
Automatisiertes maschinelles
Lernen mit metaheuristischen

Algorithmen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Gent Rexha, B.Sc.
Matrikelnummer 11832486

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Priv.-Doz. Dr. Nysret Musliu

Wien, 12. August 2021
Gent Rexha Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Automated Machine Learning
using Metaheuristic Algorithms

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Gent Rexha, B.Sc.
Registration Number 11832486

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Dr. Nysret Musliu

Vienna, 12th August, 2021
Gent Rexha Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Gent Rexha, B.Sc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. August 2021
Gent Rexha

v

Acknowledgements

I would like to convey my sincere appreciation to my advisor, Priv.-Doz. Dr. Nysret
Musliu. This thesis would not have been feasible without his constant assistance,
encouragement, feedback, and extensive understanding in the subject.

My deepest appreciation goes to my parents and family, for their continuous support,
encouragement, and who have always been there for me and helped me through many
difficult times. It would not have been possible to complete this work without them.

Last but not least, I would want to thank Majlinda not only for her love, but also for
her patience, encouragement, thoughtful comments, and emotional support while I was
working and writing on this thesis.

This work was supported by the Austrian Science Fund (project: KIRAS-PreMI D192020-
4003)

vii

Kurzfassung

Maschinelles Lernen wird zu einem integralen Bestandteil jeder modernen Softwarean-
wendung. Sein Erfolg ist direkt mit der Auswahl des richtigen Algorithmus für die
verschiedenen wichtigen Lernaufgaben verbunden. Der Prozess der Algorithmenauswahl
birgt jedoch seine eigenen Herausforderungen, denn das "no free lunchTheorem besagt,
dass "jede höhere Leistung bei einer Klasse von Problemen durch die niedrigere Leistung
bei einer anderen Klasse ausgeglichen wird". Mit anderen Worten, ein Algorithmus kann
nicht für alle Arten von Problemen die beste Lösung sein. Ein Algorithmus kann für ein
Problem eine optimale und für ein anderes eine schlechte Lösung sein.

Diese Arbeit konzentriert sich auf die Kategorie des überwachten maschinellen Lernens,
bei dem die Daten in Eingabe- und Ausgabevariablen aufgeteilt und dem Algorithmus
übergeben werden. Das Ziel darin besteht, Muster zu erkennen, bei denen nur die Eingabe-
variablen die Ausgabevariable vorhersagen können. Die Notwendigkeit, optimale Lösungen
für diese Art von Problemen zu finden, hat zum Aufkommen von Automated Machine
Learning (AutoML) geführt. Die AutoML-Domäne befasst sich mit der Ermittlung des
leistungsfähigsten Algorithmus für ein bestimmtes maschinelles Lernproblem sowie mit
der Bestimmung anderer kritischer Schritte wie Vorverarbeitung, Featureextraktion und
Featureauswahl.

Das vorgeschlagene Framework mit dem Namen MetaheuristicSklearn ermöglicht die
Entwicklung und Reproduktion von mehrstufigen, kontrollierten Klassifizierungspipelines
auf zusammenhängender Weise. Das Framework bietet eine Standardmethode zur Imple-
mentierung und Integration von Pipelineschritten und Parametern unter Verwendung
verschiedener Techniken. Darüber hinaus wurden die metaheuristischen Algorithmen: (i)
Simulated Annealing, (ii) Tabu Search und (iii) Iterated Local Search (ILS) im Rahmen
von Solver-Algorithmen zur Ermittlung optimaler AutoML-Lösungen angewendet und eva-
luiert. Die drei Lösungsverfahren wurden in einer großen Datensatz-Benchmark-Sammlung
eingesetzt, um das Framework zu evaluieren. Die Leistung der Algorithmen wurde bewer-
tet und mit den modernsten AutoML-Frameworks verglichen. Darüber hinaus haben wir
mehrere neighborhood operators vorgeschlagen, verschiedene Algorithmenkonfigurationen
bewertet und die einzelnen Komponenten untersucht.

Basierend auf unseren Experimenten mit 31 Datensätzen aus der OpenML-CC18 Bench-
marking Suite, schneiden Tabu Search und ILS besser ab als Simulated Annealing. Tabu
Search war der beste Algorithmus für 15 von 31 Datensätzen, ILS für 13 von 31, und

ix

Simulated Annealing war nur in 3 von 31 Datensätzen der beste Algorithmus. Der
Algorithmus-Parameter-Tuning-Prozess erwies sich ebenfalls als recht effektiv, wobei die
Gesamtverbesserung des F1-Score im Vergleich zu den Standardparametern durchschnitt-
lich 7% betrug.

Schließlich bietet das vorgeschlagene MetaheuristicSklearn-Framework im Vergleich zu
hochmodernen AutoML-Frameworks in 9 von 31 Fällen eine leistungsfähigere Pipeline.
Darüber hinaus war die Genauigkeit des MetaheuristicSklearn-Frameworks für alle
Datensätze etwa 2% schlechter als die des leistungsstärksten Frameworks.

Abstract

Machine learning is becoming an integral part of every modern software application. Its
success is directly linked to the appropriate algorithm selection when dealing with various
essential learning tasks. But the algorithm selection process has its own challenges, as the
“no free lunch” theorem states that "any elevated performance over one class of problems
is offset by performance over another class". In other words, an algorithm can not be the
best performing solution for all types of problems. An algorithm may be an optimistic
answer for one problem and a poor answer for another.

This thesis focuses on the supervised machine learning category, where the data is
separated into the input and output variables, both given to the algorithm, where the
objective is to identify patterns in which only the input data can predict the output
variable. The need of finding the optimal solutions to those types of problems has led to
the rise of Automated Machine Learning (AutoML). The AutoML domain is concerned
with identifying the best performing algorithm for a particular machine learning issue, as
well as determining other critical steps such as preprocessing, feature extraction, and
feature selection.

The proposed framework, named MetaheuristicSklearn, allows multi-step controlled
classification pipelines to be developed and reproduced in a cohesive manner. The
framework provides a standard way of implementing and integrating pipeline steps
and parameters using various techniques. Furthermore, the metaheuristic algorithms:
(i) Simulated Annealing, (ii) Tabu Search, and (iii) Iterated Local Search (ILS) have
been applied and evaluated in the context of solver algorithms for finding optimum
AutoML solutions. The three-solver techniques were utilized in a large dataset benchmark
collection, the OpenML-CC18 Benchmarking Suite, to assess the framework. The
performance of the algorithms has been assessed and compared with the state-of-the-
art AutoML frameworks. Additionally, we proposed several neighborhood operators,
evaluated several algorithm configurations, and examined the individual components.

Based on the experiments using 31 datasets from the benchmark collection, Tabu Search
and ILS perform better than Simulated Annealing. Tabu Search was the best performing
algorithm for 15 out of 31 datasets, ILS for 13 out of 31, and Simulated Annealing was
only the best performing algorithm in 3 out of 31 datasets. The algorithm parameter
tuning process was also proven to be quite effective, where the overall improvement in
F1-Score was 7% on average when compared to the default parameters.

xi

Finally, the proposed MetaheuristicSklearn framework compared to state-of-the-art
AutoML frameworks gives a better performing pipeline of 9 out of 31 cases. In addition,
the precision of the MetaheuristicSklearn framework was around 2% worse than the best
performing framework for all datasets.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Aims of this Thesis . 3
1.2 Contribution . 3
1.3 Organization . 3

2 Problem Statement and Related Work 5
2.1 Problem Statement . 6
2.2 Related Work . 7

3 MetaheuristicSklearn - An AutoML Framework 27
3.1 Instance and Solution Representation 28
3.2 Initialization and the Base Estimator 30
3.3 Automated Machine Learning . 34

4 AutoML through Metaheuristic Algorithms 39
4.1 Introduction . 39
4.2 Initialization . 40
4.3 Search-space Exploration . 41
4.4 Evaluation . 42
4.5 Simulated Annealing . 43
4.6 Tabu Search . 46
4.7 Iterated Local Search (ILS) . 49

5 Evaluation 53
5.1 Experiment Settings . 53
5.2 Results . 61

6 Conclusion 75

xiii

List of Figures 77

List of Tables 79

Bibliography 81

CHAPTER 1
Introduction

Machine Learning (ML) is one of the most exciting and fast-growing fields in computer
science. It’s a sub-field of artificial intelligence that focuses on algorithms that change as
they process data, enabling computers to improve without being explicitly programmed.
ML has been successfully applied to many different tasks, including image recognition as
well as natural language processing. In a nutshell, ML is the future of smart computing: it
enables applications to respond automatically to new information or situations. Generally,
machine learning approaches are categorized into three specific categories:

1. Supervised Machine Learning - The data is divided into the input variables and
the output variable, both given to the algorithm, where the goal is to find patterns
such that the output variable can only be predicted by the input data.

2. Unsupervised Machine Learning - Here the output variable is absent, the goal here
is to identify patterns or clusters in the data only on the basis of patterns contained
in the input data without depending on the output variable.

3. Reinforcement Learning - Has three main components: the agent, the environment
and the reward. The objective of the agent is to learn a policy from his interactions
with the environment and then maximize the reward provided based on those
interactions.

In this thesis we are going to concentrate on the most popular amongst the three,
Supervised Machine Learning. Depending on the form of outcome variable, supervised
learning can be separated into two subcategories: Classification and Regression. Before
we continue, we need to define some notations for our problem [BJP20, Spa03]: the
input data, also called training data, is denoted as {x1, . . . , xn} ⊆ Rp and their labels
(y1, . . . , yn) ∈ {1, . . . , k}n, and finally g, which is the function to find a correlation between
input and output variable g : X → Y .

1

1. Introduction

The output variable in the Supervised Classification is a category (y1, . . . , yn) ∈ {1, . . . , k}n,
where if k = 2 it is a binary classification problem or when k > 2 it is presented as a multi
classification problem. The goal here is to identify patterns in the data that connect the
input data to the output category. One of the common examples is whether an email is
spam or not. For this task an algorithm can be modeled from previously tagged spam
emails and other non-spam emails, where said model attempts to find some correlation
between the text and the data within the email and their respective tags, spam or no
spam. From the created model, which helps us to identify new unseen emails. This
modeling of the correlation between input data and output category is made possible by
classification algorithms. Some of the most common ones are: Deep Learning Networks,
Support Vector Machines, Decision Trees, Random Forests, and K-Nearest Neighbor.

At the other hand, when it comes to supervised regression, the output variable is
continuous Y = {y ∈ R}. The most common method is the linear regression model
[Fil19, Vap95], which has the form: y = f (x1, x2, . . . , xp) + ε, with the linear function
f (x1, x2, . . . , xp) = β0 + �p

j=1 xjβj . The goal is to find a functional relation f which
justifies y ≈ f (x1, x2, . . . , xp). The βj are unknown parameters or coefficients, which
will be estimated from given data. The variables xj can come from different sources, for
example, one would try to model housing prices on the basis of inputs such as size of
the house, distance to the nearest schools, number of rooms, etc. Other popular models
include: Lasso Regression, Ridge Regression, Logistic Regression, and Regression Trees.
The benefit of these models is that they are usually simple and can also be interpreted
by the human.

Understandably, the number of algorithms is not limited to those listed above. As if that
amount of variety was not enough, the problem of machine learning has an extra layer of
complexity in the configuration of each algorithm in its own. These algorithm parameters,
also known as hyper-parameters, are what determine the rules within the algorithms like:
tree size, number of neighbors, kernel type, etc. The problem of finding the right set of
hyper-parameters for an algorithm is known as hyper-parameter optimization.

One would assume that this is just a matter of finding and applying the best algorithm
and parameters. Unfortunately, this is not exactly the case, the "no free lunch theorem"
[WM97] states that "any elevated performance over one class of problems is offset by
performance over another class". Meaning that there is no win it all algorithm, an
algorithm might be a great solution to one problem, which might be the opposite case
for a different problem. It is therefore common for machine learning experts to try out
different techniques to the problem and settle for the algorithm with the best performance.

Many different approaches to solving AutoML problems have been presented in the liter-
ature: TPOT [OM19], AutoWEKA [THHLB13], and Auto-Sklearn [FKE+15] utilizing
diverse methodologies such as Bayesian Optimization, Genetic Programming, and Meta-
Learning. Despite the fact that several techniques have been published, it is scientifically
interesting to investigate novel metaheuristic approaches for this type of problem, as
there is still a need for improvement for current methods.

2

1.1. Aims of this Thesis

1.1 Aims of this Thesis
The aim of this thesis to develop an Automated Machine Learning framework that uses
metaheuristic algorithms to find the best performing pipeline for a given dataset instance.
Moreover, the aim is to explore different well-known metaheuristic algorithms based on
local search techniques such as Simulated Annealing, Tabu Search, and Iterated Local
Search. Another aim of this thesis is to compare the proposed framework with other
state-of-the-art frameworks and find the optimum metaheuristic algorithm settings and
components for AutoML.

To conclude, the main research questions of this thesis to be answered are:

• What are the key concepts and methods in AutoML?

• Which metaheuristic algorithm is the most appropriate for this kind of task?

• How would a metaheuristic AutoML framework perform and would it be able to
achieve similar and/or better performance to already existing frameworks?

• What are optimal parameters, configurations, and components for metaheuristics
algorithms to solve AutoML problems?

