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Kurzfassung

Aufgrund ihrer Bedeutung für Handels- und Hedgingstrategien ist die Volatilitätsprognose
seit mehr als 40 Jahren ein aktives Forschungsgebiet. Die anspruchsvolle Aufgabe hat in
letzter Zeit mit der erfolgreichen Implementierung von künstlichen neuronalen Netzwerken
wieder an Bedeutung gewonnen, welche oft bessere Ergebnisse liefern als viele traditionelle
ökonometrische Prognosemodelle. In dieser Arbeit werden Volatilitätsprognose eines long
short-term memory (LSTM) Netzwerks mit zwei statistischen Benchmarkmodellen vergli-
chen. Der Versuchsaufbau wurde so konzipiert, dass er verschiedene Szenarien abdeckt.
Er enthält Prognosen für Kombinationen verschiedener Aktienindizes, Prognosehorizon-
te sowie verschiedene Volatilitätsschätzer als Zielgrößen für die Prognose. In den meisten
Fällen konnte das LSTM Netzwerk einen niedrigeren quadratischen Fehler als die beiden
Benchmark-Modelle GARCH(1,1) und die naive Random-Walk-Vorhersage erreichen. Die
Ergebnisse stehen im Einklang mit bestehenden Studien zur Volatilitätsvorhersage und
zeigen, dass für die untersuchten Aktienindizes ein LSTM Netzwerk in einer Vielzahl von
Prognoseszenarien im Vergleich zu den gewählten Benchmarkmodellen zumindest wettbe-
werbsfähig und oft überlegen ist. Zusätzlich wurde für den S&P 500 Index die Performance
LSTM Netzwerken mit zwei und drei hidden layers untersucht. Gegenüber dem LSTM
Netzwerk mit einem hidden layer konnte keine klare Verbesserung festgestellt werden.



Abstract

Due to its importance for trading and hedging strategies, volatility prediction has been

an active area of research for more than 40 years now. The challenging task has recently

gained more traction again with the successful implementation of artificial neural network

approaches, yielding better results than many traditional econometric forecasting models.

In this thesis volatility predictions a long short-term memory neural network are compared

to two statistical benchmark models. The experimental setup was designed to cover a range

of different scenarios. It contains forecasts for combinations of different stock indices,

forecasting horizons as well as different volatility estimators as target variables for the

forecast. In the majority of cases the long short-term memory network outperformed the

two benchmark models GARCH(1,1) and random walk method prediction. Results are

in line with existing studies on volatility prediction and show that for the stock indices

examined a long short-term memory network is at least competitive, and often superior,

to the chosen benchmark models in a wide range of forecasting scenarios. Additionally for

the S&P 500 Index the performance of long short-term memory models with two and three

hidden layers was examined. No clear improvement could be found over the single hidden

layer network.
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1. Introduction

Accurate forecasts of stock market volatility can be of immense value for investors and

risk managers. A good guess about a stocks expected deviation from its current price can

ease the choice of trading and hedging strategies. Plenty of models have been proposed

to forecast stock price time series volatility but it still remains a challenging task with no

clear path how to approach it. The main issues in volatility forecasting are the difference

of stock market behavior in different time periods but also the well observed phenomenon

of volatility clustering, where periods of higher volatility are followed by periods of lower

volatility and vice versa.

In this thesis we will tackle the task of volatility forecasting with an artificial neural

network well suited for time series problems. A single layer Long Short-Term Memory

neural network will be tested against a historical volatility model and a GARCH model

under various circumstances. Moreover the single layer network will be tested against a

two- and a three layer network to compare predictive capabilities.

The aim of this thesis is twofold. Firstly it differs from many ’proof of concept’ works

which show that in one specific situation good predictions can be achieved. In the following

experiment different combinations of time horizons, volatility estimators and stock indices

are combined when comparing the artificial neural network to two different benchmark

models. This allows for more general conclusions to be drawn from results than other more

specialized experiments. Secondly it might give an interested practitioner an idea how

much can be gained by establishing an artificial neural network for volatility predictions in

their respective environment.

Firstly chapter (2) contains a literature review, providing an overview about both the

historical development and recent findings on models designed for volatility forecasting.

The following chapters (3) and (4) will introduce commonly used volatility estimators as

well as historical and econometric forecasting models. In chapter (5) theory and different

architectures of neural networks, recurrent neural networks and long short term memory

neural networks are summarized.

The main part of this thesis starts with chapter (6) introducing the experimental setup.

A long short term memory model is tested against a historical volatility and a GARCH

model for different stock indices, forecasting horizons and volatility estimators. The stock

indices of choice are the standard & poor 500, DAX Performance Index and SSE Composite
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Index. Time frames are mid- to short-term forecast horizons with 2,5,10 and 20 business

days. For each model, stock index and time frame forecasts are obtained for three different

volatility estimators. One calculated by continuously compounded squared returns, one

range based estimator and five minute sampled realized volatility.

Results are summarized in chapter (7). In most cases the long short-term memory

network could outperform the other two benchmark models. Especially compared to the

GARCH(1,1) model the long short-term memory networks results show a clear improvement

in forecasting capabilities. For the S&P 500 Index the single hidden layer LSTM network

was compared to a two- and a three hidden layer LSTM network. The three LSTM networks

performed quite similar in terms of mean squared error across all volatility estimators and

time horizons.

Finally in chapter (8) it is discussed to what extend the result of this experiment can be

generalized, what questions are still open and how additional studies could be constructed

to gather more information.
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2. Literature review

Volatility forecasting has been one of the most active area of research in econometrics

for decades now. Stock price time series are auto-correlated and non stationary which

poses problems in the modeling and forecasting volatility. Initially intuitive approaches

dominated, such as assuming today’s volatility as best estimate for the one tomorrow.

This class of models that is based on (weighted) linear combinations of previous volatility

observations is nowadays referred to as historical volatility models. Despite their simplicity

they still perform better than some of their modern, more elaborate competitors. This

emphasizes how difficult it is to accurately model and forecast stock market volatility.

Theoretically heavier models came up with Engles [10] work on ARCH models in 1980.

Stock returns are modeled as a stochastic process with drift and a stochastic component,

consisting of white noise scaled by the volatility process. A generalization by Bollersev

[6] and the resulting generalized ARCH (GARCH) model has been widely used ever since.

Many branches of GARCH models have been developed, among others Nonlinear Asym-

metric GARCH and GJR-GARCH, exponential GARCH or Threshold GARCH. There are

numerous studies comparing their forecasting performance. For an extensive study of 330

different models see Hansen [19] or for a more recent comparison on the much more volatile

Bitcoin price see Katsiampa [24].

One obstacle already arises when questioning how volatility is measured. Since volatil-

ity is latent, even ex-post, different ways of estimating it emerged. Traditionally this has

mostly been done with a ’close-to-close’ estimator, comparing the closing prices of each

day, yielding a measure of variability. In 1980 Parkinson [32] first argued that an estimator

based on the highest and lowest daily values is more meaningful than the close-to-close

estimator. In the following years a whole class of extreme value estimators emerged based

on the same idea, but with different underlying assumptions about drift and jumps pro-

cesses. Most notable are the Garman-Klaas [15], Rogers-Satchel [37] and Yang-Zhang [40]

estimators. The most recent developments could be achieved due to the easier availability

of high frequency data. Summing up intraday returns of short intervals during a day leads

to realized variance measures. Realized variance has the desirable property that as the

interval grid size goes towards zero, the realized variance equals the integrated variance,

see Anderson [1] for example. Practical problems with microstructure noise with very short

interval estimators once again led to several different classes of solutions.
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Returning to the task of volatility forecasting, different deep learning and machine learn-

ing approaches gained traction in recent years. Their flexibility in recognizing complicated

patterns and non-linear developments which can otherwise be hard to fully capture in

an econometrical model make them an interesting tool for volatility forecasting. As for

the choice of a neural network’s architecture, the most common one is the class of re-

current neural networks. They conceptually fit the time series forecasting problem best

since time series inputs can be added in chronological order, allowing the model to detect

time-dependent patterns. Among successful implementations are a Jordan neural network

in Arneric et al. [3] or Stefani et al. [39] in which several machine learning methods out-

performed a GARCH(1,1) model. Even though there are options, recently most research

has proven long short term memory (LSTM) neural networks developed by Hochreiter and

Schmidhuber [21] most successful. Recently in a comparative experiment Bucci [7] showed

that a LSTM and the closely related GRU model outperformed other neural networks like

traditional feedforward networks, Elman neural networks or the aforementioned Jordan

neural networks.

After the decision on a general neural network architecture type is made there are choices

concerning parameters, hyperparameters and smaller neural network architecture choices.

One approach gaining traction is to create hybrid models, combining a statistical model

with an artificial neural network. Recent examples can be found on the precious metal

market are Kristjanpoller and Hernández [25] and Hu et al. [23] or Maciel et al. [30]

on financial volatility modeling. These hybrid models usually incorporate a statistical

model’s results an additional input to all relevant and available data from daily stock price

movements. In Fernandes et al. [12] exogenous macroeconomic variables are included to

improve forecasting accuracy. Another interesting approach is incorporating recent news

and online searches into predictions. Sardelich and Manandhar [38] or Liu et al. [28] obtain

good results by including sentiment analysis as input.

4
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This chapter is loosely based on ’A Practical Guide to Forecasting - Financial Market

Volatility’ (2005) by Ser-Huang Poon [35]. On several instances more recent studies are

added to take current theoretic developments as well as new studies into account.

3.1. Introduction

Anticipating a stocks return is a key task for traders and risk managers and of no less

importance is the degree of variation one has to expect over a certain time frame, since

this is directly connected to the spread of possible outcomes. This degree of variation or

spread of possible outcomes is referred to as volatility in finance. Volatility is of interest

for every participant of the market since investment choices are heavily influenced by how

much risk is connected to them. Therefore it is obvious that a precise volatility forecast is

valuable whenever a tradable asset is involved.

Every forecast requires a underlying model it is based on. In mathematics an uncertain

development such as an asset on the stock market will be modeled as a random variable.

Computing volatility is straightforward in the case of a model where the stock price is given

by discrete random variable. The task grows in effort substantially when using a more

realistic continuous time model. Among the obstacles one encounters trying to forecast

volatility is non-stationary and autocorrelated. The term volatility clustering refers to the

empirical observation that periods of high volatility are followed by low volatility periods

and vice versa.

In general volatility can only be calculated over a certain time frame, as there is no such

thing as the degree of variation at one specific point in time. Daily, weekly, monthly and

yearly volatility are all important quantities in finance. The volatility calculated by all

previous observations is called unconditional volatility. Unconditional volatility is only of

limited use for forecasts since it might not reflect the current situation well enough due to

the non-stationarity and autocorrelation of financial time series data. Usually one is more

interested in the conditional, time dependent volatility over a certain time frame.

