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Abstract

In the building simulation, there are often serious differences between the calculated and the

actual energy demand. The reasons for this can be many, but one of the biggest factors is the

behaviour of users in the building which is difficult to predict, but has a significant influence on

the actual energy demand. Conventional software mainly replicates presence and interactions

with time-step based tables. In recent years, agent-based modeling has been increasingly used as

a new approach. This involves creating individual units that perform various actions based on a

set of rules. These building users, called agents, can differ according to need. Depending on the

current input, their actions change accordingly. The present work aims to combine a dynamic

energy simulation of an office building with an Agent-based model. The model will investigate

how different types of users affect the final energy demand. For this purpose, a behavioural

model for building users was created in the software Netlogo. This comprises four different

types of users, each of which have a high or low energy load and are additionally divided in their

tolerance with regard to the indoor climate conditions. The model is then connected to the

energy simulation programme EnergyPlus using a co-simulation. The co-simulation is carried

out by combining the software Building Control Virtual Test Bed and the Python programming

language. In a fictitious office building, the energy demand is investigated for one representative

week per season with several user compositions. For each time step, the actions of the building

users are simulated based on the current climatic conditions and fed back to EnergyPlus as

input. The work describes both the underlying behavioural model and the connection between

the tools. Subsequently, the results of the simulations are compared and analysed. It becomes

clear that the energy awareness of the building users has a significant influence on the energy

consumption. In addition, it is shown that in some cases a greater tolerance - in the simula-

tion model associated with reduced influence on the building - can lead to an increased energy

consumption. It is also apparent that the commercial use of more precise energy simulation mod-

els with co-simulations is still in its infancy due to the exceptional effort required to create them.

Keywords: Agent-Based-Modelling, Building-Energy-Modelling, Occupancy, Energy Consump-

tion, Behaviour Modelling
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Kurzfassung

In der Gebäudesimulation gibt es oft gravierende Unterschiede zwischen dem berechneten und

dem tatsächlichen Energiebedarf. Die Gründe dafür können vielfältig sein, jedoch wird als

einer der größten Faktoren das Verhalten von Nutzern im Gebäude benannt. Dieses ist schwer

vorauszusagen, hat jedoch einen signifikanten Einfluss auf den tatsächlichen Energiebedarf.

Herkömmliche Software bildet vor allem mit zeitschrittbasierten Tabellen die Anwesenheit und

Interaktionen von Gebäudenutzern nach. Als alternativer Ansatz wird in den letzten Jahren

immer öfter die sogenannte Agentenbasierte Modellierung verwendet. Dabei werden individu-

elle Einheiten erstellt, die basierend auf einem Regelset verschiedene Aktionen ausführen. Diese

als Agents bezeichneten Gebäudenutzer können sich je nach Modell unterscheiden. Abhängig

von dem aktuellen Input ändern sich dementsprechend ihre Aktionen. Die vorliegende Ar-

beit zielt darauf ab, eine Energiesimulation eines Bürogebäudes mit einem Agenten basierten

Modell zu verbinden. Das Modell soll untersuchen, wie sich verschiedene Nutzertypen auf den

Endenergiebedarf auswirken. Dazu wurde in dem Programm Netlogo ein Verhaltensmodell

für Gebäudenutzer erstellt. Dieses umfasst vier verschiedene Typen, die jeweils einen hohen

oder niedrigen Energieverbrauch aufweisen und sich zusätzlich in ihrer Toleranz bezüglich des

Raumklimas aufteilen. Dieses Modell wird anschließend mit dem Energiesimulationsprogramm

EnergyPlus mithilfe einer Co-Simulation verbunden. In einem fiktiven Bürogebäude wird für

jeweils eine repräsentative Woche pro Jahreszeit mit Hilfe mehrerer Nutzerzusammensetzungen

der Energiebedarf untersucht. Die Co-Simulation erfolgt dabei über eine Verbindung aus dem

Programm Building Control Virtual Test Bed und der Programmiersprache Python. Für jeden

Zeitschritt werden die Handlungen der Gebäudenutzer basierend auf den aktuellen klimatischen

Bedingungen simuliert und als Input zurück an EnergyPlus gegeben. Die Arbeit beschreibt

dabei sowohl das zugrundeliegende Verhaltensmodell, als auch die Verbindung der Programme

miteinander. Im Anschluss werden die Ergebnisse der Simulationen verglichen und untersucht.

Dabei wird deutlich, dass das Energiebewusstsein der Gebäudenutzer einen großen Einfluss auf

den Verbrauch hat. Zusätzlich zeigt sich, dass in einigen Fällen eine größere Toleranz - und

im Simulationsmodell damit verbunden ein Unterlassen der Einflussnahme auf das Gebäude

- zu einem erhöhten Energieverbrauch führen kann. Zudem zeigt sich, dass die kommerzielle

Nutzung von präziseren Energiesimulationsmodellen mit Co-Simulationen, bedingt durch den

großen Aufwand zur Erstellung, noch an ihrem Anfang steht.

Stichwörter:

Agentenbasierte Modellierung, Gebäudesimulation, Nutzerverhalten, Co-Simulation, Energie-

verbrauch
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1 Introduction

1.1 Motivation

The building sector, including occupants, is responsible for approximately one-third of the global

energy demand (Ürge-Vorsatz et al. 2012). Using building simulation to improve design, opera-

tion and retrofit offers a promising opportunity to reduce buildings energy demand and improve

the CO2-output. But despite being used more often in recent years, building simulation still

struggles with some major problems (Hong et al. 2018). Stated by Hong et al. (2018) one of

the main things to overcome is the difference in energy use between the simulated model and

the actual energy use of the building. This performance gap reduces the credibility of build-

ing performance simulation which is mainly due to the insufficient representation of building

occupants (Yan et al. 2015). This includes their movement in the building as well as their ac-

tions, influencing the envelope and the energy consumption. Examples are opening windows or

changing the Heating Ventilation and Cooling (HVAC) thermostat which will change the energy

load significantly. Modelling human interaction with the building has the potential to improve

the comfort for the users (Hong et al. 2018). While most occupant models are only stochastic,

recent trends show a huge potential for Agent Based Models (ABM) (Langevin et al. 2015).

Here, individual units called agents, with each one using an individual set of rules can interact

with their environment. This allows to capture complex system dynamics (Wilensky and Rand

2015). In the field of building science using ABM could help to address some lacking options

in pure stochastic models such as the missing possibility for a dynamic occupant response on

changing environmental factors. Using ABM is a complex task. This thesis aims to develop

a behavioural model by using a Co-Simulation between a Building Energy Simulation software

and an Agent Based Model. Different occupant types for the same building allow predictions

on how the human interactions with the building change the energy consumption. To say it

in the words of Albert Einstein (1933):
”
The supreme goal of all theory is to make the irre-

ducible basic elements as simple and as few as possible without having to surrender the adequate

representation of a single datum of experience.“
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1.2 Background

On the next pages a general overview is given on how occupants are currently represented in

building simulation. Also, it is described what agent-based modeling is, how it works and how

it has been used in past research.