1.2 Contribution
The main contributions of this thesis are:

• An in-depth practical and theoretical review of the most recent state-of-the-art
AutoML frameworks.

• Based on Simulated Annealing, Iterated Local Search, and Tabu Search we imple-
mented a novel metaheuristic framework for solving various AutoML classification
problems. Additionally, we proposed various neighborhood operators, analyzed the
different components and their impacts on solving AutoML problems.

• An empirical assessment of the developed framework and state-of-the-art frameworks
on a machine learning classification benchmarks containing over 100 datasets, as
well as a reference to state-of-the-art results.

• Using specific experiment conditions, the results obtained by state-of-the-art frame-
works are matched/improved for the majority of the datasets considered.

1.3 Organization
The second chapter discusses the AutoML concept and offers an outline of similar studies
from the literature as well as an in-depth review of the currently most common frameworks.

3

1. Introduction

The third chapter goes into depth about the proposed framework for solving AutoML
problems using metaheuristic algorithms. The novel metaheuristic approach’s high-level
description and AutoML problem-solving approach is then explained in chapter four.
In chapter five, an experimental study of using the proposed framework in conjunction
with the most common framework mentioned previously is conducted using more than
100 datasets, while also the results of using the proposed framework to solve problem
instances are reported and compared to state-of-the-art results. Finally, in chapter six,
concluding remarks are given.

4

CHAPTER 2
Problem Statement and Related

Work

While algorithm selection and hyper-parameter tuning are very important for choosing
the right model to solve problems, it’s not the whole story. The machine learning pipeline
consists of more components than just algorithm selection and hyper-parameter tuning,
which can be seen in Figure 2.1. The feature engineering step is a critical measure
in the machine learning pipeline and can very often have a significant impact on the
performance of the model. This is where the experience of the machine learning specialist
pays off. Finding the right preprocessing methods, choosing the right feature extraction
and selection approaches, and selecting and tuning the right model is the product of
experience, domain knowledge, past results and expertise.

Figure 2.1: A depiction of a typical machine learning pipeline [EMS19]

With the great success of machine learning in many different problems, the demand
for good machine learning systems that can be used by non-experts has increased
exponentially. Therefore, there is a critical need for automating the process of building
good machine learning models. In the recent years, there has been a big surge of techniques
and frameworks for solving and automating the process of Combined Algorithm Selection
and Hyper-parameter tuning (CASH) in the machine learning domain [EMS19]. The
aim of these systems is to make machine learning more accessible for the non-expert.

5

2. Problem Statement and Related Work

These systems must be able to choose the correct algorithm, including the correct hyper-
parameters, while also being able to apply the right pre-processing steps for a new data
set to be successful in practice.

Continuing below, the automated machine learning problem itself will be defined and
we’ll go through the most common Automated Machine Learning (AutoML) frameworks
and break down their respective architectures in detail.

2.1 Problem Statement
Every machine learning algorithm has hyperparameters, and to automatically adjust
such hyperparameters to maximize output is the most fundamental activity in AutoML.

Let A denote a machine learning algorithm with N hyperparameters. We denote the
domain of the n-th hyperparameter by Λn and the overall hyperparameter configuration
space as Λ = Λ1 × Λ2 × . . . ΛN . A vector of hyperparameters is denoted by λ ∈ Λ, and
A with its hyperparameters instantiated to λ is denoted by Aλ [FH19].

The domain of these values can real-valued (γ in SVC), integers (number of neighbours
in kNN), categorical (type of distance to use in kNN) or binary (whether or not to prune
decision trees). Furthermore, some of these parameters can be conditional on each other
meaning that they may be relevant only beneath another hyperparameter e.g.: pruning
error metric is used only if pruning itself is on in decision trees.

The optimization process of finding the best hyper-parameters in regard to a loss function
is called hyper-parameter optimization.

Some of the baseline methods in hyper-parameter optimization are grid search, random
search and gradient estimation. There are many advantages to general grid search [BB12]:
it’s easy to implement, there’s no technical overhead compared to other optimization
techniques, it usually delivers better performance than setting hyperparameters manually
and is reliable in low complexity search spaces. There are also different variations in grid
search, e.g. random grid search, where optimization values are chosen randomly.

This means that the hyper-parameter optimization problem can be easily extended into
more complex optimization problems, if we just add the step we want to optimize as a
new top-level parameter. As in our example algorithm selection, creating the Combined
Algorithm Selection and Hyper-parameter Optimization Problem (CASH).

Given a set of algorithms A =
�

A(1), . . . , A(k)
�

with associated hyperparameter spaces
Λ(i), . . . , Λ(k), we define the combined algorithm selection and hyperparameter optimiza-
tion problem (CASH) as computing [THHLB13]:

A∗
λ∗ ∈ argmin

A(j)∈A,λ∈Λ(j)

1
k

k�
i=1

L
�
A

(j)
λ , D(i)

train , D(i)
valid

�
(2.1)

6

2.2. Related Work

We note that this problem can be reformulated as a single combined hierarchical hyperpa-
rameter optimization problem with parameter space Λ = Λ(1) ∪ · · · ∪ Λ(k) ∪ {λr}, where
λr is a new root-level hyperparameter that selects between algorithms A(1), . . . , A(k)

[THHLB13].

2.2 Related Work
There are now several frameworks for automated machine learning that one may employ.
Nevertheless, the choice of whatever framework to utilize depends on the task you are
attempting to accomplish. The most prevalent AutoML frameworks are broken down into
components and discussed in depth in combination with their respective architectures.

2.2.1 TPOT
At its core, TPOT [OUA+16a] is a wrapper for the Python machine learning package,
scikit-learn. With respect to hyperparameter optimization, TPOT can only handle
categorical parameters; meaning all continuous hyper-parameters have to be discreted,
equivalent to grid search. In contrast to grid search, TPOT does not test all the different
combinations exhaustively but uses genetic programming to fine-tune an algorithm again.

TPOT uses genetic programming to get the best possible optimization for its machine
learning problems. An overview of the full TPOT machine learning process can be found
in Figure 2.2.

Genetic Programming

Genetic programming (GP) [GJ05] is, in artificial intelligence, a strategy of evolving
algorithms, beginning from a population of inadequate (usually random) algorithms,
suited for a specific purpose by adding operations similar to normal genetic processes to
the program population. This is basically a heuristic search strategy often described as
’hill climbing’, i.e. searching through all programs for an ideal or at least appropriate
program.

The operations are: selection of the most suitable reproductive programs (crossover) and
mutation based on a predefined fitness test, usually ability at the desired function. The
crossover process involves switching random pieces of chosen pairs (parents) to generate
new and separate offspring which will become part of the current system generation.
Mutation means swapping a random part of a program with another random part of a
program. Many systems which are not chosen for reuse are recycled to the next generation
from the existing one.

Framework Process Flow

First, the population is selected randomly and 100 samples are taken. Each pipeline is
evaluated on the target variable and each pipeline is ranked on the basis of its performance,

7

2. Problem Statement and Related Work

Figure 2.2: TPOT Machine Learning System Overview Diagram

also known as the fitness of the pipeline. The top 10% of the best-performing pipelines are
selected from the ranked pipeline pool for the pre-mutation population. The remaining
90% of the pre-mutation population is constructed with randomly selected pipelines from
the previous generation and let them compete in a 3-way tournament where the one with
the best performance and the least complexity wins.

The mutation occurs after the pre-mutation population is selected. After which there are
two options for mutation: crossover and mutation. Crossover has a rate of 5% for each
occurrence and, when the event occurs, two pipelines are selected and two sub-parts are
switched between the selected pipelines. On the other hand, mutation has a 90% rate
per individual, where there are three different types of mutation, all with a 1/3 chance
of occurring. Uniform mutation, the pipeline operator is randomly replaced by another
random operator. Insert mutation, a newly generated sequence of operators is inserted
into the existing pipeline. Shrink mutation, a random subset of the pipeline is removed.

8

2.2. Related Work

After which 100 new pipelines remain for the population of the next generation. This
process has been repeated 100 times. During this, the single best-performing pipeline is
always saved.

Machine Learning Pipeline Operators

Being one of the most mature AutoML frameworks, TPOT offers a wide range of classifiers
for various machine learning problems. The full list can be found in Table 2.1.

Operator Methods

Supervised Classifier DecisionTree, RandomForest, eXtreme Gradient Boosting
Classifier (from XGBoost), LogisticRegression,
KNearestNeighborClassifier

Feature Preprocessing StandardScaler, RobustScaler, MinMaxScaler, MaxAbsScaler,
RandomizedPC, A Binarizer, PolynomialFeatures

Feature Selection VarianceThreshold, SelectKBest, SelectPercentile, SelectFwe,
Recursive Feature Elimination (RFE)

Table 2.1: TPOT Automated Machine Learning Pipeline Operators [OUA+16b]

Application of TPOT

Being a python package, setting up a TPOT is very simple and user-friendly task. After
all the installation pre-requisites have been installed, TPOT can be installed using a
single line of code:

pip install tpot

After which an example of iris dataset can be easily run as shown in Listing 1. Further
configuration options can be found in Table 2.2.

9

2. Problem Statement and Related Work

Configuration Parameter Description

generations Number of iterations to the run pipeline
optimization process.

population_size Number of individuals to retain in the genetic
programming population every generation.

offspring_size Number of offspring to produce in each genetic
programming generation.

mutation_rate Mutation rate for the genetic programming
algorithm.

crossover_rate Crossover rate for the genetic programming
algorithm

scoring Function used to evaluate the quality of a given
pipeline for the classification problem.

cv Cross-validation strategy used when evaluating
pipelines.

subsample Fraction of training samples that are used during
the TPOT optimization process.

n_jobs Number of processes to use in parallel for
evaluating pipelines during the TPOT
optimization process.

max_time_mins How many minutes TPOT has to optimize the
pipeline.

max_eval_time_mins How many minutes TPOT has to evaluate a
single pipeline.

random_state The seed of the pseudo random number generator
used in TPOT.

config_dict A configuration dictionary for customizing the
operators and parameters that TPOT searches in
the optimization process.

template Template of predefined pipeline structure.
warm_start Flag indicating whether the TPOT instance will

reuse the population from previous calls to fit().
memory If supplied, pipeline will cache each transformer

after calling fit
use_dask Whether to use Dask-ML’s pipeline

optimiziations.
periodic_checkpoint_folder If supplied, a folder in which TPOT will

periodically save pipelines in pareto front so far
while optimizing.

early_stop How many generations TPOT checks whether
there is no improvement in optimization process.

verbosity How much information TPOT communicates
while it’s running.

disable_update_check Flag indicating whether the TPOT version
checker should be disabled.

log_file Save progress content to a file.

Table 2.2: TPOT Automated Machine Learning Configuration Parameters [noac]

10

2.2. Related Work

1 from tpot import TPOTClassifier

2 from sklearn.datasets import load_iris

3 from sklearn.model_selection import train_test_split

4 import numpy as np

5

6 iris = load_iris()

7 X_train, X_test, y_train, y_test = train_test_split(

8 iris.data.astype(np.float64),

9 iris.target.astype(np.float64),

10 train_size=0.75,

11 test_size=0.25,

12 random_state=42,

13)

14 tpot = TPOTClassifier(

15 generations=5,

16 population_size=50,

17 verbosity=2,

18 random_state=42

19)

20 tpot.fit(X_train, y_train)

21 print(tpot.score(X_test, y_test))

Listing 1: TPOT iris dataset example [noac]

2.2.2 Auto-WEKA

Auto-WEKA [THHLB13] is a tool which selects and optimizes a combined algorithm over
the algorithms of classification and regression in WEKA. More precisely, Auto-WEKA
uses model-based optimization techniques, with a particular dataset, to investigate
settings on hyperparameters of several algorithms and suggest the best generalization
results for the user.

The developers of Auto-WEKA were one of the first to use Bayesian optimization for
hyperparameter optimization in the magnitude that Auto-WEKA has implemented.
Where the full-fledged machine learning pipeline is being streamlined and turned into
a combined algorithm and hyperparameter search problem (CASH). That means that
Auto-WEKA only applies another dimension to the hyperparameter search problem by
introducing a classifier and feature selection as top-level parameters, therefore expanding
the hyperparameter search problem to the CASH problem.

11

2. Problem Statement and Related Work

Bayesian Optimization

There are many problems with optimization in machine learning, where the objective
function f(x) is a black box function [Moc94, BCdF10a]. We have no analytical expression
for f , nor are we familiar with its derivatives. The estimation of the feature is confined
to a point x sampling and the potential noisy reaction.

If f would be cheap to evaluate, we could easily search through many points with a
normal grid search to get the best performance possible. However, usually the function f
is expensive, meaning that an evaluation of f would cost either time or money. Just as
in our case, where the training budget is limited, many needless evaluations of f would
hinder our performance.

This is the setting where Bayesian methods in optimisation are most effective. With a
minimal number of iterations they seek to reach the global optimum or as in our case
the best possible configuration λ. The Bayesian optimisation involves a prior confidence
in the problem of samples from f and changes the previous versions to a prior which is
similar to f . The model used to simulate the target function is known as the surrogate
model. Bayesian optimization also uses the acquisition function to direct the sample to
areas where the best observation is likely to be improved.

