
Performance Analysis of a Stereo
Matching Implementation in

OpenCL

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Stephan Rotheneder, BSc
Matrikelnummer 0625931

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Mag. Dr. Margrit Gelautz
Mitwirkung: Dr. Govinda Lilley

Dr. Nicolas Thorstensen

Wien, 3. Mai 2018
Stephan Rotheneder Margrit Gelautz

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Performance Analysis of a Stereo
Matching Implementation in

OpenCL

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Stephan Rotheneder, BSc
Registration Number 0625931

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Mag. Dr. Margrit Gelautz
Assistance: Dr. Govinda Lilley

Dr. Nicolas Thorstensen

Vienna, 3rd May, 2018
Stephan Rotheneder Margrit Gelautz

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Stephan Rotheneder, BSc
Schönbrunner Schloßstraße 9/18
1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Mai 2018
Stephan Rotheneder

v

Acknowledgements

I would like to thank my supervisor Margrit Gelautz and my supervisor at IVISO GMBH
Govinda Lilley for their support throughout the whole process of this master thesis.

Further, I would like to thank Nicolas Thorstensen CEO of IVISO GMBH for providing
support and infrastructure at his company.

Furthermore, I would like to thank my parents who always believed in me and my friends
who helped by proof reading and giving me valueable feedback. Especially, I would like
to thank Sandra for supporting me in so many ways and helping me to not lose track of
the big picture.

This diploma thesis was carried out in close collaboration with IVISO GMBH.

vii

Abstract

Stereo matching is one of the first steps in the process of calculating 3D information
from two 2D images. To triangulate a 3D point from two corresponding 2D features, the
displacement in pixels, or the so-called disparity, must be estimated. From the estimated
per-pixel disparity, using a projective camera model, 3D data for large portions of an
image may be calculated.

The 3D scene information can be used in applications ranging from obstacle detection
and collision avoidance systems in the automotive industry to pick-and-place or human
safety systems in the robotics industry. As time is an important factor in most of these
applications, the subject of real-time stereo matching has gained importance while quality
and accuracy aspects retain their importance. Benchmarks such as the KITTI Benchmark
or the Middlebury Benchmark aim at providing stereo test data as well as ground truth
to evaluate different matching algorithms against each other with regard to accuracy,
coverage and runtime. However, they fall short in measuring the computational efficiency
as the reported runtime as well as the real-time capability of the listed stereo matching
algorithms are highly hardware dependent.

In this thesis we explore the possibilities of real-time stereo matching and the constraints
imposed by the used hardware. Therefore, we implemented a stereo matching algorithm
in Open Computation Language (OpenCL) in order to evaluate the runtime of a specific
algorithm on multiple devices. Using this runtime data, we discuss the limitations of
runtime measurements with respect to varying computational power. Further, we suggest
a method to compare the efficiency of various algorithms based on the reported runtime
and hardware data, which is provided by the Middlebury Benchmark. This enables us to
estimate the real-time capability of a given algorithm with a known problem space size
on an arbitrary device with a manufacturer specified or measured performance figure.
Finally, we observe that the problem space size, the device performance figure and the
algorithm’s runtime complexity directly correlate with the matching rate given in Frames
per Second (FPS).

ix

Kurzfassung

Einer der ersten Schritte des Prozesses, welcher 3D-Information aus 2D-Bildern berechnet,
ist der des Stereo Matching. Um einen 3D-Punkt aus übereinstimmenden 2D-Features zu
triangulieren, muss deren Abstand in Pixel, die sogenannte Disparität, berechnet werden.
Mit der berechneten Disparität pro Pixel und einem projektiven Kameramodell, können
3D-Daten für den Großteil eines Bildes berechnet werden.

Die Berechnung von 3D-Szeneninformation findet Anwendung in Bereichen der Hindernis-
erkennungs- und Kollisionsvermeidungssysteme der Automobilindustrie und pick-and-
place- oder Mensch-Roboter-Kollaboration-Systeme (MRK-Systeme) in der Roboterin-
dustrie. Da Zeit ein wichtiger Faktor in den meisten dieser Anwendungen ist, hat das
Thema Echtzeit-Stereo-Matching an Wichtigkeit gewonnen, während Qualitäts- und Ge-
nauigkeitsaspekte ihren Stellenwert beibehalten haben. Benchmarks wie der KITTI- oder
Middlebury Benchmark stellen Test-Stereodaten und Ground Truth für die Evaluierung
von Matching-Algorithmen zur Verfügung. Diese werden genutzt, um verschiedene Algo-
rithmen, bezüglich Genauigkeit, Flächendeckung and Laufzeit miteinander zu vergleichen.
Allerdings liegt eine Schwäche im Hinblick auf die Messbarkeit der Recheneffizienz vor,
da die Laufzeit- und Echtzeit-Fähigkeiten von verglichenen Stereo-Matching Algorithmen
stark von der verwendeten Hardware abhängen.

Das Hauptaugenmerk dieser Arbeit liegt auf der Untersuchung der Möglichkeiten von
Echtzeit-Stereo-Matching unter den mit der verwendeten Hardware verbundenen Ein-
schränkungen. In Hinblick auf diesen Aspekt wurde ein Stereo-Matching Algorithmus in
OpenCL implementiert, um die Laufzeit eines einzelnen Algorithmus auf verschiedenen
Geräten evaluieren zu können. Mit diesen Laufzeitdaten besprechen wir die Beschrän-
kungen von Laufzeitmessungen bezüglich variierender Rechenleistung und stellen eine
Methode zum Vergleich der Laufzeitkomplexität verschiedener Algorithmen, basierend
auf den hardwareabhängigen Laufzeitmessungen des Middlebury Benchmarks, vor. Ausge-
hend hiervon, stellen wir eine Methode zur Abschätzung der Echtzeit-Möglichkeiten eines
Algorithmus bei festgelegter Problemgröße auf gegebenen Geräten, mit vom Hersteller
bestimmter oder gemessener Rechenleistung, vor.

Abschließend argumentieren wir, dass die Problemgröße, die Rechenleistung des Gerätes
und die Laufzeitkomplexität des Algorithmus direkt mit der Matching-Rate, welche in
Frames pro Sekunde (FPS) angegeben ist, zusammenhängen.

xi

Abreviations

1D 1-dimensional . 35
2D 2-dimensional . 1
3D 3-dimensional. .4
API Application Programming Interface . 1
ARM Advanced RISC Machine or Acorn RISC Machine . 1
ASIC Application-Specific Integrated Circuit. .42
CNN Convolutional Neural Network . 40
CPU Central Processing Unit . 1
CRV Conference on Computer and Robot Vision . 83
CVPR Conference on Computer Vision and Pattern Recognition 83
DLT Direct Linear Transformation . 14
DSI Disparity Space Images . 19
DSP Digital Signal Processor . 42
ECCV European Conference on Computer Vision . 83
FLOPC Floating point Operations per Pixel Comparison . 81
FLOPS Floating point Operations Per Second . 84
FOI Feature Of Interest
FPA Fronto-Parallel Assumption . 3
FPGA Field Programmable Gate Array. .32
FPS Frames per Second. ix
GFLOPS Giga FLOPS. .89
GP Giga Pixel .28
GPU Graphical Processing Unit . 1
HCI Heidelberg Collaboratory for Image Processing . 25
HSV Hue Saturation Value

xiii

KITTI Karlsruhe Institute of Technology and Toyota Technological Institute 25
MP Mega Pixel . 28
MPC Mega Pixel Comparison . 91
NCT Normalized Calculation Time . 84
OOI Object Of Interest
OpenCL Open Computation Language . ix
OpenCV Open Source Computer Vision Library . 14
OpenGL Open Graphics Library . 1
PC Pixel Comparison . 84
PDA Personal Digital Assistant . 2
PFM Portable Float Map . 96
PGM Portable Gray Map. 95
PNG Portable Network Graphics . 95
POI Point Of Interest
PPM Portable Pixel Map. .127
RGB Read Green Blue
RISC Reduced Instruction Set Computing
RMS Root-Mean-Square
ROB Robust Vision Challenge 2018 . 83
ROI Region Of Interest
SAD Sum of Absolute Differences . 19
SDK Software Development Kit . 51
SGM Semi Global Matching . 90
SIFT Scale-Invariant Feature Transform . 39
SSD Sum of Squared Differences . 19
VHDL Very high speed integrated circuit Hardware Description Language.42

Contents

Abstract ix

Kurzfassung xi

Abreviations xiii

Contents xv

1 Introduction and Motivation 1

2 Background and Theoretical Foundation 3
2.1 Basic Concepts of Stereo Matching . 3
2.2 Middlebury Benchmark . 25
2.3 OpenCL . 32

3 State of the Art 39
3.1 Sparse Stereo Matching . 39
3.2 Dense Stereo Matching . 40
3.3 Local Stereo Methods . 41
3.4 Global Stereo Methods . 41
3.5 Real-Time Stereo Matching . 42
3.6 Real-Time Hardware for Stereo Matching 42

4 A Stereo Matching Algorithm 43
4.1 Sparse Census Cost Function . 43
4.2 Aggregation Strategy . 46
4.3 Sub Pixel Refinement . 48
4.4 Left-Right Consistency Check . 49

5 Implementation 51
5.1 Overview . 52
5.2 RectificationKernel . 58
5.3 CensusKernel . 61
5.4 DiffCubeKernel . 64

xv

5.5 CostXCubeKernel . 67
5.6 CostYCubeKernel . 70
5.7 MinimumKernels . 71
5.8 CostCacheKernels . 74
5.9 ParabolicFittingKernel . 77
5.10 ConsistencyKernel . 78
5.11 Conclusion . 80

6 Evaluation 81
6.1 Timing results . 82
6.2 Implementation-Result Comparison . 95
6.3 Result Errors . 99
6.4 Additional Results . 107

7 Summary and Outlook 111

Appendix 1 113

Appendix 2 125

Appendix 3 127

List of Figures 130

List of Tables 132

List of Algorithms 133

Bibliography 135

CHAPTER 1
Introduction and Motivation

The problem of stereo matching is an often discussed matter in computer vision. Many
different methods have been proposed over the years. Stereo matching can be used to
estimate depth from two 2-dimensional (2D) images of the same scene from slightly
different vantage points. Stereo matching can be used in many areas such as the robotic
industry, geodesy, scene reconstruction from video or autonomous systems like self driving
cars or drones.

According to [SSZ01] stereo matching methods can be organized by various aspects e.g.
density in feature space (dense versus sparse methods), size of considered chunks in image
space (global methods versus local methods) or optimization method (winner takes all,
dynamic programming, scanline optimization, graph cut).

Many implementations of newly proposed algorithms are designed to run in a single
thread on a personal computer Central Processing Unit (CPU). However, this way of
implementation binds the implementation to a single platform and is usually neither
efficient nor fast. Some implementations are designed for Graphical Processing Units
(GPUs). These implementations are usually very good when the runtime is compared.
However, different authors use different GPUs, which makes us question the comparability
of these runtime results. Further problems exist when low energy hardware is used. Many
Advanced RISC Machine or Acorn RISC Machine (ARM) processors and ARM GPUs do
not support Application Programming Interfaces (APIs) like OpenCL or Open Graphics
Library (OpenGL) that would allow to uniformly control these devices’ processing units.
Furthermore, ARM processing units are usually low performance devices and therefore
have lower limits to how much data they can process. Additionally, these limits impose
the question of which algorithm can be used for high performance stereo matching on
such devices and what are the parameters for such a task.

In this thesis, we will show an example how OpenCL can be used to implement a
stereo matching algorithm. We will show that an OpenCL implementation can be

1

1. Introduction and Motivation

compiled for multiple different platforms. This can be used to run stereo matching
algorithms on ARM devices that support OpenCL such as mobile phones or Personal
Digital Assistants (PDAs).

Further, we will show an algorithm specific metric that makes algorithms more comparable
throughout different devices by taking the floating point performance values of the used
devices into account.

Finally, we will present a way to estimate the upper limit for the image dimensions of
the input images in order to achieve a traget matching frame rate for a specific device.

2

CHAPTER 2
Background and Theoretical

Foundation

In this chapter, we will introduce the basic concepts, strategies and technologies that are
used in later chapters. We will start in Section 2.1 with the basics of stereo matching
and the used terms and ideas. This will be followed by Section 2.2, where we will explain
the basic concepts of taxonomy measurements in stereo matching. We will then shortly
explain the metrics used by [SSZ01] in their benchmark1. Finally, in Section 2.3 we
will describe how OpenCL is organized, how memory and buffers are managed and how
computations are parallelized.

2.1 Basic Concepts of Stereo Matching

In this section, we will explain the basic concepts of stereo matching i.e. epipolar geometry,
rectification, stereo matching, the Fronto-Parallel Assumption (FPA), cost functions,
disparity space images and cost volumes, support aggregation, disparity optimization
and disparity refinement. We will shortly discuss the connection of left and right images
due to epipolar geometry and how rectification simplifies the process of tracing these
connections. We will explain the concept of disparity, how rectified images are used in
stereo matching, and how the Fronto-Parallel Assumption is used in cost functions for the
purpose of stereo matching. We will review disparity space images as a representation
of the problem space for stereo matching, how the matching costs are calculated, and
how cost aggregation reduces ambiguities in the matching process. We will discuss how
aggregated cost functions can be efficiently applied for multiple disparities values by
reusing intermediate results and further explain how cross correlation checks are done to
improve the overall result by reducing erroneous disparity values.

1http://vision.middlebury.edu/stereo/

3

http://vision.middlebury.edu/stereo/

2. Background and Theoretical Foundation

2.1.1 Epipolar Geometry

Given are two cameras C0 and C1, with their respective camera positions c0 and c1,
looking into a scene and a known rotation matrix R and translation vector t to transform
C0 into C1. This transformation is given by:

c1 = [R, t] · c0 (2.1)

As shown in Figure 2.1 a point p that is seen by C0 is projected onto the image plane
(I0) of C0, at image coordinate x0 and projected to infinity at point p∞. The projection
of p onto C1’s image plane (I1) lies on an epipolar line segment (l1). The segment l1 is
defined as the line bounded by the projection of p∞ onto I1 and the projection of c0 onto
I1. The projection of one camera center point onto the other camera’s image plane is
called an epipole. The epipole e0 is the camera center c1 projected onto I0 and vice versa.
In order to find the projection x1 of p onto I1 we only have to examine the point of I1
that coincides with l1. The point p and the projected point p∞ can be calculated using
x0 and c0. The epipolar line l1 can be calculated using e1 and the projection of p∞ onto
I1. To find x1, only points lying on l1 have to be examined.

The epipolar line l0, is defined by epipole e0 and point x0. It can be shown for any
point p in the 3-dimensional (3D) scene that if p’s projection onto I0 lies on l0, then its
projection onto I1 will lie on l1.

For all points on l0, the best match can be found on l0s corresponding l1.

(a)
(b)

Figure 2.1: Epipolar geometry [Sze10]: The point p is a point in the 3D scene. The
points x0 and x1 are the projections of p onto the image planes I0 and I1. The camera
center point c0 projected onto I1 is the epipole e1 and camera center point c1 projected
onto I0 is the epipole e0. The lines l0 and l1, going through x0 and x1 and the epipoles
e0 and e1 are called epipolar lines. It can be shown for any point p in the 3D scene that,
if p’s projection onto I0 lies on l0, then its projection onto I1 will lie on l1.

4

2.1. Basic Concepts of Stereo Matching

2.1.2 Rectification and Undistortion

In their chapter on rectification, [Sze10] state that "a more efficient algorithm can be
obtained by first rectifying the input images". Rectification in this context means to warp
the input images (usually undistorted images) in a way that corresponding epipolar lines
coincide with horizontal scanlines. Figure 2.2 shows how rectification warps the input
images.

(a) (b)

Figure 2.2: Rectification [Sze10]: (a) epipolar lines in left and right image; (b) rectified
images with coinciding epipolar lines

Rectification of an image can be achieved by using the camera matrices’ focal lengths fx
and fy in pixel units, principal point (cx, cy), radial distortion coefficients k1, k2 and k3,
tangential distortion coefficients p1 and p2, and the projection matrices’ focal lengths
and principal points f ′1, f ′2, c′1 and c′2.

In this section, we will describe the concepts of image rectification and image undistortion
based on the book of [BK08]. We will show a basic camera model (the pinhole model,
see Figure 2.3 and Figure 2.4) and how a point in a 3D scene is projected onto an image
plane. We will extend and modify the model to simplify the formulas connected to the
model. From that we will show why the parameters fx, fy, cx and cy are needed for depth
reconstruction. Further, we will discuss radial and tangential lens distortions and how
the distortion coefficients k1, k2, k3, p1 and p2 are applied in the undistortion process.
Moreover, we will explain the process of camera calibration and how this process obtains
the above mentioned distortion parameters, the principle point and the focal lengths.

2.1.2.1 Camera Model

The simplest camera model is the pinhole camera model. It can be used to explain the
concepts of intrinsic camera parameters. The combination of intrinsic parameters and
extrinsic parameters describe the projective geometry of the camera setup, which will be
explained later on. Extrinsic parameters translate and rotate the whole camera system
using 6 degrees of freedom: Translation in x, y and z direction and rotation around the
corresponding x, y and z axis.

A 3D point X is projected through the pinhole in the pinhole plane onto the image plane
as point x. The distance between the image plane and the pinhole plane is called the

5

2. Background and Theoretical Foundation

Figure 2.3: Pinhole camera sketch by [FP11]: This image shows how a 3D scene is
projected through the pinhole of a pinhole camera onto the image plane.

focal length f . The orthogonal axis from the image plane through the pinhole is called
the optical axis. The distance between X and the pinhole plane along the optical axis is
called the depth Z. Figure 2.4 illustrates the projection of a point through the pinhole
model.

In a real world camera, the image plane might be a photographic plate or some kind of
imaging sensor. In the case of an imaging sensor, the sensor usually has some kind of
rasterization with a number of pixels per square unit of length, where the pixels can be
either rectangular or squared. Therefore, the number of pixels per unit of length in both
x and y direction are defined as sx and sy.

Figure 2.4: Pinhole imaging model [BK08]: A 3D point with X as its x-component and
the relation between the point X and its projection x through similar triangles.

Originating from the pinhole, the relation x to X can be modeled via similar triangles
−x/X = f/Z and the relation y to Y can be modeled via similar triangles −y/Y = f/Z.
These relations can be rewritten as:

− x = f · X
Z

− y = f · Y
Z

(2.2)

6

2.1. Basic Concepts of Stereo Matching

By modifying this model in the way that the image plane is virtually moved along the
optical axis by two times the focal length f , a virtual image plane is created. This moves
the image plane in front of the camera but preserves the distance between image plane
and pinhole plane. Figure 2.5 shows how the translation of the image plane reduces the
pinhole to the center of projection and demonstrates the similarity of triangles when
looking at a point Q in the 3D scene and its projection q onto the virtual image plane. The
similarity of triangles is visible in Figure 2.5 where point q coincides with Qs projection
line to o. The relation −x/X = f/Z is modified to x/X = f/Z which can be interpreted
as tipping of the image plane around the y axis. This is also true for the y-coordinate
and the x-axis. This rewrites Formula 2.2 as:

x = f · X
Z

y = f · Y
Z
, (2.3)

Due to slight manufactoring errors the center of the image plane i.e. the center of the
imaging sensor is not always perfectly aligned with the center of projection. To account
for these errors, [BK08] introduced a translational vector c containing the correction
along the x and y-axes cx and cy.

In order to calculate the pixel position q = (xpx, ypx) of point Q = (X,Y, Z) in the
sampled image, we will use the pixels per unit of length parameters sx and sy and the
point to projection relation in Formula 2.3. The pixel position q is calculated using the
following formula:

xpx = f · sx ·
X

Z
+ cx ypx = f · sy ·

Y

Z
+ cy (2.4)

2.1.2.2 Projective Geometry

The projective geometry of a setup consists of intrinsic and extrinsic camera parameters.
The extrinsic parameters express the rotation and translation of the camera. We define
the parameters tx, ty and tz as the translation parameters and αx, αy and αz as the
rotation parameters corresponding to the Euclidean axis of their respective index. This
means that the extrinsic parameters can be expressed as a single transformation matrix:

TE =

∣∣∣∣∣∣∣
tx

Rαx ·Rαy ·Rαz ty
tz

∣∣∣∣∣∣∣ (2.5)

The variables Rαx , Rαy and Rαz are three-by-three rotation matrices of angle αi around
the axis corresponding to the index of αi.

Using Formula 2.4 rewritten to X/Z and Y/Z. Further, we can express the 3D position
(X,Y) of a point P from a given image as a function of the 3D depth of the point P .

7

2. Background and Theoretical Foundation

Figure 2.5: Extended pinhole imaging model [BK08]: The image plane in the regular
pinhole model is virtually moved along the optical axis by two times the focal length
f . Therefore, the pinhole is reduced to the center of projection o. The point q is the
projection of a 3D point Q onto this virtual image plane. The similarity of triangles is
visible in this figure at point q which coincides with Qs projection line to o. The relation
−x/X = f/Z is modified to x/X = f/Z.

Usually the parameters f , sx, sy, cx and cy are not precisely known. In order to calculate
the parameters needed the process of camera calibration is used. We will discuss camera
calibration in Section 2.1.2.5. In the book, [BK08] focal lengths in x and y direction fx
and fy are introduced as:

fx = sx · f fy = sy · f (2.6)

The reason to combine f and sx, and f and sy into fx and fy is that, with camera
calibration only the products fx and fy can be determined but not their factors. The
parameters fx and fy are unit free pixel counting factors. This can be seen when we look
at the meaning of sx|y and f . The focal length is measured in units of length (e.g. m,
mm, inch, etc.) and sx and sy are a number of pixels per unit of length. This results in
"number of pixels" as pseudo unit for fx and fy. The parameters fx, fy, cx and cy are
used to define the intrinsic camera matrix A as described by [BK08] and [Sze10]:

A =

∣∣∣∣∣∣∣
fx 0 cx
0 fy cy
0 0 1

∣∣∣∣∣∣∣ (2.7)

2.1.2.3 Radial Distortion

A major problem with pinhole cameras is that very little light reaches the image plane
through the pinhole. This results in very high exposure times for every image. In order

8

2.1. Basic Concepts of Stereo Matching

to reduce exposure time and still gain enough light, one could suggest to widen the hole
of the pinhole camera. This however, leads to a blurred image. The reason for this can
be explained with a simple thought experiment.

Let us assume instead of widening the pinhole P0, a second pinhole P1 is added to the
pinhole plane. This results in two different sets of vector c, i.e. c0 and c1. The focal
length does not change, because it is dependent on the pinhole plane, and the imaging
sensor parameters sx and sy also do not change, because P0 and P1 project onto the same
imaging sensor. We can use Formula 2.4 to calculate q0 = (x0, y0) and q1 = (x1, y1) for
all 3D points Q in the scene. This results in two unaligned images overlaying one another.
Every additional pinhole Pi would add another unaligned version of the projected scene
to the image on the image plane. An argument can be made that a widening of the
pinhole P0 by diameter r can be approximated by adding multiple additional pinholes
within the radius r surrounding P0 and therefore, would be an aggregation of infinitely
many unaligned projections of the scene onto the image plane.

To solve the problem of wider holes in cameras, lenses can be used to focus the multiple
projected images into one projection point. The usage of lenses introduces the problem of
lens distortion. Most lenses in cameras are not perfect, and therefore distort the projected
image. A common distortion introduced by lenses is radial distortion. This occurs when
the used lens is not perfect and the focus point of outer regions of the lens is different to
the focus point of inner regions. If the outer part of the lens refracts light more than
the inner region (see Figure 2.6), this leads to an effect called "barrel distortion" which
can be seen in Figure 2.7. If the outer part of the lens refracts light less than the inner
region this leads to "pincushion distortion".

The distortion introduced by the lens’ imperfection can usually be approximated by a
function in one parameter DR(r). This function represents the refraction property of the
lens at radial distance r =

√
x2 + y2 to the center of the lens. This means that, due to

the circular form of lenses, the refraction properties of a lens can be modeled by circular
level lines of refraction values around the center of the lens. The undistortion function
can be approximated by a Taylor series as shown by Brown in [Bro64] and [Bro71]:

xrad,corr = x · (1 + k1 · r2 + k2 · r4 + k3 · r6 + · · ·)
yrad,corr = y · (1 + k1 · r2 + k2 · r4 + k3 · r6 + · · ·)

(2.8)

For most cases of radial distortion it is sufficient to only use the first few terms of the
Taylor series. This results in:

xrad,corr = x · (1 + k1 · r2 + k2 · r4)
yrad,corr = y · (1 + k1 · r2 + k2 · r4)

(2.9)

for regular cameras and in

xrad,corr = x · (1 + k1 · r2 + k2 · r4 + k3 · r6)
yrad,corr = y · (1 + k1 · r2 + k2 · r4 + k3 · r6)

(2.10)

for fish-eye cameras.

9

2. Background and Theoretical Foundation

Figure 2.6: Radial Distortion plot (Jean-Yves Bouguet in [Bou]): This plot shows the
displacement of pixels sampled in an uniformly spaced grid. The arrows show the
displacement direction and their lengths show the strength of the displacement. This is
an example visualization of radial distortion.

Figure 2.7: Barrel distortion [BK08]: A square object is projected through an imperfect
lens onto an image plane. Light rays from the object hit the lens and are bent to focus
the image on the image plane. Due to imperfections of the lens, light rays are refracted
more strongly, the farther away from the lens center they arrive. Corner rays of the
square object are more refracted towards the center of the image than the center edge
rays. This lets projections of straight lines seemingly bulge away from the center of the
image, creating the barrel distortion.

10

2.1. Basic Concepts of Stereo Matching

2.1.2.4 Tangential Distortion

Another distortion effect in digital imaging stems from the process how cameras are
produced. Inside a digital camera behind a shutter and lens system lies an imaging sensor.
This sensor represents the image plane. Due to different production techniques it is not
guaranteed that the optical axis aligns with the sensor’s normal vector i.e. the sensor not
being parallel with the lens. If the sensor and lens are not parallel, then the sampled
image will have a trapezoid form, which can be seen in Figure 2.8. This causes the focus
points of the lens system to no longer be colinear. This effect is also called ’decentering
distortion’ [Bro66] and adds a tangential distortion and radial distortion to the image.

Figure 2.8: Tangential distortion (Sebastian Thrun in [BK08]): An example of how cheap
production can lead to tangential distortion. On the left, a cheap camera, where the
imaging sensor is not parallel to the lens is shown. On the right an example of how
tangential distortion may look is shown.

In the works of [Str12] and [Was57] the thin prism model was used to calculate the
distortion introduced by the inherent camera faults. The thin prism model was first
proposed by [Con19] and uses the mathematical model of the Seidel aberration defined
by [Sei57].

In the article of [Bro66] the thin prism model is extended to handle the additional radial
distortion of the lens decentering. The model introduced by [Bro66] is called the "plumb
bob model" or the "Brown-Conrady model".

A 2D visualization of tangential distortion has an axis of maximal distortion. Orthogonal
to the axis of maximal tangential distortion lies the zero line of tangential distortion.
This can be seen in Figure 2.9 where the axis of maximal tangential distortion lies near
the y axis and the zero line of distortion is approximately parallel to the x axis, lying at
a y value of nearly 220.

To correct the distortion two additional parameters p1 and p2 are needed. [BK08] define

11

2. Background and Theoretical Foundation

Figure 2.9: Tangential Distortion plot (Jean-Yves Bouguet in [Bou]): This plot shows
the displacement of pixels sampled in an uniformly spaced grid. The arrows show the
displacement direction and their lengths show the strength of the displacement. This
is an example visualization of tangential distortion. The arrows at y positions with a
high value i.e. the lower part of the plot, are pointing towards the center. Arrows on the
upper end of the plot i.e. at low y positions have an outwards direction. This distortion
model distorts a rectangle to a trapezoid as shown in Figure 2.8 right.

the correction for tangential distortion as2:

xtan,corr = x+ [2 · p1 · x · y + p2 · (r2 + 2 · x2)]
ytan,corr = y + [p1 · (r2 + 2 · y2) + 2 · p2 · x · y]

(2.11)

Formula 2.11 is based on the work of [Con19], where a horizontal and a vertical component
of aberrational displacement are defined by use of Seidel aberrations by [Sei57]. The

2The book [BK08] in version 1 is erroneous at this point, having xtan,corr = x+[2·p1 ·y+p2 ·(r2 +2·x2)]
and ytan,corr = y + [p1 · (r2 + 2 · y2) + 2 · p2 · x]. Please refer to the official errata of the document:
http://www.oreilly.com/catalog/errata.csp?isbn=9780596516130

12

http://www.oreilly.com/catalog/errata.csp?isbn=9780596516130

2.1. Basic Concepts of Stereo Matching

original form of the displacement formula in [Con19] is defined as:

Horiz.comp. = g1 · S2(2 · cos(Φ) + cos(2 · E − Φ))
+ g2 · S · V (3 · cos(Ψ) · cos(E) + sin(Ψ) · sin(E))
+ 3 · g3 · V 2 · cos(χ)

Vert.comp. = g1 · S2(2 · sin(Φ) + sin(2 · E − Φ))
+ g2 · S · V (cos(Ψ) · sin(E) + sin(Ψ) · cos(E))
+ g3 · V 2 · sin(χ)

(2.12)

The parameters g1, g2 and g3 in Formula 2.12 represent the magnitude of three different
decentering defects and the corresponding angles Φ, Ψ and χ represent the orientation of
the defects. The variable V is the angle of the field of view and variable S represents
the semi-aperture. The angle E was defined in earlier work of [Con18], and represents
the angle PQR. The point Q is the center of a principal pencil ray where it cuts the
lens. P is the axis defined by the lens center and Q. Point R is a point lying on the
circumference of the pencil ray in Q.