Assets are usually modeled a continuous random variables and data is only available for

discrete points in time volatility of previous time periods can not exactly be measured, it

rather has to be estimated. The following chapters introduce the most common volatility
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estimators and discuss their advantages and disadvantages from both a theoretical and a

more practical point of view.

3.2. Squared returns estimators

We will start with an intuitive derivation of the historically most important and still com-

monly used squared returns estimator. With daily data easily available online, a simple

approach is to treat the calculate the variance of daily closing prices pt at day t. Its average

daily variance over a T−t time frame from the known sample can then be simply computed

as

σ2
r2,t,T =

1

T − 1

T

j=t

(rj − µ)2, (3.1)

where the continuously compounded daily return r is calculated by rt = ln(pt/pt−1) and

µ is the average return over the day T − t day period. To arrive at the volatility we can

always just take the square root. Often a further simplification is to let the mean µ be 0.

In Figlewski [13] it is noted that this often even yields improved forecasting performance.

The daily variance for day t is then simply obtained by

σ2
r2,t = r2t (3.2)

The volatility estimate obtained from equation (3.2) is an unbiased estimator when the

price process pt follows a geometrical Brownian Motion with no drift. Through

dln(pt) = σdBt

close-to-close returns are calculated by rt = ln(pt) − ln(pt−1) = ln(pt/pt−1). Since

r ∼ N(0, σ2) we have E[r2] = σ2 and with that the squared continuously compounded

returns are an estimate for the variance.

This is an intuitive approach but it does come with some drawbacks. Even though (3.1)

is an unbiased estimator, as shown in for example Lopez [29] it is also quite noisy. A clear

shortcoming is that since (3.1) does not take into account any intraday data, it can lack

valuable information. A scenario with high intraday fluctuations but where closing prices

randomly are close in price could lead to a false sense of security, since the squared returns

estimator would suggest a calm stock price development.

6
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3.3. Range based estimators

To circumvent this issue volatility estimators emerged which take daily extremes in the

form og highest and lowest daily prices into account. The first of this class of range based

estimator was developed by Parkinson in 1980 [32]. We follow the derivation [32] and

let Ht and Lt be the highest and lowest price of any given day t, and Ot and Ct daily

opening and closing prices. Similar to rt = ln(pt/pt−1) we can calculate ht = ln(Ht/Ot)

and lt = ln(Lt/Ot), describing the daily returns for the highest and lowest daily values

reached. Additionally dt = ht − lt equals the difference daily highest and lowest returns.

Let P (x) be the probability that d ≤ x. The probability was derived by Feller in 1951 [11].

P (x) =

∞

n=1

(−1)n+1n erfc
(n+ 1)x√

2σ
− 2erfc

nx√
2σ

+ erfc
(n− 1)x√

2σ

where erf(z) = 2
π

z
0 e−t2dt is the error function and the complementary error function is

defined as erfc(z) = 1−erfc(z). The error function is a transformation of the cummulative

distribution Φ(x) of the standard normal distribution with the relationship that erf(z) =

2Φ(x
√
2)−1. Parkinson calculated that for real p ≥ 1 the expectation of dp can be written

as

E[dp] =
4√
π
Γ

p+ 1

2
1− 4

2p
ζ(p− 1)(2σ2)p/2 (3.3)

where Γ(z) is the gamma function and ζ(z) is the Riemann Zeta function. In the case of

p = 2 equation (3.3) simplifies to

E[d2] = 4ln(2)σ2

this leads to the first range based volatility estimator, which is given by

σ2
Park,t =

(ln(Ht)− ln(Lt))
2

4ln(2)
(3.4)

Following Bollen and Inder [5] for the following range based estimators the assumption

stands that the intraday price process follows a geometric Brownian motion. In the follow-

ing years various other range based estimators appeared. Garman and Klass [15] argued for

the superiority of an estimator which incorporates both open and close as well as high and

low of the respective day. The standing assumption here is that the price process follows a

geometric Brownian motion. Garman and Klass assume there is no drift, according to this

they optimize their parameters and arrive at the Garman-Klass estimator

7



3. Volatility

σ2
GK,t =

1

2
ln

Ht

Lt

2

− 0.39 ln
pt
pt−1

2

(3.5)

Roger and Satchell [36] further developed the Garman Klass estimator by allowing for

a drift. In 2000 Yang and Zhang [40] proposed a volatility approximation which takes

overnight volatility jumps into account.

3.4. Realized variance measures

The most recent developments in volatility estimation are thanks to the availability of high

frequency data. The idea is quite intuitive, arguing that the sum of measured intraday

volatility converges against the integrated volatility with vanishing interval size. For the

following derivation and discussion we will follow Chapter 1, 1.3.3 from Ser-Huang Poon

[35].

We start with the assumption that the asset price pt satisfies the following equation:

dpt = σtdWt, (3.6)

yielding a continuous time martingale thanks to the characteristics of the Brownian

motion, σt being a time dependent scaling variable which models the volatility. Now the

integrated volatility

t+1

t
σ2
t ds

equals the variance of rt+1 = pt+1 − pt. Here it is important to note that we cannot

directly observe σt, since it is inferred by equation (3.6) and scales dWt continuously.

We circumvent this problem by first starting to measure the returns at discrete points

rm,t = pt − pt−1/m with a given sampling frequency m and defining the realized volatility

measure as

RVt+1 =
j=1,..,m

r2m,t+j/m (3.7)

We chose rm,t+j/m in such a way that as m approaches infinity we cover the same t

to t + 1 interval is we already did with the integrated volatility. Through the theory of

quadratic variation one can show that

lim
x→∞

 t+1

t
σ2
t ds−

j=1,..,m

r2m,t+j/m

 = 0, in probability (3.8)

8
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for a detailed discussion on the theoretical argument see Andersen et al. [1].

Concretely for a 7 hour 30 minutes trading day the RV5 realized variance will be calcu-

lated with 90 five minute intervals prices as

RVt+1 =
j=1,..,90

r290,t+j/90 =
j=1,..,90

(pt+j/90 − pt+j/90−1/90)
2

In a world without microstructure noise the realized volatility would be the maximum

likelihood estimator and efficient. However this noise exists, induces autocorrelation on the

observed returns and for high sampling frequencies the realized volatility estimates will be

biased [[26]]. To strike a balance between using as much high frequency data as possible,

but also avoid the bias from microstructure noise, most often frequencies between one and

fifteen minutes are chosen.

Based on RV measures many other estimators have been proposed. Estimator have

been developed with the goal of removing the bias induced from microstructure noise,

with the same idea first-order autocorrelation-adjusted RV tries to deal with the issue.

Combinations of higher and lower frequency RV exist, also with the goal of reducing the

effect of microstructure noise. Different realized kernel measures exist, and also realized

range based variance has been implemented. Another whole subclass of realized measures

included jump components to the various estimators. Over 400 of these different estimators

have been tested against the standard five minute sampled realized variance, and it was

found that the latter baseline model was hard to outperform [26]. For a deeper dive into

the subject of realized measures either of Andersen et al. (2006) [2], Barndorff-Nielsen and

Shephard (2007) [4] or recently Floros et al 2020 [14] provide good starting points.

3.5. Choice of volatility estimators

Three different volatility estimators were chosen for the experimental part of the thesis.

The squared returns estimator, the Parkinson estimator and five minute sampled realized

volatility will be the three target variables for different forecasting models and time hori-

zons. This covers the widely used squared returns estimator as well as the classes of range

based estimators and realized measures. The following chapter will give an explanation

why out of the numerous options in each class those three were decided on.

As this should also be a guide of practical value the squared returns estimator (3.4) with

average return µ = 0 is included. Despite its drawbacks it is commonly used due to its

simplicity to implement, and also ease to explain and understand.

As a representative of the family of range based estimators the Parkinson volatility is

chosen. One reason for the choice is that Petneházi and Gáll [34] show similar predictive

9
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behavior for a LSTM network for all range based estimators is shown. They tried to forecast

the up and down movements for each previously mentioned range based volatility estimators

with a LSTM network and concluded that not much of a difference could be observed.

They did find that it was easier to predict than the squared returns estimator though.

This is in line with the findings of the experiment in this thesis, where the Parkinson

estimate forecasts consistently yielded a lower MSE than the forecasts for the squared

returns estimator.

With this result in mind the decision on the Parkinson volatility is based on its simplicity

of implementation. More elaborate estimates can get quite complicated and are therefore

also more unlikely to be practically implemented. If one is interested in implementing a

more advanced ranged based volatility estimator, than a LSTM networks forecasting results

should be comparable to the ones of the Parkinson estimator.

Finally we include one of the realized measures into our selection of volatility estimates.

As discussed above, many different realized measures have been suggested. In Liu et al.[26]

it is concluded that out of 400 tested estimators it is difficult to significantly outperform

the RV5 measure. In their broad experimental setup they compare the performance of

around 400 estimators on 31 different assets that are either exchange rates, interest rates,

equities or indices. The forecasting horizons are short to mid term and range from one to

50 business days. Depending on the benchmark model and error measurement five minute

realized variance was either found to be the best, or only very slightly outperformed, by

other realized measures. Those results, as well as the ease of availability of daily calculated

data from the [Oxford-Man Institute’s realized library, published by Heber, Gerd, Lunde,

Shephard & Sheppard (2009)] led to the choice of RV5 as a third volatility estimator.

3.6. Scaling

Often we will be interested in longer horizons than a single day for measuring or forecasting

volatility. For a n day period starting at day t the n day volatility estimate σt,t+n is given

by

σt,t+n =

t+n

i=t

σ2
i (3.9)

where σi, i ∈ {t, ..., t + n} is the daily volatility calculated by any of the volatility

estimators in section (3.1).

10
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Figure 3.1.: Daily annualized volatility estimators of the DAX performance index

3.7. Comparing volatility estimators

In figure (3.7) the three selected volatility estimators daily continuously compounded

squared returns, Parkinson volatility and realized volatility (5 minute sampled) are com-

pared for the DAX performance index. The patterns are typical for these volatility estima-

tors. 5 minute sampled realized volatility is scarce on outliers and extreme highs and lows

while the squared returns estimator portrays a more volatile environment. The Parkinson

estimator is situated somewhere in between.

The differences can be explained by considering what data is included in each estimator.

While the realized measure has plenty if information available with one data point every

five minutes during trading hours, the squared returns estimator only includes a single

observation per day, leading to a noisier estimator. A scenario with high intraday price

fluctuations but similar closing prices on two consecutive days will be depicted as a calm

day for the squared daily returns estimator, but recognized as a high volatility day with

extreme value estimators and realized volatility measures.

