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Abstract

Graph signal processing is an emerging field of large-scale data analysis that aims to
provide useful algebraic signal processing tools to process data defined on graph do-
mains. We use the algebraic approach of graph signal processing to introduce basic
concepts, such as graph filters, graph Fourier transform, sampling on graphs and the
perfect recovery of sampled graph signals.

In this thesis, we investigate the performance of an iterative recovery algorithm
proposed by N. Görtz (2017). The considered method is universally applicable to general
graph weight matrices and has an analytic upper error bound that allows to predict the
number of iterations as a function of the desired accuracy.

The performance of the iterative algorithm for different weight matrices with en-
tries taken from different random distributions (either uniform, Gaussian or discrete
distribution) is compared. Moreover, the impact of multiple factors, such as the signal
dimension, the size of the frequency support set, the number of measured signal com-
ponents, and the sparsity factor of the weight matrices is analyzed for different desired
accuracies.

The simulations show that the iterative algorithm performs considerably better in
terms of complexity than the classical matrix inversion used in the perfect recovery theo-
rem, when a proper proportion between the signal dimension, frequency support set and
number of measured signal components is chosen. Moreover, a significant reduction of
the required number of iterations can be achieved, when a lower accuracy of the recov-
ered signal is allowed. Furthermore, the analysis of the results suggested an approach to
avoid the computation of the largest and smallest eigenvalue of each realization of the
weight matrix, that allows further complexity reduction of the iterative algorithm.
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Chapter 1

Introduction

Nowadays, almost every aspect of human life is being recorded at all levels, which results
in rapidly growing volumes of data. Extracting valuable information from the flood of
information is always worthy in our life, and when it comes to the digital world, it is
also beneficial and requires innovative approaches.

Over the last century, signal processing has been used as one of the most important
techniques to analyze and synthesize time signals stemming from various sources. Due
to the explosive growth of information and communication, classical signal processing
can not solely solve the problems, therefore new approaches need to be developed to
represent and process large data sets with complex structure. In order to benefit from
the powerful algebraic signal processing tools, graphs are taken into consideration to
model the data sets and their relations. Graphs, with their graphical representation,
have simplified many problems and by merging traditional signal processing for one-
dimensional time signals with graph theory, a new method, which is called graph signal
processing, was developed to cope with state of the art challenges.

Therefore, in this work, we start by giving some introduction to graph theory and to
some discrete-time signal processing concepts that are merged to define the fundamentals
of graph signal processing subsequently. Following the previously published frameworks
in this area, we present an optimum solution to recover graphs from sampled graph
signals by an efficient iterative algorithm [1]. Several simulations were carried out to
examine the performance of the iterative algorithm, and a further possible improvement
of the algorithm was tested in the scope of this thesis. In the end, we conclude by a
summary of the obtained results and present some suggestions for future work.
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Chapter 2

Graph Signal Processing

Signal processing is an enormous and diverse field that has a long and rich history. The
emergence of digital computers and microprocessors caused a major shift in signal pro-
cessing, from analog to digital technologies. Digital technologies were also accompanied
by important theoretical developments, such as the fast Fourier transform algorithm
(FFT), giving a rise to the field of digital signal processing.

Graphs offer the ability to model different data sets and complex interactions among
them. Therefore, one paradigm, that can be considered as a powerful approach to analyze
large-scale data, is Graph Signal Processing , which extends classical signal processing
theory to general graphs. As a result, graph signal processing has laid a strong foothold
in various application domains such as sensor networks [2], image processing [3, 4, 5]
and machine learning [6]. In the following, we introduce some fundamental concepts of
graphs and we extend classical discrete signal processing (DSP) basics to general graphs
(DSPG), i.e., time shift, filters, Fourier transform and sampling.

2.1 Fundamental Concepts and Definitions

Data sets are related by dependency, physical proximity, similarity or by other properties.
This ”relation” can be expressed through a graph that can take any arbitrary structure.
Among a large variety of existing graph structures in literature, we restrict ourselves to
a few classes of graphs in this thesis.

2.1.1 Graphs and Directed Graphs

Conceptually, a graph connects different nodes with each other. A graph G can be
defined as a pair of sets (V, E), where V is a nonempty set of nodes and E is the set of
edges. Fig. 2.1 shows an example for a graph.

Graphs can be classified in directed graphs and undirected graphs. A directed graph
G is formed by nodes connected by directed edges and is a version of graph with ordered
pairs of the elements of E . Every arc of a directed graph has an initial and terminal

11
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Figure 2.1: Example of a graph

node. The arc from node v1 to node v2 is denoted as (v1, v2), the opposite direction arc
as (v2,v1). Fig. 2.2 illustrates these two types of graphs.
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Figure 2.2: Example of (a) an undirected graph, (b) directed graph

2.1.2 Weighted Graphs

In addition to the previous definitions, a weighted graph G is defined as a graph, where
a weight is associated to each edge. Formally, a weighted graph is then defined as the
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triplet (V, E , w), where w : E → R associates a real weight to each edge of the graph.
Fig. 2.3 shows a weighted graph.

As an example, a common way to associate a weight wij to each edge of the graph
is via a thresholded Gaussian kernel weighting function which is defined as [7]:

wij =

{
exp(−d(i,j)2

2θ2
), d(i, j) ≤ ε

0 otherwise
, (2.1)

where d(i, j) represents the distance between two different connected nodes i and j.
Then we can redefine the triplet (V, E , w) as (V, E , W), where W is the weight matrix.

For a given weight matrix W, a diagonal matrix D can be defined, such that the
value of its ith diagonal element equals the sum of the weights of all entering edges
di =

∑N
j=1wij . The graph Laplacian L is then defined as

L = D−W.

Therefore, for an undirected graph, the matrix L is a real symmetric matrix. We will
see that this leads to nice and useful propreties for the spectral decomposition of graphs.
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(b)

Figure 2.3: Example of (a) a weighted undirected graph, and (b) a weighted directed
pseudograph1

2.2 Graph Signals

Considering a dataset with N elements, each data element can be seen as a node of a
graph and the dataset can be analyzed via graph theory. For instance, the nodes of a
graph can represent the values of temperature sensors across a country, colour values of
an image pixel, all available goods of an online shopping website, lists of all movies in

1A graph is called directed pseudograph, when parallel arcs and loops are admissible [8].



14 CHAPTER 2. GRAPH SIGNAL PROCESSING

Netflix, lists of all songs in Spotify or Youtube etc. The graph, that shows the connection
of the nodes, can take any arbitrary structure which might change slowly or fast within
time.

By indexing all N nodes of the graph and associating a real or complex number to
each node vi, we introduce a graph signal , which can be treated as an N dimensional
vector x = (x1, x2, ..., xN )T with real or complex scalars. Each element of a graph signal
vector x is established by a mapping of the node vi from the set V into the set of complex
numbers C according to:

x : V → C, vi 7→ xi. (2.2)

Fig. 2.4 shows three examples of graph signals.

(a)

(b) (c)

Figure 2.4: Three examples of graph signals: (a) Temperature measurements across the
United States reside on the graph that represents the network of weather sensors; (b)
Web site topics are encoded as a signal that resides on the graph formed by hyperlinks
between the Web sites; (c) The average numbers of tweets for Twitter users are encoded
as a signal that resides on the graph representing who follows whom. The figures and
the respective interpretation are taken from [9].
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2.3 Graph Shift

In DSP, one of the basic nontrivial operations on a signal is delaying the input signal
x by one sample. Therefore, the nth sample of the output can be expressed as x̃n =
xn−1mod N . The shifted signal can be written as

x̃ = [x̃0 . . . x̃N−1]
T = Cx, (2.3)

where C is the N ×N cyclic shift matrix (only nonzero entries are shown) [9].