The first term in Formula 2.12 represents the comatic3 aberration of the lens and the
second term represents the astigmatism of the lens. Conrady argues that the first term of
the equation is constant within the field of view and does therefore not affect the relative
distances of projected points and can thus safely be ignored. Conrady also argues that
the astigmatism is bound to be very small in any respectable instrument and can therefore
be neglected in the displacement calculation [Con18].

The remaining term is defined as a function of the angle of image orientation relative
to the direction of decentration χ and the angle of view V . The angle χ can also be
understood as the deviation of the angle of the polar form of a given point p relative to
the direction of maximal tangential distortion. The remaining horizontal component of
displacement ρ and the remaining vertical component of displacement τ are therefore
defined as:

ρ = 3 · g3 · V 2 · cos(χ)
τ = g3 · V 2 · sin(χ)

(2.13)

Using a base transformation and setting χ to the angle of maximum tangential distortion
as Φ + β, the tangential distortion can be expressed as:∣∣∣∣∣∆x

∆y

∣∣∣∣∣ = Pc ·
∣∣∣∣∣(2 · (dxr)2 + 1) · cos(φ) + 2 · dx·dy

r2 · sin(φ)
(2 · (dyr)2 + 1) · sin(φ) + 2 · dx·dy

r2 · cos(φ)

∣∣∣∣∣ (2.14)

With cos(β) = dy
r and sin(β) = dx

r .
3see [Gat55]

13

2. Background and Theoretical Foundation

[STH80] express the distortion profile p3 · V 2 in ρ and τ as a polynomial4 Pc in distance
r:

p3 · V 2 = Pc = K4 · r2 +K5 · r4 (2.15)

Using Formula 2.15 [STH80] rewrites Formula 2.14 to5,6:

∣∣∣∣∣∆x

∆y

∣∣∣∣∣ =
∣∣∣∣∣2 · dx · dy · p1 + (2 · d2

x + r2) · p2
(2 · d2

y + r2) · p1 + 2 · dx · dy · p2

∣∣∣∣∣ (2.16)

2.1.2.5 Camera Calibration

The process of measuring the cameras intrinsic parameters for radial and tangential
distortion (k1, k2, k3, p1, and p2 described in Formula 2.10 and Formula 2.16), the focal
lengths (fx and fy) and translation parameters (cx and cy) as described in Formula 2.4
is called camera calibration. For this purpose, one or multiple images of a calibration
object are taken. In the multi image case, the images are taken from multiple different
orientations and positions. A calibration object is an object with well known properties
such that the object’s position and orientation can easily be determined in every image.
From the discrepancies of how the object should be projected onto the image plane, from
the known position and orientation, and the actual projection of the image onto the
image plane, the intrinsic parameters and the distortion parameters can be calculated.

A method for camera calibration from one image was shown by [Fau93] and is known
as Direct Linear Transformation (DLT). This method is dependent on the calibration
object being a 3D calibration rig. In the works of Zhang [Zha00] and [Zha99], the author
proposed a method of camera calibration by solving a homogeneous linear system derived
from multiple images of a planar calibration object.

The method of [Zha00] is widely used in multiple applications. This is due to its simplicity
in preparation of the calibration object and to the availability of a free and well tested
implementation of a variation of [Zha00] using the model described by [Bro71] to solve
the linear system in the Open Source Computer Vision Library (OpenCV). This is why
we will shortly review the method implemented in the OpenCV library as it is described
by [BK08].

The method starts by defining the homography matrix for every one of the used images.
The homography matrix defines the transformation between the image plane and the
model plane, i.e. the checkerboard plane. This matrix can be defined as

4Correction note for polynomial Pc in the work of [STH80] page 483: K4 · r2 + K5 · r should be
K4 · r2 +K5 · r4.

5Correction note for formula (9.30) in the work of [STH80]: Pc on the right part of the equation
should be a scalar factor for the whole vector not only for 2 · (sin(β)2 + 1) · cos(φ).

6Note for formula (9.30) and formula(9.29) in the work of [STH80]: The terms in formula(9.29)
should be negative (sin(α− π

2) = − cos(α) and cos(α− π
2) = sin(α)), but this is implicitly corrected by

formula(9.30) as it uses a rotation matrix equal to our −R instead of R.

14

2.1. Basic Concepts of Stereo Matching

H = A ·ET (2.17)

Matrix A is the intrinsic camera parameter matrix as described in Formula 2.7 and ET

is the extrinsic camera parameter matrix from Formula 2.5. The extrinsic matrix can be
written as the combination of its column vectors. A projection to the image plane can be
written as

s ·

∣∣∣∣∣∣∣
u
v
1

∣∣∣∣∣∣∣ = A ·
∣∣∣r1 r2 r3 t

∣∣∣ ·
∣∣∣∣∣∣∣∣∣
X
Y
Z
1

∣∣∣∣∣∣∣∣∣ (2.18)

Without loss of generality [Zha99] assumes that in the model plane Z = 0. This reduces
Formula 2.18 by column vector r3 and results in

s ·

∣∣∣∣∣∣∣
u
v
1

∣∣∣∣∣∣∣ = A ·
∣∣∣r1 r2 t

∣∣∣ ·
∣∣∣∣∣∣∣
X
Y
1

∣∣∣∣∣∣∣ (2.19)

The homography is rewritten as

H =
∣∣∣h1 h2 h3

∣∣∣ = s ·A ·
∣∣∣r1 r2 t

∣∣∣ (2.20)

Due to the orthogonality of r1 and r2, [Zha99] formulate two constraints:

h1 ·A−T ·A−1 · h2 = 0 (2.21)

and

h1 ·A−T ·A−1 · h1 = h2 ·A−T ·A−1 · h2 (2.22)

For the closed form solution of the linear system [Zha99] proposed an additional parameter
γ for the intrinsic matrix A such that A′ is given as:

A′ =

∣∣∣∣∣∣∣
fx γ cx
0 fy cy
0 0 1

∣∣∣∣∣∣∣ (2.23)

15

2. Background and Theoretical Foundation

This results in the following matrix B used for the closed form solution.

B = A′−T ·A′−1 =

∣∣∣∣∣∣∣∣∣
1
f2
x

− γ
f2
x ·fy

cy ·γ−cx·fy
f2
x ·fy

− γ
f2
x ·fy

− γ2

f2
x ·f2

y
+ 1

f2
y

−γ·(cy ·γ−cx·fy)
f2
x ·f2

y
− cy

f2
y

cy ·γ−cx·fy
f2
x ·fy

−γ·(cy ·γ−cx·fy)
f2
x ·f2

y
− cy

f2
y

(cy ·γ−cx·fy)2

f2
x ·f2

y
+ c2

y

f2
y

+ 1

∣∣∣∣∣∣∣∣∣ (2.24)

In [BK08] the original matrix A is used, which works under the assumption that γ = 0.

B = A−T ·A−1 =

∣∣∣∣∣∣∣∣
1
f2
x

0 − cx
f2
x

0 1
f2
y

− cy
f2
y

− cx
f2
x
− cy
f2
y

c2
x
f2
x

+ c2
y

f2
y

+ 1

∣∣∣∣∣∣∣∣ (2.25)

It can be seen in Formula 2.24 that matrix B is symmetric. [Zha99] define a vector b,
which contains Bs defining values for later rewriting of Formula 2.21 and Formula 2.22:

b =

∣∣∣∣∣∣∣∣∣∣∣∣∣

B11
B12
B22
B13
B23
B33

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
f2
x

− γ
f2
x ·fy

− γ2

f2
x ·f2

y
+ 1

f2
y

cy ·γ−cx·fy
f2
x ·fy

−γ·(cy ·γ−cx·fy)
f2
x ·f2

y
− cy

f2
y

(cy ·γ−cx·fy)2

f2
x ·f2

y
+ c2

y

f2
y

+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.26)

Based on the aforementioned assumption of γ = 0, vector b can be written as

b =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
f2
x

0
1
f2
y

− cx
f2
x

− cy
f2
y

− c2
x
f2
x

+ c2
y

f2
y

+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.27)

For the mentioned rewriting of Formula 2.21 and Formula 2.22 a vector is needed to map
the components of the column vectors of the homography matrix into the factors of the
product of Formula 2.22:

vi,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣

hi,1 · hj,1
hi,1 · hj,2 + hi,2 · hj,1

hi,2 · hj,2
hi,3 · hj,1 + hi,1 · hj,3

hi,2 · hj,3
hi,3 · hj,3

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.28)

16

2.1. Basic Concepts of Stereo Matching

This allows us to write hi
T ·B · hj as

hi
T ·B · hj = vi,j

T · b (2.29)

With this the constraints in Formula 2.21 and Formula 2.22 can be rewritten as∣∣∣∣∣ v1,2
T

(v1,1 − v2,2)T

∣∣∣∣∣ · b = V · b = 0 (2.30)

V · b = 0 is solved by calculating the eigenvector of VT ·V. From vector b matrix A can
be calculated. This in turn allows the calculation of the rotation and translation column
vectors in Formula 2.18.

After the calculation of the camera parameters the distortion parameters are calculated.
This is done by a combination of Formula 2.10 and Formula 2.16 given by [BK08]∣∣∣∣∣xpyp

∣∣∣∣∣ = (1 + k1 · r2 + k2 · r4 + k3 · r6) ·
∣∣∣∣∣xy
∣∣∣∣∣+

∣∣∣∣∣2 · p1 · x · y + p2(r2 + 2 · x2)
p1(r2 + 2 · y2) + 2 · p2 · x · y

∣∣∣∣∣ (2.31)

Using multiple points in multiple images a list of equations is collected and solved for the
distortion parameters. This is followed by a reestimation of the intrinsic and extrinsic
parameters using the newly calculated distortion parameters for correction of the point
positions.

2.1.2.6 Fronto-Parallel Assumption

A central assumption in stereo matching is the FPA as explained by [EE14]. The basic
idea is that a point’s appearance will change when it is being looked at from different
vantage points. Based on this it is assumed, that all pixels in one image that belong to
the same object have the same disparity when matched to the second image. In other
words, the cost value of all pixels belonging to the same object should be minimal at the
same disparity value d. The FPA also results in pixels of an object to align the same way
in both images, which means that a patch of pixels in one image will perfectly correlate
to a patch of pixels in the second image. Patch wise matching of pixels under the FPA
gives the matching algorithm robustness against noise.

There are multiple problems with this assumption. One is shown by the sketch of [EE14]
in Figure 2.10. The problem of the sketch comes from the fact that in reality, not all
objects are aligned perfectly parallel to the camera planes. The necessity arises that
there have to be multiple disparity levels within one patch. This in turn faults the FPA.
Another problem is that, the mentioned perfect correlation of a patch of pixels, needs
all of the patches pixels to belong to the same object. This leads to problems for any
approach that does not consider object boundaries and relies on the FPA.

17

2. Background and Theoretical Foundation

Figure 2.10: Fronto-Parallel Assumption (FPA) Problem [EE14]: This sketch shows the
problem of FPAs, that the "street" object is not parallel to the image planes of the two
cameras. This results in multiple disparity levels within one image patch.

2.1.3 Disparity Estimation and Disparity Maps

The operation of stereo matching can be described as the process of matching two images
I0 and I1 to one another. I0 and I1 are projections of a 3D scene onto two image planes
(see Figure 2.1). For any point x0 a matching point x1 is searched for. To match two
images means to match as many pixels of I0 as possible, as well as possible to the pixels
of I1. A match is considered to be a perfect match, if the pixel in I0 and the pixel in I1
are projections of the same point in the 3D scene. The absolute distance of the matching
points d = |x0 − x1| is called disparity. An image with a disparity value for point (x, y)
at pixel (x, y) is called a disparity map. The 3D depth component Z can be calculated
from d with the length of the baseline B between the cameras which is the length of the
translation vector t, and f as the focal length:

Z = f · |t|
d

= f · B
d

(2.32)

In order to formalize the comparison of dense stereo matching methods [SSZ01] introduced
four building blocks to map stereo matching algorithms. These building blocks or a

18

2.1. Basic Concepts of Stereo Matching

subset of thereof, generally can be mapped to the steps of most dense stereo matching
methods. These steps are listed below:

• Matching cost computation

• Disparity computation / optimization

• Cost (support) aggregation

• Disparity refinement

Some of the ideas in stereo matching are best explained by using the concept of Disparity
Space Images which will be discussed in this section as well.

2.1.3.1 Cost Functions

A cost function in stereo matching is a function that expresses the dissimilarity between
two image patches p0 and p1. The lower the cost, the higher the chance that the
examined patches are projections of the same part of the scene. The Sum of Absolute
Differences (SAD) and the Sum of Squared Differences (SSD) are among the most used
dissimilarity measures. Usually the cost of matching a patch p0 with itself, should be the
lowest possible value for the used cost function. In general, intensity values of the pixels
of the compared patches are used to determine the costs. Depending on the cost function
the input patches may be represented in various color spaces e.g. gray scale, RGB, HSV.

For most patch based cost functions, the patch size s has to be the same for p0 and p1.
In general, s has a constant value for all compared patches. Every patch has a center
point (x, y). Pixel based cost functions can be interpreted as patch based cost functions
with a window size of 1. For a patch at (x, y) in I0 the matching costs for multiple
patches in I1 have to be calculated. In a rectified setup, only the patches in I1 at position
(x′, y′) = (x + d, y) with d running from 0 to a maximal disparity (dmax) have to be
considered for matching.

Therefore, the cost function is a function of point (x,y) and disparity d: C(x, y, d)

2.1.3.2 Disparity Space Images

A Disparity Space Images (DSI) is the collection of values that correspond to the
dimensions, width and height (w × h) of the two images, over multiple discreet disparity
steps. A DSI of the cost function is also called a cost volume. Figure 2.11 shows how the
left and right image are combined into a DSI by using a function G(x, y, d).

The left image (blue) and the right image (green) in Figure 2.12 are combined into a DSI
using a function G(x, y, d). The left lower part of the graphics 2.12(a) and 2.12(b) shows
that G(x, y, d) overlays the left and right image with a shift of d pixels. The overlapping
region (marked by the light blue border) may produce results for G(x, y, d) (aggregation

19

2. Background and Theoretical Foundation

d=dmax

d=3
d=2

d=1
d=0

... ...

disparity space
 image

left image right image

ww

h

y

x

d

Figure 2.11: Disparity Space Images: In stereo matching the left and right image are
usually of the same width (w) and height (h). A Disparity Space Images (DSI) is a
memory volume of size w × h×D. The value of D is the number of considered disparity
steps and is usually D = |[dmin; dmax]|. In most cases dmin is set to 0, which results in
D = dmax + 1. This memory volume is filled with a function G(x, y, d).

steps discussed in Section 2.1.3.3 not taken into account). The results of G(x, y, d) for the
overlapping area are written to the DSI’s corresponding disparity layer, also highlighted
by light blue borders. If x is traversed from 0 to w, then x reaches the point x = w−d+ 1
where due to the disparity shift no more data of the left image is available to be compared
to the right image. A common strategy to deal with this problem is to replicate the last
column, marked in yellow in the upper left part of graphics 2.12(a) and 2.12(b), of the
left image d times and using this data as if (x, y, d) was still in the overlapping region.
This results in a part of the DSI (marked in yellow) that might not be as meaningful as
the rest of the DSI. Figure 2.12(a) shows how a DSI layer for d = 1 with one replication
of the last column is filled. Figure 2.12(b) shows how a DSI layer for d = 4 with four
replications of the last column is filled.

2.1.3.3 Support Aggregation

As stated by [HIG02],[HZW+10], and [Hir05], single pixel matching costs are often
ambiguous due to noise or repetitive structures in the image. A known problem is that,

20

2.1. Basic Concepts of Stereo Matching

Replicated
column

overlap area of
Left and Right

d=0
d=1

Left

DSI

Left Right

(a)

d=0
d=1

d=2
d=3

d=4

overlap area
of Left and
Right

Replicated
column

Left

DSI

Left Right

(b)

Figure 2.12: The left image (blue) and the right image (green) are combined into a
DSI using a function G(x, y, d). The results of G(x, y, d) for the overlapping area are
written to the DSI’s corresponding disparity layer, highlighted by light blue borders. At
point x = w − d+ 1 no more data of the left image is available to be compared to the
right image due to the disparity shift. (a): This part of the figure shows how DSI layer
d = 1 is filled with one replication of the last column and the costs of the pixels in the
overlapping area. (b): This part of the figure shows how DSI layer d = 4 is filled with
four replications of the last column and the costs of the pixels in the overlapping area.

21

2. Background and Theoretical Foundation

due to noise, a non-matching pixel can have lower matching costs than the correct match.
To lower the chance of mismatched pixels, a smoothness term is added to the cost function.
This smoothness term works under the assumption that, within a region around a pixel,
neighboring pixels have a similar disparity value (i.e. the FPA) and therefore penalizes
high disparity steps. Because of the assumption, that the disparity values of the pixels
within a support window should be the same, it is possible to calculate multiple support
aggregations for different disparities in prior.

A DSI of a support aggregation of a cost function is also called an aggregation cost
volume.

The work of [TMDSA08] gives a short overview on different cost aggregation methods
and evaluate these methods based on accuracy and computational requirements. We
will shortly review some of the ideas for support aggregation i.e. rectangular windows,
varying window sizes, multiple window selection, unconstrained shapes, weight variation
and adaptive weights, as they were reviewed by [TMDSA08].

Rectangular Windows In a rectified setup with two rectified images I0 and I1,
a reference point p = (x, y) in I0, a target point q = (x + d, y) in I1, with a cost
function C(x, y, d) as described in Chapter 2.1.3.1, the matching costs for multiple points
surrounding p can be calculated and aggregated. The authors of [TMDSA08] denote
such an aggregation window of size n as wI0

n (i, j) and wI1
n (i, j) respectively for I0 and I1

centered on point (i, j). They also introduce Wn(i, j, d) as the pair wI0
n (i, j), wI1

n (i+ d, j)
and they denote SV (p, q) = SV (x, y, d) as the aggregation of the cost function results
over one of these windows.

Aggregation in this context is usually the summation of the cost function of the corre-
sponding pixels in the window pair. For readability we denote xn and yn as the nth x
and y position in an arbitrary enumeration of the pixel positions in a given window.

SV (x, y, d) =
N∑
n=0

C(xn, yn, d) (2.33)

Varying Window Size and Offset There exist multiple strategies to improve ac-
curacy of stereo correspondence by using a set of windows and selecting the best sup-
port value SV (x, y, d) of this set. The set of windows is denoted by [TMDSA08] as
S(p, q) = S(x, y, d).

Two commonly used ideas for the creation of images is the displacement of the windows

S(x, y, d) = {Wn(i, j, d) : i ∈ [x− n, x+ n], j ∈ [y − n, y + n]} (2.34)

and the variation in the windows size.

S(x, y, d) = {Wn(x, y, d) : n ∈ [Nmin, Nmax]} (2.35)

22

2.1. Basic Concepts of Stereo Matching

A more general combination of these two ideas is:

S(x, y, d) = {Wn(i, j, d) :i ∈ [x− n, x+ n],
j ∈ [y − n, y + n],
n ∈ [Nmin, Nmax]}

(2.36)

Multiple Window Selection After calculating multiple support values for a set
S(p, q) more accuracy can be gained by using more than one of the calculated support
values. Different strategies for this include selection, based on the distance to a depth
edge in the examined window and on which side of this depth edge p and q lie. Another
proposed selection scheme is defined as

S(x, y, d) = Wn(x, y, d) ∪ {Wn(x± n, y ± n, d)} (2.37)

A method to unify multiple selected window sets, is to calculate the average of the cost
function.

Unconstrained Shapes In order to better adapt to the characteristics of the data,
[BVZ98] proposed a variable window approach using the idea of not constraining the
window shape to be rectangular. There are different techniques to determine the best
window shape for a pixel.

[BVZ98] used a plausibility measure based on photometric properties to determine
whether a pixel belongs to the surrounding area of pixel p. For best results the largest
set of plausible connected pixels was chosen to constitute the shape.

In the work of [Vek01] the shape of the support window is represented as a polygonal line
around p and in the work of [GB06] a segmentation method is used to split the images
into segments. The support window’s shape for a point p is expressed as the intersection
of the segment belonging to p and a squared window around p.

Weight Variation and Adaptation Another idea for better support values is the
use of weights. According to [TMDSA08], weights can be used for example to penalize
high matching costs more or less depending on the corresponding pixels distance to p.
The variation of weight depending on the distance to the center point of the window or,
more general, depending on the position in the window, allows for more complex cost
and error measures to be devised.

Other strategies of determining weights for support aggregation may be dependent on
the local data around point p e.g. distance to color discontinuities or color gradients.

2.1.3.4 Disparity Estimation

As stated by [Sze10], disparity computation and optimization is one of the four basic
steps in most stereo matching algorithms. The usual approach is a minimization of the

23

2. Background and Theoretical Foundation

cost function, to find the best disparity for any pixel. In order to find the minimum of
the cost function, cost volumes or aggregation cost volumes can be used. To find the
minimal cost for every pixel, the used cost volume V , is traversed in disparity direction
to find the smallest value per pixel position (x, y). Figure 2.13 shows a cost volume and
how it can be traversed in disparity direction d to find the minimal i.e. best cost value.
This can be represented as

dx,y = argminVx,y(d) (2.38)

where Vx,y represents all cost values in cost volume V for position (x, y).

... ...

y

x

d

Figure 2.13: Visualization of a cost volume with cost values for x and y positions over
the disparity d. To find the best disparity for one position (x, y), the cost volume can be
traversed in direction d at position (x, y) to find the disparity level with the best cost
value. This is illustrated by the red highlighted pixels along the axis d. This can also be
applied to aggregation cost volumes.

2.1.3.5 Disparity Refinement

A measure to improve the quality of a calculated disparity map is called disparity
refinement. This includes cross correlation checks and sub pixel refinements.

A cross correlation check in stereo matching is a check of validity for a disparity value d
at a position (x, y). This is based on the assumption that the given disparity map D0,
was calculated by taking patches from I0 and matching them to I1. A second disparity
map D1, is calculated, using patches in I1 and matching them to I0. The disparity value
at position (x, y) in D0 is denoted as D0[x, y]. A pixel (x, y) passes the cross correlation

24

2.2. Middlebury Benchmark

check if the absolute difference of its disparity value D0[x, y] and the disparity value of
the allegedly corresponding pixel in D1 fall below a threshold T :

|D0[x, y]−D1[x+D0[x, y], y]| < T (2.39)

In the work of [HZW+10] a seemingly arbitrary threshold of 5 is chosen. We argue that
the threshold for the disparity cross correlation check should be a function of the maximal
disparity dmax. The parameter dmax is in turn the result of a function of the image width
w. For the Middlebury Data Sets (see Section 2.2) which provide a dmax for every data
set, the maximal disparity is roughly:

dmax ≈
w

10 (2.40)

Based on the given dmax parameters of the Middlebury data sets, ranging from approxi-
mately 450× 700 pixel images to approximately 1800× 2800 pixel images, a threshold of
T = 5 is equivalent to (2 to 6)% · dmax.

Sub pixel refinement is an attempt to improve the result of a function that is working
on discrete data (e.g. gray values or pixel indexes) and is delivering discrete output
(e.g. pixel indexes or pixel exact disparity values) by trying to estimate the result of
the corresponding continuous function, using multiple results of this discrete function.
This can be achieved through aggregation functions like weighted means or polynomial
interpolation.

2.2 Middlebury Benchmark

There are many stereo benchmarks available e.g. [GLU12] provided the Karlsruhe Insti-
tute of Technology and Toyota Technological Institute (KITTI) benchmark, [KNM+14]
provided the Heidelberg Collaboratory for Image Processing (HCI) benchmark suite and
[SSZ01] provided the Middlebury Stereo Benchmark7.

Due to the fact that the Middlebury Stereo Benchmark provides more than one runtime
metric (many benchmarks provide only one metric), is freely accessible, and provides a
relatively easy to use framework for executing the benchmark, our main evaluation is
done with the Middlebury Stereo Benchmark.

In this section we will explain the taxonomy for measurements in stereo matching. We
will shortly present the metrics used by [SSZ01]. This will include a comparison of sparse
versus dense stereo matching, error metrics and evaluation masks "nonocc" versus "all".
The metrics presented by [SSZ01] were implemented in an online system, providing data
sets and evaluation tools for online and local use.

7see http://vision.middlebury.edu/stereo/

25

http://vision.middlebury.edu/stereo/

2. Background and Theoretical Foundation

After this we will present the data sets that are provided at the website of the university
of Middlebury 8 and the available resolutions and qualities of these data sets.

2.2.1 Sparse and Dense Stereo Matching

As mentioned in Section 2.1.3, stereo matching algorithms are categorized according to
their results into sparse and dense algorithms. A dense algorithm is a method that tries
to solve the correspondence problem for every pixel in the image. A sparse algorithm
only solves the correspondence problem for specific points or objects in the scene.

Under this premise it is not clear how a sparse algorithm can be compared to a dense
algorithm or even how a sparse algorithm can be compared to a different sparse algorithm.
This ambiguity results from the fact that for one set of images SI = {I0, I1} the number
of calculated pixels, as well as the quality of the result may vary greatly. The remaining
question is, whether and how a result with only few but highly accurate result pixels is
comparable to a result with many result pixels with a lower accuracy. The original work
proposed by [SSZ01] states that this problem is outside the scope of their then current
work and focused therefore on dense stereo matching. This is why the Middlebury Stereo
Benchmark only supported submissions for dense algorithms.

The latest version of theMiddlebury Stereo Benchmark (at this point version 3), introduced
in May 2015)9 now supports the submission of sparse algorithm results. Submissions
are now allowed to have both dense and sparse results, or only either one of them. The
strategy to allow this, implemented in the Middlebury Stereo Benchmark, is a scanline
based hole filling algorithm to create dense results from sparse results in case only sparse
results are provided and the usage of the dense results in the sparse table if only dense
results are provided. In order to make sparse and dense results distinguishable in the
table of sparse results, the percentage of invalid pixels is displayed alongside the results.

2.2.2 Error Metric

In this section, we will shortly discuss the error metrics for quality and runtime evaluation,
which are used in the Middlebury Stereo Benchmark. These metrics are: percentage of
bad pixels, average absolute error, root-mean-square disparity error, X-percentiles, absolute
time, time per number of pixels and time per disparity hypotheses.

2.2.2.1 Percentage of Bad Pixels

The percentage of bad pixels metric P represents the number of pixels where the calculated
disparity (dC) and the ground truth disparity (dT) at this pixel’s position differ more
than a chosen δd. This is normalized to the total number of pixels N . In [SSZ01] this
was proposed with a fixed δd = 1. The first version of the benchmark was built according
to these specifications.

8see http://vision.middlebury.edu/stereo/data/
9see http://vision.middlebury.edu/stereo/eval3/MiddEval3-newFeatures.html

26

http://vision.middlebury.edu/stereo/data/
http://vision.middlebury.edu/stereo/eval3/MiddEval3-newFeatures.html

2.2. Middlebury Benchmark

P = 1
N

∑
(x,y)

(|dC(x, y)− dT (x, y)| > δd) (2.41)

Since version 2 of the Middlebury Stereo Benchmark10 multiple thresholds δ0.5, δ0.75, δ1.0,
δ1.5 and δ2.0 are introduced. In version 3 the provided thresholds are changed to δ0.5,
δ1.0, δ2.0 and δ4.0.

2.2.2.2 Root-Mean-Square Disparity Error and Average Absolute Error

The Root-Mean-Square Disparity Error (Root-Mean-Square) is available in theMiddlebury
Stereo Benchmark since version 1 and was proposed as metric in [SSZ01] as

RMS =
(

1
N

∑
(x,y)
|dC(x, y)− dT (x, y)|2

) 1
2

(2.42)

with N as the total number of pixels and dC and dT as the calculated disparity and the
ground truth of the disparity.

An additional statistical error metric, the average absolute error A, was defined as

A = 1
N

∑
(x,y)
|dC(x, y)− dT (x, y)| (2.43)

and is available in the Middlebury Stereo Benchmark since version 3.

2.2.2.3 X-Percentiles

Another metric added to theMiddlebury Stereo Benchmark since version 3 is the percentile
of the absolute disparity error. The available percentiles are 50%, 90%, 95% and 99%.
An x-percentile of a series of numbers is the value k at which x percent of the values of
the series are below the value k.

2.2.2.4 Absolute Time

The current version (version 3) of the Middlebury Stereo Benchmark, provides three
different metrics for runtime comparison. The first runtime metric, is the absolute
runtime for an image set. This is the runtime measurement taken by the submitter and
is the absolute time in seconds that their algorithm needed to complete.

2.2.2.5 Time per Number of Pixels

The second and third runtime metrics are a function of the first runtime metric. The
second metric, the time per number of pixels TP , is the runtime value normalized to the

10see http://vision.middlebury.edu/stereo/eval/newFeatures.html

27

http://vision.middlebury.edu/stereo/eval/newFeatures.html

2. Background and Theoretical Foundation

number of pixels for the current image set. With the runtime t and the number of pixels
N this is

TP = t

N
(2.44)

The visualization of the Middlebury Stereo Benchmark has a normalization to seconds
per million pixels or Mega Pixel (MP) instead of seconds per pixel.

2.2.2.6 Time per Disparity Hypotheses

The third runtime dependent metric is the time per disparity hypotheses TD. The total
runtime of the method is normalized to the number of disparity hypotheses, which is the
number of pixels N times the disparity depth dmax.

TD = t

N · dmax
(2.45)

The visualization of the Middlebury Stereo Benchmark has a normalization to seconds
per billion pixels or Giga Pixel (GP) instead of seconds per pixel.