Gaussian processes (GPs) are a common surrogate model for Bayesian optimization. GPs
describe a function before and we will use it to combine prior views about the objective
function. The GP posterior is cheap to measure and is used to indicate points where
samples are supposed to change in the search space.

To summarize, Bayesian optimization [BCDF10b, EFH+13] creates a probabilistic model
M of f , centered on the evaluations of points in f and any previous knowledge accessible.
Bayesian optimization uses the acquisition function aM : Λ → R, which uses the M
model predictive distribution to quantify the useful knowledge about hyperparameter
configuration λ ∈ Λ to select its next hyperparameter configuration using M. This
function is maxed over Λ to select the λ configuration that is most useful to evaluate
next.

Sequential Model-based Algorithm Configuration (SMAC)

One of the more popular GP optimization methods is SMAC [EFH+13]. Sequential
Model based Algorithm Configuration is a general framework for minimizing black-box
functions f . Random forests are used by SMAC in modeling pM(f | λ) as a Gaussian
Distribution whose mean and variance are the empirical mean and variance over the
predictions of forest’s trees. To save resources, for hyper optimization issues with cross
validation, SMAC assesses loss of configurations at a single fold at a time. Configurations
are compared with each other based on the evaluation of the folds on each. SMAC works
with categorical, continuous and conditional parameters.

It is used to configure many combinatorial optimization algorithms and it was the best
performing optimizer for Auto-WEKA [THHLB13]. The pseudo code of the algorithm

12

2.2. Related Work

and how it works can be seen in Algorithm 2.1.

Algorithm 2.1: Sequential Model-based Bayesian Optimization (SMBO)
[BBBK11]
1 while time budget for optimization has not been exhausted do
2 λ ← determine candidate configuration from M
3 i ← select cross-validation fold
4 Compute c=L

�
Aλ, D(i)

train , D(i)
valid

�
5 H ← H ∪ {(λ, c)}
6 Update M given H
7 end
8 return λ from H with minimal c across cross-validation folds

Framework Process Flow

Auto-WEKA provides a wide variety of hyperparameter search spaces by introducing
768 potential hyperparameters. Many of them come from the usual classifiers, but also
from newly introduced meta-methods and ensemble methods. Auto-Weka was developed
with classification in mind, but can quickly be applied to regression problems as well.

The biggest challenge of such a large hyperparameter search space is that most of the
learning algorithms further expose hyperparameters specific to the said learning algorithm.
For example, specific algorithm hyperparameters are used to describe the number of
neighbors to be included in the KNN, the number of leaves to be used in the decision
tree, the kernel function to be used in the SVM. These hyperparameters are treated in a
"outer loop" and are handled as hierarchical parameters.

To solve this problem Auto-Weka uses Bayesian optimization. in particular Sequential
Model-Based Optimization (SMBO), a versatile stochastic optimization framework that
can work explicitly with both categorical and continuous hyperparameters, and that can
exploit hierarchical structure stemming from conditional parameters [THHLB13].

Auto-WEKA is considered to be agnostic to the optimizer, but SMAC ended up being
the default optimization algorithm due to better performance.

Machine Learning Pipeline Operators

Having WEKA as an existing system with a broad base of Auto-WEKA classifiers to
use, Auto-WEKA provides the widest range of algorithms offered, including ensemble
and meta algorithms as well. The same is true of the feature preprocessing methods. A
full list can be found in Table 2.3. The configuration options can be found in Table 2.4.

13

2. Problem Statement and Related Work

Figure 2.3: Auto-Weka Machine Learning System Overview Diagram

Application of Auto-WEKA

Running Auto-WEKA is very straightforward through the WEKA application. Just
install it through in-app package manager and you’re good to start experimenting with
your own pipelines.

14

2.2. Related Work

Operator Methods

Supervised Classifier Bayes Net, Naive Bayes, Naive Bayes Multinomial Gaussian
Process, Linear Regression, Logistic Regression, Single-Layer
Perceptron, Stochastic Gradient Descent, SVM, Simple Linear
Regression, Simple Logistic Regression, Voted Perceptron,
KNN, K-Star, Decision Table, RIPPER, M5 Rules, 1-R, PART,
0-R, Decision Stump, C4.5 Decision Tree, Logistic Model Tree,
M5 Tree, Random Forest, Random Tree, REP Tree, Locally
Weighted Learning*, AdaBoost M1*, Additive Regression*,
Attribute Selected*, Bagging*, Classification via Regression*,
LogitBoost, MultiClass Classifier Random Committee*,
Random Subspace*, Voting+, Stacking+

Feature Preprocessing Best First*, Greedy Stepwise*, Ranker*, CFS Subset Eval,
Pearson Correlation Eval, Gain Ratio Eval, Info Gain Eval, 1-R
Eval, Principal Components Eval, RELIEF Eval, Symmetrical
Uncertainty Eval

Table 2.3: Auto-Weka Automated Machine Learning Pipeline Operators [THHLB13]

Configuration Parameter Description

seed the seed for the random number generator
memLimit the memory limit for runs (in MiB)
parallelRuns the number of runs to perform in parallel
numDecimalPlaces The number of decimal places to be used for the output

of numbers in the model.
batchSize The preferred number of instances to process if batch

prediction is being performed.
timeLimit the time limit for tuning (in minutes)
debug If set to true, classifier may output additional info to

the console.
nBestConfigs How many of the best configurations should be

returned as output
doNotCheckCapabilities If set, classifier capabilities are not checked before

classifier is built
metric the metric to optimise

Table 2.4: Auto-WEKA Automated Machine Learning Configuration Parameters

15

2. Problem Statement and Related Work

2.2.3 Auto-Sklearn
Auto-Sklearn offers supervised machine learning out-of-the-box. Constructed around
the machine learning library scikit-learn, Auto-Sklearn searches for the right learning
algorithm and optimizes its hyperparameters for a new machine learning dataset. Auto-
Sklearn extends its idea of configuring an efficient global optimization while extending
it with extra steps like meta learning and ensemble building. Auto-Sklearn uses meta-
learning to define and use information gathered in the past to accelerate the optimization
process. Auto-Sklearn constructs a ensemble of all models evaluated in the global
optimization process to enhance generalization. It wraps 15 classification algorithms,
14 feature algorithms, and handles data scaling, categorical encoding and also handles
missing values.

Meta-Learning

Meta-Learning [KH00], is a sub-field of machine learning where automatic learning
algorithms are applied on metadata about machine learning experiments. The main
goal is to use such metadata to understand how automatic learning can become flexible
in solving learning problems, hence to improve the performance of existing learning
algorithms or to learn (induce) the learning algorithm itself, hence the alternative term
learning to learn.

Ensemble Learning

Ensemble Learning [D+02, ZM12, Pol12], is a machine learning method where multiple
basic learners are used together to overcome each other’s weaknesses and solve machine
learning problems. Ensemble learning is split into:

• Bagging - Boostrap Aggregating, models are trained in parallel to many different
subsets of data and then averaged to make meaningful predictions.

• Boosting - Improvements involve slowly teaching a weak learner where the paradigm
relies intuitively on experiences that its previous variations had trouble modelling
through time. One very popular boosting algorithm is Adaboost [Sch13].

Framework Process Flow

The two new additions are Meta-Learning and ensemble building. Meta-Learning is just
a way to learn from previous knowledge. Trying to simulate the real-world machine
learning process, where experienced and knowledge-based practitioners can arbitrarily
better choose machine learning classifiers based on the dataset they are currently working
on. The Auto-Sklearn team tackled this problem by taking 160 datasets from the UCI
Machine Learning repository, conducting supervised machine learning, and extracting
meta-features from the results for each dataset. This newly acquired meta information is
then used to start a hyperparameter search where, once a new dataset is received for

16

2.2. Related Work

training, meta features are extracted and the nearest 25 results are taken as starting
points for a hyperparameter search space through KNN.

On the other hand, the Ensemble Building Step makes the multiple training of models
advantageous during training by combining them into Ensemble Methods. Where, during
normal Bayesian hyperparameter optimization, all other models beside the best are lost.
This is very important because the difference in prediction error is often very low in high
ranking models. Although it is known that the stacking of classifiers often results in a
lot of over-fitting of training data, the proposed method seeks to avoid this by using
ensemble selection. To put it in a nutshell, ensemble selection is a greedy procedure which
starts from an empty ensemble and adds each model which minimizes the validation loss
of the ensemble (with uniform weight but which allows repeatings).

Figure 2.4: Auto-Sklearn Machine Learning System Overview Diagram

Machine Learning Pipeline Operators

Auto-Sklearn also offers a wide range of supervised classifiers and feature preprocessing
methods. The full list can be found in Table 2.5

Application

Being a python package, setting up Auto-Sklearn is more of a problem than one might
think at first glance. Failing support for Windows and MacOS, it is limited to Ubuntu
distributions only, while also being dependent on some older versions of scikit-learn and

17

2. Problem Statement and Related Work

Operator Methods

Supervised Classifier AdaBoost (AB), Bernoulli naive Bayes, decision tree (DT),
extreml. rand. trees, Gaussian naïve Bayes, gradient boosting
(GB),KNN, LDA, linear SVM, kernel SVM, multinomial naive
Bayes, passive aggressive, QDA, random forest (RF), Linear
Class. (SGD)

Feature Preprocessing Extreml. rand. trees prepr., fast ICA, feature agglomeration,
kernel PCA, rand. kitchen sinks, linear SVM prepr., no
preprocessing, nystroem sampler, PCA, polynomial, random
trees embed., select percentile, select rates, one-hot encoding ,
imputation, balancing, rescaling

Table 2.5: Auto-Sklearn Automated Machine Learning Pipeline Operators [FKE+15]

pandas making it a problem to maintain with other AutoML systems in one environment.
After getting over all that one can install Auto-Sklearn through pip:

pip install auto-sklearn

After which an example of iris dataset can be easily run as shown in the Listing 2. Further
configuration options can be found in Table 2.6.

18

2.2. Related Work

Configuration Parameter Description

time_left_for_this_task Time limit in seconds for the
search of appropriate models.

per_run_time_limit Time limit for a single call to
the machine learning model.

initial_configurations_via_metalearning Initialize the hyperparameter
optimization algorithm with
this many configurations which
worked well on previously seen
datasets.

ensemble_size Number of models added to the
ensemble built by Ensemble
selection from libraries of
models. Models are drawn with
replacement.

ensemble_nbest Only consider the
ensemble_nbest models when
building an ensemble.

max_models_on_disc Defines the maximum number
of models that are kept in the
disc.

ensemble_memory_limit Memory limit in MB for the
ensemble building process.

seed Used to seed SMAC
ml_memory_limit Memory limit in MB for the

machine learning algorithm.
include_estimators If None, all possible estimators

are used.
exclude_estimators If None, all possible estimators

are used.
include_preprocessors If None all possible

preprocessors are used.
exclude_preprocessors If None all possible

preprocessors are used
resampling_strategy how to to handle overfitting,

might need ‘resam-
pling_strategy_arguments/’

resampling_strategy_arguments Additional arguments for
resampling_strategy.

tmp_folder folder to store configuration
output and log files.

output_folder folder to store predictions for
optional test set.

delete_tmp_folder_after_terminate remove tmp_folder, when
finished

delete_output_folder_after_terminate remove output_folder, when
finished

shared_mode Run smac in sharedmodelnode.
n_jobs The number of jobs to run in

parallel for fit().
disable_evaluator_output If True, disable model and

prediction output.
smac_scenario_args Additional arguments inserted

into the scenario of SMAC.
get_smac_object_callback Callback function to create an

object of class
smac.optimizer.smbo.SMBO.

logging_config dictionary object specifying the
logger configuration.

metadata_directory path to the metadata directory.
metric An instance of

autosklearn.metrics.Scorer as
created by au-
tosklearn.metrics.make_scorer().

19

2. Problem Statement and Related Work

1 from autosklearn.classification import AutoSklearnClassifier

2 from sklearn.model_selection import train_test_split

3 from sklearn.datasets import load_iris

4 from sklearn.metrics import accuracy_score

5

6 iris = load_iris()

7 X_train, X_test, y_train, y_test = train_test_split(

8 iris.data.astype(np.float64),

9 iris.target.astype(np.float64),

10 train_size=0.75,

11 test_size=0.25,

12 random_state=42,

13)

14 automl = AutoSklearnClassifier()

15 automl.fit(X_train, y_train)

16 y_hat = automl.predict(X_test)

17 print("Accuracy score", accuracy_score(y_test, y_hat))

Listing 2: Auto-Sklearn iris dataset example [noaa].

2.2.4 Hyperopt-Sklearn
Hyperopt-Sklearn [KBE14] is a new software project that provides automatic algorithm
configuration of the scikit-learn machine learning library. It takes the view that the
choice of classifier and even the choice of preprocessing module can be taken together
to represent a single large hyperparameter optimization problem. Hyperopt is used to
define a search space that encompasses many standard components (e.g. SVM, RF, KNN,
PCA, TF-IDF) and common patterns of composing them together.

Framework Process Flow

The Hyperopt framework offers optimization algorithms for search spaces that arise
in algorithm configuration. These spaces are characterized by a variety of types of
variables (continuous, ordinal, categorical), different sensitivity profiles (e.g. uniform vs.
logarithmic), and conditional structure (when there is a choice between two classifiers,
the parameters of one classifier are irrelevant when the other classifier is chosen). To use
Hyperopt, a user must define/choose three things [KBE14]:

1. a search domain,

2. an objective function,

3. an optimization algorithm.