C =


1

1
. . .

1

 . (2.4)

The corresponding time series graph to the adjacency matrix (2.4) is shown in Fig. 2.5.

v1v0 vN−2 vN−1

Figure 2.5: Directed line graph representing periodic time series

In DSPG the notion of shift is extended to general graphs by defining the operator
graph shift that replaces a signal value xi at node vi with a weighted linear combination
of the signal values at its neighbours

x̃n =

N−1∑
m=0

wn,mxm =
∑
m∈Nn

wn,mxm, (2.5)

where Nn denotes the set of neighbours of xn as Nn = {m|wn,m 6= 0}. Note that as
opposed to classical DSP, shifting a finite signal does not need the consideration of
boundary conditions, since in DSPG, the graph G = (V,W) captures the boundary
conditions.

Therefore, the graph shift or weighted adjacency matrix is defined as an N × N
matrix W that describes the “relation” between the components xi, i = 1, . . . , N and
xj , j = 1, . . . , N .

x̃ = [x̃0 . . . x̃N−1]
T = Wx. (2.6)

The elements of matrix W are assumed to be real, wij ∈ R, i, j = 1, 2, . . . , N and the
neighbourhood relationships between two signal components xi and xj are not necessarily
symmetric, e.g. in a directed graph, wij may differ from wji (wij 6= wji).

It is commonly assumed that weighted adjacency matrices are symmetric (wij =
wji) (undirected graphs) with real positive weights wij > 0 and that the graph signals
are smooth. A smooth graph signal is defined as a signal with small values of some
variation metric S(x) which can be defined as
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S(x) =
1

2

N∑
i=1

N∑
j=1

wij(xi − xj)2. (2.7)

Therefore, the signal model can be defined implicitly, e.g.: x ∈ X = {x : S(x) < ε||x||22}
with ε ∈ R+.

In Fig. (2.6) an undirected graph (symmetric) and its weighted adjacency matrix
are depicted. In this graph, there are two disconnected sub-graphs (w36 = 0) and no
self-loop, wjj = 0. Note that in general self-loops might exist.

x1

x2

x3
x4

x6 x7

x8
x5

w12

w23

w13
w14

(w36)

w56

w58

w68

w67

w78

W=



0 w12 w13 w14 0 0 0 0
w12 0 w23 0 0 0 0 0
w13 w23 0 0 0 0 0 0
w14 0 0 0 0 0 0 0
0 0 0 0 0 w56 0 w58

0 0 0 0 w56 0 w67 w68

0 0 0 0 0 w67 0 w78

0 0 0 0 w58 w68 w78 0


Figure 2.6: Graph shift and corresponding weighted adjacency matrix

The relation (2.5) can be described as a first-order interpolation, regression on graphs,
or weighted averaging that are broadly used in telecommunication, distributed consen-
sus, Markov processes and other approaches. Using definition (2.5) leads to a signal
processing framework for linear and commutative graph filters and respectively well-
defined concepts of the Fourier transform [9].

2.4 Graph Filters

In classical DSP, a filter is defined as a system H(·) which takes a signal as an input
and returns another signal as an output, i.e.,

x̃ = [x̃0 . . . x̃N−1]
T = H(x). (2.8)

Linear shift-invariant (LSI) filters are the most familiar filters used in digital signal
processing for time series. A filter is linear, if for any linear combination of input signals,
the output signal can be expressed as

H(αx1 + βx2) = αH(x1) + βH(x2). (2.9)

Filters H1(·) and H2(·) are said to be shift invariant or commutative, if there is no
preference in the order of their application to a signal:
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H1(H2(x)) = H2(H1(x)) (2.10)

Another way to represent signals and filters in DSP is via the z-transform.A time
delay or shift is denoted as z−1, and the LSI filters can be expressed as polynomials in
z−1 [9]

h(z−1) =
N−1∑
n=0

hnz
−n. (2.11)

In a similar manner, finite time signals are given by

x(z−1) =
N−1∑
n=0

xnz
−n. (2.12)

Consequently, the output signal is the multiplication of the z-transform of the filter with
the input signal z-transform modulo the polynomial z−N − 1 [10]

x̃(z−1) =

N−1∑
n=0

x̃nz
−n = h(z−1)x(z−1) mod(z−N − 1). (2.13)

Equivalently, the output signal can be written as [11]

x̃ = h(C)x, (2.14)

with

h(C) =
N−1∑
n=0

hnC
n =


h0 hN−1 . . . h1

h1
. . .

. . .
...

...
. . .

. . . hN−1
hN−1 . . . h1 h0

 , (2.15)

where the circulant matrix h(C) in (2.15) is taken by substitution of the cyclic shift
matrix (2.4) into the filter z-transform (2.11). In finite-time DSP, this kind of substitu-
tion form a surjective mapping froms the space of LSI filters onto the space of N × N
matrices [9].

In DSPG, the concept of classical DSP filters is extended to graphs. In an analogous
manner as the time shift, (2.3) is extended to the graph shift (2.6), filters (2.15) are
extended to graph filters. For this purpose, we first define the minimum polynomial and
characteristic polynomial of a matrix.

Definition 2 .1 :
For a given matrix A of size N × N , the monic polynomial mA(x) of smallest degree
such that mA(A) = 0N is called the minimal polynomial of the matrix A.
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The degree of the minimal polynomial is deg(mA(x)) = NA ≤ N .

Definition 2 .2 :
For a given matrix A of size N ×N , its characteristic polynomial is defined as pA(x) =
det(xI−A).

By applying the previous definitions, the following theorem proves that any linear, shift-
invariant graph filter can be described as a polynomial in the shift W.

Theorem 2 .1 (adopted from [12],[13],[14]):
Let W be the graph adjacency matrix and assume that its characteristics and minimal
polynomials are equal, pW(x) = mW(x). Then, a graph filter H is linear and shift
invariant if and only if (iff) H is a polynomial in the graph shift W, i.e., iff there exists
a polynomial

h(x) = h0 + h1x+ · · ·+ hLx
L (2.16)

with possibly complex coefficient hl ∈ C, such that :

H = h(W) = h0I + h1W + · · ·+ hLWL. (2.17)

Proof : Since the shift-invariance condition W(Hx) = H(Wx) holds for all graph signals
x ∈ X = CN , the matrices W and H commute: WH = HW. As pW(x) = mW(x), all
eigenvalues of W have exactly one eigenvector associated with them. Then, the graph
matrix H commutes with the shift W iff it is a polynomial in W [12].

The condition pW(x) = mW(x) required in Theorem 2.1 is not always fulfilled. For
this purpose, the concept of equivalent graph filters is introduced.

Definition 2 .3 :
Two filters h(W) and g(W̃) are said to be equivalent, if for any input x ∈ X , h(W)x =
g(W̃)x for any graph shift matrices W and W̃.

Therefore, for a graph G = (V,W), where the condition pW(x) = mW(x) does
not hold, a graph G̃ = (V,W̃), with same nodes V but possibly different edges can be
considered such that pW̃(x) = mW̃(x). Then, according to following theorem, graph

filters applied on G can be formulated as equivalent filter applied on G̃.

Theorem 2 .2 [12]:
For any matrix W, there exists a polynomial r(x) and a matrix W̃ such that W = r(W̃)
and pW̃(x) = mW̃(x).

The proof of Theorem 2.2 can be found in [12].
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Consequently, the condition pW(x) = mW(x) of Theorem 2.1 can be assumed to be
held by any graph, since in case a graph does not hold the condition, another graph
G̃ = (V,W̃) for which the condition is fulfilled can be found and W̃ can be assigned to
W.