The normalization of the runtime t to dimensions of the problem space i.e. image
dimensions x and y, and disparity depth dmax, has the advantage over the not normalized
runtime t in expressiveness as it allows for runtime estimation of future problems when
image dimensions and disparity depth are known.

2.2.3 Evaluation Masks

In the Middlebury Stereo Benchmark, evaluation masks are used to prevent or allow the
evaluation of the disparity value at a specific position. They consist of a gray scale map of
the image where an intensity value of 255 means that the pixel’s disparity value should be
evaluated and any other value means that the disparity value at this pixel position should
not be evaluated. Evaluation in this context means, that the error metrics are calculated
and counted towards the result and the value of N in Formula 2.41 to Formula 2.45.

The Middlebury Stereo Benchmark provides two evaluation masks, "nonocc" and "all".
The label "all" designates a map with all pixels having a value of 255, which leads to
evaluation for every pixel. The label "nonocc" stands for "non-occluded pixels visible
in both views". This mask also provides different mask values for pixels that are only
visible in one image but not the other, and for pixels where the disparity value in the
ground truth could not be determined. This allows for later versions of the benchmark
to distinguish between values that are not available in the ground truth and values that
are not determined through correspondence of two pixels.

2.2.4 Data Sets

The Middlebury Stereo Benchmark provides training data for different versions of the
benchmark. The training sets are provided with a left and right image and ground truth
disparity maps. The different data sets are labeled by the year of publication and can

28

2.2. Middlebury Benchmark

be found on the website11 of the Middlebury Stereo Benchmark. The available data sets
are labeled as "2001 datasets", "2003 datasets", "2005 datasets", "2006 datasets" and
"2014 datasets". In this section we will shortly talk about these data sets, the provided
resolutions and quality traits.

2.2.4.1 2001 datasets

The data set "2001 datasets" in Figure 2.14 was created by D. Scharstein, P. Ugbabe,
and R. Szeliski for the work of [SSZ01]. It contains eight image sets of which the set
"map" is provided by courtesy of Microsoft Research and the set "tsukuba" is provided by
courtesy of the University of Tsukuba. The set "tsukuba" has a resolution of 384× 288
pixels and the set "map" has a resolution of 284× 216 pixels. The remaining sets have a
resolution of 434× 380 pixels. The ground truth disparities are scaled with factor eight
i.e. a disparity value of 80 corresponds to a disparity of 10 pixels.

2.2.4.2 2003 dataset

The data set "2003 datasets" in Figure 2.15 was created by D. Scharstein, A. Vandenberg-
Rodes, and R. Szeliski using the method described by [SS03]. The two sets are available
in the resolutions 1800× 1500 pixels (F - full size), 900× 750 pixels (H - half size) and
450× 375 pixels (Q - quarter size). The disparity ground truth, available for the quarter
size resolution sets, is scaled by factor four i.e. disparity value 40 corresponds to a
disparity of 10 pixels. A disparity value of 0 encodes "unknown" disparities.

2.2.4.3 2005 dataset

The data set "2005 datasets" in Figure 2.16 was created by A. Blasiak, J. Wehrwein,
and D. Scharstein using the method described by [SP07] and [HS07]. The nine sets are
available in the resolutions 1330 to 1390× 1110 pixels (full size), 665 to 695× 555 pixels
(half size) and 443 to 463× 370 pixels (third size) (resolutions r = 3). Each set contains
seven views (v = 7), three different illumination situations (i = 3) and three different
exposure times (e = 3), resulting in v · r · e · i = 189 different images available per set.
The disparity ground truth, is available for view 1 and 5. The ground truth scale factor
is 1 for full resolution, 2 for half resolution and 3 for third resolution. For the image sets
"Computer", "Drumsticks" and "Dwarves" the disparity ground truth was withheld.

2.2.4.4 2006 dataset

The data set "2006 datasets" in Figure 2.17 was created by B. Hiebert-Treuer, S. Al
Nashashibi, and D. Scharstein using the method described by [SP07] and [HS07]. The
21 sets are available in the resolutions 1240 to 1396 × 1110 pixels (full size), 620 to
698× 555 pixels (half size) and 413 to 465× 370 pixels (third size) (resolutions r = 3).
Corresponding to "2005 dataset", each set of "2006 dataset" contains seven views (v = 7),

11see http://vision.middlebury.edu/stereo/data/

29

http://vision.middlebury.edu/stereo/data/

2. Background and Theoretical Foundation

(a) Barn1
(b) Barn2

X
(c) Bull (d) Poster

(e) Sawtooth (f) Venus (g) Map∗ (h) Tsukuba∗

Figure 2.14: Middlebury Stereo Benchmark data set: "2001 dataset". The images
"tsukuba" and "map", marked with an asterisk (*) were created by different authors. Both
image sets were used in the work of [SZ99]. The image set "tsukuba" is by courtesy of
the University of Tsukuba and the image set "map" is by courtesy of Microsoft Research.

30

2.2. Middlebury Benchmark

(a) Cones (b) Teddy

Figure 2.15: Middlebury Stereo Benchmark data set: "2003 dataset"

(a) Art (b) Books (c) Dolls (d) Laundry (e) Moebius (f) Reindeer

(g) Drumsticks (h) Dwarves (i) Computer

Figure 2.16: Middlebury Stereo Benchmark data set: "2005 dataset"

31

2. Background and Theoretical Foundation

three different illumination situations (i = 3) and three different exposure times (e = 3),
again resulting in v · r · e · i = 189 different images available per set. The disparity ground
truth is available for view 1 and 5. The ground truth scale factor is 1 for full resolution,
2 for half resolution and 3 for third resolution.

2.2.4.5 2014 dataset

The data set "2014 datasets" was created by N. Nesic, P. Westling, X. Wang, Y. Kitajima,
G. Krathwohl, and D. Scharstein using the method described by [SHK+14]. The 33 sets
are available in resolutions ranging roughly from 2630 to 3000× 1840 to 2000 pixels (F -
full size), 1315 to 1500× 920 to 1000 (H - half size) and 657 to 750× 460 to 500 pixels
(Q - quarter size) (resolutions r = 3). Each set contains a left and a right view (v = 2),
four different illumination situations (i = 4) and eight different exposure times (e = 8),
resulting in v · r · e · i = 192 different images available per set.

The data set "2014 datasets" is parted in 10 training sets (Figure 2.18), 10 test sets
(Figure 2.19) and 13 additional sets. Parts of the training sets and the test sets are part
of the training and test sets for version 3 of the Middlebury Stereo Benchmark.

2.3 OpenCL
In this section, we will show the basic architectural principles of the Open Computation
Language (OpenCL) and OpenCL devices. In this section, the concepts of devices, device
parameters, local and global memory, work units, work groups, work dimensions, and
kernels will be explained. For this chapter we will greatly rely on the work of [MGMG11].

OpenCL is an interface for hetereogenous hardware, that allows the use of said hardware
for calculations in a parallel setup. For this reason, hardware like graphic cards, CPUs
or Field Programmable Gate Arrays (FPGAs) are wrapped as devices. These OpenCL
devices represent handles with which the hardware can be addressed for memory read
and write operations as well as for running programs on the hardware. For this to be
possible, a corresponding OpenCL driver has to be installed on the host system to make
the connected devices available via OpenCL. The OpenCL drivers for most graphics
hardware as well as CPUs are provided by their corresponding vendors.

The system hosting OpenCL and the calculation devices is called host. One host may
have multiple devices available to it. Each physical device has a software wrapper (from
its OpenCL driver) making it available as OpenCL device. The OpenCL device handle
(in short OpenCL device) can be used to run programs on the physical devices. These
programs are called kernels.

Let us assume that we have a data vector v = {v1, v2, · · · , vN} of length N and let us
assume that we have to perform a calculation C(x) for every element in v and that every
one of these calculations is independent of the results of all the other calculations such that
we have a result vector r = {C(v1), C(v2), · · · , C(vN)}. In conventional programming,
this would be solved with some kind of looping structure iterating over the elements of v

32

2.3. OpenCL

(a) Aloe (b) Baby1 (c) Baby2 (d) Baby3 (e) Bowling1 (f) Bowling2

(g) Cloth1 (h) Cloth2 (i) Cloth3 (j) Cloth4 (k) Flowerpots (l) Lampshade1

(m) Lamp-
shade2

(n) Midd1 (o) Midd2 (p) Monopoly (q) Plastic (r) Midd1

(s) Rocks2 (t) Wood1 (u) Wood2

Figure 2.17: Middlebury Stereo Benchmark data set: "2006 dataset"

33

2. Background and Theoretical Foundation

(a) Adirondack (b) Jadeplant (c) Motorcycle (d) Piano (e) Pipes

(f) Playroom (g) Playtable (h) Recycle (i) Shelves (j) Vintage

Figure 2.18: Middlebury Stereo Benchmark training data set: "2014 dataset"

(a) Australia (b) Bicycle2 (c) Classroom2 (d) Crusade (e) Djembe

(f) Hoops (g) Livingroom (h) Newkuba (i) Plants (j) Staircase

Figure 2.19: Middlebury Stereo Benchmark test data set: "2014 dataset"

34

2.3. OpenCL

and calling C(vn) sequentially. A more adept approach might use some kind of multi
threading to improve the runtime.

A kernel can be interpreted as the calculation function C(x). It represents a function
that has to be evaluated multiple times and is independent of the results of its previous
evaluations. The task of parametrization and evaluation of one instance of the kernel for
one specific parameter set, that is done by one processing element, is called work item.

OpenCL devices are organized in a number of compute units, which in turn contain
multiple processing elements. Processing elements are the singular units used to execute
kernels. Within one compute unit and within the context of one command, all active
processing elements execute the same kernel. The maximum number of processing
elements that can be used by one compute unit is fixed for every device. Every compute
unit of one device has the same maximum number of processing elements as every other
compute unit on that specific device. The organization of host, OpenCL devices, compute
units and processing elements can be seen in Figure 2.20.

For one compute unit the processing elements are considered to execute the kernel
simultaneously. The execution of kernels is usually dependent on the size and dimension

Host

OpenCL Device

Compute Unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Compute Unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

...

Compute Unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Compute Unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

...

...

OpenCL Device

Compute Unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Compute Unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

...

Compute Unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Compute Unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

...

... ...

Figure 2.20: Figure reinterpreted from [MGMG11] Figure (1.6). Multiple OpenCL devices
are available to one host. Every OpenCL device has a number of compute units. All
compute units on one OpenCL device have the same number of processing elements.

of the problem space. In our previously defined example of vector v the problem space
has size N and is 1-dimensional (1D). Different OpenCL devices provide a different
number of possible dimensions, but in most cases three dimensions are available. Also

35

2. Background and Theoretical Foundation

the maximum size for a dimension may be different for every available dimension on
an OpenCL device e.g. three dimensions: 1024× 512× 128. These parameters can be
retrieved by predefined OpenCL commands.

The total size of a problem (work size or global size) might exceed the number of processing
elements available to a compute unit. It might even exceed the total number of processing
elements available to the whole device. This leads to the conclusion that at some point,
a process of serialization has to be introduced in order to process problems with a high
number of work items. This is why any problem to be handled by OpenCL is partitioned
into work-groups. Work groups are executed on the level of compute units.

Problems consisting of fewer work items (i.e. problems with smaller work group size)
than the used OpenCL device’s number of processing elements per compute unit, are
naturally fitted into one single work-group. The partition of larger problem spaces is
parametrized by the programmer and can be crucial for runtime performace.

Due to the fact that OpenCL devices are mostly independent devices in respect to the
host system, it is important to keep in mind that OpenCL devices can not access the
host’s memory but have their own memory. This means that data that is required for
a kernel to run properly, has to be transmitted towards the OpenCL device before the
kernel execution is started. In the context of an OpenCL program there are four types of
memory. These types are host memory, global memory complemented by global memory
cache, local memory and private memory.

Host memory is the memory that is directly accessible by the host, without the help of an
OpenCL command. It is usually very big compared to the other types of memory. The
architecture of host, host memory, global memory, global memory cache, local memory,
work-groups, private memory and work items is outlined in Figure 2.21.

Global memory is the OpenCL device’s biggest memory that is accessible to the host
through OpenCL commands. OpenCL provides commands for the host to efficiently read
and write big chunks of this memory. Every processing unit may access allocated global
memory areas, as long as a handle for the corresponding memory region is provided
by the host. Global memory usually is the slowest memory of an OpenCL device, this
however, is partially compensated by the global memory cache. Random access to global
memory by processing elements, may lead to heavy usage of paging, and this is why the
way the problem space is partitioned may be crucial. Global memory is also the memory
where space for constants can be allocated.

Local memory is smaller but faster than global memory. Every compute unit has its
own local memory, which is accessible for every processing element within this compute
unit. Kernels can trigger a synchronized bulk loading of data from global memory into
local memory. This allows for fast and efficient access for the processing elements to that
bulk of data. This can under certain conditions prove beneficial for the runtime. Let
us assume that the time for bulk loading a chunk of data of size s into local memory,
takes ts time units. Every work unit will have k random access read or write actions
within this chunk of data. The time needed for one read / write action to local memory

36

2.3. OpenCL

host

host memory

OpenCL context

global and constant memory

local memory

work-group

private
memory

work item

private
memory

work item

private
memory

work item

private
memory

work item

local memory

work-group

private
memory

work item

private
memory

work item

private
memory

work item

private
memory

work item

global memory cache

Figure 2.21: Figure reinterpreted from [MGMG11] Figure (1.8). Visualization of host and
OpenCL device in terms of memory. The host can access global device memory exclusively
via commands provided by the OpenCL API. Local memory access is coordinated by
the device and initiated by the work items. Private memory is exclusively available to
the corresponding work item.

37

2. Background and Theoretical Foundation

is denoted as tl and the time needed for one read / write action from global memory
cache is denoted as tg. We assume that the relation tl < tg holds. Loading a chunk of
global memory into local memory is beneficial to the runtime if the number of read /
write actions k is large enough to satisfy:

k · tg > ts + k · tl (2.46)

Memory that is only available to one processing element, is called this processing element’s
private memory. Private memory is the smallest and fastest memory available to an
OpenCL device. This is where a work item’s variables are located.

38

CHAPTER 3
State of the Art

In the field of computer vision, stereo vision is a topic which is often discussed. The
problem of stereo correspondence is a key element of many stereo vision methods. Stereo
matching is a way to solve the steroe correspondence problem. [Sze10] define stereo
matching as the process of taking two or more images and estimating a 3D model of the
scene by finding matching pixels in the images and converting their 2D positions into 3D
depths 1. The result of the stereo matching process is usually a mapping from image
space to disparity space. This mapping is often represented as a 2D map of disparity
values for all pixels.

Some methods that are used in stereo vision have been around since the 1970s and 1980s.
The works of [LT98] from 1998, cover some of these methods and give an overview on the
techniques and basic ideas that in part are used until today. In 2010 [Sze10] published
an updated overview of these methods. They explain the concepts of epipolar geometry,
sparse and dense correspondence, DSI, cost functions and the mechanisms used for stereo
matching in general.

The search for stereo corresopondence can be reduced to single scanline problems when
the epipolar geometry of the camera setup is utilized. Using epipolar geometry, the
images can be transformed such that for every point (x, y) in the first image, all matching
candidates (xi, yi) in the second image have the same y-coordinate (xi, y) i.e. lie on the
same scanline. A sketch explaining epipolar geometry is shown in Figure 2.1.

3.1 Sparse Stereo Matching
Sparse correspondence methods are generally feature based. Feature based methods
usually start with identifying Points of Interest (POIs) e.g. corner points or Scale-
Invariant Feature Transform (SIFT) features, Objects of Interest (OOIs) e.g. edges

1[Sze10] Chapter 11 - Stereo correspondence

39

3. State of the Art

or geometric forms or Regions of Interest (ROIs) e.g. regions containing a specific
texture in the stereo image pairs. Then the POIs, OOIs or ROIs (further on we will
combine these terms into Features of Interest (FOIs)) of one image are matched to their
counter parts in the another image. From these matches the disparity is calculated. The
resulting disparities are then refined and/or interpolated by post processing steps. Early
sparse stereo matching approaches like those proposed by [Han74],[MKS89], [HMJP92]
or [Col96] use some patch-based metrics to match the found FOIs of one image into the
second image. Later works such as the work of [ZS00] and [LQ02] proposed to "grow"
matches from a small set of highly reliable matches. These approaches were extended by,
among others [LQ05] and [GSC+07], who proposed multi-view stereo methods.

In recent works of [BGM14], focus is set on the process of whether a found match is good
and unambiguous, by usage of Gibbs sampling and minimization of an expected loss
function. Cooperative matching techniques for sparse stereo matching were discussed in
the context of event cameras, as opposed to conventional RGB cameras, by [PBG13] and
[PKBG17].

3.2 Dense Stereo Matching

Dense correspondence methods in general work on most or all pixels in image space.
This results in higher computational demands for these methods in comparison to sparse
methods. Window based approaches that depend on intensity values for correspondence,
usually have an implicit smoothness assumption included. This smoothness assumption
is attributed to support aggregation as it is used by different authors, such as [Han74],
[ZW94], [BN98] or [HZW+10].

Other dense algorithms minimize a global cost function which usually has an explicit
smoothness term. [Sze10] states that the main distinction between these methods is the
used procedure of minimization. In his work [Sze10] lists simulated annealing as used by
[MMP87] and [Bar89], probabilistic diffusion as used by [SS98], expectation maximization
as used by [BNT07], graph cuts as used by [BVZ01] and loopy belief propagation as used
by [SZS03] as minimization methods.

Recent works in the field of stereo matching like the works of [JGM14] or [ZL16] use
Convolutional Neural Networks (CNNs) for matching. The use of neural networks in
stereo matching is observed by the authors of [ZK15], as they ask the question whether
or not datasets can be used to learn similarity functions. They show that CNNs can be
used for different stages in the stereo matching pipeline.

An example for dense stereo correspondence not using CNNs, is the work of [ZFM+14]
who use a bio-inspired process of stereoscopic correspondence across multiple scales, as
observed in human vision.

40

3.3. Local Stereo Methods

3.3 Local Stereo Methods

In local methods, usually all matching costs provided by a support region in the DSI
are aggregated. Support regions may be 2-dimensional (2D) or 3-dimensional (3D).
The dimensions of these support regions are not necessarily spatial dimensions. In
some applications, the support region is accumulated over time e.g. from a video.
Three dimensional spatial support regions allow for better results in scenes with slanted
surfaces but are more demanding in calculation due to the additional dimension. Two
dimensional support regions are supported by the Fronto-Parallel Assumption. Different
implementations of 2D support regions have been provided by authors such as [Arn83],
[FRT97], [BI99], [BG05] and [HZW+10]

In his work [Sze10] points out various methods using 2D support regions, with different
approaches as to connectedness of the components ([BVZ98]), varying window sizes
([OK92], [KO94], [KSC01], [Vek01], [Vek03], [PKBG17]) or the usage of color ([YK06],
[TMDSA08]).

In the work of [BRR11] a 3D support plane is created to overcome problems related
to slanted surfaces. For more 3D support regions [Sze10] refers to [Gri85], [Pra85]and
[ZK00].

Further, in the works of [HRBG11], [DRR03] and [ZCS03] time is used as a third
dimension. These methods can be used to reconstruct 3D information from video footage.

Different cost aggregation methods have been reviewed by [GYWG07] and [HS09]. Some
aggregation methods use adaptive window sizes as shown by [KO94], adaptive support
weights as used by [YK05] or geodesic support weights as implemented by [HBGR09].

3.4 Global Stereo Methods

In comparison to local methods, global methods are usually more computationally
demanding. Global methods are characterized by minimizing an energy function that
considers the whole image in terms of differences and smoothness. Some methods take
additional factors into account e.g. [KZ01] use an additional term to handle occlusions.
These cost constraints can be resolved for example by dynamic programming as shown
by [Bel96], [CHRM96] or [BT99] or with graph cuts as shown by [BVZ01]. Graph cut
methods build graphs out of the stereo images and model the problem with engery
functions such that flow of energy models the matching costs. Then the authors of
[BK04] compare methods that use graph optimization methods to find the best disparity
mapping.

Another global approach to solving the stereo correspondence problem are segmentation
based techniques. [Sze10] characterize these techniques as methods which segment the
image into regions and then try to assign disparity values to the resulting regions. Methods
using this approach are described by authors such as [KSK06], [ZK07] or [TWZ08].

41

3. State of the Art

Some constraints for global methods are smoothness constraints as described by [BG05],
[Hir08]and [TS00], color based constraints like the works of [TS00] and [BG05], edge
based constraints like the work of [CZYS14] or visibility or order based constraints like
described by [SLKS05]. An experimental evaluation of the incorporation of color in global
stereo matching was performed by [BCPG08].

3.5 Real-Time Stereo Matching
The work of [TLLA16] is focused on the subject of real-time stereo matching. An
overview is given on the performance of different algorithms and the used width, height
and maximum disparity parameters used by the various authors of different algorithms
are provided along with the runtime comparison. Further, [TLLA16] argue that accuracy
and speed are usually competing factors in stereo matching methods.

The subject of real-time stereo matching is discussed by many authors e.g. [KPP13],
[HIG02], [ZNPC13], [HZW+10], [HBG10], [YWY+06], [BM17] and [GYWG07].

3.6 Real-Time Hardware for Stereo Matching
In the work of [TLLA16] stereo matching algorithm-combinations are classified into three
categories. The first category contains real-time or near real-time results that were
achieved on standard processors. The second category contains algorithms with real-time
performance on specialized hardware. The hardware types listed in this context are
GPUs, FPGAs, Digital Signal Processors (DSPs) and Application-Specific Integrated
Circuits (ASICs). The third type are algorithms that did not show real-time or near
real-time performance. The hardware evaluations of [TLLA16] give an overview of
different algorithm - hardware combinations and comparisons are listed by device type i.e.
FPGA, GPU and DSP. However, the compared algorithm results were rarely generated
by the same device and comparability of algorithms across devices is therefore not easily
achieved.

Stereo matching algorithms designed for embedded systems were presented by [HZW+10]
and [BM17]. A DSP stereo matching solution is presented by [CLT+07]. The most
frequently used specialized hardware for stereo matching implementations are GPUs.
GPU based implementations were presented by [KPP13], [ZNPC13], [GFGC17]

Further, the works of [CAD+12] and [OBDA11] focus on the topic of using OpenCL to
generate Very high speed integrated circuit Hardware Description Language (VHDL) for
FPGAs. This may be used for GPU based implementations which use OpenCL.

Generally, strategies for evaluating different hardware configurations for stereo techniques
can also draw inspiration from related computer vision fields such as video coding (e.g.,
[SBSG08], [SBGB09]), where real-time implementations have been in the focus of interest
for many years.

42

CHAPTER 4
A Stereo Matching Algorithm

In this chapter, we will explain the ideas proposed by [HZW+10]. This method was
chosen as model for our implementation because of three major reasons. The first reason
being that on the website of the Middlebury benchmark, algorithms with a good runtime
performance are usually window-based like this method and many of these algorithms
use a census-based cost metric as well. Secondly, the method proposed by [HZW+10] was
designed to be "suitable for embedded real-time systems", which makes an implementation
based on this method a good candidate for a transfer to FPGA later on. Finally, this
thesis was created in cooperation with IVISO Ges.m.b.H. which expressed an interest in
an implementation of the method similar to the method of [HZW+10].

The method of [HZW+10] is a dense stereo matching method, which creates a DSI and
provides disparity refinement. We will discuss the proposed techniques for cost volume
calculation, support aggregation and disparity refinement as well as cover the topics of
census transform, aggregation strategy, subpixel refinement and the left-right consistency
check in detail.

4.1 Sparse Census Cost Function

In the work of [ZW94], the census transform was used as a non-parametric local transfor-
mation in the context of stereo correspondence. In the work of [HZW+10] a sparse census
cost function was proposed. In this section we will in short explain non-parametric local
transformations in general and the census transform in detail.

A local transformation performs a transformation operation O on localized data regions
Ri written as O(Ri). Every data point in the source data (usually pixels) corresponds
to such a data region. A local transformation is therefore a mapping of di = O(Ri),
where i denotes a position in the source data array. The set of regions Ri represents

43

4. A Stereo Matching Algorithm

the data regions corresponding to the data positions i. The set of all di represents the
transformation result and is called census word of length i.

A non-parametric local transformation as described by [ZW94], uses the relative ordering
of the data in the examined region, rather than the data values in that region. An
example for a non-parametric local transformation is the census transformation.

The census transform in its basic form describes a window of 3 × 3 pixels. One pixel
in this window is the reference pixel for this 3-by-3 region. The values of all other
pixels pi in this region are compared to the value of the reference pixel c. For every
comparison one bit of information is saved, resulting in one byte per 3-by-3 region. The
saved information represents whether or not the examined value was lower or equal to
the reference value. The following formula shows how the values of the bits bi of the
census word are determined:

bi =
{

1, if c > pi

0, otherwise
(4.1)

The resulting bytes encode the structure of the data values pi with respect to the central
value. Two pixels in census transformed images are compared for similarity by using the
Hamming distance of these bytes. Improvements that have since been proposed mainly
entail larger window sizes, more finegrained difference measures from the reference pixel,
different reference pixel positions or masking of the examined pixels.

Larger window sizes i.e. larger regions Ri, for census transforms result in a higher number
of data points that can be compared to the reference pixel c. If more data points are
used, the resulting census word will be longer. Longer census words in turn, result in a
higher maximum value for Hamming distances.

Masking of data points describes a strategy where for every region not the whole region,
but a subset of data points of the region is used for the creation of the census word.
This effects the result in a way that only the selected subset is used for comparison and
included in the result. This reduces the result’s expressiveness, because data is dismissed.
However, this allows to use larger image patches while the calculation costs stay the same
and therefore, increases the distinctiveness of the census word.

The algorithm proposed by Humenberger et al. ([HZW+10]) uses a census transform and
masks every second row and column of the regions in order to reduce calculation density,
as shown in Figure 4.1. The shown mask generates a 16 bit census word for a region of
64 pixels. Though the loss of information is 75%, Humenberger et al. claim that the
expressiveness of the census word does not loose that much of its value and still produces
good results when used as similarity measure in stereo correspondence. Humenberger et
al. call this method sparse census mask.

In order to argue about the qualtities of sparse transformations a metric is defined to
measure the expressiveness of the results of these transformations. This metric is based

44

4.1. Sparse Census Cost Function

13

143

55

3

44

37

123

133

14

16

1

146

22

24

16

64

126

17

98

67

9

198

56

57

60

58

55

200

34

36

200

20

100

110

18

6

12

14

2

188

17

165

12

2

22

88

23

8

8

34

52

77

37

88

55

12

5

77

67

67

3

5

5

9999

150

179

19

45

16

16

99

66

47

50

45

200

4

7

35

36

47

(a)

9

198

57

58

36

200

100

18

2

188

165

2

8

8

52

37

47

(b)

1

0

0

1

0

0

1

1

0

1

1

1

0 00

1

X

(c)

0 01 00 00 10 11 011 11

(d)

Figure 4.1: Figure in part reinterpreted from [HZW+10] Figure (3). Figure 4.1(a) shows
region R highlighted by a red frame, with a region size of 8× 8. The reference pixel c
at filter position (3/3) highlighted by a red circle and the filter mask, leaving out every
second row and column in light green, can be seen. Figure 4.1(b) shows only the part of
the input data, relevant for the transformation. Figure 4.1(c) shows the result for every
pixel based on Formula 4.1.Figure 4.1(d) visualizes how the census word is composed of
the pixel wise results.

on the relation of the result of the sparse transformation and the result of the non-sparse
(base) transformation of the examined transformation. In our case, this is the regular
census transformation of an image patch. For an image patch P consisting of k+ 1 pixels
denoted as |P | = k + 1 a base result-word v consists of k bits denoted as |v| = k. Every
bit in the base result word corresponds to exactly one pixel in the image patch. In a
sparse context the length of the result word s is smaller than the length of the base word:
|s| < |v|

From any sparse result word a reconstruction of the base word can be attempted. The
resulting reconstruction r(s) is of the same length as the base word: |r(s)| = |v|

The reconstructed result word r(s) is compared to the base result word. A bit is correctly
reconstructed if its value is equal to the corresponding bit in the base result word. The
expressiveness of a result word is defined as the percentage of correctly reconstructable
bits from that result word. This implies that the expressiveness of the base result word
is 1.

The lower bound of the expressiveness of a sparse census result word s is the length
|s| of this word. In a setup where one out of four pixels is transformed, this results in
a lower bound for expressiveness of roughly 0.25. The actual expressiveness in such a
case is usually higher than 25%. In an image of a natural scene pixels often have color

45

4. A Stereo Matching Algorithm

values similar to their neighbors. This similarity among neighboring pixels is known
as homogeneity, as described by [ZHHL06]. Due to homogeneity, the value of a census
bit in a full census word can be estimated from the sparse census word by a nearest
neighbor estimation. Figure 4.2 gives an example of a homogenous image patch and gives
an example where a sparse census word of has an expressiveness value of 0.8, by using
nearest neighbor estimation for reconstruction. The lower bound for expressiveness of
the sparse census word for the example in Figure 4.2 in this example is 4

15 = 0.2666.

The argument can be made that the error of the estimation of the full census word from
its sparse census word, should roughly be the same as if the image was down-sampled and
up-sampled again, which is a known problem that corresponds to the Nyquist–Shannon
sampling theorem.

This argument further supports the claim of [HZW+10] that sparse census cost functions
with a higher window size perform better than dense census cost functions of lower
window size. In [HZW+10] the authors compare the sparse census transform to the dense
census transform with different window sizes. The windows size 16× 16 was chosen by
[HZW+10] based on their experimental evaluation.