11
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In this chapter traditional approaches of forecasting volatility are summarized and based

on literature and previous studies their performance is evaluated. The choice of statistical

benchmark models which will test the artificial neural networks performance falls on a ran-

dom walk and GARCH model due to simplicity, common practical use and their prevalence

as a benchmark in many other studies of this kind.

To forecast the squared returns volatility estimator historically three classes of models

have been most significant in practice and research. Those are historical volatility mod-

els, the family of ARCH models and stochastic volatility models. Each of them will be

introduced in the following sections. Besides those three classes in recent times other

econometrical models have proven more successful to accurately forecast high frequency

volatility estimators such as five minute sampled realized variance. At the end of this

chapter the HAR-RV model as well as the ARFIMA model will be introduced.

4.1. Historical volatility models

The class of historical volatility models mostly provides simple and intuitive forecasts based

on some recent past observations. One approach is to forecast the next time steps volatility

by the one of the current time step, e.g. we always use today’s volatility as a forecast for

the one tomorrow.

σ̂t+1 = σt (4.1)

A moving average model calculates the average volatility of the last n periods and will

use this as a prediction for the next periods forecast.

σ̂t+1 =
σt + σt−1 + ...+ σt−n

n
(4.2)

Since in practice it is observed that today’s volatility depends more heavily on yesterdays

volatility then on the one of days further back, this can be taken into account as well by

adding scaling parameters to each observation. The moving average model can be altered

by adding exponential weights to the past n observations such that more weight is given to

more recent observations. The resulting exponentially weighted moving average model is
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already more elaborate then the previous ones, also requiring to be fit on previous in sample

observations to choose the exponential smoothing parameters. Forecasts are obtained by

σ̂t+1 =
n
i=1 β

iσt−i−1
n
i=1 β

i
(4.3)

4.2. GARCH models

The second class of models contains various variants of the AutoRegressive Conditional

Heteroscedasticity (ARCH), first developed by Engle [10]. ARCH models assume that

returns are distributed through

rt = E[rt] + t, (4.4)

where

t = σtzt, (4.5)

with a white noise process zt, scaled by the time dependent volatility σt. While zt usually

is normally distributed, other distributions as the t-student distribution or the skewed t-

student distribution have also been tested.

Now in the ARCH(q) model the variance is given as

σ2
t = α0 +

q

i=1

αi
2
t−i, (4.6)

where for all i ∈ {1, ..., q} the scaling parameters αi ≥ 0. Here we can see the difference

to the class of historical volatility models. While the next time steps volatility is still

deterministic, it depends on the previous observations of the process t, not σt itself. Now

we are left with parameters αi which need to be fit to the time series. The most common

way of fitting is using the maximum likelihood method, even though other methods as

Markov Chain Monte Carlo have been tried as well more recently.

The ARCH model was generalized by Bollerslev [6], also considering the previous values

of the variance itself, not only its past squared residuals. The resulting GARCH(p,q) model

has the following variance structure:

σ2
t = α0 +

p

i=1

αi
2
t−i +

q

j=1

βjσ
2
t−j (4.7)

where p ≥ 0, q > 0, α0 > 0, for i ∈ {1, ..., q} the parameters αi ≥ 0 and for j ∈ {1, ..., p}
the parameters βj ≥ 0. This allows for the choice of p = 0, reducing the model to an

13
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ARCH(q) one again. Similar to the ARCH model we fit the GARCH model using the

maximum likelihood method, also discussed in Bollerslev [6].

Since then numerous iterations and potential improvements have been proposed. The

exponential GARCH (EGARCH) model, developed by Nelson [31], models the variance

differently. Here the variance is based on a function of lagged innovations introducing an

asymmetry in how the model reacts to positive or negative developments. Asymmetry

is also considered in NAGARCH or GJR-GARCH models. For an extensive survey on

different GARCH models and their predictive ability see Hansen and Lunde [19] where

330 GARCH type models are compared. The experiment tested whether the standard

GARCH(1,1) model would be outperformed by any of the other 330 GARCH-type models.

The models were compared under six different error measurements for the IBM daily returns

and the DM - ✩ exchange rate. As target variable a realized variance measure was chosen,

as it most closely resembles the latent conditional variance. It was concluded that for

the exchange rate no model was clearly superior to the GARCH(1,1) model. For the

daily IBM returns the GARCH(1,1) model was outperformed by several other models that

accommodate for a leverage effect.

For the GARCH class of families there is a choice to be made between different ap-

proaches. Suppose we want to forecast a n day period. Let pt be the daily closing price

and rt,n = pt − pt−n the n day period return. One way of obtaining a forecast for the

next period would be to feed the model with a series {ri,n, ri+n,n,...,rt−n,n,rt,n} of previous

n day returns. Now our standard GARCH model will produce a deterministic one period

forecast for the variance of the next n day period. One issue with this approach is that the

model loses information by disregarding daily returns between the days with which the n

day returns are measured. For a monthly forecast for example, it could be that the stock

price is extremely volatile during the month but close to its monthly starting price again

at the end. Since the monthly return would be close to zero the model handles it like a low

volatility period.

The other approach is formulated using daily returns and working with the assumption

that E[ 2
t+n] = σ2

t+n, to generate recursive forecasts. Assuming we are currently at time

step t and want to use a GARCH(1,1) model to forecast the daily n day ahead volatility

σt+n the recursion would have the following form. Let n ≥ 2, for the one day forecast we

have

σ2
t+1 = α0 + α 2

t + βσ2
t (4.8)

through which we than can expand the daily forecasts to an arbitrary horizon

14
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σ2
t+n = α0 + ασ2

t+n−1 + βσ2
t+n−1

= α0 + (α+ β)σ2
t+n−1

(4.9)

With future daily volatility forecasts for σt, σt+1, ..., σt+n−1, σt+n we will now proceed as

we did with the interval calculation of volatility in chapter (2) and calculate the n day

period volatility forecast by

σt,n =
n

i=1

σ2
t+i. (4.10)

This can easily be generalized to a GARCH(p,q) model by taking more lagged observa-

tions into account and exchanging the previous day variances in equation (4.8) and (4.9)

with the sums of previous variances.

While the daily forecasts get noisier with growing n, the forecasts generated from daily

returns still show improved results over the ones from n day returns, where a simple one

step forecast is generated. This is generally observed in shorter forecasting periods, for

longer horizons, starting from several months on, the one step model is often preferred [13].

For a monthly horizon Ñı́guez [18] shows that daily multi step forecasts provide the most

accurate forecasts. As we only consider short to medium length horizons up to 20 business

days we will stick to recursively generated daily forecasts as a benchmark.

4.3. Stochastic volatility models

For this section the stock price process will follow a Brownian motion with drift. As

the name suggests, all Stochastic Volatility (SV) models have in common that a stocks

volatility is once again modeled as a stochastic process. A general representation of the

class of stochastic volatility models for some functions αV,t and βV,t, stock price St, drift

µ, volatility process Vt and Brownian motions dWS
t and dW V

t is given by

dSt = µStdt+
√
V StdW

S
t

dVt = αV,tdt+ βV,tdW
V
t

(4.11)

One early representative os the SV class of models is the Heston [20] model. The con-

tinuous time model follows the stochastic equations
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dS = µStdt+
√
V StdW

S
t

dV = κ(θ − Vt)dt+ ξ VtdW
V
t

(4.12)

with constants µ, κ ≥ 0, ξ, θ > 0. While ξ scales the stochastic volatility, θ models the

long variance. For an extending time horizon we observe that limt→inf E[Vt] = θ. The mean

reversion rate κ determines the speed of convergence to θ.

Once the framework is established how stock price and volatility stochastically behave,

one has to implement a method for forecasting the next periods volatility. In comparison

to the historical volatility models or GARCH class of models it is not as straightforward

on how to make a prediction for any period. Recently the approach that has yielded the

best result is the Monte Carlo Markov Chain method. It describes a class of algorithms for

sampling from a probability distribution.

4.4. Other models

For a better overview on the field of volatility forecasting in this section other non-neural

network models that are used for volatility forecasting are reviewed.

With the rise of realized volatility measures as a standard approach for estimating volatil-

ity the question arises how to forecast it most accurately. The widely used GARCH models

often show a rather poor performance. This can be explained due to a GARCH models

’blindness’ to any intraday developments. To combat this problem heterogeneous Au-

toRegressive models of realized volatility (HAR-RV) and the Autoregressive fractionally

integrated moving average (ARFIMA) model have proven especially successful. For this

reason this chapter will be concluded with those two models.

HAR-RV models

This subsection follows Corsi (2008)[8].

The HAR-RV arose from the observation, that traders behave differently dependent on

their time horizons. While day traders looking for profit will often respond immediately

to market changes, while an insurance company with a very long term investment will

not be as concerned by today’s smaller market movements. In accordance with ones goals

daily, weekly, or monthly re-balancing and repositioning of ones portfolio are considered to

be standard intervals. Long term traders are not as concerned with short term volatility

spikes, but short term traders are influenced by long term volatility outlooks and changes.

This leads to the following structural dependencies in the model. See Corsi [8] for a more
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detailed discussion of the argument.

Every component of the model follows an AR(1) structure. For every but the longest

time frame its development is also affected by the expectation of the next longer time frame.

The resulting cascading structure can compactly be summarized by substitution. Let RV d
t

be the daily realized volatility introduced in section (3.4). Following the HAR-RV model

the realized volatility can be computed by

RV d
t+1 = α+ βdRV d

t + βwRV w
t + βmRV m

t + ωt+1 (4.13)

Where RV m, RV w and RV d are the daily, weekly and monthly realized volatility. Pa-

rameters are usually fit using the ordinary least square method, minimizing the sum of

errors.

AR(FI)MA models

Autoregressive moving average models (ARMA) are a common tool to forecast time series

data. For time series data St the ARMA(p,q) model can be described by the equation

(1−
p

i=1

αiB
i)St = (1 +

q

i=1

βiB
i) t

where BiSt = St−i is the backshift operator, t a white noise process. The parameters

αi and βi are fit to previous observations of the time series. ARMA models can model

and forecast stationary stochastic processes, but are not able to deal with non-stationary

data. Since volatility is non-stationary a simple ARMA model will not be sufficient for

forecasting.