The polynomial division of the filter polynomial h(x) by the minimal polynomial
mW(x) can be expressed as

h(x) = q(x)mW(x) + r(x), (2.18)

with the remainder r(x) of degree deg(r(x)) < deg(mW(x)) = NW. The graph filter in
(2.17) then equals

h(W) = q(W)mW(W) + r(W) = q(W)0N + r(W) = r(W). (2.19)

Therefore, h(W) = r(W) and deg(h(x)) = deg(r(x)) < deg(mW(x)) = NW. Having
shown that the number of taps in any graph filter is limited to NW, the set of all graph
filters on a graph G = (V,W) can be defined as

F =

H : H =

NW−1∑
l=0

hlW
l
∣∣∣hl ∈ C

 . (2.20)

Another property of the graph filter is its invertibility.

Theorem 2 .3 [12]:
A graph filter H = h(W) ∈ F is invertible if and only if for all distinct eigenvalues of W,
λ0, . . . , λM−1, h(λM ) 6= 0. Hence, there exists a polynomial g(x) with deg(g(x)) < NW

which satisfies

h(W)−1 = g(W) ∈ F . (2.21)

The proof of Theorem 2.3 and the way to construct the polynomial g(x) can be found
in [12].

Theorem 2.3 suggests that instead of inverting matrix H, we can construct a poly-
nomial g(x) which has at most NW taps. Finally, following Theorem 2.2 and (2.20), it
can be concluded that all graph filters can be completely specified by their taps as

h(W) =

NW−1∑
l=0

hlW
l. (2.22)

The output of the graph filter is given by

x̃ = h(W)x. (2.23)
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Similarly to the computation of output signals by using the z-transform in (2.13), the
output signal of graph filters can also be computed by multiplication of the z-transform
of the graph filters with the z-transform of the input signal. Assuming a graph signal

x(z−1) =
N−1∑
n=0

xnbn(z−1), (2.24)

where bn(z−1), 0 ≤ n < N , are linearly independent polynomials of degree at most N
(see [12] for details), the obtained output signal is

x̃(z−1) =

N−1∑
n=0

x̃nbn(z−n) = h(z−1)x(z−1) mod mW(z−1). (2.25)

2.5 Spectral Decomposition and Graph Fourier Transform

Another fundamental concept in DSP is the concept of the Fourier transform. To define
the Fourier transform in DSPG, we start by introducing spectral decomposition. By
spectral decomposition, the signal space X is decomposed into subspaces Xk which are
invariant to filtering. Therefore, for any signal xk ∈ Xk and filter h(W) ∈ F , the output
lies in the same subspace Xk.

xk ∈ Xk ⇒ x̃k = h(W)xk ∈ Xk ∀h(W) ∈ F . (2.26)

To decompose uniquely every signal x ∈ X into K signals according to

x = x1 + x2 + · · ·+ xk−1, (2.27)

each component xk ∈ Xk must fulfil three conditions [12]:

1) no intersection of the invariant subspaces Xk, i.e., Xk ∩ Xm = {0} for k 6= m;

2) dim X0 + · · ·+ dim XK−1 = dim X = N ;

3) each Xk cannot be decomposed into further invariant subspaces (it is irreducible).

By holding these three conditions, the space X can be decomposed into

X = X1 ⊕X2 ⊕ · · · ⊕ Xk−1, (2.28)
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where ⊕ is the symmetric difference operator.

Since the graph can take an arbitrary structure, the Adjacency matrix W might
not be diagonalizable. Therefore, we introduce the Jordan decomposition of a matrix
in order to formulate spectral decomposition of the signal space X and to express an
expansion of the graph signal x.

Definition 2 .4 :
The Jordan decomposition of a matrix A ∈ CN×N is defined as

A = VJV−1, (2.29)

with the Jordan normal form J of the matrix A and the matrix V that contains the
generalized eigenvectors of A [15].

In general, the matrix A has M ≤ N distinct eigenvalues λ0, . . . λM−1. If M = N ,
the Jordan normal form J is composed of N different 1 × 1 Jordan blocks J1(λm),
m = 0, 1, . . . , N − 1, that are equal to the eigenvalues of A,

J =

 J1(λ0)
. . .

J1(λM−1)

 . (2.30)

The matrix V is then formed by the eigenvectors of A.

Otherwise, if M < N , Dm independent eigenvectors vm,d can be found for each
eigenvalue λm by solving the linear equation

(A− λmI)vm,d = 0, d = 0, . . . , Dm − 1. (2.31)

Dm is denoted as geometric multiplicity of λm. Each eigenvector vm,d generates a Jordan
chain composed of Rm,d ≥ 1 linear independent generalized eigenvectors vm,d,r.

The generalized eigenvectors can be found recursively [12] according to

vm,d,0 = vm,d and (2.32)

(A− λmI)vm,d,r = vm,d,r−1.

For every eigenvector, a Jordan block of dimension Rm,d can then be expressed as
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JRm,d(λm) =


λm 1

λm 1
. . .

. . .

λm 1
λm

 , (2.33)

with all other entries set to zero. Furthermore, all generalized eigenvectors vm,d,r, that
corresponds to the eigenvector vm,d, form a N ×Rm,d matrix

Vm,d = (vm,d,0, . . . ,vm,d,Rm,d−1). (2.34)

The matrix V is then obtained by grouping all matrices Vm,d

V = (V0,0, . . . ,VM−1,DM−1
). (2.35)

Finally, the matrix J is composed of all Jordan blocks located on its diagonal

J =

 JR0,0(λ0)
. . .

JRM−1,DM−1
(λM−1)

 . (2.36)

By considering the Jordan decomposition of the weight matrix W, the vector subspace
Xm,d can be expressed as

Xm,d = span{vm,d,0, . . . ,vm,d,Rm,d−1}, (2.37)

with the generalized eigenvectors vm,d,r. Since all generalized eigenvectors are linearly
independent, every signal xm,d ∈ Xm,d can be expanded according to

xm,d = x̂m,d,0vm,d,0 + . . . + x̂m,d,Rm,d−1vm,d,Rm,d−1. (2.38)

Furthermore, all subspaces Xm,d have no intersection and their dimensions add up to N ,
since all generalized eigenvectors of W are linearly independent. The spectral decom-
position of X can then be expressed as [12]

X =

M−1⊕
m=0

Dm−1⊕
d=0

Xm,d. (2.39)
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Graph Fourier Transform

The expansion of a graph signal on the basis of generalized eigenvectors is called the
graph Fourier transform. Therefore, a graph signal x can be represented by its coeffi-
cients

x = Vx̂, (2.40)

where V is the matrix containing the generalized eigenvectors according to (2.34). The
Fourier coefficients can then be calculated as

x̂ = V−1x. (2.41)

Therefore, the graph Fourier transform matrix is recognized to be

F = V−1. (2.42)

By assuming a graph with a real and symmetric weight matrix that is diagonalizable
and has a complete eigenbasis, the spectral decomposition of the weight matrix W is
given by the eigenvalue decomposition

W = VΛV−1, (2.43)

and it is a simplified version of the Jordan decomposition. Thus, in (2.43) the columns of
the N ×N matrix V are formed by the eigenvectors of W, and Λ is the diagonal matrix
with corresponding eigenvalues λ0,..., λN − 1 on its main diagonal; no specific order of
the eigenvalues is assumed [16]. To compute the Fourier transform and its inverse in the
case of a diagonalizable weight matrix, the matrix V obtained by (2.43) is substituted
in (2.41) and (2.40) respectively.

