) we acknowledged the
work of the JSAC solver and considered to use it in the future, if it becomes fully SPARQL 1.1
compliant.

RQ3

Which of the recommendations can be covered by the framework and which ones remain
specific to the target system?
With the proposed RDF* Data Citation Framework we designed in Chapter 3 we covered R1-
R12 of the Data Citation recommendations. We implemented versioning and timestamping
(R1 & R2) with the use of SPARQL* and RDF* (see Section 4.1.1 and 4.1.3 of Chapter 4). We
designed a normalized query store in Section 3.2.3 of Chapter 3. We designed functions for
R4-R8 & R10 in Section 4.1.3 of Chapter 3. The algorithm in Section 4.1.4 of Chapter 4 makes
use of these functions and handles the query to return a new or existing citation snippet. In
former case the query is stored into the query store (R9). In Section 3.2.7 of Chapter 3 we
discussed the landing page and alternative methods of providing data and metadata. However,
we argued and concluded that the landing page is the most efficient way to present data and
metadata. The landing page (R11) is only covered in our framework design as a component
but with no specific structure or design for data and metadata to be represented. We also did
not include it in the implementation. To foster machine actionability (R12) we designed a

90

6.2. Future Work

metadata interface which uses the obligatory attributes of DataCite’s Metadata Schema as
basis but leaves also room for other metadata that can be added. These metadata are encoded
as JSON and stored in the query store (see Section 4.1.3 of Chapter 4) and can, together with
the result set be retrieved by means of function retrieve from the Query Handler module (see
Section 3.2.5 of Chapter 4).
We discussed recommendations R13 & and R14 in Section 3.1.1 of Chapter 3 and thereby
explained what they could possibly mean in the domain of RDF and SPARQL. However, we did
not include them in our framework design.

6.2 Future Work

Optimization of versioning and timestamping: We chose SPARQL* and RDF* as means for
versioning and timestamping with the aim to increase to lower the storage consumption
as metadata can be added in a more compact way than other prominent approaches that
we introduced in Section 2.3 of Chapter 2. In our design three triples are required for the
insert and update operations to represent data and metadata. However, this number can even
be further decreased. The simplest and fastest way is to delete the data triple and thereby
create a redundant-free graph. We provided a discussion about redundant and redundant-free
graphs in Section 2.4 of Chapter 2. This way we need only two triples but there is still room
for improvement. Consider the examples in Listings 6.1 and 6.2. The first examples shows a
redundant-free graph where we do not have the data triple additionally like in our current
design. The second example reduces redundancy even further by creating a hierarchy or
having a data triple inside a meta triple inside a metameta triple. Our future work leads this
way and we will further thrive for optimization of versioning and timestamping.
Evaluation of other triple stores: In our work we have only evaluated GraphDB. However, we
were successful with connecting our Prototype to Apache Jena and Stardog. Yet, we do not
know how these perform. By evaluating these in the same manner as GraphDB we might be
able to compare the results and support decision-making when deciding about the triple store
technology.
Deriving dataset descriptions: In our Prototype we used a heuristic and descriptive statistics
to derive a dataset description from the dataset itself (see Section 4.1.3 of Chapter 4). The query
provides further information about the dataset. These information could e.g. be extracted
from the query’s algebra tree, which is what we want to explore in near future.

Listing 6.1: Data and metadata representations - alternative approach 1

<<:Obama :occupation :president>> :from "2009-01-20T00:00:00.000+02:00"^^xsd:date .
<<:Obama :occupation :president>> :until "2017-01-20T00:00:00.000+02:00"^^xsd:date .

Listing 6.2: Data and metadata representations - alternative approach 2

<<<<:Obama :occupation :president>>
:from "2009-01-20T00:00:00.000+02:00"^^xsd:date>>

:until "2017-01-20T00:00:00.000+02:00"^^xsd:date .