Building Energy Modelling

Building energy modeling is a physics-based modeling technique to digitally represent the energy-

flows of a building. It takes the building itself, such as the geometry and materials, the energy

systems, for example HVAC and the according control strategies, as well as descriptions on the

buildings usage with for example schedules for occupancy and thermal loads as input. Based

on this information the software can calculate, depending on the location of the building the

estimated energy consumption, thermal comfort, energy costs etc. Building Energy Modelling

(BEM) is used in a wide arrange of fields, for example in building design strategies, retrofit,

certifications or real-time energy monitoring (Office of Energy Efficiency and renewable Energy

2021). For this thesis especially the schedules for the input and several environmental states for

the output are important. Schedules are input values for the simulation software for each time

step. They can be individually designed, having for example different ones for an office room

and a conference room (Wulfinghoff et al. 2010). The outputs of a building simulation process

are normally several different files. The most important ones for this thesis are the error- and

the time step dependent results files. The error files give insight to possible problems which

might have occurred during the simulation process while the result files hand out the values

for specified parameters at each time step. Examples are the hourly heating energy usage for

each zone, window openings or inside surface temperatures (Wulfinghoff et al. 2010). Especially

for occupant related research the output of the Predicted Mean Vote (PMV) and the Predicted

Percentage of Dissatisfied (PPD) are relevant. The most used PMV model is developed by Ole

Fanger. The PMV-value offers insight on how the mean perception of the environment is. The

scale ranges from -3 (cold) to +3 (hot) with an optimum value of 0.0 (neutral). Dependent on

the PMV-value the PPD-value gives a curve for the percentage of dissatisfied people. The curve

with the corresponding PPD-values is displayed in figure 1. Having more extreme conditions in

a room leads to more dissatisfied occupants, always having a minimum of at least 5% at a PMV

of 0.0 (Langevin et al. 2013).



INTRODUCTION 9

Figure 1: PPD as function of PMV (DIN Deutsches Institut für Normung e. V. 2005)

Current description of occupancy in BEM

Currently occupancy modeling for most of the practical building simulations is done with static

schedules based on previous research (Dong et al. 2018). These schedules take a ratio of the

maximum given occupants in the room at a specific time (Dong et al. 2018). For example, often

used energy simulation software such as EnergyPlus (EP) or IDA ICE are working with this

technique. Having more accurate data about future building usage can lead therefore to a more

accurate simulation. However, often this data is not given and standard-schedules are used for

example as provided by the American Society of Heating, Refrigerating and Air-Conditioning

(ASHRAE). For the office case these occupancy schedules are displayed in figure 2. Even if

precise schedules are available, they are still static. This can lead to a possible difference

between simulated energy loads and actual energy consumption (Dong et al. 2018). More recent

approaches are using probabilistic and non-probabilistic models. While each of these modeling

techniques offers individual advantages and disadvantages and is useful for specific use-cases

none of them can simulate occupant behaviour in a flexible way. As a relatively new approach,

Agent-Based Modelling offers a chance to capture building usage in a more realistic way (Berger

2020). This is also recognized by the Annex 66, a scientific collaboration research for occupant

behaviour in buildings. Findings of Annex 66 include progress in the Co-Simulation domain

with Drivers-Needs-Actions-Systems (DNAS). Still there is remaining work to do (Yan et al.

2017). Stated by Yan et al. 2017:
”
Human behaviour is a critical dimension that is as important

as technological factors in ensuring the energy-efficient design, construction and operation in

buildings.“ In recent years the number of studies, conducted for the use of agent-based modeling

in building context has risen significantly (Berger 2020). There are multiple reasons for this.

Significant influence has the improved computational power in computers which allows faster

and more accurate models. Another reason for the increased interest in the use of agent-based

modeling is the desire to use the full potential of building simulation. Stated by Hong et al.

2018 one of the main differences between a building simulation and actual energy usage are

the occupants’ actions. Current simulation software is not able to take complex behaviour into
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account.

Figure 2: Office occupancy schedules from ASHRAE 90.1

Agent-based modeling in Building Energy Modelling

According to Wilensky and Rand 2015 an Agent-based-model (ABM) is
”
a form of computa-

tional modeling whereby a phenomenon is modeled in terms of agents and their interactions.“

Agents are individual acting instances with specific properties and actions (Wilensky and Rand

2015). In BEM, these agents can represent either individual building occupants, groups of peo-

ple or even specific systems. Depending on a set of rules the agents interact with each other

and defined building components. In recent years a variety of studies concerned with ABM

has been conducted (Berger and Mahdavi 2020). Depending on the research goal they differ

in the use of agents, environment, behavioural theory and task. While most of the studies are

aiming to investigate the influence of occupants on energy consumption, there are also studies

regarding visual comfort or even water usage (Berger and Mahdavi 2020). Most models have in

common that they show a strong correlation between occupants’ behaviour and building energy

use. For example, Deuk-Woo et al. 2013 shows that with their adopting ABM the simulation

tools can provide realistic results when compared with actual data. Putra et al. 2017 developed

a model for exploring different factors on their influence on load-shedding activities in office

buildings. The analysis of adaptive thermal comfort behaviour with PMV was done by Thomas

et al. 2016. Likewise, Lee and Malkawi 2014 investigated in the decision-making process based

on comfort-parameters. By Kashif et al. 2013 a slightly different approach with a believe sys-

tem for the agents regarding their power management in residential buildings was developed.

Validated with real-world data, Jia et al. 2018 tested and improved the accuracy of their ABM

to 83% for their target objects. In general, validation of the ABM is often complicated since an

extensive amount of data is needed as well as surveys have to be conducted to investigate in the



INTRODUCTION 11

reasons behind certain behaviour. Therefore, the models are often based on behaviour theory

instead of real-world data. Yet, validating the models is an important task (Yan et al. 2017).

In general, most of the models try to simulate the behaviour of occupants in buildings in a more

realistic way compared to static schedules. They approach this with either a more general way,

like for example Langevin et al. 2015 who developed a model responding to different seasons

etc., or by answering a very specific question such as Deuk-Woo et al. 2013, where a four-person

household for one day was extensively analysed.

Each developed model not only differs in its behavioural approach but also in the number of

agents and their interaction with each other. While single occupants in zones or rooms tend

to perform more actions to influence their environmental perception, with multiple people this

number decreases (Heydarian et al. 2020). Having more than one person in the room therefore

leads to the necessity of an additional behaviour theory layer (Yan et al. 2015).

