
Selection Guidelines for
Backdoor-based Model

Watermarking

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Technische Mathematik

eingereicht von

Isabell Lederer, BSc
Matrikelnummer 01526148

ausgeführt am Institut für Information Systems Engineering

der Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Mitwirkung: Univ.Lektor Mag.rer.soc.oec. Dipl.-Ing. Rudolf Mayer

Wien, 15. September 2021
Isabell Lederer Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Selection Guidelines for
Backdoor-based Model

Watermarking

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Technical Mathematics

by

Isabell Lederer, BSc
Registration Number 01526148

to the Institute of Information Systems Engineering

at the Faculty of Informatics at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Assistance: Univ.Lektor Mag.rer.soc.oec. Dipl.-Ing. Rudolf Mayer

Vienna, 15th September, 2021
Isabell Lederer Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Isabell Lederer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. September 2021
Isabell Lederer

v

Acknowledgements

In the process of planning, writing and elaborating this thesis, I received broad sup-
port from a multitude of people to whom I would like to express my gratitude and
acknowledgement.

It goes without saying that I am exceptionally thankful for the guidance by Rudolf Mayer.
His advice on methodical approach and research were of fundamental importance, and I
highly appreciate his consistent and constructive feedback as well as his collegial ways.
Equally, I would like to express my sincere appreciation for the supervision by professor
Andreas Rauber and his essential consultation throughout the entire progression of this
thesis.

I gratefully address my dear fellow students, especially Karine and Nemanja, my colleagues
at SBA Research, and those at the TUtheTOP alumni club for their cordial companionship,
motivational support and honest feedback. Many thanks to Tanja and Monika for
proofreading this thesis.

I would like to thank my friends and family for the continuous motivation, the interest
in the subject area, which is foreign to many of them, and the constant participation,
especially on particularly challenging days. I am grateful for my brother’s enthusiasm for
what I do and his sincere admiration in seeing me evolve. I thank Alina for reminding
me that life is not all about work and taking me out for various activities.

A very special thank you goes, of course, to my partner Florian, who not only endures
my ups and downs but also supports me in all my projects, regardless of how big and
ambitious they are. I am enormously thankful for his always encouraging words and his
great cooking.

Above all, I would like to thank my mother, whose fundamentally positive, unwavering
view of the future has given me the will, self-confidence and perseverance without which
I would undoubtedly not have been able to cope with the numerous and occasionally
hopeless seeming tasks and challenges of my educational path to date, as well as of my
private and professional life.

vii

Kurzfassung

Da die kommerzielle Nutzung von maschinellem Lernen (ML) immer weiter verbreitet
ist und die steigende Komplexität von ML-Modellen aufwendiger und damit teurer zu
trainieren wird, wächst auch die Dringlichkeit, geistiges Eigentums in diesen Modellen zu
schützen. Im Vergleich zu Technologien, die sich auf ein solides Verständnis von Bedro-
hungen, Angriffen und Verteidigungsmöglichkeiten zum Schutz ihres geistigen Eigentums
stützen können, ist die Forschung in dieser Hinsicht bei ML noch sehr fragmentiert.
Dies ist mitunter auf das Fehlen einer einheitlichen Sichtweise und einer gemeinsamen
Taxonomie dieser Aspekte zurückzuführen.

In dieser Arbeit werden die Erkenntnisse zum Schutz des geistigen Eigentums in ML
systematisiert, wobei der Schwerpunkt auf Bedrohungen und Angriffen liegt, die für einige
der bisher bestehenden Systeme festgestellt wurden, sowie auf den bisher vorgeschla-
genen Schutzmaßnahmen. Wir entwickeln ein umfassendes Bedrohungsmodell für das
geistige Eigentum in ML und kategorisieren Angriffe und Abwehrmaßnahmen in einer
einheitlichen und konzisen Taxonomie, um auf diese Weise die Brücke zwischen ML und
zukunftsweisender Sicherheit zu schlagen.

Später konzentrieren wir uns auf Backdoor-basiertes Watermarking für Deep Neural
Networks zur Bildklassifizierung und definieren verschiedene Parameter für eine umfas-
sende Studie dieser Ansätze. Dies ist von grundlegender Bedeutung für die Bewertung
der verschiedenen Methoden und die Formulierung des Leitfadens. Schließlich wählen wir
eine Teilmenge dieser Parameter aus und vergleichen die Methoden, um eine Empfehlung
für eine Watermarking-Methode auf Basis eines ML-Settings zu geben.

ix

Abstract

With commercial uses of Machine Learning (ML) becoming more wide-spread, while at
the same time ML models becoming more complex and expensive to train, the Intellectual
Property Protection (IPP) of trained models is becoming a pressing issue. Unlike other
domains that can build on a solid understanding of the threats, attacks and defences
available to protect their IP, the research in this regard in ML is still very fragmented.
This is also due to a lack of a unified view and a common taxonomy of these aspects.

In this thesis, we systematise findings on IPP in ML, focusing on threats and attacks iden-
tified on these systems and defences proposed to date. We develop a comprehensive threat
model for IP in ML, and categorise attacks and defences within a unified and consolidated
taxonomy, thus bridging research from both the ML and security communities.

Later on, we focus on backdoor-based watermarking approaches for Deep Neural Networks
for image classification and define different parameters and settings for a comprehensive
study of these approaches. This will be fundamental for evaluating the different methods
and formulating the selection guidelines. Finally, we choose a subset of these parameters
and compare the methods in order to provide a recommendation for a watermarking
method based on the ML setting.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Methodology 3
2.1 Literature search . 3
2.2 Empirical evaluation . 5

3 Background 7
3.1 Machine Learning . 7
3.2 Watermarking . 21
3.3 Fingerprinting . 22

4 Taxonomy of IPP for ML models 23
4.1 Threat Model . 23
4.2 IPP Methods . 24
4.3 Attack Model . 25

5 State of the Art: Model Watermarking, Fingerprinting and Attacks 27
5.1 Requirements . 28
5.2 White-box Watermarking . 31
5.3 Black-box Watermarking . 34
5.4 Fingerprinting of ML Models . 40
5.5 Attacks on Watermarking Methods . 42
5.6 Surveys and empirical studies . 46

6 Defining research questions and study setting 47
6.1 Datasets . 50
6.2 Neural Networks . 52
6.3 Setting hyperparameters . 56

xiii

7 Empirical comparison of existing watermarking methods 59
7.1 Implementation . 59
7.2 Evaluation . 65

8 Conclusions and future work 91

A Appendix 95
A.1 Dependencies . 95
A.2 Additional figures . 95

List of Figures 99

List of Tables 103

Bibliography 105

CHAPTER 1
Introduction

In many Machine Learning (ML) settings, training an effective model from scratch,
especially complex and powerful models such as a Deep Neural Network (DNN), is (i)
computationally very expensive, (ii) requires expertise for setting parameters, and (iii)
the amount of data needed is often not accessible or expensive to obtain. Security
concerns become more prominent when these models are made available to other parties
or customers, e.g. in Machine Learning as a Service (MLaaS), or when otherwise licensing
model use. Thus, model owners that have invested significant resources to train a model
and want to offer it to customers start to consider Intellectual Property Protection (IPP)
methods, e.g. watermarking for verifying the ownership, and model access control for
preventing unauthorised usage of a model. In the last few years, we, therefore, have seen
an increase in research on IPP techniques for ML models. Many watermarking methods,
requiring either black-box or white-box access, have recently been proposed, based on
techniques such as backdoor embedding via data poisoning and regularisation. At the
same time, several studies have shown the vulnerability of some of these schemes against
novel attacks. Similar observations hold true for model access control techniques. A
comprehensive overview of the field, including a unified nomenclature and taxonomy, as
well as an empirical evaluation, is still missing.

Our contributions, in this thesis, are:

• A systematic overview on research related to IPP of ML, focusing on watermarking
and fingerprinting, in particular, based on a methodological literature review

• A taxonomy to categorise model watermarking and fingerprinting schemes, based
on a methodological literature review and a categorisation of 26 approaches

• An analysis of vulnerability to attacks designed to break the IPP schemes, based
on a methodological literature review

1

1. Introduction

• An implementation and evaluation of selected state-of-the-art backdoor-based
watermarking schemes by training 191 models

• Guidelines on how to choose a fitting backdoor-based watermarking scheme for a
given setting

The remainder of this thesis is structured as follows. Our research methodology is
described in Chapter 2. Chapter 3 provides definitions and background to machine
learning, deep neural networks, watermarking, and fingerprinting. Chapter 4 introduces
our taxonomy of IPP methods, the threat model and attacks. Chapter 5 provides an
overview on state-of-the-art watermarking and fingerprinting approaches and discusses
the vulnerability to various attacks. Our research questions and study settings are defined
in Chapter 6. Chapter 7 provides an empirical comparison of the chosen backdoor-
based watermarking methods, including the implementation and evaluation. Conclusions,
selection guidelines and future work are discussed in Chapter 8. Appendix A.1 provides
a detailed list of dependencies. Additional figures are provided in Appendix A.2.

2

CHAPTER 2
Methodology

In this chapter, we describe the methodological approach for the literature search, describe
the system used behind the literature search and give an idea on the scale of this topic.
Furthermore, we are going to introduce the methodology for the empirical evaluation.

2.1 Literature search
In preparation for this master thesis, we performed an extensive literature search and
documented every step to make it reproducible. Figure 2.1 shows the workflow of our
literature search process. The complete documentation of the search process including
the search strings and results with the retrieved literature will be made available in the
GitHub project https://github.com/mathebell/model-watermarking.

We distinguish between the following types of publications: formal literature (FL), i.e.
peer-reviewed literature such as book sections, conference papers, journal articles, and

Figure 2.1: Literature search process workflow. In every step we denote the number of publications
by N = x. The numbers 1 to 6 correspond to the CSV-files which contain all the retrieved
literature in the particular step.

3

https://github.com/mathebell/model-watermarking

2. Methodology

(a) Across different topics regarding ML IPP (b) Across the years for different topics

Figure 2.2: Literature distribution

grey literature (GL), i.e. literature that did not undergo a peer-review process, such as
pre-prints (published on repositories such as arXiv, or university repositories, author’s
websites, etc.) However, in its definition, grey literature does not only consist of pre-prints
but can also be formed by blogs, interviews, wikis and many more document types [74],
[1]. In this thesis, as the subject of watermarking of ML models has not produced such
types of GL yet, it does however only consist of pre-prints.

Figure 2.2a shows the distribution of publications across the different topics in the
various literature types. Attacks on WMs include papers that propose attacks specifically
crafted to disable a watermarking method or render it useless. Fingerprinting and
Watermarking includes papers proposing a fingerprinting or watermarking method for ML
models. Proactive IPP includes papers on unrobust models and model access methods (cf.
Figure 4.1); these are not in the focus and are not discussed in more detail in this thesis.
We can see that most papers were published regarding watermarking; however, there is
also a significant number of papers on attacks published. Note, that some publications
include both a novel attack to a scheme and a novel watermarking scheme, which is
immune to this attack. Also, not all publications covering attacks are classified as such,
as there is often a specific attack to a scheme, and a novel scheme immune to this attack,
proposed in the same publication.

Figure 2.2b, on the other hand, shows the distribution of publications across the publishing
years. We see a rise in interest for this topic, with papers on attacks being mostly published
in the last two years only.

2.1.1 Inclusion/exclusion criteria
In order to provide reproducible documentation of the literature research, we defined the
following inclusion and exclusion criteria to find the most relevant literature for the topic
of IPP of ML models. Our inclusion criteria are:

• Literature which proposes an IPP scheme for ML models

4

2.2. Empirical evaluation

• Literature which proposes an attack on an IPP scheme for ML models

• Literature which evaluates or compares earlier schemes

Our exclusion criteria are:

• (Near) Duplicates 1

• Literature which only uses ML for multimedia watermarking, such as image water-
marking

• Literature that only applies previously published IP protection schemes, without a
novel or large-scale evaluation

2.2 Empirical evaluation
As a first step we formulate research questions and define a study setting in Chapter 6,
which includes benchmark architectures and datasets. We choose watermarking methods
according to our defined selection criteria (cf. Chapter 6) and implement them in
Section 7.1. Afterwards, we analyse them based on experiments in Section 7.2. We
synthesise our findings, answer the research questions and formulate selection guidelines
in Chapter 8.

1If the titles are different but the content is very similar, we include all versions of the literature and
note that. Later on, we will cite only the most complete version as suggested by Kitchenham et al. [58].

5

CHAPTER 3
Background

This chapter aims to equip the reader with the necessary background for the rest of the
work. The definitions are formulated in a mathematical way. We expect the reader to be
familiar with the notation.

3.1 Machine Learning
Machine Learning (ML) is a subfield of Artificial Intelligence (AI) and was defined by
Tom Mitchell as "the study of computer algorithms that allow computer programs to
automatically improve through experience" [76].

The main objective in ML is the problem P , i.e. the task that the ML model is trained
to solve. Common problems in ML are [77]:

• Classification: "this is the problem of assigning a category to each example. For
example, document classification consists of assigning a category such as politics,
business, sports, or weather to each document, while image classification consists
of assigning to each image a category such as car, train, or plane. The number of
categories in such tasks is often less than a few hundred, but it can be much larger
in some difficult tasks such as in text classification or speech recognition."

• Regression: "this is the problem of predicting a real value for each item. Examples
of regression include prediction of stock values or that of variations of economic
variables. In regression, the penalty for an incorrect prediction depends on the
magnitude of the difference between the true and predicted values, in contrast with
the classification problem, where there is typically no notion of similarity between
various categories."

• Clustering: "this is the problem of partitioning a set of items into homogeneous
subsets. Clustering is often used to analyse very large data sets. For example, in

7

3. Background

Figure 3.1: Three main categories of ML, their algorithms and use cases. Source: [92]

the context of social network analysis, clustering algorithms attempt to identify
natural communities within large groups of people."

These problems are usually assigned to one of the three main categories in ML (cf.
Figure 3.1):

1. Supervised Learning – the model learns to make predictions based on a set of
labelled data, e.g. classification or regression.

2. Unsupervised Learning – the model learns to find patterns in an unlabelled
dataset, e.g. clustering or dimensionality reduction.

3. Reinforcement Learning – the model learns to master a task based on a feedback
loop, e.g. playing a game.

We define typical terminology for Machine Learning [77]:

• Examples: "Items or instances of data used for learning or testing. In image
classification, these examples are images which we will use for learning and testing."

• Labels: "Values or categories assigned to examples. In image classification, examples
are assigned specific categories, for instance, car, train or plane."

8

3.1. Machine Learning

• Parameters: are values that control the behaviour of an ML model and are the
instances that are updated during model training. We denote parameters, often
also called weights, by a vector w, but also θ is a commonly used notation.

• Hyperparameters: "Free parameters that are not determined by the learning algo-
rithm, but rather specified as inputs to the learning algorithm, such as the learning
rate or the batch size."

• Training set: "Examples or example-label pairs used to train a learning algorithm."

• Validation set: "Examples or example-label pairs used to select appropriate values
for the learning algorithm’s hyperparameters", or early stopping. Early stopping is
a mechanism to stop training when the validation set performs best, in order to
prevent from overfitting (cf. Section 3.1.1).

• Test set: "Examples or example-label pairs used to evaluate the effectiveness of
a learning algorithm. The test set is separate from the training and validation
set and is not made available in the learning stage." The training, validation and
test sets are pairwise disjoint subsets of the dataset. In Supervised Learning, the
training, validation and test sets consist of example-label pairs, in unsupervised
learning, on the other hand, only of examples.

• Loss function: "A function, that measures the difference, or loss, between a predicted
label and a true label." We denote the loss function as L(w), where w is the ML
model’s parameter vector, since we usually want to minimise the loss function
according to the model’s parameters w (cf. Equation (3.4)). However, in practice,
the loss function is computed with the input of the true label and predicted label,
and could therefore be denoted as L(y, ŷ), where y is the true and ŷ the predicted
label.

3.1.1 Supervised Machine Learning
In this work, we focus on Supervised Learning, especially image classification with Deep
Learning (cf. Section 3.1.1). Let X ∈ D ⊂ Rn, n ≥ 1 be an input data point from a
dataset D and y the corresponding label, then we denote f : Rn → R as the function
that maps the label to the example f(X) = y. We therefore train a supervised model
Fw : Rn → R to predict the data as well as possible, i.e. Fw(X) ≈ f(X), ∀X ∈ D with
the trained parameter (weight) vector w ∈ Rm. The goal is to train the model in such a
way that it predicts the right label also for unseen data, i.e. data that was not in the
training set.

In practice, the performance of different models is compared via the model’s accuracy
on the test set, the test accuracy, i.e. the fraction of total records that are correctly
predicted by the model. The accuracy error is then the difference between 100% and the
accuracy. In notation of the confusion matrix (cf. Table 3.1) the accuracy on the dataset

9

3. Background

Predicted Yes Predicted No
Actual Yes True Positive (TP) False Negative (FN)
Actual No False Positive (FP) True Negative (TN)

Table 3.1: Confusion matrix of a two-class problem.

D is computed as

Accuracy(Fw, D) = TP + TN

TP + TN + FP + FN
. (3.1)

In the context of watermarking, we will use the terms false positive and false negative
regularly, however, with a slightly different meaning. A watermarking method should
have both a low false positive and a low false negative rate when triggering watermarks.
We will explain the terms in Section 5.1.

For classification problems with a large number of classes, the top N accuracy is commonly
used, since the model might not be able to predict the right class exactly, but the right
class might be among the top N predictions. The previously explained accuracy is then
the top 1 accuracy as the prediction is only counted as TP or TN when it hits exactly
the right class. For the top 3 accuracy, the prediction is counted as a TP or TN also
when the true class is not the first, but among the first 3 predictions.

During model training, the model parameters are learned based on the training data.
Some learning algorithms iteratively adapt their parameters, by minimising some kind of
a loss function. Training accurate models often requires multiple training iterations, but
not always as (simple cases of) linear regression can be solved non-iteratively as well.

There is a number of different ML models, e.g. Linear Regression, Decision Tree [13],
k-Nearest Neighbor (k-NN) [8], Perceptron [29], etc. In the text below, we describe linear
regression and perceptron in more detail.

Linear Regression In a general formulation, linear regression finds the best fit line
through the data, i.e. it finds the ideal parameter vector w = (w0, w1, . . . , wm−1) ∈ Rm

(here m = n + 1), so that for unknown data X = (x1, x2, . . . , xn) ∈ Rn the real value is
predicted by

Fw(X) =
n

i=1
wixi + w0 (3.2)

= w X + w0, (3.3)

where w0 is the so-called bias and often denoted as b. This is done by minimising
the mean squared error, which acts as loss function L. Let the labelled training set
D = {(X1, y1), (X2, y2), . . . , (Xk, yk)} be of size k, then the corresponding optimisation

10

3.1. Machine Learning

Figure 3.2: A perceptron

problem is

min
w∈Rm

L(w) = min
w∈Rm

1
k

k

j=1
w Xj + w0 − yj

2
. (3.4)

Perceptron A perceptron is a binary classifier and builds the basis for an Artificial
Neural Network (ANNs). An ANN, motivated by the human brain, is a collection of
nodes, or neurons, which are connected through layers. A layer consists of several nodes
and, in its simplest form, a feed-forward layer, passes the information to (and only to) the
next layer. Perceptron is the simplest form of ANN. It consists of only one neuron and
outputs either 0 or 1. Figure 3.2 shows a perceptron that takes n-dimensional data as
input. The output is computed by a linear combination of the input X = (x1, x2, . . . , xn)
using the weights w = (w0, . . . , wn)

n

i=1
wixi + w0 = w X + w0 (3.5)

and applying a threshold step function with the threshold s

y = 1 for w X + w0 ≥ s

0 for w X + w0 < s
. (3.6)

During training, the weights of the perceptron are updated iteratively. Given a dataset
consisting of example-label pairs D = {(X1, y1), (X2, y2), . . . , (Xk, yk)}, we pass each

11

3. Background

Figure 3.3: Computation of first layer in an MLP.

example through the perceptron and update the weights according to the prediction. Let
ŷi be the predicted label for the input Xi, then the weights are updated by

wnew
i = wi + α(yi − ŷi)xi, i = 1, . . . n,

where α is the learning rate, which is an instance of the hyperparameters. This process
is repeated until the prediction is correct for all examples in the dataset. More complex
types of ANNs are discussed in the following section.

Deep Learning

Deep Learning [33] (DL) is a type of Machine Learning that achieves remarkable results
on many tasks, by dividing a problem into many sub-problems. The basis for Deep
Learning is a Multi-Layer Perceptron (MLP). An MLP is a perceptron with at least one
hidden layer. The hidden layer is again composed of perceptrons, as it is visualised in
Figure 3.3. A feed-forward Deep Neural Network (DNN) is an MLP with multiple (at
least two) hidden layers. In general, the term DNN can be any ANN, not only MLP,
with more than one hidden layer.

We will now explain the computations in an MLP, but first we have to define the notation.
We denote the model’s parameters or weights with w, but also θ is frequently used in

12

3.1. Machine Learning

other literature. As shown in Figure 3.3, we denote the input to a neural network as
X = (x1, x2, . . . , xn) ∈ Rn, the weights connecting the input to the first node of the
first hidden layer as w(1)

1 = w
(1)
11 , w

(1)
21 , . . . , w

(1)
n1 , the weights connecting the input to

the second node of the first hidden layer as w(1)
2 = w

(1)
12 , w

(1)
22 , . . . , w

(1)
n2 , etc. Let n be

the size of the input and r1 the size of the first hidden layer, then the weights for the
first hidden layer can be combined into a matrix (and also analogously for all the other
layers):

W(1) = w(1)
1 , . . . , w(1)

r1 =

w
(1)
11 · · · w

(1)
1r1...

w
(1)
n1 · · · w

(1)
nr1

 (3.7)

The first hidden layer’s activations are denoted as a(1) = a
(1)
1 , a

(1)
2 , . . . , a

(1)
r1 , the second

hidden layer’s nodes as a(2) = a
(2)
1 , a

(2)
2 , . . . , a

(2)
r2 . The weights connecting a(1) to a(2)

are denoted as W(2). And finally, if the neural network consists of L hidden layers, then
the last hidden layer a(L) is connected to the output layer a(O) through W(L). Let the
size of the l-th layer be rl.
With g being the activation function, the first hidden layer’s nodes are then computed as

a
(1)
1 = g

n

i=1
w

(1)
i1 xi + w

(1)
01 = g w(1)

1 X + w
(1)
01 , (3.8)

...

a(1)
r1 = g

n

i=1
w

(1)
ir1 xi + w

(1)
0r1 = g w(1)

r1 X + w
(1)
0r1 , (3.9)

and directly fed into the computation for the second hidden layer:

a
(2)
1 = g

 r1

j=1
w

(2)
j1 a

(1)
j + w

(2)
01

 = g

 r1

j=1
w

(2)
j1 g

n

i=1
w

(1)
ij xi + w

(1)
0j + w

(2)
01

 , (3.10)

...

a(2)
r2 = g

 r1

j=1
w

(2)
jr2a

(1)
j + w

(2)
0r2

 = g

 r1

j=1
w

(2)
jr2g

n

i=1
w

(1)
ij xi + w

(1)
0j + w

(2)
0r2

 . (3.11)

Iteratively, we obtain the formula for the l-th node in the output layer:

a
(O)
l = g

rL

m=l

w
(O)
ml a(L)

m + w
(O)
0l (3.12)

= g

 rL

m=l

w
(O)
ml · · · g

 r1

j=1
w

(2)
jk g

n

i=1
w

(1)
ij xi + w

(1)
0j + w

(2)
0k

 · · · + w
(O)
0l

 (3.13)

13

3. Background

The activation function g decides, depending on the weighted sum, if a node should be
activated or not, i.e. if the output of the node will be used for further computations or
not. Common activation functions are the Heaviside step function

g(x) = 1 for x ≥ 0
0 for x < 0

, (3.14)

a piecewise linear function, e.g.,

g(x) =

1 for x ≥ 1
2

x + 1
2 for − 1

2 < x < 1
2

0 for x ≤ −1
2

, (3.15)

the sigmoid function (which is used as a symbolic example in Figure 3.3)

g(x) = 1
1 + e−t

, (3.16)

or, also a piecewise linear function, the Rectified Linear Unit (ReLU) activation function

g(x) = max(0, x). (3.17)

The latter one is commonly used in Deep Learning, as only the neurons with a positive
value are activated and therefore not all of them get activated at once as they would with
a sigmoid function, being far more computationally efficient. There exist many other
variations of ReLU, e.g. leaky ReLU [73] and parameterised ReLU (PReLU) [46], just to
name a few. Leaky ReLU activates neurons also with a negative value, but weights it
small:

g(x) = x for x > 0
0.01x for x ≤ 0

(3.18)

The PReLU takes the idea further and introduces a parameter which is learned during
training:

g(x) = x for x > 0
ax for x ≤ 0,

(3.19)

with a being the additional.

In order to solve the classification problem, we need a loss function that will be minimised
during model training. The function that is commonly used in classification is the
Categorical Cross Entropy loss function. It is used whenever an output vector is returned
instead of one label. First, the Softmax function S is applied to the output vector to get

14

3.1. Machine Learning

output probabilities, i.e. values between 0 and 1, with the highest value corresponding to
the model’s prediction:

S a
(O)
i = exp a

(O)
i

j exp a
(O)
j

(3.20)

Given the input X, a one-hot encoded label vector y = (y1, y2, · · · , yC) ∈ {0, 1}C ,
where C is the number of classes in the model, and the output vector of the model
FW(X) = a(O)(X), the categorical cross entropy loss is then computed by

L(FW(X), y) = −
C

i

yi log

 exp a
(O)
i (X)

j exp a
(O)
j (X)

 (3.21)

= − log

 exp a
(O)
p (X)

j exp a
(O)
j (X)

 (3.22)

= − log S a(O)
p , (3.23)

with p being the position in the output vector corresponding to the true label. The
second equation holds since the label vector is one-hot encoded and all of the other terms
are cancelled out. Therefore, the cross entropy loss returns high values for a small value
in the output probabilities vector and vice versa, working as a penalty function. A perfect
prediction with a one-hot encoded output probabilities vector would results in a loss of
zero, which the model aims to learn during training.

Since the output vector a(O) mainly depends on the weights W = (W(1), W(2), . . . , W(L))
of the DNN, we can formulate the optimisation problem for the DNN as

min
W∈Rm

L(W, FW(X), y) = max
W∈Rm

log

 exp a
(O)
p

j exp a
(O)
j

 , (3.24)

where here W ∈ Rm denotes the flattened version of the matrix W with length m =
nr1 + L

i=2 ri−1ri.

In order to solve this optimisation problem, a multitude of optimisation algorithms has
been introduced [33]. Gradient descent is the most basic gradient-based optimisation
algorithm and forms the basis for the more advanced ones. The algorithm updates the
parameters after computing the gradients based on the whole training set and is therefore
not recommended to use with large datasets. Let D = {(X1, y1), (X2, y2), . . . , (Xk, yk)}
the training set, then the update rule for the parameters is as follows

Wnew = W + α∇w
k

i=1
L(W, FW(Xi), yi), (3.25)

where α denotes the learning rate. The algorithm converges even with a fixed learning
rate, provided that the gradients of the loss function are Lipschitz continuous.

15

3. Background

A more commonly used algorithm is the Stochastic Gradient Descent (SGD), which
estimates the gradients based on a batch of training samples. Given a batch of m training
samples {(X1, y1), (X2, y2), . . . , (Xm, ym)}, the gradient estimate is computed by

ĝ = 1
m

m

i=1
L(W, FW(Xi), yi) (3.26)

and the parameters are updated after running through a batch by

Wnew = W − αĝ. (3.27)

Another widely used algorithm is the Adam optimiser [56], which is an extension of the
SGD. Adam is an adaptive gradient descent algorithm, i.e. it adapts the learning rate per
parameter. Some models tend to perform better optimised with Adam than with SGD.

Learning rate schedulers adapt the (global) learning rate during training, dependent
on the number of iterations, according to a pre-defined schedule. Two commonly used
learning rate schedulers are MultiStepLR and CosineAnnealingLR. MultiStepLR
reduces the learning rate every n epochs by a rate of, e.g., 0.1. The learning rate gets
smaller every n epochs. CosineAnnealingLR, however, has a schedule that decreases the
learning rate but also increases, in an overall downward trend.