91

List of Figures

1.1 The Design Science Research Cycles [Hev07] . 4

2.1 The three-step methodology for citing LOD subsets 12

3.1 Data Citation Framework Use Case Diagram . 20
3.2 RDF Data Citation Framework and its components 29
3.3 RDF* Store Utilities to enable communication between triple store and user. . . 31
3.4 RDF Data Persistent Identification Utilities to be used in the query builder algo-

rithm. 32
3.5 Query Store Utilities . 33
3.6 Normalized Query Store Schema . 33
3.7 Prologue handler interface . 34
3.8 Prologue handler example usage to add Versioning and Timestamping prefixes . 35
3.9 Query Handler interface . 36
3.10 Landing page and access control . 38

4.1 An algorithm for handling queries including recommendations R4-R10 and R12 60

5.1 Evaluation process of the rdf_star module . 72
5.2 Measuring runtime and memory consumption of retrieving historical data with the

complex query against the small dataset which was incremented with timestamped
inserts in both versioning modes . 77

5.3 Measuring runtime and memory consumption of retrieving live data with the
complex query against the small dataset which was incremented with timestamped
inserts in both versioning modes . 78

5.4 Measuring runtime and memory consumption of retrieving historical data with the
simple query against the small dataset which was incremented with timestamped
inserts in both versioning modes . 79

5.5 Measuring runtime and memory consumption of retrieving live data with the
simple query against the small dataset which was incremented with timestamped
inserts in both versioning modes . 80

5.6 Measuring runtime and memory consumption of retrieving historical data with the
complex query against the small dataset which was incremented with timestamped
updates in both versioning modes . 81

93

5.7 Measuring runtime and memory consumption of retrieving live data with the
complex query against the small dataset which was incremented with timestamped
updates in both versioning modes . 82

5.8 Measuring runtime and memory consumption of retrieving historical data with the
simple query against the small dataset which was incremented with timestamped
updates in both versioning modes . 83

5.9 Measuring runtime and memory consumption of retrieving live data with the
simple query against the small dataset which was incremented with timestamped
updates in both versioning modes . 84

5.10 Measuring runtime and memory consumption of retrieving historical data with the
complex query against the big dataset which was incremented with timestamped
inserts in both versioning modes . 85

5.11 Measuring runtime and memory consumption of retrieving live data with the
complex query against the big dataset which was incremented with timestamped
inserts in both versioning modes . 85

5.12 Measuring runtime and memory consumption of retrieving historical data with
the simple query against the big dataset which was incremented with timestamped
inserts in both versioning modes . 86

5.13 Measuring runtime and memory consumption of retrieving live data with the
simple query against the big dataset which was incremented with timestamped
inserts in both versioning modes . 86

5.14 Measuring runtime and memory consumption of retrieving historical data with the
complex query against the big dataset which was incremented with timestamped
updates in both versioning modes . 87

5.15 Measuring runtime and memory consumption of retrieving live data with the
complex query against the big dataset which was incremented with timestamped
updates in both versioning modes . 87

5.16 Measuring runtime and memory consumption of retrieving historical data with
the simple query against the big dataset which was incremented with timestamped
updates in both versioning modes . 88

5.17 Measuring runtime and memory consumption of retrieving live data with the
simple query against the big dataset which was incremented with timestamped
updates in both versioning modes . 88

94

List of Tables

2.1 RDA Data Citation recommendations[vUSP16] . 6
2.2 Recommendations and adopters/implementations 8
2.3 Query Containment Solvers and supported features for SPARQL-Algebra, AFMU,

TreeSolver [WCEGL13] and two more recent Solvers 14

3.1 Preparing the Data and the Query Store[vUSP16] 21
3.2 Persistently Identify Specific Data Sets[vUSP16] 22
3.3 Persistently Identify Specific Data Sets[vUSP16] 23
3.4 Resolving PIDs and Retrieving the Data[vUSP16] 23
3.5 Upon Modifications to the Data Infrastructure [vUSP16] 24
3.6 Search results from Google Scholar for individual RDF query languages on 16.06.2021

13:10 CEST . 26
3.7 Database table Celebrity (left) and its RDF representation (right) 28
3.8 Example of a dynamic RDF* dataset that changes over time and is versioned using

RDF*’s nested triples . 30
3.9 Theoretical example of a dataset where multiple unique sort indexes are possible. 32
3.10 Cases as describe in Section 3.1.2 . 35
3.11 Metadata attributes mapped to categories and sources they could be automatically

collected from . 37
3.12 RDA Data Citation Recommendations and how they were fit into the RDF* Data