20

2.2. Related Work

Where the search domain is defined by random variables which distributions are chosen in
the manner of having higher probability for more promising results. This domain includes
predefined Python functions and operators for convenience of the objective function.

The objective function averages these random variables together to a scalar score that
will aim to minimize the optimization algorithm. Having selected a search domain, an
objective function, and an algorithm for optimization, the ‘fmin‘ method of Hyperopt
performs optimization and saves the search results into a database (for instance either a
plain Python list or an instance of MongoDB).

Machine Learning Pipeline Operators

Hyperopt-Sklearn offers the usual wide range of supervised classifiers, regressors, and
feature preprocessing methods. While, also as a highlight, offering some preprocessing
methods for natural language processing (NLP) such as the TF-IDF preprocessing method.
The full list can be found in Table 2.7

Operator Methods

Supervised Classifier svc, svc_linear, svc_rbf, svc_poly, svc_sigmoid, liblinear_svc,
knn, ada_boost, gradient_boosting, random_forest,
extra_trees, decision_tree, sgd, xgboost_classification,
multinomial_nb, gaussian_nb, passive_aggressive,
linear_discriminant_analysis, quadratic_discriminant_analysis,
one_vs_rest, one_vs_one, output_code

Supervised Regressor svr, svr_linear, svr_rbf, svr_poly, svr_sigmoid, knn_regression,
ada_boost_regression, gradient_boosting_regression,
random_forest_regression, extra_trees_regression,
sgd_regression, xgboost_regression

Preprocessing pca, one_hot_encoder, standard_scaler, min_max_scaler,
normalizer, ts_lagselector, tfidf, rbm, colkmeans

Table 2.7: Hyperopt-Sklearn Automated Machine Learning Pipeline Operators [noa20].

Application

Hyoperopt-Sklearn is divided into two packages, hyperopt where the configuration search
algorithms are located and hpsklearn where the AutoML system, which is based on the
search algorithms, is located. Both are needed to be able to configure the Hyopert-Sklearn
AutoML framework. Once both are installed, an example of iris dataset can be easily
run as shown in Listing 3. Further configuration options can be found in Table 2.8.

21

2. Problem Statement and Related Work

Configuration Parameter Description

preprocessing This should evaluate to a list of sklearn-style
preprocessing modules (may include
hyperparameters)

ex_preprocs This should evaluate to a list of lists of
sklearnstyle preprocessing modules for each
exogenous dataset.

classifier This should evaluates to sklearnstyle classifier
(may include hyperparameters).

regressor This should evaluates to sklearnstyle regressor
(may include hyperparameters)

algo hyperopt suggest algo (e.g. rand.suggest)
max_evals Fit() will evaluate up to thismany

configurations. Does not apply to fit_iter,
which continues to search indefinitely.

loss_fn A function that takes the arguments (y_target,
y_prediction) and computes a loss value to be
minimized

continuous_loss_fn When true, the loss function is passed the
output of predict_proba() as the second
argument.

trial_timeout Kill trial evaluations after this many seconds.
fit_increment Every this-many trials will be a synchronization

barrier for ongoing trials, and the hyperopt
Trials object may be check-pointed.

fit_increment_dump_filename Periodically dump self.trials to this file (via
cPickle) during fit() Saves after every
‘fit_increment‘ trial evaluations.

seed If int, the integer will be used to seed a
RandomState instance for use in hyperopt.fmin.

use_partial_fit If the learner support partial fit, it can be used
for online learning.

refit Refit the best model on the whole data set.

Table 2.8: Hyperopt-Sklearn Automated Machine Learning Configuration Parameters
[noa20].

22

2.2. Related Work

1 from hpsklearn import HyperoptEstimator, any_classifier, any_preprocessing

2 from sklearn.datasets import load_iris

3 from sklearn.model_selection import train_test_split

4 from hyperopt import tpe

5 import numpy as np

6

7 iris = load_iris()

8 X_train, X_test, y_train, y_test = train_test_split(

9 iris.data.astype(np.float64),

10 iris.target.astype(np.float64),

11 train_size=0.75,

12 test_size=0.25,

13 random_state=42,

14)

15 estim = HyperoptEstimator(

16 classifier=any_classifier("my_clf"),

17 preprocessing=any_preprocessing("my_pre"),

18 algo=tpe.suggest,

19 max_evals=100,

20 trial_timeout=120,

21)

22 estim.fit(X_train, y_train)

23 print(estim.score(X_test, y_test))

Listing 3: Hyperopt-Sklearn iris dataset example [noa20].

2.2.5 Google Cloud AutoML Tables
Google Cloud AI [Bis19] offers cloud services for businesses and individuals to leverage
pre-trained models for custom artificial intelligence tasks through the use of REST APIs.
It also exposes services for developing custom models for domain use cases such as
AutoML Vision for image classification and object detection tasks and AutoML tables to
deploy AI models on structured data.

Neural Architecture Search

With the recent success of Deep Learning and its different types of neural networks in
all areas of Machine Learning [Den14], their fine tuning to achieve the best possible
performance has become one of the top priorities in the field, leading to the creation of a
sub-branch of hyperparameter optimization called Neural Architecture Search (NAS).
NAS [EHH18] is a technique for automating the design of artificial neural networks
(ANN), a widely used model in the field of machine learning. As a result, becoming one
of the most complex optimization problems there is due to the very complex nature of

23

2. Problem Statement and Related Work

the Neural Networks themselves. And, due to the many different parameters and their
very wide range of values they can take.

Framework Process Flow

Although much of the actual search algorithm process is left in the dark, allowing us
only to assume the details. In the presentation of the AutoML Tables Introduction, it is
said that [TyHCPP]: the search algorithm is based on the Neural Network Architecture
Search already existing at Google Brain, from which they have extended their search
algorithm with tree structures and automated feature engineering methods.
While, on the other hand, Google Cloud has made sure that everyone can get started on
their platform without any prior machine learning background. After registering for the
beta and accessing the AutoML Tables Console, the process of inputting your data until
you get your prediction output is very straight forward.
One starts by giving their data either as a CSV or BigDataQuery, after which one defines
their target variable and can view different statistics for the target variable, such as
correlation with other variables and missing data. The biggest strength of AutoML
Tables is that it can also handle missing data, a feature that is missing from many other
AutoML systems. Then one can actually continue training their model , allowing for
some configuration, such as train-test splitting, and for how long to train their models.
A lot of the specifics of the actual search algorithm are not published, the process is
divided into three phases from the diagram presented in the opening speech of the
AutoML Tables [TyHCPP]:

1. Preprocessing - Assuming where the missing data is being handled and different
scales are being tested.

2. Architecture Search and Tuning - The most important step in which all feature
selection and embedding is performed, where the model type is selected and trained
on the basis of the loss function.

3. CV, Bagging, Ensemble - Cross-validation of results and creation of ensembles for
the best possible performance.

After this is done, the model can be evaluated on the basis of the validation set on various
performation metrics. With which model, one can either deploy it using their integrated
web services from Google, or use it to predict further new test data, either via BigQuery
or CSV tables.

Machine Learning Pipeline Operators

Although, not many details are shown to the public regarding Google’s Cloud AutoML
Tables approach, some of the pipeline operators are mentioned in the documentation of
the system.

24

2.2. Related Work

Figure 2.5: Google AutoML Tables System Overview Diagram

Operator Methods

Supervised Model Linear, Feedforward deep neural network, Gradient Boosted
Decision Tree, AdaNet, Ensembles of various model architectures

Feature Engineering Normalize and bucketize numeric features, Create one-hot
encoding and embeddings for categorical features, Perform basic
processing for text features, Extract date- and time-related
features from Timestamp columns

Table 2.9: Google AutoML Tables Automated Machine Learning Pipeline Operators
[noab]

Application

It’s very easy to get going in the Google Cloud environment, and Google also offers a
$300 registration bonus to get yourself going. To be noted is that Google AutoML Tables
defined itself as being on the more expensive side of things, with a 19$ cost per hour of
model training. Most of the configuration options that can be found in Table 2.9 are
more for the top-level parameters of the pipeline, considering all of the specifics regarding
the optimization algorithm are hidden and done by AutoML Tables.

2.2.6 Amazon SageMaker Autopilot
Similar to its biggest rival Google, Amazon recently also started providing a scalable
AutoML solution called Amazon SageMaker Autopilot [DPI+20]. A fully managed system
providing an automated machine learning solution that can be modified when needed.
Given a tabular dataset and the target column name, Autopilot identifies the problem
type, analyzes the data and produces a diverse set of complete machine learning pipelines
including feature preprocessing and machine learning algorithms, which are tuned to
generate a leader-board of candidate models.

25

2. Problem Statement and Related Work

Configuration Parameter Description

Data Split The way your dataset is split between training,
validation, and test subsets.

Weight Column By default, each row in your dataset is weighted
equally. To create a custom weighting scheme, add a
column to your training dataset with numeric weights,
then select it as the weight column.

Optimization Objective Select different optimization metrics.
Early Stopping Ends model training when Tables detects that no

more improvements can be made.
Budget Amount of hours to train model for (number between

1 and 72).
Input Feature Selection Sub-select only a part of your features.

Table 2.10: Google AutoML Tables Configuration Parameters [noab]

26

CHAPTER 3
MetaheuristicSklearn - An

AutoML Framework

This chapter will include a brief summary and introduction to MetaheuristicSklearn,
an automated machine learning framework developed as part of this thesis. To recap
the definition given in the previous chapter: Machine Learning is the process by which
machines can learn how to make decisions based on input data and their algorithms.
This definition might seem vague but it captures the basic idea of what machine learning
entails. This leads us to the definition of automated machine learning (AutoML) as the
process of (automatically) building machine learning pipelines from raw data. This is
what the proposed framework named as MetaheuristicSklearn does.

The aim of this framework is to help computer programmers without deep understanding
of machine learning (with a focus on Python programmers) in the task of automating
machine learning. The scope of this thesis is limited to supervised learning. This means
that the framework can only work on data sets that contain a nominal target variable.
As we explained earlier, the word supervised implies that the target variable has been
manually provided by a human expert.

This chapter will include an in-depth description of MetaheuristicSklearn, which offers an
AutoML framework that is used for supervised machine learning but employs metaheuristic
algorithms to find the optimal feature selection method, scaling method, classifier and
their respective hyperparameters, also known as AutoML tasks. It will be able to employ
both supervised classification and regression learning, but initially the framework only
supports supervised classification. The framework can be used for a wide variety of
supervised machine learning problems. Figure 3.1 depicts a high-level description of the
system that has been implemented.

The main components of the framework are:

27

3. MetaheuristicSklearn - An AutoML Framework

• Instance and solution representation

• Initialization and base estimator evaluation

• Automated preprocessing, feature selection, model selection, and hyperparameter
tuning through metaheuristic algorithms.

Figure 3.1: High-level System Design Diagram that highlights the framework components

The main advantage of MetaheuristicSklearn is the ease with which it can implement
new methods and algorithms without having to re-create everything from scratch every
time. However, there are already many feature selection methods, scaling methods, and
estimators included from scikit-learn, and also the three metaheuristic algorithms that
make use of those methods which will be described in more detail in Chapter 4.

This chapter will discuss how the AutoML framework was created by modularizing
its functionality into separate components, and give a more holistic approach to the
framework by examining its overall architecture and function.

3.1 Instance and Solution Representation
An instance is a specific example of a problem. In the domain of machine learning this
is also known as the dataset. An instance may be represented as a vector, matrix or
table consisting of the features of the instance and the corresponding labels. This is also
known as the training data set. The training data refers to the set of instances in which
we are trying to find the best solution. This best configuration which we call solution is
found by using AutoML. The training data is generally set up as an input X and output
Y matrix with a column for each feature in the dataset, and a row for every possible
output values Y.

28

3.1. Instance and Solution Representation

3.1.1 Instance Representation
Each instance is represented by one single target function/variable that is of interest
and many variables are given as input. The framework extrapolates this as an input
matrix and a target vector. Inside the framework this is used for finding the best possible
solution configuration to the training data of that instance. An example of how such a
dataset can be called in connection to the framework is shown in Listing 4, more precisely
in rows 5-7.

The system state represents everything that the system needs to know about an instance
at any point in its lifetime. The state, therefore, is composed of the instance and all
previous steps and their parameter configurations.

1 from sklearn import datasets

2 from mhsklearn import SimulatedAnneal

3

4 # Load the Iris data set

5 iris = datasets.load_iris()

6 X = iris.data

7 y = iris.target

8

9 # Initialize Simulated Annealing and fit

10 sa = SimulatedAnneal()

11 sa.fit(X, y)

12

13 # Print the best score and the best config

14 print(

15 "Best score", sa.best_score,

16 "Best pipeline config", sa.best_pipeline_configuration,

17)

Listing 4: Initialization MetaheuristicSklearn Example

3.1.2 Solution Representation
In the AutoML case of an problem a solution differs slightly from a traditional machine
learning solution where only the target variable is considered. In AutoML the solution
represents the whole pipeline configuration including all the necessary preprocessing steps
such as feature selection, scaling selection, model selection and hyperparameter tuning
steps to conclude to the final model solution.