Convolutional Neural Networks (CNNs) [61] are a special type of DNNs where the
hidden layers consist of convolutional, pooling and feed-forward layers. CNNs achieved a
breakthrough in image recognition. The convolutional filters are applied to the image
and enhance special features in an image, e.g. edges, lines or different shapes, and make
it therefore possible to learn how to distinguish between objects. A schematic view of
this process is shown in Figure 3.4.

Convolutional layers [33] differ in computation compared to ordinary feed-forward layers
as shown before in Equations (3.8) and (3.9) to (3.13). Convolutional layers consist of
one of more convolutional filters or kernels. As the name already indicates, the layer
performs a mathematical operation called convolution, which we would like to explain in
detail. The following definitions are adapted from [33]. The continuous mathematical
convolution is an operation on two functions of real arguments, say f, g : Rn → C, and
computed as

(f ∗ g)(x) :=
Rn

f(y)g(x − y)dy. (3.28)

The mathematical convolution is a weighted mean value, for which every f(y) is weighted
by g(x − y). If we deal with discrete functions, which for computational reasons is
necessary, we define the discrete mathematical convolution as

(f ∗ g)[x] :=
∞

y=−∞
f [y]g[x − y]. (3.29)

16

3.1. Machine Learning

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL
Output

(object identity)

Figure 3.4: Convolutional filters in a Deep Neural Network enhancing features in an image.
Usually, the first layers recognise simple features such as lines and corners by comparing the
contrast of neighbouring pixels. With this information, the following layers are responsible for
recognising whole object parts. In this manner, feeding the pixel information from the input
through a series of layers consisting of convolutional, pooling and feed-forward layers, eventually
results in a class prediction. Source: [33]

In Machine Learning, however, a convolution performs a slightly different operation.
Since we usually deal with multi-dimensional input data, e.g. images, of finite size, let
the input X ∈ Rn×n and the kernel K ∈ Rm×m be two-dimensional and finite. Then, the
convolution is computed as

(I ∗ K)[i, j] =
m n

I[i + m, j + n]K[m, n], 1 ≤ i, j ≤ n − m + 1 (3.30)

and the output is called feature map. A schematic view of the computation is shown in
Figure 3.5. Depending on the values of a kernel, the image is processed in a different
way, in order to enhance the special features in an image. Those values of a kernel are
iteratively updated during training, i.e. the model learns how to enhance features in
order to distinguish between different objects. In this way, a CNN is able to classify
images depending on special features in an image and therefore better at generalisation
compared to image classification with an MLP.

Pooling layers [33] serve as a summary of information after a convolutional layer. They
reduce the dimension of data and help to make the representation become invariant to
small changes in the input. Common pooling techniques are max and average pooling.
Max pooling takes the maximum value within a rectangular neighbourhood and average
pooling takes the average value.

17

3. Background

Figure 3.5: Computation of convolutional filter with padding 1. Padding means how much the
filter shifts on the input during the computation. With padding 2, e.g., the filter would move
forward two values instead of one, in order to compute the next output value. Source: [33]

Recurrent Neural Networks [87] (RNNs) are another special type of DNNs where the
connections between neurons are not only limited to the neighbouring layer, like in feed-
forward neural networks but can be connected to any other neuron and therefore forming
a "memory" for the network. RNNs support sequential data and are especially important
for non-static problems like speech recognition. Famous RNNs are the Long Short-Term
Memory Network (LSTM) [51] and Gated Recurrent Unit (GRU) [23]. Figure 3.6 shows
an illustration for LSTM and GRU. LTSMs and GRUs have internal mechanisms called
gates that can regulate the flow of information. The gates are trained to distinguish
which data in a sequence is important and which is not.

Fine-Tuning

The process of Fine-Tuning [31], training a model on different training data with a
smaller learning rate, can be used for either improving the model or when using it for a
slightly different purpose, in Transfer Learning [81]. In this thesis, we use it either to
embed a watermark or as a malicious modification to a well-trained model to remove
unwanted information, e.g. a watermark.

Overfitting

In training an ML model, overfitting [114] is a common phenomenon. Overfitting means
that the model is well-trained on the training data, but performs poorly on data that
it has not seen before, e.g. the test set. Usually, this happens when the architecture

18

3.1. Machine Learning

Figure 3.6: LSTM and GRU. Source: [83]

is complex, but there is too little training data available. In this sense, the model has
enough degrees of freedom so that it can "memorise" the training data rather than learn
how to generalise.

One technique to prevent overfitting in ML models is regularisation [114]. During model
training, a parameter regulariser is used. A regulariser is an additional term in a loss
function, often in the form of a penalty term that controls the magnitude of the parameter
values. The loss function L(w) with a regulariser is defined as

L(w) = L0(w) + λLR(w), (3.31)

where w is the parameter vector, L0 is the original loss function, LR the regularisation
term, and λ an adjustable parameter. Several regularisers have been studied in the litera-
ture, e.g. the L2-regularisation, also called Ridge regularisation, or the L1-regularisation,
also called LASSO regularisation.

Another technique to prevent overfitting is early-stopping [114]. During model training,
the time when the model starts to overfit can be detected. It happens when the test
or validation accuracy stops improving, but the train accuracy still does. With early-
stopping, we stop the training when the validation loss is minimal. Since we only know
that the validation loss is at its minimum when we train several iterations after we
reached the minimum. An additional parameter for early-stopping is the patience, the
number of training iterations after the minimal validation loss was found, to confirm that
this is indeed the right timing to stop training.

19

3. Background

Parameter Pruning

Parameter pruning [44] is a model compression technique, i.e. it is used to compress the
model in order to reduce the storage and computation of the model. It has been shown
that by applying parameter pruning, the number of parameters drops by a magnitude
without any significant accuracy loss. The model parameters with the smallest absolute
value are set to zero because one assumes that the weights with minimal values hold
no or negligible information and can be cut out. In this thesis, we consider parameter
pruning as either a targeted attack, as the attacker could assume that the pruned weights
hold watermark information or as an accidental attack when the attacker wants to drop
redundant parameters for storage reasons.

3.1.2 Further ML techniques

In the following, we introduce ML techniques that are mentioned in the thesis, but not
as much of importance to the core work.

Federated Learning [112] is an ML technique where multiple parties are involved in
training the model on their data, without exchanging the data among each other, mostly
for privacy-preserving goals.

Generative Adversarial Networks (GANs) [34] are an ML architecture that uses two
DNNs to learn a task – one DNN actually learns the task (the generator) and the other
evaluates it (the discriminator). For instance, a common application area is picture
generation. The generator learns to create pictures from scratch of, e.g. humans, and
the discriminator evaluates its performance by comparing a set of real samples with the
generated set. The discriminator has two possible outputs "real" and "fake". The goal
of a GAN is that the discriminator outputs "real" for the images generated with the
generator.

An autoencoder is a special ANN that is commonly used for dimensionality reduction, that
is to find a low-dimensional representation of high-dimensional data in an unsupervised
manner. This is achieved by learning to copy its input to its output. It consists of an
encoder and a decoder, and an internal (hidden) layer that describes a code learned to
represent the input.

Knowledge Distillation [48] is a type of compression technique that uses knowledge of a
neural network (teacher network) to train a new smaller network (student network). A
smaller model is computational less expensive and thus more appealing.

Adversarial Examples [96] are a kind of input that is created to fool a model. Usually,
an original input (e.g. an image) is perturbed by some specially crafted noise such that
the model is unable to classify the generated input correctly. The perturbation is kept
minimal, to ideally not be noticeable by a human, or detection methods. Several methods
to create Adversarial Examples have been proposed, the most well-known likely being
the Fast Gradient Sign Method (FGSM) [36].

20

3.2. Watermarking

3.1.3 Model Extraction Attack
A specific attack against the IP of ML models is the so-called Model Extraction Attack
(or Model Stealing Attack) [100], which aims to reveal a model’s internal characteristic
or copy a complete model by only querying its API service. The target can be the
architecture, parameters, decision boundary, functionality, or training hyper-parameters
of the model.

3.2 Watermarking
Digital watermarking is a well-studied procedure in e.g. multimedia Intellectual Property
Protection (IPP) [54] or relational databases [55]. The main idea is to embed a piece of
signature in the data, e.g. image or audio, to deter malicious usage. This signature is
often intended to be unnoticeable, however, perceptible watermarks are also commonly
used in the multimedia domain; examples are logos or copyright notices that are added
to images or videos to identify the author. Non-perceptible watermarks, on the other
hand, aim to avoid changing the perceptible impression of the data. This is also the type
of watermark that we consider for the IPP of ML models. Digital watermarking is thus a
form of steganography or information hiding, i.e. the practice of concealing a message
within another message. The hidden information must be embedded in such a way that
no algorithm can remove or overwrite the watermark. Some recent digital watermarking
techniques, e.g. for images, make use of DNNs in the embedding process [122]; similarly,
also attacks targeted to remove such watermarks are increasingly using deep learning
techniques [91].

In this thesis, we discuss (ML) model watermarking, i.e. the IP that has to be protected
is an ML model. Model watermarking is related to multimedia or relational data
watermarking, but the techniques differ since the protecting instance changed. Research
on watermarking DNNs predominantly addresses image classification (cf. Chapter 5).
The introduced terminology is thus strongly influenced by this application of ML, but we
believe that the concepts are transferable to other input types as well.

At this point, we want to define the terminology that is common in model watermarking
and is used throughout this work. A typical watermarking workflow is shown in Figure 3.7.
Watermark embedding describes the process in which the watermark is placed into the
model, e.g. via fine-tuning. We call watermark extraction the process in which the
embedded watermark is extracted from the model, but neither in a permanent (which is
called watermark removal) nor in a malicious way (which is called watermark detection).
Watermark extraction means that we want to identify if any, and which watermark is
placed.

Finally, during watermark verification, the extracted watermark is compared to the model
owner’s watermark in order to prove ownership. Following certain rules (e.g. thresholding
the watermark accuracy or (bit) error rate), it is then decided if the watermarks are the
same.

21

3. Background

Figure 3.7: A typical watermarking workflow

3.3 Fingerprinting
We can consider fingerprinting as an extension of watermarking. While watermarking has
the purpose to verify the owner of a digital resource, fingerprinting wants to further trace
back to the (malicious) recipient of the resource. Therefore, fingerprinting techniques
should be capable of embedding multiple, but unique, fingerprints in order to identify the
recipient. These multiple fingerprints may be embedded in the same model, or in different
versions of the model before distributing it. Similar to watermarking, fingerprinting is
already widely used in multimedia areas like images, audio and video [62], relational
databases [115], and other digital data types.

22

CHAPTER 4
Taxonomy of IPP for ML models

In this section, we provide a comprehensive taxonomy of IPP methods for ML models,
the threat model and attacks.

We first define our threat model, to then discuss potential schemes to mitigate risks of
those threats. We then provide an overview of attacks against those IPP mechanisms.

4.1 Threat Model
To define a threat model we first need to understand the motives of an attacker (or
adversary or malicious user). The model owner, i.e. the person that invested resources to
obtain an ML model for a specific task, wants to offer the model to some target audience
for use. The most prominent reasons for an attacker to redistribute such a model would
be (i) having no (or not enough) training data, expertise, time or computational power
to train such a model themself, and/or (ii) the unwillingness to agree with the license
terms of the obtained model or the fees for using it in a Machine Learning as a Service
(MLaaS) setting. We call the model that has to be protected the target model, and the
attacker’s model, which arises from the target model, the adversary model. As a threat
model, we consider either one of the following situations:

1. Legal copy: The model owner distributes the model publicly, either for free, e.g.
via a platform such as Model Zoo [2], but with a restrictive license, or for a fee. The
attacker then obtains this model and redistributes it via a lucrative API service.

2. Illegal copy: The model owner distributes the model as a pay-per-query API
service. The attacker then performs a Model Extraction Attack and provides his
own lucrative API service.

23

4. Taxonomy of IPP for ML models

[4]
[116]
[113]

[116]
[64]
[40]
[41]

[116]
[125]

[75]
[65]
[19]

FP: [72]
FP: [119]

[80] [121]
[118]
[111]

[101]
[106]
[103]
[28]

[86]
FP: [18]

[53]
[98]

[97]

[108] [27] [32]
[15]
[6]

[99]
[67]

[9]
[20]

Figure 4.1: Taxonomy of Intellectual Property Protection mechanisms for Machine Learning
models. Note, that not all considered papers are referenced in this diagram.

Regardless of how the attacker obtained the model, in both cases, the IP of the model
owner is illegally utilised. For both cases, we will discuss methods to protect the IP of
the model owner. It is important to differentiate between those two cases, as this has a
large impact on selecting potential defence mechanisms.

4.2 IPP Methods
We developed a comprehensive taxonomy of IPP methods for ML models, depicted in
Figure 4.1.

A principal categorisation of model watermarking methods is by white-box or black-box
watermarking methods. White-box approaches embed the watermark in the model
parameters or other model characteristics. With that in mind, the model owner would
need the get the stolen copy from the attacker for the watermark verification process. This
scenario seems unrealistic in most settings (e.g. an attacker offering an API service based
on the model never discloses the model itself), and is the likely reason why black-box
watermarking tends to be more popular, as the model owner can verify ownership with as
little as a set of trigger inputs and the corresponding responses of the adversary model.

A further distinction is between (i) reactive methods, which try to react to a threat event,
or (ii) proactive methods, which means the defender takes initiative, to prevent a threat
event. Regarding the goal of the protection, we distinguish methods that enable to verify
the ownership of a model, by model watermarking and model fingerprinting, and are
thus reactive, and methods that, e.g., want to prevent unauthorised model access, and
are thus proactive. Ownership verification is a weak form of protection, as it requires
the unauthorised usage of the model to be known (or at least suspected), and further

24

4.3. Attack Model

requires some form of access to the model. Model access control, on the other hand, shall
prevent such illegal use, by rendering the model useless to unauthorised users. This is
comparable to preventing unauthorised use of, e.g., software.

Watermarking against the threat of a model extraction attack is mostly achieved by
special black-box watermarking techniques that survive such an attack, i.e. the hidden
information is "stolen" along with the model itself. In case a user initially obtained a
legal copy of the ML model but is then using it in a way not according to the licensing
terms, more techniques are available. White-box approaches for this case embed the
ownership information directly into the model parameters, or in their probability density
function (PDF). Black-box approaches mostly rely on specific input samples, so-called
trigger sets, that will cause the model to behave in a way that is unexpected for the task,
and unknown to the attacker. The techniques mainly differ in the way these triggers are
constructed.

Model access control methods can be distinguished by the asset they want to protect.
Most work focuses on the protection of the model parameters, either by encryption, other
obfuscation techniques, or requiring a specific method to transform the inputs. If the
model structure (or architecture) is to be protected, obfuscation techniques for those are
employed.

4.3 Attack Model
In Section 5.5 we will introduce specific attacks against IPP mechanisms, namely detection,
overwriting, invalidation and removal. Therefore, this section provides the attack models
to which we will refer later on. Let us assume that the attacker obtains a legal copy of
the target model, and either knows or assumes that the model has an IPP in place.

We consider the following cases as attack models for watermarking:

• Watermark detection: The attacker wants to detect if there is a watermark in
the model, e.g. to then perform a targeted watermark removal or overwriting. If
the watermark is not secured with an additional mechanism (e.g. a private key for
extraction), the attacker could also claim ownership.

• Watermark overwriting: The attacker wants to overwrite an existing watermark
by placing their own watermark and making the model owner’s watermark useless.

• Watermark invalidation: The attacker wants to disable the watermark function,
without actually removing it from the model, so that it cannot be verified.

• Watermark removal: The attacker wants to modify the model in a way such
that the model owner’s watermark extraction algorithm will no longer result in
proving correct ownership, ownership of the real model owner.

25

4. Taxonomy of IPP for ML models

Most of these attacks are also valid against fingerprinting.

Against model access control mechanisms, an attacker mostly would want to remove
or invalidate (or potentially overwrite) the mechanism to gain unauthorised access to use
the model (as black-box) or to reveal either the model architecture or model parameters
for other purposes.

26

CHAPTER 5
State of the Art: Model

Watermarking, Fingerprinting
and Attacks

There are several connotations of watermarking, and generally, information hiding, along
the machine learning process, as depicted in Figure 5.1. Sablayrolles et al. [89] propose
a technique that traces data usage; it marks (training) data in a special way, so that a
ML model trained on that data will bear a watermark that can be identified (cf. 1 in
Figure 5.1). The main body of work, and the focus of this section, consider ML models
as the objects that need protection and in which the watermark is embedded (cf. 2
in Figure 5.1). Abdelnabi et al. [3] propose a special form of watermarking. Their
scheme is not watermarking a model, but the output of a text generating model (cf. 3
in Figure 5.1). They assume that an attacker could use the model for generating whole
articles. In such a case, the watermark can be extracted from the generated text and
prove the illegitimate usage of the model. In some settings, it is further considered that
a marked output (prediction, or data) is generated with the explicit goal to trace the
usage of this data, e.g. for training by an attacker (cf. 4 in Figure 5.1). This is a special
form of 1 , as the data origin is different, and of 2 , as the adversary model is implicitly
marked (cf. Section 5.3.7).

We want to point out that information hiding techniques for ML models may have other
applications than watermarking. For instance, Song et al. [94] propose a technique to
hide data from a private training dataset in the internals of a model (e.g. the weights)
trained upon said dataset. This way, an attacker that does not have direct access to the
training data, but can only let their model be trained on the data by the data owner,
can exfiltrate this data via the derived machine learning model, i.e. perform a data
exfiltration attack (cf. 5 in Figure 5.1). We, however, consider techniques which hide
information about a lawful owner of the model.

27

5. State of the Art: Model Watermarking, Fingerprinting and Attacks

[89] [3]
[98]

[117]
[107]

[94]

Figure 5.1: Different notions of information hiding along a ML process

The vast majority of watermarking methods for ML models is designed specifically for
DNNs. The main reason for this is not only the high value of DNNs, as they require
large datasets and long training time, but also the number of "degrees of freedom" in a
DNN. Large DNNs thus have, compared to other ML models, more "space" for hiding
marks. Most authors evaluate the schemes on image classification task. However, some
authors extend the methods to other tasks, like audio classification [53], image captioning
[66], image processing [85, 107, 117] (where the output is an image/data, rather than a
prediction), or specific learning settings, such as GANs [93], Federated Learning with
DNNs [10], Graph Neural Networks [120], and Deep Reinforcement Learning [11].

5.1 Requirements
A watermarking scheme should fulfil a couple of requirements. Literature is not coherent
in the naming of these requirements of watermarking (and fingerprinting) methods, and
we, therefore, aim at providing a common nomenclature. To this end, we collect all the
requirements that were proposed in the papers included in our literature review and list
them in Table 5.1, identifying also terms used as synonyms, along with references to the
respective publications.

The most important requirements are effectiveness: the watermark shall be embedded
in a way that the model owner can prove ownership anytime, fidelity: the model’s
accuracy shall not be degraded because of the watermark embedding, and robustness:
the watermark embedding should be robust against several kinds of attacks, including
fine-tuning, model compression and other, specifically crafted attacks. The remaining
requirements are listed in Table 5.1. Note, that non-trivial ownership is sometimes used as
a synonym for integrity, meaning that innocent models are not being accused of ownership
piracy, but also as a requirement that an attacker cannot easily claim ownership without

28

5.1. Requirements

Table 5.1: Requirements for Watermarking techniques. The notation is not consistent throughout
the papers, but the terms in the left column are the most prominent ones. These requirements
mostly apply also to Fingerprinting methods

Property Description Other terms used in papers
Effectiveness The model owner should be able to

prove ownership anytime and multiple
times if needed

Authentication [64], Functionality
[65]

Fidelity The accuracy of the model should not
be degraded after embedding the wa-
termark

Funcionality-preserving [64, 106, 4],
Loyalty [75], Utility [98] (Image WM:
Transparency [84]; Relational Data WM:
Usability [55])

Robustness The embedded watermark should resist
a designated class of transformations

Unremovability [4, 98]

Security The watermark should be secure
against brute-force or specifically
crafted evasion attacks

Secrecy [93], Unforgeability [4, 106]

Legality An adversary cannot produce a water-
mark for a model that was already wa-
termarked by the model owner

Ownership piracy resilient [4, 106],
Non-ownership piracy [98]

Integrity The watermark verification process
should have a negligible false positive
rate

Low false positive rate [41, 40],
Non-trivial ownership [64, 4, 106],
Uniqueness [85]

Reliability The watermark verification process
should have a negligible false negative
rate

Credibility [19]

Efficiency The watermarking embedding and ver-
ification process should be fast

Capacity The watermarking scheme should be
capable of embedding a large amount
of information

Payload [40]

knowing the watermarking scheme and embedded watermark. Moreover, authentication
is more a subset of effectiveness than a real synonym since it only requires that there is
a provable association between an owner and their watermark. Feasibility is used as
a combination of robustness and effectiveness [65], and correctness as a combination
of effectiveness, reliability, and integrity [72]. Fingerprinting should fulfil two more
requirements: uniqueness – the fingerprint can be uniquely identified with the user, and
scalability – the fingerprinting scheme should be able to embed multiple fingerprints,
either in the same model or in multiple versions of the model. A fingerprinting method
that embeds multiple fingerprints, e.g. [18], could not only trace back the attacker but
also identify collaboration between several malicious users.

We provide an overview of all the watermarking and fingerprinting schemes considered in
this thesis, and whether they are meeting the above-mentioned requirements, in Table 5.2.
We observe that all schemes fulfil the above-identified most important requirements
of fidelity, effectiveness and integrity, except for [39], which on purpose gives up on

29

5. State of the Art: Model Watermarking, Fingerprinting and Attacks

Table
5.2:

R
equirem

ents
m

et
by

w
aterm

arking
and

fingerprinting
schem

es.
W

e
distinguish

tw
o

degrees:∼
indicates:

the
respective

authors
claim

the
schem

e
fulfils

this
property;

indicates:
the

authors
show

em
pirically

that
the

property
is

fulfilled.

w
hite-box

black-box
P

roperty
[86]

[18]
[101]

[106]
[103]

[28]
[16]

[116]
[4]

[64]
[40]

[41]
[125]

[75]
[65]

[19]
[119]

[72]
[80]

[98]
[53]

[121]
[118]

[111]
[113]

[39]
[93]

[66]
[107]

[117]
[85]

Effectiveness
Fidelity

N
/A

R
obustness

∼
Security

∼
∼

∼
∼

∼
∼

Legality
∼

∼
Integrity
R

eliability
∼

Effi
ciency

∼
∼

∼
C

apacity
∼

30

5.2. White-box Watermarking

robustness in favour of reversibility: the authors point out that the application of their
scheme is not IPP, but integrity authentication, and that all existing watermarking
methods are irreversible – once the watermark is embedded, it cannot be removed to
restore the original model without degrading the model’s performance. They argue
that irreversible watermarking schemes are permanently modifying the model’s internals,
and thus destroying the integrity of the model, which could have severe consequences
especially in applications for the medical or defence domain, etc. To make the scheme
reversible they sacrifice the robustness requirement, inspired by traditional image integrity.
For Zhang et al.’s method [117], the fidelity requirement does not apply since it is not
well-defined for image processing. To determine for a model that outputs an image (or
other complex data) whether a watermarked version of such a model is comparable to
the original one, one would need to define a similarity measure to compare if the two
outputs are equivalent.

Watermarking methods can be categorised into two main fields, white-box and black-box
watermarking. White-box means that the model owner needs access to the stolen model’s
parameters or other model characteristics, in either step of the IPP method process, i.e.
also during watermark extraction and verification. A black-box method generally only
needs access to the model’s prediction, e.g. via an API service, to observe matching
input and output from the ML model, using it in a similar fashion as an oracle. In the
following sections, we discuss both of the watermarking types.

5.2 White-box Watermarking
White-box watermarking requires full access to the model in order to verify the watermark.
Usually, the model owner creates a T -bit signature vector b ∈ {0, 1}T that is a set of
arbitrary binary strings that should be independently and identically distributed (iid)
[86]. This binary vector serves as a watermark and is usually embedded into the model
by fine-tuning with regularisation. We call this type of embedding scheme regulariser
based. The general workflow for a regulariser based embedding scheme is illustrated in
Figure 5.2a.

The first framework for embedding a watermark into a DNN was proposed by Uchida et al.
[101]1 in 2017. They follow the idea of embedding a signature into the model, particularly
in the DNN’s weights. While it would be possible to directly alter the model’s parameters,
as it would be done for watermarking relational data, this would degrade the model’s
performance. They thus describe three ways of embedding the watermark: while training,
while fine-tuning, or by using the distilling approach [48]. The fine-tuning approach is
especially interesting when the model owner wants to place individual watermarks (i.e.
fingerprints) before distributing to different users, in order to trace back the recipient in
case of copyright infringement (cf. Section 5.4.1). The model is trained with a regulariser
term, given the signature b ∈ RT , the averaged weights vector w ∈ RM and a specially
crafted embedding matrix M ∈ RT ×M . The embedding matrix M can be considered a

1Slightly extended version in [79]

31

5. State of the Art: Model Watermarking, Fingerprinting and Attacks

(a)

(b)

Figure 5.2: Typical workflows for (a) white-box watermarking and (b) black-box watermarking

secret key for the embedding and extracting process. The watermark is extracted by
applying M ∈ RT ×M to the weights vector w ∈ RM and then applying a step function:

b̃j = s(
M

i=1
Mjiwi), (5.1)

where s(·) is the unit step function. The resulting vector b̃ is then compared with
the signature b and the BER (bit error rate) is computed. Ownership is proven by
thresholding the BER.

Subsequently, Rouhani et al. [86] propose a watermarking framework that proves to be
more robust against watermark removal, model modifications and watermark overwriting
than [101]. The method is regulariser based and encodes the signature in the PDF
of activation maps obtained at different DNN layers, by one additional regularisation
term L1(w) that ensures that selected activations are isolated from other activations, to
avoid creating a detectable pattern of alterations and another L2(w) to enforce that the
distance between the owner-specific WM signature and the transformation of isolated

32

5.2. White-box Watermarking

activations is minimal:

L(w) = L0(w) + λ1L1(w) + λ2L2(w) (5.2)

For extraction, they save a list consisting of the selected Gaussian classes, the trigger
images and the projection matrix. In the verification process, the trigger images are used
as input for the model to then analyse the activations. The scheme can be employed in
a white-box or black-box setting, depending on whether just the output layer or also
hidden layer activations are assumed to be available in case a watermark verification is
needed.

Wang et al. [106]2 generalise both of the above presented algorithms into a white-box
scheme. They show that the previous schemes are vulnerable to watermark detection
(cf. Section 5.5), as the weight distribution deviated from those of non-watermarked
models. The authors claim that this arises from the additive regularisation loss function(s).
Therefore, they propose a new scheme that is particularly robust against detection attacks.
Inspired by the training of GANs, they train a watermarked target DNN Ftgt, which is
competing against a detector DNN Fdet that aims to discover whether a watermark is
embedded.

Wang et al. [103] follow a similar approach and propose a white-box scheme for DNNs
that makes use of an additional DNN for the watermark embedding process. The target
model is trained in parallel with an embedding model, which will be kept secret after
the embedding process. The scheme is regulariser based and the watermark is verified
by feeding the selected weights into the embedding model and thresholding the output
vector. They empirically show that their scheme achieves better fidelity, robustness and
capacity compared to [101].

Feng et al. [28] combine a binarisation scheme and an accuracy compensation mechanism
to reduce the model’s accuracy degradation that results from fine-tuning. They use
spread-spectrum modulation on the signature b and embedding it in different layers to
reduce the risk of the watermarked weights being set to zero during a pruning attack.
The binarisation scheme then transforms the selected weights per layer so that the overall
energy, i.e. the second norm of the selected weights in one layer remains unchanged. The
overall energy is defined as

||swj ||2 =
T

i=1
(swj

i)2, (5.3)

where swj is the selected weights vector in the j-th layer of the selected layers. Therefore,
the embedding position of the watermark cannot be discovered easily by an attacker.

As the last step, they use a "compensation mechanism" in fine-tuning, which aims to
reduce the impact of watermark embedding on the model’s performance. In particular,

2Newer and slightly changed version in [105]

33

5. State of the Art: Model Watermarking, Fingerprinting and Attacks

they propose to keep the watermarked weights unchanged and fine-tune only all the other
weights.