As mentioned in Section 2.1.2, the Laplacian weight matrix is real and symmetric,
thus it has a complete orthonormal eigenbasis and all associated eigenvalues take real
values. The corresponding graph Fourier transform is orthogonal: V−1 = VT . Since in
general, the graph adjacency matrix is not restricted to be symmetric, like in the case
of a directed graph, we defined the general approach for graph Fourier transform, which
is applicable to arbitrary weight matrices, rather than the graph Laplacian approach.

Similarly to the other adopted DSPG concepts, the graph Fourier transform can be
viewed also as a generalization of the discrete Fourier transform defined in DSP. For
example, the mentioned finite discrete periodic time series represented by the graph in
Fig. 2.5 has the eigendecomposition

CN =
1

N
DFT−1N


e−j

2π.0
N

. . .

e−j
2π.(N−1)

N

DFTN , (2.44)
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where DFTN is the N ×N discrete Fourier transform matrix [9]. Therefore, the graph
Fourier transform is defined as: F = DFTN .

Moreover, by applying filtering on (2.44), h(CN ) =
∑N−1

l=0 hlC
l
N , the output coeffi-

cients can be calculated to be

x̂n = hnx0 + · · ·+ h0xn + hN−1xn+1 + · · ·+ hn+1sN−1 (2.45)

=
N−1∑
K=0

xkh(n−k mod N),

which is the standard circular convolution. Thus, DSPG is consistent with the traditional
DSP theory.
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2.6 Sampling on Graphs

In this section, we review briefly the graph sampling theory presented in the literature
(see also [17, 18, 19]) and the required conditions to perform a perfect recovery of graph
signals. Since graph signals can lie on any irregular, complex structure, the task of graph
sampling is not, so far, well understood [18, 19]. For this part, we follow the framework
presented in [16, 20].

In graph signals, the notion of frequency corresponds to the numerical values of
the eigenvalues and the notion of bandwidth is introduced as the number of non-zero
Fourier coefficients which makes graph sampling connected to linear algebra and allow
us to benefit from the simple tools of linear algebra for performing sampling on irregular,
complex graph structures.

2.6.1 Sampling and Interpolation

In order to perform sampling on a graph signal, we define the sampling operator Ψ
which samples M coefficients of a graph signal and does a linear mapping CN → CM
according to

Ψij =


1 if j =Mi i = 1, 2, ...M,

j = 1, 2, ..., N

0 otherwise

. (2.46)

with the sampling support set

M = {M1,M2, ...,MM} of size M = |M| ≤ N (2.47)

and

Mi ∈ {1, 2, ..., N} and Mi 6=Ml when i 6= l, (2.48)

which denotes the the set of sampled node indices. Therefore, an M -dimensional sampled
graph signal xM is given by

xM = Ψx ∈ CM . (2.49)

As an example, Fig 2.7 illustrates sampling of a graph signal.

To recover a graph signal from a sampled graph signal, we need to interpolate xM,
hence, the interpolation operator Φ needs to perform mapping CM → CN . The inter-
polated signal equals

x′ = ΦxM = ΨΦx ∈ CN . (2.50)

We can consider two strategies for sampling: random sampling or experimentally designed
sampling . In the case of random sampling, the sample indices are chosen randomly and
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x1

x2

x3x4

x6
x7

x5

w12

w23

w13
w14

w36

w56
w67

w27

w47

w34

xM = Ψx = (x2, x3, x7)
T .

The corresponding sampling support set is

M = {2, 3, 7},

and the sampling matrix equals

Ψ =

 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1

 .

Figure 2.7: Example of graph signal with marked sampled components and the corre-
sponding sampling support set and sampling matrix.

independently, whereas in experimentally designed sampling, samples are selected be-
forehand.

Obviously, perfect recovery of x can be performed, when ΨΦ equals the identity
matrix. Since the rank(ΨΦ) ≤ M < N , it is generally not possible to have perfect
recovery. To make it possible, the graph signal must have a specific structure; it should
be a bandlimited graph signal.

2.6.2 Bandlimited Graph Signals

As previously mentioned, the graph frequencies define the bandwidth of the graph signal.
In practice, specifying the cut-off graph frequency is not easy and computing of all graph
frequencies can be hard and inefficient for large graphs. In the following, we define a
band-limitation concept in graph signal proceesing [16].

Definition 2 .5 :
A graph signal is denoted as a bandlimited graph signal, when only a subset of the
Fourier-coefficients is non-zero, such that

x̂k = 0 for k ∈ {1, 2, ..., N} \ K, (2.51)

with the frequency support set K = {K1,K2, ...,KK} of size K = |K| ≤ N and

Ki ∈ {1, 2, ..., N} and Ki 6= Kj when i 6= j.

A non-bandlimited graph signal is called a full -band graph signal. In graph signal
processing, bandlimitation can not necessarily be interpreted as low-pass, or smooth.
No ordering of the frequencies are considered, therefore, we can reorder the eigenvalues
and correspondingly permuting the eigenvector in the graph Fourier transform matrix
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to select any band in the Fourier domain [16]. Since the eigenvalues are not sorted in
descending manner, the graph is not smooth.

If x̂k is non-zero only on the known frequency support set K, the non-zero Fourier
coefficient can be calculated by

x̂K = (V−1x)K = (V−1)(K,:)x (2.52)

where the notation C(K,:) means that all columns but only the rows contained in the
index subset K of the matrix C are chosen. The inverse Fourier-transform can then be
expressed as

x̃ = V(:,K)x̂K = V(:,K)(V
−1)(K,:)x. (2.53)

2.6.3 Recovery of Sampled Graph Signals

We know from [16] that perfect recovery of an N -dimensional graph signal x from xM
for M < N can be performed by a qualified sampling matrix Ψ, if the graph signal
vector is adequately bandlimited, that means the number of non-zero Fourier-transform
components K is not larger than the numbers of samples M , i.e. K ≤M .

Theorem 2 .4 , Perfect recovery theorem, adopted from [16, 1]:

Let the sampling matrix Ψ satisfy

rank(ΨV(:,K)) = K, (2.54)

where V(K,:)) is an N × K matrix with an index set K which is addressing K linear
independent vectors with dimension N in the columns of V. For the bandlimited graph
signal vectors x with the frequency support set K and the Fourier-transform x̂ = (V−1)x,
perfect recovery

x = x̃ = ΦxM = ΦΨx (2.55)

is obtained by choosing

Φ = V(:,K)U (2.56)

with the K ×M matrix U such that

UΨV(:,K) = I (2.57)

where the I is a K ×K identity matrix. The proof of Theorem 4 can be found in [21].
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Analogously to the classical sampling theory, the rate of sampling for graph signals
is also lower bounded, that means, the sample size M should not be smaller than the
bandwidth K, because

if M < K → rank(UΨV(:,K)) ≤ rank(U) ≤M < K,

therefore, UΨV(:,K) does not lead to an identity matrix. Hence the perfect recovery
theorem is applied only for M ≥ K.

By applying the recovery theorem for the case of M > K, the matrix ΨV(:,K) has
the dimension M ×K which is not square. Consequently, the interpolation operator is
defined by its pseudo-inverse [16]

U = ((ΨV(:,K))
HΨV(:,K))

−1(ΨV(:,K))
H . (2.58)

For the case of M = K, equation (2.58) yields to a simpler solution which is inverting
the K ×K matrix ΨV(:,K). The notation can be modified to ΨV(:,K) = V(M,K) since
the sampling matrix Ψ picks rows from V(:,K) which are defined by the sampling setM.
The interpolation formula (2.55) can be rewritten as

x̃ = V(:,K)
(

(V(M,K))
HV(M,K)︸ ︷︷ ︸

= Q

)−1
(V(M,K))

HxM. (2.59)

Equation (2.59) applies for any adjacency matrix for which a complete set of N
linearly independent eigenvectors exist: This might also include non-symmetric matrices
and those with negative weights or self loops.