Citation Framework . 40

4.1 Equivalent SPARQL expressions and normalization measures 50
4.2 Rough estimation of time complexity of query normalization 53
4.3 Query Satellite Example . 59

5.1 GraphDB settings . 74
5.2 Hardware specifications . 75
5.3 Detecting semantically identical queries - test results 82

95

Listings

2.1 View Query1 example . 17
2.2 View Query2 example . 17
2.3 Citation Query1 example . 17
2.4 Citation Query2 example . 17
2.5 Citation Snippet formatted with a Citation Function example1 17
2.6 Citation Snippet formatted with a Citation Function example2 17
4.1 Federated query . 42
4.2 Insert template for versioned triples . 43
4.3 Filled out insert template example for versioned triples 43
4.4 Update template for versioned triples . 44
4.5 Filled out update template example for versioned triples 44
4.6 Outdate template for versioned triples . 45
4.7 Filled out update template example for versioned triples 46
4.8 Query performance version_all_rows . 47
4.9 Memory saving version_all_rows . 47
4.10 Query performance SPARQL template . 48
4.11 Memory saving SPARQL template . 48
4.12 Example query . 49
4.13 Equivalent example query . 49
4.14 Example query . 51
4.15 Example query tree . 51
4.16 Normalized query tree . 52
4.17 Normalized query . 53
4.18 Example for a timestamped query in memory saving mode 54
4.19 Example query from the news dataset where we filter for Obama 56
4.20 Derived dataset description from the dataset . 57
4.21 Mint dataset - example . 61
4.22 Retrieve minted dataset - example . 62
4.23 Build and install RDF* Data Citation API . 62
5.1 Property path test query . 67
5.2 Output of function translate_algebra(translateQuery(query)) 67
5.3 Sequence paths - alternative 1 . 67
5.4 Sequence paths - alternative 2 . 67
5.5 Sequence paths - normalized query . 67
5.6 Simple query . 73
5.7 Complex query . 73
5.8 Versioned random data that gets inserted on query increment 73
5.9 Random data that gets inserted on query increment 74
5.10 SpeCS input file pair example - first file . 78

96

5.11 SpeCS input file pair example - second file . 78
5.12 SpeCS input file pair example - first file . 79
5.13 Normalized index entry algebra expression for the test case rdf_type_predicate 80
6.1 Data and metadata representations - alternative approach 1 91
6.2 Data and metadata representations - alternative approach 2 91

97

Bibliography

[ACD+17] A. Alawini, L. Chen, S. B. Davidson, N. Portilho Da Silva, and G. Silvello. Automat-
ing data citation: The eagle-i experience. In 2017 ACM/IEEE Joint Conference on
Digital Libraries (JCDL), pages 1–10, 2017.

[Aro07] Siddhartha Cingh Arora. System and method for database versioning, July 31
2007. US Patent 7,251,669.

[BBG+16] Anita Bandrowski, Matthew Brush, Jeffery S Grethe, Melissa A Haendel, David N
Kennedy, Sean Hill, Patrick R Hof, Maryann E Martone, Maaike Pols, Serena S
Tan, et al. The resource identification initiative: A cultural shift in publishing.
Neuroinformatics, 14(2):169–182, 2016.

[BCDC+15] Elena Bravo, Alessia Calzolari, Paola De Castro, Laurence Mabile, Federica
Napolitani, Anna Maria Rossi, and Anne Cambon-Thomsen. Developing a
guideline to standardize the citation of bioresources in journal articles (cobra).
BMC medicine, 13(1):33, 2015.

[BDF16] Peter Buneman, Susan Davidson, and James Frew. Why data citation is a compu-
tational problem. Communications of the ACM, 59(9):50–57, 2016.

[C+14] World Wide Web Consortium et al. Rdf 1.1 concepts and abstract syntax. 2014.

[CBHS05a] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs.
Journal of Web Semantics, 3(4):256, 2005. World Wide Web Conference 2005——
Semantic Web Track.

[CBHS05b] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs,
provenance and trust. In Proceedings of the 14th International Conference on
World Wide Web, WWW ’05, page 613–622, New York, NY, USA, 2005. Association
for Computing Machinery.