The first (and so far only) white-box framework for Automatic Speech Recognition
(ASR) was introduced by Chen et al. [16], called SpecMark. The framework embeds
the watermark in the spread spectrum of the ASR model without re-training it. They
evaluate SpecMark on the DeepSpeech model and conclude that it does not have any
impact on fidelity.

5.3 Black-box Watermarking
Black-box watermarking only needs access to the model outputs for watermark verification,
which makes watermark verification far more practical. A typical workflow is shown in
Figure 5.2b.

Only two of the existing black-box watermarking frameworks [53, 98] address the second
threat model case (illegal copy) in Section 4.1. All the other watermarking methods are
not reliably robust against model extraction attacks, and therefore primarily address the
first case (legal copy).

All of the frameworks that are defending against the legal copy case utilise (defensive)
backdooring. A backdoor consists of a so-called trigger set of input-output pairs, which
are only known to the backdoor creator (in most cases, the model owner), and triggers a
behaviour that is not predictable by others. We call the input images of the trigger set
trigger images, sometimes watermarks, and the corresponding labels trigger labels.

Existing black-box watermarking methods concentrate on either creating suitable trigger
images (inputs) or trigger labels. Depending on the scheme, different trigger images are
used for watermarking:

• Out-of-distribution (OOD) trigger images are completely unrelated to the
dataset, e.g. abstract images in a handwritten digit dataset.

• In-distribution trigger images are taken from the original training dataset and
re-labelled wrongly.

• Pattern based trigger images originate from the training dataset but are marked
with a pattern, e.g. logo, text or other designed pattern – comparable to patterns
embedded in images for "conventional" data poisoning attacks (e.g. [38]).

• Noise based trigger images are images from the training dataset with added noise
(i.e. no systematic pattern), either visible or invisible to the human eye.

• Perturbation based trigger images are slightly perturbed images and lie near
the classification boundary, thus when re-labelled, they force the model to slightly
shift its classification boundary.

34

5.3. Black-box Watermarking

(a) Out-of-distr. [4] (b) In-distr. [80] (c) Pattern [116] (d) Noise [116] (e) Perturb. [75]

Figure 5.3: Examples for the various types of trigger images, intentionally labelled as a different
class ((a), (b) as "cat", (c), (d) as "airplane", (e) as "9")

Figure 5.3 shows examples for all these five types of trigger images. Similar to embedding
backdoors as an attack to reduce the availability or integrity of a model, the main
objective is that the model will accurately behave on the main classification task, but will
fail the classification on the trigger images in the way the model owner has designated.

Zhang et al. [116] propose the first black-box watermarking scheme in 2018 and introduce
three types of trigger images: unrelated (OOD), content (pattern based) and noise
(based). Their work forms the basis for many following papers.

5.3.1 Out-of-distribution
Similar to and shortly after Zhang et al. [116], Adi et al. [4] propose to include abstract
images as trigger images in the training dataset. Those abstract images are completely
unrelated to the main classification task, thus it is highly unlikely that a model that has
not seen this data point (i.e. one not watermarked) will label it as the designated class.

One of the first watermarking schemes for image processing models was proposed by
Quan et al. [85]. The main difference to classification is that the output is, like the input,
an image and not a label – thus they are generating input-output pairs which consist of
trigger images and verification images. They propose to use OOD images (or random
noise) as trigger images and create the verification images by applying a simple image
processing method to the trigger images (ideally not the one trained by the model). The
idea is the same as in (defensive) backdooring. They generate input-output pairs where
each consists of a trigger image and a verification image. The model is then fine-tuned
on the union of the training dataset and the trigger set.

Yang et al. [113] empirically show that distillation is an effective watermark removal
attack. Therefore, they propose a new watermarking scheme, called ingrain, that the
authors claim to be especially robust against distillation. The main idea is that the
watermark information is carried by the predictions of the original training data but the
watermark extraction is done by querying trigger images that are drawn from a different
distribution than the original images. Comparing to [4] and [116], the target model is
not trained on the union of the original training dataset and the trigger set, but only on
the original dataset, and instead makes use of another model, the ingrainer model, which
influences the target model by a regulariser term to the loss function. The ingrainer

35

5. State of the Art: Model Watermarking, Fingerprinting and Attacks

model has the same architecture as the target model and is only trained on the trigger
set, in particular, to overfit the trigger set.

5.3.2 Pattern
An improved pattern based technique was proposed by Li et al. [64]. They show that
previous schemes [4, 116] are vulnerable to ownership piracy attacks, in which an attacker
aims to embed his own watermark into an already watermarked model. They propose a
watermarking scheme that is especially robust against such attacks using dual embedding:
the model is trained to classify (i) data with a pre-defined binary pattern correctly (null
embedding), and (ii) data with an inverted pattern (binary bits are switched) incorrectly
(true embedding). In more detail, for a pre-defined binary valued pattern p and a very
large number λ, the pattern p is dual embedded into the model Fw if for all X ∈ Rn

holds

Fw(apply(X, p, λ)) = Fw(X) = y, (5.4)
Fw(apply(X, inv(p), λ)) = ŷ = y, (5.5)

where apply(X, p, λ) applies the pattern p with magnitude λ (value λ for bit 1 and value
−λ for bit 0) to the image X. Equation (5.4) refers to null embedding and Equation (5.5)
to true embedding. They observe that null embedding does not degrade the model’s
accuracy if the number of pixels in the pattern is sufficiently small. Furthermore, they
evaluate the robustness against model extraction attacks and conclude that, with enough
(at least the same amount of) in-distribution data, the attacker is able to make a copy of
the model without the watermark. For out-of-distribution data, the attacker would need
12.75 times more input data to reach similar accuracy.

Guo et al. [40] propose to embed a pattern into the trigger images that can be clearly
associated with the model owner’s signature, e.g. a logo. The pattern should be embedded
with little visibility so that the original model would still classify the trigger images to
their original labels. The signature is used as a key to determine the pattern and then
embedded in the image.

Guo et al. [41] propose an evolutionary algorithm-based method to generate and position
trigger patterns, based on [116] and [40]. Their algorithm is based on Differential
Evolution [95], an evolutionary algorithm and a metaheuristic that searches for the
optimal solution for an optimisation problem. Using this trigger pattern generation they
demonstrated an improvement in integrity and robustness.

5.3.3 Noise
Zhu et al. [125] propose a watermarking scheme especially to defend against watermark
overwriting (forging attacks). They propose to use one-way hash functions for both
generating the trigger image and label. The framework takes an initial image and creates
a hash chain of trigger images, as shown in Figure 5.4. They show experimentally that

36

5.3. Black-box Watermarking

Figure 5.4: The upper left image is the initial image and the following five are trigger images
resulting from a hash chain [125].

R̄

R̄ B̄

B̄

R

R

R

R

B

B

B

B

(a)

R̄

R̄ B̄

B̄

R

R

R

R

B

B

B

B

(b)

Figure 5.5: (a) The data points are divided into "true adversaries" (R and B) and "false adversaries"
(R̄ and B̄). The label for the true adversaries is changed, the label for the false adversaries stays
unchanged. (b) After fine-tuning the decision boundary changes. [75]

their proposed scheme is robust against forging attack even if the attacker knows the
trigger set generation algorithm.

5.3.4 Perturbation
Another black-box scheme was proposed by Merrer et al. [75]. The goal is to slightly shift
the decision boundary of the model. This is achieved by generating adversarial examples
[96] for images close to the boundary, and changing the class for those adversaries. After
fine-tuning the model, the decision boundary is adapted. An illustration of this decision
boundary shifting for a two class boundary is given in Figure 5.5.

Li et al. [65] especially address evasion attacks. They propose a framework closely
related to the idea of GANs. They use three DNNs: encoder, discriminator, and target
model. The encoder takes the original image and aims to embed a logo into the image
such that the difference is imperceptible. The resulting trigger images are fed into the
discriminator together with the original image to evaluate the encoder’s success. A
difference in the original and trigger images is essential for the watermarking scheme,
yet the goal is to make the difference as small as possible. This framework especially
deals with the trade-off between security and effectiveness. The smaller the difference,
the better security against evasion attacks, and the larger, the better the effectiveness of

37

5. State of the Art: Model Watermarking, Fingerprinting and Attacks

the embedded watermark.

Chen et al. [19] propose the watermarking framework BlackMarks, which encodes the
signature within the distribution of the output activations. To encode the class predictions,
the authors design a scheme that maps the class predictions to binary bits, by clustering
the original classes into two categories, represented by bit 0 and bit 1. The trigger images
are created in a way that for the bit 0, an adversarial example that would belong to the
cluster represented by the bit 1 is created, and is labelled with a uniformly randomly
chosen class from the cluster represented by the bit 0. Trigger images for the bit 1
are created vice-versa. The watermark is extracted by querying the trigger images and
encoding each class to a binary value, which should result in the owner’s binary signature
to prove ownership.

5.3.5 In-distribution
Namba et al. [80] propose an attack, called query modification, that investigates the
query for trigger images in order to invalidate the watermark (cf. Section 5.5). With that
in mind, they propose a scheme that is more robust especially against query modification
but also model modifications like fine-tuning and model compression (e.g. pruning). The
query modification as an attack exploits the fact that trigger images differ from original
training images. Therefore, they propose to use trigger images that are selected from
the training sample distribution. The trigger images are thus undetectable, however, the
model is more likely to overfit to the (on purpose) wrongly labelled triggers, and thus
more susceptible to removal attacks via e.g. pruning. They want to counter pruning by
ensuring that the predictions do not depend on a large number of small model parameters
that would likely be pruned. Thus, the model is first trained as usual with the original
training set. Then, the watermark is embedded by exponentially weighting the parameters
and training the model on the union of the training dataset and the trigger set, which
enforces the predictions to depend on a small number of large parameters instead. In
exponential weighting the model parameters wl are changed in every layer l by

wl
exp,i = λexp |wl

i|
maxi λexp |wl

i|
wl

i, (5.6)

where wl
i denotes the i-th component of the parameter vector wl in layer l and λ is an

adjustable parameter for the intensity of the weighting.

5.3.6 Trigger labelling
Zhong et al. [121] propose to label the trigger images with a completely new label, rather
than assigning one from the existing labels, so that the watermark embedding has only
little impact on the original classification boundaries. Any pattern based trigger image
can be used in this context. They compare their work to [116] in their experimental
evaluation and show that the proposed scheme achieves a zero false-positive rate, i.e.
excellent integrity, and is more robust against fine-tuning and model compression.

38

5.3. Black-box Watermarking

Zhang et al. [118] observe that frequently, trigger images are created in a systematic way,
and it is thus easier for an attacker to re-create them. Therefore, they propose to include
unpredictability in the labels assigned to the trigger images. They use a chaos-based
labelling scheme for trigger images that ensures that an attacker cannot produce a valid
trigger set, even if he knows the trigger pattern.

Xu et al. [111]3 propose, similar to BlackMarks [19], a watermarking scheme that carries
the watermark information within the output activations. The trigger pairs consist of a
trigger image and a serial number (SN) which is constructed individually by the owner’s
rules. The SN is composed by using the probabilities in the last layer. It is worth noting
that any rule for generating it is feasible. For instance, for three classes the SN could be
"235" following the rule to reduce the digits by one order, resulting in [0.2, 0.3, 0.5], but
also any other, more complex rule can be used. The proposed scheme does not rely on
the specific choice of trigger images since it focuses on the output activations.

5.3.7 Countering Model Extraction

Only a few schemes address the second threat model case in Section 4.1, i.e. robustness
against model extraction attacks. Jia et al. [53] are the first to propose a scheme, called
entangled watermark embedding (EWE). The main idea is to create a watermarked model
that is not specialised into "sub-models", where one part of the model is capable of the
main classification task, and the other for watermark detection (which normally is lost
during the model extraction attack). This is achieved by a regulariser term ensuring
that the trigger images lead to similar activation patterns as the original images. Thus,
both trigger images and original images cause a similar behaviour of the model, thereby
increasing the robustness against model extraction.

Szyller et al. [98] propose the framework Dynamic Adversarial Watermarking of Neural
Networks (DAWN), which is not embedding a signature into the target model itself but
dynamically returning wrong classes from the API service for a fraction of queries to
mark an adversary model created via a model extraction attack. It is worth noting that
the scheme is not able to differentiate between an attacker and a benign client – all clients
obtain a fraction of wrong predictions. It is ensured that the same query always returns
the same output (correct or modified). Whenever a wrong prediction is returned, the
input-output pair is saved so that in need of a watermark verification, they can be used
for triggering the stolen model. This approach thus realises 4 in Figure 5.1.

Zhang et al. [117] and Wu et al. [107] propose, independently of each other, a similar
approach to [98], as they are hiding an invisible watermark in the outputs of the image
processing model, but for all outputs. When an attacker trains a new (surrogate) model
on the input-output pairs of the original model, the watermark will be learned too and
can be verified with black-box access (cf. 4 in Figure 5.1). The major difference to [98]
is that in the case of an image processing model, the output is another image, and thus

3Previous pre-print version in [110]

39

5. State of the Art: Model Watermarking, Fingerprinting and Attacks

there is more data to embed the watermark in. Both papers are not explicitly addressing
model extraction attacks, but we believe they are a suitable defence.

5.3.8 Watermarking for specific ML settings
Existing watermarking schemes are not suitable for Federated Learning (FL), as pointed
out by Atli et al. [10]. Embedding a watermark in such a setting is different, because the
model owner has no access to training data, and the training is performed in parallel
by several clients. Atli et al. propose to include an independent and trusted party
between the model owner and the clients. The independent party has the ability to
embed a black-box watermark based on backdoors into the model at every aggregation
step. Furthermore, they propose a watermarking pattern that is a specific noise pattern.

Skripniuk et al. [93] propose the first, and until now only, watermarking scheme specially
crafted for GANs. The existing watermarking schemes are limited to DNNs that map from
images to classes, and thus could not be transferred to GANs. The authors watermark
the input images and then transfer the watermarked images to the GAN model. First,
the image steganography system has to be trained, which consists of an encoder and
decoder, and subsequently, all the training data together with a secret watermark is fed
to the encoder resulting in watermarked data. The watermarked data is then used to
train the GAN model. For verification, the model owner only needs an output image of
the GAN, and applies the decoder on it to compare the result with the secret watermark.
Thus, the proposed scheme needs only black-box access for verification.

Lim et al. [66] are the first to propose watermarking for a recurrent neural network
(RNN). Specifically, they consider an image captioning model, implemented as a simplified
variant of the Show, Attend and Tell model [109], where the output of the model is a
sequence (the caption). The proposed framework is similar to [27], but does not embed
the verification information (the owner’s key) into the model weights, but into the signs
of the hidden states of the RNN. During model inference time, the key is required as
input to the model by an element-wise combination with the input data. Without the
correct key provided, the effectiveness of the model drops significantly.

5.4 Fingerprinting of ML Models
Imagine a software company is selling their ML model to different customers, but the
model got illegally redistributed by one of them. The company would like to gather
evidence on the leak and therefore could embed fingerprints in the ML model before
selling the product, in order to trace back the user when needed. We can think of
fingerprinting as an extension of watermarking on a user level. At the time of performing
this survey, fingerprinting for ML models was not extensively discussed, with only three
papers published.

Note that there is another notion of fingerprinting. In cyber security, a (unique) identifier
for an object (either hardware, software, or a combination thereof) is generally referred

40

5.4. Fingerprinting of ML Models

to as a fingerprint, e.g. such as in browser fingerprinting [26] or device fingerprinting [59].
The application scenario for employing these techniques is often in tracking devices (resp.
their users). Because this context differs from what we considered so far, we call this
form Fingerprinting as unique identification.

5.4.1 Fingerprinting as User-specific Watermark

Chen et al. [18] propose a white-box fingerprinting framework, DeepMarks, that is able
to embed unique fingerprints. The verification process not only detects the attacker,
but detects also if multiple, and if so which, users collaborated in order to create an
unmarked model. The embedding process works similar to the one in [86]. They propose
to assign a unique binary vector (fingerprint) to each user and embed the fingerprint
information in the PDF of the weights before distributing the models to the users.

Although DeepMarks is the only paper considering especially fingerprinting, we believe
that a couple of the above introduced watermarking schemes can be extended to finger-
printing. To name a few, [101] embeds a unique signature into the weights of the DNN,
[65] embeds a unique logo into the trigger images and [40] generates unique trigger images
based on a signature. All of them could embed user-specific watermarks. Moreover, [111]
relies on serial numbers that can be created in indefinitely many ways, assigning each to
a user.

5.4.2 Fingerprinting as Unique Model Identifier

Cao et al. [14] propose a framework to obtain a unique identifier of DNNs. Based on
the idea that two different models have different classification boundaries, they propose
to "fingerprint" the classification boundary of the model. If the model was changed
in the slightest way, the classification boundary would slightly shift too. This scheme,
however, does not fit our threat model, as we want to recognise the original model even
after (especially minute) model modifications. We, therefore, require a fingerprinting
framework to be more robust to model modifications.

Zhao et al. [119] and Lukas et al. [72] modify this idea of fingerprinting as unique
identification. Both propose a scheme in which the adversary model, created by applying
modifications to the target model, has the same fingerprint as the target model. They
both introduce a novel algorithm for creating transferable adversarial examples [70].

Note that in Section 5.3 we describe how black-box watermarking methods use perturba-
tion based trigger images (adversarial examples), which are used during training so that
the models learn how to (purposefully) misclassify them. In the context of fingerprinting
as a unique model identifier, the authors want to create an adversarial example from an
already trained ML model. The key aspect is that the generated images are not only
adversarial examples for the target model, but also for the adversary model, i.e. they are
transferable to the adversary model. This fits our first threat model case in Section 4.1.

41

5. State of the Art: Model Watermarking, Fingerprinting and Attacks

5.5 Attacks on Watermarking Methods

If the attacker knows or suspects that a model is protected, he could try to change
the model in order to remove or overwrite the protection. Regarding watermarking,
most authors claim that their techniques are robust against various model modifications
like fine-tuning: re-training the model with new data and parameter pruning: setting
small parameter values to zero, which is a model compression technique [43, 124]. But
further attacks were proposed that are aiming to remove, overwrite, detect or invalidate
state-of-the-art watermarking schemes, which we will analyse. We want to point out
that most of the techniques, except of EWE [53] and DAWN [98], are not robust against
model extraction (model stealing) attacks [100], as pointed out by Mosafi et al. [78].

In Table 5.3, we summarise the attacks on watermarking schemes. Each line corresponds
to an attack and each column to a (type of) watermarking scheme. The table shows
which attack defeats which kind of watermarking. We list only schemes that were proven
to be successfully defeated – missing schemes in the table do not imply strong robustness.
We can see that an attack usually addresses either white-box or black-box watermarking
schemes. The four trigger image types OOD, pattern, noise and perturbation based seem
to be defeated in a similar way. In-distribution watermarks are more difficult to detect
or remove, probably because of the fact that they do not differ from the original training
data distribution.

5.5.1 Watermark Overwriting

Li et al. [64] show that previous schemes [4, 116] are vulnerable to watermark overwriting
(ownership piracy attack). They apply the schemes to four image classification tasks,
and assume that an attacker would have access to around 10% of the original training
images. Experimentally, the authors conclude that an attacker could successfully embed
the pirate watermark by training the model with training data that is adapted to the
pirate watermark.

5.5.2 Watermark Detection

Most black-box watermarking methods are based on backdoors. Therefore, backdoor
detection algorithms like Neural Cleanse [102] and Fine-Pruning [68] could be a potential
threat to these methods. Wang et al. [106] show that regulariser based watermarking
schemes are vulnerable to watermark detection by the use of a property inference attack
[30]. Knowing the embedding algorithm, they train a set of shadow models (i.e. models
with similar architecture and similar data), some of which will be watermarked, and some
not. From these models, they extract weights as representative features, and subsequently,
train a model on these features to distinguish between watermarked and not-watermarked
models.

42

5.5. Attacks on Watermarking Methods

Ta
bl

e
5.

3:
W

hi
ch

at
ta

ck
de

fe
at

s
w

hi
ch

wa
te

rm
ar

ki
ng

te
ch

ni
qu

e
ba

se
d

on
th

e
ev

al
ua

tio
n

of
th

e
pa

pe
rs

.
A

∼
de

no
te

s
th

at
th

e
au

th
or

s
cl

ai
m

th
at

th
ei

r
at

ta
ck

ca
n

be
ex

te
nd

ed
ea

sil
y

to
de

fe
at

th
is

wa
te

rm
ar

ki
ng

te
ch

ni
qu

e
bu

t
di

d
no

t
pr

ov
id

e
an

ev
al

ua
tio

n
fo

r
th

at
.

W
at

er
m

ar
ki

ng
te

ch
ni

qu
es

O
O

D
pa

tt
er

n
no

ise
pe

rt
ur

ba
tio

n
in

-d
ist

rib
ut

io
n

re
gu

la
ris

er
ba

se
d

Attacksonwatermarks

in
va

lid
at

io
n

H
ita

je
t

al
.

[4
9]

[4
],

[1
16

]∼
[7

5]
∼

N
am

ba
et

al
.

[8
0]

[1
16

]
[1

16
]

[1
16

]
[7

5]
[8

6]
ov

er
w

rit
in

g
Li

et
al

.
[6

4]
[4

],
[1

16
]

[1
16

]
[1

16
]

de
te

ct
io

n
W

an
g

et
al

.
[1

06
]

[1
01

],
[8

6]

de
te

ct
io

n,
re

m
ov

al
W

an
g

et
al

.
[1

04
]

[1
01

]
Sh

afi
ei

ne
ja

d
et

al
.

[9
0]

[4
],

[1
16

]
[4

0]
,[

11
6]

[1
16

]

re
m

ov
al

Li
u

et
al

.
[6

9]
[4

],
[1

16
]

[4
0]

,[
11

6]
[1

16
]

A
ik

en
et

al
.

[5
]

[4
],

[1
16

]
[1

16
]

[1
16

]
G

uo
et

al
.

[4
2]

[4
]

[1
16

]
[7

5]
C

he
n

et
al

.
[2

1]
[4

],
[1

16
]

[1
16

]
[7

5]
[8

0]
Ya

ng
et

al
.

[1
13

]
[1

01
],

[8
6]

,[
18

]

43

5. State of the Art: Model Watermarking, Fingerprinting and Attacks

5.5.3 Watermark Removal
Some of the attacks exploit the fact that a watermarked model actually learns two tasks:
the main classification task and the watermarking task. This fact can be also observed
in the increase of the model parameters’ variance during watermark embedding [104].

Wang et al. [104] are one of the first to reveal serious vulnerabilities in watermark-
ing schemes, in particular watermark detection and removal. They observe that in
regulariser based watermarking methods like [101], the variance of the distribution of
model parameters, they call this weights variance or weights standard deviation, increases
during watermark embedding. The watermark is removed by embedding one or several
additional watermarks into the model, following the embedding scheme in [101]. Since
every additional watermark might increase the weights variance, they propose to lower
the weights variance by adding a L2 regulariser. Following this procedure, the authors
show that the old watermark cannot be extracted, thus the model owner cannot claim
ownership anymore. It shall be noted that although additional watermarks are placed
into the watermarked model, the main objective is to "neutralise" the old watermark
rather than to use the new watermarks to claim ownership.

Shafieinejad et al. [90] analyse the robustness of backdoor based watermarking schemes.
In particular, they propose a model extraction (stealing) attack that trains a substitute
model (cf. e.g. [82]). This is performed by querying the original model with a public
dataset from the same domain and using the resulting label to train their own model.
As the public dataset contains none of the trigger images, the watermark is "lost" in
the process. Furthermore, similar to Wang et al. [106], they propose to use property
inference for watermark detection.

Liu et al. [69] propose WILD, a framework against backdoor-based watermark techniques
based on fine-tuning. They argue that it is hard for adversaries to collect a large amount
of unlabelled data within the same domain as the original training data, as required by
[90], and that using non-domain data impacts the effectiveness of the substitute model.
Their special contribution is that only a small portion of training data is needed. They
utilise Random Erasing [123], i.e. removing random segments from the input images,
to augment the data. This augmented data alone is, however, not enough to remove a
watermark via fine-tuning, because of the high diversity of potential watermarks. They
note that backdoor patterns are mostly learned by the high-level feature spaces produced
by the convolutional layers, and not by the fully connected layers. They therefore utilise
the augmented data to fine-tune the model and add a regulariser (penalty) term that
ensures a minimal distance in distribution between the high-level feature space of the
augmented and the clean dataset, so that a backdoor pattern would not be learned. The
authors reveal that it is more difficult to remove OOD, compared to pattern based and
noise based watermarks.

Guo et al.’s removal attack [42] has two aspects: (i) input data pre-processing consists
of pixel-level alterations such as embedding imperceptible patterns and spatial-level
transformation such as affine and elastic transformation, aiming at making the trigger

44

5.5. Attacks on Watermarking Methods

image unrecognisable by the model, i.e. not predicting the designated label; (ii) fine-
tuning with data that can be unlabelled and from a different. This step aims at restoring
the accuracy of the model on normal samples, which might suffer from the input data
pre-processing. Using the watermarked model as an oracle to obtain labels, these input
samples are then pre-processed in the same manner and used for fine-tuning the model.
The authors empirically show that their watermark removal attack can remove various
types of watermarks without knowledge about the watermark embedding and labelled
training samples.

Chen et al. [21]4 propose REFIT, a watermark removal framework based on fine-tuning.
The basis of their work is the catastrophic forgetting phenomenon of ML models [35],
which shows that models that are trained on a series of tasks could easily forget the
previously learned tasks. Their attack model assumes that the attacker has neither
knowledge of the watermark nor the watermarking scheme, and has limited data for
fine-tuning. They first show that in case the training data is known, the watermark can
be removed by fine-tuning, when choosing the learning rate appropriately. To adapt to
having only limited data that do not come from the original dataset, they include two
techniques: elastic weight consolidation (EWC) and augmentation with unlabelled data
(AU). EWC slows down the learning of parameters that are important for previously
trained tasks, in particular the main classification task, by adding a regulariser term to
the loss function. AU increases the number of in-distribution labelled fine-tuning data.
Unlabelled data is retrieved from the internet and labelled by the pre-trained model.
In most cases, the model labels the data by their true classes based on the training
for the main classification task, since the model has not seen the data before and the
watermarked model was trained in a way so that it fulfils the integrity requirement. The
authors show that the proposed framework successfully removes the watermark without
degrading the model’s test accuracy from various state-of-the-art watermarking schemes,
as shown in Table 5.3.

Aiken et al. [5] propose a method for watermark removal based on previously proposed
backdoor removal attacks [102, 68], assuming an attacker with a small amount (less
than 1%) of original training data. Their technique involves three steps: (i) they first
reconstruct the perturbations (backdoor patterns) that are required to flip a sample to
the other class, using the method from [102]. (ii) they then superimpose the pattern
on their clean training data, to identify neurons that are responsible for recognising the
backdoored images, similar to [68]. These neurons are then reset by setting their incoming
weight so that they produce zero activation. (iii) Finally, the model is fine-tuned on the
clean and backdoored training data, while labelling the backdoored training data to the
class that is least likely to be watermarked, to prevent the re-appearance of the neurons
reset in the previous step. They show that their technique defeats the watermarking
schemes [116] and [4] by effectively removing neurons or channels in the DNN’s layers
that contribute to the classification of trigger images.

4Previous version in [22]

45

5. State of the Art: Model Watermarking, Fingerprinting and Attacks

5.5.4 Watermark Invalidation
Watermark invalidation does not aim to remove the watermark, but find a way to render
it useless.

Hitaj et al. [49]5 propose two such attacks: an ensemble attack and a detector attack.
The ensemble attack uses several different models behind an API, obtained from, e.g.,
Model Zoo [2], querying all models and choosing the output that was given by most of the
models. If one of the models is watermarked and triggered with a specific input for the
watermark extraction process, then most likely only the watermarked model will output
the expected label, while the remaining models will classify correctly. Therefore, the
trigger output will not be returned, and the verification fails. The detection attack tries
to avoid a trigger response; it trains a neural network, the detector, that predicts if the
query is intending to trigger a watermark. If the input is recognised as a trigger image,
either a random class can be returned or no class at all. The detector is a binary classifier
that needs to distinguish between clean and trigger input. Clean input is collected from
other datasets or by web scraping. Trigger input is generated from a portion of samples
gathered from web. It shall be noted that this kind of attack is not able to invalidate
pattern based, noise based and in-distribution watermarks, as the detector cannot be
trained well for watermark detection without further information about the watermark.