The ARIMA model originates from a AutoRegressive moving average model, but through

differencing it is possible to eliminate non stationarity of the mean. The AutoRegres-

sive fractionally integrated moving average (ARFIMA) model once again generalizes the

ARIMA model by allowing for non-integer parameter values. The ARIMA(p,q,d) and

ARFIMA(p,q,d) models can be written as

(1−
p

i=1

αiB
i)(1−B)dSt = (1 +

q

i=1

βiB
i) t

For d = 0 the extra term (1 − B)d equals one and with that the ARIMA model is

simplified to an ARMA model again while for d = 1 we have (1 − B)St = St − St−1, the

one time step difference of the time series. An ARFIMA model additionally allows for

fractional inputs for d. In that case the term (1−B)d is defined as
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(1−B)d =
∞

k=0

d

k
(−B)k =

∞

k=0

k−1
a=0(d− a)(−B)k

k!

4.5. Model selection

To measure our LSTM’s performance we choose the random walk model (3.4) and a

GARCH(1,1) model (4.7) with aggregated daily forecasts for multiple day horizons. The

choice was based on the following considerations:

❼ Forecasting performance

❼ Common use in research and literature

❼ Common use in practice

❼ Ease of implementation

The forecasting performance is rather obvious, since there is little to be gained in showing

a neural networks superiority over models known for poor performance. For comparison

purposes it is convenient when the same models as in similar research papers are used.

Often it is hard to keep an overview over new developments when too many different target

variables, error metrics and models are used.

The last two points in the list are heavily intertwined. The implementation of a theo-

retically advanced and therefore often simulation and computation heavy model will take

plenty of effort and as complexity grows, so does room for errors. In comparison to more

straightforward models they can also become difficult to explain when the results differ

significantly from more intuitive models.

With this in mind the decision was made to include one model of the class of historical

volatility models as well as a GARCH model. Here we disregard the class of stochastic

volatility models since the models are complex, rely on a heavy body of theory and the

implementation can be laborious. In addition to that there is a scarcity on studies exam-

ining how well SV models perform for different forecasting problems. In Poon [35], chapter

7, an overview about studies examining SV forecasting performance can be found. The

results range from promising to quite poor performance. In most cases traditional methods

of volatility forecasting seem to at least be on par with SV predictions.

For the historical volatility models we will proceed to use the random walk prediction

resulting from the random walk model as a simple benchmark. Despite its simplicity it

can be surprisingly hard to outperform it significantly, emphasizing how difficult of a task

volatility forecasting is in general.
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The second model we will test against the LSTM is the standard GARCH(1,1) model. It

sees plenty of practical use and if so, only gets slightly outperformed by its more elaborate

counterparts. Moreover since many research papers test their respective models against a

simple GARCH implementation it helps with comparability.

As for scaling the models to multiple periods for the random walk prediction we will

always use last periods volatility as a forecast for the next period. Here σt,n represents the

volatility estimate of choice at time t over the previous n business days. It is determined

by one of the volatility estimates discussed in chapter (3). The simple estimate for next

period is obtained by

σ̂t+n,n = σt,n. (4.14)

The GARCH model will be fed with daily data and multi day forecasts will be recursively

generated as described in section (4.2).
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Chapter (5) will start with a brief introduction to artificial neural networks (ANN), tra-

ditional feedforward neural networks (FNN) and recurrent neural networks (RNN). In the

following sections there will be particular focus on long short term memory models (LSTM)

since they show the best practical results for time series forecasting problems and will be

implemented for the empirical part of the thesis.

Introductory example

Artificial neural networks recognize patterns through a process of trial and error, resembling

a human way of learning. As a slightly unorthodox introductory example the game of chess

will serve here. The reign of chess engines over human players is established for some time

already. In 1995 the at the time world champion Garry Kasparov lost to the chess-playing

computer ’Deep Blue’, developed by IBM. Previous to that it was considered impossible

for computers to beat strong human players since there are too many possible variations

to simply brute-force ones way through every possible outcome. Deep Blue circumvented

the calculation of so many different variations by introducing an evaluation function that

estimates how good a position is if a move is made. The evaluation function is quite

complex and consists of hundreds of impactful factors such as ’how protected is my king?’,

’what pieces are there to capture’, ’how well positioned are my pawns’ and so on. With

high quality chess games the chess computer was then trained to weight those parameters.

Chess engines like the open source program Stockfish or Rybka refined this process with

improving parameter choices, weighting and more efficient algorithms to determine which

moves should be evaluated further.

This process resembles an econometric model such as an exponentially weighted moving

average model to forecast volatility. First human thought is put into the question what

parameters are important and then through some statistical approach the model is fit to

data.

In 2018 the company DeepMind released AlphaZero, a chess engine based on deep neural

networks. AlphaZero remarkably was able to outperform state of the art chess engines

without any human expert knowledge or ever seeing another game played. In the beginning

the chess engine only knows the rules of chess and starts from a blank starting point. It
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learns the game by playing itself repeatedly, starting with making completely random

moves. It will then through many games against itself learn which moves more often than

others lead to wins in certain positions. Through this flexible process of trial and error

AlphaZero adapts a human like play style that relies on its ’intuition’ from millions of

previously played games. A strong human player will usually ’feel’ which are the most

promising moves in the position, before very selectively calculating a few critical lines.

This approach of learning is in essence also how the long short-term memory network

will predict volatility. Instead of specifying how the previous n days of previous volatility,

open or close prices and any other factor will determine future volatility, the network is fed

with data and through training on the previous years it will come to its own conclusions

how important each factor is.

Categorization of neural networks

A neural network can learn in different ways, which are useful for different situations.

They can be split into the three groups of supervised learning, unsupervised learning and

reinforcement learning.

The previous example of mastering the game of chess describes the process of reinforce-

ment learning. An action has to be performed in a specified environment to maximize some

kind of value. In the game of chess the action is to make a move in the current environment,

which is the position on the board. Finally the value to maximize is the probability to win

the game from the current position by making any legal move on the board.

Unsupervised learning is commonly used for tasks such as clustering (e.g. dividing objects

into groups) or other tasks that require to find out something about the underlying data.

Through unsupervised learning objects such as words, numbers or pictures can be examined

and grouped together with other similar objects.

The most straightforward learning technique is supervised learning. For training inputs

and already known correct outputs are given to the neural network. In training the network

will learn how the inputs are connected to the output and use this knowledge for future

forecasts. This is the technique used for volatility forecasting. The outputs are previous

values of volatility estimators which can be calculated and are known. Inputs are usually

the respective days stock data such as daily open, close, highest and lowest values, even

though additional or less inputs are possible as well.

For supervised learning the learning process will be carried out as follows. At first

random weights are assigned to input values, since no knowledge of any possible correlations

between input and output exists at the start of training. The input values will then

pass through multiple layers of mostly nonlinear functions, called neurons. These initially
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random weights are what enable the learning process. In training the results produced

by the neural network are compared to the desired output and weights will be adjusted

to lower some form of error measurement. For numerical values mean absolute error or

mean squared error are popular choices. Through repeating this process many times the

in-sample error will decrease further and further since the weights will be better and better

adjusted to the patterns of the training set. This repetitive procedure allows to capture

complex patterns and nonlinear pattern. Even a one hidden layer neural network is (with

a sufficient amount of hidden neurons) a universal approximator, implying that with a

sufficient number of hidden nodes a wide range of nonlinear functions can be approximated

by the network.

This general process will be more thoroughly explained in the next sections for different

neural network architectures.

5.1. Feedforward neural networks

FNNs are organized in layers. The information flow is best observed graphically as in

figure (5.1). Input data is passed on through a number of functions until an output value

is produced.

Figure 5.1.: Feedforward neural network with two inputs, one hidden layer with three nodes
and one output.

The connected functions in the neural network are called neurons or nodes, hence the
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name neural network. Any neuron will first receive a sum of weighted inputs and then add a

bias, a constant term. The weighted sum plus bias will then pass through the actual function

defining the neuron. This so called activation function is usually nonlinear, allowing the

ANN to capture complex structures. By no means the only but a common choice is the

sigmoid function σ(x) = 1/(1 + e−x). Other frequently used activation functions or the

binary step function, tanh or rectified linear unit.

A hidden layers neurons output will then be calculated by

y = σ b+

n

i=1

wi,jxi , (5.1)

where xi is the input from the input layer, wi,j the corresponding weights and a bias b.

To enable pattern recognition the neural network first runs through a training set where

the desired output is known and available. After the neural network produces an output it

is compared to this desired output. The predictions quality is assessed by computing some

error measurement between the actual and desired output. Weights are then adjusted to

lower the in-sample error after. Every such iteration is called an epoch. The most common

method to reduce this error is a backpropagation algorithm in combination with a stochastic

gradient descent algorithm. Often incorrectly only referred to as backpropagation [16]. This

combinations of algorithms is the backbone of a many neural networks. It allows the neural

network to efficiently train trough many epochs by using algorithms that only use a small

fraction of the computational effort of less sophisticated algorithms for the same purpose.

Due to its importance it will be explained in more detail in the following subsections.

The subsections ’Stochastic gradient descent’ and ’Backpropagation’ are based on Good-

fellow et. al [16], where a detailed discussion can be found.

Stochastic gradient descent

For a given objective function f(x) with x ∈ Rn, n ∈ N the gradient descent algorithm finds

input values to minimize the target function. By moving a small step into the opposite

sign of the derivative the algorithm will end up close to a local minimum f(x) = 0. For

n > 1 the gradient ∇f(x) = ( ∂f
∂x1

, ∂f
∂x2

, ..., ∂f
∂xn

) will be calculated to find the minimum. For

a given learning rate (in non machine learning literature also step size) , a new point

x = x− δf(x)

is proposed. The learning rate can be chosen in different ways, the easiest one being to

pick a small constant value. This procedure can then be repeated until all partial derivatives

are sufficiently close to 0, which implies that the local minimum of f(x) is found. This
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algorithm is called gradient descent. One problem that occurs with the algorithm is that

it can computationally grow very heavy. For large data sets and many input variables the

training time can reach exhaustive lengths that make using the algorithm unattractive.

Consider a supervised learning network with n observations and weight vector x ∈ Rn, n ∈
N. The loss function

L(x) =
1

n

n

i=1

Li(x)

calculates the average loss depending on the set of weights x. The loss functions is

not further specified here, common choices are mean absolute error or mean squared error

between the predicted outcome and the desired outcome. Applying the gradient descent

algorithm thousands of times for data sets where n is in the millions will be extremely

inefficient.

Stochastic gradient descend significantly improves computational cost by only minimizing

the loss of a subset of observations M ∈ 1, 2, ..., n where |M | < n. The subset will be

drastically smaller than the number of total observations, usually under a couple hundred

observations. The resulting estimator

Lm(x) =
1

|M |
j∈M

Lj(x)

has the expected value E[Lm(x)] = L(x). By only using a small fraction of the computa-

tional power of the gradient descent algorithm the stochastic gradient descent algorithm can

go through numerous iterations of smaller batches in the time it would take to go through

one with all observations. Due to this is commonly used in machine learning applications

instead of the standard gradient descend.