Berger provides a comprehensive summary of current studies regarding Agent-based Modelling

in building simulation in her diploma thesis (Berger 2020) and in the paper
”
Review of cur-

rent trends in agent-based modeling of building occupants for energy and indoor-environmental

performance analysis“ (Berger and Mahdavi 2020).
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2 Method

2.1 Overview

This thesis aims to investigate the use of ABM in combination with BEM to simulate the impact

of thermal tolerance of individuals in combination with their energy consciousness. For this a

Co-Simulation of the BEM-software EP and the ABM-tool Netlogo is used. The connection was

done via the Co-Simulation software environment Building Control Virtual Test Bed (BCVTB)

in combination with the programming language Python. In an office building with six single-

offices EP is used to simulate the thermal and visual performance of each room at each time

step. This environmental information is handed to Netlogo where for each agent the likeliness

for an action is calculated based on his tolerance and on his energy consciousness. The agents

can change their environment to adapt it more to their preference. For the thermal preference,

the PMV value and for visual performance the illuminance in the middle of each room is used.

The changes in the schedules are given back to EP, where for the next time step the building

performance indicators calculated based on the new input. The following chapters describe the

setup of the BEM-model, the ABM with the associated routines and the connection between

them.

Table 1: Programs and software used

Software Usage Version

EnergyPlus (EP) [NREL, various
DOE National Laboratories, aca-
demic institutions, and private firms
2021]

Energy Simulation 8.9.0

SketchUp Make [(Trimble 2017)] Building Geometry 2.6.0

OpenStudio SketchUp Plug-in
[NREL, ANL, LBNL, ORNL, and
PNNL 2021]

Building Geometry 17.2.2555 64-bit

Netlogo [Center for Connected
Learning and Computer-Based-
Modeling 2016]

Occupant representation 6.1.1

Building Control Virtual Test Bed
(BCVTB) [Michael Wetter, Thierry
S. Nouidui and Philip Haves 2016]

Connection EP and Python 1.6.0 April 20 2016

Python [Python Software Founda-
tion 2021]

Connection BCVTB and Net-
logo

3.7

2.2 Model description

2.2.1 Environment and Building Energy Model

The environmental state is calculated in EP which is a widely used, free software funded by the

U.S. Department of Energy➫s (DOE). The main use for engineers, architects and researchers

is the simulation of building energy usage (U.S. Department of Energy’s 2021). Relevant

features include the simulation of individual zones, calculation of the PMV-value for each zone,

calculation of light conditions and energy usage. EP also offers the possibility for Co-Simulation.
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The input file is text-based, which makes it easier to change individual parameters in the setup

for each simulation case. For the building environment, a simple office building was chosen which

is displayed in figure 3 . The geometry was modeled in Sketchup and exported to EP with the

OpenStudio-Plugin.

Figure 3: Representation of the building geometry in SketchUp

The office building consists of 6 single-office rooms. The facade with the windows of three

of the rooms face south and the other three rooms face north. The building has only one

storey and a flat roof. The building component properties are designed to meet the minimum

requirements of the Austrian Guideline OiB 6 (Österreichisches Institut für Bautechnik 2019).

Table 2 summarizes the assumptions for the building.

Table 2: Building assumptions

Input EnergyPlus Value

Buildingtype Office

Floors 1

Zones 6

Zone Size [m2] 12

Zone Hight [m] 3

Window-to-Wall ratio [%] 40

U-Value Roof [Wm−2K−1] 0.15

U-Value Floor [Wm−2K−1] 0.11

U-Value Window [Wm−2K−1] 1.11

U-Value Outside-Wall [Wm−2K−1] 0.20

Shading Type Interior Blinds

The building is assumed to be in Vienna, Austria and as a weather file
”
Vienna Schwechat 110360

(IWEC)“ is used (U.S. Department of Energy’s (DOE) Building Technologies Office n.d.). All

schedules for the basic simulation without Co-Simulation are using the predefined ASHRAE

90.1 office schedules (U.S. Department of Energy’s 2021). The buildings geometry, the different

building parts and the standard schedules are equal throughout all cases. Therefore, the only

difference in the total energy loads can be found and compared in the building occupants’

behaviour. Occupants have several options to influence the buildings energy loads and their
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thermal environment. For this thesis each agent has its own zone. The zones are thermally

connected with each other. Each zone has its own window. In the basic model, the windows are

opened twice a day for the duration of one time step. In contrast, the agents in the co-simulation

can open the window whenever their routine allows it.
”
HVAC Ideal Loads Air System“ was used

as the heating and cooling system. This system, predefined in EP, has no energy limitation and

can reach the specified numbers even with high loads. It was chosen for better comparability and

because the focus is not on the energy systems but on the occupants. For shading, an internal

shading system was chosen. For all cases the metabolic equivalent (met) is set to an equivalent

of a seated office job. This is also the case for the Co-Simulations. The ASHRAE 90.1 schedule

is used for the electrical equipment.

2.2.2 Occupants and Agent-Based-Model

For the ABM, the free of charge software Netlogo was used. In Netlogo it is possible to pro-

gramme multi-agent environments (Wilensky 1999). It can help to understand natural and social

world phenomenons and problems using individual entities called agents in a defined environ-

ment (Wilensky and Rand 2015). An agent is defined as
”
autonomous computational individual

or object with particular properties and actions“ (Wilensky and Rand 2015). In Agent-based

Modelling a real-world situation is modeled using agents and their connections with each other

and the environment (Wilensky and Rand 2015).

As previously suggested ABM offers a promising tool to investigate in human behaviour in

buildings. The focus of this thesis is in the influence of energy consciousness and thermal pref-

erence range on the building’s energy demand. Different occupant types in the offices allow a

comparison of usages and an estimation of the influence on the energy consumption. In total

four different types of occupants are defined as shown in figure 4. They differ in their thermal

acceptability range and their energy consciousness.

Figure 4: Occupant types in the model

The thermal acceptability range describes the possibility of someone to change his environment.

High-Tolerance-Occupants are better adapting to their room while Low-Tolerance-Occupants

are more likely to change something to optimise their perception. In the model the tolerance is

represented by a function based on the Predicted-Mean-Vote (PMV) of Fanger (Langevin et al.

2013). The formula to calculate the Percentage-of-Dissatisfied (PPD) is slightly modified for

Low- and High-Tolerance-Occupants and the resulting percentage number is used as probability
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for the agent to trigger a change. In general, the agents try to optimise their PMV-value to be

near 0.0 which is also suggested to be the case by Langevin et al. 2015. More extreme climate

conditions result in faster changes. Like in the PMV-curve from Fanger an optimum is never

reached, even at PMV-value of 0.0 the chance for the occupants to perform an action is still 5%.