[CBHS05c] Jeremy J Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs,
provenance and trust. In Proceedings of the 14th International Conference on
World Wide Web, pages 613–622, 2005.

99

[CEGL18] Melisachew Wudage Chekol, Jérôme Euzenat, Pierre Genevès, and Nabil Layaïda.
Sparql query containment under schema. Journal on Data Semantics, 7(3):133–
154, 2018.

[dat19] Webconference data citation wg. https://www.rd-alliance.
org/group/data-citation-wg/webconference/
webconference-data-citation-wg.html, 2019.

[FCG+19] Martin Fenner, Mercè Crosas, Jeffrey S Grethe, David Kennedy, Henning Herm-
jakob, Phillippe Rocca-Serra, Gustavo Durand, Robin Berjon, Sebastian Karcher,
Maryann Martone, et al. A data citation roadmap for scholarly data repositories.
Scientific Data, 6(1):1–9, 2019.

[FKS19] Erika Fabris, Tobias Kuhn, and Gianmaria Silvello. A framework for citing nanop-
ublications. In Antoine Doucet, Antoine Isaac, Koraljka Golub, Trond Aalberg,
and Adam Jatowt, editors, Digital Libraries for Open Knowledge, pages 70–83,
Cham, 2019. Springer International Publishing.

[GGV10] Paul Groth, Andrew Gibson, and Jan Velterop. The anatomy of a nanopublication.
Information Services & Use, 30(1-2):51–56, 2010.

[GL06] Pierre Genevès and Nabil Layaïda. A system for the static analysis of xpath. ACM
Transactions on Information Systems (TOIS), 24(4):475–502, 2006.

[GMRW19] Bernhard Gößwein, Tomasz Miksa, Andreas Rauber, and Wolfgang Wagner. Data
identification and process monitoring for reproducible earth observation re-
search. In 2019 15th International Conference on eScience (eScience), pages
28–38. IEEE, 2019.

[gto] Gtopdb guide to pharamacology. https://www.guidetopharmacology.
org/. Accessed: 2021-08-06.

[GZR+17] Snehil Gupta, Connie Zabarovskaya, Brian Romine, Daniel A Vianello, Cyn-
thia Hudson Vitale, and Leslie D McIntosh. Incorporating data citation in a
biomedical repository: An implementation use case. AMIA Summits on Transla-
tional Science Proceedings, 2017:131, 2017.

[Har17] O. Hartig. Foundations of rdf* and sparql*: (an alternative approach to statement-
level metadata in rdf). In Proceedings of the 11th Alberto Mendelzon International
Workshop on Foundations of Data Management and the Web 2017 (Vol. 1912),
2017.

[Hev07] Alan R Hevner. A three cycle view of design science research. Scandinavian
journal of information systems, 19(2):4, 2007.

[HHK15] Daniel Hernández, Aidan Hogan, and Markus Krötzsch. Reifying rdf: What works
well with wikidata? SSWS@ ISWC, 1457:32–47, 2015.

100

https://www.rd-alliance.org/group/data-citation-wg/webconference/webconference-data-citation-wg.html
https://www.rd-alliance.org/group/data-citation-wg/webconference/webconference-data-citation-wg.html
https://www.rd-alliance.org/group/data-citation-wg/webconference/webconference-data-citation-wg.html
https://www.guidetopharmacology.org/
https://www.guidetopharmacology.org/

[HHR+16] Daniel Hernández, Aidan Hogan, Cristian Riveros, Carlos Rojas, and Enzo Zerega.
Querying wikidata: Comparing sparql, relational and graph databases. In Inter-
national Semantic Web Conference, pages 88–103. Springer, 2016.

[HKP82] David Harel, Dexter Kozen, and Rohit Parikh. Process logic: Expressiveness,
decidability, completeness. Journal of Computer and System Sciences, 25(2):144–
170, 1982.

[HTT+09] Anthony JG Hey, Stewart Tansley, Kristin Michele Tolle, et al. The fourth
paradigm: data-intensive scientific discovery, volume 1. Microsoft research
Redmond, WA, 2009.