To show that the condition M ≥ K alone is not sufficient, we present an example of
a graph which contains disconnected sub-graphs.

In the following, the graph signal with marked sampled components in Fig. 2.8,
together with the sampling support set M = {1, 2} and the sampling matrix

Ψ =

(
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

)
is considered.

As there is no connection between the non-zero components x5, x6, x7, x8 and any of
the sampled components, the recovery of the non-zero components in the lower graph
won’t be possible. In the case of x5 = x6 = x7 = x8 = 0, the M = 2 sampled nodes in
the upper graph will allow for perfect recovery, when at most K = 2 Fourier coefficients
are non-zero but also those two must allow for non-zero components in the upper part
of the graph.

Since in Theorem 2.4 the condition (2.54) must be held, we need to know the graph
structure to design a qualified sampling operator. Therefore, the adopted sampling
strategy will be experimentally designed sampling (see Section V in [16]).
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x1

x2

x3
x4

x6 x7

x8
x5

w12

w23

w13
w14

w56

w58

w68

w67

w78

W=



0 w12 w13 w14 0 0 0 0
w12 0 w23 0 0 0 0 0
w13 w23 0 0 0 0 0 0
w14 0 0 0 0 0 0 0
0 0 0 0 0 w56 0 w58

0 0 0 0 w56 0 w67 w68

0 0 0 0 0 w67 0 w78

0 0 0 0 w58 w68 w78 0


Figure 2.8: Example of graph containing disconnected sub-graphs and corresponding
weighted adjacency matrix.

Considering the eigenvector matrix V of the graph shift in Fig. 2.8

V =



v11 v12 v13 v14 0 0 0 0
v21 v22 v23 v24 0 0 0 0
v31 v23 v33 v34 0 0 0 0
v41 v24 v43 v44 0 0 0 0
0 0 0 0 v55 v56 v57 v58
0 0 0 0 v65 v66 v67 v68
0 0 0 0 v75 v76 v77 v78
0 0 0 0 v85 v86 v87 v88


, (2.60)

the condition rank(ΨV(:,K)) = K makes sure that the sampling matrix Ψ has to pick
rows from V(:,K) such that the resulting matrix ΨV(:,K) has rank K. For instance, the
frequency support set K = {2, 4} picks the K = 2 column vectors in bold font from the
first and second row of the matrix V, therefore we have

ΨV(:,K) =

(
v12 v14
v22 v24

)
(2.61)

which has the rank 2. Note that if for instance the frequency support set was chosen as
K = {2, 8}, ΨV(:,K) would only have rank 1 and recovery would not be possible.
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Chapter 3

Iterative Recovery

To compute the recovered signal from the sampled signal according to (2.59), the inverse
of the matrix Q needs to be calculated. Since Q = (V(M,K))

HV(M,K), the matrices Q

and Q−1 depend on the sets M and K. If the sets M and K known and fixed, Q−1

can be computed in advance. However, in many applications, the sampling setM is not
fixed, e.g. sensor data is received from many sensor stations via many different unreliable
links, thus the matrix Q−1 needs to be recomputed for every measurement. Therefore, an
alternative algorithm to the conventional matrix inversion that allows reconstruction of
the signal x with controllable accuracy and low complexity is presented in the following.
This approach is motivated by the fact, that for many applications, very high precision
of the recovered signal is not needed as long as the maximum error between the original
and the recovered signal is known.

3.1 Derivation of Iterative Graph Signal Recovery

In order to avoid the matrix inversion Q−1, an iterative scheme based on concepts from
[22, 23] is derived in the following. The approach is based on Neuman series, which are
the geometric series for matrices and the algorithm is adopted from [1].

The matrix Q can be expressed as

Q = (I−Tγ)/γ or equivalently Tγ = I− γQ, γ ∈ R. (3.1)

If a real factor γ > 0 can be found, such that

‖Tγ‖2 < 1, (3.2)

the inverse of Q (in case it exists) equals to

Q−1 = γ
∞∑
n=0

(Tγ)n = γ

∞∑
n=0

(I− γQ)n, (3.3)

31
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whereby ||.||2 is the spectral matrix norm, induced by the Euclidean norm and defined as
the largest eigenvalue of Tγ , or the square root of the largest eigenvalue of the positive-
semidefinite matrix TH

γ Tγ

‖Tγ‖2 = max
‖x‖2=1

‖Tγx‖2 =
√
λ(THγ Tγ),max. (3.4)

In order to apply (3.3), the condition ‖Tγ‖2 < 1 must hold, that means γ needs to be
chosen such that ‖Tγ‖2 < 1, therefore the eigenvalues of TH

γ Tγ need to be investigated.
For this, we start by discussing the eigenvalue decomposition of the matrix Q and derive
the eigenvalues of Tγ in a second step.

Since the matrix Q is a Gramian matrix, Q is positive semi-definite, so all eigenvalues
of Q are real and non-negative. According to Theorem 2.4, we know that Q is invertible
for M ≥ K, thus no eigenvalue can be zero. Therefore all eigenvalues of Q have to be
real and positive. Furthermore, since Q is Hermitian, its eigenvalue decomposition can
be simplified to

Q = VQΛQV−1Q = VQΛQVH
Q with VQVH

Q = I. (3.5)

Therefore, the matrix Tγ from (3.1) can be obtained by

Tγ = VQ(I− γΛQ)VH
Q , (3.6)

and it can be observed, that the factor γ scales the eigenvalues λ
(Q)
j of Q, which are

located on the diagonal of the matrix ΛQ.

Moreover, the largest eigenvalue of the matrix TH
γ Tγ needs to be identified to check

the convergence condition (3.2) of (3.3). By using equation (3.6),

TH
γ Tγ = VQ(I− γΛQ)HVH

QVQ(I− γΛQ)VH
Q = VQ(I− γΛQ)2VH

Q . (3.7)

The diagonal matrix I− γΛQ can be written as

I− γΛQ =

 1− γλ(Q)
1 . . . 0

...
. . .

...

0 . . . 1− γλ(Q)
K

 . (3.8)

Since the square of a diagonal matrix is again a diagonal matrix with the squared
diagonal elements of the initial matrix, the largest eigenvalues λ(THγ Tγ),max is one of the

diagonal elements of (I− γΛQ)2. Therefore, (3.2) leads to

‖Tγ‖2 = |1− γλ(Q)
j | < 1, ∀j = 1, 2, ...,K. (3.9)

γ > 0 must be chosen such that the convergence condition is ensured for all j. Since

it is known that all eigenvalues λ
(Q)
j > 0, very small eigenvalues might lead to results
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close to the convergence bound ‖Tγ‖2 = 1 and very large eigenvalues might violate the

convergence bound, γλ
(Q)
max > 2. Therefore, we choose γ by solving

|1− γλ(Q)
min| = |1− γλ

(Q)
max|, (3.10)

which results in

γ = 2/(λ
(Q)
min + λ(Q)

max). (3.11)

Hence, the choice of γ only depends on the smallest and largest eigenvalue of Q. Once
γ is defined, the interpolation formula can be rewritten as

x̃ = x = V(:,K)
(
γ

∞∑
n=0

(I− γQ)n
)
(V(M,K))

HxM. (3.12)

Limiting the summation index to the value p and defining the vector yp as

yp = γ

p∑
n=0

(I− γQ)n(V(M,K))
HxM. (3.13)

leads to the following recursive formulation:

For p = 0, (3.13) equals

y0 = γ(V(M,K))
HxM, (3.14)

and yp+1 can be expanded as follows

yp+1 = γ

p+1∑
n=0

(I− γQ)n(V(M,K))
HxM

= γ
(
I +

p+1∑
n=1

(I− γQ)n
)
(V(M,K))

HxM

= γ
(
I +

p∑
n=0

(I− γQ)n+1
)
(V(M,K))

HxM

= γ
(
I + (I− γQ)

p∑
n=0

(I− γQ)n
)
(V(M,K))

HxM

= γ(V(M,K))
HxM + (I− γQ) γ

p∑
n=0

(I− γQ)n(V(M,K))
HxM

= γ(V(M,K))
HxM + (I− γQ)yp = y0 + Tγyp.