The formula for high tolerance occupants is shown in Eq. 1 while the formula for low tolerance

occupants is shown in Eq. 2. The 5% ensure on one hand a certain degree of chance and takes on

the other hand non-calculable actions like for example hygiene-based ventilating into account.

Occupants always belong to one of these two groups.

High Tolerance Occupant [%] = 100− 95 ∗ exp(−0.03353∗PMV 4−0.2179∗PMV 2)∗0.5 (1)

Low Tolerance Occupant [%] = 100− 95 ∗ exp(−0.03353∗PMV 4−0.2179∗PMV 2)∗2 (2)

Figure 5: Curves for low- and high-tolerance-occupants

The distinction for the energy consciousness is between low- and high-energy-consumer. An

occupant who is conscious about the energy usage performs a different set of action compared

to someone who only wants to improve his thermal well-being. Building users in the first group

are more likely to adopt their cloth to improve the PMV-Value. Non-conscious occupants on

the other side have a higher percentage to change the thermostat stepoint (SP).

Since there are four different occupant types and six offices, simulating every possible scenario

would exceed the scope of this thesis. Building simulation – especially Co-Simulation – can be

time-consuming. Therefore, four scenarios where chosen to cover all occupant types. As shown

in figure 6 Scenario I and IV completely consist of agents of the same type. Presumably these

scenarios are the ones with the lowest and highest energy loads and mark the extreme conditions.

Scenarios II and III are occupied by a variety of agent types. This mix ensures that all agent

types are covered. The energy load is presumed to be in between Scenario I and the Scenario

IV. In Scenario II, the low-energy consumers are more represented, while in Scenario III the

high-energy consumers predominate. Having all occupants present in the scenarios allows later

to extract the individual occupant types and analyse the different types in combination with

each other. The Base Case with Type 0 occupants denotes the simple BEM-simulation in EP
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without coupled ABM agents but with fixed schedules according to ASHRAE. Since the offices

are only occupied by one person this can be used as comparison type.

Figure 6: Occupancy scenarios

While for the thermal perception of the environment the described ABM was used, for the light

a different approach was chosen. For the evaluation of lighting perception, a non-probabilistic

model is used. This means, the agents decide based on rules what they are doing. The decisions

are based on threshold values depending on the energy-consciousness of the agent. Table 3 shows

the sP for both energy-consumer types. Depending on the energy-use type the agents have a

wider or narrower light threshold range. This means a low-energy-user will tolerate less daylight

before he will turn on the artificial light in his office and has also a higher upper threshold-value

before he will operate the shades compared to a high-energy-user.

In figure 7 an overview of the previously described model is shown. In the centre is the agent in
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Table 3: Shading threshold values

Consumer Type Lower End [lux] Upper End [lux]

Low-Energy-
Consumer

700 3000

High-Energy-
Consumer

300 2000

his zone. The red circle above the zone contains all parameters that are calculated by EP. The

corresponding values are passed on via BCVTB and Python. The Occupant Type, shown here

in the blue circle to the right of the zone, is specified in Netlogo. The yellow circle on the left

side contains the values that can be changed by the agents. All sub-points in the yellow and red

circles are recalculated at each time step. The points in the blue circle are set at the beginning

of each simulation and remain unchanged over the entire period.

Figure 7: Occupants influence on parameters

2.2.3 Simulation Period and Time Steps

Time steps are the intervals in which the computer calculates the state of the building (Wulf-

inghoff et al. 2010). Stated in Yan et al. 2015 time steps in building occupant simulation
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should be in range of 15 minutes to 1 hour for an annual simulation. Due to the complexity

of Co-Simulation models an annual simulation in the scope of this thesis is not possible. The

simulation time would exceed a reasonable limit. One-day simulations on the other hand often

do not provide sufficient insight on the influence of occupants. To balance the time needed for

one scenario-run and getting suitable data the simulations were performed for one-week periods.

The time steps are fixed to 30-minute intervals because previous test-runs with longer time steps

resulted in unrealistic behaviour of the agents. Occupants’ actions are depending on the outside

temperature and season (Langevin et al. 2013). To take this into account one representative

week for each season was simulated.

Table 4: Simulation periods

Time Period

Timesteps 30 minutes

Winter 14.01 – 21.01

Spring 14.04 – 21.04

Summer 14.07 – 21.07

Autumn 14.10 – 21.10

Each time step starts with EP to calculate the current state of the building. This includes

among other things energy usage, temperature, light, and the PMV-value. The process is shown

in figure 8. After the calculation EP is paused and PMV-value, outdoor and indoor temperature

and the illuminance for each room are read out by BCVTB which hands them to Python [1].

In Python the data format is adopted to be suitable as input for Netlogo. Via Python Netlogo

is launched and the environmental conditions are assigned to each zone and agent as setup

procedure [2]. Netlogo then calculates for each occupant the action he performs and hands the

updated schedules back to Python [3]. In Python the data is converted such that it is accepted

by BCVTB and EP [4]. With the updated schedules EP now calculates the new environmental

state of the building and the process repeats for the next time step. The script for Netlogo and

Python can be found in the appendix.
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Figure 8: Data Exchange between used software

2.2.4 Agents Environmental Perception and Decision Making

For the agents’ environmental perception and the resulting actions, a decision-making routine is

defined for each time step. This process is an ordered sequence in which the agents decide what

they are doing (Wilensky and Rand 2015).

As general input at first the schedule-number for this time step is needed. The agents then

decides if he is in the room or not depending on this number. If he is not in the room all

current schedules will be exported. In case the agent is in the room it is checked whether

the calculation for the likeliness for an action is done for high- or low-tolerance. Again, if no

action is performed, all current schedules are exported. If an action is performed the agent

checks if he is a high- or low-energy-user and if he feels warm or cold. The tolerance and the

energy usage are predefined for each agent. Warm or cold are set by the PMV-value, obtained

from EP. The routine for warm is set by a positive algebraic sign while cold is triggered by a

negative one. Depending on the energy usage type and thermal perception one of four routines

is executed afterwards. These routines normally result in a change in one of the schedules to

improve the thermal comfort. After a decision is made, the schedules are exported. Figure 9

shows the general decision process each agent makes at each time step. The four routines for

warm and cold perception can be found in the attachments. Generally, the agents first try to

reverse behaviour that might have led to discomfort for example by closing an opened window

again. If this is possible the schedules are exported and the process for this time step ends. If no

behaviour is to be reversed, depending on the agent type one of three options is executed. While

the likeliness for each option differs, each agent has the possibility to influence his environment
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Figure 9: Decision making routine for the occupants

by opening or closing the window, changing his clothes and changing the HVAC-SP. The last

one depends on the thermal perception, so either the heating SP is changed or the cooling SP.