Considering that the solution consists of multiple steps, each step having multiple
parameters, each solution consists of a series of steps, in the order applied, and their
respective configurations. Listing 5 shows a solution of an example instance. The

29

3. MetaheuristicSklearn - An AutoML Framework

solution is represented as a list of tuples. Each tuple is one step in the order applied.
In our example, we can see that in line two the scaling method is defined, line three
displays the selected feature selection method, lines 4-12 are part of the estimator and
it’s configuration, and lines 12-12 are the hyperparameters.

The framework makes heavy use of sklearn’s pipeline sub-module, which provides a
convenient way of running multiple transformation functions in sequence per problem
instance, and also allows us to concatenate multiple transformations into one object we
can evaluate upon.

1 {

2 "scaling":"passthrough",

3 "feature_selection":SelectKBest(k=4),

4 "est":SVC(C=1505.008120090211,

5 coef0=0.33333333333333326,

6 degree=4,

7 gamma=0.0019531249999999996,

8 kernel="poly",

9 max_iter=100000000.0,

10 tol=0.1),

11 "hyperparams":{

12 "SVC__C":1505.008120090211,

13 "SVC__kernel":"poly",

14 "SVC__degree":4,

15 "SVC__gamma":0.0019531249999999996,

16 "SVC__coef0":0.33333333333333326,

17 "SVC__shrinking":True,

18 "SVC__tol":0.1,

19 "SVC__max_iter":100000000.0

20 }

21 }

Listing 5: Solution Representation Example

3.2 Initialization and the Base Estimator
The implemented metaheuristic algorithms all share similarities, and have a similar
procedure at the beginning of their work. Therefore, an initialization function, which will
be described in more detail in Subsection 3.2.1, is created to perform all these actions in
a uniform way, and a base estimator base_estimator is used while training, described
in 3.2.2. The base_estimator is stored inside the data structure of the framework,
and is instantiated directly during initialization.

30

3.2. Initialization and the Base Estimator

Table 3.1: Shared Parameters for all metaheuristic algorithms, descriptions, and their
default values

Parameter Description Default Value

random_seed Random Seed for reproducibility 42

scoring Scoring metric to use for inside
iteration performance evaluation

"f1_macro"

max_runtime Time after which to stop looking
for a better solution

3600

cv Number of folds to use inside
iteration cross validation

5

verbose Print more information False

retrain Retrain the best performimg
pipeline on the whole dataset given

True

Table 3.2: Best variables accessible after having finished the optimization process, and
their descriptions

Variable Description

best_score Best cross-validated score calculated during the
optimization process

best_hyperparams Best hyper parameters for each classifier used
during the optimization process

best_pipeline_configuration Best performing pipeline configuration found
best_pipeline Best sklearn pipeline object of the

best_pipeline_configuration

total_iter The amount of iterations completed
grid_scores List of gridscores for each iteration
runtime Optimization runtime in seconds

31

3. MetaheuristicSklearn - An AutoML Framework

3.2.1 Initialization
The initialization function is used to perform all the necessary actions before the main
function of each metaheuristic algorithm is called, this includes calling the base estimator
evaluation and calculating a first round evaluation, randomly initializing all of the model
hyperparameters and creating the necessary variables. It is important to note that the
framework starts by using the baseline as the initial state, and then randomly moves to
the next solution configuration to be evaluated.

3.2.2 The Base Estimator
To evaluate how well a set of possible solutions fits the problem, an initial evaluation
pipeline consisting of no feature selection, a standard scaler, and an SVM classifier was
defined, presenting itself as a starting baseline to which further configurations created
from the metaheuristics can be compared against. The initialization in this context only
deals with a single problem instance and sets the stage for the scaling selection, feature
selection, model selection, and hyperparameter tuning.

Before going into detail for the automated machine learning inside the framework, some
implementation details that are valid for all algorithms are going to be defined. All of
these are included in the BaseEstimator class of the framework and are described in
more detail in Table 3.1. It creates a foundation for the specific metaheuristic algorithms
to be implemented but also presents itself a good starting point for other search algorithms
in the future. A high level overview of this class has been listed in the Listing 6.

In Listing 6 we can see the BaseEstimator class and how it has been implemented inside
the MetaheurisitcSklearn framework. In lines 2-5 we can see the __init__ function
of the class, which does the initialization of the parameters to the instance variables.
Continuing to line seven, where the fit function is defined, which is called independent
of the metaheuristic used. It is responsible of generating the pipeline grid as seen in line
nine, selecting initial random values for each hyperparameter in lines 12-15, updating
the current configuration with line 18, computing the initial score with the fit_score
function in line 21, and then finally updating the global variables necessary after line 24.

Considering the important role reproducibility present in an experiment a random_seed
parameter is implemented in the framework which is used for the metaheuristic optimiza-
tion algorithms and for generating the cross-validation splits inside each iteration. The
default value is set to 42, which means that the same random seed is generated each time
the framework is used, but it can be changed to any number.

To control for how long an optimization algorithm searches for better pipeline configu-
rations, the max_runtime parameter was introduced. This is a hard upper bound for
the maximum time a search algorithm should take and is set to 3600 (seconds) in this
version, but can be changed through the max_runtime parameter.

For debugging purposes a verbose parameter was introduced as well, this parameter
controls how many values are printed, the default value is False. Logging inside the

32

3.2. Initialization and the Base Estimator

1 class BaseEstimator:

2 def __init__(self,random_seed=42,...):

3 # Initialize Instace Variables

4 self.random_seed = random_seed

5 ...

6

7 def fit(self, X, y):

8 # Setup hyperparameters

9 self.pipeline_grid = self.generate_pipeline_grid(num_cols)

10

11 # Select initial random values for each hyperparameter

12 for est, hyperparams in self.pipeline_grid["hyperparams"].items():

13 self.old_hyperparams[est] = dict(

14 (k, np.random.choice(val)) for k, val in hyperparams.items()

15)

16

17 # Update configuration

18 self.old_pipeline_configuration = {...}

19

20 # Compute the initial score

21 self.old_score, self.old_std = CVFolds(...).fit_score(X, y)

22

23 # Variables to hold the best score, hyperparams and configuration

24 self.best_score = self.old_score

25 ...

26

27 ...

Listing 6: High Level overview of the BaseEstimator Class

metaheuristic-sklearn framework makes use of python’s default logging module and
therefore supports level logging.

In addition to the variables mentioned above a retrain parameter is also defined to
control if the best performing pipeline is retrained on the whole dataset without any
cross-validation after the search algorithm is completed. The default value of retrain
is true, which means that that the best performing pipeline is always refitted on the
instance given.

In this work we use a 5-Fold Mean Cross Validated score. Meaning that the data is
split into 5 folds, and each fold is once used as a test set and the remaining folds as
test sets, then the 5 scores obtained are averaged. This allows for every step of the
classification pipeline to be distributed evenly on the train and test sets. Thereby making

33

3. MetaheuristicSklearn - An AutoML Framework

every iteration independent from each other, not favoring any individual split where
there could be an outlier of performance evaluation.

The metric used for this evaluation is based on the scoring parameter, which is the
average of the performance values resulted from each fold of the cross-validation. The
default scoring method is "f1_macro", as seen in Formula 3.1, which determines the
unweighted mean of the metrics for each label using p-precision and r-recall [YL99].
However, does not account for label imbalance. Which is usually the desired result in
underrepresented classes. All algorithms also accept optional parameters that can be
used to alter the behavior of an algorithm.

F1(r, p) = 2rp

r + p
. (3.1)

After an optimization algorithm has finished searching, and if desired has refitted the
best performing pipeline on the whole instance provided, one can also access various
other information from the trained model object via the public best_ variables, such
as best score, best hyperparameters for each classifier, best pipeline configuration, best
pipeline, list of grid scores and the runtime. A detailed list of these variables can be
found in Table 3.2.

The next sub-sections look at the individual components of the automated machine
learning part inside the algorithms and what their specificities are.

3.3 Automated Machine Learning
Scikit-Learn was chosen, as one of the most well-developed and used machine learning
libraries, to build robust AutoML systems as the underlying ML platform. It provides a
wide variety of well-developed ML algorithms and is easy to use for professionals as well
as beginners. This also resulted in the name of the resulting framework of this thesis,
MetaheuristicSklearn.

It is implemented in python as a modular framework of metaheuristics that can be used
to solve an AutoML problem. The idea is to provide a variety of metaheuristic algorithms,
so the user can easily select the most suitable algorithm for his/her problem, without
needing to know how it works under the hood. The code is flexible and can be used for a
wide variety of supervised classification problems in the machine learning domain.

Currently a part of the framework is also the preprocessing steps, where currently feature
selection and scaling are supported. These are encoded as top-level parameters into the
framework and are independent of other steps, which allows easy integration of other
preprocessing steps if wanted.

The next sections will give more context and details as to how the visualization in Figure
3.2 is created and what the individual components do.

34

3.3. Automated Machine Learning

Figure 3.2: High-level system design diagram that highlights the framework components

3.3.1 Scaling
Scaling is a very important step in the machine learning pipeline. Most machine learning
models work with numerical variables as input and output. Therefore, the data has to be
scaled for this to make sense. For example, if one would want to predict the amount of
money someone owns, based on their income, it is obvious that the value of 0.00000001
does not make sense. It is best to scale the input values in this case to something like a
factor of 10,000. The scaling function takes any instance sequence and converts the data
into the desired format.

Scaling methods are supported through the scikit-learn preprocessing module which scales
the input data based on the method. Currently implemented are the StandardScaler
and MaxAbsScaler methods. StandardScaler standardizes features by removing
the mean and scaling to unit variance, while MaxAbsScaler scales each feature by its
maximum absolute value.

This allows easy integration of other preprocessing steps if wanted. For evaluation
purposes also a passthrough scaling method was included where no scaling is done just
in case the data is already scaled or scaling does affect performance negatively.

3.3.2 Feature Selection
Another part of the preprocessing step is feature selection, being included in the automated
preprocessing pipeline generation. Feature Selection is important because it reduces the
number of parameters associated with the model and can therefore lead to a better fitting
model. Currently is supported through the SelectKBest from the feature selection
module of scikit-learn, which is a wrapper feature selection method and uses the test
chi-squared statistic from the input data and ranks the feature by calculated importance.
The range of features used is between 1 and the total amount of input variables. However,
other algorithms could be easily integrated due to the high modularity of the framework.

3.3.3 Model Selection
Model selection is an advanced procedure that selects the best or the best-ranked candidate
ML model from a set of candidate models. Usually, model selection is the responsibility
of the practitioner, based on the data, domain knowledge and their expertise. There are
various techniques available for choosing the right predictor from a pool of candidates.

35

3. MetaheuristicSklearn - An AutoML Framework

In this case, the framework is cross-validation to figure out which models are viable.
Cross-validation allows use to make a robust estimation of model performance with
respect to predicting unseen data. The goal of cross-validation is to find a set of feasible
sets where each set is given an equal share of training data.

The framework supports the classifiers listed in Table 3.3 for selection, their names are
based on the implementation names in Scikit-Learn. The classifiers are taken from the
Scikit-Learn package, and are implemented through the Scikit-Learn pipelines module
and each classifier has a built-in cross-validation function which is used to evaluate the
model performance based on the available data. Other classifiers can be added simply by
adding extra classifiers to the pipeline.

Table 3.3: Classifiers and their respective Hyperparameters included in the Metaheuristics-
Sklearn framework

Classifier Hyperparameters

LinearSVC loss, tol, C
RandomForestClassifier bootstrap, max_features, min_samples_leaf,

min_samples_split

RidgeClassifier alpha

SGDClassifier loss, penalty, alpha, l1_ratio, tol, epsilon,
learning_rate, eta0, power_t, average

BernoulliNB alpha, fit_prior
KNeighborsClassifier weights, n_neighbors, p
SVC C, kernel, degree, gamma, coef0, shrinking,

tol, max_iter
DecisionTreeClassifier criterion, min_samples_split,

min_samples_leaf

3.3.4 Hyperparameter Tuning

One of the most difficult steps to automate is hyperparameter tuning. Hyperparameter
tuning includes the part of optimizing values of certain model parameters for improving
performance. Models can have a large number of hyperparameters and tuning these to
get good fitting models can be a tricky task. There is also the possibility that for certain
classes of problem, certain sets of hyperparameters are best suited. Even though there
are various techniques available to tune hyperparameters, these techniques require a lot
of expertise to make them work correctly.

The proposed framework takes care of this part of the machine learning pipeline for the
user and automatically finds the best hyper parameters for each algorithm implemented

36

3.3. Automated Machine Learning

in the ML framework. This is done by evaluating models for max/min performance across
different hyper parameter values through the metaheuristic optimization algorithms.

37

CHAPTER 4
AutoML through Metaheuristic

Algorithms

The approach to solving AutoML problems using metaheuristic algorithms is set out in
the following chapter. Section 4.1 will continue with a brief overview of metaheuristic
algorithms and their components. Following, are the specific sections for each algorithm
and their respective implementation specifics, as well as an explanation of the necessary
AutoML problem-specific improvements.

4.1 Introduction
The original concept of metaheuristic algorithms, also known as stochastic approximation
algorithms, was introduced in 1951 by Robbins and Monro [RM51]. These algorithms
are a way to find a near optimal solution for the problem using lower computational cost
than brute-force methods and without necessarily testing all possible solutions. This
is done by mimicking natural evolution processes such as Darwinian evolution, genetic
algorithms, swarm intelligence, and ant colony optimization (ACO) [Yan10].