Namba et al. [80] propose a watermark invalidation attack called query modification
processing, consisting of two steps: trigger sample detection and query modification via
autoencoder (AE). An autoencoder can reduce the effect of trigger images by diluting the
pattern embedded in the original image or eliminating the embedded noise. Because the
application of an autoencoder to non-trigger images impacts negatively the performance
of the model, it is not recommended to use the AE on every query. Similar to [49] they
propose to first detect if the input could be a trigger image queried during a watermark
verification process. They propose three ways to perform the detection: measuring
the effect of the autoencoder on the image in the input space, measuring the effect in
the output space, or both. The proposed method has been demonstrated on various
watermarking schemes and proved to successfully invalidate the watermarks.

5.6 Surveys and empirical studies
As the first work in this field, an empirical study by Chen et al. [17] investigates five
model watermarking schemes [101, 86, 75, 4, 116], and performs an evaluation of fidelity
of the models, as well as estimating the robustness against three attacks (model fine-
tuning, parameter pruning, and watermark overwriting), thus providing an important
early comparison of the effectiveness of techniques. We discuss the differences to our
work in Chapter 6. A survey specifically on watermarking machine learning models was
published as a pre-print by Boenisch [12].

5Previous pre-print version in [50]

46

CHAPTER 6
Defining research questions and

study setting

The experiments in the following chapter form the basis for our analysis of the water-
marking methods, with which we want to answer the following research questions.

How can we define the most fitting watermarking method depending on the
ML setting?

Research on watermarking ML models is growing and so is the number of papers proposing
new watermarking methods. Some of the papers do a comprehensive evaluation of their
watermarking method, testing it on different datasets and architectures but rarely compare
it to all existing methods. Moreover, usually authors pick the best results for their paper
without pointing out the weaknesses of the presented method. With the independent
implementation and evaluation in this thesis, we want to find potential influences of a
ML setting on the effectiveness, fidelity and robustness of a watermarking method.
We answer this question by designing a study setting, in which we are going to measure
the effectiveness, fidelity and robustness by computing the watermark accuracy
(for effectiveness) and test accuracy (for fidelity) after embedding the watermark, and
computing the watermark accuracy after an attack (for robustness).

We break down this question into three specific subquestions:

1. To what extend is a more complex model able to hold more watermark
information (a bigger trigger set) without compromising test accuracy?
A more complex model has more parameters and therefore more "space" to hide a
watermark. On the other hand, a model with fewer parameters might rather give
up on the main classification task in order to overfit on the trigger set. We want to
answer this question by performing experiments with various trigger set sizes and

47

6. Defining research questions and study setting

architectures and measuring the difference in test accuracy after the watermark
embedding.

2. To what extend does the trigger set size influence the effectiveness,
fidelity and robustness of a watermarking method? A bigger trigger set
size could mean better robustness, since an attacker would need more time or
data to, e.g., remove the watermark by fine-tuning. On the other hand, a bigger
trigger set could also result in worse fidelity. For effectiveness, a smaller trigger
set size, could mean that the model does not learn the watermark at all, as the
ratio compared to the original dataset is too low and it prioritises on the original
dataset. These are hypotheses that we want to follow under this research question.

3. To what extend does the complexity of the model influence the effec-
tiveness, fidelity and robustness of the watermarking method? Similar
to the question above, we assume that the complexity of a model plays a role on
the effectiveness, fidelity and robustness of a watermarking method. With our
experiments, we want to find out if our assumption is true.

We choose our subset of watermarking methods according to the following criteria. The
chosen watermarking method must

• be a black-box and backdoor-based watermarking method, as these are more
practical than white-box methods.

• focus on trigger set generation rather than trigger labelling, as trigger images
are the first step to analyse and optimise. An analysis of watermarking methods
regarding trigger labelling are kept for future work.

• be a watermarking method that does not build upon another watermarking method,
as in a first step we want to identify the aspects which make the basic methods
perform better.

Following these criteria, we decided on the watermarking methods that are listed in
Table 6.1. This table includes also the experimental setup in the corresponding papers.
Our choice of the datasets and architectures is very much inspired by the choice in the
papers.

A work by Chen et al. [17] compares 5 watermarking methods [101, 86, 116, 4, 75],
both white-box and black-box watermarking methods. It is worth noting that this is
not an independent comparison, since the authors are also the authors of one of the
considered watermarking methods, DeepSigns [86], and it performs best in most of the
results. DeepSigns can be implemented as both white-box and black-box (cf. Chapter 5)
and therefore they are comparing it to one white-box and three black-box methods. Even
though the method can be considered as black-box, it is not backdoor-based and relies
on the prediction vector for watermark verification, which might not be available in all

48

Table 6.1: Study settings in selected papers.

Method Type Dataset Architecture

ExponentialWeighting [80] in-distribution

MNIST,
CIFAR-10,
CIFAR-100,
GTSRB

ResNet32

FrontierStitching [75] perturbation MNIST
MLP 1 ,
CNN 2 ,
IRNN 3

PiracyResistant [64] pattern

MNIST,
CIFAR-10,
GTSRB,
Youtube Faces

custom DNN

ProtectingIP [116] pattern, noise, OOD MNIST,
CIFAR-10 custom DNN

WeaknessIntoStrength [4] OOD
CIFAR-10,
CIFAR-100,
ImageNet

ResNet-18

WMEmbeddedSystems [41] pattern MNIST,
CIFAR-10

LeNet-5,
VGG-16,
ResNet50,
DenseNet-121

1 https://keras.rstudio.com/articles/examples/mnist_mlp.html
2 https://keras.rstudio.com/articles/examples/mnist_cnn.html
3 https://keras.rstudio.com/articles/examples/mnist_irnn.html

settings. They implement the methods and train the black-box watermarked models with
a trigger set size of 20 on four different architectures, and the white-box watermarked
models on three different architectures. Both watermarking types are trained on MNIST
and CIFAR-10, the black-box type also on ImageNet. They evaluate the models regarding
fidelity, robustness against fine-tuning, parameter pruning and watermark overwriting,
and integrity, i.e. the watermarking method should have a minimal false positive rate.
Although the comparison lacks on different settings and independence, the evaluation of
fidelity and robustness is done in a similar fashion to ours. However, they do not present
results on effectiveness, i.e. the watermark accuracy of the watermarked model.

In order to answer the research questions, we have to evaluate the watermarking methods
in a common and independent study setting. There are some parameters that we would
like to fix to specific values, and others that we would like to vary in order to draw
conclusions. We modify the following parameters, as these are the usual parameters that
are modified by the research papers. We, however, vary also the size of trigger set, which
is rarely done by other authors.

49

https://keras.rstudio.com/articles/examples/mnist_mlp.html
https://keras.rstudio.com/articles/examples/mnist_cnn.html
https://keras.rstudio.com/articles/examples/mnist_irnn.html

6. Defining research questions and study setting

• Complexity of architecture: we choose eight state-of-the-art architectures,
inspired by the experimental setup in the proposed papers (cf. Table 6.1), i.e.
SimpleNet, LeNet-1/3/5 for MNIST and DenseNet, ResNet-18/34/50 for CIFAR-
10.

• Size of training set and images: a variation in the size of training set and
examples is unfortunately in this stage of the work not possible. We have chosen
two datasets which both have a similar size of training set and a similar (small)
size of images.

• Color depth: we choose one RGB and one greyscale dataset, i.e. CIFAR-10 and
MNIST.

• Size of trigger set: we vary between three trigger set sizes, i.e. 0.04%, 0.2% and
1% of the training set.

• Embedding type: we use two embedding types. Embedding from scratch –
training the model on the union of the training dataset and the trigger set from the
very beginning of training; and embedding on a pre-trained model – embedding the
watermark as a fine-tuning step after training the model only on the original data.

• Complexity of attacks: we choose two common attacks, i.e. parameter pruning
and fine-tuning, to test the robustness, they both differ in overhead.

In the following sections, we present the datasets and neural networks that we use for
the experiments.

6.1 Datasets
We use four different datasets: two datasets (MNIST and CIFAR-10) for training the
models, and another two datasets (EMNIST and CINIC-10) for carrying out the fine-
tuning attacks:

• MNIST [63]: is a grayscale handwritten digits dataset consisting of 60,000 training
examples and 10,000 test examples. All images have been size-normalized and
centered in a fixed-size image of 28 × 28 pixels.

• CIFAR-10 [60]: is a real-world image dataset containing the classes airplane, car,
bird, cat, deer, dog, frog, horse, ship, truck. The dataset consists of 50,000 training
examples and 10,000 test examples, all in colour (RGB) and sized 32 × 32 pixels.

• EMNIST [24]: is another grayscale handwritten digits dataset. It is derived
from the NIST Special Database 19 [37] and converted to fixed-size images of
28×28 pixels. The EMNIST dataset consists of six different splits, namely ByClass,
ByMerge, Balanced, Letters, Digits and MNIST. We use the Digits split, which

50

6.1. Datasets

Dataset Size Color Training set Test set
MNIST 28 × 28 grayscale 60,000 10,000
EMNIST Digits 28 × 28 grayscale 240,000 40,000
CIFAR-10 32 × 32 RGB 50,000 10,000
CINIC-10 32 × 32 RGB 90,000 90,000

Table 6.2: Characteristics of the datasets used in the evaluation

Figure 6.1: Representative examples for each class from the training sets of MNIST, CIFAR-10,
EMNIST and CINIC-10.

contains of 280,000 example-label pairs. The EMNIST dataset structure matches
directly with MNIST, which makes it convenient to use for our experiments. We
use this dataset for fine-tuning attacks on models that were originally trained on
MNIST.

• CINIC-10 [25]: is another real-world image dataset that extends CIFAR-10 by
adding additionally selected images from ImageNet [88], resized to 32 × 32 pixels
to match the ones from CIFAR-10. images. It is 4.5 times larger than CIFAR-10,
but still smaller (and comprising fewer classes) than ImageNet, and thus creates
a bridge between these two datasets. As the classes are exactly the same as for
CIFAR-10, we can use this dataset for fine-tuning attacks on models that were
originally trained on CIFAR-10.

The properties of the datasets are summarised in Table 6.2 and examples of images from
each class are shown in Figure 6.1. The datasets that we choose for fine-tuning originally
consist of more data samples than MNIST and CIFAR-10. However, we use only a subset
of these datasets, since fine-tuning is usually performed using a smaller dataset than the
original one. In our experiments, we downsample EMNIST and CINIC-10 to the size of
MNIST and CIFAR-10, respectively.

51

6. Defining research questions and study setting

6.2 Neural Networks
We use eight different neural networks for our experiments, from which four are trained
on CIFAR-10 and another four on MNIST, as the different complexities of the datasets
(grayscaled handwritten digits and real-world images) require different types of models.

• LeNet [63] is a group of CNNs developed by Yann LeCun in the 1998. LeNets
consist of two convolutional layers, two pooling layers and one (LeNet-1), two (LeNet-
4) or three (LeNet-5) dense layers. An illustration of the original architecture of
LeNet-5 is shown in Figure 6.4. In our experiments, we use LeNet-1, LeNet-3 and
LeNet-5 for training on MNIST. LeNet-3 is a variation of the original LeNet-4 with
six instead of four filters in the first convolutional layer. In our implementation, we
used max-pooling for downsampling, but also average-pooling is quite common to
use.

• ResNet [47] stands for Residual Network. ResNets solve the problem of vanishing
gradient, i.e. the problem of when a network has too many layers, the gradients of
the loss function can get zero, thus weights would not get updated and the network
would not learn. ResNets counter this problem by utilizing skip connections (also
called shortcuts) to jump over some layers. In our experiments, we use ResNet-18,
ResNet-34 and ResNet-50 and train on CIFAR-10. The architectures differ in the
number of layers. The number indicates the number of layers: ResNet-18 consists
of 18 layers, ResNet-34 of 34 layers, etc. An illustration of a ResNet-18 is shown in
Figure 6.2.

• DenseNet [52] stands for Densely Connected Convolutional Networks. DenseNets
are a type of neural networks that build on the ideas of ResNets. Instead of including
skip connections, in DenseNets, each layer has direct access to the gradients of
the loss function and the original input image, since each layer takes all preceding
feature-maps as input. A DenseNet architecture consists of several dense blocks.
Such a dense block is shown in Figure 6.3, where one can see typical connections
between each of the layers. We use the DenseNet-121 in our experiments for
CIFAR-10. We sometimes use just the generic term DenseNet, but always mean
DenseNet-121.

• SimpleNet [45] is convolutional neural network consisting of 13 layers. It was
designed to be simple and reasonably deep and still perform similar to deeper and
more complex architectures. We use SimpleNet for training on MNIST.

To get an idea for the complexity of the models, we summarised the amount of trainable
parameters together with the benchmark test accuracies and the test accuracies of our
trained models in Table 6.3. We can see that the models trained on MNIST reach very
high results: close to or above 99% accuracy on the test set. The results for CIFAR-10
are around 95% accuracy on the test set.

52

6.2. Neural Networks

Figure 6.2: ResNet-18 architecture. Source: [7]

Figure 6.3: A 5-layer dense block. A DenseNet consists of several dense blocks. Source: [52]

Figure 6.4: Architecture of LeNet-5. Source: [63]

53

6. Defining research questions and study setting

Table 6.3: Amount of trainable parameters and the state-of-the-art test accuracy, as well as, our
test accuracy of the trained models.

Architecture Dataset Trainable parameters Benchmark test acc. Test acc.
LeNet-1 MNIST 7,206 98.3% 1 98.768%
LeNet-3 MNIST 69,362 - 99.229%
LeNet-5 MNIST 107,786 99.15% 1 99.229%
DenseNet-121 CIFAR-10 3,272,856 95.04% 2 94.581%
SimpleNet MNIST 5,497,226 99.75% 3 99.589%
ResNet-18 CIFAR-10 11,173,962 95.00% 4 95.122%
VGG-16 CIFAR-10 14,857,034 92.63% 5 -
ResNet-34 CIFAR-10 21,282,122 95.95% 4 95.212%
ResNet-50 CIFAR-10 23,513,162 95.00% 4 94.391%

1 http://yann.lecun.com/exdb/mnist/
2 https://github.com/kuangliu/pytorch-cifar
3 https://paperswithcode.com/sota/image-classification-on-mnist
4 https://github.com/mbsariyildiz/resnet-pytorch
5 https://github.com/chengyangfu/pytorch-vgg-cifar10

Table 6.4: Trigger set sizes used for training models with various watermarking methods.

Architecture Dataset Trigger set sizes Ratio of dataset size
DenseNet-121 CIFAR-10 20, 100, 500 0.04%, 0.2%, 1%
ResNet-18 CIFAR-10 20, 100, 500 0.04%, 0.2%, 1%
ResNet-34 CIFAR-10 20, 100, 500 0.04%, 0.2%, 1%
ResNet-50 CIFAR-10 20, 100, 500 0.04%, 0.2%, 1%
SimpleNet MNIST 12, 24, 120, 600 0.02%, 0.04%, 0.2%, 1%
LeNet-1 MNIST 24, 120, 600 0.04%, 0.2%, 1%
LeNet-3 MNIST 24, 120, 600 0.04%, 0.2%, 1%
LeNet-5 MNIST 24, 120, 600 0.04%, 0.2%, 1%

We train multiple versions of the watermarked models, varying the trigger set size, which
are listed in Table 6.4. We choose a fixed ratio of the training set, to be able to compare
the models for MNIST and CIFAR-10. Note that if the dataset is very large, then even
a trigger set size of 0.02% of the dataset size could be still (too) large. Therefore, it
would be interesting for future work to evaluate the watermarking methods also on a
substantially larger dataset. In this way, we could find out if the trigger set size must
reach a specific ratio of the dataset size or requires an absolute number to be effective.
Unfortunately, the difference in size between MNIST and CIFAR-10 is not enough for
such an experiment.

The trigger set sizes from Table 6.4 are used for all watermarking methods, except
WeaknessIntoStrength, for which the authors provided a trigger set of only 100 images
for download. For this method, we train with a trigger set size of 20 and 100 on all
architectures. This leads to a total number of 191 trained models.

54

http://yann.lecun.com/exdb/mnist/
https://github.com/kuangliu/pytorch-cifar
https://paperswithcode.com/sota/image-classification-on-mnist
https://github.com/mbsariyildiz/resnet-pytorch
https://github.com/chengyangfu/pytorch-vgg-cifar10

6.2. Neural Networks

Table 6.5: Embedding and fine-tuning time (with learning rate 0.01) for WeaknessIntoStrength
with 100 trigger images. The time is given in the format (hh:mm:ss).

Arch Dataset Embedding Iterations Fine-tuning Iterations
DenseNet CIFAR-10 05:09:18 190 02:28:43 100
ResNet-18 CIFAR-10 02:28:46 191 01:21:00 100
ResNet-34 CIFAR-10 04:02:41 195 01:51:41 100
ResNet-50 CIFAR-10 06:16:30 195 02:40:16 100
SimpleNet MNIST 00:14:12 21 00:40:26 100
LeNet-1 MNIST 00:06:31 21 00:13:11 100
LeNet-3 MNIST 00:06:41 25 00:13:09 100
LeNet-5 MNIST 00:06:47 21 00:13:42 100
Sum 18:31:26 09:42:09

Table 6.6: Training times for additional experiments in format (dd:hh:mm:ss).

Method # models Embedding Fine-Tuning Both
FrontierStitching 56 05:08:27:22 05:12:40:06 10:21:07:27
WMEmbeddedSystems 24 02:06:52:53 02:17:10:32 05:00:03:25
Sum 15:21:10:52

6.2.1 Training time

All models were trained on a NVIDIA GeForce RTX 2080. To determine the overall
training time, we show the training time for embedding the watermark and fine-tuning
the watermarked models in Table 6.5, exemplary for WeaknessIntoStrength trained with
100 trigger images. We can see from this table that the training time not only depends
on the number of iterations, but also on the complexity of the model. For example,
a ResNet-34 needs roughly 60% of the time of a ResNet-50 with the same number of
training iterations.

If we take 18.5
8 ≈ 2.3 hours, as measured in Table 6.5, as the average embedding time

for one single model, we get a total embedding time of around 440 hours or around
18.4 days. An estimation of the total fine-tuning time (for one learning rate) results
in around 9.6 days, i.e. 19.2 days for both learning rates (cf. Section 7.1.2). This
gives us nearly 38 days (18.4 + 19.2 = 37.6) of training to embed the watermark and
performing the fine-tuning attacks. Note, that in this number we neither include the time
for generating and verifying the watermarks, nor the time for the pruning attacks, nor the
time used for the additional experiments for FrontierStitching and WMEmbeddedSystems
(cf. Section 7.2.2) and other experiments that we performed along the way when testing
different parameters. The exact embedding and fine-tuning times for the additional
experiments for FrontierStitching and WMEmbeddedSystems are listed in Table 6.6, which
adds another 16 days for the additional experiments on top of the 38 days, leading to
a total of 54 days of compute time.

55

6. Defining research questions and study setting

Table 6.7: Hyperparameters configuration for the architectures. lr stands for learning rate, bs
for batch size, wm_bs for watermarking batch size, i.e. the batch size for the trigger set, and
epochs the number of training iterations.

Architecture optimizer lr scheduler bs wm_bs epochs

DenseNet-121
SGD
mom.=0.9
decay=0.0005

0.1 CosineAnnealingLR
T_max=200 64 32 200

ResNet-18
SGD
mom.=0.9
decay=0.0005

0.1 CosineAnnealingLR
T_max=200 64 32 192

ResNet-34
SGD
mom.=0.9
decay=0.0005

0.1 CosineAnnealingLR
T_max=200 64 32 195

ResNet-50
SGD
mom.=0.9
decay=0.0005

0.1 CosineAnnealingLR
T_max=200 64 32 192

SimpleNet
SGD
mom.=0.9
decay=0.0005

0.1 MultiStepLR
n=20, gamma=0.1 64 32 24

LeNet-1 ADAM 0.001 MultiStepLR
n=20, gamma=0.1 64 32 48

LeNet-3
SGD
mom.=0.9
decay=0.0005

0.1 MultiStepLR
n=20, gamma=0.1 64 32 55

LeNet-5
SGD
mom.=0.9
decay=0.0005

0.1 MultiStepLR
n=20, gamma=0.1 64 32 42

6.3 Setting hyperparameters

We specify the hyperparameters for training the models in Table 6.7. We choose this
configuration based on training non-watermarked models on a few different configurations
and selecting the model with the minimal validation loss. We test different configurations
by varying between the SGD and Adam optimiser as well as the MultiStepLR and
CosineAnnealingLR, which are both commonly used learning rate schedulers. We test
the default learning rate for the optimiser, which is α = 0.1 for SGD and α = 0.001 for
Adam, and kept those as we reached results comparable to the benchmarks (cf. Table 6.3).
We use this hyperparameters configuration for training the non-watermarked models as
well as the watermarked models.

56

6.3. Setting hyperparameters

6.3.1 Setting watermark-specific hyperparameters
Some of the papers, e.g. [40], do not mention all of the specific parameters that were used
in their experiments. We, therefore, have to experimentally find the optimal parameters
for those watermarking methods. We introduce a ranking system that helps us to decide
on the optimal parameters.

For the experiments, we first fix the trigger set size to 100, as 100 is a trigger set size
commonly used in related work, and then train several models, varying one parameter at
a time. We train on all architectures and perform pruning attacks as well as fine-tuning
attacks. In this manner, we can evaluate the fidelity and robustness of the different
models.

Every model for each watermarking method will be evaluated in three categories: fidelity,
robustness against pruning, robustness against fine-tuning. The ranking systems works as
follows: for each category, the model with the best evaluation gets the n points (where n
is the number of different values for the varied parameter) and the one with the lowest
performance in the category gets one point. The points are summed up across the
categories resulting in a ranking for each of the parameter’s values.

For fidelity, the performance is measured by the difference of the test accuracy compared
to the non-watermarked model and for robustness against fine-tuning or pruning, by the
watermark accuracy after a fine-tuning attack or pruning attack.

Note that we weight all three categories equally. One can argue that, e.g, robustness is
the most important property and would therefore weight this category stronger, but such
a weighting is very much dependent on the general setting and threat model in which
the watermark is being employed. We, therefore, refrain from optimising to a specific
assumption.

57

CHAPTER 7
Empirical comparison of existing

watermarking methods

In this chapter, we present the implementation in Section 7.1, where the watermarking
methods are discussed in more detail, and the evaluation in Section 7.2, where we present
the results and evaluate the watermarking methods.

7.1 Implementation

For an independent comparison of watermarking methods, we implement and compare
them in a common framework. We implement or adapt, if there was an existing imple-
mentation, the chosen watermarking methods in Python 3.7.10 using PyTorch 1.8.1. A
complete list of dependencies is provided in Appendix A.1. The implementation and re-
sults can be found in the GitHub project https://github.com/mathebell/model-
watermarking.

59

https://github.com/mathebell/model-watermarking
https://github.com/mathebell/model-watermarking

7. Empirical comparison of existing watermarking methods

7.1.1 Framework for watermarking methods
In this section, we present the framework that we used and discuss the watermarking
methods in more detail, focusing on the implementation.

Algorithm 7.1: General framework
Input: dataset D, initialised or pre-trained model Fw, hyperparameters β
Output: watermarked model FM

w , trigger set T
1: wm_method ← WMMethod.init(β)
2: T ← wm_method.gen_watermark(Fw, D)
3: FM

w ← wm_method.embed_watermark(Fw, D, T)
4: wm_acc ← wm_method.verify_watermark(FM

w , T)
5: if wm_acc ≥ threshold then
6: print Watermark was verified.
7: else
8: print Watermark was not verified.
9: end if

Algorithm 7.1 describes the general framework that was used for all the watermarking
methods. WMMethod stands for the class of a watermarking method. Each of the
watermarking methods are implemented in their own class, namely:

• WeaknessIntoStrength [4]

• ProtectingIP [116]

• PiracyResistant [64]

• ExponentialWeighting [80]

• FrontierStitching [75]

• WMEmbeddedSystems [40]

The meaning and usage of each of the member functions, i.e. functions that are defined
inside the class, in Algorithm 7.1 are the following:

• WMMethod.init(β) initialises the watermarking method depending on the given
hyperparameters that are represented by β. The hyperparameters consist of network
specific parameters like, e.g., the batch size for the training set (batch_size), the
number of training iterations without watermarks (epochs_wo_wm) and the
learning rate α, and parameters that are specifying the watermarking method,
e.g. the batch size for the trigger set (wm_batch_size), the embedding type
(embed_type) and the trigger set size (trg_set_size).

60

7.1. Implementation

• WMMethod.gen_watermark(Fw, D) generates the trigger set T . The trigger set is
mostly generated using the original dataset D and, e.g., placing a trigger pattern
onto the image. In some cases such as perturbation based watermarking methods,
the watermark generation process makes use of the model itself Fw and is, therefore,
also passed to the function.

• WMMethod.embed_watermark(Fw, D, T) embeds the watermark into the model,
i.e. trains the model, besides on the original dataset D, also on the trigger set T .
The model is either first trained on the original training set and then fine-tuned
with the union of the original training set and the trigger set, or it is trained from
the beginning with the unified set. The output of this function is the watermarked
model FM

w .

• WMMethod.verify_watermark(FM
w , T): verifies the watermark. It tests the

trigger set T on the watermarked model FM
w , i.e. it passes the trigger set to the

watermarked model and compares the output of the model with the trigger labels.
The output of the function is the accuracy of the model on the trigger set, the
watermark accuracy. The threshold, which decides if a watermark can be verified
or not, has to be specified in the hyperparameters β.

As the watermarking methods differ very much on the used trigger images, the function
gen_watermark() is the most customised one. We explain this function for each of the
watermarking methods in the following sections.

WeaknessIntoStrength

This method uses out-of-distribution trigger images (OOD). The authors of this method
choose a set of abstract images that are completely unrelated to the original dataset (cf.
Figure 5.3a) and provided them for download. The trigger set is specifically constructed
and is, unfortunately, limited to 100 images, which imposes limitations in the experiment
setup. For this method, we thus train the models only with a trigger set size of 20 and 100.
However, the method ProtectingIP-OOD serves as an alternative for this method, since
it also uses out-of-distribution trigger images, but not "abstract" ones (cf. Section 7.1.1).

The authors compare two different embedding types, namely pretrained and fromscratch.
Pretrained means that the watermarks are embedded in a fine-tuning process, after the
model was already trained and has converged on the clean training set. The pre-trained
model is then fine-tuned with the union of the training dataset and the trigger set. When
embedding fromscratch, we train the model from the beginning with the union of the
training dataset and the trigger set. We also used both embedding types for this method
and compare the results in Section 7.2.3.

Since the trigger images are already provided and do not have to be generated, the
function WeaknessIntoStrength.gen_watermark(β) only loads the right amount of trigger
images from their storage location (specified by the trigger set size in β).

61

7. Empirical comparison of existing watermarking methods

ProtectingIP

This method considers three watermarking types, namely pattern, noise and OOD:

• Pattern trigger images are created by placing a simple text "TEST" in the colour
grey on the bottom part of random images from the training dataset (cf. Fig-
ure 5.3c).

• Noise based trigger images are created by placing a random noise on a random
subset of images from the training dataset (cf. Figure 5.3d).

• OOD trigger images are formed by a subset of the MNIST dataset for training on
CIFAR-10 and vice versa.

The watermarking type is specified in the hyperparameters β and the function Pro-
tectingIP.gen_watermark(β) performs the trigger set generation based on the specified
watermarking type. The watermark is embedded by training the model from scratch on
the union of the original training dataset and the trigger set.

PiracyResistant

This watermarking method relies on an advanced pattern generation. First, a binary
pattern is created based on a unique signature, which serves as an additional security
measure. As already discussed in Section 5.3.2, the method uses what the authors
call dual embedding: the model is trained to classify (i) data with a pre-defined binary
pattern correctly (called the null embedding), i.e. an image with the pattern gets assigned
the original label, and (ii) data with an inverted pattern (binary bits are switched)
incorrectly (called the true embedding), i.e. an image with the inverted pattern gets
assigned a different label. This label is also defined by the unique signature. Note that
the watermark embedding consists of two parts, the null and true embedding, thus dual
embedding does not mean that two watermarks are embedded.