The cognition process for one of the agent types is shown in figure 10 while the other routines

can be found in the appendix.
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Figure 10: Cognition process for feeling warm for Type III and Type IV occupants (high-energy-
user)

All options have certain limitations to prevent the agents from overcommitment to only one

solution. For example, the maximum possible clothing number in the model is 1.4. If the action

is not possible, the schedules are exported anyway. Depicted in figure 11 is an approximate

illustration of the Clo numbers. These are calculated from the individual heat resistances of the

clothes. 1 clo corresponds to 0.155Km2W−1 (Abdul Majid 2011). For the offices case 0.6 as

lower and 1.4 as upper limit was chosen.
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Figure 11: Illustration of clothing numbers (Abdul Majid 2011)

2.2.5 Limitations

Modelling occupant behaviour is a complex task. In order to reduce the complexity of the model,

speed up the time needed for a simulation run and make the agents actions more comprehensible,

certain limitations have to be made. While more agents and a higher number of offices would

lead to more reliable data by providing less outliers, the effort to construct these models as

well as the simulation time rises exponentially. Therefore, the model of the office building uses

six single-offices. There are some studies (i.e. Barakat and Khoury 2016) investigating also in

acoustical comfort, which is not considered in the scope of this thesis. Heydarian et al. 2020

states that window closing is connected to the outside noise level, however in this model the

acoustical comfort is not considered. Having multiple occupants in one room adds an additional

layer to the model (Yan et al. 2015). Building users that are not alone in a room tend to

behave differently compared to group interactions (Yan et al. 2015). Modelling inter-occupant

decision making has a strong connection to social sciences. The focus of this thesis is not on the

occupant’s interaction with each other but on how their individual preferences have influence on

the buildings’ energy demand. Therefore, only single offices with one occupant were chosen. The

use of electricity contributes also to a building’s energy demand. While lights and shades can

be influenced by the occupants with the use of a non-probabilistic (rule-based) model (Berger

2020), the energy load for electric devices is schedule-based.

2.3 Hypothesis

The energy consciousness of occupants (low-energy-user and high-energy-user) has a strong

effect on the overall energy load of a building. In addition, the occupant’s energy usage is

further influenced by their tolerance regarding the indoor climate.

The thesis aims to evaluate the influence of energy consciousness on the overall energy loads

with the presented model on the example building. Parallelly, the tolerance to indoor climate

is considered with two different functions for the agents to reduce or raise the possibility for

changes to the buildings systems.

2.4 Statistical Analysis

EP allows a wide variety of output parameters. These can be defined in the input-file before

a simulation starts. In combination with BCVTB it is also possible to hand out the input

parameters for each time step. For answering the research question several different values

need to be extracted at each time step of the simulation. Most important is the heating and
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cooling energy load since this will in the end show the influence of different occupant types.

The schedule values at each time step are extracted as well to get a more in-depth analysis.

These allow to investigate why agents perform certain actions as well as how these actions

influence the environmental perception in return. Because the PMV-value is a major factor

in this simulation model it is necessary to set this also as output. The PMV-value is strongly

connected to the room/zone temperature which is also an output parameter together with the

outside temperature. Shading, lighting, and the illuminance are included in the output file as

well. It is important to remember that the mentioned variables are not only extracted for the

building but for each zone which is results in six times the data for each simulation run compared

to just an average annual building simulation.

While the Base-Case – the simulation without ABM – results are always the same, for the

other scenarios this is not the case. Due to the randomness in how the agents take actions

no simulation is exactly equal to the previous. Therefore, for each scenario several runs are

performed to reduce the influence of outliers and make the model more reliable. A detailed

overview is listed in table 5.

Table 5: Number of performed simulations

Spring Summer Autumn Winter

Scenario I 4 4 4 4

Scenario II 4 4 4 4

Scenario III 4 4 4 4

Scenario IV 4 4 4 4

Base Case 1 1 1 1

Sum 17 17 17 17

Having four different scenarios in combination with several runs for each scenario and in addition

four seasonal weeks results in a huge amount of data. To avoid human-based errors and repetitive

work in combining the data and analysing it, the programming language Python was used for

semi-automatic data analysis. For Python several additional packages are available, including

for example Pandas (pandas 2021) and Matplotlib (Hunter et al. 2012) which allow easy data

import and data visualisation in the programming environment. Since the simulation period

is only one week and for each case several runs where done, for most parts of the statistical

analysis the average – or if more suitable the median – was taken. This way possible outliers

which might have occurred are evened out or can be dismissed.
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3 Results

3.1 Overview

The results of the scenarios are presented in three main categories. First, general findings are

discussed. The second category is a comparison of the different previously described scenarios.

It is important to note the necessity of comparing the scenarios in different seasons, since this

influences the routines of the agents and therefore the overall results. In the last category, the

different agent types are compared to each other, to be able to analyse the agent types and their

behaviour in depth.

3.2 General results

Shown in figure 12 is a typical outcome of the occupancy function. The 1 denotes that the agent

is in the room for this time step while a 0 indicates an empty space. The figure shows two days.

In the example for the first day the occupant is in the room mostly in the morning and the

afternoon, leaving just for short time periods during lunchtime and in the early afternoon. On

the second day it is similar but in addition the agent was in the office also for some periods late

at night.

Figure 12: Example of occupancy for a room for two days

As described earlier, the occupants only perform actions while they are in the room. Therefore,

this not only shows their occupancy but also denotes the possible time frame of action for each

agent. Especially for analysing the different occupant types this is important.
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3.3 Comparison of Scenarios

The results of the mean energy loads are shown in figure 13. The average is calculated over all

simulations, meaning that there is not only one simulation per scenario and season but several

as described earlier. Heating and cooling loads are combined in the plot. For the summer the

energy loads are only for cooling. In autumn there are cooling and heating loads with the main

emphasis on heating. The table displays especially in spring and autumn a rising trend in the

energy loads for cases with more high-energy-consumer occupants. In both seasons the Base case

energy load with the simple EP simulation is the lowest. Outstanding are summer and winter.

For summer, in the first three scenarios the trend is like spring and autumn with a significant

drop for the mean energy load for scenario IV. The average is even slightly below scenario I. In

winter, the rising trend-line for scenarios I to IV of spring and autumn can basically be seen

too. The differences are less pronounced.

Looking at the absolute numbers spring and autumn are similar while the energy load in summer

is relatively low. For the winter season the energy load per zone is high.