Most metaheuristics use some form of "non-directive search", which means that the
algorithm does not have any predefined search pattern or knowledge about the solution’s
properties when searching for an approximate result. Instead it will move around the
search space and choose promising areas to explore further. Another term for this kind
of algorithms is "heuristic" (from Greek: heurístikos = "dealing with discovery") [OL96].

Metaheuristic algorithms such as Genetic Algorithms (GA) use the concepts of reproduc-
tion, mutation, and survival to evolve their solutions. Modern evolutionary algorithms,
even if they use GA as a sub-algorithm, are designed with more advanced features. For
example: segmentation: dividing the problem into smaller parts; elitism: keeping parts

39

4. AutoML through Metaheuristic Algorithms

of the best individuals; and co-evolution: simultaneously evolving solutions for multiple
sub-problems. [Yan10]

Metaheuristic algorithms [FD02, HSCS19, BLS13], have numerous applications, from
designing new machines to optimize production processes to solving very general prob-
lems in engineering analysis and optimization. Furthermore, recent developments in
metaheuristics [HSCS19] provide significant improvements in the solution accuracy for
highly nonlinear problems when compared with other more classical approaches.

Metaheuristic algorithms are relatively easy to implement and can be used to solve many
kinds of problems. The main advantage over algorithms being that on the expense of
a little bit more computer time, faster convergence rates can be obtained or a greater
variation of the solution search space may be searched. On the other hand, a disadvantage
of metaheuristics can be that they don’t guarantee optimal solutions or even near optimal
solutions. Another serious problem is if the performance measure is not well-defined.
Metaheuristic algorithms also need a good initialization method in order to start the
local search phase. The results are often poor if this is done incorrectly.

There are many different metaheuristic algorithms in use today, and dozens of articles
on the theory of each of them [HSCS19, FD02, BLS13]. Here, we are going to focus
on Iterated Local Search, Simulated Annealing and Tabu Search and how they were
implemented for solving AutoML problems. All of these are roughly based on the same
concept but there are crucial differences, for example the way that the algorithm controls
its own search process. Before going into detail for each of these algorithms, an overview
of shared concepts between the algorithms will be given before continuing into further
details.

All of the algorithms share these three major components:

• Initialization

• Search-space exploration

• Evaluation

4.2 Initialization
The initialization phase is the phase before the first step of the algorithm. It is used to
generate the initial solution and initialize the initial values for important parameters
such as mutation rates, exploration rates, or crossover probabilities.

The selection of the best values for the initial parameters is different in every algorithm.
The simplest and most popular way to generate an initial solution is the random search,
which is also used for the MetaheuristicSklearn framework. In the framework, for
each hyperparameter of each classifier their values are picked randomly from a normal
distribution.

40

4.3. Search-space Exploration

4.3 Search-space Exploration

Metaheuristic algorithms often employ some kind of mechanism to avoid local minima
and explore the search space more thoroughly. This is usually done through combinations
of local search, neighborhood generation, move operators, and perturbation [OL96]. This
is the heart of metaheuristics. The algorithm explores the search space by means of
moves in order to discover new candidate solutions.

The search-space exploration phase is the most important phase of any algorithm. If the
initial conditions are good, then the search process will yield better solutions than for a
local optimum found in the initial phase. This is what defines metaheuristics: searching
through a large space of all possible local optima, finding them and then improving them
with an appropriate penalty system.

4.3.1 Local Search

In the Local Search phase, the algorithm searches around the current solution candidate
in order to find more promising sub-problem sets. This can be done by a number of
methods:

• hill climbing

• tabu search

• simulated annealing

In hill climbing one starts from the current solution and iterably improves it until it finds
a local minima. If the hill is not too steep, then the local minimum is almost impossible
to miss; once its location has been detected, it will be used as an approximation for other
nearby points.

In random local search, one explores the problem space by randomly generated new points
in a neighborhood of the best known solution so far. A solution (or a subset of solutions)
is accepted based on the acceptance criterion. It is worth mentioning that this approach is
very slow and may result in excessively high number of iterations [HS04, KGV83, AL97]
making it an very inefficient approach.

Ideally, the best solution will be located in the first iteration. However, because of the
randomness used in the selection method, this is an highly unlikely event. The algorithm
will need several iterations before it finds a relatively good solution to the current problem
instance. The selection method dictates the speed of convergence. If a poor selection
method is used, the algorithm will go through many iterations without getting anywhere.

41

4. AutoML through Metaheuristic Algorithms

4.3.2 Move Operators
Move operators [HSCS19], can be used to improve the current solution or move towards
a more promising sub-problem set. The logic behind a move operator is to change the
value(s) of a problem’s variables one at a time, with evaluation of the solution resulting
from these changes.
For example, if the objective function is to minimize and there are 2 variables in play (v1,
v2), then one would change the value of either variable to lower the objective function
when compared to the previous variable values.

4.3.3 Neighbourhood Generation
In order to solve an optimization problem, we have to generate a neighborhood of solution.
The neighborhood is a list of points where we are allowed to move.
The neighborhood generation process is an essential part of the metaheuristic search
algorithm. The goal of the algorithm is to figure out good values for the new candidate
solutions. There are multiple approaches to generating new high quality neighborhoods
[LLG12]. One could try to change only one part of the solution configuration, or on
the other hand like Tabu Search not allow a certain solution to be considering in the
neighborhood for a fixed number of iterations.

4.3.4 Perturbation
Another form of search space exploration is the perturbation step in a search algorithm,
which involves moving away a greater distance than a move operator or neighborhood
generation method [BS91].
The goal here is for the search algorithm to land in a new part of the search space where it
can begin a better search than it did previously. This is an excellent method for avoiding
being trapped in a local optimum. This method is heavily used by the Iterated Local
Search algorithms.

4.4 Evaluation
The evaluation phase is crucial, since this is where the algorithm decides whether a
candidate solution should be discarded or not. This is usually done in terms of the
objective function value. All metaheuristic algorithms rely on evaluation methods to
make this decision. Evaluation methods can either be based on objective functions or
some other way of judging a solution. The search process will stop when a candidate
solution with an objective function value below some cutoff level has been found or if
the maximum number of allowed iterations has passed without any improvements to the
current best solution being found.
The most basic or common evaluation method is simply to compare the value of the new
solution against that of the best known solution [AL97]. This is done to see if the new

42

4.5. Simulated Annealing

value is better or not. Usually the best solution when found is used as a starting point
for another search cycle. For example, in an iterated local search, if the best known
solution is 12 and the new candidate solution is 13, then 13 is used as a starting point
for the next iteration.

In order to make this decision a metaheuristic algorithm needs some way to compare
the two solutions. The way how is to calculate or compare the new solution with the
best known solution. There are different techniques to perform this comparison. The
amount of change that is made to the solution in each iteration is crucial for how well
the algorithm performs. The most common method for evaluating solutions is the fitness
function, which returns a number representing how good a solution is. The larger the
better for maximization, or the small the better for minimization problems.

The fitness function can be based on any kind of information. It can be the objective
value or any other indicator. The most common fitness function is to return the quality
of a solution by evaluating a function of the objective value.

4.4.1 Acceptance Criterion
Although it might seem intuitive to always choose the candidate with the highest returning
fitness function value, this leads to getting caught in local minima in search problems
with vast search spaces. Therefore acceptance criterions get introduced, which are rules
that define when for an advantage in search space exploration, one also might accept
solutions that perform worse than already found solutions before.

Simulated Annealing is one of many metaheuristic algorithms that use this component,
in which it often tries to continue with a worse solution than the one already found in
order to explore the search space early on, before later concentrating on optimizing the
already found better solution.

4.5 Simulated Annealing
In this section, we’ll go over a the metaheuristic algorithm Simulated Annealing, which
is used to solve automated machine learning problems inside the MetaheuristicSklearn
framework. We’ll also discuss advantages and disadvantages of using this technique for
solving these types of problems. A quick overview of simulated annealing as a problem-
solving and optimization method, as well as the theory behind it, will be given. Following
that, an analysis into how it can be used to solve automated machine learning problems.
Finally, at the end of this section, general assumptions regarding simulated annealing
and what makes it efficient or inefficient at solving automated machine learning problems
are discussed.

Simulated Annealing [VLA87, KGV83, Rut89], is a problem-solving and optimization
technique that has been used to solve very complex mathematical problems, optimize
systems, and generalize search processes. It can be thought of as a process that early

43

4. AutoML through Metaheuristic Algorithms

favours search space exploration, while later on favours the optimization of the already
founds solutions with only better ones.

The idea behind this approach is that early search space exploration is a more favorable
action due to the high possibility of getting stuck in a local minima, where as the longer
the search goes on the higher the probability that a solution near the global optimum
has been found.

This approach also makes sense from a solving AutoML problem viewpoint. Where a lot
of time in a practitioner work is spent finding the right classifier and preprocessing steps,
while later on tuning his selected methods through hyper parameter tuning for optimal
performance.

An overview on how Simulated Annealing was implemented for solving AutoML problems
inside the MetaheuristicSklearn package can be seen in Figure 4.1, while on the other
hand the respective parameters for tuning the algorithm are shown in Table 4.1.

Table 4.1: Parameters for the Simulated Annealing algorithm, descriptions, and their
default values

Parameter Description Default Value

T Starting Temperature 100

T_min Ending Temperature 1e-5

cooling_rate Cooling rate by which to lower the
temperature in each iteration

0.99

As with every AutoML problem this one starts with an instance, consisting of data called
X and a target variable Y. These along with some algorithm specific parameters are
given to the object instance of MetaheuristicSklearn which then starts its work. The first
thing the MetaheuristicSklearn instance does is to evaluate the fitness of the instance
with a baseline pipeline as described in earlier sections, which can be thought of as its
evaluation function value. This evaluation function value is a float value that represents
the estimated performance of a certain pipeline for this dataset.

After that all of the hyperparameters for the containing classifiers are randomly initialized
and the move operator is called. Inside the move operator a random pipeline step is
chosen and its value is changed randomly. After which the new pipeline configuration is
evaluated and its score is saved into the new_score variable. Having evaluated the new
pipeline its performance is compared with the previous one and if it is better performing
it is chosen as the new configuration.

The next step is the acceptance probability, and can be considered as the most important
step in the Simulated Annealing algorithm, also giving it its name. The probability of
transitioning from the current configuration to the new pipeline configuration depends

44

4.5. Simulated Annealing

Figure 4.1: A flowchart diagram of the Simulated Annealing implementation inside
MetaheuristicSklearn for solving AutoML problems.

45

4. AutoML through Metaheuristic Algorithms

on an appropriate probability function dependent on the temperature and the quality of
the two configurations. The exact formula is listed below:

random(0, 1] < e
eval(confc)−eval(confn)

T (4.1)

From Formula 4.1, for maximization problems, we can observe that the probability of
accepting a worse solution when the temperature is high is higher. On the other hand,
when the temperature falls the probability also goes down. With a temperature of zero,
the method limits itself to the greedy hill climbing algorithm, which just transitions
uphill.

After that, the temperature is decreased through the cooling rate and the algorithm
iteratively repeats the same steps in the next iterations. To make use of the full running
time specified through max_runtime, a dynamic calculation of the cooling rate was
implemented into the algorithm. After a 100 iterations the algorithms makes use of all
previous iterations and their running times and calculates the optimal cooling rate so that
the temperature is able to go down all the way to zero at the end of the running time. This
was done with idea that the algorithm should not get stuck on a high temperature, while
being able to hill climb in later stages of the search for the most optimal performance.

After having finished the search the best performing pipeline so far is refitted on the
whole data and the AutoML search is done.

4.6 Tabu Search
In this section we will go over the Tabu Search metaheuristic algorithm which is employed
inside the MetaheuristicSklearn framework, for solving automatic machine learning
problems. We will also address the benefits and drawbacks of using this method to solve
certain problems.

Tabu Search [Glo90, Glo95], is a metaheuristic search algorithm used in combinatorial
optimization. Because it works by iteratively improving solutions that are already close
to the local optimum, but also accepting moves that are further away, it’s often viewed
as a special case of the Simulated Annealing (SA) method. It belongs to the family
of stochastic search algorithms and uses what is called a "tabu list." Using this tabu
list, forbidden areas or states are created and certain unsuccessful moves which have
already been performed are eliminated from consideration for a given number of iterations
(epochs). This way the exploration phase (of the search) is reduced as iterations go
by, and thus certain target solutions can be found more quickly. In the context of
MetaheuristicSklearn it’s employed for solving Machine Learning related problems.

The algorithm starts with an initial solution to a problem and an empty tabu list. Then
all neighbourhood solutions of the current solution are generated. The best solution in
the neighbourhood is found. If the solution is not tabu, the new solution is selected as
the current solution, the tabu list is updated, and we continue with the next iteration.

46

4.6. Tabu Search

Else, we check for an aspiration criteria, if it is fulfilled we update the current solution
and update the tabu list. Finally, if all of the previous checks were false, we find the best
not tabu solution in the neighbourhood select it as the current solution and update the
tabu list.

The whole process is repeated until the terminate condition is fulfilled. Figure 4.2
provides an outline of how an example AutoML problem is solved by Tabu Search inside
the MetaheuristicSklearn program, while Table 4.2 shows the corresponding algorithm
parameters.