[JD] Jennifer Pontius James Duncan. Ecosystem monitoring collabora-
tor network. https://www.rd-alliance.org/system/files/
documents/170213_RDA_WGDC_Webinar_James_Duncan_
Adoption_VermontMonitoringCooperative.pdf.

[KCG16] A Clara Kanmani, T Chockalingam, and N Guruprasad. Rdf data model and
its multi reification approaches: A comprehensive comparitive analysis. In
2016 International Conference on Inventive Computation Technologies (ICICT),
volume 1, pages 1–5, 2016.

[LPPS13] Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek. Static anal-
ysis and optimization of semantic web queries. ACM Transactions on Database
Systems (TODS), 38(4):1–45, 2013.

[MB15] Brigitte Mathiak and Katarina Boland. Challenges in matching dataset citation
strings to datasets in social science. D-Lib Magazine, 21(1/2):23–28, 2015.

[met] Graphdb. https://www.ontotext.com/knowledgehub/
fundamentals/what-is-rdf-star/.

[nam14] Rdf 1.1 concepts and abstract syntax. w3c recommendation. https://www.
w3.org/TR/rdf11-concepts/#dfn-named-graph, 2014.

[NBS14] Vinh Nguyen, Olivier Bodenreider, and Amit Sheth. Don’t like rdf reification?
making statements about statements using singleton property. In Proceedings of
the 23rd International Conference on World wide web, pages 759–770, 2014.

[NBT+15] Vinh Nguyen, Olivier Bodenreider, Krishnaprasad Thirunarayan, Gang Fu, Evan
Bolton, Núria Queralt Rosinach, Laura I Furlong, Michel Dumontier, and Amit
Sheth. On reasoning with rdf statements about statements using singleton
property triples. arXiv preprint arXiv:1509.04513, 2015.

[NDP15] Dario De Nart, Dante Degl’Innocenti, and Marco Peressotti. Well-stratified linked
data for well-behaved data citation. CoRR, abs/1512.02898, 2015.

101

https://www.rd-alliance.org/system/files/documents/170213_RDA_WGDC_Webinar_James_Duncan_Adoption_VermontMonitoringCooperative.pdf
https://www.rd-alliance.org/system/files/documents/170213_RDA_WGDC_Webinar_James_Duncan_Adoption_VermontMonitoringCooperative.pdf
https://www.rd-alliance.org/system/files/documents/170213_RDA_WGDC_Webinar_James_Duncan_Adoption_VermontMonitoringCooperative.pdf
https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf-star/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf-star/
https://www.w3.org/TR/rdf11-concepts/#dfn-named-graph
https://www.w3.org/TR/rdf11-concepts/#dfn-named-graph

[OGO21] Fabrizio Orlandi, Damien Graux, and Declan O’Sullivan. Benchmarking rdf
metadata representations: Reification, singleton property and rdf*. In 2021 IEEE
15th International Conference on Semantic Computing (ICSC), pages 233–240,
2021.

[PB08] Eric Prud’hommeaux and Alexandre Bertails. A mapping of sparql onto conven-
tional sql. World Wide Web Consortium (W3C), page 4, 2008.

[PFF+16] Vassilis Papakonstantinou, Giorgos Flouris, Irini Fundulaki, Kostas Stefanidis,
and Giannis Roussakis. Versioning for linked data: Archiving systems and bench-
marks. Proceedings of the Workshop on Benchmarking Linked Data (BLINK 2016)
co-located with the 15th International Semantic Web Conference (ISWC), 1700,
2016.

[PS05] E. Prud’hommeaux and A. Seaborne. Sparql querylanguage for rdf.
http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050217/, 02 2005.

[RAVUP16a] Andreas Rauber, Ari Asmi, Dieter Van Uytvanck, and Stefan Proell. Identification
of reproducible subsets for data citation, sharing and re-use. Bulletin of IEEE
Technical Committee on Digital Libraries, Special Issue on Data Citation, 12(1):6–
15, 2016.

[RAVUP16b] Andreas Rauber, Ari Asmi, Dieter Van Uytvanck, and Stefan Proell. Identification
of reproducible subsets for data citation, sharing and re-use. Bulletin of IEEE
Technical Committee on Digital Libraries, Special Issue on Data Citation, 12(1):6–
15, 2016.