The pattern size is fixed to 6 × 6 pixels and λ, the strength of pixel change, to 2000, as
suggested by the paper’s authors.

ExponentialWeighting

This method uses in-distribution trigger images, i.e. images from the training dataset,
but purposely labelled wrongly. The trigger label is the next label after the true label
in the dataset’s label vector. For example, the label vector for CIFAR-10 is [airplane,
car, bird, cat, deer, dog, frog, horse, ship, truck]. The function ExponentialWeight-
ing.gen_watermark(β) randomly samples the trigger set from the original trigger set and
assigns the trigger labels in the previously explained manner.

In this method, the model is first trained on the clean training data, i.e. without trigger
images. Alternatively, a pre-trained benchmark model is loaded. Then, the exponential

62

7.1. Implementation

weighting is activated in the layers. In every layer, the weights are transformed in
the forward pass by Equation (5.6). We set λ = 2, as it was used in the authors’
experiments. We implemented the exponential weighting in PyTorch by creating sub-
classes of the convolutional and feed-forward layer classes. To these sub-classes, we
added member functions that activate and deactivate the exponential weighting, i.e. the
additional transformation in the forward pass. We used these sub-classes of layers for all
architectures, since they work as usual layers when not activated, thus not harming the
other watermarking methods.

FrontierStitching

This method is perturbation based. The trigger images are created as adversarial examples
of the non-watermarked pre-trained model. The adversarial examples are created by
the Fast Gradient Sign Method (FGSM). FGSM expects a parameter , which controls
the intensity of the adversarial perturbation. As a next step, the adversarial examples
are divided into true and false adversarials1 (cf. Figure 5.5). A true adversarial is an
adversarial example for which the model predicts a different label than the original true
label. A false adversarial, on the other hand, is an adversarial example for which the
model still predicts the original true label, i.e. the adversarial image did not manage to
fool the model. Both true and false adversarials are saved as trigger images, with the
original true label as the trigger label. The sets of true and false adversarials have the
same size, each constituting half of the trigger set size.

We would find it interesting to analyse how the perturbation parameter influences
the behaviour of the watermarked model. We therefore vary in our experiments (cf.
Section 7.2.2). For the main analysis, however, we choose = 0.25 as the default
parameter, following the authors’ experiments.

WMEmbeddedSystems

This method is pattern based. The pattern is created based on a unique signature, and
subsequently then embedded with strength λ. Given the original image X, the pattern p
and the strength λ, the trigger image is created by

Xtrg = X + λp (7.1)

Two hyperparameters that can be varied in this method are λ – the magnitude or strength
of the pattern on the trigger images – and the number of bits embedded in the trigger
images. We fixed the number of bits to 128, following the authors. For λ we performed
several experiments in Section 7.2.2, to find an appropriate value for λ, as the authors
did not provide such information in their paper.

1The publication calls them true and false adversaries. We, however, call the attacker of the model
an adversary and therefore choose the term adversarial.

63

7. Empirical comparison of existing watermarking methods

Table 7.1: Attacks used in the papers.

Pruning Fine-Tuning Other attacks?
WeaknessIntoStrength [4] (STL-10)
ProtectingIP [116] 1

PiracyResistant [64] 2
Neural Cleanse [102],
Model Extraction Attack [100],
Piracy Attack

ExponentialWeighting [80] Query Modification [80]
FrontierStitching [75] 2

WMEmbeddedSystems [40]
1 use half of the original test set for fine-tuning and the other half for evaluating the model
2 do not specify the dataset for fine-tuning

7.1.2 Attacks
We provide a list of attacks that are used in the papers in Table 7.1. We can see from that
table that most of the papers test their watermarking methods against pruning and fine-
tuning. ExponentialWeighting presents their own attack Query Modification, a watermark
invalidation. It detects if the queried sample is a trigger image by applying an autoencoder.
If the model predicts for the changed image a different label than for the queried image,
it probably is a trigger image and the prediction for the changed image is returned. They
test it on several other methods and confirm that for [116, 75, 86] the watermark accuracy
after a query modification is very low and therefore introduce a new watermarking
method, which resists this kind of attack. The authors of WMEmbeddedSystems do not
use pruning or fine-tuning, as they assume that a user of the watermarked model and thus
a possible attacker would not have enough computational power or technical expertise
for such an attack, otherwise they would have trained their own model. As a second
argument, they state that a fine-tuned model is a different model and it is questionable
whether the model owner can claim the ownership of a fine-tuned model.

Parameter Pruning

Since many of the papers (cf. Table 7.1) considered parameter pruning as a valid attack
for testing robustness, we implemented this attack as well.

For this attack, we take the watermarked model and set those weights that have the
smallest absolute value to zero. We vary the pruning rate – the rate of weights that are
pruned in the model – between 10% and 90% with a step-size of 10 percentage points.

We consider the pruning attack as plausible if the attack does degrade the model’s test
accuracy only at the maximum of 3.5%, since an attacker would likely not use a model
that is significantly degraded. Therefore, we choose the maximum pruning rate at which
the test accuracy does not fall under this threshold and then compare the watermark
accuracies. We chose 3.5% as a value in accordance to [71]; for example, [68] chose a very

64

7.2. Evaluation

similar value of 4% when defending against backdoor attacks, which is essentially the
same task as removing a watermark based on backdoors.

Note that there is also a different notion of pruning, also called fine-pruning [68], that
relies on the availability of a clean set, to prune by activation value. This could also be a
potential threat for the watermark, however, we keep this for future work.

Fine-Tuning

Fine-tuning is another common attack. Some of the papers fine-tune on the same dataset
(without trigger set) as the training was done, others use a different and smaller dataset
and some do not mention which dataset was used (cf. Table 7.1). As we assume that an
attacker would not have access to the original training data, or only to a portion of it, we
perform fine-tuning on a different, but similar dataset. The EMNIST dataset consists of
different images than MNIST, but was build from the same database NIST, while around
22 % of the CINIC-10 dataset consist of CIFAR-10 images, the other part of ImageNet.
Fine-tuning with EMNIST and CINIC-10, therefore, simulates a strong attack, as we
assume that the attacker knows the distribution of the original dataset. Our fine-tuning
datasets do originally consist of more example-labels pairs, but we randomly downsample
them to the same size as the original training set, as we assume that an attacker would
have less or the same amount of data at most.

Fine-Tuning is usually performed with a smaller learning rate than training, to not
"overwrite" too much of the previously learned knowledge. Different learning rates achieve
different success, as we analyse in Section 7.2.1. For the evaluation, we choose both a
smaller learning and a larger learning rate. A smaller learning rate would correspond to
transfer-learning, and a larger learning rate rather to re-training. Transfer learning aims
to exploit the fact that the trained model generalises well and requires little adaption
to the new task – with a small learning rate only small changes are made to the model.
On the other hand, re-training would mean that the model learns the new dataset from
scratch and forgets the old dataset. We will discuss this phenomenon in more detail
in Section 7.2.1. We implemented both attacks since they have different motivations
and are plausible attacks – transfer learning could happen as an accidental attack and
re-training as an attack for purposefully removing the watermark. One could argue that
this is not a plausible attack, since the model forgets the old dataset and the attacker
could train his own model from scratch, but still, we want to analyse how the watermark
behaves during such a strong attack.

7.2 Evaluation
In this section, we evaluate the experiments. In particular, we first evaluate the experi-
ments for different fine-tuning settings in Section 7.2.1 and the influence of watermark-
specific parameters in Section 7.2.2. Then, we compare our results to the results in the
papers in Section 7.2.3 and afterwards evaluate and compare the watermarking methods

65

7. Empirical comparison of existing watermarking methods

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%
A
c
c
u
ra
c
y

(a) SimpleNet, only last layers

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(b) SimpleNet, all layers

α=10
−6

α=10
−5

α=10
−4

α=10
−3

α=10
−2

α=10
−1

New Test Acc.

Orig. Test Acc.

Figure 7.1: Fine-tuning on non-watermarked SimpleNet. The plot on the left side correspond
to fine-tuning only the last layer and the one on the right hand side to fine-tuning all layers.
The black dash-dotted line corresponds to the benchmark test accuracy of the non-watermarked
model.

one to each other regarding effectiveness, fidelity and robustness in Section 7.2.4,
Section 7.2.5 and Section 7.2.6, respectively.

Effectiveness is evaluated by measuring the watermark accuracy after watermark embed-
ding, fidelity by measuring the difference between the test accuracy of the watermarked
and non-watermarked model, and robustness by measuring the watermark accuracy after
an attack.

7.2.1 Evaluation of Fine-Tuning
In this section, we present the findings when testing several settings for fine-tuning.

First, we compare fine-tuning that trains only the last layer with fine-tuning that trains
on all layers. We fine-tune non-watermarked models and conclude that fine-tuning on
all layers leads to better results, as we can see, e.g. on SimpleNet, in Figure 7.1. When
fine-tuning only the last layer, the model seems to be unable to learn the new data
properly. For a small learning rate, e.g. α = 10−6, when fine-tuning only the last
layer, the test accuracy of the new dataset stays at 20% for all iterations, while the test
accuracy on the original test set stays at the benchmark. With the same learning rate
and fine-tuning all layers, the model is able to learn to predict the new dataset with
around 70% accuracy. For a large learning rate, e.g. α = 10−2, the original test accuracy
drops to around 30%, regardless of whether fine-tuning only the last layer or all layers.
At the same time, when fine-tuning all layers, at least the new test accuracy reaches
almost the benchmark score, whereas when fine-tuning only the last layer, the new test
accuracy reaches only around 85%.

66

7.2. Evaluation

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(a) Fine-Tuning on CINIC-10

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(b) Fine-Tuning on ImageNet part of CINIC-10

α=10
−6

α=10
−5

α=10
−4

α=10
−3

α=10
−2

α=10
−1

New Test Acc.

Orig. Test Acc.

WM Acc.

Figure 7.2: Fine-Tuning on both, CINIC-10 and only on the ImageNet part of CINIC-10. In both
cases, 50,000 images are randomly chosen from the corresponding dataset. The underlying model
is a ResNet-18 that was trained with ProtectingIP-pattern and 100 trigger images. The black
dash-dotted line corresponds to the benchmark test accuracy of the non-watermarked model. For
clearity reasons, the lines in the plot are smoothed. The original plots are provided in Figure A.3.

In summary, the original test accuracy behaves similarly in both settings. Even though
it is a bit worse when fine-tuning all layers, the new test accuracy reaches better results
when fine-tuning all layers. It, of course, depends on the motives of an attacker, but
we believe that an attacker would either perform transfer-learning where both the new
and the original test accuracy are at an acceptable level (α = 10−5) or would try to
purposefully overfit the new data (e.g. α = 10−1), in order to let the model "forget" the
original data (and watermark). We analyse the influence of different learning rates in the
following.

From now on, in the following experiments and also for the evaluation of the robustness
of the watermarking methods, we always fine-tune on all layers.

Since CINIC-10 is a dataset consisting of 90,000 training images, from which 70,000 are
drawn from ImageNet, and we downsample the fine-tuning dataset to 50,000 training
images, we could either randomly choose 50,000 training images from CINIC-10 or only
from the ImageNet part of CINIC-10. In Figure 7.2 we show the results for fine-tuning
on CINIC-10 and on the ImageNet part of CINIC-10 for learning rates from 10−6 to 10−1.
We conclude that the choice of the dataset does not make much difference on the new test
accuracy. However, fine-tuning on the ImageNet part leads to both a quicker original test
accuracy and watermark accuracy drop for higher learning rates. In the following, we
fine-tune using CINIC-10, as the attacker would also use the most similar dataset for the
purpose of transfer-learning. For the purpose of re-training, we see that the watermark
accuracy drops below 20% for large learning rates, anyhow, so the differences in these
versions of the data do not have a large effect.

67

7. Empirical comparison of existing watermarking methods

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%
A
c
c
u
ra
c
y

(a) SimpleNet, small learning rates (MNIST)

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(b) SimpleNet, large learning rates (MNIST)

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(c) DenseNet, small learning rates (CIFAR-10)

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(d) DenseNet, large learning rates (CIFAR-10)

α=10
−8

α=10
−7

α=10
−6

α=10
−5

New Test Acc.

Orig. Test Acc.

WM Acc.

α=10
−4

α=10
−3

α=10
−2

α=10
−1

Figure 7.3: Fine-tuning on SimpleNet and DenseNet, watermarked with ProtectingIP-pattern.
The plots on the left side correspond to fine-tuning with smaller learning rates and the ones on
the right side to fine-tuning with larger learning rates. The black dash-dotted line corresponds to
the benchmark test accuracy of the non-watermarked model.

In another experiment, we test several learning rates in order to see how the choice of
learning rate influences (i) the test accuracy on the original dataset, (ii) the test accuracy
on the new dataset, and (iii) the watermark accuracy. For selecting a learning rate for
attacks on all other watermarking methods, we fine-tune exemplary only on the models
that were watermarked with ProtectingIP-pattern and with 100 trigger images. Figure 7.3
shows the results for DenseNet (on CIFAR-10) and for SimpleNet (on MNIST). Although
the behaviour differs much between the two datasets, the behaviour for the models
across one dataset is very similar. That is why we focus on DenseNet and SimpleNet
as examples here and provide the plots for the other models in Appendix A.2.1. We
can conclude from Figure 7.3b that fine-tuning on MNIST models with a larger learning
rate tends to fit the new data too much and therefore the model "forgets" the original
dataset and watermark, i.e. the test accuracy on the original dataset and the watermark

68

7.2. Evaluation

(a) 0.0001 (b) 0.001 (c) 0.01 (d) 0.1 (e) 0.25 (f) 0.5 (g) 1.0

Figure 7.4: Examples for FrontierStitching trigger images for different values of , created with
FGSM on LeNet-1.

accuracy drops already after a few training iterations. This phenomenon is referred to
as catastrophic forgetting [57]. A model fine-tuned with a smaller learning rate, on the
other hand, does not tend to overfit and either learns to adapt to the new data with only
a little accuracy drop on the original test data (α = 10−5 in Figure 7.3a) or is unable to
learn the new data at all (α = 10−8 in Figure 7.3a).

Considering CIFAR-10, shown in Figures 7.3c and 7.3d, we do not see this catastrophic
forgetting regarding the old training data for any of the learning rates, perhaps because
the datasets are too similar. However, we do clearly see that for larger learning rates the
watermark accuracy drops, i.e. the model "forgets" the watermarks more quickly.

7.2.2 Influence of watermark-specific hyparameters
In the following subsections, we discuss two methods, namely FrontierStitching and
WMEmbeddedSystems, which we analysed regarding the influence of a method-specific
parameter.

FrontierStitching

In this section, we analyse how the parameter for FGSM influences fidelity and robustness
of the watermarking method. We use [0.0001, 0.001, 0.01, 0.1, 0.25, 0.5, 1.0] as values.
Figure 7.4 shows examples of trigger images for the different values of .

When it comes to effectiveness, all models reach 100% watermark accuracy, except
of LeNet-5 with = 0.25, which has a watermark accuracy of 68%. We see later in
Section 7.2.4 that, at least for = 0.25, the watermark accuracy on LeNet-5 drops with
the trigger set size.

In the first experiment, we test the influence of the parameter on the validation loss
difference, e.i. the validation loss of the non-watermarked model subtracted from the
validation loss of the watermarked model. We expect that watermarked models trained
on trigger images with a larger perturbation lead to a higher performance drop, i.e. the
validation loss is higher than for models trained on less perturbed trigger images.

The results are summarised in Figure 7.5. We conclude from this experiment that the
influence of is very much dependent on the architecture. The LeNets tend to perform
better with a higher , as the relative difference in validation loss drops from 1.0-1.4 to

69

7. Empirical comparison of existing watermarking methods

0.0001 0.001 0.01 0.1 0.25 0.5 1

Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
e
la
ti
v
e
 v

a
li
d
a
ti

o
n
 l
o
s
s
 d

if
fe

re
n
c
e

CIFAR-10:

MNIST: SimpleNet

DenseNet

LeNet-1

ResNet-18

LeNet-3

ResNet-34

LeNet-5

ResNet-50

Figure 7.5: FrontierStitching with various values for (strength of perturbation). The plot
shows the relative validation loss difference, i.e. the difference between the validation loss of the
watermarked model and the non-watermarked benchmark model divided by the validation loss of
the benchmark model. For all values the WM Accuracy is 100%. The dots in the plot represent
the minimal validation loss difference for the respective architecture.

0-0.2. The value of does not affect the other models much, as the relative validation loss
difference is between in a range of ±0.1 for all . For DenseNet and ResNet-50, however,
we see a trend that a smaller leads to better fidelity.

Since a good watermarking method should not only achieve a good fidelity but also
good robustness, we perform pruning and fine-tuning on these models to test robustness.
The results for pruned models depend very much on the complexity of the architecture.
Figure 7.6 shows the results for LeNet-1 and LeNet-5. The pruning attack affects the
smaller architecture much more than the more complex one. Even with a small pruning
rate of 20%, both the test and watermark accuracy of LeNet-1 start to drop. Compared
to this, a LeNet-5 does not change in performance until 70% of the weights are pruned.
This could indicate that LeNet-5 has spare capacity and is more complex than needed
for the task.

As already discussed in Section 7.1.2, we consider a pruning attack as plausible when
the test accuracy drops 3.5% at maximum. In Figure 7.6 this threshold is marked with
a black dotted line. For instance, we see that the maximal plausible pruning rate for
LeNet-5 in Figure 7.6b is 90% for all values of , whereas for LeNet-1 in Figure 7.6a it
very much depends on the parameter . The maximal plausible pruning rate for LeNet-1,
e.g., for the values 0.0001 and 0.001 is 40%, for 0.5 it is 60% and 1.0 it is 70%.

70

7.2. Evaluation

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pruning rate

80.0%

82.5%

85.0%

87.5%

90.0%

92.5%

95.0%

97.5%

100.0%

A
c
c
u
ra

c
y

(a) LeNet-1

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pruning rate

80.0%

82.5%

85.0%

87.5%

90.0%

92.5%

95.0%

97.5%

100.0%

A
c
c
u
ra

c
y

(b) LeNet-5
ε=0.0001

ε=0.001

ε=0.01

ε=0.1

ε=0.25

ε=0.5

ε=1.0 Test Acc.

WM Acc.

Figure 7.6: Model accuracy after pruning attacks with pruning rates from 10% to 90%. The black
dotted line indicates the threshold for the maximal plausible pruning attack.

As the third and last experiment, we perform a fine-tuning attack on the models. First,
we assume that an attacker would perform a fine-tuning attack with the purpose of
removing the watermark and would therefore choose a relatively high learning rate (cf.
Section 7.2.1, where we tested several learning rates and analysed the behaviour of the
attacked model). We choose 0.01 as the learning rate for both MNIST and CIFAR-10,
based on the experiments in Section 7.2.1. Unfortunately, for all models, the watermark
accuracy after the fine-tuning attack with a large learning rate is below 20%. Second, we
perform a fine-tuning attack with a relatively low learning rate (cf. Section 7.2.1). We
choose 10−5 for MNIST and 10−4 for CIFAR-10, based on the experiments in Section 7.2.1.
After fine-tuning with this small learning rate, the watermark accuracy stays above 50%
for most of the models. We summarised the results in Table 7.2.

WMEmbeddedSystems

Since the authors of the paper do not mention which specific value λ (the magnitude or
strength of the pattern on the trigger images) they used, we have to find the optimal
value for λ. We want to find a specific value for λ for each dataset, but not for each
architecture, since the watermark generation does not depend on the model itself and
should therefore be created in the same manner for all architectures trained on the same
dataset. We average the points for each λ, grouped by the dataset. The ranking system
is presented in Table 7.3. The winning magnitude λ for CIFAR-10 is 0.1 and for MNIST
1.0.

71

7. Empirical comparison of existing watermarking methods

Table 7.2: Watermark accuracies after fine-tuning attack on models trained with FrontierStitching.

CIFAR-10 MNIST
Arch. lr=10−2 lr=10−4 Arch. lr=10−2 lr=10−5

DenseNet 0.0001 6% 65% SimpleNet 0.0001 12% 100%
0.001 8% 68% 0.001 12% 97%
0.01 9% 74% 0.01 9% 100%
0.1 10% 68% 0.1 12% 94%
0.25 11% 75% 0.25 9% 92%
0.5 15% 53% 0.5 10% 96%
1 13% 24% 1 12% 92%

ResNet-18 0.0001 11% 76% LeNet-1 0.0001 12% 46%
0.001 17% 82% 0.001 12% 54%
0.01 11% 86% 0.01 10% 43%
0.1 13% 86% 0.1 10% 59%
0.25 4% 94% 0.25 11% 57%
0.5 9% 67% 0.5 11% 74%
1 9% 53% 1 10% 63%

ResNet-34 0.0001 15% 60% LeNet-3 0.0001 8% 51%
0.001 14% 69% 0.001 7% 66%
0.01 8% 78% 0.01 6% 53%
0.1 13% 57% 0.1 11% 74%
0.25 12% 71% 0.25 9% 48%
0.5 12% 49% 0.5 11% 37%
1 13% 48% 1 9% 51%

ResNet-50 0.0001 8% 93% LeNet-5 0.0001 7% 45%
0.001 8% 97% 0.001 9% 40%
0.01 9% 99% 0.01 6% 65%
0.1 15% 100% 0.1 7% 55%
0.25 15% 66% 0.25 8% 21%
0.5 8% 99% 0.5 5% 58%
1 14% 65% 1 6% 57%

Table 7.3: Results for ranking system for WMEmbeddedSystems. The points are averaged for
each dataset and the bold numbers indicate the highest average for each dataset and therefore
the winning .

Arch. λ = 0.1 λ = 0.5 λ = 1.0

C
IF

A
R

-1
0 DenseNet 6 6 6

ResNet-18 7 4 7
ResNet-34 8 4.5 5.5
ResNet-50 8.5 4.5 5
Average 7.375 4.75 5.875

M
N

IS
T

SimpleNet 4 6 8
LeNet-1 3.5 4.5 4
LeNet-3 7 6 5
LeNet-4 7 5 6
Average 5.375 5.375 5.75

72

7.2. Evaluation

Table 7.4: Fidelity results from Adi et al. ([4], Table 1), and our experiments.

Adi et al.’s results Our results
Model Test Acc. WM Acc. Test Acc. WM Acc.
No WM 93.42 7.0 95.122 -
Fromscratch 93.81 100.0 94.94 100.0
Pretrained 93.65 100.0 94.61 100.0

7.2.3 Comparing to State of the Art

In this section, we compare our results to the results in the literature. Note that several
results are not fully comparable because of the different study settings, e.g. a custom
architecture or unknown trigger set size. Some of the methods focus on a special attack
and therefore do not present data that is relevant to our work. PiracyResistant [64]
focuses on piracy resistance and ExponentialWeighting [80] on their own crafted attack.
Not knowing all hyper-parameters used in literature further hinders achieving the exact
results from related work.

WeaknessIntoStrength

Adi et al. [4] train a ResNet-18 on CIFAR-10, CIFAR-100 and ImageNet with 100 trigger
images. We compare the author’s results for ResNet-18 on CIFAR-10 with our results.
For fidelity, the authors presented results on the test and watermark accuracy after
watermark embedding fromscratch and pretrained. We extract the same information from
our models and summarise both, our and the author’s results, in Table 7.4. While the
authors have a marginal increase, we have a marginal drop in accuracy in the watermarked
model compared to the non-watermarked one, but both differences seem negligible. We
can also confirm that embedding fromscratch leads to better results than embedding the
watermark in a pretrained model.

We tested both embedding types on all models. For instance, Figure 7.7 shows the
behaviour of DenseNet during watermark embedding for both embedding types. We
conclude that embedding fromscratch leads to better fidelity, which is consistent with
the conclusions by the authors (cf. Figure 7.7).

ProtectingIP

We present the results on effectiveness from Zhang et al. [116] and our results in Table 7.5.
They tested the watermarks on a custom DNN and on MNIST and CIFAR-10. We reach
slightly better results, as our models for ProtectingIP reach all 100% watermark accuracy
(cf. Table 7.9). It is worth noting that the paper does not provide information on the
trigger set size and we, therefore, cannot conclude where the difference in effectiveness
could stem from.

73

7. Empirical comparison of existing watermarking methods

0 25 50 75 100 125 150 175 200

Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

L
o
s
s

Train loss (pretrained)

Valid. loss (pretrained)

WM Acc. (pretrained)

Train loss (fromscratch)

Valid. loss (fromscratch)

WM Acc. (fromscratch)

50%

60%

70%

80%

90%

100%

A
c
c
u
ra

c
y

Figure 7.7: Behaviour of DenseNet during training with embedding type pretrained and from-
scratch.

Table 7.5: Effectiveness results from Zhang et al. ([116], Table 1), and our results.

Zhang et al.’s results Our results
MNIST CIFAR-10 MNIST CIFAR-10

Method WM Acc. WM Acc. WM Acc. WM Acc.
ProtectingIP-pattern 100% 99.93% 100% 100%
ProtectingIP-OOD 100% 100% 100% 100%
ProtectingIP-noise 100% 99.86% 100% 100%

Regarding robustness against pruning, we present the authors’ results right beside ours
in Table 7.6. Our results for CIFAR-10 are from ResNet-18 trained with 100 trigger
images and for MNIST from LeNet-5 trained with 120 trigger images. We compare only
the watermark accuracy, since we used different architectures, and mark in green and red
where our models perform better resp. worse.

The most noticeable difference is that for the MNIST model watermarked with ProtectingIP-
pattern and ProtectingIP-OOD, our watermark accuracy drops quicker. Also, for almost
all models when 90% of the parameters are pruned, the watermark accuracy of Zhang et
al. is higher than ours. We again want to mention that Zhang et al. [116] used custom
DNNs, which makes the results difficult to compare. Their custom DNN for MNIST has
312,202 trainable parameters, which are three times as much compared to our LeNet-5
with 107,786 trainable parameters. Their custom DNN for CIFAR-10 has 1,146,826
trainable parameters, which are only 10% compared to our ResNet-18 with 11,173,962
trainable parameters. As they use a DNN with more parameters for MNIST, the model
might have spare capacity, i.e. might be too large for the task, and thus shows such high

74

7.2. Evaluation

Table 7.6: Pruning results from Zhang et al. ([116], Table 3 and Table 4), compared with our
results. "Test" stands for test accuracy, "WM" for watermark accuracy and "Pr. rate" for pruning
rate.

MNIST
ProtectingIP-pattern ProtectingIP-OOD ProtectingIP-noise

Our results Zhang’s results Our results Zhang’s results Our results Zhang’s resultsPr. rate
Test WM Test WM Test WM Test WM Test WM Test WM

10% 98.50% 100% 99.44% 100% 98.61% 100% 99.43% 100% 98.48% 100% 99.4% 100%
20% 98.50% 100% 99.45% 100% 98.58% 100% 99.45% 100% 98.44% 100% 99.41% 100%
30% 98.30% 100% 99.43% 100% 98.55% 100% 99.41% 100% 98.34% 100% 99.41% 100%
40% 98.17% 100% 99.40% 100% 98.45% 100% 99.31% 100% 98.26% 100% 99.42% 100%
50% 98.05% 100% 99.29% 100% 98.22% 100% 99.19% 100% 98.21% 100% 99.41% 100%
60% 97.33% 98.33% 99.27% 100% 97.63% 95.83% 99.24% 100% 98.04% 100% 99.3% 99.9%
70% 95.84% 89.17% 99.18% 100% 96.26% 74.17% 98.82% 100% 97.96% 100% 99.22% 99.9%
80% 86.98% 71.67% 98.92% 100% 96.60% 75.00% 97.79% 100% 97.34% 100% 99.04% 99.9%
90% 71.50% 51.67% 97.03% 99.95% 85.02% 35.00% 93.55% 99.9% 87.56% 45.83% 95.19% 99.55%

CIFAR-10
ProtectingIP-pattern ProtectingIP-OOD ProtectingIP-noise

Our results Zhang’s results Our results Zhang’s results Our results Zhang’s resultsPr. rate
Test WM Test WM Test WM Test WM Test WM Test WM

10% 95.02% 100% 78.37% 99.93% 95.28% 100% 78.06% 100% 94.78% 100% 78.45% 99.86%
20% 95.04% 100% 78.42% 99.93% 95.31% 100% 78.08% 100% 94.77% 100% 78.5% 99.86%
30% 95.01% 100% 78.2% 99.93% 95.34% 100% 78.05% 100% 94.78% 100% 78.33% 99.93%
40% 94.90% 100% 78.24% 99.93% 95.28% 100% 77.78% 100% 94.84% 100% 78.31% 99.93%
50% 94.75% 100% 78.16% 99.93% 95.25% 100% 77.75% 100% 94.80% 100% 78.02% 99.8%
60% 91.91% 100% 77.87% 99.86% 95.01% 100% 77.44% 100% 94.66% 100% 77.87% 99.6%
70% 74.76% 99.00% 76.7% 99.86% 94.26% 100% 76.71% 100% 94.31% 100% 77.01% 98.46%
80% 54.19% 73.00% 74.59% 99.8% 88.63% 89.00% 74.57% 96.39% 89.38% 94.00% 73.09% 92.8%
90% 44.15% 31.00% 64.9% 99.47% 15.43% 12.00% 62.15% 10.93% 13.75% 13.00% 59.29% 65.13%

robustness against pruning. The results for CIFAR-10 are not that clear: our models
do perform better than the MNIST models but not as good as we would expect. We
conclude that robustness against pruning not only depends on the complexity of the
architecture but also the structure and the learned parameters itself.