Backpropagation

While gradient descend algorithms are used to minimize the error function through its

gradient values, backpropagation algorithms calculate the partial derivatives themselves.

For ease of notation and better intuition the algorithm is exemplary explained for a vector

of inputs and a single output. The same concept can be extended to matrix valued inputs

and multi dimensional output.

A prerequisite is to define the term operation. An operation is a simple function in

one or more variables. A simple example for an operation is the multiplication of i, j ∈ R,
yielding i ·j = ij. Importantly more complicated functions can be build combining multiple

operations. The output of a hidden layer y = σ (b+ n
i=1wi,jxi) can also be described as

a composition of operations. Each addition, multiplication but also the application of the
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σ function is an operation.

Our aim is to calculate the gradient of a real valued function f(x, y), x ∈ Rm, y ∈ Rn

with respect to x. The vector y contains other inputs where the derivative is not required.

Suppose that moreover g : Rm → Rn,Rn → R, y = g(x) and z = f(g(x)) = f(y). The

chain rule states that

∂z

∂xi
=

j

∂z

∂yj

∂yj
∂xi

or equivalently

∇xz =
∂y

∂x
∇yz

where

∂y

∂x
=


∂y1
∂x1

∂y1
∂x2

. . . ∂y1
∂xm

...
...

. . .
...

∂yn
∂x1

∂yn
∂x2

. . . ∂yn
∂xm


is the Jacobian Matrix. Recall that z = f(g(x)) = f(y). For each simple function

in the network the gradient can be calculated efficiently by the product of the Jacobian

Matrix and the gradient ∇yz. The whole neural network can be viewed as a composition of

operations, and for each of them this procedure is repeated until the first layer is reached.

The algorithm may be understand best by the simple example in figure (5.2), where the

graphs and operations are displayed.
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Figure 5.2.: Backpropagation algorithm for a feedward neural network. The partial differ-

ential of the Loss function with respect to the weight wn is calculated via the

chain rule. It holds that ∂L
∂wn

= ∂L
∂hn

∂hn
∂zn

∂zn
∂wn

. The partial derivatives of the

other weights are calculated in a similar manner, going back until hidden state

ht for
∂L
∂wt

. Since the partial derivatives for t < n can make use of the already

calculated derivatives the backpropagation algorithm is light on computational

cost.
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Universal approximation theorem

In numerous variations it has been shown that a one hidden layer feedforward network as

an approximator for a wide range of functions. Cybenko proves [9] the following variation

of the universal approximation theorem for continuous functions: Let In denote [0, 1]n,

C[In] be the space of continuous functions over In and for every f ∈ C[In] let f denote

the supremum norm. A sigmoidal function is defined as

σ(t) =

1 as t → ∞
0 as t → −∞

Usually a sigmoid function will be monotonically increasing, but for this result here this

assumption is not needed.

Now Cybenko [9] shows the following

Theorem. Let σ be any continuous sigmoidal function. Let x ∈ Rn and fix the other

variables γj ∈ Rn, αj ∈ R and θ ∈ R.
Then finite sums of the form

G(x) =

N

j=1

αjσ(γ
T
j x+ θj) (5.2)

are dense in C[In].

This proves linear combinations as in equation (5.2) can approximate any continuous

function on the n-dimensional unit cube [0, 1]n. The universal approximation theorem can

also be generalized further to show that they can approximate any well behaved continuous

function on Rn, see for example Hornik (1991) [22].

5.2. Recurrent neural networks

Feedforward neural networks can suffer from their one dimensional architecture. As seen

in figure (5.1) information only flows in one direction. This makes it unsuitable for non

stationary time series problems like volatility prediction. For problems like this recurrent

neural networks (RNNs) are frequently used. The term recurrent neural networks refers to

neural network architecture that allow for sideways or backwards information flow in its

hidden layers. A loop like structure has proven to work particularly well for time series

problems. It can capture time dependent patterns, keeping previous events in mind and

incorporating them into predictions.
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In figure (5.2) a RNNs structure is outlined. Every time a new input xt is added it passes

through a neural network N . The neural network also receives its previous state as input,

thus updating itself with every new input to take new developments into account. A simple

implementation of the neural network N could be a tanh layer, mapping all values between

-1 and 1.

Figure 5.3.: Loop-like structure of a recurrent neural network

A simple RNN as in figure (5.2) with a tanh activation function may be described by

the following equations

zt = b+WHht−1 +WIxt

ht = tanh(zt)

yt = c+WOht,

(5.3)

where b and c are bias vectors, WH , WI and WO are weight matrices for the hidden state,

input and output. The initial state h0 has to be given to the model.

In training weights will be adjusted through a backpropagation with stochastic gradient

descent algorithm minimizing the forecasting error for the training set. For a RNN this

process is called backpropagation through time.

One issue that can arise in training is the vanishing gradient problem, where hidden

states further back in time will decline in weight and therefore importance to forecasts.

This is due to the gradient shrinking with each step back, when computing derivatives

with respect to the weights The problem will be explained in a more thorough theoretical

framework in the following section.
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Vanishing gradient problem

Bengio et al. (1994) shows that for a simple RNN it is not possible to detect long-term

dependencies for lengths 10 to 20 for gradient based optimization. To emphasize why

the vanishing gradient is such a big issue in traditional RNNs the following example from

language processing is often given. A sentence in a book starts as something like ’The

temperature was low, James was ... ’. When a RNN should predict the next word in a

text a well trained network will probably make a sensible guess such as ’cold’ or ’freezing’

because the key words of temperature and low are still in recent memory, while ’James

was’ implies that a verb is likely to follow. If the sentence however is interrupted such as

’The temperature is low. ’Great’, James thought, he had not properly prepared for today

and now he was ... ’ then the important context is already out of reach.

Depending on the specific problem statement the prove of the vanishing gradient problem

will differ. Here following Pascanu et. al [33] it is shown for a simple recurrent network.

First recall the structure of a RNN depicted in figure (5.2) and the backpropagation algo-

rithm from subsection (5.1). Partial derivatives with respect to previous hidden states are

calculated by the chain rule. Let the recurrent neural network have the following form

zt = WHht−1 +WIxt

ht = id(zt) = zt

yt = ht

(5.4)

with h0 specified, andWH andWI weight matrices and the identity as activation function.

The output from the neural network is vector y while desired output vector is denoted as

y and y, y ∈ Rn. Assume an error function

L(y , y) =
1

n

n

i=1

Li(y , y) =
1

n

n

i=1

(yi − yi)
2 (5.5)

The backpropagation through time algorithm will compute the gradient ∂L(y ,y)
∂W , where

W = (WH ,WI). Pascanu [33] describes the problem as follows by rewriting the gradient to

∂Lm(y , y)

∂W
=

m

k=1

∂Lm(y , y)

∂hm

∂hm
∂hk

∂+hk
∂W

(5.6)

where ∂+hk
∂W describes the derivative of hk with respect to W with hk−1 fixed with respect

to W . Furthermore
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∂hm
∂hk

=
m

i=k

∂hi
∂hi−1

(5.7)

by design of the recurrent network. As already stated in section (5.1) the term ∂hi
∂hi−1

can

be expressed as Jocobian Matrix, and with that ∂hm
∂hk

as the sum of Jacobian matrices.

Every summand ∂Lm(y ,y)
∂hm

∂hm
∂hk

∂+hk
∂W of ∂Lm(y ,y)

∂W is referred to as temporal contribution.

The temporal contributions measures how at step k the weights W influence the error

function at a later time m. Combined the sum equals the overall impact of the current

weights on the error function. Without giving a clear definition of the term when m is

much larger than k it is referred to as a long term contribution.

The spectral radius ρ(A) of a matrix A is defined as the maximum value of the matrix

absolute values of its eigenvalues. Pascanu et. al show that if ρ(WH) < 1 it is sufficient

for the gradient to vanish as m approaches infinity. In the same paper the result is also

generalized to nonlinear activation functions.

5.3. Long Short Term Memory

First developed by Hochreiter and Schmidhuber [21] the long short-term memory (LSTM)

network deal with the vanishing gradient problem, allowing information to persist. This is

achieved by a persistent cell state. Input and forget gates carefully decide when information

should be added or disregarded in the memory cell. With each new input they regulate

which information is added and forgotten in the memory cell. This architecture allows long

time dependencies to be detected, while in a recurrent neural network without memory cell

events many iterations past will slowly get lost.

The following sections is loosely based on the excellent blog post [Colahs Blogpost].

For great illustrations, intuitive examples and a deeper dive on this topic it is highly

recommended to read it.

Formally an LSTM model can be described through the following equations.

ft = σ(Wf [ht−1, xt] + bf )

it = σ(Wi[ht−1, xt] + bi)

C̃t = tanh(WC [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo[ht−1,xt ] + bo)

ht = ot ∗ tanh(Ct)

(5.8)
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with observations xt, weight matrices Wf , Wi, WC , Wo, biases bf , bi, bC and bo. The

memory cells state is described by Ct, while ht is the cells output at time t. With ∗ we

denoate the element-wise product, σ a sigmoid function mapping the every input between

0 and 1. The vector C̃t contains candidate values which might be added to the cell state,

this will be explained in more detail walking through the equations below.

Figure 5.4.: Repeating module in a LSTM, visualizing how the cell state is updated with
every new input and how the output is generated.

The equations describing the LSTM model are best understood having figure (5.3) in

mind. For each new input xt the following process is repeated. Assume that here we just

passed time t− 1 and will now add a new input at time t.

The key component of the LSTM model is the cell state Ct. It is updated with every

new input through three different gates. First the forget gate decides which information

from Ct−1 is not necessary anymore. The first equation

ft = σ(Wf [ht−1, xt] + bf ) (5.9)

describes this process. The previous output, also called hidden state, ht−1 and new input

xt are multiplied by their respective weights and then pass through a sigmoid function,

mapping all inputs between 0 and 1. A value of 0 implies ’forget everything’ while a value

of 1 implies that all information persists.

The next step is to add new information. A vector C̃t provides candidate values, sug-

gesting possible additions to the cell state. The candidate vector fulfills the equation
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C̃t = tanh(WC [ht−1, xt] + bC). (5.10)

The tanh function scales the output between -1 and 1. Not all of those values will be

added to the cell state. An input gate it regulates what values are allowed to pass. It is

constructed in similar manner to ft, satisfying the equation

it = σ(Wi[ht−1, xt] + bi). (5.11)

Note that the functions it and ft will still not have identical output since their respective

weight matrices differ. The process of adding information is compactly summarized by

equation

Ct = ft ∗ Ct−1 + it ∗ C̃t. (5.12)

The new cell state equals the previous one multiplied with the forget layer ft plus certain

new values which are suggested by the candidate vector C̃t and allowed to pass by the input

gate it.