In order to compare two census words in terms of expressiveness, the filter size has to
be taken into account. We used the area of the biggest filter as reference size and fitted
smaller filter elements into that area. The current example of a 16× 16 sparse census
transform and an 8× 8 dense census transforma was therefore normalized to the area
of the larger filter. The expressiveness of the 8 × 8 dense census word is exactly one
quarter of the expressiveness of a 16× 16 dense census word. We have already shown
(in Figure 4.2) that the expressiveness of a 16 × 16 sparse census word is at least one
quarter of the corresponding dense census word, but can be much better as well. This
shows that the worst case scenario of a sparse census word with window size 16× 16, is
exactly as expressive as the dense census word with window size 8× 8. Thus a 16× 16
sparse census word is at least as expressive but usually better than an 8× 8 census word.

The estimation of the base census word from the sparse census word shows that more
information is contained in sparse census words of length n, than in their dense counter
parts.

4.2 Aggregation Strategy
As stated in Section 2.1.3.3 the aggregation of support costs can influence the quality of
stereo matching results. This is why [HZW+10] use a variation of rectangular windows
(see Section 2.1.3.3) for cost aggregation. The variation by [HZW+10] is that the point
of origin (i, j) of wI0|1

n (i, j) is not centered in the window but is instead positioned in the
upper left corner of the window.

The argument can be made that the support aggregation is done to reduce ambiguities,
and it is therefore not important which neighborhood of a pixel is aggregated, as long as
the aggregation is done the same way for the left and the right image.

46

4.2. Aggregation Strategy

3

3

4

2

4

 8

3

6

10

10

9

10

55

9

9

5

(a) This shows an example region Ri to which a sparse census transform is applied. The reference
pixel c is highlighted with a red circle and the values included by the sparse mask are highlighted
in light green.

0

0

0

0

0

0

1

1

1

1

0

1 11

0

X

(b) This shows the result for the
census transform for the region
shown in Figure 4.1(a).

1 00 11 01 11 00 000 1

(c) The census word for the whole region.

0

0

0

1

1

0

1

1

1

1

1

1 11

1

X

(d) The nearest neighbor interpo-
lation is used to estimate the base
census word from the sparse cen-
sus word.

1 11 11 11 11 01 000 1

(e) An estimation of the base census word. The differences
between the base census word and the estimated census word
are highlighted in light red.

Figure 4.2: Example for sparse census transform.

47

4. A Stereo Matching Algorithm

Further, one can argue that, as long as the result position relative to the window position
is constant, the resulting aggregation map is roughly the same as when the result position
were to be in the center of the aggregation window.

4.3 Sub Pixel Refinement

As explained in Section 2.1.3.5, sub pixel refinement estimates a continuous function
through discrete data. In the work of [HZW+10] the aggregated cost volume of the sparse
census cost function is searched for the minimum of the costs along the disparity axis.
Therefore the cost volume is traversed for all pixel positions along the disparity axis in
discrete disparity steps.

When the minimum cost is found, a parabolic polynomial is fitted into the search space
at the minimum point and its two neighbors. The minimum position of this polynomial
is then assumed to be more accurate than the discrete disparity value.

The formula in [HZW+10] is based on Newton’s method (which is also known as the
Newton-Raphson method) of iteratively approaching a real valued function’s roots:

xi+1 = xi −
f(xi)
f ′(xi)

(4.2)

The real valued function in this context would be the first derivation of the polynomial
describing the paraboloid fitted into the discrete values. Neither the parameters of the
paraboloid polynomial nor the parameters of its first derivation are known. This is why
the first derivation is approximated by the method of finite differences,

fC(d) ≈
y(d+ s1

2)− y(d− s1
2)

s1
(4.3)

where d represents the optimum disparity found by searching the discrete DSI for a
minimum value, s1 is the step size for this finite difference, the function y(k) represents
the values in the DSI at disparity depth k.

The first derivation of our function, and therefore the second derivation of the paraboloid
polynomial, is approximated in much the same way:

f ′C(d) ≈ y(d+ s2)− 2y(d) + y(d− s2)
s2

2
(4.4)

where d and y(k) are the same as in Formula 4.3 and s2 is the step size for this finite
difference.

The combination of Formula 4.2, Formula 4.3 and Formula 4.4 with s1 = 2 and s2 = 1
results in

dsub = dmin + y(xn)− y(xp)
2(2y(xc)− y(xn)− y(xp))

(4.5)

48

4.4. Left-Right Consistency Check

with xc (i.e. x central) as the optimum disparity found by searching the discrete DSI for
a minimum value previously known as d, xp (i.e. x previous) as xp = xc − 1 and xn (i.e.
x next) as xn = xc + 1.

Formula 4.5 represents one step of Newton’s method in order to close in on the assumed
paraboloid’s minimum point. Assuming that the assumption of a paraboloid is correct,
the total disparity error should get smaller with the convergence rate of Newton’s method,
which is quadratic.

4.4 Left-Right Consistency Check
As mentioned in Section 2.1.3.5 cross correlation checks can be used to verify if a disparity
value for a pixel is valid. In their work, [HZW+10] calculate sub pixel disparity maps
for both images of every image pair. For this the search direction along the rectified
scanlines is from left to right for the right image and from right to left for the left image.

The sub pixel disparity value dr, for any position (x, y) in the right disparity map, is
cross checked with the corresponding disparity value dl, at position (x + dr, y) in the
left disparity map. To check whether dr and dl are correlated, the absolute difference of
dr and dl is verified to be below an arbitrary value of 5. The size of this threshold can
be argued to be a function of the maximum disparity depth dmax and was discussed in
Section 2.1.3.5 to be around (2 to 6)% · dmax.

If the disparities are found to pass the threshold check, the mean of dr and dl is chosen
to be the correct disparity value for this pixel position.

49

CHAPTER 5
Implementation

The target of this thesis is to explore a way to make a stereo matching algorithm
available on multiple platforms. To this end, we implemented an algorithm and used
this implementation on a variety of different platforms. In principle, this is possible with
OpenCL. OpenCL kernels can run on platforms like CPUs, GPUs, ARM processors and
FPGAs. There are Software Development Kits (SDKs), provided by the vendors Altera
and Xilinx, which provide a way to transform kernels into modules for the FPGAs of
these manufacturers.

In order to show the cross platform portability of such a method, we chose to create an
implementation in OpenCL, similar to the stereo matching algorithm of [HZW+10]. We
will prove that our implementation can run on CPUs, GPUs and on ARM boards. The
results of the Middlebury Benchmark of this implementation on these devices will be
presented in Chapter 6.

In this chapter we will go into detail concerning our implementation. We will give an
overview of our implementation which contains steps for rectification and undistortion,
census transformation, cost calculation and cost aggregation, minimum search, parabolic
fitting and finally consistency checking.

Finally, we will discuss every one of these steps separately. We will provide code listings,
estimated memory consumption and descriptions of method details.

Our calculation of consumed memory in this chapter is based on the assumption that
the stereo matching process for one image pair is concluded before the next image pair’s
processing is started. Also buffers are only used for their designated purpose i.e. the
purpose they were allocated for, and are not reused for different purposes along the
matching process. An example for this is the buffer MinimumR2LBuffer, which is not
reused as buffer DisparityMapBuffer in Figure 5.2 though it can hold the same amount
of data and when DisparityMapBuffer is needed, MinimumR2LBuffer ’s data is no longer
used in the matching process of the current image pair. Reusing buffers could potentially

51

5. Implementation

reduce the total memory consumption. However, this is not done because of a potential
future implementation for matching to cameras’ data streams. In such an implementation,
the buffers at the beginning of the pipeline could be prepared for the matching of two
images, while the matching process for the previous frame set is still in progress.

For this chapter, we introduce the following notation in order to make formulas for
memory consumption easier to read. We will use the image dimensions width (w) and
height (h), as well as the maximum disparity (dmax). The notation |B| represents the
size of buffer B in bytes. Further, we introduce the variables ik and fk. These variables
represent integer variables (ik) and floating point variables (fk). The value of k specifies
the size of this variable in bytes. The following examples explain this notation.

A buffer B containing one-byte gray scale values in the range of 0 to 255 for every pixel,
has size |B| in bytes:

|B| = i1 · w · h = 1 · w · h (5.1)

A buffer C containing three double sized floating point numbers per pixel has size:

|C| = (f8 + f8 + f8) · w · h = 24 · w · h (5.2)

Finally, a buffer D, containing one 32-bit integer and a 32-bit floating point number per
pixel per disparity depth has size:

|D| = (i4 + f4) · w · h · dmax = 8 · w · h · dmax (5.3)

5.1 Overview
In this section, we will give an overview of how the OpenCL kernels of our implementation
interact with buffers in global memory. The following figures, Figure 5.1, Figure 5.2 and
Figure 5.3 provide a visual overview on the flow of data in our implementation.

Figure 5.1 shows the optional rectification and undistortion step. In this step, the input
images from two cameras (left and right camera) are rectified and undistorted. A kernel
was implemented which uses bilinear interpolation to generate a rectified image from the
distorted input data. For this purpose, two rectification maps that provide the sub-pixel
positions of the intensity value in the unrectified image are needed. One map contains
the rectified x-coordinates (x′) and the other map contains the rectified y-coordinates (y′)
for every position (x, y) in the input image. These rectification maps are specific for each
of the used cameras, but usually do not change between two images of the same camera.
This allows for the rectification maps to be constant for each camera. The coordinates x′
and y′ are floating point values and the intensity value at point (x, y) is calculated as
the bilinear interpolation of the point (x′, y′) to the points (bx′c, by′c), (bx′c, by′c+ 1),
(bx′c+ 1, by′c) and (bx′c+ 1, by′c+ 1) in the input image.

An overview of the structure of our implementation is shown in Figure 5.2. The algorithm
starts with rectified and undistorted images as input, a kernel transforms the input

52

5.1. Overview

left image unrectified

right image unrectified

RectificationKernel

RectificationKernel

left image rectified

right image rectified

left rectification
map X

left rectification
map Y

right rectification
map X

right rectification
map Y

Figure 5.1: Visualization of the optional rectification and undistortion process in our
implementation. A rectification map has the original image dimensions and contains
displacement correction values.

images into census maps and these census maps are then used to calculate the matching
costs. It is possible that the calculation of the matching costs for the whole problem
space is not feasible within the available global memory of the OpenCL device. Due to
this restriction we provide a strategy for cost calculation in an iterative way. This cost
processing loop is shown in Figure 5.3. The result of the cost processing loop are triples
of the minimal cost for every pixel position and the two neighboring cost values along
the disparity axis of the DSI containing the costs. These triples are generated for both
search directions (left-to-right and right-to-left). A parabola is fitted in every one of
these triples, in order to find a sub-pixel disparity value. Finally, a consistency check
is performed as described in Section 2.1.3.5 and the final result is written to an output
buffer.

The iterative calculation of the matching costs is shown in Figure 5.3. The maximum
number of lines (kmax) that the used OpenCL device is able to process at once is calculated
using the image dimensions, the maximum disparity, the size of the cost aggregation
window and the maximum memory allocation size of the used device. The problem space
is then divided along the image’s y-dimension into sections of at most kmax lines.

For every section, the Hamming distances for all disparity steps and all pixel positions in
this section are calculated as described in Section 2.1.3.1 and Chapter 4. The calculated
costs are then aggregated as shown in Figure 5.4 and described in Section 2.1.3.3. The
implementation of this aggregation is split into two steps. The first step is the aggregation
along the x-axis of the DSI containing the costs. The resulting DSI is in a second step
processed in y-direction. The aggregation is done this way to avoid unnecessary paging

53

5. Implementation

Kernels
left image rectified

right image rectified

CensusKernel

CensusKernel

census left image

census right image

CostCacheL2RBufferCostCacheR2LBuffer

ParabolicFittingKernel

FittedL2RBufferFittedR2LBuffer

ConsistencyKernelDisparityMapBuffer

cost processing
complete

No Yes

Buffers

Kernels

Buffers

Kernels

Buffers

Kernels

Buffers

Kernels

MinimumL2RBuffer

MinimumR2LBuffer

Figure 5.2: Overall flow of data through our OpenCL implementation of the algorithm.
The gray rectangles in this figure represent buffers in the global memory of the used
OpenCL device. The orange shapes represent OpenCL kernels in our implementation.
The arrows represent the flow of data between kernels and buffers. The big, green block
represents the cost calculation and minimum cost search which is shown in detail in
Figure 5.3.

census left image

census right image

DiffcubeKernel

costCube CostXCubeKernel

AggregationCubeX CostYCubeKernel

AggregationCubeY MinimumL2RKernel

MinimumR2LKernel

MinimumL2RBuffer

MinimumR2LBuffer CostCacheR2LKernel

CostCacheL2RKernel

CostCacheL2RBuffer

CostCacheR2LBuffer Cost processing
complete

No

Yes

parabolic fitting

Figure 5.3: Data flow between buffers (gray) and kernels (orange) to iteratively calculate
the aggregated costs, find the minimum of the aggregated costs at each pixel position
and cache the minimum costs in addition to their neighbors along the disparity axis into
a buffer for both left-to-right and right-to-left search direction. The problem space is
subdivided along the y-axis of the image dimensions.

54

5.1. Overview

due to random access to the global memory.

d=dmax

d=3
d=2

d=1
d=0

... ...
d=dmax

d=3
d=2

d=1
d=0

... ...

Σ
SAWx

SAWy

h

w w

Figure 5.4: Calculation of the DSI for the aggregated cost function. Starting with a
non-aggregated DSI (on the left) a window function (highlighted in red) is applied to
this DSI, as discussed in Section 2.1.3.3. The calculated sum is then written to a second
DSI (on the right). The areas highlighted by yellow borders in the cost volume mark
positions containing cost values of non-overlapping areas, as described in Section 2.1.3.2.

After the aggregation steps, the DSI of aggregated matching costs is searched for minimum
matching costs along the disparity axis for every pixel position. The aggregated cost
value DSI can be used for both right-to-left minimum search and left-to-right minimum
search, this is shown in Figure 5.5. The disparities with minimal cost’s disparity values
are written to the buffers MinimumL2RBuffer and MinimumR2LBuffer. In an additional
step, the aggregated cost values at the minimum cost position and the aggregated
costs at the neighboring positions along the disparity axis are written to the buffers
CostCacheR2LBuffer and CostCacheL2RBuffer.

Using the disparity values in the buffers MinimumL2RBuffer and MinimumR2LBuffer
and the disparity cost tripple in CostCacheR2LBuffer and CostCacheL2RBuffer, a
parabolic fitting of the disparity costs is used to determine a sub-pixel disparity. Using
Formula 4.5, sub-pixel disparities can be calculated. This is done once for the search
direction left image to right image and once for the search direction right image to
left image. Formula 4.5 is based on the assumption that the continuous cost function
has a minimal turning point that lies near the minimal turning point of its discrete
approximation. To locate the minimal turning point near the minimum of the discrete
cost function for one pixel, one determines the solution to F ′C(d) = 0 1 where FC(d)2

represents the continuous cost function, approximated by CM,N,x,y(d) with M and N
as the aggregation window’s size in x and y direction. Later on we will use y(d) as a
shorthand for cost functions CM,N,x,y(d) with arbitrary values for M , N , x and y.

We also define xp, xc, xn ∈ R as xn − 1 = xc = xp + 1 = y(dmin). These variables are
1F ′

C(d) is approximated through Formula 4.4
2FC(d) is approximated through Formula 4.3

55

5. Implementation

d=dmax

d=3

d=2

d=1

d=0

... ...

(a) Traversal of the cost cube (highlighted
in red) to find the disparity with minimum
costs for a reference pixel in the right image
(right-to-left).

d=dmax

d=3

d=2

d=1

d=0

... ...

(b) Traversal of the cost cube (highlighted
in red) to find the disparity with minimum
cost for a reference pixel in the right image
(right-to-left). In this case the traversal
reaches areas containing cost values of non-
overlapping regions (yellow) as described
in Section 2.1.3.2.

d=dmax

d=3

d=2

d=1

d=0

... ...

(c) Traversal of the cost cube (highlighted
in red) to find the disparity with mini-
mum costs for a reference pixel in the left
image (left-to-right).

d=dmax

d=3

d=2

d=1

d=0

... ...

(d) Traversal of the cost cube (highlighted
in red) to find the disparity with mini-
mum costs for a reference pixel in the
left image (left-to-right). In this case the
traversal reaches the edge of the cost cube
and the x-position is clamped to zero.

Figure 5.5: Search pattern for disparities with minimum costs in the DSI cost cube in
the right-to-left (a,b) and left-to-right (c,d) setting.

56

5.1. Overview

used to determine a sub-pixel disparity. The sub-pixel disparity is calculated by fitting a
parabola to the three points xp, xc, xn. This method is described in Section 4.3.

The results are then checked for correspondence. The best matching disparity for one
point in the reference image addresses another point in the corresponding image. The
best disparity match in reversed search direction for this point should be within an
epsilon (ε) of the disparity of the reference image for this point. This is a consistency
check for the found disparity. If the distance between the disparities is small enough, the
disparities are considerd to be correct. If the distance between the disparities is too big,
the result pixel is marked as invalid. Figure 5.6 visualizes this consistency check.

3 3 4 4 2 3 0

8 0 2 3 4 3 4

Figure 5.6: Visualization of the consistency check described in Section 4.4. The upper
line of values shows one right-to-left disparity result line. The lower line of values shows
one left-to-right disparity result line. The perfectly passed consistency check example
is highlighted by a green arrow. The not perfectly passed consistency check example is
highlighted by yellow arrows. The example for a failed consistency check is highlighted
by red arrows.

The kernels described in Section 5.3 to Section 5.10 have a basic set of parameters and
setup. The parameters for setup are the image dimensions (w, h), the maximum dispar-
ity (dmax) and the OpenCL device’s CL_DEVICE_MAX_MEM_ALLOC_SIZE (SMMA).
One additional runtime constraint is given by the y-dimension of the cost aggregation
window (SAWy) which is the minimum for the parameter kmax which in turn is calculated
from these parameters.

The matching process starts by loading the input data into the input buffers in the
OpenCL device’s memory and then follows the order of kernel calls as outlined in
Figure 5.2 and Figure 5.3. In our implementation, we check whether cost processing is
complete by checking whether the current iteration number is the maximum iteration
number (kmax).

The initialisation of the buffers and the calls to start the kernels on the OpenCL device
may be implemented in any language that sufficiently exposes the OpenCL API. Our

57

5. Implementation

implementation provides one version that is written in C++ and one version that is
written in Python 3.

5.2 RectificationKernel
This section will describe the kernel RectificationKernel as shown in Figure 5.1.

This implementation rectifies gray scale images with one byte per pixel as described in
Section 2.1.2. For this, one input buffer, containing the distorted image, and one output
buffer, are needed. Further, two buffers containing the rectification maps have to be
provided. The rectification maps contain floating point values.

This results in the following memory consumption |RK| for rectification of one image:

|RK| = (i1 + f4 + f4 + i1) · w · h = 10 · w · h (5.4)

However, the rectification of images is an optional processing step in our pipeline. This
is why consideration has to be given to which portion of this memory consumption is
optional.

If the provided input images are already rectified, i.e. the rectification step is not required
to be applied, then the buffers for the rectification maps and the output buffers for the
rectification results are not needed. We rewrite Formula 5.4, by removing the input
buffers from the formula, for the optional memory consumption per rectification |RKo|
as:

|RKo| = (i1 + f4 + f4) · w · h = 9 · w · h (5.5)

The rectification maps provide coordinates x′ and y′ at which the intensity values are
sampled from the unrectified image for every position (x, y). However, the coordinates of
point (x′, y′) are floating point coordinates. Therefore, bilinear interpolation is used to
find the new intensity value for point (x, y). The rectification maps can be calculated by
the OpenCV command initUndistortRectifyMap 3. Rectification maps have to be
calculated for every camera in the system. However, this only has to be done once and
may be done prior to the matching process.

The following code sample shows our kernel for rectification. The buffers needed for the
rectification operation are provided as global4 pointers of the corresponding type and
input buffers in Listing 1 are marked const.

1 kernel void RectificationKernel(
2 global const uchar *input,

3see http://docs.opencv.org/2.4/modules/imgproc/doc
/geometric_transformations.html#initundistortrectifymap

4The keyword global declares pointers to global memory.

58

http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#initundistortrectifymap
http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#initundistortrectifymap

5.2. RectificationKernel

3 global const float *mapx,
4 global const float *mapy,
5 global uchar *output
6)
7 {
8 //get current pixel position and image dimensions
9 int col = get_global_id(0);

10 int cols = get_global_size(0);
11 int row = get_global_id(1);
12 int rows = get_global_size(1);
13

14 //calculate sampling coordinates
15 int y = floor(mapy[row*cols+col]);
16 int y1 = min(y+1,rows-1);
17 int x = floor(mapx[row*cols+col]);
18 int x1 = min(x+1,cols-1);
19

20 //calculate interpolation factors
21 float interpol_y = mapy[row*cols+col]-(float)y;
22 float interpol_x = mapx[row*cols+col]-(float)x;
23

24 //get intensity values for bilinar interpolation
25 uchar p00, p10, p01, p11;
26 p00 = input[y *cols+x];
27 p10 = input[y *cols+x1];
28 p01 = input[y1*cols+x];
29 p11 = input[y1*cols+x1];
30

31 //bilinear interpolation
32 uchar res =
33 (p00*(1.0-interpol_x)+p10*interpol_x)*(1.0-interpol_y)
34 + (p01*(1.0-interpol_x)+p11*interpol_x)* interpol_y;
35

36 output[row*cols+col] = res;
37 }

Listing 1: RectificationKernel

The basic working steps of this kernel consist of procuring the current work item’s id
to identify the current pixel, retrieve and process the coordinates x′ and y′ from the
rectification maps to get sampling coordinates and interpolation factors, sample the input
image at the calculated sampling coordinates and finally use the interpolation factors to
calculate the new intensity value for point (x, y).

59

5. Implementation

This kernel is invoked for every pixel in the input image. The global size, as described in
Chapter 2.3, has two dimensions corresponding to the image dimensions and has the vector
of the image dimensions (w, h) as value. The work group size, as described in Chapter 2.3,
is dependent on the OpenCL device’s CL_DEVICE_MAX_WORK_GROUP_SIZE
parameter (SWG) which describes the upper bound of the number of work items per work
group. The work group size for any dimension of a problem has to be a whole-numbered
divisor of that dimension’s global size. The following code sample (Listing 2) shows a
strategy to find the biggest possible work group size.

1 //get the device’s CL_DEVICE_MAX_WORK_GROUP_SIZE parameter
2 int maxWGsize = getWorkGroupSize(device);
3 //get the size of the dimension in question of the data
4 int data_size = getDataSize(data);
5

6 int Swg;
7 //if problem width fits < work item number
8 if(data_size<maxWGsize) {
9 //then use problem size

10 Swg = data_size;
11 } else {
12 /***
13 * initialize the divisor with int number that is
14 * nearest to the float quotient data_size/maxWGsize
15 ***/
16 int divisor = ceil((float)data_size/(float)maxWGsize);
17

18 /***
19 * iterate all possible divisors until on is found
20 * that divides data_size without remainder
21 * worst case: if divisor reaches data_size
22 ***/
23 while((data_size%divisor) != 0)
24 divisor++;
25

26 /***
27 * this is guaranteed to be an integer division
28 * worst case: data_size == divisor -> Swg == 1
29 ***/
30 Swg = data_size/divisor;
31 }

Listing 2: Find biggest possible work group size.

60

5.3. CensusKernel

The resulting work group size for the rectification kernel is the vector (SWG, 1), which
divides the problem space w × h into w

SWG
· h equally sized portions.

5.3 CensusKernel

This section will describe the kernel CensusKernel as shown in Figure 5.2.

This implementation transforms grayscale images with one byte per pixel using the
census transform as described in Chapter 4.1. For this implementation one input buffer,
containing the rectified image and one output buffer are needed. The output buffer needs
to be an array of an eight byte data type i.e. i8 or f8.

This results in the following memory consumption |C| for census transformation of one
image:

|C| = (i1 + i8) · w · h = 9 · w · h (5.6)

The following code sample - Listing 3 shows our kernel for census transformations. The
basic steps of this kernel consist of procuring the current work item’s id, identifying the
current pixel, retrieving the current reference value, iterating through pixel addresses,
comparing the values at these pixel addresses with the reference value, appending the
comparison result to the census word and finally writing the census word into the output
buffer.

1 /***
2 * Values defined as compile parameters:
3 * - size_x = 16
4 * - size_y = 16
5 * - gap_x = 1
6 * - gap_y = 1
7 * - centerindex_x = 7
8 * - centerindex_y = 7
9 * - upperrange = 0

10 * - lowerrange = 255
11 *
12 * For explanation on these ranges see Line 57
13 ***/
14

15 kernel void CensusKernel
16 (
17 global const uchar *input,
18 global ulong *output
19)
20 {
21 //get current pixel position and image dimensions

61

5. Implementation

22 int cols= get_global_size(0);
23 int col = get_global_id(0);
24 int rows= get_global_size(1);
25 int row = get_global_id(1);
26

27 //initialize shift and value
28 uchar value = 0;
29 uchar shift = 1;
30

31 //initialize census word
32 ulong census = 0;
33

34 int img_x, img_y;
35

36 //bitmask is used in Line 97
37 ulong bitmask = 0xfffffffffffffffe;
38

39 //get current reference value
40 uchar center_value = input[cols*row+col];
41 uchar current_value;
42

43 //iterate through pixel addresses
44 for (int y = 0; y < size_y; y+=(1+gap_y))
45 {
46 for(int x = 0; x < size_x; x+=(1+gap_x))
47 {
48 value = 0;
49

50 //clamp pixel address to image bounds
51 img_x = clamp(col - centerindex_x + x, 0, cols-1);
52 img_y = clamp(row - centerindex_y + y, 0, rows-1);
53

54 //sample value from image
55 current_value = input[cols*img_y+img_x];
56

57 /***
58 * bit value is 1 if current_value is
59 * inside window around center_value
60 * 0 otherwise
61 *
62 * 0 to (center_value-lowerrange) -> 0
63 * (center_value-lowerrange) to
64 * (center_value+upperrange) -> 1

62

5.3. CensusKernel

65 * (center_value+upperrange) to 255 -> 0
66 *
67 * With upperrange = 0 and
68 * lowerrange = 255 the window results in:
69 * 0 to center_value -> 1
70 * center_value to 255 -> 0
71 ***/
72 value =
73 (
74 clamp(center_value + upperrange,0,255)
75 > current_value
76) && (
77 clamp(center_value - lowerthreshold,0,255)
78 < current_value
79)?1:0;
80

81 //shift previous result by 1 (except in center position)
82 census = census << shift;
83

84 /***
85 * if current address is the reference pixel
86 * then set shift=0 for next iteration
87 ***/
88 shift =
89 !(x == centerindex_x &&
90 y == centerindex_y)?1:0;
91

92 //make sure the bit is initialized with 0
93 census = census & bitmask;
94 //set current census bit
95 census = census | value;
96 }
97 }
98 //save cenus word to output array
99 output[col+row*cols] = census;

100 }

Listing 3: CensusKernel

This kernel is invoked for every pixel in the input image. The global size parameter, as
described in Chapter 2.3, has two dimensions corresponding to the image dimensions and
the image dimension vector (w, h) is used as value for this parameter. The work group
size, as described in Chapter 2.3, has the value (SWG, 1).

63

5. Implementation

Our implementation provides the possibility to influence the census mechanism described
by Formula 4.1. An upper and a lower range (Rl, Ru) are provided to allow regulation of
the intensity range, with respect to the reference value (c) that is used to determine if
the corresponding bit in the census word for a pixel’s value (p) will be set to one or zero.

bi =
{

1, if c−Rl ≤ p ≤ c+Ru

0, otherwise
(5.7)

To achieve the cost function described by Formula 4.1, the lower bound (Rl) has to be
set to 255 and the upper bound (Ru) has to be 0. This results in the following formula
for the comparison of one pixel’s value (p) with the central value (c):

bi =
{

1, if c− 255 ≤ p ≤ c+ 0
0, otherwise

(5.8)

5.4 DiffCubeKernel
This section will describe the kernel DiffCubeKernel as shown in Figure 5.3.

This implementation uses the census words in census left image and census right image
to calculate a DSI containing the Hamming-distances as described in Chapter 2.1.3.2.
The parameters for this are the two buffers, containing the census transformed images,
one output buffer for the DSI and one four-byte integer variable (i4).

Due to memory restrictions, it is possible that the whole DSI will not fit into the global
memory available and the DSI has to be split into multiple parts along the y-axis of
the input images. The parameter kmax that was introduced at the start of this chapter,
represents the number of lines that fit into global memory. This means that an iteration
of the cost calculation process does not know the full size of the problem space from the
parameters provided by OpenCL. Therefore, the four-byte integer parameter contains
the height of the input maps (h).

The output buffer for this function will contain a slice of the DSI. The size of this
slice is w · kmax · dmax. The Hamming-distance of two 64-bit census words will be a
whole-numbered value in the range of [0− 64] and the data type therefore only needs to
be a one-byte integer (i1).

We define kmax as a function of the used OpenCL device’s
CL_DEVICE_MAX_MEM_ALLOC_SIZE (SMMA)5 parameter (which is usually smaller
than a quarter of total global memory) and the dimension of the problem space w×h×dmax.
The following formula (Formula 5.9) shows how the maximum number of lines per it-
eration is calculated as the maximum memory allocation size divided by the size of a
one-row-slice of the DSI.