FrontierStitching

Merrer et al. [75] tested their watermarking method on two models (a CNN and an
MLP, cf. Table 6.1) on MNIST. Our results are for LeNet-1 and LeNet-3 trained with
120 trigger images. We present their and our results for robustness against pruning in
Table 7.7. Note that the authors chose a larger step size for pruning, of 25%, and thus
not all results have a matching counterpart with our results. In Table 7.7, the grey rows
indicate non-plausible pruning attacks, attacks where the test accuracy fall more than
3.5%. One may assume that their models are less complex than ours because of the
quicker test and watermark accuracy drop. In fact, their both models have more trainable
parameters (1,199,882 for CNN and 235,146 for MLP) compared to 69,362 for LeNet-3
and 7,206 for LeNet-1 (cf. Table 6.3). The results for pruning are very much dependent
on the model – not only on the complexity of the architecture but the distribution of
parameters in the trained model. Therefore, we cannot fully compare the results, as we
used different architectures.

75

7. Empirical comparison of existing watermarking methods

Table 7.7: Pruning results from Merrer et al. ([75], Table 2), and our results. The grey cells
indicate a non-plausible pruning attack. For a plausible attack and watermark accuracy above
50% the cell is green and below it is red.

Merrer et al.’s results Our results
Model Pr. rate Test WM Model Test WM
CNN 20% - - LeNet-3 98.7% 100%

25% 98.7% 100% - -
30% - - 98.7% 100%
50% 88.5% 100% 98.7% 100%
70% - - 98.7% 100%
75% 42.6% 0% - -
80% - - 98.7% 100%
90% 25.5% 0% 98.2% 80.8%

MLP 20% - - LeNet-1 98.5% 100%
25% 97.3% 100% - -
30% - - 98.5% 100%
50% 96.6% 100% 97.6 85%
70% - - 87.7% 55.8%
75% 95.3% 7.7% - -
80% - - 80.7% 43.3%
90% 15.7% 0% 39.8% 28.3%

Table 7.8: Fidelity results from Guo et al. ([40], Table 2), and our results.

Guo et al.’s results Our results
Dataset Model Test Acc. WM Acc. Test Acc. WM Acc.

MNIST LeNet-5 98.99% 10% 99.23% -
LeNet-5 WM 98.48% 98.38% 99.18% 100%

CIFAR-10

ResNet-50 94.53% 2.2% 94.39% -
ResNet-50 WM 94.25% 99.98% 94.47% 100%
DenseNet 94.73% 2.2% 94.58% -
DenseNet WM 94.23% 99.97% 94.10% 100%

WMEmbeddedSystems

Guo et al. [40] tested their watermarking method for MNIST on LeNet-5, and for
CIFAR-10 on ResNet-50, DenseNet and VGG. We compare the results on fidelity for the
architectures ResNet-50, DenseNet and LeNet-5. For comparison, we take the models
that were trained with 100 (CIFAR-10) and 120 (MNIST) trigger images. The authors’
and our results are shown in Table 7.8.

Similar to the authors, our watermarked models have a minimal test accuracy drop,
below 0.5%, and in the case of ResNet-50 even a test accuracy gain, compared to the
non-watermarked models. Our models, however, reach 100% watermark accuracy for this
method, which are slightly better results than those presented by the authors.

76

7.2. Evaluation

Table 7.9: Watermark accuracy on watermarked models. A checkmark indicates 100% watermark
accuracy.

Method Type Trg set size DenseNet ResNet-18 ResNet-34 ResNet-50 SimpleNet LeNet-1 LeNet-3 LeNet-5

20/24
100/120pattern

500/600
20/24

100/120noise

500/600
20/24

100/120

ProtectingIP

OOD

500/600

20Weakness
IntoStrength OOD

100 99.00%

20/24
100/120Piracy

Resistant pattern

500/600

20/24
100/120Exponential

Weighting in-distrib.

500/600

20/24
100/120 65.83%Frontier

Stitching perturb.

500/600 65.67% 45.33% 45.33%

20/24
100/120

WM
Embedded
Systems

pattern

500/600

7.2.4 Effectiveness
From our implementations and experiments, we can confirm that almost all of the
watermarking methods achieve a watermark accuracy of 100%. The detailed results
are summarised in Table 7.9. FrontierStitching for a large trigger set size tend to lose
watermark accuracy on some architectures. The models reach only around 45% and 65%
watermark accuracy on the LeNets when trained with 600 trigger images and also on
LeNet-5 when trained with only 120 trigger images. All of the other models have at least
99% watermark accuracy, which is very much acceptable.

77

7. Empirical comparison of existing watermarking methods

7.2.5 Fidelity
Figure 7.8 shows the relative test accuracy difference as a function of the trigger set size
for all watermarking methods for each architecture. From the figure, we can see that
there exists a downward trend for LeNet-1, i.e. the larger the trigger set the more we
lose on test accuracy.

Interestingly, all methods on SimpleNet perform exceptionally well (cf. Figure 7.8b).
We explain this by the complexity of SimpleNet and the large number of "degrees of
freedom". SimpleNet is a very complex model for classifying only gray-scaled images,
it consists of 51 times more trainable parameters than LeNet-5, the largest one of the
LeNets, and almost 762 times more than LeNet-1, which shows the strongest drop in
fidelity (cf. Table 6.3).

DenseNet performs rather poorly when watermarked with ExponentialWeighting and
FrontierStitching (cf. Figure 7.8a). This could be also explained by the (lack of)
complexity of the model: DenseNet has only 30% of the amount of trainable parameters
compared to a ResNet-18 (cf. Table 6.3). We can conclude that ExponentialWeighting,
an in-distribution method, fails on fidelity when used with a smaller model, as we can
see it on DenseNet and LeNet-1 (cf. Figures 7.8a and 7.8d).

Figure 7.9 shows the results for fidelity but for each method. This figure confirms the
conclusions from above. All methods, except of ExponentialWeighting and Frontier-
Stitching, perform similarly well, i.e. the test accuracy drops for all architectures and
trigger set sizes at most for around 1% compared to the benchmark test accuracy. The
worst performing models for ExponentialWeighting are DenseNet and LeNet-1, with a big
influence from the trigger set size, e.g. LeNet-1’s test accuracy drops under 0.5% when
trained with only 24 trigger images, but over 4% when trained with 600 trigger images.
For FrontierStitching, only DenseNet performs worse compared to the others with a test
accuracy drop of around 2%.

78

7.2. Evaluation

20 100 500

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01
R

e
a
lt

iv
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(a) DenseNet trained on CIFAR-10

24 120 600

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

R
e
a
lt

iv
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(b) SimpleNet trained on MNIST

20 100 500

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

R
e
a
lt

iv
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(c) ResNet-18 trained on CIFAR-10

24 120 600

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

R
e
a
lt

iv
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(d) LeNet-1 trained on MNIST

20 100 500

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

R
e
a
lt

iv
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(e) ResNet-34 trained on CIFAR-10

24 120 600

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

R
e
a
lt

iv
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(f) LeNet-3 trained on MNIST

20 100 500

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

R
e
a
lt

iv
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(g) ResNet-50 trained on CIFAR-10

24 120 600

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

R
e
a
lt

iv
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(h) LeNet-5 trained on MNIST
ProtectingIP-pattern

ProtectingIP-noise

ProtectingIP-OOD

WeaknessIntoStrength

PiracyResistant

ExponentialWeighting

FrontierStitching

WMEmbeddedSystems

Figure 7.8: Influence of the trigger set size on fidelity. Each plot corresponds to one architecture
and shows the results for all watermarking methods, on the left models trained on CIFAR-10
and on the right those trained on MNIST. We plot the relative difference between the test
accuracy of the watermarked and non-watermarked model.

79

7. Empirical comparison of existing watermarking methods

20 100

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

R
e
la

ti
v
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(a) WeaknessIntoStrength

20 100 500 600

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

R
e
la

ti
v
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(b) ProtectingIP-OOD

20 100 500 600

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

R
e
la

ti
v
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(c) ProtectingIP-pattern

20 100 500 600

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

R
e
la

ti
v
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(d) ProtectingIP-noise

20 100 500 600

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

R
e
la

ti
v
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(e) PiracyResistant

20 100 500 600

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

R
e
la

ti
v
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(f) FrontierStitching

20 100 500 600

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

R
e
la

ti
v
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(g) ExponentialWeighting

20 100 500 600

Trigger set size

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

R
e
la

ti
v
e
 t

e
s
t

a
c
c
u
ra

c
y
 d

if
fe

re
n
c
e

(h) WMEmbeddedSystems

CIFAR-10:

MNIST: SimpleNet

DenseNet

LeNet-1

ResNet-18

LeNet-3

ResNet-34

LeNet-5

ResNet-50

Figure 7.9: Influence of the trigger set size on fidelity. Each plot corresponds to one method and
shows the results for all architectures. We plot the relative difference between the test accuracy
of the watermarked and non-watermarked model.

80

7.2. Evaluation

7.2.6 Robustness

Parameter Pruning

The results for parameter pruning with pruning rates 80% and 90% for CIFAR-10 are
shown in Figure 7.10 and for MNIST in Figure 7.11.

The plots show the robustness against pruning for the different sizes of trigger sets for
all watermarking methods and each architecture. We clearly see that watermarks in
more complex models rather resist a pruning attack with a smaller pruning rate than
watermarks embedded into smaller models, as, e.g., ResNet-34 compared with ResNet-18
(cf. Figures 7.10c and 7.10e) or LeNet-3 compared with LeNet-1 (cf. Figures 7.11c
and 7.11e).

Also, in some models, e.g. the LeNets, we can see a downward trend for almost all
watermarking methods, i.e. a watermark with a smaller trigger set size is more robust
(cf. Figures 7.11d, 7.11f and 7.11h). For CIFAR-10 models we do not see such a clear
trend – the plots across the watermarking methods do not seem to follow a pattern. Only
ResNet-34 shows, for all but one watermarking method, such a trend (cf. Figure 7.10f).
This observation is especially interesting, since we did not expect to see a downward
trend but rather an upward trend, i.e. more trigger images lead to more robustness, as
we would have expected that more trigger images in the training set would embed the
watermark stronger into the model. The downward trend could stem from the fact that
most of the methods use either a random label for the trigger images, or the next label in
the class vector, which means that the model does not learn to predict one specific label
for a trigger pattern, but rather has to learn combinations of features to predict the right
label. For instance, for ProtectingIP-pattern a car with the text "TEST" is labelled as
"airplane", thus the model has to learn the combination of a car and the pattern in order
to predict the right label. Learning such combinations might force the model parameters
to adapt to a lot of small parameters instead of a few large ones. A larger trigger set size
could then lead to even more of these small parameters, which then, during a pruning
attack, are easily set to zero. This is an assumption and could be confirmed by further
experiments in future work.

It is worth noting that the PiracyResistant method on ResNet-34, SimpleNet and LeNet-
3/5 resist even pruning with 90% pruning rate, i.e. the watermark can still be detected
with 100% accuracy, for all trigger set sizes. This is probably related to the fact that it
is the only method that uses only one target label for the trigger images.

Since we do not assume that an attacker would perform a pruning attack regardless of
how much the model loses in test accuracy (as the ’value’ of the model would then also
decrease), we test the watermark accuracy of a model at the maximal plausible pruning
rate, as discussed in Section 7.1.2, and show the results in Table 7.10. The values below
50% watermark accuracy are marked in red, and we consider these models as not robust
against pruning. However, it depends on the watermark accuracy threshold the model
owner sets. Those models without a value in the table are models that performed already

81

7. Empirical comparison of existing watermarking methods

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(a) DenseNet, 80% pruned.

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(b) DenseNet, 90% pruned.

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(c) ResNet-18, 80% pruned.

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(d) ResNet-18, 90% pruned.

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(e) ResNet-34, 80% pruned.

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(f) ResNet-34, 90% pruned.

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(g) ResNet-50, 80% pruned.

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(h) ResNet-50, 90% pruned.
ProtectingIP-pattern

ProtectingIP-noise

ProtectingIP-OOD

WeaknessIntoStrength

PiracyResistant

ExponentialWeighting

FrontierStitching

WMEmbeddedSystems

Figure 7.10: Influence of the trigger set size on robustness against pruning on CIFAR-10 models.
Each plot on the left corresponds pruning with 80% and each plot on the right to corresponds
pruning with 90%. Each plot shows the results for all watermarking methods.

82

7.2. Evaluation

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%
W

a
te

rm
a
rk

 a
c
c
u
ra

c
y

(a) SimpleNet, 80% pruned.

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(b) SimpleNet, 90% pruned.

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(c) LeNet-1, 80% pruned.

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(d) LeNet-1, 90% pruned.

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(e) LeNet-3, 80% pruned.

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(f) LeNet-3, 90% pruned.

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(g) LeNet-5, 80% pruned.

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(h) LeNet-5, 90% pruned.
ProtectingIP-pattern

ProtectingIP-noise

ProtectingIP-OOD

WeaknessIntoStrength

PiracyResistant

ExponentialWeighting

FrontierStitching

WMEmbeddedSystems

Figure 7.11: Influence of the trigger set size on robustness against pruning on MNIST models.
Each plot on the left corresponds pruning with 80% and each plot on the right to corresponds
pruning with 90%. Each plot shows the results for all watermarking methods.

83

7. Empirical comparison of existing watermarking methods

Table 7.10: Influence of the trigger set size on robustness against pruning with the maximal
plausible pruning rate. The values are the watermark accuracy after an pruning attack, the
value in the parenthesis is the maximal plausible pruning rate. A checkmark indicates 100%
watermark accuracy.

Method Type Trg set size DenseNet ResNet-18 ResNet-34 ResNet-50 SimpleNet LeNet-1 LeNet-3 LeNet-5

20/24 90.0% (0.8) (0.7) (0.8) (0.8) (0.8) 87.5% (0.5) 87.5% (0.8) 83.3% (0.8)
100/120 (0.8) (0.6) (0.8) (0.8) (0.7) 69.2% (0.5) 95.0% (0.7) 89.2% (0.7)pattern

500/600 99.0% (0.8) (0.6) 92.0% (0.8) (0.8) (0.7) 95.3% (0.2) 76.8% (0.7) 90.0% (0.6)
20/24 95.0% (0.8) (0.7) (0.8) (0.8) (0.7) (0.6) (0.8) (0.8)

100/120 98.0% (0.8) (0.7) (0.8) (0.8) (0.8) 63.3% (0.7) 98.3% (0.8) 91.7% (0.7)noise

500/600 96.8% (0.8) (0.5) (0.8) (0.8) (0.8) 53.5% (0.6) 72.3% (0.7) 84.0% (0.7)
20/24 (0.8) (0.8) (0.8) (0.8) (0.8) 79.2% (0.5) 95.8% (0.8) 91.7% (0.8)

100/120 (0.8) (0.7) (0.8) 99.0% (0.9) (0.8) 86.7% (0.5) 90.0% (0.7) 75.0% (0.8)

ProtectingIP

OOD

500/600 17.6% (0.8) (0.6) (0.8) 98.8% (0.8) (0.7) 41.7% (0.5) 88.7% (0.7) 70.8% (0.7)

20 (0.8) (0.7) (0.8) (0.8) (0.8) 45.0% (0.6) 65.0% (0.9) 85.0% (0.9)Weakness
IntoStrength OOD

100 (0.8) (0.7) (0.8) (0.9) (0.8) 56.0% (0.5) 73.0% (0.9) 57.0% (0.9)

20/24 (0.8) 75.0% (0.8) (0.9) 25.0% (0.9) (0.7) (0.5) (0.8) (0.7)
100/120 (0.8) (0.7) (0.8) 98.0% (0.9) (0.7) (0.6) 99.2% (0.9) (0.7)Piracy

Resistant pattern

500/600 (0.8) (0.8) (0.8) 85.2% (0.9) (0.7) (0.4) (0.8) (0.6)

20/24 (0.9) (0.8) (0.9) (0.9) (0.8) 87.5% (0.5) (0.9) (0.9)
100/120 (0.9) (0.8) (0.9) (0.9) (0.8) 94.2% (0.4) 95.8% (0.9) 95.0% (0.9)Exponential

Weighting in-distrib.

500/600 - (0.8) 94.4% (0.9) (0.9) (0.8) - 83.0% (0.9) (0.8)

20/24 (0.9) (0.8) (0.9) (0.9) (0.8) 87.5% (0.6) (0.9) 91.7% (0.9)
100/120 (0.9) (0.8) (0.9) (0.9) (0.8) 85.0% (0.5) 80.8% (0.9) 45.8% (0.9)Frontier

Stitching perturb.

500/600 98.6% (0.9) (0.8) 79.2% (0.9) 96.4% (0.9) (0.8) 42.5% (0.6) 30.3% (0.9) 25.3% (0.9)

20/24 (0.8) (0.7) (0.8) 95.0% (0.9) (0.8) 79.2% (0.7) (0.9) (0.9)
100/120 (0.8) (0.6) (0.8) (0.8) 97.5% (0.8) 83.3% (0.7) 61.7% (0.9) 96.7% (0.9)WMEmbedded

Systems pattern

500/600 98.0% (0.8) (0.6) (0.7) (0.8) (0.6) 82.17% (0.5) 82.5% (0.8) 94.2% (0.8)

badly on fidelity, i.e. having more than 3.5% test accuracy drop. Models reaching a 100%
watermark accuracy after 90% of the weights are pruned are marked green.

From this table, we conclude that a watermark in a smaller model like LeNet-1 is less
robust against pruning than in a more complex model like SimpleNet or ResNet-18. Note
that we performed pruning with a step size of 10 percentage points and these results
could change when tested with, e.g., a step size of 1 percentage point. We see that those
models that fail on pruning are trained with an OOD or perturbation based method, and
also ResNet-50 with PiracyResistant and trigger set size 20. However, those perturbation
based models that seem to perform badly in this table are also those models that reach
only 45-65 % watermark accuracy after the embedding. Therefore, instead of declaring
them as not robust against pruning, we rather declare them as primarily not effective.

We can see that the watermarking methods most robust against pruning are ProtectingIP-
pattern, ProtectingIP-noise and ExponentialWeighting. For those, the watermark accuracy,
after a pruning attack with the maximal plausible pruning rate, stays above 50% for
all architectures and all trigger set sizes. For ExponentialWeighting, even the worst-
performing model has a watermark accuracy of 83%, but two models, DenseNet with the
trigger set size 500 and LeNet-1 with the trigger set size 600, did not even qualify for
pruning since they already fail the fidelity requirement.

84

7.2. Evaluation

Fine-Tuning

The results for fine-tuning for CIFAR-10 are shown in Figure 7.12 and for MNIST in
Figure 7.13.

For fine-tuning with a smaller learning rate, we can see a downward trend for most of
the watermarking methods trained on models classifying CIFAR-10 (cf. Figure 7.12).
For MNIST models we cannot detect such a trend, neither downward nor upward (cf.
Figure 7.13). For fine-tuning with a larger learning rate, all watermarking methods on
all architectures for all trigger set sizes fail to resist, the watermark accuracies are mostly
below 20%. Again, as discussed above, we did not expect a downward trend regarding
robustness but rather an upward trend, i.e. more trigger images lead to more robustness.
We discuss this observation in more detail after we analysed the fine-tuning plots per
method.

Also, Figure 7.14 shows that, during a fine-tuning attack, the model trained with a larger
trigger set size (500) loses watermark accuracy more quickly.

Also here, we can see that SimpleNet performs best for both fine-tuning settings (cf.
Figures 7.13a and 7.13b). Overall, the highest watermark accuracies are seen on SimpleNet.
Interestingly, for SimpleNet a larger trigger set size is beneficial, since models with smaller
trigger set sizes lose more watermark accuracy after fine-tuning with a smaller learning
rate.

Concluding this section, Figure 7.15 shows the results for fine-tuning with a smaller
learning rate (α = 10−4 for CIFAR-10 and α = 10−5 for MNIST) for all architectures
for each watermarking method. Comparing each watermarking method, we can see an
upward trend in WeaknessIntoStrength (cf. Figure 7.15a) for almost all architectures, but
we do see this also for other methods comparing trigger set size 20 and 100. A downward
trend can be detected for ExponentialWeighting, FrontierStitching, ProtectingIP-pattern
and ProtectingIP-OOD (cf. Figures 7.15b, 7.15c, 7.15f and 7.15g). The reason for the
downward trend might be the same as for pruning. These methods do use more than one
label for the trigger images and therefore the model does not learn the specific trigger
"pattern", but overfits on every single trigger image, which the model then easily "forgets"
during a fine-tuning attack.

Note that WeaknessIntoStrength was trained only with 20 and 100 trigger images and
therefore we do not have the same amount of information compared to the other ones.
Although ExponentialWeighting shows a downward trend, the watermark accuracy for
the models trained with 100/120 trigger images are among the highest compared to other
methods. We observe the same for WMEmbeddedSystems, as the watermark accuracy for
those trigger set sizes is above 60%.

Interestingly, MNIST models watermarked with PiracyResistant have a watermark
accuracy of 100% even after a fine-tuning attack with a small learning rate. This,
however, is not the case for CIFAR-10 models, as the watermark accuracy for those
models is between 20% and 40% after the fine-tuning attack. As above, this high

85

7. Empirical comparison of existing watermarking methods

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(a) DenseNet, fine-tuned with α = 10−4

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(b) DenseNet, fine-tuned with α = 10−2

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(c) ResNet-18, fine-tuned with α = 10−4

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(d) ResNet-18, fine-tuned with α = 10−2

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(e) ResNet-34, fine-tuned with α = 10−4

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(f) ResNet-34, fine-tuned with α = 10−2

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(g) ResNet-50, fine-tuned with α = 10−4

20 100 500

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(h) ResNet-50, fine-tuned with α = 10−2

ProtectingIP-pattern

ProtectingIP-noise

ProtectingIP-OOD

WeaknessIntoStrength

PiracyResistant

ExponentialWeighting

FrontierStitching

WMEmbeddedSystems

Figure 7.12: Influence of the trigger set size on robustness against fine-tuning on CIFAR-10
models. Each plot on the right corresponds fine-tuning with a small learning rate and each plot on
the left to fine-tuning with a large learning rate, all of them show the results for all watermarking
methods.86

7.2. Evaluation

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%
W

a
te

rm
a
rk

 a
c
c
u
ra

c
y

(a) SimpleNet, fine-tuned with α = 10−5

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(b) SimpleNet, fine-tuned with α = 10−2

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(c) LeNet-1, fine-tuned with α = 10−5

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(d) LeNet-1, fine-tuned with α = 10−2

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(e) LeNet-3, fine-tuned with α = 10−5

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(f) LeNet-3, fine-tuned with α = 10−2

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(g) LeNet-5, fine-tuned with α = 10−5

24 120 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(h) LeNet-5, fine-tuned with α = 10−2

ProtectingIP-pattern

ProtectingIP-noise

ProtectingIP-OOD

WeaknessIntoStrength

PiracyResistant

ExponentialWeighting

FrontierStitching

WMEmbeddedSystems

Figure 7.13: Influence of the trigger set size on robustness against fine-tuning on MNIST models.
Each plot on the left corresponds fine-tuning with a small learning rate and each plot on the
right to fine-tuning with a large learning rate, all of them show the results for all watermarking
methods. 87

7. Empirical comparison of existing watermarking methods

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

20

100

500

New Test Acc.

Orig. Test Acc.

WM Acc.

Figure 7.14: Behaviour of ResNet-18 watermarked with ProtectingIP-pattern during a fine-tuning
attack with a small learning rate α = 10−4. The colors indicate the trigger set size, with which
the model was watermarked. The black dash-dotted line corresponds to the benchmark test
accuracy of the non-watermarked model.

robustness of MNIST models might be related to the fact that PiracyResistant uses one
label for all trigger images.

88

7.2. Evaluation

20 100

Trigger set size

0%

20%

40%

60%

80%

100%
W

a
te

rm
a
rk

 a
c
c
u
ra

c
y

(a) WeaknessIntoStrength

20 100 500 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(b) ProtectingIP-OOD

20 100 500 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(c) ProtectingIP-pattern

20 100 500 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(d) ProtectingIP-noies

20 100 500 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(e) PiracyResistant

20 100 500 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(f) ExponentialWeighting

20 100 500 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(g) FrontierStitching

20 100 500 600

Trigger set size

0%

20%

40%

60%

80%

100%

W
a
te

rm
a
rk

 a
c
c
u
ra

c
y

(h) WMEmbeddedSystems

CIFAR-10:

MNIST: SimpleNet

DenseNet

LeNet-1

ResNet-18

LeNet-3

ResNet-34

LeNet-5

ResNet-50

Figure 7.15: Influence of the trigger set size on robustness against fine-tuning with a small learning
rate, 10−5 for MNIST and 10−4 for CIFAR-10. Each plot corresponds to one watermarking
method and shows the results for all architectures.

89

CHAPTER 8
Conclusions and future work

In this thesis, we systematised findings on IP protection (IPP) in machine learning (ML).
We developed a comprehensive threat model for IP in ML, and categorised attacks and
defences within a unified and consolidated taxonomy.

The focus of this thesis was then an in-depth analysis of backdoor-based watermarking
approaches for DNNs for image classification. We defined a common study setting,
implemented eight methods, and trained 191 models. The methods were analysed
regarding effectiveness, fidelity and robustness based on several experiments with well-
known Deep Learning (DL) architectures on widely used benchmark datasets.

We address the research questions from Chapter 6, starting with the subquestions:

To what extend is a more complex model able to hold more watermark
information (a bigger trigger set) without compromising test accuracy? We
tested fidelity for all watermarking methods and architectures and showed the results
in Figure 7.8. We can clearly say, at least for MNIST, a more complex model is able
to hold more watermark information without compromising test accuracy, as we see
on SimpleNet in Figure 7.8b compared to the other architectures. SimpleNet is a very
complex model for classifying grayscaled images (cf. Table 6.3). But also comparing
LeNet-1 and LeNet-3/5, we can see that a more complex model is less affected by a
bigger trigger set. For models trained on CIFAR-10, however, we do not see a clear trend.
The test accuracy difference on ResNet-18/34/50 across the trigger set sizes is more or
less the same. Only perturbation based and in-distribution methods perform worse on
DenseNet, which could be related to DenseNet’s small size. For future work, testing even
larger trigger set sizes for CIFAR-10 models could show similar results as for MNIST
models, as the trigger set size 500 might be too small to be representative for such a
trend.