Figure 13: Mean energy loads in [Wh]

To validate the the data and give a better perspective on the energy loads a conversion to

a common energy format for buildings was done. In most cases, the energy loads are given

in kWhm−2 a−1. To obtain this number, the average hourly loads from each season were

interpolated and added up. Displayed in figure 14 these numbers can be seen. The numbers are

in line with findings from the city of Vienna for office buildings (Bayer et al. 2014).
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Figure 14: Yearly energy loads in kWhm−2 a−1

Figure 15 shows the deviation of the mean energy loads from the base case for each scenario and

season in percent. The trendline described earlier can also be recognized for spring, autumn, and

winter week. As seen in the bar figure 13 the summer week is an exception. While the trends

are for the three colder seasons mainly the same, the deviation in the winter case is slightly less

distinctive. Also shown in the graph are the deviations for the single simulation cases, so not

only the average but each run. For the base case there are no further cases and therefore no

deviation. For some parts of the other cases the spread is distinctively. For the winter season it

is in a range of around 2.5%. For Spring and Autumn, it varies more. Again, the summer is an

exception. Here, the spreading is significant.

Shown in figure 16 is the mean energy load for one week in spring. Graphs for the other seasons

can be found in the appendix. Outstanding are especially the seasons summer and winter. For

summer, the average energy load is mainly at the end of the week with some smaller spikes in

the middle of the week. For the winter week the drops for the base case are outstanding. For

spring and autumn, the course of the graphs is similar with spikes in the energy load for each

night and drops on the days. For most of the time this is also the case in the winter week.
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Figure 15: Mean energy load deviation from base case in percent for each season

Figure 16: Mean energy loads over time for one week in Spring

Pictured in figure 17 are histogram plots for the PMV-values while the occupants are in the room.

In the case of the present work, the statement of the graphs is more related to the probability

of an action instead of the perception of the environment as originally intended by Fanger. For

higher percentiles in the negative half of the x-axis the agents have felt colder and therefore
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performed more actions to counter this. For higher occurrence percentiles in the positive half

more actions were performed to reduce the heat in the room. Two main points can be noticed.

Figure 17: Cumulative distribution plot for PMV

In most seasons, scenario IV has the most occurrences between 0.0 and –0.25. To the outer edges

the percentage drops fast. Contrary is scenario I with a much more even distribution from –0.75

to 0.25 for the three colder seasons. Scenario II and scenario III are distributed between these

with II being more shifted to scenario I with an even distribution and III being more oriented

to scenario IV. In winter the most occurrences for scenario III are on the –0.5 percentile while

for scenario IV it is between –0.25 and 0.0. Scenarios I and II are again more evenly distributed

with an emphasis on –0.5 to -0.25. For the summer season the percentiles are much more shifted

in the positive half of the PMV-values. Specifically, the scenarios I – III are gathering around

0.25. Scenario IV has its most occurrences at 0.0. Contrary to spring and autumn –1.0 and 0.75

are never exceeded.

3.4 Comparison of Occupant Types

In general, there are four different occupant types and in addition the Type 0, which can be

partly extracted from the Base-Case data since the offices are only occupied by one person. Type

I and Type II are the Low-Energy-Consumer, while Type III and Type IV are the High-Energy-

Consumer. Type I and Type III do have a wider tolerance range, while Type II and Type IV

are using the narrow function. Looking at the energy load per occupant type in figure 18 for

the transitional seasons the energy load of Type 0 occupants is the lowest. This was already

indicated in figure 13. For all seasons energy loads of Type I and II are relatively low with I
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being slightly less than II. The main difference to the scenarios appears when looking at Type

III and Type IV occupants. Type III occupants, despite having a wider tolerance range consume

on average more energy compared to the Type IV occupants. In summer, Type I agents are

using less energy than Type II agents. Similar to spring and autumn, the energy use for Type

III is higher than for Type IV. Both high-energy-users consume in summer more energy than the

low-energy consumers. The mean energy load for all occupant types is quite similar in winter.

Figure 18: Mean energy loads for each occupant type

To further analyse the data and detect anomalies and outliers, the results are analysed with

boxplots for the four occupant types as shown in figure 19. For spring and autumn, the plots

indicate similar results. The medians for Type I and II are close to each other with II being

slightly higher. The average energy load for Type III is for both cases the highest. The maximum

for I and II and the maximum for III and IV is almost identical. For both I and II the boxes

are relatively small compared to the other types. In summer the trend is different with Type

II showing the lowest energy loads. Type II and IV show outliers. For the winter the median

is rising from I to III and then dropping for occupant Type in the range between I and II. All

boxes are relatively small, meaning that most of the data is in a narrow range. All four occupant

types show outliers at the very low end.

Figure 20 shows the mean heating/cooling SP temperature for each occupant type. Type 0 can

obviously not change the temperature, so all occupants use the same SP. This fixed number is

also the starting SP for all other agent types. The graphs show for low-energy-consumers for

the three cold seasons lower averages. High-energy-consumers have also higher SP numbers. For

spring and autumn Type III has a slightly higher average SP compared to Type IV. In summer

the SP for type III is the lowest. This is equal with the highest energy load, as cooling and
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Figure 19: Boxplot for average energy loads per occupant type and season

not heating is required in summer. It is noticeable that Occupant Type IV does not have the

highest SP in summer.

Comparing the average clothing number per hour in Figure 21, the contrary to the heating SP

is noticeable. Colder seasons show higher averages for the low-energy-consuming occupants.

Especially for Type II this is the case. This is reasonable since low-energy-consumers try to first

alter their clothing. In contrast, the average numbers are lower for high-energy consumers. As

before, the summer case is an exception. Here, the average clothing numbers are generally lower

than for the other cases. It is noticeable that Type I and Type IV have the lowest numbers,

while Type II and III form a line here.

Figure 22 shows the averaged actions in relation to each other. The individual plots are divided

into agent type and season. The top two circles always show the low-energy consumers. Based on

the graphs the influence of changing the clothing number is clearly visible. For the cold seasons,

the next largest part is the adjustment of the heating. For the high-energy users, the opposite

is the case. Hardly any changes of clothing take place. Instead, it is mainly the HVAC system

that is changed. This is also the case in summer. The autumn case is particularly striking.

A large proportion of actions concerning cooling are carried out by the Type III and Type IV

agents. However, the actual cooling energy consumed is comparatively low as already shown in

figure 13. The graphs also show that the rate of window openings is relatively small. Only the

summer case is an exception here, but even here the share is never greater than 25 percent. Due

to the limitation in the routine, in winter the window on average is not opened at all. This is

due to the limitation of the routine. Agents can only open the window under certain conditions

that often cannot be fulfilled in winter. For the cold case, the outside temperature would have
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Figure 20: Average setpoint temperature for each occupant type in [➦C] for each season

Figure 21: Average clothing number in [clo] for each occupant type for each season
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to be higher than the inside temperature, which is for most of them not the case. As already

shown in figure 17, for the winter case, during most of the occupancy-hours the PMV-value is

below 0, which leads to the cold routines being executed most of the time.

Figure 22: Distribution of actions per occupant type and season

3.5 Concluding reflections

The energy load for the cold scenarios appears to be in line with the finding of Mahdavi et al.