5see https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clGetDeviceInfo.html

64

https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clGetDeviceInfo.html

5.4. DiffCubeKernel

kmax = min
(⌊

SMMA
i4 · (dmax + 1) · w · 1.5

⌋
, h

)
(5.9)

All buffers that are used in the cost processing loop have to satisfy the condition that
they have to fit into global memory. In addition to this constraint, multiple buffers have
to be allocated, which constrains the value of kmax even further. For these reasons, the
slice size is multiplied by i4 as the biggest data type used in the loop and by a factor of
1.5. The factor 1.5 was chosen to reduce the total size of the three DSI buffers that are
used in the cost processing loop to a maximum of half the total global memory, in order
to allow the allocation of the remaining buffers used in the process.

The memory usage of the buffers containing the census words was already accounted for
in Section 5.3. This results in the following memory consumption |HD| for calculating
Hamming-distances:

|HD| = (i1 · w · kmax · dmax) + i4 = (w · kmax · dmax) + 4 (5.10)

The following code sample shows our kernel for the Hamming-distance calculation. The
basic working steps of this kernel are procuring the current work item’s id and the work
offset to identify the current pixel, retrieve the current values from the left and right
census map, calculating the Hamming-distance and finally writing the distance value to
the output buffer.

1 kernel void DiffCubeKernel
2 (
3 global const ulong *left,
4 global const ulong *right,
5 global uchar *disp,
6 int max_rows
7)
8 {
9 //get problem size and pixel position:

10 int cols = get_global_size(0);
11 int rows = get_global_size(1);
12

13 int row_offset = get_global_offset(1);
14

15 int col = get_global_id(0);
16 int row = get_global_id(1);
17 int disparity = get_global_id(2);
18

19 //get values from census maps for current pixel position
20 int row_offset = clamp(row,0,max_rows-1)*cols;
21 ulong l = left [row_offset

65

5. Implementation

22 +clamp(col+disparity,0,cols-1)];
23 ulong r = right[row_offset +col];
24

25 //l XOR r
26 ulong diff = l^r;
27 /***
28 * in openCL 1.2+ a function popcount(diff) exists
29 * this implementation should work with opencl 1.0
30 * https://en.wikipedia.org/wiki/Hamming_weight
31 ***/
32

33 //define masks
34 // m1 = B01010101 01010101 01010101 01010101 01010101 ...
35 const ulong m1 = 0x5555555555555555;
36 // m2 = B00110011 00110011 00110011 00110011 00110011 ...
37 const ulong m2 = 0x3333333333333333;
38 // m4 = B00001111 00001111 00001111 00001111 00001111 ...
39 const ulong m4 = 0x0f0f0f0f0f0f0f0f;
40 //h01 = B00000001 00000001 00000001 00000001 00000001 ...
41 const ulong h01= 0x0101010101010101;
42

43 //calculate the sum of every two bits
44 //two-bit sum, results in range [0-2]
45 diff -= (diff >> 1) & m1;
46 //calculate the sum of every two two-bit sums
47 //four-bit sum, result in range [0-4]
48 diff = (diff & m2) + ((diff >> 2) & m2);
49 //calculate the sum of every two four-bit sums
50 //eight-bit sum, result in range [0-8]
51 diff = (diff + (diff >> 4)) & m4;
52 //calculate the sum of all eight-bit sums
53 diff = (diff * h01) >> 56;
54

55 disp[disparity*rows*cols //disparity slice
56 + (row-row_offset)*cols //row in that slice
57 + col //column in that row
58] = (uchar)diff;
59 }

Listing 4: DiffCubeKernel

This kernel in Listing 4 is invoked iteratively for every pixel in the input image. The
global size, as described in Chapter 2.3, has three dimensions corresponding to the image

66

5.5. CostXCubeKernel

width w, the maximum number of lines kmax and the maximum disparity dmax. Therefore,
the vector (w, kmax, dmax + 1)6 is used as value for the parameter global size. The work
group size parameter, as described in Chapter 2.3, has the value (SWG, 1, 1).

All kernels in our implementation that operate iteratively, due to memory limits, need
offset information. This offset information is provided as a vector containing the offset
for every used dimension and depends on the iteration number of the current iteration
(i). The offset for processing sections of the DSI, has to consider overlapping regions.
The overlapping region for processing a DSI slice has to allow further processing of the
data as if the whole DSI would fit into global memory. In the case of the algorithm by
[HZW+10] and due to our choice of segmenting the DSI along the y-axis of the images,
the overlapping region is the number of lines that are used to aggregate in y-direction
(Yagg)in kernel CostYCubeKernel as shown in Figure 5.3. Therefore the offset vector has
the value (0, i · (kmax − Yagg), 0).

OpenCL adds the offset vector to the vector of every work item’s global IDs, i.e. for
offset vector (l,m, n) the global-id-vector will be (xg + l, yg +m, zg + n) with xg, yg and
zg representing the global ids of the work items in the case where offset is the zero-vector.
This means that global ids can be used to read the full problem space. In this case, this
is the whole range of any of the census maps. Corresponding addresses within the DSI
buffer have to be reduced by the offset to start at zero. This can be seen in Listing 4
Line 56.

5.5 CostXCubeKernel
This section will describe the kernel CostXCubeKernel as shown in Figure 5.3.

This implementation calculates the support aggregation in two consecutive steps. The
first step of the support aggregation is represented by CostXCubeKernel and performs
the aggregation along the x axis. The size of the complete aggregation window is defined
as SAWx × SAWy. The aggregation window for this kernel only uses the x component
of this window SAWx × 1. The parameters for this are the buffer containing the slice of
the DSI described in Section 5.4 and an output buffer that will contain the result of this
operation. Figure 5.7 visualizes how this kernel reads data from the Hamming Distance
Buffer and writes the sums to the Cost X-Aggregation Buffer.

The memory usage of the buffer containing the Hamming-distances was already accounted
for in the previous section. This results in the following memory consumption for Cost
X-Aggregation Buffer (|AGx|):

|AGx| = i4 · w · kmax · dmax + i4 = 4 · w · kmax · dmax + 4 (5.11)

The following code sample shows our kernel for aggregation of costs along the x axis. The
basic working steps of this kernel are procuring the current work item’s id to identify the

6|[0− dmax]| = dmax + 1

67

5. Implementation

Σ
d=dmax

d=3
d=2

d=1
d=0

...

Σ

d=dmax

d=3

d=3

d=2

d=2

d=1

d=1

d=0

d=0

... ...

Σ
kmax

SAWx

SAWyΣ
Σ

w

w

w

kmax+1-SAWy

Hamming Distance Buffer
a.k.a. Cost Buffer or costCube

Cost X-Aggregation Buffer
a.k.a. AggregationCubeX

Cost Y-Aggregation Buffer
a.k.a. AggregationCubeY

d=dmax

Figure 5.7: Calculation of aggregated cost values by combination of CostXCubeKernel
and CostYCubeKernel. The window function is visualized through light red rectangles. If
the aggregation window reaches over the right edge of the DSI, the resulting aggregated
cost values are less meaningful. This is inherent to the used method. This less meaningful
area is highlighted by a gray overlay in the disparity layers of the Cost X-Aggregation
Buffer. The Cost X Aggregation Buffer is used to calculate sums along the y direction for
every pixel in that DSI in a range of SAWy. This is visualized by dark red rectangles. If
the aggregation window reaches over the lower bound of the DSI, the resulting aggregated
costs are invalid. This results in slices of height kmax + 1− SAWy of aggregated costs per
iteration. The invalid aggregated costs (highlighted by a light red overlay) are discarded.
The light green rectangles highlight the regions in the buffers which will be processed by
the next kernel in the pipeline.

68

5.5. CostXCubeKernel

current pixel, calculate the sum of the cost values in the range of the current position
in the DSI to the current position plus the aggregation window size in x direction and
finally writing the aggregated value to the output buffer.

1 /***
2 * Values defined as compile parameters:
3 * - aggregation_x = 5
4 ***/
5

6 kernel void CostXCubeKernel
7 (
8 global const uchar *input,
9 global uint *output

10)
11 {
12 int cols = get_global_size(0);
13 /***
14 * In slicing scenario,
15 * starting from 2nd iteration
16 * global ID will be smaller than group ID
17 ***/
18 int row = get_group_id(1);
19 int rows = get_global_size(1);
20 int col = get_global_id(0);
21 int disparity = get_global_id(2);
22

23 uint c=0;
24 int offset = disparity*rows*cols + row*cols ;
25 for(int i=0; i<aggregation_x; i++){
26 c+=input[offset + clamp(col+i,0,cols-1)];
27 }
28 output[offset + col] = c;
29 }

Listing 5: CostXCubeKernel

The kernel in Listing 5 is invoked iteratively for every pixel in the input image. The global
size, as described in Chapter 2.3, has three dimensions corresponding to the image width
w, the maximum number of lines kmax and the disparity depth dmax and has therefore
the vector (w, kmax, dmax + 1) as value. The work group size, as described in Chapter 2.3,
has the value (SWG, 1, 1). This kernel does not need an offset vector because every pixel
in the input buffer corresponds to a pixel in the output buffer and the input buffer is
processed completely.

69

5. Implementation

5.6 CostYCubeKernel
This section will describe the kernel CostYCubeKernel as shown in Figure 5.3.

This is the second step of the support aggregation and represents the aggregation along the
y axis. The parameters for this are the buffer containing the slice of the DSI described in
Section 5.5 and an output buffer that will contain the result of this operation. Figure 5.7
visualizes how this kernel reads data from the Cost X-Aggregation Buffer and writes the
sums to the Cost Y-Aggregation Buffer. The aggregation window for this kernel has the
size 1× SAWy.

The memory usage of the buffer containing the intermediate results generated by the
kernel CostXCubeKernel was already accounted for in the previous section. This results
in the following memory consumption |AGy| for calculating Hamming-distances:

|AGy| = i4 · w · kmax · dmax + i4 = 4 · w · kmax · dmax + 4 (5.12)

The following code sample shows our kernel for aggregation of costs along the x axis.
This kernel procures the current work item’s id to identify the current pixel, calculates
the sum of the cost values in the range of the current position in the DSI to the current
position plus the aggregation window size in x direction and finally writes the aggregated
value to the output buffer.

1 /***
2 * Values defined as compile parameters:
3 * - aggregation_y = 5
4 ***/
5 kernel void CostYCubeKernel
6 (
7 global const uint *input,
8 global uint *output
9)

10 {
11 int cols = get_global_size(0);
12 int rows = get_global_size(1);
13 int col = get_global_id(0);
14 /***
15 * In slicing scenario,
16 * starting from 2nd iteration
17 * global ID will be smaller than group ID
18 ***/
19 int row = get_group_id(1);
20 int disparity = get_global_id(2);
21

22 uint c=0;

70

5.7. MinimumKernels

23 int offset = disparity*rows*cols + col
24 for(int i=0; i<aggregation_y; i++){
25 c+=input[offset + cols*clamp(row+i,0,rows-1)];
26 }
27 output[offset+ row*cols] = c;
28 }

Listing 6: CostYCubeKernel

The kernel in Listing 6 is invoked iteratively for every pixel in the input image. The global
size has three dimensions corresponding to the image width w, the maximum number of
lines kmax and the maximum disparity dmax. The vector (w, kmax, dmax + 1) is used as
value for the global size parameter. The work group size, as described in Chapter 2.3,
has the value (SWG, 1, 1). This kernel does not need an offset vector because every pixel
in the input buffer corresponds to a pixel in the output buffer and the input buffer is
processed completely.

5.7 MinimumKernels
This section will describe the kernels MinimumR2LKernel and MinimumL2RKernel as
shown in Figure 5.3.

This implementation iterates through the DSI cost cube in the Cost Y-Aggregation
Buffer. The parameters for these kernels are the buffer containing the slice of the cost
cube described in Section 5.6 and an output buffer that will contain the result of the
operation. Figure 5.5a and Figure 5.5b visualize how the kernel in Listing 7 traverses the
data from the Cost Y-Aggregation Buffer and writes the disparity values with minimum
cost to the buffer MinimumR2LBuffer. Figure 5.5c and Figure 5.5d visualize how the
kernel in Listing 8 traverses the data and writes the disparity values to the buffer
MinimumL2RBuffer

The memory usage results in the following memory consumption |M | for the buffer
MinimumR2LBuffer :

|M | = i4 · w · h = 4 · w · h (5.13)

The following code samples (Listing 7 and Listing 8) show our kernels for minimum search
in right-to-left and left-to-right direction. The kernels procure the current processing
element’s working position and traverse the aggregated costs in the buffer costcube along
the disparity axis to find the disparity with the minimum aggregated costs.

1 /***
2 * Needed Compiletime-Values:
3 * - max_disparity = d_max ... commandline parameter
4 */

71

5. Implementation

5 kernel void Minimumr2lKernel
6 (
7 global const uint *costcube,
8 global uint *out,
9 int max_rows

10)
11 {
12 int col = get_global_id(0);
13 int cols = get_global_size(0);
14 /***
15 * in slicing scenario
16 * starting from 2nd iteration
17 * global id will be smaller than group id
18 ***/
19 int row = get_group_id(1);
20 int rows = get_global_size(1);
21 int row_offset = get_global_offset(1);
22

23 int slab_size = rows*cols;
24

25 uint cost = costcube[slab_size + col];
26

27 uint cur_cost = 0;
28 uint disp = 0;
29

30 //Global mem-cache optimization
31 barrier(CLK_GLOBAL_MEM_FENCE);
32

33 int offset = row*cols + clamp(col,0,cols-1);
34

35 for(int i = 1; i <= max_disparity; i++){
36 cur_cost = costcube[offset + i*slab_size];
37 disp = cur_cost < cost?i:disp;
38 cost = cur_cost < cost?cur_cost:cost;
39 //Global mem-cache optimization
40 barrier(CLK_GLOBAL_MEM_FENCE);
41 }
42 out[clamp(row+row_offset,0,max_rows-1)*cols + col] = disp;
43 }

Listing 7: MinimumR2LKernel

1 /***

72

5.7. MinimumKernels

2 * Needed Compiletime-Values:
3 * - max_disparity = d_max ... commandline parameter
4 */
5 kernel void Minimuml2rKernel
6 (
7 global const uint *costcube,
8 global uint *out,
9 int max_rows

10)
11 {
12 int col = get_global_id(0);
13 int cols = get_global_size(0);
14 int row = get_group_id(1);
15 int rows = get_global_size(1);
16 int row_offset = get_global_offset(1);
17

18 int slab_size = rows*cols;
19

20 uint cost = costcube[slab_size + col];
21

22 uint cur_cost = 0;
23 uint disp = 0;
24

25 //Global mem-cache optimization
26 barrier(CLK_GLOBAL_MEM_FENCE);
27

28 int offset = row*cols;
29 for(int i = 1; i < max_disparity+1; i++){
30 cur_cost = costcube[
31 i*slab_size +
32 offset +
33 clamp(col-i,0,cols-1)
34];
35 disp = cur_cost < cost?i:disp;
36 cost = cur_cost < cost?cur_cost:cost;
37 //Global mem-cache optimization
38 barrier(CLK_GLOBAL_MEM_FENCE);
39 }
40 out[clamp(row+row_offset,0,max_rows-1)*cols + col] = disp;
41 }

Listing 8: MinimumL2RKernel

73

5. Implementation

These kernels are invoked multiple times to determine the disparity with minimum costs
for every pixel in the current data slice. The global size, as described in Chapter 2.3, has
two dimensions corresponding to the image width w and the maximum number of lines
kmax. The value for the global size parameter is the vector (w, kmax). The work group
size, as described in Chapter 2.3, has the value (SWG, 1). This kernel needs an offset
vector because the input buffer does not correspond to the output buffer as a whole but
only to a portion of kmax lines.

5.8 CostCacheKernels
This section will describe the kernels CostCacheR2LKernel and CostCacheL2RKernel
as shown in Figure 5.3. This implementation samples the aggregated cost volume at
the minimal cost position which was determined by the corresponding minimum kernel.
Furthermore, the two neighboring pixels along the disparity axis are sampled. These
three cost values are written into a buffer for later parabolic fitting.

The memory usage results in the following memory consumption |CC| for one cost cache
buffer i.e. CostCacheR2LBuffer, CostCacheL2RBuffer :

|CC| = (i4 + i4 + i4) · w · h = 12 · w · h (5.14)

The following code samples (Listing 9 and Listing 10) show our kernels for cost caching.

1 /***
2 * mirror index at 0 and max disparity
3 * md = max disparity
4 * ...-2 -1 0 1 2 ... dm-1 dm dm+1 dm+2 ...
5 * ... 2 1 0 1 2 ... dm-1 dm dm-1 dm-2 ...
6 * In case of minimum cost at 0 or max disparity, this way
7 * the parabolic fitting results to 0 or max disparity
8 ***/
9 int mirror_index(int x, int max_disparity) {

10 uint mir = abs(max_disparity-abs(max_disparity-x));
11 return mir % (max_disparity+1);
12 }
13

14 kernel void CostCacheR2LKernel
15 (
16 global const uint *costcube,
17 global const uint *minimum,
18 int max_rows,
19 global uint *costCache,
20 int max_disparity
21)

74

5.8. CostCacheKernels

22 {
23 int col = get_global_id(0);
24 int cols = get_global_size(0);
25 int row = get_global_id(1);
26 int rows = get_global_size(1);
27 int row_offset = get_global_offset(1);
28 int mindisp = minimum[clamp(row,0,max_rows-1)*cols + col];
29

30 //get next, current and previous disparity index
31 int fn = mirror_index(mindisp-1,max_disparity);
32 int f0 = mirror_index(mindisp-0,max_disparity);
33 int fp = mirror_index(mindisp+1,max_disparity);
34

35 int slab_size = cols*rows;
36 int offset = (row-row_offset)*cols + clamp(col,0,cols-1) ;
37 uint akt_s = costcube[
38 clamp(fn,0,max_disparity)*slab_size + offset
39];
40 uint akt_m = costcube[
41 clamp(f0,0,max_disparity)*slab_size + offset
42];
43 uint akt_l = costcube[
44 clamp(fp,0,max_disparity)*slab_size + offset
45];
46

47 offset = cols*3*clamp(row,0,max_rows-1)+col*3;
48 costCache[offset+0] = akt_s;
49 costCache[offset+1] = akt_m;
50 costCache[offset+2] = akt_l;
51 }

Listing 9: CostCacheR2LKernel

1 /***
2 * mirror index at 0 and max disparity
3 * md = max disparity
4 * ...-2 -1 0 1 2 ... dm-1 dm dm+1 dm+2 ...
5 * ... 2 1 0 1 2 ... dm-1 dm dm-1 dm-2 ...
6 * In case of minimum cost at 0 or max disparity, this way
7 * the parabolic fitting results to 0 or max disparity
8 ***/
9 int mirror_index(int x, int max_disparity) {

10 uint mir = abs(max_disparity-abs(max_disparity-x));

75

5. Implementation

11 return mir % (max_disparity+1);
12 }
13

14 kernel void CostCacheL2RKernel
15 (
16 global const uint *costcube,
17 global const uint *minimum,
18 int max_rows,
19 global uint *costCache,
20 int max_disparity
21)
22 {
23 int col = get_global_id(0);
24 int cols = get_global_size(0);
25 int row = get_global_id(1);
26 int rows = get_global_size(1);
27 int row_offset = get_global_offset(1);
28 int mindisp = minimum[clamp(row,0,max_rows-1)*cols + col];
29

30 /***
31 * upper bound for disparity index:
32 * If we hit the wall of the cost cube,
33 * prevent moving farther to the back of the cost cube.
34 * In this case, values from the back of the cube are bad.
35 ***/
36 int disp_upper = min(max_disparity,col);
37

38 //get next, current and previous disparity index
39 int fn = mirror_index(mindisp-1,max_disparity);
40 int f0 = mirror_index(mindisp-0,max_disparity);
41 int fp = mirror_index(mindisp+1,max_disparity);
42

43 int slab_size = cols*rows;
44 int offset = (row-row_offset)*cols;
45 uint akt_s = costcube[
46 clamp(fn,0,disp_upper)*slab_size +
47 offset + clamp(col-fn,0,cols-1)
48];
49 uint akt_m = costcube[
50 clamp(f0,0,disp_upper)*slab_size +
51 offset + clamp(col-f0,0,cols-1)
52];
53 uint akt_l = costcube[

76

5.9. ParabolicFittingKernel

54 clamp(fp,0,disp_upper)*slab_size +
55 offset + clamp(col-fp,0,cols-1)
56];
57

58 offset = cols*3*clamp(row,0,max_rows-1)+col*3;
59 costCache[offset+0] = akt_s;
60 costCache[offset+1] = akt_m;
61 costCache[offset+2] = akt_l;
62 }

Listing 10: CostCacheL2RKernel

These kernels are invoked iteratively to sample the cost values at the point of minimum
cost and its two neighboring DSI positions along the disparity axis for every pixel in
the current data slice. The global size, as described in Chapter 2.3, has two dimensions
corresponding to the image width w and the maximum number of lines kmax. Therefore,
the vector (w, kmax) is used as value for this parameter. The work group size, as described
in Chapter 2.3, has the value (SWG, 1). This kernel needs an offset vector because the
input buffer does not correspond to the output buffer as a whole but only to a portion of
kmax lines.

5.9 ParabolicFittingKernel

The kernel ParabolicFittingKernel is shown in Figure 5.2. This implementation uses
the three cost values from one CostCacheBuffer and the minimum disparity in the
corresponding MinimumCostBuffer to calculate a subpixel estimation of the assumed
parabola described in Section 4.3. This is done for the right-to-left and the left-to-right
direction.

The memory usage |P | for this kernel is the size of two floating point buffers with the
image dimensions:

|P | = (f4 + f4) · w · h = 8 · w · h (5.15)

The following code sample shows our kernel for aggregated cost sampling.

1 kernel void ParabolicFittingKernel
2 (
3 global const uint *r2lCostCache,
4 global const uint *l2rCostCache,
5 global const uint *l2r_disp,
6 global const uint *r2l_disp,
7 global float *l2r_ret_data,
8 global float *r2l_ret_data

77

5. Implementation

9)
10 {
11 int col = get_global_id(0);
12 int cols = get_global_size(0);
13 int row = get_global_id(1);
14 int rows = get_global_size(1);
15

16 float r2l_best_disp = (float)r2l_disp[col+row*cols];
17 float l2r_best_disp = (float)l2r_disp[col+row*cols];
18

19 float f_disp = r2l_best_disp;
20 float d_prev = r2lCostCache[cols*3*row + col*3+0];
21 float d_current = r2lCostCache[cols*3*row + col*3+1];
22 float d_next = r2lCostCache[cols*3*row + col*3+2];
23 f_disp += ((d_next - d_prev)
24 / (2.f * (2.f * d_current - d_prev - d_next)));
25

26 r2l_ret_data[row*cols + col] = f_disp;
27

28 f_disp = l2r_best_disp;
29 d_prev = l2rCostCache[cols*3*row + col*3+0];
30 d_current = l2rCostCache[cols*3*row + col*3+1];
31 d_next = l2rCostCache[cols*3*row + col*3+2];
32 f_disp += ((d_next - d_prev)
33 / (2.f * (2.f * d_current - d_prev - d_next)));
34

35 l2r_ret_data[row*cols + col] = f_disp;
36 }

Listing 11: ParabolicFittingKernel

The kernel in Listing 11 is invoked for every pixel in the input image. The global size, as
described in Chapter 2.3, corresponds to the image dimensions (w, h). The work group
size, as described in Chapter 2.3, has the value (SWG, 1).

5.10 ConsistencyKernel

The kernel ConsistencyKernel is shown in Figure 5.2. This kernel uses a left-right
cosistency check, as described in Section 4.4, to determine whether a calculated disparity
value should be kept or discarded.

The memory usage |O| for this kernel surmounts to one output buffer for floating point

78

5.10. ConsistencyKernel

values containing the subpixel disparities:

|O| = f4 · w · h = 4 · w · h (5.16)

The following code sample (Listing 12) shows our kernel for aggregated cost sampling.

1 kernel void ConsistencyKernel
2 (
3 global const uint *l2r_disp,
4 global const float *l2r_ret_data,
5 global const float *r2l_ret_data,
6 global float *output
7)
8

9 {
10 int col = get_global_id(0);
11 int cols = get_global_size(0);
12 int row = get_global_id(1);
13 int rows = get_global_size(1);
14

15 int l2r_best_disp = l2r_disp[col+row*cols];
16

17 int ad = l2r_best_disp;
18 float a = l2r_ret_data[row*cols + col];
19 float b = r2l_ret_data[row*cols + clamp(col-ad,0,cols-1)];
20

21 float erg = fabs(a-b);
22

23

24 erg = (erg <= 5.0f)? fabs((a + b) / 2.f) : 0.0f;
25

26 output[col+row*cols] = erg;
27

28 }

Listing 12: ConsistencyKernel

This kernel is invoked for every pixel in the input image. The global size, as described in
Chapter 2.3, corresponds to the image dimensions (w, h). The vector (SWG, 1) is used as
parameter for the work group size, as described in Chapter 2.3.

79

5. Implementation

5.11 Conclusion
The total memory consumption (S) of all necessary buffers described in this chapter
amounts to the following formula:

S = 2 · C +HD +AGx +AGy + 2 ·M + 2 · CC + P +O (5.17)

which in turn results in this formula for memory consumption:

|S| = 62 · w · h+ 9 · kmax · w · dmax (5.18)

For rectification an additional |RKo| has to be accounted for.

80

CHAPTER 6
Evaluation

In this chapter, we will compare the result quality of our implementation to the results of
other algorithms. For this comparison, we will use the Middlebury Stereo Benchmark as
described in Section 2.2. Using data from this benchmark we will show that the results
of our algorithm are reliably reproducible on different devices. We will show runtime
differences throughout the used OpenCL devices and how the floating point performance
of the used device influences the runtime. Further, we will show how our implementation
performs compared to the implementation of [HZW+10], which was not available to us.

We will compare the runtime results of our algorithm for nVidia Quadro 1000M GPU,
GeForce GTX 750 Ti GPU and Mali-T760 ARM-GPU. Further we will estimate the
runtime of our implementation for multiple devices and compare the estimated runtime
with measured runtime. These devices are an nVidia GTX 1060 3GB, an nVidia GTX
1080 Ti, an Intel Iris 6100 and an Intel i7-5557U.

Our implementation can be broken down into two steps: buffer setup step and matching
step. It is possible to process multiple data sets of the same size in one set of buffers. In
order to determine the average setup time per problem space size and the average process
time per problem space size, multiple data sets will be processed with the same set of
buffers. Since most of the Middlebury image sets have different disparity depths and
sizes1, we process the same image set multiple times with one set of initialized buffers to
calculate average runtimes. How these measurements can be used to determine the setup
time and the matching time will be shown in Section 6.1.

In Section 6.1.1 we will show how an upper bound for image dimensions can be estimated
in order to achieve a specific matching frame rate on a specific device by use of the
Floating point Operations per Pixel Comparison (FLOPC) value.

1Exceptions are the image sets that are of the same scene but with different lighting or different ex-
posure: (Classroom2,Classroom2E), (Djembe,DjembeL), (Piano,PianoL) and (Motorcycle,MotorcycleE).

81

6. Evaluation

Later on, in Section 6.3 we will show the matching results of our implementation. All
matching results that are presented in this chapter were generated with the same set of
parameters. These parameters are the census filter window dimension (SCWx, SCWy),
the gap-size-values for the census filter (SCGx, SCGy) which define the number of skipped
pixels between two transformed pixels, the position of the central pixel relative to the
filter window position (PCCx, PCCy) and the upper and lower ranges (Rl, Ru) to define
whether a pixel’s value is within a region around the central pixel’s value. Further, the
aggregation-size-values (SAWx, SAWy), which define the size of the aggregation window,
and finally the threshold for left-right consistency (c) are needed. The census window’s
size was chosen to be SCWx = 16, SCWy = 16 with a gap size of SCGx = 1, SCGy = 1.
The central pixel was positioned at PCCx = 7, PCCy = 7 and the ranges were set to
Rl = 255, Ru = 0 to achieve a census transform as discussed in Section 5.3. The
aggregation-size-values were set to SAWx = 5, SAWy = 5.

The algorithms used for comparison in Section 6.1.2 and Section 6.3 are listed in Table 6.1.
Later on in this chapter, we will use the labels from this table to reference these algorithms.

Finally, we will discuss additional results of our evaluation in Section 6.4. In this section,
we will discuss runtime behavior of our implementation that is dependent of the problem
dimension and the used device’s maximum-work-group-size-property.

6.1 Timing results
Our implementation offers the possibility of creating a matching structure which holds
the buffers needed for a specific problem space (image width, image height, maximal
disparity). This allows the streaming of multiple images from one set of cameras, without
the need to repeatedly set up buffers.

The measured runtime for the matching of one image set, including buffer setup time,
can be divided into two parts, setup time ts and matching time tm. In a setup where a
multitude of k image sets are matched, using one matching structure, the total time T is:

T = ts + k · tm (6.1)

Using different values of k (k1 and k2) results in different total times Tk1 and Tk2 which
let us determine the values of ts and tm with the following formula:

tm = Tk1 − Tk2

k1 − k2
ts = Tk1 − k1 · tm

(6.2)

These can be run multiple times to create the average total times Tk1 and Tk2 . We can
see in the folowing formula (Formula 6.3) that the average of sums is the same as the
sum of the averages of the summands.

82

6.1. Timing results

Algorithm Resolution Description

DF Q An anonymous submission to the Conference
on Computer and Robot Vision (CRV) 2018
using disparity filtering with 3D CNN.

IDR H Real-time stereo Matching on CUDA using
an iterative refinement method for adaptive
support-weight correspondences by [KPP13].

MCSC F An anonymous submission to the Middlebury
benchmark. The author claims it to be a
method with simultaneous learning of match-
ing cost and smoothness constraint.