(3.15)
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Summary of the iterative recovery method

The key facts of the presented iterative recovery algorithm for sampled graph signals are
briefly summarized in the following:

Inputs of the iterative algorithm:

– eigenbasis V of graph shift

– sampling support set M

– frequency support set K

– matrix Q = (V(M,K))
H (V(M,K))

– factor γ = 2/(λ
(Q)
min + λ

(Q)
max)

– sampled graph signal xM.

Iterative recovery algorithm:

– Define linear operator Tγ = I− γQ

– Initialize: y0 = γ(V(M,K))
HxM

– Iterate for p = 1, 2, . . . pmax − 1: yp+1 = y0 + Tγyp.

Output of the iterative algorithm:

– Output recovered graph signal x̃ = V(:,K)yp+1.

Remarks:

The complexity of the iterative recovery algorithm is dominated by matrix-vector mul-
tiplication in (3.15). Since the dimensition of the vector yp equals K, the complexity
order of the recursive iteration is O(pmaxK

2). (An analytical bound of the maximal
number of iterations pmax will be derived in the next section.)

The matrix inversion has a complexity order of O(K3), therefore the complexity of
iterative approach is lower, as long as pmax < K.
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3.2 Analytic Error-Bound of the Recovery Algorithm

Using the same definitions, Neuman-series and framework as in the previous section, we
will derive an analytic error bound of the iterative recovery algorithm in the following.
The derivations in this section are adopted from [1].

y = y∞ = γ

∞∑
n=0

(I− γQ)n︸ ︷︷ ︸
=Q−1

(V(M,K))
HxM = Q−1

1

γ
y0

=⇒ y0 = γ(V(M,K))
HxM = γQ y.

(3.16)

Consequently, the error can be expressed as

∥∥y − yp
∥∥
2

=

∥∥∥∥∥∥
∞∑

n=p+1

(I− γQ)n γQy

∥∥∥∥∥∥
2

. (3.17)

Using the matrix inequality ‖AB‖2 ≤ ‖A‖2‖B‖2, (3.17) can be written as

∥∥y − yp
∥∥
2
≤

∥∥∥∥∥∥
∞∑

n=p+1

(I− γQ)n γ Q

∥∥∥∥∥∥
2

‖y‖2 . (3.18)

Applying this inequality again to the term
∥∥∥∑∞n=p+1(I− γQ)n γQ

∥∥∥
2

results in

∥∥∥∥∥∥
∞∑

n=p+1

(I− γQ)n γQ

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∞∑

n=p+1

(Tγ)n γQ

∥∥∥∥∥∥
2

≤
∞∑

n=p+1

‖(Tγ)n‖2‖γ Q‖2

≤
∞∑

n=p+1

‖Tγ‖n2 ‖γQ‖2

= ‖Tγ‖p+1
2 (

∞∑
n=0

‖Tγ‖n2 )︸ ︷︷ ︸
geometric series

‖γQ‖2 .

(3.19)

Since in (3.9) the factor γ is chosen such that ‖Tγ‖2 < 1, the geometry series will
converge. Hence,∥∥∥∥∥∥

∞∑
n=p+1

(I− γQ)n γ Q

∥∥∥∥∥∥
2

≤ ‖Tγ‖p+1
2

( 1

1− ‖Tγ‖2

)
‖γQ‖2 . (3.20)
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The factor ‖γQ‖2 can be bounded as

‖γQ‖2 = ‖I− (I− γQ)‖2 ≤ 1 + ‖Tγ‖2 < 1. (3.21)

Combining (3.18), (3.20) and (3.21), the error can be bounded as∥∥y − yp
∥∥
2

‖y‖2
≤ ‖Tγ‖p+1

2

1 + ‖Tγ‖2
1− ‖Tγ‖2

. (3.22)

With γ = 2/(λ
(Q)
min + λ

(Q)
max) from (3.11), the norm ‖Tγ‖2 equals

‖Tγ‖2 = max
j=1,...,K

(
|1− γλ(Q)

j |
)

=

∣∣∣∣∣1− 2

λ
(Q)
min + λ

(Q)
max

λ(Q)
max

∣∣∣∣∣ =
λ
(Q)
min − λ

(Q)
max

λ
(Q)
min + λ

(Q)
max

. (3.23)

Setting the target accuracy ε =
∥∥y − yp

∥∥
2
/ ‖y‖2 and using (3.22) leads to

ε ≤

(
λ
(Q)
max − λ(Q)

min

λ
(Q)
min + λ

(Q)
max

)pmax+1
λ
(Q)
max

λ
(Q)
min

=

(
κ(Q)− 1

κ(Q) + 1

)pmax+1

κ(Q), (3.24)

with κ(Q) = λ
(Q)
max/λ

(Q)
min being the condition number of the matrix Q.

The theoretical bound for the number of iterations required to reach the relative accuracy
ε is given by

pmax ≥
log10(κ(Q)/ε)

log10

(
κ(Q)−1
κ(Q)+1

) − 1. (3.25)

So far, a result for the accuracy of the recovered non-zero Fourier coefficient yp was
obtained, but not for the recovered signal x. Using the relation xp = V(:,K)yp, an
estimate of the graph signal x can be obtained.

Therefore, the error of the graph signal can be computed as

‖x − xp‖2 =
∥∥V(:,K)(y − yp)

∥∥
2
, (3.26)

and the relative error is given by

‖x − xp‖2
‖x‖2

=

∥∥V(:,K)(y − yp)
∥∥
2∥∥V(:,K)y

∥∥
2

. (3.27)
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The error of xp can be bounded as follows (details can be found in [1]):

‖x − xp‖2
‖x‖2

≤ κ(V(:,K))

∥∥(y − yp)
∥∥
2

‖y‖2
. (3.28)

For a given frequency support set K the condition number κ(V(:,K)) needs to be com-
puted. In the case of a symmetric graph shift, the eigenvalue decomposition leads to
orthonormal eigenvectors and the condition number κ(V(:,K)) = 1 for any choice of the
frequency support set K. Therefore, the relative errors in (3.22) and (3.27) are identical.



38 CHAPTER 3. ITERATIVE RECOVERY



Chapter 4

Numerical Experiments

In this chapter, we are going to investigate the performance of the iterative algorithm
presented previously in this thesis. For this purpose, multiple simulations were carried
out with different random graph shift matrices. Moreover, a modification of the iterative
algorithm that allows further reduction of complexity at runtime is presented.

In the first part, parameters of weight matrices chosen for the simulations are in-
troduced. Different dimensions, distributions and sparsity factors are considered. The
second part of this chapter presents the detailed simulation outcomes and shows the
impact of each considered parameter. Moreover, a solution to the problem of recomput-
ing the factor γ for every realization is presented. The simulations are repeated with
an estimated factor γ, in order to conclude with a performance analysis of the iterative
algorithm.