[RJ] Chantel Ridsdale Reyna Jenkyns, Melissa Cuthill. Ocean network canada.
https://www.rd-alliance.org/system/files/documents/
Portage_Webinar_2020Nov24_OceanNetworksCanada_
DynamicData.pdf.

[SB19] Chris Schubert and Harald Bamberger. Handling continuous streams for me-
teorological mapping. In Service-Oriented Mapping, pages 251–268. Springer,
2019.

[SBM06] Vincent V Salomonson, William Barnes, and Edward J Masuoka. Introduction
to modis and an overview of associated activities. Earth science satellite remote
sensing, pages 12–32, 2006.

[Sil15] Gianmaria Silvello. A methodology for citing linked open data subsets. D-Lib
Magazine, 21(1/2):1505–1524, 2015.

[Sil17] Gianmaria Silvello. Learning to cite framework: How to automatically construct
citations for hierarchical data. Journal of the Association for Information Science
and Technology, 68(6):1505–1524, 2017.

102

https://www.rd-alliance.org/system/files/documents/Portage_Webinar_2020Nov24_OceanNetworksCanada_DynamicData.pdf
https://www.rd-alliance.org/system/files/documents/Portage_Webinar_2020Nov24_OceanNetworksCanada_DynamicData.pdf
https://www.rd-alliance.org/system/files/documents/Portage_Webinar_2020Nov24_OceanNetworksCanada_DynamicData.pdf

[Sil18] Gianmaria Silvello. Theory and practice of data citation. Journal of the Associa-
tion for Information Science and Technology, 69(1):13, 2018.

[SVJ20] Mirko Spasić and Milena Vujosevic Janicic. Specs — sparql query containment
solver. pages 31–35, 05 2020.

[TTY+05] Yoshinori Tanabe, Koichi Takahashi, Mitsuharu Yamamoto, Akihiko Tozawa, and
Masami Hagiya. A decision procedure for the alternation-free two-way modal
µ-calculus. In International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods, pages 277–291. Springer, 2005.

[vUSP16] Andreas Rauber; Ari Asmi; Dieter van Uytvanck; Stefan Proell. Tdata citation
of evolving data: Recommendations of the rda working group on data citation
(wgdc)t. pages 1–2, 2016.

[WCEGL13] Melisachew Wudage Chekol, Jérôme Euzenat, Pierre Genevès, and Nabil Layaïda.
Evaluating and benchmarking sparql query containment solvers. In Harith
Alani, Lalana Kagal, Achille Fokoue, Paul Groth, Chris Biemann, Josiane Xavier
Parreira, Lora Aroyo, Natasha Noy, Chris Welty, and Krzysztof Janowicz, editors,
The Semantic Web – ISWC 2013, pages 408–423, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[ZMBD19] Carlo Zwölf, N. Moreau, Yaye-Awa Ba, and M.L. Dubernet. Implementing in the
vamdc the new paradigms for data citation from the research data alliance. Data
Science Journal, 18, 01 2019.

103

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim and Scope
	Methodological Approach
	Thesis Structure

	Related Work
	RDA Data Citation Recommendations
	RDA Data Citation Implementations
	RDF Metadata Representations
	Standard Reification
	Named Graphs
	Singleton Property

	Statement-level metadata with RDF*
	Query Containment Solvers for SPARQL
	AFMU
	SPARQL Algebra
	JSAC
	SpeCS

	Creating automated citation snippets
	Dataset Identification

	Design
	Requirements and Constraints
	Product requirements
	Constraints
	Non-functional requirements

	RDF* Data Citation Framework
	RDF* Store Utilities
	Persistent Identification Utilities
	Query Store Utilities
	Prologue Handler
	Query Handler
	Query Builder UI
	Landing Page
	Data Management

	Compliance with RDA Data Citation Recommendations
	Summary

	Implementation
	RDF* Data Citation API
	rdf_star module
	query_store module
	persistent_id_utils module
	Query_handler module
	Prefixes module

	Build and Distribution
	Summary

	Evaluation
	RDF* Data Citation Framework
	Functional Tests
	Non-functional Tests

	Detecting semantically equivalent queries
	SpeCS
	JSAC
	Results

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Listings
	Bibliography