To what extend does the trigger set size influence the effectiveness, fidelity
and robustness of a watermarking method? Regarding effectiveness, we could not

91

8. Conclusions and future work

detect any correlation between the trigger set size and effectiveness. All watermarking
methods reach 100%, or almost 100%, watermark accuracy, except for the perturbation
based method on the LeNets with the highest trigger set size and LeNet-5 with the midsize
trigger set, which only have a watermark accuracy between 45% and 65%. However, we
would have rather expected larger trigger sizes to have a positive effect on the effectiveness,
as the model is trained on more data regarding the watermark. As we observe this odd
behaviour only on FrontierStitching, this could be related to the perturbation based
trigger images and the chosen parameter . Recall that we tested several values for and
the value that was chosen by the authors (= 0.25) was the only one that did not lead to
100% effectiveness on our test group (all architectures trained with 100 trigger images).
As perturbation based trigger images are very much dependent on the model, one should
test several values for before deciding on one.

Regarding fidelity, as mentioned above, only smaller models trained on MNIST are
influenced by the trigger set size.

Regarding robustness against pruning, we can confirm that the trigger set size has some
influence on robustness against pruning. For most of the architectures and most of the
methods, a bigger trigger set size is less robust. This is something we did not expect.
We would have assumed that a model watermarked with a bigger trigger set would be
more robust, since the model is trained on more of these trigger images and therefore
increases the weights of the neurons classifying those. However, since this is not the case,
we believe that a larger trigger set size increases the weights responsible for the original
task in order to still be able to classify correctly on the original task, i.e. to cope with
the influence of the trigger images.

For fine-tuning with a larger learning rate, no watermarking method could survive this
type of attack. The models have a watermark accuracy mostly below 20% after the
fine-tuning attack with a larger learning rate. With a smaller learning rate, however, we
can again say, as with pruning, that a larger trigger set size leads to a higher watermark
accuracy drop. The exception of this trend is SimpleNet, where a higher trigger set size
leads to more robustness against fine-tuning, which could be related to SimpleNet’s high
complexity compared to the classification task.

To what extend does the complexity of the model influence, the effectiveness,
fidelity and robustness of the watermarking method? As discussed above, we can
confirm that complexity has a (positive) influence on fidelity and robustness, as we see
that SimpleNet performs exceptionally well compared to the other MNIST models and
also CIFAR-10 models. For CIFAR-10 models, we see that DenseNet, which is the smallest
model, performs worse on fidelity compared to the other CIFAR-10 models (cf. Figure 7.8),
but only for two methods, namely FrontierStitching and ExponentialWeighting.

With the insights and answers found in the analysis, we now address the overall research
question:

How can we define the most fitting watermarking method depending on the
ML setting? It depends on the model owners requirements, regarding effectiveness,

92

fidelity and robustness, but it seems very likely that a model owner should consider
building a more complex model than needed for the original task, in order to get the
best results for watermarking, as we have seen it on SimpleNet.

Comparing the different watermarking methods, we now summarise the findings on
the performance regarding effectiveness, fidelity and robustness against pruning and
fine-tuning:

• Effectiveness: We cannot make any recommendation based on the complexity of
a model, as almost all models reach 100% watermark accuracy after watermark
embedding (cf. Section 7.2.4). Only FrontierStitching fails on some models for
MNIST.

• Fidelity: All models, except of ExponentialWeighting on DenseNet and LeNet-1
and FrontierStitching on DenseNet, did pass the fidelity requirement, i.e. the test
accuracy drops not more than around 1% of the benchmark test accuracy (cf.
Section 7.2.5).

• Robustness against pruning: The OOD methods, WeaknessIntoStrength and
ProtectingIP-OOD, perform worst and the methods ProtectingIP-pattern, ProtectingIP-
noise and ExponentialWeighting perform best (cf. Section 7.2.6). PiracyResistant
resists a pruning attack exceptionally well on ResNet-34, SimpleNet and LeNet-3/5.

• Robustness against fine-tuning: The best performing method over all architec-
tures is ExponentialWeighting and WMEmbeddedSystems, especially with a trigger
set size of 100/120 (cf. Section 7.2.6). The best robustness against pruning for
MNIST models did reach PiracyResistant with 100% watermark accuracy after the
attack.

Depending on the model owner’s requirements, one could now choose a fitting water-
marking method based on this analysis’ summary. Furthermore, we would like to point
out three important differences: the time of embedding, the overhead regarding the
implementation and the efficiency. As we saw in Section 7.2.3, WeaknessIntoStrength
performed better when the watermark was embedded from scratch and we believe this
holds true also for the other methods. All of the methods use embedding from scratch,
except of FrontierStitching, for which the watermark generation relies on an already
trained model to generate the fitting adversarial examples used as trigger images, and
ExponentialWeighting, which first has to learn the original task and then, as a second
step, gets the watermarks embedded.

Regarding the implementation and training overhead, a simple pattern based or noise
based method such as ProtectingIP-pattern or ProtectingIP-noise would be the simplest
method to implement, as it does not utilise any further security measures and the
watermark generation is straightforward. More advanced methods would be WMEmbed-
dedSystems or PiracyResistant, which use a unique signature for the watermark generation.

93

8. Conclusions and future work

For ExponentialWeighting the layers of the model need to be changed, as this method
applies a special transformation on the weights. Watermarking with FrontierStitching
likely requires extra effort for experiments before choosing the best value for the parameter
. Also, the OOD methods WeaknessIntoStrength and ProtectingIP-OOD need another

set of data which could lead to additional effort when searching for and preparing the
OOD data.

The most efficient watermarking methods are those that embed the watermark from
scratch, since embedding and model training is done in the same step. FrontierStitching
and ExponentialWeighting need an already trained model, and therefore are less efficient.
FrontierStitching needs even more computation, as the creation of adversarial images is
quite time-consuming.

For those model owners that are interested in fingerprinting, we believe that the most
fitting methods would be ProtectingIP-pattern, WMEmbeddedSystems and PiracyResis-
tant, as the watermark generation can be easily customised, in order to embed unique
watermarks for multiple users.

To enable more comparable results, it would be very helpful if authors in future research
would evaluate their newly proposed IPP method or attack in a more uniform manner.
The usage of state-of-the-art DL architectures and datasets should be common practice,
as the results of different methods could be compared directly. When authors use custom
DNNs instead of well-known ones, it raises concerns whether this method or attack is
transferable to another setting or if the algorithm performed only exceptionally well on
the chosen custom DNN. Moreover, results that are only shown in plots are difficult to
compare, as the exact values are often not possible to identify from a plot. Therefore, we
suggest in future research to always provide results both in a table and plot.

For future work, we would wish to explore more attacks on backdoor-based watermarking
methods, e.g. fine-pruning or watermark overwriting, and compare the methods on a
larger scale of settings, implementing more architectures and use larger datasets, in
order to give even clearer recommendations. Also, a comparison with larger datasets
would answer the question of whether the trigger set size should be chosen as a ratio of
the original dataset, or as some absolute number. Moreover, a thorough analysis of a
watermarked model during a pruning or fine-tuning attack could give clearer answers
why in some cases a larger trigger set size leads to less robustness.

Further black-box watermarking methods need to be explored, e.g. methods focusing on
trigger labelling. Future work could find out if trigger labelling is not only a useful but
necessary feature.

As watermarking methods are already quite well studied on image classification with
DNNs, it would be useful to also develop concepts for other ML techniques and especially
real-world problems. This, however, would need a comprehensive study of different
industries and their use cases in order to follow the needs and wishes of real-world
problems.

94

APPENDIX A
Appendix

A.1 Dependencies
A complete list of python packages used for the implementation and experiments:

• Babel version 2.9.1

• kmeans_pytorch version 0.3

• matplotlib version 3.3.4

• numpy version 1.20.2

• pandas version 1.2.4

• Pillow version 8.2.0

• rsa version 4.7.2

• torch version 1.8.1

• torchvision version 0.9.1

A.2 Additional figures
A.2.1 Experiments for fine-tuning

95

A. Appendix

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%
A
c
c
u
ra
c
y

(a) LeNet-1

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(b) LeNet-1

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(c) LeNet-3

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(d) LeNet-3

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(e) LeNet-5

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(f) LeNet-5

α=10
−8

α=10
−7

α=10
−6

α=10
−5

New Test Acc.

Orig. Test Acc.

WM Acc.

α=10
−4

α=10
−3

α=10
−2

α=10
−1

Figure A.1: Fine-tuning on MNIST models, watermarked with ProtectingIP-pattern. The plots
on the left side correspond to fine-tuning with smaller learning rates and the ones on the right
side to fine-tuning with larger learning rates. The black dash-dotted line corresponds to the
benchmark test accuracy of the non-watermarked model.

96

A.2. Additional figures

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(a) ResNet-18

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(b) ResNet-18

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(c) ResNet-34

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(d) ResNet-34

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(e) ResNet-50

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(f) ResNet-50

α=10
−8

α=10
−7

α=10
−6

α=10
−5

New Test Acc.

Orig. Test Acc.

WM Acc.

α=10
−4

α=10
−3

α=10
−2

α=10
−1

Figure A.2: Fine-tuning on CIFAR-10 models, watermarked with ProtectingIP-pattern. The
plots on the left side correspond to fine-tuning with smaller learning rates and the ones on the
right side to fine-tuning with larger learning rates. The black dash-dotted line corresponds to the
benchmark test accuracy of the non-watermarked model.

97

A. Appendix

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(a) Fine-Tuning on CINIC-10

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
c
c
u
ra
c
y

(b) Fine-Tuning on ImageNet part of CINIC-10

α=10
−6

α=10
−5

α=10
−4

α=10
−3

α=10
−2

α=10
−1

New Test Acc.

Orig. Test Acc.

WM Acc.

Figure A.3: Fine-Tuning on both, CINIC-10 and only on the ImageNet part of CINIC-10. Original
line plots to Figure 7.2.

98

List of Figures

2.1 Literature search process workflow. In every step we denote the number of
publications by N = x. The numbers 1 to 6 correspond to the CSV-files which
contain all the retrieved literature in the particular step. 3

2.2 Literature distribution . 4

3.1 Three main categories of ML, their algorithms and use cases. Source: [92] 8
3.2 A perceptron . 11
3.3 Computation of first layer in an MLP. 12
3.4 Convolutional filters in a Deep Neural Network enhancing features in an image.

Usually, the first layers recognise simple features such as lines and corners by
comparing the contrast of neighbouring pixels. With this information, the
following layers are responsible for recognising whole object parts. In this
manner, feeding the pixel information from the input through a series of layers
consisting of convolutional, pooling and feed-forward layers, eventually results
in a class prediction. Source: [33] . 17

3.5 Computation of convolutional filter with padding 1. Padding means how
much the filter shifts on the input during the computation. With padding
2, e.g., the filter would move forward two values instead of one, in order to
compute the next output value. Source: [33] 18

3.6 LSTM and GRU. Source: [83] . 19
3.7 A typical watermarking workflow . 22

4.1 Taxonomy of Intellectual Property Protection mechanisms for Machine Learn-
ing models. Note, that not all considered papers are referenced in this diagram. 24

5.1 Different notions of information hiding along a ML process 28
5.2 Typical workflows for (a) white-box watermarking and (b) black-box water-

marking . 32
5.3 Examples for the various types of trigger images, intentionally labelled as a

different class ((a), (b) as "cat", (c), (d) as "airplane", (e) as "9") 35
5.4 The upper left image is the initial image and the following five are trigger

images resulting from a hash chain [125]. 37

99

5.5 (a) The data points are divided into "true adversaries" (R and B) and "false
adversaries" (R̄ and B̄). The label for the true adversaries is changed, the
label for the false adversaries stays unchanged. (b) After fine-tuning the
decision boundary changes. [75] . 37

6.1 Representative examples for each class from the training sets of MNIST,
CIFAR-10, EMNIST and CINIC-10. 51

6.2 ResNet-18 architecture. Source: [7] . 53
6.3 A 5-layer dense block. A DenseNet consists of several dense blocks. Source:

[52] . 53
6.4 Architecture of LeNet-5. Source: [63] . 53

7.1 Fine-tuning on non-watermarked SimpleNet. The plot on the left side cor-
respond to fine-tuning only the last layer and the one on the right hand
side to fine-tuning all layers. The black dash-dotted line corresponds to the
benchmark test accuracy of the non-watermarked model. 66

7.2 Fine-Tuning on both, CINIC-10 and only on the ImageNet part of CINIC-10.
In both cases, 50,000 images are randomly chosen from the correspond-
ing dataset. The underlying model is a ResNet-18 that was trained with
ProtectingIP-pattern and 100 trigger images. The black dash-dotted line
corresponds to the benchmark test accuracy of the non-watermarked model.
For clearity reasons, the lines in the plot are smoothed. The original plots are
provided in Figure A.3. 67

7.3 Fine-tuning on SimpleNet and DenseNet, watermarked with ProtectingIP-
pattern. The plots on the left side correspond to fine-tuning with smaller
learning rates and the ones on the right side to fine-tuning with larger learning
rates. The black dash-dotted line corresponds to the benchmark test accuracy
of the non-watermarked model. 68

7.4 Examples for FrontierStitching trigger images for different values of , created
with FGSM on LeNet-1. 69

7.5 FrontierStitching with various values for (strength of perturbation). The plot
shows the relative validation loss difference, i.e. the difference between the
validation loss of the watermarked model and the non-watermarked benchmark
model divided by the validation loss of the benchmark model. For all values
the WM Accuracy is 100%. The dots in the plot represent the minimal
validation loss difference for the respective architecture. 70

7.6 Model accuracy after pruning attacks with pruning rates from 10% to 90%.
The black dotted line indicates the threshold for the maximal plausible pruning
attack. 71

7.7 Behaviour of DenseNet during training with embedding type pretrained and
fromscratch. 74

100

7.8 Influence of the trigger set size on fidelity. Each plot corresponds to one
architecture and shows the results for all watermarking methods, on the left
models trained on CIFAR-10 and on the right those trained on MNIST.
We plot the relative difference between the test accuracy of the watermarked
and non-watermarked model. 79

7.9 Influence of the trigger set size on fidelity. Each plot corresponds to one
method and shows the results for all architectures. We plot the relative
difference between the test accuracy of the watermarked and non-watermarked
model. 80

7.10 Influence of the trigger set size on robustness against pruning on CIFAR-10
models. Each plot on the left corresponds pruning with 80% and each plot on
the right to corresponds pruning with 90%. Each plot shows the results for
all watermarking methods. 82

7.11 Influence of the trigger set size on robustness against pruning on MNIST
models. Each plot on the left corresponds pruning with 80% and each plot on
the right to corresponds pruning with 90%. Each plot shows the results for
all watermarking methods. 83

7.12 Influence of the trigger set size on robustness against fine-tuning on CIFAR-
10 models. Each plot on the right corresponds fine-tuning with a small
learning rate and each plot on the left to fine-tuning with a large learning
rate, all of them show the results for all watermarking methods. 86

7.13 Influence of the trigger set size on robustness against fine-tuning on MNIST
models. Each plot on the left corresponds fine-tuning with a small learning
rate and each plot on the right to fine-tuning with a large learning rate, all of
them show the results for all watermarking methods. 87

7.14 Behaviour of ResNet-18 watermarked with ProtectingIP-pattern during a
fine-tuning attack with a small learning rate α = 10−4. The colors indicate
the trigger set size, with which the model was watermarked. The black
dash-dotted line corresponds to the benchmark test accuracy of the non-
watermarked model. 88

7.15 Influence of the trigger set size on robustness against fine-tuning with a small
learning rate, 10−5 for MNIST and 10−4 for CIFAR-10. Each plot corresponds
to one watermarking method and shows the results for all architectures. . 89

A.1 Fine-tuning on MNIST models, watermarked with ProtectingIP-pattern. The
plots on the left side correspond to fine-tuning with smaller learning rates
and the ones on the right side to fine-tuning with larger learning rates. The
black dash-dotted line corresponds to the benchmark test accuracy of the
non-watermarked model. 96

101

A.2 Fine-tuning on CIFAR-10 models, watermarked with ProtectingIP-pattern.
The plots on the left side correspond to fine-tuning with smaller learning rates
and the ones on the right side to fine-tuning with larger learning rates. The
black dash-dotted line corresponds to the benchmark test accuracy of the
non-watermarked model. 97

A.3 Fine-Tuning on both, CINIC-10 and only on the ImageNet part of CINIC-10.
Original line plots to Figure 7.2. 98

102

List of Tables

3.1 Confusion matrix of a two-class problem. 10

5.1 Requirements for Watermarking techniques. The notation is not consistent
throughout the papers, but the terms in the left column are the most prominent
ones. These requirements mostly apply also to Fingerprinting methods . . 29

5.2 Requirements met by watermarking and fingerprinting schemes. We distin-
guish two degrees: ∼ indicates: the respective authors claim the scheme fulfils
this property; indicates: the authors show empirically that the property is
fulfilled. 30

5.3 Which attack defeats which watermarking technique based on the evaluation
of the papers. A ∼ denotes that the authors claim that their attack can be
extended easily to defeat this watermarking technique but did not provide an
evaluation for that. 43

6.1 Study settings in selected papers. 49
6.2 Characteristics of the datasets used in the evaluation 51
6.3 Amount of trainable parameters and the state-of-the-art test accuracy, as well

as, our test accuracy of the trained models. 54
6.4 Trigger set sizes used for training models with various watermarking methods. 54
6.5 Embedding and fine-tuning time (with learning rate 0.01) for WeaknessIn-

toStrength with 100 trigger images. The time is given in the format (hh:mm:ss). 55
6.6 Training times for additional experiments in format (dd:hh:mm:ss). 55
6.7 Hyperparameters configuration for the architectures. lr stands for learning

rate, bs for batch size, wm_bs for watermarking batch size, i.e. the batch
size for the trigger set, and epochs the number of training iterations. . . 56

7.1 Attacks used in the papers. 64
7.2 Watermark accuracies after fine-tuning attack on models trained with Fron-

tierStitching. 72
7.3 Results for ranking system for WMEmbeddedSystems. The points are aver-

aged for each dataset and the bold numbers indicate the highest average for
each dataset and therefore the winning 72

7.4 Fidelity results from Adi et al. ([4], Table 1), and our experiments. 73
7.5 Effectiveness results from Zhang et al. ([116], Table 1), and our results. . 74

103

7.6 Pruning results from Zhang et al. ([116], Table 3 and Table 4), compared with
our results. "Test" stands for test accuracy, "WM" for watermark accuracy
and "Pr. rate" for pruning rate. 75

7.7 Pruning results from Merrer et al. ([75], Table 2), and our results. The
grey cells indicate a non-plausible pruning attack. For a plausible attack and
watermark accuracy above 50% the cell is green and below it is red. . . . 76

7.8 Fidelity results from Guo et al. ([40], Table 2), and our results. 76
7.9 Watermark accuracy on watermarked models. A checkmark indicates 100%

watermark accuracy. 77
7.10 Influence of the trigger set size on robustness against pruning with the maximal

plausible pruning rate. The values are the watermark accuracy after an pruning
attack, the value in the parenthesis is the maximal plausible pruning rate. A
checkmark indicates 100% watermark accuracy. 84

104

Bibliography

[1] GreyNet. http://www.greynet.org/greysourceindex/documenttypes.
html. Accessed: 2020-11-20.

[2] Model Zoo. https://modelzoo.co/. Accessed: 2020-10-16.

[3] Sahar Abdelnabi and Mario Fritz. Adversarial Watermarking Transformer: Towards
Tracing Text Provenance with Data Hiding, September 2020. arXiv: 2009.03015.
URL: http://arxiv.org/abs/2009.03015.

[4] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.
Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks
by Backdooring. In 27th USENIX Security Symposium, SEC’18, pages 1615–1631,
Baltimore, USA, August 2018. USENIX Association.

[5] William Aiken, Hyoungshick Kim, and Simon Woo. Neural Network Laundering:
Removing Black-Box Backdoor Watermarks from Deep Neural Networks, April
2020. arXiv: 2004.11368. URL: http://arxiv.org/abs/2004.11368.

[6] Manaar Alam, Sayandeep Saha, Debdeep Mukhopadhyay, and Sandip Kundu.
Deep-Lock: Secure Authorization for Deep Neural Networks, August 2020. arXiv:
2008.05966. URL: http://arxiv.org/abs/2008.05966.

[7] Khaled Almezhghwi and Sertan Serte. Improved classification of white blood cells
with the generative adversarial network and deep convolutional neural network.
Computational Intelligence and Neuroscience, 2020, July 2020. doi:10.1155/
2020/6490479.

[8] Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician, 46(3):175–185, 1992.

[9] MaungMaung AprilPyone and Hitoshi Kiya. Training DNN Model with Secret Key
for Model Protection, August 2020. arXiv: 2008.02450. URL: http://arxiv.
org/abs/2008.02450.

[10] Buse Gul Atli, Yuxi Xia, Samuel Marchal, and N. Asokan. WAFFLE: Watermarking
in Federated Learning, August 2020. arXiv: 2008.07298. URL: http://arxiv.
org/abs/2008.07298.

105

http://www.greynet.org/greysourceindex/documenttypes.html
http://www.greynet.org/greysourceindex/documenttypes.html
https://modelzoo.co/
http://arxiv.org/abs/2009.03015
http://arxiv.org/abs/2004.11368
http://arxiv.org/abs/2008.05966
https://doi.org/10.1155/2020/6490479
https://doi.org/10.1155/2020/6490479
http://arxiv.org/abs/2008.02450
http://arxiv.org/abs/2008.02450
http://arxiv.org/abs/2008.07298
http://arxiv.org/abs/2008.07298

[11] Vahid Behzadan and William Hsu. Sequential Triggers for Watermarking of
Deep Reinforcement Learning Policies, June 2019. arXiv: 1906.01126. URL:
http://arxiv.org/abs/1906.01126.

[12] Franziska Boenisch. A Survey on Model Watermarking Neural Networks, September
2020. arXiv: 2009.12153. URL: http://arxiv.org/abs/2009.12153.

[13] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classi-
fication and regression trees. Routledge, 2017.

[14] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. IPGuard: Protecting Intel-
lectual Property of Deep Neural Networks via Fingerprinting the Classification
Boundary, April 2020. arXiv: 1910.12903. URL: http://arxiv.org/abs/
1910.12903.

[15] Abhishek Chakraborty, Ankit Mondal, and Ankur Srivastava. Hardware-Assisted
Intellectual Property Protection of Deep Learning Models. In 57th ACM/IEEE
Annual Design Automation Conference 2020, pages 1–6. IEEE, June 2020. URL:
https://eprint.iacr.org/2020/1016.pdf.

[16] Huili Chen, Bita Darvish, and Farinaz Koushanfar. SpecMark: A Spectral Water-
marking Framework for IP Protection of Speech Recognition Systems. In Interspeech
2020, pages 2312–2316. ISCA, October 2020. doi:10.21437/Interspeech.
2020-2787.

[17] Huili Chen, Bita Darvish Rouhani, Xinwei Fan, Osman Cihan Kilinc, and Farinaz
Koushanfar. Performance Comparison of Contemporary DNN Watermarking
Techniques, November 2018. arXiv: 1811.03713. URL: http://arxiv.org/
abs/1811.03713.

[18] Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar.
DeepMarks: A Secure Fingerprinting Framework for Digital Rights Management
of Deep Learning Models. In International Conference on Multimedia Retrieval,
ICMR ’19, pages 105–113, Ottawa, Canada, 2019. ACM. doi:10.1145/3323873.
3325042.

[19] Huili Chen, Bita Darvish Rouhani, and Farinaz Koushanfar. BlackMarks: Blackbox
Multibit Watermarking for Deep Neural Networks, March 2019. arXiv: 1904.00344.
URL: http://arxiv.org/abs/1904.00344.

[20] Mingliang Chen and Min Wu. Protect Your Deep Neural Networks from Piracy.
In IEEE International Workshop on Information Forensics and Security, WIFS
’18, pages 1–7, Hong Kong, Hong Kong, 2018. IEEE. doi:10.1109/WIFS.2018.
8630791.

[21] Xinyun Chen, Wenxiao Wang, Chris Bender, Yiming Ding, Ruoxi Jia, Bo Li,
and Dawn Song. REFIT: a Unified Watermark Removal Framework for Deep

106

http://arxiv.org/abs/1906.01126
http://arxiv.org/abs/2009.12153
http://arxiv.org/abs/1910.12903
http://arxiv.org/abs/1910.12903
https://eprint.iacr.org/2020/1016.pdf
https://doi.org/10.21437/Interspeech.2020-2787
https://doi.org/10.21437/Interspeech.2020-2787
http://arxiv.org/abs/1811.03713
http://arxiv.org/abs/1811.03713
https://doi.org/10.1145/3323873.3325042
https://doi.org/10.1145/3323873.3325042
http://arxiv.org/abs/1904.00344
https://doi.org/10.1109/WIFS.2018.8630791
https://doi.org/10.1109/WIFS.2018.8630791

Learning Systems with Limited Data, January 2020. arXiv: 1911.07205. URL:
http://arxiv.org/abs/1911.07205.

[22] Xinyun Chen, Wenxiao Wang, Yiming Ding, Chris Bender, Ruoxi Jia, Bo Li, and
Dawn Song. Leveraging Unlabeled Data for Watermark Removal of Deep Neural
Networks. In ICML Workshop on Security and Privacy of Machine Learning, June
2019.

[23] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Translation, September 2014.
arXiv: 1406.1078. URL: http://arxiv.org/abs/1406.1078.

[24] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST:
an extension of MNIST to handwritten letters, March 2017. arXiv: 1702.05373.
URL: http://arxiv.org/abs/1702.05373.

[25] Luke N. Darlow, Elliot J. Crowley, Antreas Antoniou, and Amos J. Storkey.
CINIC-10 is not ImageNet or CIFAR-10, October 2018. arXiv: 1810.03505. URL:
http://arxiv.org/abs/1810.03505.

[26] Peter Eckersley. How Unique Is Your Web Browser? In Symposium on Pri-
vacy Enhancing Technologies Symposium, pages 1–18. Springer Berlin Heidelberg,
2010. Series Title: Lecture Notes in Computer Science. URL: http://link.
springer.com/10.1007/978-3-642-14527-8_1, doi:10.1007/978-3-
642-14527-8_1.

[27] Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethinking Deep Neural Network
Ownership Verification: Embedding Passports to Defeat Ambiguity Attacks. In 33rd
International Conference on Neural Information Processing Systems, volume 32,
pages 4714–4723. Neural information processing systems foundation, December
2019.

[28] Le Feng and Xinpeng Zhang. Watermarking Neural Network with Compensation
Mechanism. In Gang Li, Heng Tao Shen, Ye Yuan, Xiaoyang Wang, Huawen Liu,
and Xiang Zhao, editors, Knowledge Science, Engineering and Management, volume
12275, pages 363–375. Springer International Publishing, August 2020. Series Title:
Lecture Notes in Computer Science. URL: http://link.springer.com/10.
1007/978-3-030-55393-7_33, doi:10.1007/978-3-030-55393-7_33.

[29] Yoav Freund and Robert E. Schapire. Large margin classification using the per-
ceptron algorithm. Machine Learning, 37(3):277–296, 1999. doi:10.1023/A:
1007662407062.

[30] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov. Property
Inference Attacks on Fully Connected Neural Networks using Permutation Invariant
Representations. In ACM SIGSAC Conference on Computer and Communications

107

http://arxiv.org/abs/1911.07205
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1702.05373
http://arxiv.org/abs/1810.03505
http://link.springer.com/10.1007/978-3-642-14527-8_1
http://link.springer.com/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1
http://link.springer.com/10.1007/978-3-030-55393-7_33
http://link.springer.com/10.1007/978-3-030-55393-7_33
https://doi.org/10.1007/978-3-030-55393-7_33
https://doi.org/10.1023/A:1007662407062
https://doi.org/10.1023/A:1007662407062

Security, CCS’18, pages 619–633, Toronto, Canada, October 2018. ACM. doi:
10.1145/3243734.3243834.

[31] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
’14, page 580–587, USA, 2014. IEEE Computer Society. doi:10.1109/CVPR.
2014.81.

[32] Laurent Gomez, Marcus Wilhelm, José Márquez, and Patrick Duverger. Se-
curity for Distributed Deep Neural Networks: Towards Data Confidentiality
& Intellectual Property Protection. In 16th International Joint Conference
on e-Business and Telecommunications, pages 439–447, Prague, Czech Repub-
lic, July 2019. SCITEPRESS - Science and Technology Publications. doi:
10.5220/0007922404390447.

[33] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press,
2016.

[34] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In
27th International Conference on Neural Information Processing Systems, volume 2,
pages 2671–2680, Montreal, Canada, 2014. MIT Press.