4.1 Simulation parameters

The random graph shift matrices W of size N ×N are chosen to be symmetric and full
rank. Three distributions of the elements wi,j of the matrix W are considered in the
simulations:

- Uniform: wi,j ∼ U(0, 1) for i, j = 1, 2, . . . N,

- Gaussian: wi,j ∼ N (0, 1) for i, j = 1, 2, . . . N,

- Discrete: wi,j chosen randomly with equal probability from the set {−1, 1}.

Since in practical situations each node of a graph is only connected to few other
nodes, a fixed portion of the entries of the weight matrix needs to be set to zero. To do
so, a sparsity factor δ is introduced that defines the portion of elements of W that is set
to zero, whereby the elements set to zero are chosen randomly from all N2 elements with
equal probability. For example, delta-sparsity 0.90 means that 90% of the N2 matrix en-
tries wi,j are zero. The following values for the sparsity factor are considered (Table 4.1):
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δ = 0.75

δ = 0.80

δ = 0.85

δ = 0.90

Table 4.1: Sparsity factors δ considered in the simulations

Furthermore, the graph is assumed not to have any self-loops, thus the entries on
the main diagonal of the weight matrix are set to zero.

Finally, the reversed Cuthill–Mckee algorithm is used to permute the sparse matrix
W into a band matrix form and to bring the non-zero entries closer to the main diagonal
[24].

As an illustration, three examples of graph shift matrices with N = 7 and δ = 0.75
are shown in the following:

Wuniform =



0 0.0375 0 0 0 0 0
0.0375 0 0.3296 0 0 0 0

0 0.3296 0 0.4786 0.3575 0 0
0 0 0.4786 0 0 0 0
0 0 0.3575 0 0 0 0.1364
0 0 0 0 0 0 0.4065
0 0 0 0 0.1364 0.4065 0


,

Wgaussian =



0 −0.4834 0 0 0 0 0
−0.4834 0 1.0457 0 0 0 0

0 1.0457 0 0 0 0 0
0 0 0 0 0.498 0 0
0 0 0 0.498 0 0.0616 0
0 0 0 0 0.616 0 0.6635
0 0 0 0 0 0.6635 0


,
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Wdiscrete =



0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 −1 −1 0 0
0 0 −1 0 −1 0 0
0 0 −1 −1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 0


.

Moreover, different proportions between the signal dimension N , the number of mea-
sured components M , and the number of non-zero Fourier coefficients K are considered
in the simulations. The values of N , M and K are related through the factors α and β
according to

M = Nα (4.1)

K = Nβ, (4.2)

with factors α and β as indicated in Table 4.2.

pair 1 pair 2 pair 3 pair 4

α 0.5 0.5 0.2 0.1

β 0.4 0.3 0.12 0.75

Table 4.2: Selected values for α and β

Restricting the signal dimension to three possible values N = 200, N = 1000 and
N = 5000, leads to the sets of (N,M,K) listed in Table 4.3.

For each set (N ,M ,K), the simulations were repeated 1000 times with statistically in-
dependent realizations of the graph shift matrix, the selected Fourier coefficients and
the selected measurement support. Due to the long simulation runtime for N = 5000,
only the simulations for the special case of uniformly distributed elements of the weight
matrix, δ = 0.9 and ε = 0.01 were carried out.

4.2 Simulation outcome

The relative reconstruction accuracy ε is defined according to section 3.2 as

ε =
||x − xp||2
||x||2

. (4.3)

In the following, p denotes the number of iterations needed to reach a given accuracy ε
and p̄ denotes the number of iterations p averaged over 1000 realizations.
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N M K

set 1 200 100 80

set 2 200 100 60

set 3 200 40 24

set 4 200 20 15

set 5 1000 500 400

set 6 1000 500 300

set 7 1000 200 120

set 8 1000 100 75

set 9 5000 2500 2000

set 10 5000 2500 1500

set 11 5000 1000 600

set 12 5000 500 375

Table 4.3: Selected sets (N,M,K)

The complexity of the iterative algorithm was shown to be proportional to O(p̄K2)
(Chapter 3) whereas the complexity of a matrix inversion is proportional to O(K3).
Therefore, as long as p is considerably smaller than K, the iterative method has signifi-
cantly lower complexity than the matrix inversion.

Fig. 4.1 shows the average number of iterations p̄ needed to reach the relative ac-
curacy ε = 0.01 for different weight matrices (uniform,Gaussian, discrete) and different
sparsity factors. The results show, that for larger problem dimensions, i.e. the set
(N = 1000,M = 500,K = 300), p̄ is considerably smaller than K and smaller standard
deviation of p was recorded compared to the case of smaller signal dimensions.

Moreover, it can be observed that the mean number of iterations strongly depends on
the dimensions N , M , K and do not considerably change when the modifying sparsity
factors or the distribution of the elements.

Another observed result is that scaling proportionally the set (N,M,K) does not
have strong impact on the value p̄. For example, Fig 4.1 shows the impact of scaling
by a factor 5. It can be noticed that the set (N = 1000,M = 500,K = 300), which is
the scaled version of the set (N = 200,M = 100,K = 60), shows an very similar value
p̄. The same behaviour can be observed for the two other sets shown on the right hand
side of Fig 4.1.

Since scaling proportionally (N,M,K) does not affect the necessary number of it-
erations, it can be concluded that special relations between the number of Fourier-
coefficients K and the measurement support set M rule the number of iterations p̄. It is
the relation between α and β that mainly determines p̄. Therefore, for a small signal di-
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Figure 4.1: Iterative recovery algorithm, number of iterations needed to reach an ac-
curacy of ε = 0.01 (mean indicated by diamond marker, standard deviation by error
bar).

mension, i.e. the set (N = 200,M = 100,K = 80), the value of p̄ even exceeds K, which
means that the complexity of the iterative method becomes larger than the complexity
of a matrix inversion.

From an application point of view, a big advantage of the iterative recovery algorithm
compared to a matrix inversion is that accepting lower accuracy allows a significant
complexity reduction. The number of iterations p̄ required to reach different accuracies
(ε = 0.01, ε = 0.05 and ε = 0.1) are compared in Table 4.4. Moreover, it can be noted,
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that in this example all distributions behave similarly.

ε = 0.01 ε = 0.05 ε = 0.1

p̄max p̄ σp p̄max p̄ σp p̄max p̄ σp

uniform 83 28 3 66 14 2 58 9 1

Gaussian 83 28 3 66 14 2 58 9 1

dicrete 83 28 3 66 14 2 58 9 1

Table 4.4: Comparison of number of iterations for different desired accuracies, δ = 0.9
and N = 1000, M = 500, K = 300.

Furthermore, the impact of increasing the signal dimension while maintaining the
same values of α, β on the statistical distribution of p is analyzed. The random variable
p can only take discrete values1. Its probability mass function (pmf) is shown in Fig. 4.2
for uniformly distributed weight matrices. Equivalent figures for other weight matrix
distributions (Gaussian, discrete) can be found in Appendix B, Fig. B.1 and Fig. B.2. It
can be recognized that for each figure, the location of the peak is almost not affected by
increasing the signal dimension. Furthermore, when increasing the signal dimension, the
standard deviation of p becomes less, leading to a better predictable number of iterations
p needed to reach a desired accuracy.