2018. With more high-energy using occupants in the building the energy load rises. This can be

observed not only in the graphs for average energy loads in figure 13 but also in the deviation

in percent in figure 15. For the summer case not only the scenarios but also the occupant types

differ strongly. Mainly it can be observed that with more high-energy-consumers the energy

loads rise while in contrary with more low-energy consuming agents the energy loads fall. For

the four observed scenarios in the colder months (spring, autumn, winter) this trend is obvious.

Displayed in the boxplot in figure 19 the maximum mean energy load for Type I and II and the

maximum mean energy loads for Type III and IV are almost equal. Surprisingly the Type III

occupants have a higher median for the mean energy load compared to Type IV occupants. For

all cases the summer scenario differs strongly. The reasons for this will be discussed in the next

chapter.
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4 Discussion

4.1 Overview

The behavioural model, oriented on Langevin et al. 2015 and Mahdavi et al. 2018, proves to

be reasonable. High-energy-consumers and Low-energy-consumers differ and take reasonable

actions according to their preference. The additional layer, introduced to reflect the tolerance

towards the room climate, results in a variance in the energy-consumer groups and delivering

additional results. An interpretation of the previously listed results is given in the following

sections. The occupant types are described. From this evaluation it is possible to interpret the

results for the energy simulations of the scenarios. Also, it is possible to give a more detailed

insight how different combinations of occupants change the energy loads of the building. Finally,

limitations to the model are discussed.

4.2 Occupant types

As shown in figure 19, in most scenarios occupant type number III is the highest energy con-

sumer, which at a first glance is not reasonable. A typical assumption would be, that the

occupants with a lower tolerance range and a high-energy consuming routine would also have

the highest energy loads. Looking at the average SP temperatures for heating and cooling in

figure 20 the same pattern can be observed. The reason behind this is in the routine in combi-

nation with the tolerance. Type III agents have a higher tolerance which results in less actions.

Still, they belong to the group with high energy consumption. Therefore, their routine is to

first change the SP and afterwards try to change their clothing. As observed in figure 17 the

PMV-values are uniformly distributed compared to Type IV occupants. This means that they

are less likely to take action which not only includes them feeling cold and turning the heating

SP up but also turning it down in case they feel warm. SP temperatures set by Type III agents

are therefore more likely to stay this way. Type IV occupants on the other hand are more likely

to reduce the heating SP. This results in Type III using more energy because they are changing

the SP temperatures to their favour and are less likely to set them back. In contrary, a Type II

occupant is using more energy compared to Type I. The reason for this is defined in the tolerance

curve. Type II occupants have a higher probability of performing an action. While they first

adjust their clothing level, at some point the maximum clothing according to the predefined

routine is reached, which is earlier for type II occupants than for type I occupants due to the

lower tolerance. In order to further adjust the comfort level, the SP is now changed, which

results in a higher energy demand.

While some occupants’ actions have a very strong impact on energy demand, others show less

correlation. Figure 23 shows the number of clothing changes per week and the corresponding

average energy demand. No correlation can be found in the occupant groups themselves. The

r-numbers are in large parts lower than 0.25. However, if one looks at the instances of clothing

changes across all types, it becomes clear that for spring, summer and autumn there is a corre-

lation between clothing changes and energy demand. In principle, it can be said that a higher

clothing adaption rate leads to a lower average energy demand. A general statement on this

should be made with caution. Figure 24 shows the connection between average SP and average

energy consumption. A very pronounced correlation can be seen. Higher average SP also means
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higher energy loads. The summer case is reversed, but the statement is also confirmed here.

The evaluation of the combination of all actions of the occupants in connection with the average

energy demand, the situation is more difficult. In some cases, a clear correlation can be found,

such as for Occupant Type III and IV for the transitional seasons. In the summer and winter

cases, on the other hand, there are no clear manifestations as it can be seen in figure 25.

Figure 23: Correlation between change of clothing per week and mean energy loads in [Wh]

Figure 24 shows the average heating SP for the occupant types and the mean energy loads. For

all cases a strong correlation can be observed. The regression lines not only show the slope and

direction, but with their length also the range of numbers for the individual scenarios. This

clearly shows that especially Type I occupants make small changes to the SP temperatures. For

the winter case, Type III and Type IV show rather short regression lines. This is due to the fact

that the maximum possible SP temperature in the model is 24 ➦C. This means the occupants

cannot exceed 24➦C in the cold seasons. While for the cool seasons the r-number is positive,

for the summer case it is negative. Contrary to the other seasons the low-energy-consuming

agents are on the right end of x-axis. The reason is due to the starting temperature for the

simulation with 26➦C. Since these occupants are more likely to change their clothing the range

for SP changes is relatively low.
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Figure 24: Correlation between average heating SP per week and mean energy loads in [Wh]

Figure 25: Correlation between average heating/cooling SP changes per week and mean energy
loads in [Wh]
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4.3 Scenarios

The results of the scenarios are as expected. While the Low-energy-consuming occupants need

less energy, the High-energy-consuming occupants need more as described earlier. The com-

bination with four occupant types and six offices however allows for more than the simulated

results. To investigate further in how the different scenarios perform and what might be the

best combination of occupants a heatmap was created. Depicted in figure 26 are all possible

combinations of occupants in the six rooms. Both axis show possible combinations of three

occupants which are depicted on the sides in Roman numbers. Looking for example at the first

row and the first column, the average energy consumption for 6 type I occupants is shown.

Another example would be the first row and the last column which shows the combination of

occupant types I, I, I, III, IV and IV. The underlying results were calculated with the median

of each occupant type. Important to remember is the uncertainty in these results. The rooms

in the original simulations are influencing each other since they are in the same building. The

location of the occupants is not taken into account. Also, the energy load is dependent on the

room, the occupant is located in. Still, the heatmaps offer insight in where the arguably best

and worst cases are to find. Indicated already in the earlier figures, occupant type III is using

the highest amount of energy while – except for the summer case – Type I occupants need the

least amount. Figure 26 indicates a higher number of energy load with darker colours.

Figure 26: Heatmap for possible scenarios calculated with median for occupant types (Wh)

A similar visualisation offers figure 27. On the x-axis the number of a specific type of occupants
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is displayed. On the y-axis the energy load in watt per hour is displayed. Since there are always

six occupants in the building, for all numbers smaller than 6 the other occupants have to be

filled with other types. The middle line of each colour shows the average of the possible cases

while the upper and lower line show the maximum and minimum. Again, as load numbers for

the occupant types the median was chosen. To give an example on how to read the graph: At

first you chose the occupant you want to investigate. For example, Type IV. When you look at

the graph, the x-axis starts with 0. Therefore, zero occupants of Type IV are in the building.

The six other occupants can be Type I, II and III. The upper red dot at x = 0 denotes the

maximum possible energy load. The middle point shows the average while the low point shows

the lowest possible load. Moving on at the x-axis the range between upper and lower limit gets

smaller since the number of possible scenarios and the uncertainty in the results also is reduced.