MPSV Q An anonymous submission to the European
Conference on Computer Vision (ECCV) 2016
using morphological processing.

R-NCC F A window based matching method by S. Fang
and Y. Li.

SGM Q,F Stereo processing by semi-global matching
and mutual information by [Hir08].

SGM_ROB 2 H Stereo processing by semi-global matching
and mutual information again by [Hir08].
A submission to the Robust Vision Chal-
lenge 2018 (ROB) 2018 in conjunction with
Conference on Computer Vision and Pattern
Recognition (CVPR) 2018

SNCC H Block-matching stereo with Summed Normal-
ized Cross-Correlation (SNCC) measure by
[EE10].

Table 6.1: Algorithm Overview.

Tk = Tk,1 + Tk,2 + · · ·+ Tk,n
n

= (ts1 + k · tm1) + (ts2 + k · tm2) + · · ·+ (tsn + k · tmn)
n

= ts1 + ts2 + · · ·+ tsn
n

+ k · tm1 + tm2 + · · ·+ tmn
n

= ts + k · tm

(6.3)

2This submission, RGB_ROB - H was chosen in favor of the older submission of this author RGB -
H.

83

6. Evaluation

With this, we can determine the average matching time tm and the average setup time
ts per image set for one device. By running this experiment multiple times, we create
two values T1 and T10 (corresponding to k = 1 and k = 10 for Formula 6.3) for each
resolution which can be used to calculate tm and ts using Formula 6.2.

We chose 100 as the number of iterations for the calculation of average runtimes. This
number, which seems relatively low for statistical evaluation was chosen because of the
limitations of our hardware. Using the GTX 750 Ti GPU, the total runtime for matching
the full Middlebury data set (training and test data with full-, half- and quarter-resolution)
100 times for T1 and T10 takes more than 15 hours. These 100 runs of the full data set
for T1 and T10 surmounted to 25 days of total runtime on our Mali T760.

In order to create a runtime prediction for other OpenCL devices, we multiplied the re-
sulting matching times per megapixel with their corresponding device’s floating point per-
formance value in Floating point Operations Per Second (FLOPS) to create a Normalized
Calculation Time (NCT) as described by [JS92]. This gives us the number of floating
point operations per pixel comparison, that is necessary for the matching task.

The multiplication of the matching time with the floating point performance values
given by the different vendors is not the exact value for the normalized calculation time,
because it is generated from averaged time measurements and the specification values
given by the hardeware vendors. The specified floating point performance values are
theoretical values because they mark the number of FLOPS that these devices could
perform when working at peak efficiency, which is usually not the case.

To be able to compare algorithms, we define the number of Pixel Comparisons (PCs) for
an image set:

PC = w · h · dmax (6.4)

and use the NCT to define FLOPC as an algorithm specific number that is independent
of the used hardware:

FLOPC = t

PC ·
FLO
t

= FLO
PC

(6.5)

The value FLOPC is equal to the measured time (t) per PC multiplied by the number of
floating point operations (FLO) per second.

The plot in Figure 6.1 shows how the different problems run on the tested devices. We
assigned different colors to the devices used to create the data for this plot and used
these colors for data points created by these specific devices, e.g. blue data points were
created by an nVidia GTX750Ti, red data points were the results of a Mali T760 and
green data points were created by an nVidia Quadro 1000M. The symbols used in the
plot give information about which data set the data points correspond to. Data sets

84

6.1. Timing results

222 224 226 228 230 232

Number of pixel comparisons (PC)

5.00 × 10 1

1.00 × 10 1

1.00 × 10 4

5.00 × 10 5

2.78 × 10 2

7.66 × 10 3
6.09 × 10 3

3.22 × 10 3

1.04 × 10 3

4.30 × 10 4

1.74 × 10 4

m
ea

su
re

d
tim

e
pe

r m
illi

on
 P

Cs
 (

s
M

PC
)

testQ
testH
testF
trainingQ
trainingH
trainingF

Mali T760
Intel i7-5557U CPU
nVidia Quadro 1000M
Intel Iris 6100
nVidia GTX 750 Ti
nVidia GTX 1060 3GB
nVidia GTX 1080 Ti

Figure 6.1: Plot of runtime measurements for Mali T760 (red), Intel i7-5557U CPU
(yellow), nVidia QUADRO 1000M (green), nVidia Iris 6100 (light blue), nVidia GTX
750 Ti (blue), nVidia GTX 1060 3GB (magenta) and the nVidia GTX 1080 Ti (black)
with the median of the data sets marked by dotted lines.

85

6. Evaluation

in this context are the Middlebury training and test data sets in full (F), half (H) and
quarter (Q) resolution as described in Section 2.2.4.5, resulting in six data sets.

In Figure 6.1, the x-axis of the plot shows the size of the problem space i.e. the number
of potential pixel comparisons for the different image sets (PC). Due to the cubic growth
of the data sets we chose a logarithmic scale for this axis. The y-axis of this plot shows
the measured time per million pixel comparisons(s

MPC).

From this plot, we conclude that the main parameter for the calculation time per
pixel comparisons is device dependent. The parameter with the most influence in our
experiments is the number of FLOPS of the used device. Floating point performance
values of different devices are listed in Table 6.2. A near linear correlation between the
device’s floating point performance and the measured time per pixel comparison can be
observed in Figure 6.1.

The resulting values give information about the order of magnitude of the number of
FLOPC. In order to get a baseline data set, we calculate the average number of FLOPC
for every data point along the problem-space-size axis from the corresponding results of
three devices. The device data sets used for this baseline were chosen because of their
low variance. The plot in Figure 6.3 shows these values of the Average data set. For
our evaluation, we also calculated the average FLOPC from this data set. The Average
FLOPC data set for our implementation is also shown in Figure 6.3 (red). This Average
data set has a mean value which is marked by a dotted line and has roughly the value:

FLOPCavg ≈ 1.53 · 103 (6.6)

Using the Average data set in Figure 6.3 we try to predict the runtime for all devices
available to us, using the floating point performance value from their vendor’s device
specification page. In Table 6.2, the FLOPS for these devices and for the devices used
by other authors mentioned in this chapter are listed.

Figure 6.1 shows the measured runtime in seconds per mega PC for seven different devices.
Figure 6.2 shows our runtime prediction based on the average FLOPC and the devices’
floating point performance values. We can see that the predictions of the runtime per
mega PC for the different devices roughly match the order of magnitude of the runtime
measurements for these devices.

The results for the Intel Iris 6100 graphics card were not completely consistent with
our prediction. In Figure 6.1, we can see that the median of the results of the Intel
Iris graphics card, highlighted in light blue, matches the predicted order of magnitude.
However, for some image sets, this device consistently had performance issues. In
Section 6.4, we will examine this runtime behavior.

86

6.1. Timing results

222 224 226 228 230 232

Number of pixel comparisons (PC)

5.00 × 10 1

1.00 × 10 1

1.00 × 10 4

5.00 × 10 5

1.88 × 10 2

7.73 × 10 3

5.70 × 10 3

2.00 × 10 3

1.12 × 10 3

3.90 × 10 4

1.35 × 10 4

pr
ed

ict
ed

 ti
m

e
pe

r m
illi

on
 P

Cs
 (

s
M

PC
)

testQ
testH
testF
trainingQ
trainingH
trainingF

predict Mali T760
predict Intel i7-5557U CPU
predict nVidia Quadro 1000M
predict Intel Iris 6100
predict nVidia GTX 750 Ti
predict nVidia GTX 1060 3GB
predict nVidia GTX 1080 Ti

Figure 6.2: Plot of runtime predictions for Mali T760, Intel i7-5557U CPU, nVidia
QUADRO 1000M, nVidia Iris 6100, nVidia GTX 750 Ti, nVidia GTX 1060 3GB and
the nVidia GTX 1080 Ti with the median values for the data sets marked by dotted
lines. The predictions are based on the Average FLOPC data set in Figure 6.3.

87

6. Evaluation

224 226 228 230 232

Number of pixel comparisons (PC)

1.53 × 103Nu
m

be
r o

f F
LO

PC

testQ
testH
testF
trainingQ
trainingH
trainingF

nVidia GTX 750 Ti
Intel i7-5557U CPU
nVidia Quadro 1000M
Average

Figure 6.3: NCT normalization (FLOPC) of the Intel i7-5557U (yellow), the nVidia
GTX 750 Ti (blue) the nVidia Quadro 1000M (green) and their averaged data set (red).
The dotted line marks the mean FLOPC value of the averaged data set.

6.1.1 Problem Estimation

In a usual setup, the image ratio of images stays constant across multiple frames. This
ratio is given in the form: M : N e.g. 16 : 9 or 4 : 3. Furthermore, the relation dmax ≈ w

10
was established in Section 2.1.3.5.

Using these statements we rewrite the problem space parameters w, h and dmax to be
expressed in one variable x such that x represents a specific number of pixels:

w = M · x
h = N · x

dmax = O · x ≈ M · x
10

(6.7)

For example, if the image and dmax ratio M : N : O is 4 : 3 : 4
10 and x = 150 pixels, then

w = 600 pixels, h = 450 pixels and dmax = 60 pixels. This leads to the size of the problem
space to be a function of x with the constant parameters M , N and O (fM,N,O(x)):

w · h · dmax = fM,N,O(x) = M ·N ·O · x3 (6.8)

88

6.1. Timing results

Vendor Device Name Device Type Giga FLOPS (GFLOPS)

nVidia Quadro 1000M3 GPU 268.8
nVidia GTX 750 Ti4 5 GPU 1372
nVidia GTX 9806 GPU 4981
nVidia TITAN Black7 GPU 5645
nVidia GTX 1060 3GB8,9 GPU 3935
nVidia GTX 108010 GPU 8873
nVidia GTX 1080 Ti 11 GPU 11340
Intel Iris 610012 GPU 768
Intel i7-5557U13 14 CPU 198.6
Mali T76015,16 ARM GPU 81.6

Table 6.2: Overview of different devices mentioned in this chapter.

The size of the problem space is the number of pixel comparisons for one specific problem.
In order to achieve real time performance (60 FPS) or any other given frame rate for a
certain device, the number of pixel comparisons multiplied by the number of FLOPC
has to be smaller than (or equal to) the number of FLOPS this device is able to perform
divided by the target frame rate FPS:

fM,N,O(x) · FLOPC ≤ FLOPS
FPS

(6.9)

This can be solved for x:

x ≤ 3

√
FLOPS

FLOPC · FPS ·M ·N ·O
(6.10)

3https://www.techpowerup.com/gpudb/1431/quadro-1000m
4http://www.nvidia.com/gtx-700-graphics-cards/gtx-750ti/
5https://www.techpowerup.com/gpudb/2548/geforce-gtx-750-ti
6https://www.techpowerup.com/gpudb/2621/geforce-gtx-980
7https://www.techpowerup.com/gpudb/2549/geforce-gtx-titan-black
8https://www.nvidia.com/en-us/geforce/products/10series/compare/
9https://www.techpowerup.com/gpudb/2867/geforce-gtx-1060-3-gb

10https://www.techpowerup.com/gpudb/2839/geforce-gtx-1080
11https://www.techpowerup.com/gpudb/2877/geforce-gtx-1080-ti
12https://www.techpowerup.com/gpudb/2627/iris-graphics-6100
13https://en.wikipedia.org/wiki/FLOPS
14FLOPS = sockets · cores

socket ·
cycles
second ·

FLOPs
cycle = 1 · 2 · 3.1GHz · 32

15https://en.wikipedia.org/wiki/Mali_(GPU)
16http://gpuflops.blogspot.co.at/2015/02/gpu-flops-list.html?m=1

89

https://www.techpowerup.com/gpudb/1431/quadro-1000m
http://www.nvidia.com/gtx-700-graphics-cards/gtx-750ti/
https://www.techpowerup.com/gpudb/2548/geforce-gtx-750-ti
https://www.techpowerup.com/gpudb/2621/geforce-gtx-980
https://www.techpowerup.com/gpudb/2549/geforce-gtx-titan-black
https://www.nvidia.com/en-us/geforce/products/10series/compare/
https://www.techpowerup.com/gpudb/2867/geforce-gtx-1060-3-gb
https://www.techpowerup.com/gpudb/2839/geforce-gtx-1080
https://www.techpowerup.com/gpudb/2877/geforce-gtx-1080-ti
https://www.techpowerup.com/gpudb/2627/iris-graphics-6100
https://en.wikipedia.org/wiki/FLOPS
https://en.wikipedia.org/wiki/Mali_(GPU)
http://gpuflops.blogspot.co.at/2015/02/gpu-flops-list.html?m=1

6. Evaluation

The combination of Formula 6.7 and Formula 6.9 allows for estimation of the maximum
size of a problem space that can be processed on a specific device with a specific frame
rate. An example for such a calculation can be found in Appendix 2.

6.1.2 Algorithm Comparison

In this section, we will use the formulas shown in this chapter to compare our imple-
mentation against algorithms published on the website of the Middlebury Benchmark.
For this purpose, we chose the algorithm IDR by [KPP13] which is a census based GPU
implementation, the algorithm SGM_ROB, a census based GPU implementation of Semi
Global Matching (SGM) to the ROB and the algorithm MCSC, an anonymous submission
to the Middlebury benchmark which involves simultaneous learning of matching cost
and a smoothness constraint. These algorithms were chosen, because of the known
floating point performance of the used devices. The devices used by the authors of these
algorithms are listed in Table 6.3 and the FLOPS rates of the corresponding devices
(according to the information given on the Middlebury Benchmark’s website) are listed
in Table 6.2.

Column 3 (Average s
MPC) of Table 6.3, lists the average of the submitted runtime per

image set normalized to those image set’s number of million PCs. These runtime values
are reported to the Middlebury Benchmark’s website by the authors of the algorithms,
the number of million PCs results from the image dimensions and the maximum disparity
of these image sets and average of the normalized values is calculated by us. Column 4
(FLOPC) of Table 6.3, lists the FLOPC values of the listed algorithms, calculated with
Formula 6.5. These values were calculated from the Average s

MPC in Column 3 and the
FLOPS values from Table 6.2 for the corresponding devices in Column 2.

The buffer setup time ts is roughly constant for different problem space sizes, this can be
seen in Figure 6.4. The time ts is included in the measured runtimes for different problem
space sizes and can be determined by Formula 6.1 and Formula 6.2. In Figure 6.1 and
Figure 6.6, the measured runtime is normalized to the problem space size. A normalization
of ts to increasing problem space sizes results in a general decrease in the values of the
plot of the data set.

This decrease of time per PC for the total time (tm+ts) is shown in Figure 6.5(a). Further,
the constant matching time per PC is visualized in this plot. In Figure 6.5(b) the constant
buffer setup time is visualized and the increase in matching time corresponding to the
increase in problem size.

The plot in Figure 6.6 shows a runtime-comparison of the three algorithms mentioned
above (IDR, SGM_ROB and MCSC), with our implementation. The plot shows the
number of seconds per mega pixel-comparison on the y-axis and the size of the problem
space in MP on the x-axis. The data shown in Figure 6.6, is taken from the corresponding
submissions to the website of the Middlebury benchmark. This plot shows that the
algorithm-device combinations are relatively close to each other concerning performance,
as indicated by the closeness of the shown average values (represented by dotted lines).

90

6.1. Timing results

224 226 228 230 232

Number of pixel comparisons (PC)

10 2

10 1

100

Se
tu

p
tim

e
(s

)

testQ
testH
testF
trainingQ
trainingH
trainingF

Mali T760
Intel i7-5557U CPU
nVidia Quadro 1000M
Intel Iris 6100
nVidia GTX 750 Ti
nVidia GTX 1060 3GB
nVidia GTX 1080 Ti

Figure 6.4: Comparison of buffer setup time (s) on the y-axis corresponding to the
problem size (MP) on the x-axis. Every data point represents the match of an image set.
Colors represent the used devices and symbols (circles, triangles etc.) represent the data
set of the used image sets.

All of the compared measurements are situated at a magnitude of roughly 1.1 · 10−3

to 1.7 · 10−3 seconds per mega pixel-comparison. The plots of the MCSC data set and
the SGM_ROB data slightly seem to decrease in value and the plot of the IDR data
set seems to have roughly constant matching time per Mega Pixel Comparison (MPC)
(Figure 6.6). We suspect that this is due to different handling of setup times by the
various authors. Therefore, we added the performance values of our implementation,
once including the setup time and once without the setup time.

It is important to note, that this is purely runtime performance and does not consider
any error metric concerning the correctness of the results, a quality evaluation of these
algorithms is presented later on in Section 6.3.

The average runtime performance ranking (s
MPC) for these algorithm-device combinations

can be seen in Table 6.3. These performance values do not take into account the different
floating point performance values of the used devices, as listed in Table 6.2. This

91

6. Evaluation

222 224 226 228 230 232

Number of pixel comparisons (PC)

(b)

10 4

10 3

10 2

tim
e

pe
r m

illi
on

 P
Cs

 (
s

M
PC

)

testQ
testH
testF
trainingQ
trainingH
trainingF

total time per MPC (ts + tm
MPC)

buffer-setup-time per MPC (ts
MPC)

matching-time per MPC (tm
MPC)

222 224 226 228 230 232

Number of pixel comparisons (PC)

(a)

10 2

10 1

100

tim
e

(s
)

testQ
testH
testF
trainingQ
trainingH
trainingF

total-time (ts + tm)
buffer-setup-time (ts)
matching-time (tm)

Figure 6.5: Absolute matching time, absolute setup time and absolute total time (a) and
matching time, setup time and total time per million PCs (b) for a GTX 750 Ti graphics
card.

Algorithm Device Average s
MPC FLOPC

OUR IMPL. GTX 750 Ti 1.12 · 10−3 1.53 · 103

OUR IMPL. (incl. setup time) GTX 750 Ti 1.34 · 10−3 1.84 · 103

MCSC GTX 1080 1.43 · 10−3 1.27 · 104

SGM_ROB GTX 980 1.56 · 10−3 7.76 · 103

IDR TITAN Black 1.64 · 10−3 9.24 · 103

Table 6.3: Algorithm - Runtime Overview.

92

6.1. Timing results

226 227 228 229 230 231 232

Number of pixel comparisons (PC)

5.00 × 10 3

5.00 × 10 4

1.00 × 10 3

1.12 × 10 3

1.34 × 10 3
1.43 × 10 3
1.56 × 10 31.64 × 10 3

6 × 10 4

2 × 10 3

3 × 10 3

4 × 10 3

tim
e

pe
r m

illi
on

 P
Cs

 (
s

M
PC

)

trainingH
trainingF

IDR nVidia GeForce TITAN Black
SGM_ROB nVidia GeForce GTX 980
MCSC nVidia GeForce GTX 1080
OUR IMPL. nVidia GTX 750 Ti (incl. Setup Time)
OUR IMPL. nVidia GTX 750 Ti

Figure 6.6: Comparison of different algorithms. Seconds per MP comparison (y-axis) to
problem size in MP (x-axis): IDR (red), SGM_ROB (light blue), MCSC (yellow), our
implementation (green), our implementation without buffer setup time (blue). Averages
are marked by lines.

93

6. Evaluation

allows algorithms to have better runtime results than algorithms with similar calculatory
complexity by use of faster hardware. Further, we stated in Section 6.1 that FLOPC is
an algorithm specific number which makes algorithmns comparable. Table 6.3 shows this
algorithm specific number in column 4, which also is visualized in Figure 6.7.

226 227 228 229 230 231 232

Number of pixel comparisons (PC)

5.00 × 104

10.00 × 102

1.53 × 103

1.84 × 103

7.76 × 103

9.24 × 103

1.27 × 104

FL
OP

C

trainingH
trainingF

MCSC
IDR
SGM_ROB
CENSUS incl. Setup Time
CENSUS

Figure 6.7: Comparison of different algorithms. Number of Floating point Operations
per Pixel Comparison (y-axis) to problem size in MP (x-axis): IDR (red), SGM_ROB
(light blue), MCSC (yellow), our implementation (green), our implementation without
buffer setup time (blue). Averages are marked by dotted lines.

Comparison of the average FLOPC values (represented by dotted lines) of the algorithms
shown in Figure 6.7 and Table 6.3, indicates that the better runtime performance (smaller
value for s

MPC) of MCSC that lies below IDR’s and SGM_ROB’s runtime performance

94

6.2. Implementation-Result Comparison

in Figure 6.6 and Table 6.3 is due to the use of a device with higher floating point
performance.

Further, the FLOPC value also allows the use of Formula 6.10 to estimate an upper
bound of image dimensions for which a specific stereo matching frame rate is possible for
a specific device.

6.2 Implementation-Result Comparison
In this section, we will compare our implementation’s result quality with the quality
of the results of [HZW+10], uploaded to the Middlebury Benchmark’s website in 2010.
In 2010, the Middlebury Benchmark was available in version 2 and the result table is
still accessible at http://vision.middlebury.edu/stereo/eval/. Due to differences, such as
larger data sets, different δ values for the bad-pixel-percentage metric and the availability
of sparse comparisons, the results in version 3 ’s result table are hardly comparable to
the results listed in version 2 ’s result table. The evaluation tools for version 2 of the
Middlebury Benchmark are not available anymore. Further, we did not have access to the
implementation of [HZW+10], which prevented a re-evaluation of their implementation
with Middlebury’s version 3 benchmark. Therefore, a custom evaluation was implemented
to allow comparison of the two implementations.

The results of [HZW+10], shown in Figure 6.8, were acquired from the Middlebury
Benchmark’s result table version 2. The image sets (Cones, Teddy, Tsukuba and Venus)
and ground truth disparity maps for these data sets are available on the Middlebury
Benchmark’s website.

(a) Cones (b) Teddy (c) Tsukuba (d) Venus

Figure 6.8: Results of [HZW+10], from version 2 of the Middlebury Benchmark.

Further, Figure 6.9 shows a colorized visualization of the results in Figure 6.8. For
these colorized results, we created a script which read the input-file (e.g. a Portable
Network Graphics (PNG)-file or a Portable Gray Map (PGM)-file). A scaling factor was
applied to the values to compensate for the value scaling as described on the Middlebury
Benchmark’s website2,3. The scaling-factors were 4, for the image sets Cones and Teddy,

2http://vision.middlebury.edu/stereo/data/scenes2001/
3http://vision.middlebury.edu/stereo/data/scenes2003/

95

http://vision.middlebury.edu/stereo/eval/
http://vision.middlebury.edu/stereo/data/scenes2001/
http://vision.middlebury.edu/stereo/data/scenes2003/

6. Evaluation

and 8 for the image sets Tsukuba and Venus. The scaled disparity values were then written
to an Portable Float Map (PFM)-file. Finally, the tool runviz from the Middlebury
Benchmark version 3 was used to generate the colorized version of the results. The
runviz tool needed a calibration file (calib.txt) for each image set. The calib.txt files
provided the runviz tool with the used disparity range for visualization. We chose the
range [0; 70] for all four image sets. This conversion script is provided in Appendix 4.

(a) Cones (b) Teddy (c) Tsukuba (d) Venus

Figure 6.9: Results of [HZW+10] from version 2 of the Middlebury Benchmark. Converted
to colorized map using the tool runviz from version 3 of the Middlebury Benchmark.

Figure 6.10 shows the ground truth disparity maps of the image sets. To convert the
ground truth disparity maps provided as PGM-files, into these colorized versions, the
conversion script described in Appendix 4 was used.

(a) Cones (b) Teddy (c) Tsukuba (d) Venus

Figure 6.10: Ground truth from version 2 of the Middlebury Benchmark. Converted to
colorized map using the tool runviz from version 3 of the Middlebury Benchmark.

Finally, we used our implementation to create disparity maps for these image sets,
Figure 6.11 shows these results. The visualization tool from version 3 of the Middlebury
Benchmark was used to generate the colorized visualization of these disparity maps.

In order to allow comparison of our implementation and [HZW+10]’s implementation
we used the Percentage-of-Bad-Pixels metric, shown in Section 2.2.2. We created a
script that calculated the value of results of the two implementations, for the δ values
0.5, 0.75, 1.0, 1.5, 2.0 and 4.0, in this metric. This list represents the conjoined δ values,
available in the Middlebury Benchmark version 2 and version 3. Figure 6.12 shows

96

6.2. Implementation-Result Comparison

(a) Cones (b) Teddy (c) Tsukuba (d) Venus

Figure 6.11: Results of our implementation for the image sets of the Middlebury Bench-
mark version 2.

the bad-pixel-percentages for the four image sets calculated by our script. This figure
shows that [HZW+10]’s implementation (blue) in general produced better results than
our implementation.

Moreover, we can see in all four subplots of Figure 6.12 that for [HZW+10]’s curves, that
the bad-pixel-percentages of some neigboring δ-points are the same. We suspect that
this is due to the result maps for [HZW+10]’s implementation that were available to
us in form of PNG-files, which contained integer disparity values. This effect is further
amplified in the tsukuba image set, where the ground truth disparity values are provided
as integers as well.

The results of our implementation are plotted in red and green. The red curves represent
the results of our implementation when all pixels are taken into account. The green
curves represent the same results as the red curves, however, for these curves invalid
disparities as declared by our consistency check implementation, are not used for bad-
pixel-percentage-calculation. Further, the percentage of invalid disparities per image set
is displayed in the labels of the green curves.

Differences between the implementations that can be seen in Figure 6.8 and Figure 6.11
are partly missing, due to the handling of occlusions and homogenous surfaces in the
scenes. The authors of [HZW+10] used bilinar interpolation to estimate missing disparity
values. Further, they applied a median filter to smooth the result maps and fill small
holes.

We used the parameters described in Chapter 5 for the generation of these results. There
may be some quality gains if other values are used, however an in-depth study of result
quality was not the goal of this thesis.

We conclude that our implementation is not equivalent to [HZW+10]’s implementation.
Although they face similar difficulties at the same regions (i.e. occlusions and homogenous
surfaces), our implementation misses the bilinear interpolation and the median filter to
handle these regions.

97

6. Evaluation

0.
5

0.
75 1.
0

1.
5

2.
0

4.
0

 for bad pixel percentage

-5.0
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

Humenberger et al.
Our impl. - ignore invalid (11%)
Our implementation

(a) Cones
0.

5
0.

75 1.
0

1.
5

2.
0

4.
0

 for bad pixel percentage

-5.0
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

Humenberger et al.
Our impl. - ignore invalid (12%)
Our implementation

(b) Teddy

0.
5

0.
75 1.
0

1.
5

2.
0

4.
0

 for bad pixel percentage

-5.0
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

Humenberger et al.
Our impl. - ignore invalid (7%)
Our implementation

(c) Tsukuba

0.
5

0.
75 1.
0

1.
5

2.
0

4.
0

 for bad pixel percentage

-5.0
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

Humenberger et al.
Our impl. - ignore invalid (9%)
Our implementation

(d) Venus

Figure 6.12: Visualization of bad pixel percentage of the four image sets. Dense results
from [HZW+10]’s implementation and sparse results from our implementation.

98

6.3. Result Errors

6.3 Result Errors

In this section, we will show how our implementation performs compared to other
algorithms presented on the Middlebury benchmark, in terms of matching accuracy. This
is done to show that higher result quality is costly in terms of calculatory complexity. We
selected IDR, SGM_ROB and MCSC because of a certain similarity of these methods
to the method of [HZW+10]. The results of algorithms, submitted to the Middlebury
website are only avalable in one resolution. The results for IDR and SGM_ROB are
available in half resolution and MCSC’s results are available in full resolution.

Furthermore, the density of the results is an important factor when evaluating the
algorithms. The Middlebury benchmark provides strategies to make dense and sparse
algorithms comparable, as described in Section 2.2.1. Our implementation of the algorithm
of [HZW+10] and the IDR algorithm are sparse methods. The algorithms MCSC and
SGM_ROB are dense algorithms. In order to compare sparse and dense algorithms, it is
important to take the number of invalid pixels, produced by the sparse algorithms, into
account. The scripts runeval and runevalF count a pixel as invalid if the disparity value
in the result map is of value positive infinity.

Algorithms purposefully can mark pixels as invalid. Invalid pixels are not counted towards
error rates in the Middlebury benchmark’s table of sparse results. This can be used by
algorithms to mark the disparity of pixels in the result map as "unknown" if checks, such
as the consistency check described in Section 4.4, fail.

The plots in this section visualize data from the Middlebury evaluation scripts runeval
and runevalF. These scripts evaluate the results produced by stereo matching algorithms
in comparison to the ground truth data. The difference between these two scripts is, that
runeval compares the results to the ground truth available in the corresponding resolution
and runevalF uses a scaling factor to compare the full resolution ground truth of the
low resolution result. The following code sample (Listing 13) shows how the Middlebury
evaluation tool works. The original evaluation code can be found in the Middlebury
SDK4.

1 //get width and height for ground truth
2 int width = gt.width, height = gt.height;
3 //get width and height for result map
4 int width2 = data.width, height2 = data.height;
5 int scale = width / width2;
6

7 /*** evaluation variable initialisation ***/
8 for (int y = 0; y < height; y++) {
9 for (int x = 0; x < width; x++) {

10 float gt = gtdisp.Pixel(x, y, 0);

4http://vision.middlebury.edu/stereo/submit3/zip/MiddEval3-SDK-1.6.zip
MiddEval3/code/evaldisp.cpp

99

http://vision.middlebury.edu/stereo/submit3/zip/MiddEval3-SDK-1.6.zip

6. Evaluation

11 if (gt == INFINITY) // unknown
12 continue;
13 float d = scale * disp.Pixel(x / scale, y / scale, 0);
14

15 /*** sanity checks ***/
16

17 float err = fabs(d - gt);
18

19 /*** code for accumulation ***/
20 }
21 }
22 /*** code for evaluation ***/

Listing 13: Middlebury Evaluation - pseudocode

The evaluation results on the website of the Middlebury benchmark are generated by
comparison to the full resolution ground truth. For all data sets plotted in this section,
the mean values of these data sets are visualized as dotted lines in the corresponding
colors of the data plots. Further, in plots that show per image set results, lines connecting
data points that belong to the same device or algorithm were added, to guide the eye
and help locating these data points.