In principle, the factor γ needs to be recomputed for every realization of the support
setsM and K. That means, for every realization, the largest and smallest eigenvalue of
the matrix Q have to be computed. The statistical distribution of γ is shown in Fig. 4.3
for weight matrices with entries taken from a uniform distribution. Equivalent figures
for the two other considered weight matrix distributions can be found in Appendix B,
Fig B.3 and Fig B.4. Again, it can be observed that increasing the signal dimension
within the same pair α, β does not strongly affects the location of the peak of the pdf
of γ, whereas the standard deviation is becoming considerably less when increasing the
signal dimension.

The small quantity of standard deviation of γ, especially for large dimension mo-
tivated us to reconsider the problem of recomputing the factor γ for every realization.
Determining the factor γ without calculation of the largest and smallest eigenvalues of
matrix Q can lead to the reduction of complexity of the iterative method at runtime.

1In the following, random variables are denoted by upright characters whereas deterministic variables
or realizations of random variables are denoted by italic characters.
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Figure 4.2: pmf of p, δ = 0.9, ε = 0.01, uniform distribution of entries of weight matrix
(one plot for each pair α, β according to Table 4.2).

Hence, other simulations were carried out with fixed values of the factor γ. The
factor γ̃ is chosen such, that according to the Tschebycheff inequality, γ̃ will be smaller
than γ with high probability for every realization,

γ̃ = γ̄ − 5σγ .

In order to show the impact of fixing the factor γ, the pmf of p, obtained by repeating the
simulations using γ̃ instead of γ̄, is shown in Fig. 4.4. Similar figures for weight matrices
with other distributions (Gaussian, discrete) can be found in Appendix B, Fig. B.5 and
Fig. B.6.

Additionally, Table 4.5 provides a comparison of the simulation outcome using the
fixed factor γ̃ with the previous simulations. The last two columns of Table 4.5 show
that for pair 2 (α = 0.5 and β = 0.3), the results are almost identical. Pair 4 (α = 0.1
and β = 0.75) with N = 200 performs worst: For some (very few) realizations, the
iterative algorithm using fixed γ̃ does not converge fast enough (p > pmax was observed)
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due to the large standard deviation σγ . A summary of the simulation outcomes can be
found in Appendix A.

Finally, the simulations showed that if the statistical properties of the weighted
adjacency matrix of the graph W are known and M , K are chosen properly, the factor
γ can be determined beforehand, without any extra complexity at run-time to compute
eigenvalues of the matrix Q.
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Figure 4.3: pdf of γ, δ = 0.9, ε = 0.01, uniform distribution of entries of weight matrix
(one plot for each pair α, β according to Table 4.2).
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Figure 4.4: pmf of p, fixed γ̃ = γ̄−5σγ , δ = 0.9, ε = 0.01, uniform distribution of entries
of weight matrix (one plot for each pair α, β according to Table 4.2).
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set pair α, β γ̄ σγ γ̃ p̄(γ) p̄(γ̃)

N = 200, M = 100, K = 80 pair 1 2.0 0.0094 1.953 104 88

N = 200, M = 100, K = 60 pair 2 2.0 0.0215 1.893 28 26

N = 200, M = 40, K = 24 pair 3 3.9 0.2262 2.769 52 62

N = 200, M = 20, K = 15 pair 4 7 0.7951 3.025 163 318

N = 1000, M = 500, K = 400 pair 1 2.0 0.0028 1.986 103 91

N = 1000, M = 500, K = 300 pair 2 2.0 0.0070 1.965 28 26

N = 1000, M = 200, K = 120 pair 3 3.7 0.0699 3.351 51 51

N = 1000, M = 100, K = 75 pair 4 6.5 0.2258 5.371 169 175

Table 4.5: Performance comparison, iterative algorithm, uniformly distributed
entries of weight matrix.



Chapter 5

Conclusion

In this thesis, signal processing on graphs, which is a vast field in the analysis of large-
scale data is investigated. Graph signal processing is merging the concepts of classical
signal processing with graph theory and has laid a strong foothold in various application
domains.

We started by introducing some fundamentals of graph theory. Afterwards, we re-
viewed some concepts of classical signal processing and extended them to graph signal
processing, such as time-shift to graph-shift, filters to graph-filters, and Fourier trans-
form to graph Fourier transform. Moreover, we introduced the notion of graph sampling
and presented the graph sampling theorem as well as the concepts of random and ex-
perimentally designed sampling.

The following part of this thesis dealt with the recovery of sampled graph signals. We
introduced the perfect recovery theorem, that, together with Neumann series, served as a
basis to derive an iterative recovery algorithm for sampled graph signals. The presented
iterative recovery algorithm is universally applicable to general weight matrices and
has an analytic upper error bound that allows to predict the number of iterations as a
function of the desired reconstruction accuracy.

In order to investigate the performance of the iterative algorithm, multiple simula-
tions with different random graph weight matrices were carried out in the scope of this
thesis. The entries of the weight matrices considered in the simulations were taken from
one of the following random distributions: uniform, Gaussian or discrete distribution.
The simulation results showed that the choice of the random distribution of the entries of
the weight matrix does not significantly affect the performance of the iterative algorithm.

49
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Moreover, the impact of the weight matrix dimension, the size of the frequency
support set and the size of the sampling support set was investigated. The simulations
showed better performance in terms of complexity reduction when a proper proportion
between the signal dimension, the size of the frequency support set and the number
measured components was chosen.

Another significant reduction of complexity was achieved when accepting lower ac-
curacies. This means applications which require less accuracy can benefit from a higher
computation performance since less iterations are needed to reach a given reconstruction
accuracy.

Finally, the simulations showed that if the signal dimension N , the size of the fre-
quency support set K and the number measured components M are chosen properly,
the factor γ can be estimated beforehand, without any extra complexity at run-time to
compute eigenvalues of the matrix Q.

Since the simulations in the scope of this thesis were restricted to three different
random distributions (uniform, Gaussian and discrete), further research on this topic
could focus on investigating the behaviour of the iterative reconstruction algorithm and
predicting the factor γ when using real-world data.
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54 APPENDIX A. DETAILED SIMULATION OUTCOMES–RESULT TABLES
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Appendix B

Gaussian distribution:
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Figure B.1: pmf of p, δ = 0.9, ε = 0.01, gaussian distribution of entries of weight matrix
(one plot for each pair α, β according to Table 4.2).
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Discrete distribution:
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Figure B.2: pmf of p, δ = 0.9, ε = 0.01, discrete distribution of entries of weight matrix
(one plot for each pair α, β according to Table 4.2).
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Gaussian distribution:
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Figure B.3: pdf of γ, δ = 0.9, ε = 0.01, gaussian distribution of entries of weight matrix
(one plot for each pair α, β according to Table 4.2).
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Discrete distribution:

1.98 2 2.02
0

100

200

N=200, M=100, K=80
N=1000, M=500, K=400

1.95 2 2.05
0

50

100

N=200, M=100, K=60
N=1000, M=500, K=300

3.5 4 4.5
0

5

10

N=200, M=40,  K=24
N=1000, M=200, K=120

6 7 8 9
0

1

2

N=200, M=20,  K=15
N=1000, M=100, K=75

Figure B.4: pdf of γ, δ = 0.9, ε = 0.01, discrete distribution of entries of weight matrix
(one plot for each pair α, β according to Table 4.2).
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Gaussian distribution, fixed factor γ̃:
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Figure B.5: pmf of p, fixed γ̃ = γ̄ − 5σγ , δ = 0.9, ε = 0.01, gaussian distribution of
entries of weight matrix (one plot for each pair α, β according to Table 4.2).
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Discrete distribution, fixed factor γ̃:
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Figure B.6: pmf of p, fixed γ̃ = γ̄−5σγ , δ = 0.9, ε = 0.01, discrete distribution of entries
of weight matrix (one plot for each pair α, β according to Table 4.2).
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