The last two equations

ot = σ(Wo[ht−1,xt ] + bo) (5.13)

and

ht = ot ∗ tanh(Ct (5.14)

determine the actual output ht. The output gate ot regulates which values of the memory

cell will be used for determining the output. Information stored in the memory cell passes

a tanh layer and is then combined with the output gate to create this iterations output

and at the same time hidden state ht for the next iteration.

5.4. LSTM variations

Based on the architecture in section (5.3) some variations of the LSTM architecture have

been developed. Two LSTM variations that have already proven to yield good results in

various circumstances is presented below.

32



5. Neural networks

Gated Recurrent Units (GRU)

A Gated Recurrent Unit (GRU) is closely related to LSTM networks. The difference is

that the GRU lacks an output gate. In a GRU the output equals the hidden cell state

at the time, the input and output gates are updated to an ’update’ gate. Even thought

the LSTM networks architecture is somehow simplified by taking away the output gate, in

some experiments it has proven to provide superior forecasts. This tends to happen when

datasets are smaller and less frequent, see Gruber and Jockisch (2020) [17]. Since daily or

even intraday stock data is not scarce usually, it does not seem to be favorable for volatility

predictions.

Peephole LSTM

The peephole variation of the LSTM network adds additional connections between the cell

state and gate layers. In a standard LSTM the gate layers don’t have any information

about the cell state, but only about the previous output. Different peephole variations

exist, not all gate layers have to gain information from the cell state, it is also possible to

only include a single peephole somewhere. With this additional information for updating

the cell state patterns might be detected more efficiently.
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In chapter (6) the data and experimental setup will be discussed. A LSTM network as

described in chapter (5) is tested against two benchmark models. Those are the widely

used GARCH(1,1) model and the simple random walk model. The experiment includes

different time frames, different forecasting horizons and volatility estimators. The detailed

choices of those, as well as error measurement of predictions and stock indices chosen for

the comparison are explained in the sections below. Moreover data sources, preparation

and implementation are explained.

6.1. Experimental setup - forecasting horizon and error

measurement

Due to constraints in form of overall data availability and the need to split a dataset in

training, validation and test set the time period for comparisons of different models is

limited. The four year period from 01.01.2016 - 01.01.2020 allows for the biggest interval

on which the LSTM can still be properly trained. Regarding the forecast horizons were we

aim for short to medium length forecasts. In risk management, trading and option pricing

for short time horizons with the next weeks ahead in mind are often required. In the

experiment we conduct forecasts for 2,5,10 and 20 business days ahead, roughly covering

monthly, weekly as well as two week and two business day forecasts.

For error measurement of predictions compared to the actual volatility estimates we

follow the majority of studies and experiments on this topic and will stick to the common

mean squared error (MSE). Let Y be the vector of actual values and Ŷ be the predicted

values, then the MSE is computed by

MSEY,Ŷ =
1

n

n

i=1

(Y − Ŷ )2, (6.1)

simply squaring and then averaging the errors of every predicted time step.

The results in 7 will be averaged across the 3 indices, notable deviations in the results

of the 3 different indices will be mentioned below.
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6.2. Experimental setup - stocks and data sources

The choice was made to consider mainly stocks and indices that are frequently traded, so

that even though it might not be a safe bet to generalize the results to a broad range of

financial assets, there still remains practical use in just the results of this single experiment.

With this in mind the 3 indices chosen for the experiment are:

❼ Standard & poor 500 (SPX): a stock market index that covers the 500 largest stock

exchanges listed in US stock exchanges. The stocks are weighted according to their

market capitalization.

❼ SSE Composite Index (SSEC): a stock market index that covers all stocks that are

traded at the Shanghai stock exchange. The stocks are weighted according to their

market capitalization.

❼ DAX Performance Index (DAX): a stock market index that covers 30 major German

companies traded at the Frankfurt Stock Exchange.The stocks are weighted according

to their market capitalization. The DAX Performance Index also includes dividends.

They can also be seen as approximations of the market portfolios of their respective

regions. Even if the experiment might not be arbitrarily scalable to other stocks, fonds

or indices, it still covers crucial indicators of the general market movements in the US,

Germany and the Shanghai stock exchange.

In figure (6.2) daily annualized volatility between 2000-2020 of the indices SPX, DAX

and SSEC is plotted. For the SPX and DAX most notable is the impact of the financial

crisis around 2008. For the SSEC the 2015–2016 Chinese stock market turbulence led to

the most volatile market. The out of sample forecasting period 01.01.2016 - 01.01.2020

remains relatively calm for all three indices.

Five minute sampled realized volatility requires accurate and complete intraday data to

be calculated. While it is more and more common to find this detailed stock data, it can be

hard to find for past years. In the Oxford realized library [Link] data for the DAX, SSEC

and SPX are available for a time frame from around 2000 until now. Those include the

daily realized volatility values used for this experiment. Daily historical data is much more

easily available, even though data quality declines with data from 1970 and before. For

the three stock indices chosen in this experiment the SPX has the longest available data

history. Daily open, close, high and low prices starting from 1970 are easily accessible. For

the SSEC and DAX index data is only readily available more recently and was used from

the start of 2000. The daily datasets were downloaded from yahoo finance.
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Figure 6.1.: Daily annualized squared returns volatility estimators of the three indices SPX,
DAX and SSEC

6.3. LSTM parameters and hyperparameters - training and

validation

This section gives detailed explanations how parameters and hyperparameters of the LSTM

models were chosen, as well as how the data is split for training.

6.3.1. LSTM - parameters

Firstly we will discuss the choice of input parameters. This is a crucial decision, since

it determines how much information we give the model, adjusting the possible ceiling for

predictions. The baseline in case of financial time series problems is easily available data like

daily high, low, open and closing prices. In Chapter (2) further input variable choices have

been discussed. Promising results have been achieved by the inclusion of macroeconomic

variables [12] or even sentiment analysis [38]. In this experiment we will stick to using

daily high, low, open and closing prices. An interested practitioner might still experiment

with adding additional input variables tailored to a specific stock to improve forecasting

performance.

Another question arises regarding the question how to scale the input data. If the input

variables proportions differ significantly it can lead to slow and faulted learning processes,

or even a complete failure in the learning process. This is due to the initial distribution

of small random weights. If one input variable is magnitudes larger than another one it is
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hard to learn which features are important since updating a weight of a small input variable

will only yield little changes in the results. This problem can be circumvented by scaling

all input data within the same range. Once again there is not one right way to do this.

Common variants are scaling to a range between 0 and 1 or standardization with a mean

of 0 and a variance of 1. In this experiment instead of the time series data itself include

the series of percentage changes for each input variable.

6.3.2. LSTM - training, validation and test set

In order to properly evaluate a neural networks performance the final model for predictions

should not have seen the final test data at any step of the training process. A simple split

into a training and test set would yield a prediction, but optimizing hyperparameters on

the test set would use out of sample information. In order to avoid this ’peeking’ into the

future data is generally split into a training, validation and test set. The training set will

be used for the in sample calibration of the model, while the validation set is a test set on

which hyperparameters can be optimized. Once one has settled on a model with satisfying

results for the validation set it can be used for an evaluation of the test set for an unbiased

result.

High frequency data is only readily available since the year 2000 at earliest. This restricts

training time for the LSTM to a maximum of 20 years. Since common practice is that either

a 80/20 or 70/30 split into training and test set should be used to train the model this

restricts the time frame for our forecast. To get the maximum amount of training in we

choose a four year forecast horizon from 1.1.2016 to 1.1.2020 to test our model, leaving 16

years for training. The 16 years are again split 80/20 into a pure training and a validation

set for tuning hyperparameters. GARCH models deliver the best results trained on the

longest possible time-frame [13]. In order to simulate a realistic environment where an

investor makes use of all data available, GARCH models will always be trained on the

maximum available data.

6.3.3. LSTM - hyperparameters

The choice of hyperparameters can have a big influence on a models performance. In a

LSTM neural network there are a couple of decisions to be made. For the number of

hidden layers, nodes per layer, training epochs and badge size there are no inherently right

or wrong choices, usually a mix of rules of thumb and a process of trial and error guides

the way to a good prediction.

For the number of hidden layers here we stick to a single one. On the one hand the

universal approximation theorem (5.1) ensures that a single hidden layer is able to approx-
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imate a wide range of functions. On the other hand empirical results implementing more

complex LSTM architectures do not automatically yield improved results, as can be seen

in Liu [27] for example.

An epoch refers to the process of going through the whole neural network once. Weights

are adjusted after each of those epochs. Through repeating this process weights will be

adjusted by a backpropagation logarithm reducing the in sample error. One issue that can

arise is that through too many training epochs the data overfits, leading to very precise

results for the in-sample prediction but failing to adapt to new out of sample data. To find

a balance between overfitting and not recognizing actual patterns we choose an approach

with many epochs but also include an early callback function to avoid overfitting. The

patience of the early callback function is set to 100, which means that when the validation

set error does not improve within the next 100 iterations the training will be stopped and

the weights are reset to the epoch with the lowest validation set error.

Optimization of the other two hyperparameters, nodes and batch size, is carried out

using the traditional method of performing a grid search. Reasonable sets of integers

{n1, n2, ..., ni−1, ni} for nodes and {b1, b2, ..., bk−1, bk} for batch size, i, k ∈ N, are chosen.

Then every combination of tuples nj , bg, j ∈ {1, ..., i, k ∈ {1, ..., k} is tested and the one

with the lowest validation set error is chosen.

Every time we train the model from ground up we start with a random set of weights.

This leads to different training outcomes even with identical inputs and hyperparameters.

In contrast to a deterministic model here we need to validate our results through repetitive

execution. After all inputs and hyperparameters are fixed we train the model 10 times and

average the test set error. Those averaged errors are proceeded with for comparing them

to the statistical benchmark models.

6.4. Implementation

The LSTM model was implemented in Python with Keras. Plots are created with Mat-

plotlib, data preparation was done with Pandas.

The GARCH model was implemented in Python with the ARCH toolbox.

The simple random walk model was also implemented in Python with Pandas.

For code and details on the implementation see Appendix (B).

38



7. Results

The results of the experiment discussed in chapter (6) are compactly summarized in table

(7.1). Errors in the table are obtained by computing the equally weighted MSE averages

over each stock index. Tables with separate results for each stock index can be found in

Appendix (A).