Table 4.2: Parameters for the Tabu Search algorithm, descriptions, and their default
values

Parameter Description Default Value

tabu_size Size of the tabu list 10

probabilities Defining the probability
distribution for when generating a
new neighbourhood for for steps
["scaling", "feature_selection",
"est", "hyperparams"]

[0.25, 0.25, 0.25, 0.25]

As explained at the beginning of Section 4.6, Tabu Search begins the search process in
the same way as the Simulated Annealing algorithm. When the parameters and data are
obtained from the user, a baseline pipeline configuration is evaluated and the starting
point for subsequent steps within the algorithm is defined.

Having defined the starting point of the algorithm, the training phase of the algorithm
start. At the the beginning of each iteration, the neighborhood of the current solution is
generated. The neighborhood generation method consist of multiple steps. Initially a
random pipeline step is chosen with which the neighborhood is generated, for example if
the random step is the scaling step, the current pipeline is evaluated with all possible
scaling methods present and then ranked by performance to find the best solution inside
the neighborhood. This randomness between chosing different pipeline steps can be
configured manually through the probabilities parameter, which defines the probability
distribution for new neighborhood generation.

If the best solution from the newly generated neighbourhood is not Tabu, it is compared
with the current best solution found so far, if it performs better the best solution is
updated else, it will be accepted as a new current solution and we continue with the next
iteration. On the other hand, if this solution is Tabu, but it fulfills the aspiration criteria
of our algorithm, in this case the the current solution is better than any other solution
we found so far, we circumvent the Tabu list, accept the solution, and update the best
solution anyhow considering it is the best performing solution so far and continue with
the next iteration.

47

4. AutoML through Metaheuristic Algorithms

Figure 4.2: A flowchart diagram of the Tabu Search implementation inside Metaheuris-
ticSklearn for solving AutoML problems.

48

4.7. Iterated Local Search (ILS)

Else, if the best performing solution in the newly generated neighborhood is Tabu and
not better than the current best performing solution, find the best performing non-Tabu
solution, select that solution as the starting point for the next iteration, and update the
Tabu list. Inside the Tabu list are stored pipeline step operators. Such an operator for
example would be for the scaling step the MinMaxScaling method, which once chosen
would be put into the Tabu list and could not be chosen for evaluation until it get outs
of the Tabu list.

The Tabu list size is controlled by the tabu_size parameter, the default parameter value
is 10, once the Tabu list is full with operators, the first added operator gets kicked out
and the new one is inserted at the end of the queue in a First In First Out (FIFO) type
of queue.

Once the algorithm spends its running time, the best performing pipeline is then refitted
on the whole training data and exposed to the user with various other outputs such as
best hyperparameters, grid scores, best pipeline configuration, etc.

4.7 Iterated Local Search (ILS)
This section will give an introduction to the Iterated Local Search (ILS) algorithm,
discuss its origin and approach, and present a complete analysis of how it is applied to
solve AutoML problems in the MetaheuristicSklearn Implementation.

Iterated Local Search (ILS) [RLMS00, BS91, LMS03], is one of the most successful
Metaheuristic approaches, possibly because it is able to apply an evaluation function that
can take into account the previous results of the algorithm. The three main components
of ILS are:

• Local Search

• Perturbation

• Acceptance Criterion

In ILS usually a local search based processor tries to improve the solution for a number of
iterations. To prevent from getting stuck in local optima, after a certain number of local
search iterations the solution is perturbated to move to a new space in the search space.
After each perturbation and local search, the acceptance criterion compares solutions,
and handles the direction of the search space in the right direction.

An overview on how ILS was implemented for solving AutoML problems inside the
MetaheuristicSklearn framework can be seen in Figure 4.3, while on the other hand the
respective parameters for tuning the algorithm are shown in Table 4.3.

As the previous algorithms, ILS starts it search process in the same way. After having
received the parameters and training data from the user, inside the instance a baseline

49

4. AutoML through Metaheuristic Algorithms

Figure 4.3: A flowchart diagram of the Iterated Local Search implementation inside
MetaheuristicSklearn for solving AutoML problems.

50

4.7. Iterated Local Search (ILS)

Table 4.3: Parameters for the Iterated Local Search algorithm, descriptions, and their
default values

Parameter Description Default Value

local_iters Number of iterations to do
inside LocalSearch

100

no_improve_limit Limit of after how many
iterations to stop without any
improvement

25

perturbation_size Percentage of hyperparams to
replace in best performing
model

0.25

acceptance_method Method to choose the
acceptance_criterion. Choices:
["default", "annealing",
"always"]

"default"

T Temperature for annealing
acceptance_method

5

pipeline configuration is evaluated and serves as the starting reference point for future steps
inside the algorithm. That solution then is perturbated, a perturbation is a configuration
move which serves as a way to get itself unstuck from local minima. A perturbation
inside an algorithm should not be easily undone by the local search component. It is
very important to fine tune this step as a too strong perturbation can lead to a random
restart of the search in a whole new neighborhood, while a too weak perturbation can
lead to keep being stuck in the same local minima.

The perturbation method in the implementation of MetaheuristicSklearn includes a
perturbation_size parameter given to the instance before training. This parameter
controls the size of the perturbation on the best performing configuration and depending
on the size of it, the amount of changed hyperparameters changes. A whole perturbation
consists of a random change of either scaling method or number of features selected,
while also changed perturbation_size parameters.

After perturbation, the new resulting configuration is put through a local search where
the algorithm tries to search new possible combinations while altering the classifier and
hyperparameter steps inside the configuration. This amount of local search iterations is
given through the local_iters parameter, which controls the amount of iterations. To
prevent from wasting too much time on a wrongly perturbated solution inside the local
search it is kept track for how many iterations there was not any improvement. After
no_improve_limit iterations without improvements in performance the local search is
stopped. This number can be controlled through the no_improve_limit parameter of

51

4. AutoML through Metaheuristic Algorithms

the algorithm.

Having finished the local search the acceptance criterion method is called which can have
three various modes:

• default: this compares the score of the best solution found inside the local search
with the previous configuration and in case the new pipeline is better performing it
is chosen as the next solution. Which is just a greedy hill climbing alternative.

• simulated annealing: This acceptance method makes use of the acceptance prob-
ability method used inside the simulated annealing algorithm, which supports
selecting worse performing configurations early on for early search space exploration
and avoidance of local minima. A detailed description of the simulated annealing
acceptance probability can be found in section 4.5.

• always: This acceptance method always accepts the solution found after having
local searched the new perturbated configuration independent of performance.

Depending on the acceptance method the best solution gets updated, it is checked if
there is remaining search time for the algorithm and a new iteration is started if there
is, else the the best performing pipeline is refitted on the whole training data and then
exported with other various outputs to the user. This is where the algorithm finishes the
AutoML search.

52

CHAPTER 5
Evaluation

This chapter describes the experimental environment used to test the proposed AutoML
framework for supervised machine learning classification problems, as well as details on
the evaluation of the framework in comparison to other state-of-the-art frameworks.

Section 5.1 provides a comprehensive presentation of the experimental settings and the
problem benchmarks chosen. Moreover, in Section 5.2, we go through the experiments
that were carried out using the proposed framework and other state-of-the-art frameworks
using the benchmarks, while reporting findings about the framework and evaluations.

5.1 Experiment Settings
Note that MetaheuristicSklearn’s implementation is purely a single thread and only
one core is used during the calculation process. Thus all other implementations have
been assessed on the same single-thread basis but some architectures have support with
multiple threads. MetaheuristicSklearn’s memory use depends heavily on the training
data given at the beginning of the training.

All experiments were executed on a Linux machine with an AMD Opteron(tm) Processor
6308 CPU single-threaded at 1.4 - 3.5 GHz, using 189GB of memory. Algorithm were
evaluated on both the training benchmark which was also used for tuning the algorithm
parameters inside MetaheuristicSklearn and an unseen test benchmark providing an equal
performance evaluation for all frameworks.

All of the experiments that are mentioned in this chapter were conducted using the two
benchmark suites taken from OpenML [VvRBT13, MF]. For training and metaheuristic
parameter optimization purposes the OpenML-CC18 benchmark suite was chosen which
according to the authors contains all OpenML datasets from mid-2018 that satisfy a
large set of clear requirements for thorough yet practical benchmarking. It includes

53

5. Evaluation

datasets frequently used in benchmarks published over the last years, so it can be used
as a drop-in replacement for many benchmarking setups.

The suite is defined as the set of all verified OpenML datasets that satisfy the following
requirements [BCF+19]:

• the number of observations are between 500 and 100000 to focus on medium-sized
datasets, that are not too small and not too big,

• the number of features does not exceed 5000 features to keep the runtime of
algorithms low,

• the target attribute has at least two classes

• the ratio of the minority class and the majority class is above 0.05, to eliminate
highly imbalanced datasets which require special treatment for both algorithms
and evaluation measures.

While datasets that were excluded [BCF+19]:

• are artificially generated (not to confuse with simulated)

• cannot be randomized via a 10-fold cross-validation due to grouped samples or
because they are time series or data streams

• are a subset of a larger dataset

• have classes with less than 20 observations

• have no source or reference available

• can be perfectly classified by a single attribute or a decision stump

• allow a decision tree to achieve 100% accuracy on a 10-fold cross-validation task

• have more than 5000 features after one-hot-encoding categorical features

• are created by binarization of regression tasks or multiclass classification tasks, or

• are sparse data (e.g., text mining data sets)

On the other hand to not favorize the metaheuristic algorithms which parameters were
optimized on the training benchmark, which will be explained in more detail later, a
testing benchmark was selected as well. The outcomes of the two benchmark suites were
compared over each other for both machine learning tasks and the testing benchmark.
The chosen testing benchmark is called AutoML Benchmark More Classification which
is a new benchmark that gathers the most relevant datasets that were missing from

54

5.1. Experiment Settings

the OpenML CC-18 benchmark and was also used for evaluation purposes inside the
OpenML AutoML Benchmark [GLP+19].

The two major classification benchmark collections were chosen because of their wide
coverage and variety of supervised machine learning problems, and having various different
properties considering number of Instances, Features, Classes, Missing values, Instances
with missing values, Numerical features and Symbolic features. More details about those
can be found in Table 5.1 and Table 5.2, where all of the properties for each dataset
inside each benchmark collection are listed.

Table 5.1: List of train benchmark datasets and their properties
In

st
an

ce
s

Fe
at

ur
es

C
la

ss
es

N
an

V
al

ue
s

In
st

an
ce

sW
it

hN
an

V
al

ue
s

B
in

ar
yF

ea
tu

re
s

N
um

er
ic

Fe
at

ur
es

Sy
m

bo
lic

Fe
at

ur
es

Dataset Name

Bioresponse 3751 1777 2 0 0 1 1776 1
CIFAR_10 60000 3073 10 0 0 0 3072 1
Devnagari-Script 92000 1025 46 0 0 0 1024 1
Fashion-MNIST 70000 785 10 0 0 0 784 1
GesturePhaseSegmentation-
Processed

9873 33 5 0 0 0 32 1

Internet-Advertisements 3279 1559 2 0 0 1556 3 1556
MiceProtein 1080 82 8 1396 528 3 77 5
PhishingWebsites 11055 31 2 0 0 23 0 31
adult 48842 15 2 6465 3620 2 6 9
analcatdata_authorship 841 71 4 0 0 0 70 1
analcatdata_dmft 797 5 6 0 0 1 0 5
balance-scale 625 5 3 0 0 0 4 1
bank-marketing 45211 17 2 0 0 4 7 10
banknote-authentication 1372 5 2 0 0 1 4 1
blood-transfusion-service-
center

748 5 2 0 0 1 4 1

55

5. Evaluation

Table 5.1: List of train benchmark datasets and their properties - continued

breast-w 699 10 2 16 16 1 9 1
car 1728 7 4 0 0 0 0 7
churn 5000 21 2 0 0 3 16 5
climate-model-simulation-
crashes

540 21 2 0 0 1 20 1

cmc 1473 10 3 0 0 3 2 8
cnae-9 1080 857 9 0 0 0 856 1
connect-4 67557 43 3 0 0 0 0 43
credit-approval 690 16 2 67 37 5 6 10
credit-g 1000 21 2 0 0 3 7 14
cylinder-bands 540 40 2 999 263 4 18 22
diabetes 768 9 2 0 0 1 8 1
dna 3186 181 3 0 0 180 0 181
dresses-sales 500 13 2 835 401 1 1 12
electricity 45312 9 2 0 0 1 7 2
eucalyptus 736 20 5 448 95 0 14 6
first-order-theorem-
proving

6118 52 6 0 0 0 51 1

har 10299 562 6 0 0 0 561 1
ilpd 583 11 2 0 0 2 9 2
isolet 7797 618 26 0 0 0 617 1
jm1 10885 22 2 25 5 1 21 1
jungle_chess_2pcs-
_raw_endgame_complete