The percentage of bad pixels metric as described in Section 2.2.2 assigns a quality value
to the result of an image set which asserts the percentage of how many of the pixels with
valid disparity values contain values that are within an ε region of their corresponding
ground truth value. This ε-region was defined in Formula 2.41 by the δ-variable. The
four thresholds that are used on the website of the Middlebury benchmark are 4.0, 2.0, 1.0
and 0.5. A comparison of algorithms using this metric and the 0.5-threshold, separates
the results of sub-pixel methods from methods with integer-value disparity results. If δ
is chosen to be 0.5, then whole-pixel-method results usually have, due to rounding errors,
a higher percentage of bad pixels than sub-pixel methods.

The usage of the full resolution ground truth for evaluation of submitted results with lower
resolution is a significant factor in the error rate calculation for a submission, as shown
in Figure 6.19. Figure 6.19 visualizes the difference between the evaluation methods.
When a disparity map is scaled up to a higher resolution, the maximum disparity for this
disparity map changes as well. The resulting disparity values have to be scaled to the new
maximum disparity value. A scale up produces for every pixel in low resolution multiple
new pixel positions in the higher resolution. For these new pixel positions, disparity
values have to be estimated. This estimation introduces an error which results in higher
error rates for low resolution results when the full resolution ground truth is used, as
compared to when the corresponding low resolution ground truth is used. Detailed plots
of the evaluated data sets for Figure 6.19 are provided in Appendix 1.

100

6.3. Result Errors

In Figure 6.19a and Figure 6.19d the average of the bad percentage metric with δ being
0.5, 1.0, 2.0 and 4.0 is plotted for the training data set in quarter (Q) resolution. The
compared algorithms are SGM (yellow), MPSV (blue), DF (green) and our implementation
(red). This plot visualizes the difference between the evaluation tools runeval and
runevalF.

It is important to consider the number of invalid pixels in the results created by the
compared algorithms in order to compare sparse algorithms. The rates of invalid pixels
are shown in the Figures 6.13, 6.14 and 6.15. These figures show that our implementations
percentage of invalid pixels is on average (for all resolutions) around 35%. For quarter
resolution the average invalid pixel percentage is close to 38% (Figure 6.13), for half
resolution the percentage is near 34% (Figure 6.14) and for full resolution the average is
close to 32% (Figure 6.15)

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0

Pe
rc

en
ta

ge
 o

f i
nv

al
id

 p
ix

el
s

MPSV (Q)
SGM (Q)
DF (Q)
OUR IMPL. (Q)

Figure 6.13: Comparison of invalid pixel rates (sparseness) of different algorithms at
quarter resolution. Percentage of invalid pixels (y-axis) for each image set (x-axis): SGM
(yellow), SGM_ROB (green), MPSV (blue), DF (green) and our implementation in
quarter resolution (red).

The Figures 6.16, 6.17 and 6.18 visualize the average disparity error per image set. For
quarter and half resolution the average error produced by runeval is, apart from a scaling
factor which is 0.5 for half and 0.25 for quarter resolution, the same as the average
error produced by runevalF. The scaling of the average disparity error is visualized in
Figure 6.16 and Figure 6.17. These figures show that our implementation’s average
disparity error is around 3 or 10 pixels for runeval or runevalF at quarter resolution
which has image widths of 657 to 750 pixels, around 5 or 10 pixels at half resolution
(1315 to 1500 pixels image width) and around 8 pixels for both runeval and runevalF at
full resolution (2630 to 3000 pixels image width).

In Figure 6.19b and Figure 6.19e the relation of average bad pixel percentage to varying δ
for half resolution results is visualized. We used the algorithms SGM_ROB (yellow), IDR

101

6. Evaluation

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0

Pe
rc

en
ta

ge
 o

f i
nv

al
id

 p
ix

el
s

IDR (H)
SGM_ROB (H)
SNCC (H)
OUR IMPL. (H)

Figure 6.14: Comparison of invalid pixel rates (sparseness) of different algorithms at half
resolution. Percentage of invalid pixels (y-axis) for each image set (x-axis): SGM_ROB
(yellow), SNCC (green), IDR (blue), DF (green) and our implementation in half resolution
(red).

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0

Pe
rc

en
ta

ge
 o

f i
nv

al
id

 p
ix

el
s

MCSC (F)
SGM (F)
R-NCC (F)
OUR IMPL. (F)

Figure 6.15: Invalid pixel rates (sparseness) of different algorithms at full (F) resolution.
Percentage of invalid pixels (y-axis) for each image set (x-axis): SGM (yellow), R-NCC
(green), MCSC (blue), DF (green) and our implementation in full resolution (red).

102

6.3. Result Errors

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0

8.0

16.0

24.0

32.0

Av
er

ag
e

di
sp

ar
ity

 e
rro

r (
pi

xe
l)

MPSV (Q)
SGM (Q)
DF (Q)
OUR IMPL. (Q)

(a) Average disparity error for quarter (Q) resolution data (runevalF).

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0

2.0

4.0

6.0

8.0

Av
er

ag
e

di
sp

ar
ity

 e
rro

r (
pi

xe
l)

MPSV (Q)
SGM (Q)
DF (Q)
OUR IMPL. (Q)

(b) Average disparity error for quarter (Q) resolution data (runeval).

Figure 6.16: Average disparity error for (a) runevalF / (b) runeval. Average disparity
error (y-axis) for each image set (x-axis): SGM (yellow), SGM_ROB (green), MPSV
(blue), DF (green) and our implementation in quarter resolution (red).

103

6. Evaluation

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0

6.0

12.0

18.0

24.0

30.0

Av
er

ag
e

di
sp

ar
ity

 e
rro

r (
pi

xe
l)

IDR (H)
SGM_ROB (H)
SNCC (H)
OUR IMPL. (H)

(a) Average disparity error for half (H) resolution data (runevalF).

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0

3.0

6.0

9.0

12.0

15.0

Av
er

ag
e

di
sp

ar
ity

 e
rro

r (
pi

xe
l)

IDR (H)
SGM_ROB (H)
SNCC (H)
OUR IMPL. (H)

(b) Average disparity error for half (H) resolution data (runeval).

Figure 6.17: Comparison of different algorithms’ average disparity error for (a) runevalF
/ (b) runeval. Average disparity error (y-axis) for each image set (x-axis): SGM_ROB
(yellow), SNCC (green), IDR (blue), DF (green) and our implementation in half resolution
(red).

104

6.3. Result Errors

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0

Av
er

ag
e

di
sp

ar
ity

 e
rro

r (
pi

xe
l)

MCSC (F)
SGM (F)
R-NCC (F)
OUR IMPL. (F)

Figure 6.18: Average disparity error for full (F) resolution. Average disparity error
(y-axis) for each image set (x-axis): SGM (yellow), R-NCC (green), MCSC (blue), DF
(green) and our implementation in full resolution (red).

(blue), SNCC (green) and our implementation for half resolution (red) for comparison at
half resolution level.

The Figures 6.19c and 6.19f show the results for algorithms working on full resolution
data sets. At full resolution, the results of the evaluation scripts runeval and runevalF
are equivalent. This is because runeval uses full resolution ground truth for comparison
and runevalF does not scale the result disparity map because it is already provided at full
resolution. Therefore, both tools use the same input data, error metrics and evaluation
techniques in full resolution case. The compared algorithms are SGM (yellow), R-NCC
(green), MCSC (blue) and our implementation for full resolution (red).

In Figure 6.19 different resolutions were used to visualize the influence of resolution
on the quality of the result. Further, and the influence of the scaling strategy used by
runevalF is shown in the comparison of Figure 6.19a and Figure 6.19b to Figure 6.19d and
Figure 6.19e. Different algorithms were used for the different resolutions, this is due to the
Middlebury Benchmark’s regulation that restricts authors’ submissions to one resolution.
The restriction to one resolution, results that results for most submitted methods usually
are available in only one resolution. An exception is the SGM (SGM_ROB) algorithm
by [Hir08] for which results are available in all three resolution classes (Q, H and F).
Therefore, we used multiple algorithms in order to compare our implementation for
quarter, half and full resolution. The results for the algorithms in Figure 6.19 were taken
from the Middlebury Benchmark’s website.

The Left-Right Consistency Check described in Section 4.4 results in a higher percentage
of invalid pixels of our implementation of [HZW+10]’s method. This is due to the rejection
of results that cannot be left-right validated. Furthermore, the Sub Pixel Refinement
described in Section 4.3 results in good estimations for sub-pixel disparities. This in turn

105

6. Evaluation

0.5 1.0 2.0 4.0
 for bad pixel percentage

-5.0
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Av
er

ag
e

ba
d

pi
xe

l p
er

ce
nt

ag
e

MPSV (Q)
SGM (Q)
DF (Q)
OUR IMPL. (Q)

(a) runevalF Q

0.5 1.0 2.0 4.0
 for bad pixel percentage

-5.0
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Av
er

ag
e

ba
d

pi
xe

l p
er

ce
nt

ag
e

IDR (H)
SGM_ROB (H)
SNCC (H)
OUR IMPL. (H)

(b) runevalF H

0.5 1.0 2.0 4.0
 for bad pixel percentage

-5.0
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Av
er

ag
e

ba
d

pi
xe

l p
er

ce
nt

ag
e

MCSC (F)
SGM (F)
R-NCC (F)
OUR IMPL. (F)

(c) runevalF F

0.5 1.0 2.0 4.0
 for bad pixel percentage

-5.0
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Av
er

ag
e

ba
d

pi
xe

l p
er

ce
nt

ag
e

MPSV (Q)
SGM (Q)
DF (Q)
OUR IMPL. (Q)

(d) runeval Q

0.5 1.0 2.0 4.0
 for bad pixel percentage

-5.0
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Av
er

ag
e

ba
d

pi
xe

l p
er

ce
nt

ag
e

IDR (H)
SGM_ROB (H)
SNCC (H)
OUR IMPL. (H)

(e) runeval H

0.5 1.0 2.0 4.0
 for bad pixel percentage

-5.0
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Av
er

ag
e

ba
d

pi
xe

l p
er

ce
nt

ag
e

MCSC (F)
SGM (F)
R-NCC (F)
OUR IMPL. (F)

(f) runeval F

Figure 6.19: This figure shows the average bad pixel percentage of different algorithms.
The first row of plots shows results for the runevalF script and the second row shows
results for runeval. The first column of plots shows quarter resolution results, the second
column shows half resolution results and the third column shows full resolution results.

106

6.4. Additional Results

is the reason why our implementation of the method of [HZW+10] has its best results
when it is applied to the full resolution data set. This can be seen in Figure 6.15 where
our implementation’s invalid pixel rate is in the range of other sparse, state of the art
matching method’s invalid pixel rates. And this can be seen in Figure 6.18 where our
implementation’s average disparity error is below 10 pixels.

6.4 Additional Results

In this section, we will discuss the runtime behavior of our implementation.

In Figure 6.1, a number of data points with unusually high runtime for the Intel IRIS
6100 graphics card can be seen. An exploration of the data points of this device (shown
in Figure 6.20), affirms that the data points with higher runtime correspond to six image
sets along all three available resolution categories. These image sets are Djembe, DjembeL
and Newkuba from the test set and Adirondack, ArtL and Jadeplant from the training
set. Further on, we will refere to the set of these six image sets as the P-Set.

The P-Set’s quarter resolution images’ widths are 719px for Djembe, 719px for DjembeL,
701px for Newkuba, 718px for Adirondack, 347px for ArtL and 659px for Jadeplant.
Five of these image widths are prime numbers. The image set Adirondack’s image width
(718px) is not a prime number, as it is an even number. However, 359 (= 718

2) is a
prime number. Note that for the Middlebury Benchmark’s image sets only the quarter
resolution image sets may have prime number image widths (wp). The corresponding
half resolution image sets will have widths of wp · 2 and the corresponding full resolution
image sets will have an image width of wp · 4.

Figure 6.20 shows the data set of the Intel IRIS 6100 (also shown in Figure 6.1) with the
problem size in PCs on the x-axis and the time per million PCs on the x-axis5. The three
subplots show the data points of all image sets, without the data points for the P-Set, as
unlabeled data points. Subfigure 6.20a shows the labeled data points for Adirondack and
DjembeL, Subfigure 6.20b shows the labeled data points for Jadeplant and Djembe and
Subfigure 6.20c shows the labeled data points for ArtL and Newkuba. This shows that
data points corresponding to the image sets in the P-Set have a runtime value (shown on
the x-axis) close to or larger than 6 · 10−3 s

MPC .

As discussed in Section 6.1, the results shown in Figure 6.1 are the average runtime
results from 100 runs i.e. each plotted data point represents the average of 100 runs of
the image set corresponding to this data point. This was done to cancle out noise in the
measurement data. Therefore, it is unlikely that the behavior, which can be observed for
the six image sets mentioned above, occures through noise.

The higher runtime of our implementation on the Intel IRIS 6100 for the six image sets
in the P-Set, is also observable, although less distinct, with the Mali T760 graphics card.
There are two main distinctions between these two devices (Mali T760 and Intel IRIS

5The significance of the x-axis and y-axis in this plot is reversed to the axes in Figure 6.1.

107

6. Evaluation

1×
10

3

2×
10

3

3×
10

3

4×
10

3

5×
10

3

6×
10

3

7×
10

3

8×
10

3

9×
10

3

1×
10

2

2×
10

2

3×
10

2

4×
10

2

5×
10

2

Measured time per million PCs (s
MPC)

222

225

228

231
Nu

m
be

r o
f P

Cs

 DjembeL

 DjembeL

 DjembeL

 Adirondack

 Adirondack

 AdirondacktestQ
testH
testF
trainingQ
trainingH
trainingF

testQ
testH
testF
trainingQ
trainingH
trainingF

(a) Adirondack and DjembeL

1×
10

3

2×
10

3

3×
10

3

4×
10

3

5×
10

3

6×
10

3

7×
10

3

8×
10

3

9×
10

3

1×
10

2

2×
10

2

3×
10

2

4×
10

2

5×
10

2

Measured time per million PCs (s
MPC)

222

225

228

231

Nu
m

be
r o

f P
Cs

 Djembe

 Djembe

 Djembe

 Jadeplant

 Jadeplant

 JadeplanttestQ
testH
testF
trainingQ
trainingH
trainingF

testQ
testH
testF
trainingQ
trainingH
trainingF

(b) Djembe and Jadeplant

1×
10

3

2×
10

3

3×
10

3

4×
10

3

5×
10

3

6×
10

3

7×
10

3

8×
10

3

9×
10

3

1×
10

2

2×
10

2

3×
10

2

4×
10

2

5×
10

2

Measured time per million PCs (s
MPC)

222

225

228

231

Nu
m

be
r o

f P
Cs

 Newkuba

 Newkuba

 Newkuba

 ArtL

 ArtL

 ArtL

testQ
testH
testF
trainingQ
trainingH
trainingF

testQ
testH
testF
trainingQ
trainingH
trainingF

(c) ArtL and Newkuba

Figure 6.20: Visualization of the Intel IRIS 6100 data set shown in Figure 6.1. In
the subfigures (a), (b) and (c), the positions of the data points corresponding to the
image sets Adirondack, ArtL, Djembe, DjembeL, Jadeplant, and Newkuba are shown.
The unlabeled data points correspond to the remaining image sets of the Middlebury
Benchmark. These data points visualize the baseline of the runtime performance of our
algorithm on this device.

108

6.4. Additional Results

6100) and the other examined devices in Figure 6.1: One is the maximum work group size,
which is 256 with these two devices and at least 1024 with the other devices. The other
is the size of the work group dimensions, which is (256,256,256) for these two devices
and at least (1024,1024,64) for the other devices. We suspect that the maximum work
group size, in combination with the problem dimensions as discussed in the following, is
responsible for the higher runtime of these image sets on these two devices.

A relation between the work group size and the image sets in this context reveals a
weakness in our strategy to find the biggest possible work group size, as shown in Listing 2.
If the maximum work group size of a device is smaller than the image width, then the
strategy to find an integer divisor for the image width is applied. This integer divisor
has to be big enough that the quotient of image width and the divisor is smaller than
the maximum work group size. In some cases, this can lead to a work group size value
of 1, which leads to bad runtime results. This is the case if the image width is a prime
number. Therefore, the behavior of bad runtime is specific to our implementation and
will always occur if the image width is a prime number that is larger than the used
device’s maximum work group size. For this reason, the work group size for five of the
quarter resolution images in our P-Set is of value 1. The work group size for the quarter
resolution image set Adirondack is of value 2. This is further visualized in Figure 6.20a,
as the runtime per million PCs of Adirondack in quarter resolution is roughly the same
as the runtime of DjembelL in half resolution, which is close to 2 · 10−2 s

MPC .

Further, Adirondack (H) and DjembelL (F) have a work group size of value 4 and the
runtime value of these two image sets is roughly 1 · 10−2 s

MPC , which is half the runtime
of the image sets Adirondack (Q) and DjembelL (H). Finally, the runtime of Adirondack
(F) at a work group size value of 8, is smaller than 6 · 10−3 s

MPC , which is roughly half of
the runtime per million PCs of Adirondack in half resolution.

Strategies to fix the problem caused by prime number image sizes would be to clip the
input images in such a way that the clipped image widths are integer divisible to avoid
this problem or to use a work group size that does not divide the image width into equally
sized parts. The latter would result in out of bound addressing of memory buffers, which
would have to be fixed in all provided kernels by a clipping of the x-component of the
address to the image borders.

109

CHAPTER 7
Summary and Outlook

In this thesis, we showed an example of how OpenCL can be used to execute stereo
matching algorithms on different devices. We implemented a stereo matching method
based on the method of [HZW+10], which relies on a Census transform and has demon-
strated its potential for embedded real-time implementations. The implemented source
code consists of OpenCL kernels that can be used by any SDK that is able to address the
OpenCL interface. The code shows how these kernels can be invoked by implementations
in C++ and Python.

Using the Middlebury benchmark, different OpenCL devices, the floating point perfor-
mance values of these devices and the NCT shown by [JS92], we calculated the average
number of Floating point Operations per Pixel Comparison (FLOPC) for our stereo
matching implementation as shown in Formula 6.6.

Furthermore, we used the estimated FLOPC value to predict the runtime of our im-
plementation on different devices. The predicted runtimes for the examined devices
were in general in the same order of magnitude as the measured runtime values of these
devices, as shown in Figure 6.1 and Figure 6.2. The predicted runtime value per mega
pixel-comparison was usually faster than the measured runtime values. In Section 6.4, we
argued that this was due to the fact that floating point performance values are usually
peak efficiency values which are seldom reached in practice. Nevertheless, the FLOPC
value allows for meaningful runtime predictions of an algorithm for different devices,
which can be used to find the best price-to-runtime ratio when selecting a device for
a specific algorithm. Further, the FLOPC value allowed the comparison of different
algorithms in the context of their runtime complexity.

In Section 6.1.1, we used the FLOPC value to estimate the size of the problem space
in order to achieve a certain matching rate for a specific image ratio N:M on a specific
device. This can be used for the design of mobile, real-time stereo matching systems, as
the floating point performance of mobile devices is usually a limiting factor.

111

7. Summary and Outlook

Finally, we discussed why our implementation had discernible outliers for six image sets
concerning calculation runtime on two devices which had fewer processing units than
the other evaluated devices. This was due to our implementation’s partitioning strategy
which does not work well when the image width is not integer divisible into equal parts
smaller than the devices number of processing units.

Future work should include further evaluations of the FLOPC value as algorithm specific
and hardware independent runtime complexity value. Another interesting topic for future
work would be the translation of our OpenCL kernels into VHDL modules using the
SDKs of FPGA vendors. Such an endeavor should include the runtime analysis of these
modules and the necessary invocation code, using the FLOPC value.

Furthermore, the use of hierarchical data structures, such as image pyramids, could be
subject of further research, as the estimation of disparities for high resolution images from
low resolution disparity maps could be used to either increase accuracy or significantly
reduce runtime of an algorithm. For the latter, the FLOPC value could again provide a
good indicator of the runtime complexity.

112

Appendix 1

This chapter contains the full data set plots for the bad pixel percentage metric for runeval
and runevalF for the different algorithms and different resolutions.

In plots that show per image set results, lines connecting dots belonging to the same
device or algorithm were added, in order to guide the eye and help with locating the
data points.

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=0
.5

MCSC (F)
SGM (F)
R-NCC (F)
OUR IMPL. (F)

Figure 1: Comparison of different algorithms in full (F) resolution. Percentage of bad
pixels at threshold δ = 0.5 (y-axis) for each image set (x-axis): SGM (yellow), R-NCC
(green), MCSC (blue), DF (green) and our implementation in full resolution (red).

113

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=1
.0

MCSC (F)
SGM (F)
R-NCC (F)
OUR IMPL. (F)

Figure 2: Comparison of different algorithms in full (F) resolution. Percentage of bad
pixels at threshold δ = 1.0 (y-axis) for each image set (x-axis): SGM (yellow), R-NCC
(green), MCSC (blue), DF (green) and our implementation in full resolution (red).

114

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=2
.0

MCSC (F)
SGM (F)
R-NCC (F)
OUR IMPL. (F)

Figure 3: Comparison of different algorithms in full (F) resolution. Percentage of bad
pixels at threshold δ = 2.0 (y-axis) for each image set (x-axis): SGM (yellow), R-NCC
(green), MCSC (blue), DF (green) and our implementation in full resolution (red).

115

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=4
.0

MCSC (F)
SGM (F)
R-NCC (F)
OUR IMPL. (F)

Figure 4: Comparison of different algorithms in full (F) resolution. Percentage of bad
pixels at threshold δ = 4.0 (y-axis) for each image set (x-axis): SGM (yellow), R-NCC
(green), MCSC (blue), DF (green) and our implementation in full resolution (red).

116

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=0
.5

IDR (H)
SGM_ROB (H)
SNCC (H)
OUR IMPL. (H)

(a) Full resolution ground truth, half resolution data, bad pixel δ = 0.5.

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=0
.5

IDR (H)
SGM_ROB (H)
SNCC (H)
OUR IMPL. (H)

(b) Ground truth in half resolution, half resolution data, bad pixel δ = 0.5.

Figure 5: Comparison of different algorithms using (a) runevalF / (b) runeval. Percentage
of bad pixels at threshold δ = 0.5 (y-axis) for each image set (x-axis): SGM_ROB (yellow),
SNCC (green), I (blue), DF (green) and our implementation in half resolution (red).

117

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=1
.0

IDR (H)
SGM_ROB (H)
SNCC (H)
OUR IMPL. (H)

(a) Full resolution ground truth, half resolution data, bad pixel δ = 1.0.

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=1
.0

IDR (H)
SGM_ROB (H)
SNCC (H)
OUR IMPL. (H)

(b) Ground truth in half resolution, half resolution data, bad pixel δ = 1.0.

Figure 6: Comparison of different algorithms using (a) runevalF / (b) runeval. Percentage
of bad pixels at threshold δ = 1.0 (y-axis) for each image set (x-axis): SGM_ROB (yellow),
SNCC (green), IDR (blue), DF (green) and our implementation in half resolution (red).

118

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=2
.0

IDR (H)
SGM_ROB (H)
SNCC (H)
OUR IMPL. (H)

(a) Full resolution ground truth, half resolution data, bad pixel δ = 2.0.

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=2
.0

IDR (H)
SGM_ROB (H)
SNCC (H)
OUR IMPL. (H)

(b) Ground truth in half resolution, half resolution data, bad pixel δ = 2.0.

Figure 7: Comparison of different algorithms using (a) runevalF / (b) runeval. Percentage
of bad pixels at threshold δ = 2.0 (y-axis) for each image set (x-axis): SGM_ROB (yellow),
SNCC (green), IDR (blue), DF (green) and our implementation in half resolution (red).

119

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=4
.0

IDR (H)
SGM_ROB (H)
SNCC (H)
OUR IMPL. (H)

(a) Full resolution ground truth, half resolution data, bad pixel δ = 4.0.

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=4
.0

IDR (H)
SGM_ROB (H)
SNCC (H)
OUR IMPL. (H)

(b) Ground truth in half resolution, half resolution data, bad pixel δ = 4.0.

Figure 8: Comparison of different algorithms using (a) runevalF / (b) runeval. Percentage
of bad pixels at threshold δ = 4.0 (y-axis) for each image set (x-axis): SGM_ROB (yellow),
SNCC (green), IDR (blue), DF (green) and our implementation in half resolution (red).

120

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=0
.5

MPSV (Q)
SGM (Q)
DF (Q)
OUR IMPL. (Q)

(a) Full resolution ground truth, quarter resolution data, bad pixel δ = 0.5.

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=0
.5

MPSV (Q)
SGM (Q)
DF (Q)
OUR IMPL. (Q)

(b) Ground truth in quarter resolution, quarter resolution data, bad pixel δ = 0.5.

Figure 9: Comparison of different algorithms using (a) runevalF / (b) runeval. Percentage
of bad pixels at threshold δ = 0.5 (y-axis) for each image set (x-axis): SGM (yellow),
SGM_ROB (green), MPSV (blue), DF (green) and our implementation in quarter
resolution (red).

121

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=1
.0

MPSV (Q)
SGM (Q)
DF (Q)
OUR IMPL. (Q)

(a) Full resolution ground truth, quarter resolution data, bad pixel δ = 1.0.

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=1
.0

MPSV (Q)
SGM (Q)
DF (Q)
OUR IMPL. (Q)

(b) Ground truth in quarter resolution, quarter resolution data, bad pixel δ = 1.0.

Figure 10: Comparison of different algorithms using (a) runevalF / (b) runeval. Per-
centage of bad pixels at threshold δ = 1.0 (y-axis) for each image set (x-axis): SGM
(yellow), SGM_ROB (green), MPSV (blue), DF (green) and our implementation in
quarter resolution (red).
122

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=2
.0

MPSV (Q)
SGM (Q)
DF (Q)
OUR IMPL. (Q)

(a) Full resolution ground truth, quarter resolution data, bad pixel δ = 2.0.

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=2
.0

MPSV (Q)
SGM (Q)
DF (Q)
OUR IMPL. (Q)

(b) Ground truth in quarter resolution, quarter resolution data, bad pixel δ = 2.0.

Figure 11: Comparison of different algorithms using (a) runevalF / (b) runeval. Per-
centage of bad pixels at threshold δ = 2.0 (y-axis) for each image set (x-axis): SGM
(yellow), SGM_ROB (green), MPSV (blue), DF (green) and our implementation in
quarter resolution (red).

123

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0
Ba

d
pi

xe
l p

er
ce

nt
ag

e
fo

r
=4

.0
MPSV (Q)
SGM (Q)
DF (Q)
OUR IMPL. (Q)

(a) Full resolution ground truth, quarter resolution data, bad pixel δ = 4.0.

Ad
iro

nd
ac

k

Ar
tL

Ja
de

pl
an

t

M
ot

or
cy

cle

M
ot

or
cy

cle
E

Pi
an

o

Pi
an

oL

Pi
pe

s

Pl
ay

ro
om

Pl
ay

ta
bl

e

Pl
ay

ta
bl

eP

Re
cy

cle

Sh
el

ve
s

Te
dd

y

Vi
nt

ag
e

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Ba
d

pi
xe

l p
er

ce
nt

ag
e

fo
r

=4
.0

MPSV (Q)
SGM (Q)
DF (Q)
OUR IMPL. (Q)

(b) Ground truth in quarter resolution, quarter resolution data, bad pixel δ = 4.0.

Figure 12: Comparison of different algorithms using (a) runevalF / (b) runeval. Per-
centage of bad pixels at threshold δ = 4.0 (y-axis) for each image set (x-axis): SGM
(yellow), SGM_ROB (green), MPSV (blue), DF (green) and our implementation in
quarter resolution (red).
124

Appendix 2

Below we will give an example for the estimation of the maximum problem space size for
real-time performance on a specific device.

We choose the nVidia GTX 750 Ti with a floating point performance of 1372 GFLOPS
(1372 ·109 FLOPS). Further, we define our image ratio to beM : N = 4 : 3, the maximum
disparity dmax ≈ w

10 and in turn O = M
10 . We want to achieve a frame rate of 60 frames per

second and use our implementation of the algorithm of [HZW+10] which has a FLOPC
of approximately 1.53 · 103 as defined by Formula 6.6.

Using Formula 6.10 we calculate:

x ≤ 3

√
FLOPS

FLOPC · FPS ·M ·N ·O

x ≤ 3

√
1372 · 109

1.53 · 103 · 60 · 4 · 3 · 4
10

x ≤ 3

√
1372 · 106

1.53 · 6 · 48
x ≤ 146, 02

(7.1)

Using Formula 6.7, this results in a maximum image size of 584 (w) times 438 (h) pixels
with a maximum disparity of 58 (dmax) pixels for the nVidia GTX 750 Ti.

125

Appendix 3

This appendix contains scripts that were created for the comparison of [HZW+10]’s
implementation and our implementation.

For these scripts to work as intended, a directory called humenberger is required containing
the directories cones, teddy, tsukuba and venus. Each of these directories must contain
the result desparity map for [HZW+10]’s submission (alg55.png) from the Middlebury
Benchmark version 2 result table. Further, the Middlebury Benchmark SDK (MiddEval3)
is needed. In the trainingQ directory of the SDK, four directories have to be present,
old_cones, old_teddy, old_tsukuba and old_venus. These directories have to contain a
calibration file (calib.txt), a left and right input image (im0.png and im1.png) and the
corresponding ground truth image provided as PGM-file (disp2.pgm)1. The calibration
file (calib.txt) must contain the image dimensions for the image set (width and height),
the maximum disparity (ndist) and the disparity range for the runvis tool (vmin and
vmax).