7.1. single hidden layer LSTM versus benchmark models

Table 7.1.: averaged MSE over all three stock indices

σi

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤Model

Horizon
2 5 10 20

σr2 GARCH 0,635 0,930 1,194 1,888

σr2 LSTM 0,632 0,825 1,026 1,271

σr2 random walk method 0,852 0,985 1,146 1,415

σPark GARCH 0,839 1,073 1,379 1,899

σPark LSTM 0,401 0,566 0,778 0,994

σPark random walk method 0,480 0,627 0,810 1,106

σRV 5 GARCH 0,454 0,723 1,045 1,544

σRV 5 LSTM 0,170 0,245 0,336 0,470

σRV 5 random walk method 0,164 0,247 0,349 0,518

Overall the LSTM performed quite well against both benchmark models. Notable is the

LSTM’s superior performance over the random walk method, where in the averaged results

of table (7.1) it only once was outperformed slightly in the case of two day forecasts for the

realized volatility. Moreover it drastically outperformed the GARCH model for Parkinson

and realized volatility estimators, while still slightly trumping the GARCH model for the

squared returns estimator as well.

The tables with detailed results for every index can be found in Appendix (A). The results

for each individual stock index differ slightly from the averaged results in table (7.1). For

the SSE Composite Index the LSTM performed best, only for the two day RV5 forecasts

it is narrowly behind the random walk method. Only for the squared returns estimator of
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the S%P 500 Index the GARCH model was able to show good results and outperformed

the LSTM twice for two and ten day horizons. In the case of the DAX Index the LSTM

was again only slightly outperformed for the RV5 estimator for two and five day horizons

and for the two day squared returns estimator by the GARCH model.

Summarizing the results a pattern can be observed that the LSTM shows consistently

better results than the benchmark models for longer horizons. For the short term forecasts

the LSTM’s results are closer to the benchmark models, and even though they often still

yield a lower MSE, sometimes being slightly outperformed by either one of them.

7.2. Comparison of single and multiple hidden layer LSTMs

Table 7.2.: LSTM networks with one, two and three layers for the S&P 500 Index

σi

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤Model

Horizon
2 5 10 20

σr2 LSTM - 1 layer 0,616 0,831 1,069 1,438

σr2 LSTM - 2 layer 0,610 0,805 1,028 1,410

σr2 LSTM - 3 layer 0,611 0,798 1,035 1,413

σPark LSTM - 1 layer 0,407 0,618 0,806 1,135

σPark LSTM - 2 layer 0,375 0,583 0,779 1,131

σPark LSTM - 3 layer 0,385 0,581 0,788 1,133

σRV 5 LSTM - 1 layer 0,169 0,266 0,401 0,572

σRV 5 LSTM - 2 layer 0,176 0,280 0,411 0,592

σRV 5 LSTM - 3 layer 0,183 0,299 0,431 0,609

In table (7.2) the results for two and three layer LSTM networks are compared to the

single layer one. The single layer network has one hidden layer with five nodes, while the

second and third hidden layer each have three nodes. At the end of every network there is

a dense layer.

The results only differ slightly from the single layer network when adding additional

layers. While for the the RV5 volatility estimator the single layer approximation are better

for every time horizon the opposite is true for the Parkinson and squared returns estimator.

In most cases the difference is within a five percent range. The maximum difference in favor

of a multi layer network is the two day prediction for the Parkinson volatility, yielding a

8,5% MSE improvement over the single layer network. On the contrary the single layer

network had an 11,1% lower MSE (5 business day prediction versus the) than the multi

layer network for the RV5 measure.
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Overall it cannot be concluded that more layers generally lower or increase the MSE of

forecasts. For the S&P 500 index the results suggest that in case of estimating volatility

with the Parkinson or squared returns measure small efficiency gains might be made by

adding a second layer, while for the RV5 measure a single layer works best. Since this was

only tested for one time span, for one stock index and for one specific architecture choice,

those results should not be generalized too light-headedly for other scenarios. Having said

this, the overall insight that adding a second layer produces results close to the single layer

network and does not show clear improvements is in line with similar experiments as seen

in for example Liu [27]. Figures (7.4) and (7.5) depict the behavior of the single and three

layer forecast. It is general observed that the multi layer LSTM network will predict closer

to the mean and less drastic developments, while the single layer LSTM network tends to

follow the recent developments.

Figures (7.1), (7.2), (7.3) and (7.4) depict predictions against the actual values of different

S&P 500 volatility estimators and forecasting models. Figure (7.5) depicts the forecast of

a three hidden layer LSTM network.
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Figure 7.1.: GARCH(1,1) 20 day forecasts compared to all three volatility estimators
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Figure 7.2.: LSTM 20 day forecasts of the squared returns estimator, compared with the
actual values
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Figure 7.3.: LSTM 20 day forecasts of 5 minute realized volatility, compared with the actual
values
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Figure 7.4.: LSTM 20 day forecasts of the Parkinson volatility estimator, compared with
the actual values
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Figure 7.5.: single layer LSTM, 20 day forecasts of 5 minute realized volatility, compared
with the actual values of the volatility estimator
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In chapter (2) it was observed that in some experiments different recurrent neural networks

show strong predictive capabilities in volatility forecasting. Another promising result was

achieved within the experimental setup of this thesis. Considering different stock indices,

time horizons and volatility estimators the LSTM performed well against a GARCH and

random walk model. In most cases the LSTM outperformed both benchmark models,

only for very short term horizons of two to five business day it sometimes is very slightly

outperformed by either the GARCH or random walk model.

The results are in line with many other studies on volatility forecasting, where LSTM

networks performed well against econometric models. Due to experimental setup the results

should still be interesting, since they show that for a wide range of cases the LSTM is at

least on par, and often much better, than the two benchmark models. To the authors

knowledge, no comparative experiment similar to this one has been done for a LSTM

network yet. Future analysis could include more volatile time periods to examine how a

LSTM performs against benchmark models in this environment. Moreover different asset

classes such as interest rates, exchange rates or other stocks and bonds could be examined.

Another possibility would be to fine tune the LSTM network even more by including

exogenous variables, and to test it against state of the art econometric models for each

volatility estimate. For a realized measure such as the 5 minute sampled realized volatility

the standard GARCH(1,1) model is known to be outperformed by models tailored to the

specific situation. In that case a HAR-RV-CJ model for example could prove to be a

tougher competitor for a LSTM network.

On a more general note the ceiling for artificial neural network predictions seems quite

high. It is easily possible to experiment with a wide range of input variables to tailor a

LSTM well to a certain time series problem. In this experiment the decision was made

to stick to easily available daily data consisting of high, low, opening and closing prices.

As seen in chapter (2) and (5), other exogenous input variables like macroeconomic vari-

ables or even related sentiment analysis have already been successfully implemented with

improved results over the ’vanilla’ LSTM. Also hybrid approaches, including other models

predictions as an input for the neural network, show good results. It seems to be a rea-

sonable assumption that some combination of the methods mentioned above and a careful

selection of input variables which are already used in classical valuation approaches will
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improve results even further in the future.

Another direction that could be explored is the LSTM’s architecture. Additional layers

or gates could be tailored more specifically to fit financial time series data. Moreover it is

not set in stone that a LSTM is the ideal structure to tackle volatility predictions. ANNs

are still a very active area of research and due to their adaptability and versatility to a wide

range of problems it is likely that an even more efficient pattern recognition architecture

will yield better results in the future.
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A. Additional tables for each stock index
separately

Table A.1.: S&P 500 index forecast results

σi

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤Model

Horizon
2 5 10 20

σr2 GARCH 0,556 0,844 0,881 1,697

σr2 LSTM 0,616 0,831 1,069 1,4380

σr2 random walk 0,691 0,875 1,155 1,594

σPark GARCH 0,708 0,965 1,296 1,790

σPark LSTM 0,407 0,618 0,806 1,135

σPark random walk 0,399 0,624 0,881 1,307

σRV 5 GARCH 0,320 0,513 0,743 1,082

σRV 5 LSTM 0,170 0,266 0,401 0,572

σRV 5 random walk 0,169 0,279 0,414 0,641

Table A.2.: DAX index forecast results

σi

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤Model

Horizon
2 5 10 20

σr2 GARCH 0,623 0,891 1,236 1,805

σr2 LSTM 0,670 0,845 0,990 1,092

σr2 random walk 0,844 0,966 1,095 1,195

σPark GARCH 0,852 1,093 1,388 1,892

σPark LSTM 0,401 0,512 0,711 0,770

σPark random walk 0,491 0,581 0,717 0,877

σRV 5 GARCH 0,418 0,659 0,954 1,429

σRV 5 LSTM 0,163 0,220 0,285 0,397

σRV 5 random walk 0,153 0,209 0,293 0,418



A. Additional tables for each stock index separately

Table A.3.: SSE Composite Index forecast results

σi

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤Model

Horizon
2 5 10 20

σr2 GARCH 0,727 1,055 1,465 2,163

σr2 LSTM 0,610 0,798 1,020 1,282

σr2 random walk 1,021 1,113 1,188 1,456

σPark GARCH 0,958 1,160 1,453 2,014

σPark LSTM 0,396 0,569 0,816 1,078

σPark random walk 0,549 0,677 0,833 1,135

σRV 5 GARCH 0,625 0,997 1,439 2,121

σRV 5 LSTM 0,177 0,249 0,321 0,441

σRV 5 random walk 0,170 0,254 0,340 0,494
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For interested readers or as a starting point for further developments Appendix B contains

runnable Python code for the LSTM as well as for the GARCH model. The LSTM was

implemented with the Keras package as well as standard tools such as Pandas and Numpy.

The GARCH model was implemented with the help of the ARCH package. The Appendix

does not contain the complete code for every experiment, it should rather be read as an

instruction where different options are explained in comments in between. Nevertheless

it is runnable with a suiting set of data. The data here was taken from yahoo finance

[https://finance.yahoo.com/, lastly visited 16.02.2021].

In the first code example a three layer LSTM network computes realized volatility esti-

mates for a 20 day horizon. The code is based on different examples on how to implement

ANN and LSTM networks in python from Jason Brownlee’s website [machinelearningmas-

tery.com, lastly visited 23.03.2021].