[35] Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio.
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural
Networks, March 2015. arXiv: 1312.6211. URL: http://arxiv.org/abs/
1312.6211.

[36] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
Harnessing Adversarial Examples, 2015. arXiv: 1412.6572. URL: http://arxiv.
org/abs/1412.6572.

[37] Patrick Grother. NIST special database 19. NIST handprinted forms and characters
database. 1970.

[38] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets:
Evaluating Backdooring Attacks on Deep Neural Networks. IEEE Access, 7:47230–
47244, 2019. doi:10.1109/ACCESS.2019.2909068.

[39] Xiquan Guan, Huamin Feng, Weiming Zhang, Hang Zhou, Jie Zhang, and Nenghai
Yu. Reversible Watermarking in Deep Convolutional Neural Networks for Integrity
Authentication. In 28th ACM International Conference on Multimedia, MM ’20,
pages 2273–2280, Seattle, USA, October 2020. ACM. doi:10.1145/3394171.
3413729.

108

https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.5220/0007922404390447
https://doi.org/10.5220/0007922404390447
http://arxiv.org/abs/1312.6211
http://arxiv.org/abs/1312.6211
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1145/3394171.3413729
https://doi.org/10.1145/3394171.3413729

[40] Jia Guo and Miodrag Potkonjak. Watermarking deep neural networks for embedded
systems. In International Conference on Computer-Aided Design, ICCAD ’18, San
Diego, California, November 2018. ACM. doi:10.1145/3240765.3240862.

[41] Jia Guo and Miodrag Potkonjak. Evolutionary Trigger Set Generation for DNN
Black-Box Watermarking, June 2019. arXiv: 1906.04411. URL: http://arxiv.
org/abs/1906.04411.

[42] Shangwei Guo, Tianwei Zhang, Han Qiu, Yi Zeng, Tao Xiang, and Yang Liu. The
Hidden Vulnerability of Watermarking for Deep Neural Networks, September 2020.
arXiv: 2009.08697. URL: http://arxiv.org/abs/2009.08697.

[43] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman Coding, Febru-
ary 2016. arXiv: 1510.00149. URL: http://arxiv.org/abs/1510.00149.

[44] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both Weights and
Connections for Efficient Neural Networks, October 2015. arXiv: 1506.02626. URL:
http://arxiv.org/abs/1506.02626.

[45] Seyyed Hossein Hasanpour, Mohammad Rouhani, Mohsen Fayyaz, and Mohammad
Sabokrou. Lets keep it simple, Using simple architectures to outperform deeper
and more complex architectures, February 2018. arXiv: 1608.06037. URL: http:
//arxiv.org/abs/1608.06037.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In
IEEE International Conference on Computer Vision, ICCV ’15, pages 1026–1034,
Santiago, Chile, December 2015. IEEE. doi:10.1109/ICCV.2015.123.

[47] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’16, pages 770–778, Las Vegas, USA, June 2016. IEEE. doi:
10.1109/CVPR.2016.90.

[48] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a
Neural Network, March 2015. arXiv: 1503.02531. URL: http://arxiv.org/
abs/1503.02531.

[49] Dorjan Hitaj, Briland Hitaj, and Luigi V. Mancini. Evasion Attacks Against
Watermarking Techniques found in MLaaS Systems. In 6th International Conference
on Software Defined Systems (SDS), pages 55–63, Rome, Italy, June 2019. IEEE.
doi:10.1109/SDS.2019.8768572.

[50] Dorjan Hitaj and Luigi V. Mancini. Have You Stolen My Model? Evasion Attacks
Against Deep Neural Network Watermarking Techniques, September 2018. arXiv:
1809.00615. URL: http://arxiv.org/abs/1809.00615.

109

https://doi.org/10.1145/3240765.3240862
http://arxiv.org/abs/1906.04411
http://arxiv.org/abs/1906.04411
http://arxiv.org/abs/2009.08697
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1608.06037
http://arxiv.org/abs/1608.06037
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://doi.org/10.1109/SDS.2019.8768572
http://arxiv.org/abs/1809.00615

[51] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997. doi:10.1162/neco.1997.9.8.1735.

[52] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
Densely Connected Convolutional Networks. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR ’17, pages 4700–4708, Honolulu, USA, 2017.
IEEE. URL: https://doi.org/10.1109/CVPR.2017.243.

[53] Hengrui Jia, Christopher A. Choquette-Choo, and Nicolas Papernot. Entangled Wa-
termarks as a Defense against Model Extraction, February 2020. arXiv: 2002.12200.
URL: http://arxiv.org/abs/2002.12200.

[54] A B Kahng, J Lach, W H Mangione-Smith, S Mantik, I L Markov, M Potkonjak,
P Tucker, H Wang, and G Wolfe. Watermarking Techniques for Intellectual
Property Protection. In 35th Annual Design Automation Conference, DAC ’98,
pages 776–781, San Francisco, USA, 1998. doi:10.1145/277044.277240.

[55] Muhammad Kamran and Muddassar Farooq. A Comprehensive Survey of Water-
marking Relational Databases Research, January 2018. arXiv: 1801.08271. URL:
https://arxiv.org/abs/1801.08271.

[56] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
In 3rd International Conference on Learning Representations, ICLR ’15, San Diego,
USA, 2015. arXiv: 1412.6980.

[57] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and
Raia Hadsell. Overcoming catastrophic forgetting in neural networks. Proceedings
of the National Academy of Sciences, 114(13):3521–3526, March 2017. doi:10.
1073/pnas.1611835114.

[58] Barbara Kitchenham and Stuart Charters. Guidelines for performing Systematic
Literature Reviews in Software Engineering, 2007.

[59] T. Kohno, A. Broido, and K.C. Claffy. Remote Physical Device Fingerprinting.
IEEE Transactions on Dependable and Secure Computing, 2(2):93–108, February
2005. doi:10.1109/TDSC.2005.26.

[60] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images, 2009.

[61] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification
with deep convolutional neural networks. Communications of the ACM, 60:84–90,
June 2017. doi:10.1145/3065386.

[62] J. Lach, W.H. Mangione-Smith, and M. Potkonjak. FPGA fingerprinting techniques
for protecting intellectual property. In IEEE Custom Integrated Circuits Conference,

110

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/CVPR.2017.243
http://arxiv.org/abs/2002.12200
https://doi.org/10.1145/277044.277240
https://arxiv.org/abs/1801.08271
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1109/TDSC.2005.26
https://doi.org/10.1145/3065386

pages 299–302, Santa Clara, USA, 1998. IEEE. URL: http://ieeexplore.
ieee.org/document/694986/, doi:10.1109/CICC.1998.694986.

[63] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November
1998. doi:10.1109/5.726791.

[64] Huiying Li, Emily Wenger, Ben Y. Zhao, and Haitao Zheng. Piracy Resistant
Watermarks for Deep Neural Networks, February 2020. arXiv: 1910.01226. URL:
http://arxiv.org/abs/1910.01226.

[65] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. How to prove your model
belongs to you: a blind-watermark based framework to protect intellectual property
of DNN. In 35th Annual Computer Security Applications Conference, pages 126–137,
San Juan, Puerto Rico, December 2019. ACM. URL: https://dl.acm.org/
doi/10.1145/3359789.3359801, doi:10.1145/3359789.3359801.

[66] Jian Han Lim, Chee Seng Chan, Kam Woh Ng, Lixin Fan, and Qiang Yang. Protect,
Show, Attend and Tell: Image Captioning Model with Ownership Protection,
August 2020. arXiv: 2008.11009. URL: http://arxiv.org/abs/2008.11009.

[67] Ning Lin, Xiaoming Chen, Hang Lu, and Xiaowei Li. Chaotic Weights: A Novel
Approach to Protect Intellectual Property of Deep Neural Networks. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, pages 1327–
1339, August 2020. Conference Name: IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems. doi:10.1109/TCAD.2020.3018403.

[68] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-Pruning: Defend-
ing Against Backdooring Attacks on Deep Neural Networks. In Research in
Attacks, Intrusions, and Defenses, pages 273–294. Springer International Pub-
lishing, 2018. Series Title: Lecture Notes in Computer Science. URL: http://
link.springer.com/10.1007/978-3-030-00470-5_13, doi:10.1007/
978-3-030-00470-5_13.

[69] Xuankai Liu, Fengting Li, Bihan Wen, and Qi Li. Removing Backdoor-Based
Watermarks in Neural Networks with Limited Data, August 2020. arXiv: 2008.00407.
URL: http://arxiv.org/abs/2008.00407.

[70] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into Transferable
Adversarial Examples and Black-Box Attacks, 2017. arXiv: 1611.02770. URL:
http://arxiv.org/abs/1611.02770.

[71] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang,
and Xiangyu Zhang. Trojaning Attack on Neural Networks, 2017.

[72] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep Neural Network Finger-
printing by Conferrable Adversarial Examples, February 2020. arXiv: 1912.00888.
URL: http://arxiv.org/abs/1912.00888.

111

http://ieeexplore.ieee.org/document/694986/
http://ieeexplore.ieee.org/document/694986/
https://doi.org/10.1109/CICC.1998.694986
https://doi.org/10.1109/5.726791
http://arxiv.org/abs/1910.01226
https://dl.acm.org/doi/10.1145/3359789.3359801
https://dl.acm.org/doi/10.1145/3359789.3359801
https://doi.org/10.1145/3359789.3359801
http://arxiv.org/abs/2008.11009
https://doi.org/10.1109/TCAD.2020.3018403
http://link.springer.com/10.1007/978-3-030-00470-5_13
http://link.springer.com/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-00470-5_13
http://arxiv.org/abs/2008.00407
http://arxiv.org/abs/1611.02770
http://arxiv.org/abs/1912.00888

[73] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier Nonlinearities
Improve Neural Network Acoustic Models. In 30th International Conference on
Machine Learning, volume 28 of ICML ’13, Atlanta, USA, 2013. PMLR.

[74] Quenby Mahood, Dwayne Van Eerd, and Emma Irvin. Searching for grey literature
for systematic reviews: challenges and benefits. Research Synthesis Methods,
5(3):221–234, September 2014. URL: doi.org/10.1002/jrsm.1106, doi:
10.1002/jrsm.1106.

[75] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial Frontier Stitching
for Remote Neural Network Watermarking. Neural Computing and Applications,
32(13):9233–9244, August 2019. doi:10.1007/s00521-019-04434-z.

[76] Tom M Mitchell. Machine Learning, volume 45. McGraw-Hill Education Ltd, 1997.

[77] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
machine learning. Adaptive computation and machine learning. MIT Press, 2
edition, 2018.

[78] Itay Mosafi, Eli Omid David, and Nathan S. Netanyahu. Stealing Knowledge from
Protected Deep Neural Networks Using Composite Unlabeled Data. In International
Joint Conference on Neural Networks (IJCNN), pages 1–8, Budapest, Hungary,
July 2019. IEEE. ISSN: 2161-4407. doi:10.1109/IJCNN.2019.8851798.

[79] Yuki Nagai, Yusuke Uchida, Shigeyuki Sakazawa, and Shin’ichi Satoh. Digital
watermarking for deep neural networks. International Journal of Multimedia
Information Retrieval, 7(1):3–16, March 2018. doi:10.1007/s13735-018-
0147-1.

[80] Ryota Namba and Jun Sakuma. Robust Watermarking of Neural Network with
Exponential Weighting. In ACM Asia Conference on Computer and Communica-
tions Security, ASIACCS ’19, pages 228–240, Auckland, New Zealand, July 2019.
ACM. doi:10.1145/3321705.3329808.

[81] Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. IEEE Trans-
actions on Knowledge and Data Engineering, 22(10):1345–1359, October 2010.
doi:10.1109/TKDE.2009.191.

[82] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. Practical Black-Box Attacks against Machine
Learning. In ACM Asia Conference on Computer and Communications Security,
ASIACCS ’17, pages 506–519, Abu Dhabi, United Arab Emirates, April 2017.
ACM. URL: https://dl.acm.org/doi/10.1145/3052973.3053009, doi:
10.1145/3052973.3053009.

[83] Michael Phi. Illustrated Guide to LSTM’s and GRU’s: A step by step explanation.
https://towardsdatascience.com/illustrated-guide-to-lstms-

112

doi.org/10.1002/jrsm.1106
https://doi.org/10.1002/jrsm.1106
https://doi.org/10.1002/jrsm.1106
https://doi.org/10.1007/s00521-019-04434-z
https://doi.org/10.1109/IJCNN.2019.8851798
https://doi.org/10.1007/s13735-018-0147-1
https://doi.org/10.1007/s13735-018-0147-1
https://doi.org/10.1145/3321705.3329808
https://doi.org/10.1109/TKDE.2009.191
https://dl.acm.org/doi/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

and-gru-s-a-step-by-step-explanation-44e9eb85bf21, September
2018. Accessed: 2021-08-31.

[84] V.M. Potdar, S. Han, and E. Chang. A survey of digital image watermarking
techniques. In 3rd IEEE International Conference on Industrial Informatics, pages
709–716, Perth, Australia, 2005. IEEE. doi:10.1109/INDIN.2005.1560462.

[85] Yuhui Quan, Huan Teng, Yixin Chen, and Hui Ji. Watermarking Deep Neural
Networks in Image Processing. IEEE Transactions on Neural Networks and Learning
Systems, pages 1852–1865, May 2020. doi:10.1109/TNNLS.2020.2991378.

[86] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. DeepSigns: An
End-to-End Watermarking Framework for Ownership Protection of Deep Neural
Networks. In 24th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 485–497, Providence, USA, April
2019. ACM. URL: https://dl.acm.org/doi/10.1145/3297858.3304051,
doi:10.1145/3297858.3304051.

[87] David E Rumelhart, Geoffrey E Hintont, and Ronald J Williams. Learning
representations by back-propagating errors. Nature, 323:533–536, 1986. doi:
10.1038/323533a0.

[88] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision, 115(3):211–252, December 2015.
doi:10.1007/s11263-015-0816-y.

[89] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou. Ra-
dioactive data: tracing through training, February 2020. arXiv: 2002.00937. URL:
http://arxiv.org/abs/2002.00937.

[90] Masoumeh Shafieinejad, Jiaqi Wang, Nils Lukas, Xinda Li, and Florian Kerschbaum.
On the Robustness of the Backdoor-based Watermarking in Deep Neural Networks,
November 2019. arXiv: 1906.07745. URL: http://arxiv.org/abs/1906.
07745.

[91] Sai Shyam Sharma and V. Chandrasekaran. A robust hybrid digital watermarking
technique against a powerful CNN-based adversarial attack. Multimedia Tools and
Applications, 79(43-44):32769–32790, November 2020. doi:10.1007/s11042-
020-09555-5.

[92] Dan Shewan. 10 Companies Using Machine Learning in Cool Ways.
https://www.wordstream.com/blog/ws/2017/07/28/machine-
learning-applications. Accessed: 2021-07-26.

113

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://doi.org/10.1109/INDIN.2005.1560462
https://doi.org/10.1109/TNNLS.2020.2991378
https://dl.acm.org/doi/10.1145/3297858.3304051
https://doi.org/10.1145/3297858.3304051
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/2002.00937
http://arxiv.org/abs/1906.07745
http://arxiv.org/abs/1906.07745
https://doi.org/10.1007/s11042-020-09555-5
https://doi.org/10.1007/s11042-020-09555-5
https://www.wordstream.com/blog/ws/2017/07/28/machine-learning-applications
https://www.wordstream.com/blog/ws/2017/07/28/machine-learning-applications

[93] Vladislav Skripniuk, Ning Yu, Sahar Abdelnabi, and Mario Fritz. Black-Box Wa-
termarking for Generative Adversarial Networks, August 2020. arXiv: 2007.08457.
URL: http://arxiv.org/abs/2007.08457.

[94] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine Learning
Models that Remember Too Much. In ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, pages 587–601, Dallas, USA, October 2017.
ACM. doi:10.1145/3133956.3134077.

[95] Rainer Storn. Differential Evolution – A Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces. Journal of global optimization, 11:341–359,
1997.

[96] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In 2nd
International Conference on Learning Representations, ICLR ’14, Banff, Canada,
April 2014.

[97] Kálmán Szentannai, Jalal Al-Afandi, and András Horváth. Preventing Neural
Network Weight Stealing via Network Obfuscation. In Kohei Arai, Supriya Kapoor,
and Rahul Bhatia, editors, SAI 2020: Intelligent Computing, volume 1230 of
AISC, pages 1–11. Springer International Publishing, July 2020. preprint on arXiv:
1907.01650. doi:10.1007/978-3-030-52243-8_1.

[98] Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N. Asokan. DAWN: Dynamic
Adversarial Watermarking of Neural Networks, June 2020. arXiv: 1906.00830. URL:
http://arxiv.org/abs/1906.00830.

[99] Ruixiang Tang, Mengnan Du, and Xia Hu. Deep Serial Number: Computational
Watermarking for DNN Intellectual Property Protection, November 2020. arXiv:
2011.08960. URL: http://arxiv.org/abs/2011.08960.

[100] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Stealing Machine Learning Models via Prediction APIs. In 25th USENIX Security
Symposium, pages 601–618, Austin, USA, August 2016. USENIX Association.

[101] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding
Watermarks into Deep Neural Networks. In ACM on International Conference on
Multimedia Retrieval, ICMR ’17, pages 269–277, Bucharest, Romania, June 2017.
ACM. doi:10.1145/3078971.3078974.

[102] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y. Zhao. Neural Cleanse: Identifying and Mitigating Backdoor
Attacks in Neural Networks. In IEEE Symposium on Security and Privacy, S&P
’19, pages 707–723, San Francisco, USA, May 2019. IEEE. doi:10.1109/SP.
2019.00031.

114

http://arxiv.org/abs/2007.08457
https://doi.org/10.1145/3133956.3134077
https://doi.org/10.1007/978-3-030-52243-8_1
http://arxiv.org/abs/1906.00830
http://arxiv.org/abs/2011.08960
https://doi.org/10.1145/3078971.3078974
https://doi.org/10.1109/SP.2019.00031
https://doi.org/10.1109/SP.2019.00031

[103] Jiangfeng Wang, Hanzhou Wu, Xinpeng Zhang, and Yuwei Yao. Watermarking in
Deep Neural Networks via Error Back-propagation. In IS&T International Sympo-
sium on Electronic Imaging 2020, volume 2020. Society for Imaging Science and
Technology, January 2020. doi:10.2352/ISSN.2470-1173.2020.4.MWSF-
022.

[104] Tianhao Wang and Florian Kerschbaum. Attacks on Digital Watermarks for Deep
Neural Networks. In IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP ’19, pages 2622–2626, Brighton, United Kingdom, April
2019. IEEE. doi:10.1109/ICASSP.2019.8682202.

[105] Tianhao Wang and Florian Kerschbaum. RIGA: Covert and Robust White-Box
Watermarking of Deep Neural Networks, October 2020. arXiv: 1910.14268 [v3].
URL: http://arxiv.org/abs/1910.14268.

[106] Tianhao Wang and Florian Kerschbaum. Robust and Undetectable White-Box
Watermarks for Deep Neural Networks, March 2020. arXiv: 1910.14268 [v2]. URL:
http://arxiv.org/abs/1910.14268.

[107] Hanzhou Wu, Gen Liu, Yuwei Yao, and Xinpeng Zhang. Watermarking Neural
Networks with Watermarked Images. IEEE Transactions on Circuits and Systems
for Video Technology, pages 2591–2601, October 2020. doi:10.1109/TCSVT.
2020.3030671.

[108] Hui Xu, Yuxin Su, Zirui Zhao, Yangfan Zhou, Michael R. Lyu, and Irwin King.
DeepObfuscation: Securing the Structure of Convolutional Neural Networks via
Knowledge Distillation, June 2018. arXiv: 1806.10313. URL: http://arxiv.
org/abs/1806.10313.

[109] Kelvin Xu, Jimmy Lei, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhutdinov, Richard S Zemel, and Yoshua Bengio. Show, Attend and Tell:
Neural Image CaptionGeneration with Visual Attention. In 32nd International
Conference on Machine Learning, volume 37, pages 2048–2057, 2015.

[110] XiangRui Xu, YaQin Li, and Cao Yuan. A novel method for identifying the deep
neural network model with the Serial Number, November 2019. arXiv: 1911.08053.
URL: http://arxiv.org/abs/1911.08053.

[111] Xiangrui Xu, Yaqin Li, and Cao Yuan. “Identity Bracelets” for Deep Neural
Networks. IEEE Access, 8:102065–102074, June 2020. doi:10.1109/ACCESS.
2020.2998784.

[112] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated Machine
Learning: Concept and Applications. ACM Transactions on Intelligent Systems
and Technology, 10(2):1–19, February 2019. doi:10.1145/3298981.

115

https://doi.org/10.2352/ISSN.2470-1173.2020.4.MWSF-022
https://doi.org/10.2352/ISSN.2470-1173.2020.4.MWSF-022
https://doi.org/10.1109/ICASSP.2019.8682202
http://arxiv.org/abs/1910.14268
http://arxiv.org/abs/1910.14268
https://doi.org/10.1109/TCSVT.2020.3030671
https://doi.org/10.1109/TCSVT.2020.3030671
http://arxiv.org/abs/1806.10313
http://arxiv.org/abs/1806.10313
http://arxiv.org/abs/1911.08053
https://doi.org/10.1109/ACCESS.2020.2998784
https://doi.org/10.1109/ACCESS.2020.2998784
https://doi.org/10.1145/3298981

[113] Ziqi Yang, Hung Dang, and Ee-Chien Chang. Effectiveness of Distillation Attack and
Countermeasure on Neural Network Watermarking, June 2019. arXiv: 1906.06046.
URL: http://arxiv.org/abs/1906.06046.

[114] Xue Ying. An Overview of Overfitting and its Solutions. Journal of Physics:
Conference Series, 1168:022022, February 2019. doi:10.1088/1742-6596/
1168/2/022022.

[115] Yingjiu Li, V. Swarup, and S. Jajodia. Fingerprinting relational databases: schemes
and specialties. IEEE Transactions on Dependable and Secure Computing, 2(1):34–
45, January 2005. doi:10.1109/TDSC.2005.12.

[116] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin, Heqing
Huang, and Ian Molloy. Protecting Intellectual Property of Deep Neural Networks
with Watermarking. In ACM Asia Conference on Computer and Communications
Security, ASIACCS ’18, pages 159–172, Incheon, Republic of Korea, June 2018.
ACM. doi:10.1145/3196494.3196550.

[117] Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weiming Zhang, Wenbo Zhou,
Hao Cui, and Nenghai Yu. Model Watermarking for Image Processing Networks.
In AAAI Conference on Artificial Intelligence, volume 34, pages 12805–12812, New
York, USA, February 2020. AAAI Press. doi:10.1609/aaai.v34i07.6976.

[118] Ying-Qian Zhang, Yi-Ran Jia, Xing-Yuan Wang, Qiong Niu, and Nian-Dong Chen.
DeepTrigger: A Watermarking Scheme of Deep Learning Models based on Chaotic
Automatic Data Annotation. IEEE Access, pages 213296 – 213305, November 2020.
doi:10.1109/ACCESS.2020.3039323.

[119] Jingjing Zhao, Qingyue Hu, Gaoyang Liu, Xiaoqiang Ma, Fei Chen, and Mo-
hammad Mehedi Hassan. AFA: Adversarial fingerprinting authentication for
deep neural networks. Computer Communications, 150:488–497, December 2019.
doi:10.1016/j.comcom.2019.12.016.

[120] Xiangyu Zhao, Hanzhou Wu, and Xinpeng Zhang. Watermarking Graph Neural
Networks by Random Graphs, November 2020. arXiv: 2011.00512. URL: http:
//arxiv.org/abs/2011.00512.

[121] Qi Zhong, Leo Yu Zhang, Jun Zhang, Longxiang Gao, and Yong Xiang. Protecting
IP of Deep Neural Networks with Watermarking: A New Label Helps. In Hady W.
Lauw, Raymond Chi-Wing Wong, Alexandros Ntoulas, Ee-Peng Lim, See-Kiong
Ng, and Sinno Jialin Pan, editors, Advances in Knowledge Discovery and Data
Mining, pages 462–474. Springer International Publishing, May 2020. Series Title:
Lecture Notes in Computer Science. URL: http://link.springer.com/10.
1007/978-3-030-47436-2_35, doi:10.1007/978-3-030-47436-2_35.

[122] Xin Zhong, Pei-Chi Huang, Spyridon Mastorakis, and Frank Y. Shih. An Automated
and Robust Image Watermarking Scheme Based on Deep Neural Networks. IEEE

116

http://arxiv.org/abs/1906.06046
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1109/TDSC.2005.12
https://doi.org/10.1145/3196494.3196550
https://doi.org/10.1609/aaai.v34i07.6976
https://doi.org/10.1109/ACCESS.2020.3039323
https://doi.org/10.1016/j.comcom.2019.12.016
http://arxiv.org/abs/2011.00512
http://arxiv.org/abs/2011.00512
http://link.springer.com/10.1007/978-3-030-47436-2_35
http://link.springer.com/10.1007/978-3-030-47436-2_35
https://doi.org/10.1007/978-3-030-47436-2_35

Transactions on Multimedia, pages 1951–1961, 2020. doi:10.1109/TMM.2020.
3006415.

[123] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random Erasing
Data Augmentation. In AAAI Conference on Artificial Intelligence, volume 34,
pages 13001–13008, New York, USA, April 2020. AAAI Press. doi:10.1609/
aaai.v34i07.7000.

[124] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy
of pruning for model compression, November 2017. arXiv: 1710.01878. URL:
http://arxiv.org/abs/1710.01878.

[125] Renjie Zhu, Xinpeng Zhang, Mengte Shi, and Zhenjun Tang. Secure neural network
watermarking protocol against forging attack. EURASIP Journal on Image and
Video Processing, 2020(1), September 2020. doi:10.1186/s13640-020-00527-
1.

117

https://doi.org/10.1109/TMM.2020.3006415
https://doi.org/10.1109/TMM.2020.3006415
https://doi.org/10.1609/aaai.v34i07.7000
https://doi.org/10.1609/aaai.v34i07.7000
http://arxiv.org/abs/1710.01878
https://doi.org/10.1186/s13640-020-00527-1
https://doi.org/10.1186/s13640-020-00527-1

	Kurzfassung
	Abstract
	Contents
	Introduction
	Methodology
	Literature search
	Inclusion/exclusion criteria

	Empirical evaluation

	Background
	Machine Learning
	Supervised Machine Learning
	Deep Learning
	Fine-Tuning
	Overfitting
	Parameter Pruning

	Further ML techniques
	Model Extraction Attack

	Watermarking
	Fingerprinting

	Taxonomy of IPP for ML models
	Threat Model
	IPP Methods
	Attack Model

	State of the Art: Model Watermarking, Fingerprinting and Attacks
	Requirements
	White-box Watermarking
	Black-box Watermarking
	Out-of-distribution
	Pattern
	Noise
	Perturbation
	In-distribution
	Trigger labelling
	Countering Model Extraction
	Watermarking for specific ML settings

	Fingerprinting of ML Models
	Fingerprinting as User-specific Watermark
	Fingerprinting as Unique Model Identifier

	Attacks on Watermarking Methods
	Watermark Overwriting
	Watermark Detection
	Watermark Removal
	Watermark Invalidation

	Surveys and empirical studies

	Defining research questions and study setting
	Datasets
	Neural Networks
	Training time

	Setting hyperparameters
	Setting watermark-specific hyperparameters

	Empirical comparison of existing watermarking methods
	Implementation
	Framework for watermarking methods
	WeaknessIntoStrength
	ProtectingIP
	PiracyResistant
	ExponentialWeighting
	FrontierStitching
	WMEmbeddedSystems

	Attacks
	Parameter Pruning
	Fine-Tuning

	Evaluation
	Evaluation of Fine-Tuning
	Influence of watermark-specific hyparameters
	FrontierStitching
	WMEmbeddedSystems

	Comparing to State of the Art
	WeaknessIntoStrength
	ProtectingIP
	FrontierStitching
	WMEmbeddedSystems

	Effectiveness
	Fidelity
	Robustness
	Parameter Pruning
	Fine-Tuning

	Conclusions and future work
	Appendix
	Dependencies
	Additional figures
	Experiments for fine-tuning

	List of Figures
	List of Tables
	Bibliography