Listing 14 shows an example calib.txt file. The width and height is set to the corresponding
image set’s dimensions. The parameters ndist, vmin and vmax are constant for all four
image sets.

1 #width and height are image set dependent
2 width=384
3 height=288
4 #ndist, vmin and vmax are equal for all four image sets
5 ndisp=70
6 vmin=0
7 vmax=70

Listing 14: Example for calib.txt-file

1Note: For the Tsukuba image set provided by
vision.middlebury.edu/stereo/data/scenes2001/data/tsukuba/tsukuba.zip the ground truth file
truedisp.row3.col3.pgm provides the disparities for the frame-match scene1.row3.col3.ppm and
scene1.row3.col5.ppm. Further, Portable Pixel Map (PPM)-files can be converted to PNG-files by regular
image viewing applications, such as the GNOME Image Viewer.

127

vision.middlebury.edu/stereo/data/scenes2001/data/tsukuba/tsukuba.zip

Listing 15 shows the Python3 script created to generate the colorized visualizations in
Figure 6.9 and Figure 6.10. The script in Listing 15 uses the function save_pfm shown
in Listing 16.

1 dataset = ["cones","teddy","venus","tsukuba"]
2 factor = {"cones":4,"teddy":4,"venus":8,"tsukuba":8}
3

4 def convertToPFM(inpath, outpath, scale=1):
5 img = scipy.misc.imread(inpath,"F")
6 save_pfm(outpath,img,scale)
7

8 ’’’
9 Path templates for input files and output files

10 ’’’
11 baseinput="humenberger/{}/alg55.png"
12 baseoutput="MiddEval3/trainingQ/old_{}/disp0HUMENBconvert.pfm"
13 gtinput="MiddEval3/trainingQ/old_{}/disp2.pgm"
14 gtoutput="MiddEval3/trainingQ/old_{}/disp0GT.pfm"
15

16 for x in dataset:
17 scale=factor[x]
18 convertToPFM(baseinput.format(x),baseoutput.format(x),scale)
19 convertToPFM(gtinput.format(x),gtoutput.format(x),scale)
20

21 subprocess.call([’./runviz’,’Q’],cwd="./MiddEval3")

Listing 15: Conversion script from old Middlebury formats to new Middlebury formats.

Listing 16 shows a function to save a numpy-array to a PFM-file.

1 def save_pfm(file, image, scale = 1):
2 closeit = False
3 if isinstance(file,str):
4 path = os.path.abspath(file)
5 closeit=True
6 try:
7 file = open(path,’w+’)
8 except:
9 file = open(path,’w’)

10 image = np.flipud(image)
11 image = image[:]/scale
12 scale = 1
13 color = None

128

14 if image.dtype.name != ’float32’:
15 raise Exception(’Image dtype must be float32.’)
16 if len(image.shape) == 3 and \
17 image.shape[2] == 3:
18 # color image
19 color = True
20 elif len(image.shape) == 2 or \
21 len(image.shape) == 3 and \
22 image.shape[2] == 1:
23 # greyscale
24 color = False
25 else:
26 txt=’Image must have HxWx3, HxWx1 or HxW dimensions.’
27 raise Exception(txt)
28 file.write(’PF\n’ if color else ’Pf\n’)
29 file.write(’%d %d\n’ % (image.shape[1], image.shape[0]))
30 endian = image.dtype.byteorder
31 if endian == ’<’ or \
32 endian == ’=’ and \
33 sys.byteorder == ’little’:
34 scale = -scale
35 file.write(’%f\n’ % scale)
36 image.tofile(file)
37 if closeit:
38 file.close()

Listing 16: Python3 function to save an numpy array to a pfm-file.

129

List of Figures

2.1 Epipolar geometry [Sze10]. 4
2.2 Rectification [Sze10] . 5
2.3 Pinhole camera sketch by [FP11] . 6
2.4 Pinhole imaging model [BK08] . 6
2.5 Extended pinhole imaging model [BK08] . 8
2.6 Radial Distortion plot (Jean-Yves Bouguet in [Bou]) 10
2.7 Barrel distortion [BK08] . 10
2.8 Tangential distortion (Sebastian Thrun in [BK08]) 11
2.9 Tangential Distortion plot (Jean-Yves Bouguet in [Bou]) 12
2.10 Fronto-Parallel Assumption (FPA) Problem[EE14] 18
2.11 Disparity Space Image . 20
2.12 Cost aggregation in DSI. 21
2.13 Minimum search in DSI. 24
2.14 Middlebury Stereo Benchmark data set: "2001 dataset". 30
2.15 Middlebury Stereo Benchmark data set: "2003 dataset" 31
2.16 Middlebury Stereo Benchmark data set: "2005 dataset" 31
2.17 Middlebury Stereo Benchmark data set: "2006 dataset" 33
2.18 Middlebury Stereo Benchmark training data set: "2014 dataset" 34
2.19 Middlebury Stereo Benchmark test data set: "2014 dataset" 34
2.20 Reinterpreted figure from [MGMG11]: Multiple OpenCL devices are available

to one host. 35
2.21 Reinterpreted figure from [MGMG11]. OpenCL device architecture. 37

4.1 Reinterpreted figure from [HZW+10] Figure (3): Sparse census mask. 45
4.2 Example for sparse census transform. 47

5.1 Flowdiagram: optional rectification. 53
5.2 Flowdiagram: Overview of Stereo Matching Process 54
5.3 Flowdiagram: Iterative cost aggregation. 54
5.4 Visualization of cost aggregation. 55
5.5 Search pattern for disparities with minimum costs in the DSI cost cube in the

right-to-left (a,b) and left-to-right (c,d) setting. 56
5.6 Basic idea of the consistency check . 57

130

5.7 Visualization of cost aggregation performed by CostXCubeKernel and CostY-
CubeKernel. 68

6.1 Plot of runtime measurements for all available devices. 85
6.2 Runtime prediction based on avg. FLOPC value with median lines. 87
6.3 FLOPC of Intel i7, nVidia Quadro, GTX 750 Ti and their average. 88
6.4 Setup time per image set and device. 91
6.5 Total matching and setup time. 92
6.6 Comparison of different algorithms . 93
6.7 Comparison of different algorithms in FLOPC. 94
6.8 Results of [HZW+10], from version 2 of the Middlebury Benchmark. 95
6.9 Colorized results of [HZW+10] . 96
6.10 Colorized ground truth for Middlebury 2003 data set. 96
6.11 Results of our implementation for the image sets of the Middlebury Benchmark

version 2. 97
6.12 Visualization of bad pixel percentage of the four image sets. Dense results

from [HZW+10]’s implementation and sparse results from our implementation. 98
6.13 Comparison of invalid rates of different algorithms for Q resolution. 101
6.14 Comparison of invalid rates of different algorithms for H resolution. 102
6.15 Comparison of invalid rates of different algorithms for F resolution. 102
6.16 Comparison of different algorithms’ average disparity error in quarter resolution.103
6.17 Comparison of different algorithms’ average disparity error in half resolution. 104
6.18 Comparison of average error rates of different algorithms for F resolution. . . 105
6.19 Average bad pixel percentage per resolution, algorithm, evaluation script and

δ value. 106
6.20 Data point positions of the image sets Djembe, DjembeL and Newkuba,

Adirondack, ArtL and Jadeplant for the device Intel IRIS 6100. 108

1 Comparison of different algorithms in Bad-Pixel (δ = 0.5) metric for half (H)
resolution. 113

2 Comparison of different algorithms in Bad-Pixel (δ = 1.0) metric. 114
3 Comparison of different algorithms in Bad-Pixel (δ = 2.0) metric. 115
4 Comparison of different algorithms in Bad-Pixel (δ = 4.0) metric. 116
5 Comparison of different algorithms in Bad-Pixel (δ = 0.5) metric for H resolution.117
6 Comparison of different algorithms in Bad-Pixel (δ = 1.0) metric. 118
7 Comparison of different algorithms in Bad-Pixel (δ = 2.0) metric. 119
8 Comparison of different algorithms in Bad-Pixel (δ = 4.0) metric. 120
9 Comparison of different algorithms in Bad-Pixel (δ = 0.5) metric for Q resolution.121
10 Comparison of different algorithms in Bad-Pixel (δ = 1.0) metric. 122
11 Comparison of different algorithms in Bad-Pixel (δ = 2.0) metric. 123
12 Comparison of different algorithms in Bad-Pixel (δ = 4.0) metric. 124

131

List of Tables

6.1 Algorithm Overview. 83
6.2 Overview of different devices mentioned in this chapter. 89
6.3 Algorithm - Runtime Overview. 92

132

List of Listings

1 RectificationKernel . 59
2 Find biggest possible work group size. 60
3 CensusKernel . 63
4 DiffCubeKernel . 66
5 CostXCubeKernel . 69
6 CostYCubeKernel . 71
7 MinimumR2LKernel . 72
8 MinimumL2RKernel . 73
9 CostCacheR2LKernel . 75
10 CostCacheL2RKernel . 77
11 ParabolicFittingKernel . 78
12 ConsistencyKernel . 79
13 Middlebury Evaluation - pseudocode . 100
14 Example for calib.txt-file . 127
15 Conversion script from old Middlebury formats to new Middlebury formats.128
16 Python3 function to save an numpy array to a pfm-file. 129

133

Bibliography

[Arn83] R. D. Arnold. Automated Stereo Perception. PhD thesis, Stanford University,
California, Dept. of Computer Science, 1983.

[Bar89] S. T. Barnard. Stochastic stereo matching over scale. International Journal
of Computer Vision, 3(1):17–32, 1989.

[BCPG08] M. Bleyer, S. Chambon, U. Poppe, and M. Gelautz. Evaluation of different
methods for using colour information in global stereo matching approaches.
In Congress of the International Society for Photogrammetry and Remote
Sensing, pages 415–420. ISPRS, July 2008.

[Bel96] P. N. Belhumeur. A bayesian approach to binocular steropsis. International
Journal of Computer Vision, 19(3):237–260, 1996.

[BG05] M. Bleyer and M. Gelautz. A layered stereo matching algorithm using
image segmentation and global visibility constraints. ISPRS Journal of
Photogrammetry and Remote Sensing, 59(3):128–150, 2005.

[BGM14] T. Botterill, R. Green, and S. Mills. A decision-theoretic formulation for
sparse stereo correspondence problems. In International Conference on 3D
Vision, pages 224–231. IEEE, December 2014.

[BI99] A. F. Bobick and S. S. Intille. Large occlusion stereo. International Journal
of Computer Vision, 33(3):181–200, 1999.

[BK04] Y. Boykov and V. Kolmogorov. An experimental comparison of min-
cut/max- flow algorithms for energy minimization in vision. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26(9):1124–1137,
September 2004.

[BK08] G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. O’Reilly Media, Inc., 2008. ISBN: 978-0596516130.

[BM17] K. Bae and B. Moon. An accurate and cost-effective stereo matching algo-
rithm and processor for real-time embedded multimedia systems. Multimedia
Tools and Applications, 76(17):17907–17922, 2017.

135

[BN98] D. N. Bhat and S. K. Nayar. Ordinal measures for image correspondence.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(4):415–
423, 1998.

[BNT07] S. T. Birchfield, B. Natarajan, and C. Tomasi. Correspondence as energy-
based segmentation. Image and Vision Computing, 25(8):1329–1340, 2007.

[Bou] J. Y. Bouguet. Camera calibration toolbox for matlab.
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html accessed on
2017-09-13.

[Bro64] D. C. Brown. An advanced reduction and calibration for photogrammetric
cameras. Technical report, Instrument corp. of Florida Melbourne, 1964.
Accession Number: AD0431886.

[Bro66] D. C. Brown. Decentering distortion of lenses. Photogrammetric Engineering,
32(3):444–462, 1966.

[Bro71] D. C. Brown. Close-range camera calibration. Photogrammetric Engineering,
37(8):855–866, 1971.

[BRR11] M. Bleyer, C. Rhemann, and C. Rother. Patchmatch stereo-stereo matching
with slanted support windows. In Proceedings of the British Machine Vision
Conference, pages 1–11. BMVA, September 2011.

[BT99] S. Birchfield and C. Tomasi. Depth discontinuities by pixel-to-pixel stereo.
International Journal of Computer Vision, 35(3):269–293, 1999.

[BVZ98] Y. Boykov, O. Veksler, and R. Zabih. A variable window approach to early
vision. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(12):1283–1294, 1998.

[BVZ01] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization
via graph cuts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(11):1222–1239, 2001.

[CAD+12] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. P. Singh. From OpenCL to
high-performance hardware on FPGAs. In International Conference on
Field Programmable Logic and Applications, pages 531–534. IEEE, August
2012.

[CHRM96] I. J. Cox, S. L. Hingorani, S. B. Rao, and B. M. Maggs. A maximum
likelihood stereo algorithm. Computer Vision and Image Understanding,
63(3):542–567, 1996.

136

[CLT+07] N. Chang, T. Lin, T. Tsai, Y. Tseng, and T. Chang. Real-time DSP
implementation on local stereo matching. In Conference on Multimedia and
Expo, pages 2090–2093. IEEE, July 2007.

[Col96] R. T. Collins. A space-sweep approach to true multi-image matching. In
Conference on Computer Vision and Pattern Recognition, pages 358–363.
IEEE, June 1996.

[Con18] A. E. Conrady. The five aberrations of lens-systems. Monthly Notices of
the Royal Astronomical Society, 79(1):60–66, 1918.

[Con19] A. E. Conrady. Decentred lens-systems. Monthly Notices of the Royal
Astronomical Society, 79(5):384–390, 1919.

[CZYS14] F. Cheng, H. Zhang, D. Yuan, and M. Sun. Stereo matching by using the
global edge constraint. Neurocomputing, 131:217–226, 2014.

[DRR03] J. Davis, R. Ramamoorthi, and S. Rusinkiewicz. Spacetime stereo: A unify-
ing framework for depth from triangulation. In Conference on Computer
Vision and Pattern Recognition, pages 359–390. IEEE, June 2003.

[EE10] N. Einecke and J. Eggert. A two-stage correlation method for stereoscopic
depth estimation. In Conference on Digital Image Computing: Techniques
and Applications, pages 227–234. IEEE, December 2010.

[EE14] N. Einecke and J. Eggert. Block-matching stereo with relaxed fronto-parallel
assumption. In Intelligent Vehicles Symposium, pages 700–705. IEEE, June
2014.

[Fau93] O. Faugeras. Three-dimensional computer vision: a geometric viewpoint.
MIT press, 1993. ISBN: 978-0262061582.

[FP11] D. Forsyth and J. Ponce. Computer Vision: a modern approach. Upper
Saddle River, NJ; London: Prentice Hall, 2011. ISBN: 978-8131709368.

[FRT97] A. Fusiello, V. Roberto, and E. Trucco. Efficient stereo with multiple
windowing. In Conference on Computer Vision and Pattern Recognition,
pages 858–863. IEEE, June 1997.

[Gat55] J. W. Gates. The measurement of comatic aberrations by interferometry.
Proceedings of the Physical Society. Section B, 68(12):1065, 1955.

[GB06] M. Gerrits and P. Bekaert. Local stereo matching with segmentation-based
outlier rejection. In The 3rd Canadian Conference on Computer and Robot
Vision, pages 66–66. IEEE, June 2006.

[GFGC17] T. Gong, T. Fan, J. Guo, and Z. Cai. Gpu-based parallel optimization of
immune convolutional neural network and embedded system. Engineering
Applications of Artificial Intelligence, 62:384–395, 2017.

137

[GLU12] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In Conference on Computer Vision and
Pattern Recognition, pages 3354–3361. IEEE, June 2012.

[Gri85] W. E. L. Grimson. Computational experiments with a feature based stereo
algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,
(1):17–34, 1985.

[GSC+07] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz. Multi-view
stereo for community photo collections. In International Conference on
Computer Vision, pages 1–8. IEEE, October 2007.

[GYWG07] M. Gong, R. Yang, L. Wang, and M. Gong. A performance study on
different cost aggregation approaches used in real-time stereo matching.
International Journal of Computer Vision, 75(2):283–296, 2007.

[Han74] M. J. Hannah. Computer matching of areas in stereo images. PhD thesis,
Stanford University, California, Dept. of Computer Science, 1974.

[HBG10] A. Hosni, M. Bleyer, and M. Gelautz. Near real-time stereo with adaptive
support weight approaches. In International Symposium 3D Data Processing,
Visualization and Transmission, pages 1–8. IEEE, January 2010.

[HBGR09] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann. Local stereo matching
using geodesic support weights. In Conference on Image Processing, pages
2093–2096. IEEE, November 2009.

[HIG02] H. Hirschmüller, P. R. Innocent, and J. Garibaldi. Real-time correlation-
based stereo vision with reduced border errors. International Journal of
Computer Vision, 47(1):229–246, April 2002.

[Hir05] H. Hirschmüller. Accurate and efficient stereo processing by semi-global
matching and mutual information. In Conference on Computer Vision and
Pattern Recognition, pages 807–814. IEEE, June 2005.

[Hir08] H. Hirschmüller. Stereo processing by semiglobal matching and mutual infor-
mation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(2):328–341, 2008.

[HMJP92] Y. C. Hsieh, D. M. McKeown Jr, and F. P. Perlant. Performance evaluation
of scene registration and stereo matching for artographic feature extraction.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):214–
238, 1992.

[HRBG11] A. Hosni, C. Rhemann, M. Bleyer, and M. Gelautz. Temporally consistent
disparity and optical flow via efficient spatio-temporal filtering. In Pacific-
Rim Symposium on Image and Video Technology, pages 165–177. Springer,
November 2011.

138

[HS07] H. Hirschmüller and D. Scharstein. Evaluation of cost functions for stereo
matching. In Conference on Computer Vision and Pattern Recognition,
pages 1–8. IEEE, June 2007.

[HS09] H. Hirschmüller and D. Scharstein. Evaluation of stereo matching costs
on images with radiometric differences. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(9):1582–1599, September 2009.

[HZW+10] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze. A
fast stereo matching algorithm suitable for embedded real-time systems.
Computer Vision and Image Understanding, 114(11):1180–1202, 2010.

[JGM14] J. Joglekar, S. S. Gedam, and B. K. Mohan. Image matching using sift
features and relaxation labeling technique - a constraint initializing method
for dense stereo matching. IEEE Transactions on Geoscience and Remote
Sensing, 52(9):5643–5652, September 2014.

[JS92] J. A. Jensen and N. B. Svendsen. Calculation of pressure fields from arbi-
trarily shaped, apodized, and excited ultrasound transducers. IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency Control, 39(2):262–267,
1992.

[KNM+14] D. Kondermann, R. Nair, S. Meister, W. Mischler, B. Güssefeld, K. Honauer,
S. Hofmann, C. Brenner, and B. Jähne. Stereo ground gruth with error
bars. In Asian Conference on Computer Vision., pages 595–610. Springer,
November 2014.

[KO94] T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive
window: Theory and experiment. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 16(9):920–932, 1994.

[KPP13] J. Kowalczuk, E. T. Psota, and L. C. Perez. Real-time stereo matching
on cuda using an iterative refinement method for adaptive support-weight
correspondences. IEEE Transactions on Circuits and Systems for Video
Technology, 23(1):94–104, January 2013.

[KSC01] S. B. Kang, R. Szeliski, and J. Chai. Handling occlusions in dense multi-view
stereo. In Conference on Computer Vision and Pattern Recognition, pages
103–110. IEEE, December 2001.

[KSK06] A. Klaus, M. Sormann, and K. Karner. Segment-based stereo matching using
belief propagation and a self-adapting dissimilarity measure. In International
Conference on Pattern Recognition, pages 15–18. IEEE, September 2006.

[KZ01] V. Kolmogorov and R. Zabih. Computing visual correspondence with
occlusions using graph cuts. In International Conference on Computer
Vision, pages 508–515. IEEE, July 2001.

139

[LQ02] M. Lhuillier and L. Quan. Match propagation for image-based modeling and
rendering. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(8):1140–1146, 2002.

[LQ05] M. Lhuillier and L. Quan. A quasi-dense approach to surface reconstruction
from uncalibrated images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(3):418–433, 2005.

[LT98] R. A. Lane and N. A. Thacker. Tutorial: Overview of stereo matching
research. Imaging Science and Biomedical Engineering Division, Medical
School, University of Manchester, 1998.

[MGMG11] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg. OpenCL program-
ming guide. Pearson Education, 2011. ISBN: 978-0321749642.

[MKS89] L. Matthies, T. Kanade, and R. Szeliski. Kalman filter-based algorithms for
estimating depth from image sequences. International Journal of Computer
Vision, 3(3):209–238, 1989.

[MMP87] J. Marroquin, S. Mitter, and T. Poggio. Probabilistic solution of ill-posed
problems in computational vision. Journal of the american statistical
association, 82(397):76–89, 1987.

[OBDA11] M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos. Synthesis of
platform architectures from opencl programs. In International Symposium
on Field-Programmable Custom Computing Machines, pages 186–193. IEEE,
May 2011.

[OK92] M. Okutomi and T. Kanade. A locally adaptive window for signal matching.
International Journal of Computer Vision, 7(2):143–162, 1992.

[PBG13] E. Piatkowska, A. N. Belbachir, and M. Gelautz. Asynchronous stereo
vision for event-driven dynamic stereo sensor using an adaptive cooperative
approach. In International Conference on Computer Vision Workshops,
pages 45–50. IEEE, March 2013.

[PKBG17] E. Piatkowska, J. Kogler, N. Belbachir, and M. Gelautz. Improved co-
operative stereo matching for dynamic vision sensors with ground truth
evaluation. In Conference on Computer Vision and Pattern Recognition
Workshops, pages 370–377. IEEE, July 2017.

[Pra85] K. Prazdny. Detection of binocular disparities. Biological cybernetics,
52(2):93–99, 1985.

[SBGB09] F. Seitner, M. Bleyer, M. Gelautz, and R. Beuschel. Development of
a high-level simulation approach and its application to multicore video
decoding. IEEE Transactions on Circuits and Systems for Video Technology,
19(11):1667–1679, 2009.

140

[SBSG08] F. Seitner, M. Bleyer, R. M. Schreier, and M. Gelautz. Evaluation of
data-parallel splitting approaches for h.264 decoding. In International
Conference on Advances in Mobile Computing and Multimedia, pages 40–49.
ACM, November 2008.

[Sei57] L. Seidel. Ueber die Theorie der Fehler, mit welchen die durch optische
Instrumente gesehenen Bilder behaftet sind, und über die mathematischen
Bedingungen ihrer Aufhebung. Abhandlungen der Naturwissenschaftlich-
Technischen Commission bei der Königl. Bayerischen Akademie der Wis-
senschaften in München. Cotta, 1857.

[SHK+14] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić,
X. Wang, and P. Westling. High-resolution stereo datasets with subpixel-
accurate ground truth. In German Conference on Pattern Recognition,
pages 31–42. Springer, September 2014.

[SLKS05] J. Sun, Y. Li, S. B. Kang, and H. Shum. Symmetric stereo matching
for occlusion handling. In Conference on Computer Vision and Pattern
Recognition, pages 399–406. IEEE, June 2005.

[SP07] D. Scharstein and C. Pal. Learning conditional random fields for stereo. In
Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE,
June 2007.

[SS98] D. Scharstein and R. Szeliski. Stereo matching with nonlinear diffusion.
International Journal of Computer Vision, 28(2):155–174, 1998.

[SS03] D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using
structured light. In Conference on Computer Vision and Pattern Recognition,
pages 195–202. IEEE, June 2003.

[SSZ01] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. In Workshop on Stereo
and Multi-Baseline Vision, pages 131–140. IEEE, December 2001.

[STH80] C. C. Slama, C. Theurer, and S. W. Henriksen. Manual of Photogrammetry.
American Society of Photogrammetry, 1980. ISBN: 978-0937294017.

[Str12] J. Strong. Concepts of classical optics. Courier Corporation, 2012. ISBN:
978-0486432625.

[SZ99] R. Szeliski and R. Zabih. An experimental comparison of stereo algorithms.
In International Workshop on Vision Algorithms, pages 1–19. Springer,
September 1999.

[Sze10] R. Szeliski. Computer Vision: Algorithms and Applications. Springer Science
& Business Media, 2010. ISBN: 978-1848829343.

141

[SZS03] J. Sun, N. Zheng, and H. Shum. Stereo matching using belief propagation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7):787–
800, 2003.

[TLLA16] B. Tippetts, D. J. Lee, K. Lillywhite, and J. Archibald. Review of stereo
vision algorithms and their suitability for resource-limited systems. Journal
of Real-Time Image Processing, 11(1):5–25, 2016.

[TMDSA08] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda. Classification
and evaluation of cost aggregation methods for stereo correspondence. In
Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE,
June 2008.

[TS00] H. Tao and H. S. Sawhney. Global matching criterion and color segmentation
based stereo. In Workshop on Applications of Computer Vision, pages 246–
253. IEEE, December 2000.

[TWZ08] Y. Taguchi, B. Wilburn, and C. L. Zitnick. Stereo reconstruction with
mixed pixels using adaptive over-segmentation. In Conference on Computer
Vision and Pattern Recognition, pages 1–8. IEEE, June 2008.

[Vek01] O. Veksler. Stereo matching by compact windows via minimum ratio cycle.
In International Conference on Computer Vision, pages 540–547. IEEE,
July 2001.

[Vek03] O. Veksler. Fast variable window for stereo correspondence using integral
images. In Conference on Computer Vision and Pattern Recognition, pages
556–561. IEEE, June 2003.

[Was57] F. E. Washer. The effect of prism on the location of the principal point.
Photogrammetric Engineering, 28(3):520–532, 1957.

[YK05] K. Yoon and I. Kweon. Locally adaptive support-weight approach for visual
correspondence search. In Conference on Computer Vision and Pattern
Recognition, pages 924–931. IEEE, June 2005.

[YK06] K. Yoon and I. S. Kweon. Adaptive support-weight approach for corre-
spondence search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(4):650–656, 2006.

[YWY+06] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister. Real-time
global stereo matching using hierarchical belief propagation. In British
Machine Vision Conference, pages 989–998. BMVC, September 2006.

[ZCS03] L. Zhang, B. Curless, and S. M. Seitz. Spacetime stereo: Shape recovery for
dynamic scenes. In Conference on Computer Vision and Pattern Recognition,
pages 367–374. IEEE, June 2003.

142

[ZFM+14] K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, S. Yan, and Q. Tian. Cross-
scale cost aggregation for stereo matching. In Conference on Computer
Vision and Pattern Recognition, pages 965–976. IEEE, June 2014.

[Zha99] Z. Zhang. Flexible camera calibration by viewing a plane from unknown
orientations. In International Conference on Computer Vision, pages 666–
673. IEEE, September 1999.

[Zha00] Z. Zhang. A flexible new technique for camera calibration. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334,
November 2000.

[ZHHL06] L. Zhang, X. Huang, B. Huang, and P. Li. A pixel shape index coupled with
spectral information for classification of high spatial resolution remotely
sensed imagery. IEEE Transactions on Geoscience and Remote Sensing,
44(10):2950–2961, 2006.

[ZK00] C. L. Zitnick and T. Kanade. A cooperative algorithm for stereo matching
and occlusion detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(7):675–684, 2000.

[ZK07] C. L. Zitnick and S. B. Kang. Stereo for image-based rendering using image
over-segmentation. International Journal of Computer Vision, 75(1):49–65,
2007.

[ZK15] S. Zagoruyko and N. Komodakis. Learning to compare image patches via
convolutional neural networks. In Computer Vision and Pattern Recognition,
pages 4353–4361. IEEE, June 2015.

[ZL16] J. Zbontar and Y. LeCun. Stereo matching by training a convolutional
neural network to compare image patches. Journal of Machine Learning
Research, 17(1-32):2, 2016.

[ZNPC13] J. Zhang, J. F. Nezan, M. Pelcat, and J. G. Cousin. Real-time GPU-based
local stereo matching method. In Conference on Design and Architectures
for Signal and Image Processing, pages 209–214. IEEE, October 2013.

[ZS00] Z. Zhang and Y. Shan. A progressive scheme for stereo matching. In
European Workshop on 3D Structure from Multiple Images of Large-Scale
Environments, pages 68–85. Springer, March 2000.

[ZW94] R. Zabih and J. Woodfill. Non-parametric local transforms for computing
visual correspondence. In European Conference on Computer Vision, ECCV
’94, pages 151–158. Springer, Springer, June 1994.

143

	Abstract
	Kurzfassung
	Abreviations
	Contents
	Introduction and Motivation
	Background and Theoretical Foundation
	Basic Concepts of Stereo Matching
	Middlebury Benchmark
	OpenCL

	State of the Art
	Sparse Stereo Matching
	Dense Stereo Matching
	Local Stereo Methods
	Global Stereo Methods
	Real-Time Stereo Matching
	Real-Time Hardware for Stereo Matching

	A Stereo Matching Algorithm
	Sparse Census Cost Function
	Aggregation Strategy
	Sub Pixel Refinement
	Left-Right Consistency Check

	Implementation
	Overview
	RectificationKernel
	CensusKernel
	DiffCubeKernel
	CostXCubeKernel
	CostYCubeKernel
	MinimumKernels
	CostCacheKernels
	ParabolicFittingKernel
	ConsistencyKernel
	Conclusion

	Evaluation
	Timing results
	Implementation-Result Comparison
	Result Errors
	Additional Results

	Summary and Outlook
	Appendix 1
	Appendix 2
	Appendix 3
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