1 import warnings

2 from math import sqrt

3 from numpy import concatenate

4 from matplotlib import pyplot

5 from pandas import read_csv

6 from pandas import DataFrame

7 from pandas import concat

8 from sklearn.preprocessing import MinMaxScaler

9 from sklearn.preprocessing import LabelEncoder

10 from sklearn.metrics import mean_squared_error

11 from keras.models import Sequential

12 from keras.layers import Dense

13 from keras.layers import LSTM

14 from numpy import array

15 from keras import callbacks

16 from pandas import DataFrame

17 from pandas import concat

18 import matplotlib

19 import matplotlib.dates as mdates

20 from datetime import datetime , timedelta

21 import matplotlib.pyplot as plt

22 import seaborn as sns

23 import datetime as dt
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24 import sys

25 import numpy as np

26 import pandas as pd

27 warnings.simplefilter(’ignore ’)

28

29 #import all relevant packages

30

31 # import relevent data

32 ox = pd.read_csv(r’C:\Users\david\Diplomarbeit\Daten\oxfordRV_s&p500.csv’

33 , usecols =[’Unnamed: 0’, ’Symbol ’, ’rv5’, ’open_to_close ’,

’open_price ’, ’close_price ’])

34 ox = ox.rename(columns ={’Unnamed: 0’: ’Date’, ’Symbol ’: ’Stock ’, ’rv5’: ’rv5

’, ’open_to_close ’: ’open_to_close ’,

35 ’open_price ’: ’open_price ’, ’close_price ’: ’

close_price ’})

36 ox[’Date’] = ox[’Date’].str.slice(0, -15, 1)

37

38 # transform into % changes , repeat for every input

39 perc = np.diff(ox[’open_price ’]) / ox[’open_price ’][: -1] * 100.

40 ox[’open_price ’][0] = 0

41 ox[’open_price ’][1::1] = perc

42

43 # transform into % changes , repeat for every input

44 perc = np.diff(ox[’close_price ’]) / ox[’close_price ’][: -1] * 100.

45 ox[’close_price ’][0] = 0

46 ox[’close_price ’][1::1] = perc

47

48 # use date as index , delete unnecessary columns

49 spx = ox[ox[’Stock’].isin([’.SPX’])]

50 spx[’Date’] = pd.to_datetime(spx[’Date’], format=’%Y/%m/%d’)

51 spx.set_index(’Date’, inplace=True)

52 spx[’rv5’] = np.sqrt(spx[’rv5’]) * 100

53 spx[’20drv5’] = 0

54 del spx[’Stock’]

55

56 #n business day forecasts will be conducted

57 n = 20

58

59 #calculate the target variable , in this case 20 day five minute sampled

realized volatility

60 for i in range ((len(spx) - 25)):

61 spx[’20drv5’].iloc[i] = np.sqrt(np.sum(spx[’rv5’][i:i + n]))

62

63 #cut to desired length

64 spx = spx [1: -225]

65
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66 #find the right indices

67 start_val = ’2013-1-1’ # y/m/d

68 end_val = ’2016-1-1’ # y/m/d

69 sd = np.where(spx.index >= start_val)[0]. min()

70 ed = np.where(spx.index >= end_val)[0]. min()

71

72 #this function reorgnizes the shape of data to suit the keras package

73 def series_to_supervised(data , n_in=1, n_out=1, dropnan=True):

74 n_vars = 1 if type(data) is list else data.shape [1]

75 df = DataFrame(data)

76 cols , names = list(), list()

77 for i in range(n_in , 0, -1):

78 cols.append(df.shift(i + n - 1))

79 names += [(’var%d(t-%d)’ % (j + 1, i)) for j in range(n_vars)]

80 for i in range(0, n_out):

81 cols.append(df.shift(-i))

82 if i == 0:

83 names += [(’var%d(t)’ % (j + 1)) for j in range(n_vars)]

84 else:

85 names += [(’var%d(t+%d)’ % (j + 1, i)) for j in range(n_vars)]

86 agg = concat(cols , axis =1)

87 agg.columns = names

88 if dropnan:

89 agg.dropna(inplace=True)

90 return agg

91

92 #convert data with above function

93 values = spx.values

94 reframed = series_to_supervised(values , 1, 1)

95 reframed.drop(reframed.columns [[5, 6, 7, 8]], axis=1, inplace=True)

96

97 # split into train and test sets

98 values = reframed.values

99 train = values [:sd]

100 test = values[sd:ed]

101 # split into input and outputs

102 train_X , train_y = train[:, :-1], train[:, -1]

103 test_X , test_y = test[:, :-1], test[:, -1]

104 # reshape input to be three dimensional [samples , timesteps , features]

105 train_X = train_X.reshape (( train_X.shape[0], 1, train_X.shape [1]))

106 test_X = test_X.reshape (( test_X.shape [0], 1, test_X.shape [1]))

107 print(train_X.shape , train_y.shape , test_X.shape , test_y.shape)

108

109 # network design , here we use three hidden and one dense layer

110 model = Sequential ()

111 model.add(LSTM(5, return_sequences=True , input_shape =( train_X.shape[1],
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train_X.shape [2])))

112 model.add(LSTM(3, return_sequences=True))

113 model.add(LSTM (3))

114 model.add(Dense (1))

115 model.compile(loss=’mae’, optimizer=’adam’)

116

117 # avoid overfitting with early callback if validation loss increases for too

long

118 earlystopping = callbacks.EarlyStopping(monitor="val_loss", mode="min",

patience =50, restore_best_weights=True)

119

120 # fit network

121 history = model.fit(train_X , train_y , epochs =1000, batch_size=4,

validation_data =(test_X , test_y), verbose=2,

122 shuffle=False , callbacks =[ earlystopping ])

123

124 # summary of the trained model

125 model.summary ()

126

127 # make a prediction for the validation set

128 #the validation set can be used for finetuning hyperparameters

129 yhat = model.predict(test_X)

130 test_y = test_y

131 test_X = test_X.reshape (( test_X.shape [0], test_X.shape [2]))

132

133 # calculate the MSE for the prediction

134 rmse = sqrt(mean_squared_error(test_y , yhat))

135 print(’Validation set RMSE: %.3f’ % rmse)

136

137 # after setting up hyperparameters with the validation set one can make an

unbiased forecast for the test set

138 # it is important the test set has not been involved in training! This ’

peeking ’ would distort results

139 # make a unbiased test prediction with data not yet seen

140 train = values [:ed]

141 train_X = train[:, :-1]

142 train_y = train[:, -1]

143 test = values[ed:]

144 test_X = test[:, :-1]

145 test_y = test[:, -1]

146 # reshape input to be 3D [samples , timesteps , features]

147 train_X = train_X.reshape (( train_X.shape[0], 1, train_X.shape [1]))

148 test_X = test_X.reshape (( test_X.shape [0], 1, test_X.shape [1]))

149

150 yhat = model.predict(test_X)

151
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152 # calculate RMSE

153 rmse = sqrt(mean_squared_error(test_y , yhat))

154 print(’Test set RMSE: %.3f’ % rmse)

155

156 # plot the forecast against the actual values for an intuitive comparison

157 pyplot.plot(spx.index[ed + n::n], test_y [::n], color=’green ’, alpha =0.6,

linewidth =2.5, linestyle=’:’,

158 label=’✩\sigma_{RV5}✩’)

159 pyplot.plot(spx.index[ed + n::n], yhat [::n], label=’✩\hat{\sigma}✩’, color=’

red’, linewidth=3, alpha =1)

160 plt.ylabel("{}-day volatility".format(n))

161 plt.legend ()

162 pyplot.show()

The GARCH model was implemented with the help of the ARCH package in python.

Following its documentation a running window forecast was generated. For each day one

to n single day variance forecasts are made and used to compute the forecast for the next

n-day volatility. See chapters (3) and (4) for details on the computations. Following this

the generated forecast is compared to the target variable of a n-day volatility estimator

and the MSE is calculated.

1 import warnings

2 import matplotlib

3 import matplotlib.dates as mdates

4 from datetime import datetime , timedelta

5 warnings.simplefilter(’ignore ’)

6 import matplotlib.pyplot as plt

7 from sklearn.metrics import mean_squared_error

8 import sys

9 import numpy as np

10 import pandas as pd

11 from arch import arch_model

12

13 #only for plots

14 import matplotlib

15 matplotlib.rcParams[’mathtext.fontset ’] = ’stix’

16 matplotlib.rcParams[’font.family ’] = ’STIXGeneral ’

17

18 #import data

19 data = pd.read_csv(r’C:\Users\david\Diplomarbeit\Daten\spx_1970 -2021. csv’)

20 data[’Date’] = pd.to_datetime(data[’Date’])

21 data.set_index(’Date’, inplace=True)

22

23 # prepare data for the ARCH package

24 market = data[’Close ’]

25 returns = 100 * market.pct_change ().dropna ()
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26 index = returns.index

27 startdate = ’2016-1-1’ #y/m/d #start predictions from that day on

28 n = 20 #n day forecasts

29 m = 48 #number of n day periods forecasted

30 k = np.where(index >= startdate)[0]. min()

31 forecasts = {}

32

33 #running window forecast , for m*n days

34 #generates multi day forecasts until n days ahead for each day and saves

them in an array

35 for i in range(m*n):

36 sys.stdout.write(’.’)

37 sys.stdout.flush()

38 am = arch_model(returns , vol=’Garch ’, p=1, o=0, q=1, dist=’Normal ’)

39 res = am.fit(first_obs=i, last_obs=i+k, disp=’off’)

40 temp = res.forecast(horizon=n).variance

41 fcast = temp.iloc[i + k - 1]

42 forecasts[fcast.name] = fcast

43

44 fv = pd.DataFrame(forecasts).T

45 # compute n day volatility for each day

46 fv[’sum’] = np.sqrt(fv.sum(axis =1))

47

48 # define other daily volatility measures to compare to the forecast

49 # Parkinson estimator

50 data[’park’] = (np.sqrt (((np.log(data[’High’]/( data[’Low’])))**2) / (4 * np.

log(2)))*100) **2

51 data[’park_n_day ’] = 0

52

53 # volatility estimators computed for next n day period , not including the

current day

54 for i in range ((len(data) -25)):

55 data[’park_n_day ’].iloc[i] = np.sqrt(np.sum(data[’park’][i+1:i+n+1]))

56

57 fvi = np.where(data.index >= fv.first_valid_index ())[0]. min()

58

59 #same date

60 rmse_PARK = np.sqrt(mean_squared_error(fv[’sum’], data[’park_n_day ’][fvi:fvi

+m*n]))

61 print(’Parkinson volatility: MSE: %.3f’ % rmse_PARK)

62

63 plt.plot(data[’park_n_day ’][fvi:fvi+m*n:n], label=’✩\sigma_{Park}✩’,alpha=

0.6,

64 linewidth = 2.5, linestyle=’--’)

65 plt.plot(fv[’sum’][::n], color = ’red’, label=’✩\hat{\sigma}✩’, linewidth=3,

alpha= 1)
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66 plt.legend ()

67 plt.ylabel("{}-day volatility".format(n))

68 plt.show()
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