At x equal to 6 all occupants are Type IV which is also why there is no longer a range in the

points. The other occupant types can be read in a similar way.

Since the occupants of type III have the highest median for the energy load, for the right end

of the x-axis they are always on top. For both the spring and winter cases, the peaks of the

occupant types are very close to each other. The intersection of the middle lines at an x-number

of 1.5 indicates where the average energy load would be with an even occupant type distribution.

The field where all graphs overlap indicates the most probable energy load for the building. This

area is marked in yellow in the graphs. To get the range of the most likely energy loads, the

top and bottom points can be read. For example, the top point of the field in autumn would

be about 750 Wh and the bottom point about 450 Wh. The range between the two now shows

the most likely average energy load for the building for a hour in this autumn week. Compared

with the maximum and minimum energy loads overall the range is for all seasons quite similar.

4.4 Limitations and Considerations

Depicting human behaviour is a very complex and comprehensive task. Even though the model

developed in the thesis is limited to the aspect of user behaviour in buildings for the specific case

of a single-room office, many parameters are still unclear. In addition, several other options need

to be considered when developing such a model. For example, a highly complex and elaborate

behavioural system for occupants cannot be reproduced in detail and thus complicates the

analysis and reduces the significance. The following restrictions concerning the model were

made and must be taken into account in the analysis:

❼ Number of possible actions: Occupants in buildings might have additional options to

influence how they are perceiving the room. For example, making themselves a tea or

turning on a ventilator. However, such options are not included in the model.

❼ Trigger for occupants’ actions: In the model there are only two options that trigger the

occupant to perform an action. The current PMV-value of the room and the illuminance.

However, in reality there are several other possibilities because an occupant might want to

influence his environment. For example, a window can be closed because of noise rather

than the temperature.

❼ MET: The metabolic rate for the occupants is fixed. This might not be the case all the
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Figure 27: Average energy load range for different occupant combinations

time. For example, the model could be extended by giving occupants each time they come

back to the room a higher metabolic rate for one time step.

❼ Number of occupants in a room: The discussed model uses six single offices. As

described earlier having more than one occupant in the room introduces an additional

layer of behaviour. This makes the decision making process much more complicated since

not only the perception of one occupant but of several have to be taken into account. For

example, a hierarchy needs to be considered to determine if something is done and what

is done.

❼ Tolerance curves: The tolerance curves for the occupants were chosen to not force

the agents at each time step to choose an action but to give them the opportunity to

react so as to improve their environmental conditions. The percentages for low- and

high-tolerance occupants are based on the PMV-value of Fanger. Since the PMV-value

originally represents the perception of a group of people for a room it might not always

be suitable for each situation. A different solution might be necessary to decouple it from

the original Fanger model.

❼ Number of offices/simulation runs: As mentioned, the model currently works with

six office rooms. To compensate this rather small number, several simulation runs with

the same model where done. This ensured that the results have statistical relevance.

However, more office rooms and additional simulation runs would strengthen the results.

Additionally other agent combinations can be tested.
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❼ Simulation Period: The simulation time period for one run was chosen to be one week.

During the warm-up period of EP default numbers are used. This means, that at the start

of the Co-Simulation and the actual use of the agents there might be unrealistic room

conditions. For example, in summer the room might heat up to the temperature of the

cooling SP because the shading is not operated. The starting PMV therefore could be

very high which leads to an overcompensation reaction of the agent in this room. Longer

simulation periods of a month or even a year would eliminate or at least reduce such

problems.

❼ Data validation: The simulation results are missing a real-life case with measured and

monitored data to validate the likeliness of such behaviour. Therefore, the model is a

theoretical one.
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5 Conclusion

This thesis shows the process of building a model to study the behaviour of different occupant

types in an office building. For this purpose, different occupant types were defined and a

behaviour model was created, depending on the PMV-value according to Fanger and various

other parameters. EP was used as the BEM software and Netlogo as the software for the

occupant definition routines. The two tools were connected via a co-simulation using BCVTB

and Python. The creation of such a co-simulation is associated with an enormous effort, which

by far precludes its use on a broad scale. Not only is it necessary to have at least a basic

knowledge of various programming languages (Logo for Netlogo, e.g. Python as the connecting

software), but knowledge of data processing and data conversion is also required. The use of a

co-simulation is also made more difficult by the documentation, which is opaque for beginners,

and the frequent lack of help in forums, as the user base is very limited. It might have been easier

to use a paid programme to link the two simulation models, but this was not an option within the

scope of the thesis. An additional obstacle for the further spread of co-simulations in Building

Energy Modelling is the long simulation time. While a traditional dynamic energy simulation

can be processed in a few seconds with sufficient computing power, the same simulation in

combination with another tool takes significantly longer.

The model developed showed promising results. Depending on the energy consciousness of the

occupants, the energy demand changed significantly. Similar results were already delivered in a

study by Prof. Mahdavi et. al. 2018. In addition to the consumer types, a further dimension

in behaviour was introduced with the implementation of a tolerance system. Occupants with

higher tolerance performed fewer actions to influence the indoor climate. Due to different random

parameters, each simulation yields different results, even in the case of exactly the same boundary

conditions. To ensure statistical relevance, each case was therefore simulated four times. From

the mean numbers, or alternative the median, various statements were made in the subsequent

analysis. Surprisingly, a greater tolerance of the indoor climate did not automatically result in a

lower energy demand. This is particularly clear in the case of Occupant Type III, which stood out

as a high-energy consumer with a wide tolerance. However, the data showed that this tolerance

can lead to an increased energy demand, because even at high temperatures during the heating

period, for example, the reaction is not as fast and thus the ultimate energy demand increases.

Basically, the data resulting from the simulations support the statement that user behaviour

has a considerable influence on the energy demand. Depending on the energy consciousness of

the occupants, this influence can be negative or positive.

The developed model tries to represent reality in a simplified way and tailored to a specific

case. However, since human behaviour is complex and dependent on many different parameters,

various limitations have to be accepted. Future research in the field of agent-based modeling

should especially facilitate the modeling. The faster and easier creation of co-simulations would

help to generate more models and thus a broader understanding of the influence of occupants.

In addition, existing models can be extended to further define the performance gap problem

addressed in the introduction and determine its impact. In conclusion, in the words of statistician

George Box (1979),
”
All models are wrong, but some models are useful.“
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7 Appendix

Routine Flow Charts for Agent Types



APPENDIX 46



APPENDIX 47



APPENDIX 48



APPENDIX 49

Mean Energy Consumption over time
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Netlogo Code for Agents
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Python Code for Data Conversion to Netlogo
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BCVTB Connection

BCVTB Folder Structure
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