44819 7 3 0 0 0 6 1

kc1 2109 22 2 0 0 1 21 1
kc2 522 22 2 0 0 1 21 1
kr-vs-kp 3196 37 2 0 0 35 0 37
letter 20000 17 26 0 0 0 16 1
madelon 2600 501 2 0 0 1 500 1
mfeat-factors 2000 217 10 0 0 0 216 1
mfeat-fourier 2000 77 10 0 0 0 76 1
mfeat-karhunen 2000 65 10 0 0 0 64 1
mfeat-morphological 2000 7 10 0 0 0 6 1
mfeat-pixel 2000 241 10 0 0 0 240 1
mfeat-zernike 2000 48 10 0 0 0 47 1

56

5.1. Experiment Settings

Table 5.1: List of train benchmark datasets and their properties - continued

nomao 34465 119 2 0 0 3 89 30
numerai28.6 96320 22 2 0 0 1 21 1
optdigits 5620 65 10 0 0 0 64 1
ozone-level-8hr 2534 73 2 0 0 1 72 1
pc1 1109 22 2 0 0 1 21 1
pc3 1563 38 2 0 0 1 37 1
pc4 1458 38 2 0 0 1 37 1
pendigits 10992 17 10 0 0 0 16 1
phoneme 5404 6 2 0 0 1 5 1
qsar-biodeg 1055 42 2 0 0 1 41 1
satimage 6430 37 6 0 0 0 36 1
segment 2310 20 7 0 0 0 19 1
semeion 1593 257 10 0 0 0 256 1
spambase 4601 58 2 0 0 1 57 1
splice 3190 61 3 0 0 0 0 61
steel-plates-fault 1941 28 7 0 0 0 27 1
texture 5500 41 11 0 0 0 40 1
tic-tac-toe 958 10 2 0 0 1 0 10
vehicle 846 19 4 0 0 0 18 1
vowel 990 13 11 0 0 1 10 3
wall-robot-navigation 5456 25 4 0 0 0 24 1
wdbc 569 31 2 0 0 1 30 1
wilt 4839 6 2 0 0 1 5 1

57

5. Evaluation

Table 5.2: List of test benchmark datasets and their properties

In
st

an
ce

s

Fe
at

ur
es

C
la

ss
es

N
an

V
al

ue
s

In
st

an
ce

sW
it

hN
an

V
al

ue
s

B
in

ar
yF

ea
tu

re
s

N
um

er
ic

Fe
at

ur
es

Sy
m

bo
lic

Fe
at

ur
es

Dataset Name

Bioresponse 3751 1777 2 0 0 1 1776 1
Click_prediction_small 39948 12 2 0 0 1 5 7
Diabetes130US 101766 50 3 0 0 9 13 37
GesturePhaseSegmentation-
Processed

9873 33 5 0 0 0 32 1

Higgs 1000000 29 2 0 0 1 28 1
Internet-Advertisements 3279 1559 2 0 0 1556 3 1556
KDDCup09-Upselling 50000 15001 2 25108569 50000 1 14811 1
KDDCup99 4898431 42 23 0 0 5 32 10
PhishingWebsites 11055 31 2 0 0 23 0 31
Satellite 5100 37 2 0 0 1 36 1
ada 4147 49 2 0 0 1 48 1
amazon-commerce-
reviews

1500 10001 50 0 0 0 10000 1

arcene 100 10001 2 0 0 1 10000 1
churn 5000 21 2 0 0 3 16 5
cmc 1473 10 3 0 0 3 2 8
dna 3186 181 3 0 0 180 0 181
eucalyptus 736 20 5 448 95 0 14 6
first-order-theorem-
proving

6118 52 6 0 0 0 51 1

gina 3153 971 2 0 0 1 970 1
kick 72983 33 2 149271 69709 4 14 19
madeline 3140 260 2 0 0 1 259 1
micro-mass 571 1301 20 0 0 0 1300 1

58

5.1. Experiment Settings

Table 5.2: List of test benchmark datasets and their properties - continued

okcupid-stem 50789 20 3 154107 48622 1 2 18
ozone-level-8hr 2534 73 2 0 0 1 72 1
pc4 1458 38 2 0 0 1 37 1
philippine 5832 309 2 0 0 1 308 1
porto-seguro 595212 58 2 846458 470281 24 26 32
qsar-biodeg 1055 42 2 0 0 1 41 1
sf-police-incidents 2215023 9 2 0 0 1 3 6
steel-plates-fault 1941 28 7 0 0 0 27 1
wilt 4839 6 2 0 0 1 5 1
wine-quality-white 4898 12 7 0 0 0 11 1
yeast 1484 9 10 0 0 0 8 1

We shall go through all AutoML Systems one more time and list their advantages and
disadvantages below. Each framework has some features which are also described below.
An overview of the functionality of all AutoML systems can be found in Table 5.3.

TPOT is one of the most mature and modern AutoML System offering the widest range
of functionality including neural networks and Dask for parallel training. On the other
hand, one disadvanteg of TPOT is that it can not handle missing data. Therefore, the
handling of missing values always requires human intervention before continuing to solve
your TPOT problem. Therefore, always adding an extra step to your pipeline when for
example compared to Auto-Sklearn and Google AutoML Tables.

Auto-WEKA might scare some of the younger machine learning practitioners, due
to the outdated looking Java GUI, Auto-WEKA is perfectly packaged in the WEKA
application. It is worth noting that it requires a Java version smaller than 11. With the
applications graphical user interface, it is easy to supply .csv dataset and configure the
system and start searching for solutions, and even the machine learning beginner can get
going and test various algorithms to see which is better suited to their approach.

Auto-Sklearn is very similar to Auto-Weka, which can be seen in Figure 2.4 where
the ML Framework is almost the same, except perhaps in the diversity of the different
classifiers it uses. Auto-Weka uses Ensemble methods and meta-learning, which Auto-
Sklearn removed and only added Ensemble Step at the end of the training through
Ensemble Stacking. Except for those two new additions and the removal of the meta
methods, Auto-Sklearn is every other way analogous to Auto-WEKA. The diversity
is reduced, mostly due to the great diversity of configurations in scikit-learn machine
learning algorithm, therefore reducing the search space consists to 110 parameters.

Hyperopt-Sklearn at first glance, tends to be an automatic machine learning system,
given the higher configuration and flexibility factor, it is more like a specialized hyper-

59

5. Evaluation

Table 5.3: Comparison of evaluated AutoML Systems

Functionality

Sc
ik

it
B

ac
k-

en
d

Pr
ep

ro
ce

ss
in

g

Pa
ra

lle
lT

ra
in

in
g

M
et

a
Le

ar
ni

ng

En
se

m
bl

e
Le

ar
ni

ng

N
eu

ra
lN

et
wo

rk
s

W
in

do
w

s
O

S

M
ac

O
S

Li
nu

x

Se
t

Tr
ai

ni
ng

T
im

e

H
an

dl
es

M
iss

in
g

Va
lu

es

TPOT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Auto-Weka ✓ ✓ ✓ ✓ ✓ ✓

Auto-Sklearn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hyperopt-Sklearn ✓ ✓ ✓ ✓ ✓

AutoML Tables ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

A
ut

oM
L

Sy
st

em
s

MetaheuristicSklearn ✓ ✓ ✓ ✓ ✓ ✓

parameter optimization tool for an advanced machine learning practitioner who knows
what they’re is looking for. Where as, compared to the previous automated machine
learning systems, where you can see the best outcomes in the dataset by just providing
the dataset.

Google AutoML Tables, although very guided in the whole automated machine
learning process, leaves still room for further specific configurations in the AutoML
Tables pipeline, for the more experienced machine learning practitioners. The top-level
parameters of the pipeline leave a lot to be desired with regard to the specification of the
actual search algorithm.

For evaluating said benchmarks a train-test split was chosen for each dataset with also
a preprocessing step included, an overview of this experiment setup can be viewed in
Figure 5.1. The preprocessing steps include an Imputer for missing values and One Hot
Encoder for categorical columns, although some of the AutoML frameworks support the
handling of missing values and feature encoding as showed in Table 5.4, with the idea to
setup an even starting ground for all frameworks it was decided that all of the datasets
receive the same treatment.

Having finished being preprocessed datasets are split into stratified train and test splits
with a 0.75 and 0.25 percentages respectably, where the train split serves as training data
for the AutoML frameworks and the test split for evaluation. It also worth mentioning
that if possible after training the frameworks were instructed to refit the best performing
model on the whole train split after finishing training if the allowed by the framework.

60

5.2. Results

Figure 5.1: An overview of total experiment settings for the AutoML framework evaluation

All algorithms have been trained with the default setting parameters and evaluated on
the F1 Score where possible, except for Google AutoML Tables and Auto-Weka due to
either the missing option for that metric or the missing function for that metric. The
complete configuration of each AutoML system can be found in Table 5.4.

After refitting on the training data, the resulting model is then evaluated on the test
split and the mean of the three different seeded runs is reported as the final score. This
is due to the the randomness included in some of the heuristics and therefore to account
for any results which could be outliers due to a favored lucky outcome.

Furthermore, as part of the training the implemented metaheuristics algorithms and
their parameters were optimized on the training benchmark using SMAC. SMAC is a
configuration tool for algorithms to optimize arbitrary algorithm parameters in an set
of instances [HHLB11]. All of the algorithms were trained on the training benchmark
for 100 hours each, with a running time for each dataset of 1 hour. SMAC could choose
between datasets randomly and find a global optimal value for each parameter. SMAC
chose the best combination of parameters for each algorithm. The values chosen, their
respective parameter spaces and default values can be found in Table 5.5.

5.2 Results

Using the above experimental settings it was possible to evaluate the analyzed set of
state-of-the-art AutoML frameworks, as well as the metaheuristics algorithms inside the
proposed AutoML framework between each other.

Before anything else, the metaheuristics algorithms implemented inside the proposed
framework will be evaluated and compared between each other. After which, we will
evaluate our results with state-of-the-art results from the set of AutoML frameworks
analyzed.

61

5. Evaluation

Table 5.4: Experiment AutoML Frameworks and Configurations

AutoML System Version Configuration

TPOT 0.11.5 TPOTClassifier(verbosity=2,
random_state=42, scoring="f1_weighted",
cv=10, n_jobs=1, max_time_mins=60)

Auto-Weka 2.6.3 (Weka 3.8.3) (batchSize=100, debug=False,
doNotCheckCapabilities=False,
memLimit=4086, metric=errorRate,
nBestConfigs=1, numDecimalPlaces=2,
parallelRuns=1, seed=123, timeLimit=60)

Auto-Sklearn 0.8.0 AutoSklearnClassifier(n_jobs=1,
time_left_for_this_task=3600,
resampling_strategy="cv",
resampling_strategy_arguments="folds": 10,
metric=autosklearn.metrics.f1_weighted,
seed=42)

Hyperopt-Sklearn 0.3.0 HyperoptEstimator(trial_timeout=120,
classifier=any_classifier("my_clf"), prepro-
cessing=any_preprocessing("my_pre"),
algo=tpe.suggest, max_evals=30, seed=42,
loss_fn=f1_score)

AutoML Tables Beta Custom Train/Test Split and 1 Hour Train
Time

5.2.1 In-between comparison of metaheuristic algorithms for solving
AutoML problems

This section evaluates the implemented metaheuristic algorithms inside the proposed
framework individually and compares them between each other. Since the problem
datasets should be difficult to solve, another benchmark collection of datasets was used as
a benchmark, to not favour the optimized parameter variants of our algorithms which have
been trained on the train benchmark collection of datasets as part of the optimization
process.

In order to evaluate each individual metaheuristic algorithm inside our proposed frame-
work all the datasets inside the test collection have been used to validate their success
rates and efficiency. Two performance metrics were used, the F1-Macro and Precision
scores of the resulting best model from the framework after one hour of training. A com-
parison matrix was created for each performance metric, which contains the performance
values of each algorithm per metric. This comparison matrix will be analyzed in order to
evaluate how much improvement does each algorithm bring over the other, and if the

62

5.2. Results

Table 5.5: Metaheuristic parameters, parameter ranges for SMAC and optimized values.

Metaheuristic Parameter Min Max Default Optimized

Tabu tabu size 1 1000 10 563
Tabu scaling

probability
strength

0 1 0.25 0.1875

Tabu feature
selection
probability
strength

0 1 0.25 0.3125

Tabu est
probability
strength

0 1 0.25 0.3125

Tabu hyperparams
probability
strength

0 1 0.25 0.6875

ILS local iters 50 10000 100 5025
ILS no improve

limit
10 50 25 30

ILS perturbation
size

0 1 0.25 0.5

ILS acceptance
method

default annealing or always default annealing

SA Temperature 10 10000 100 2507

algorithm parameter optimization of the proposed framework brought any measurable
improvements over the default selected parameters.

Moreover, the following graph in Figure 5.2 illustrates the comparison of the evaluated
algorithms. Each algorithm is indicated with its own color, where the lighter shade of
the color is the not optimized variant and the darker one is the optimized value. While
the best performing algorithm of each dataset is highlighted in bold in Table 5.6. In
addition, the precision of the frameworks algorithms can be viewed in Table 5.7.

From Figure 5.2 we can clearly observe that there is a obvious gain from the optimization
process for the algorithm parameters in performance, while there sometimes seem to
be some outliers where the non optimized variant performed better than its optimized
counterpart which can be addressed to the wide range of differences between datasets.
The overall gained improvement in F1-Score on average is 7%.

From Table 5.6 we can observe that most of the times the better performing algorithms

63

5. Evaluation

are the Tabu Search and ILS variants. Where Tabu Search is the best performing
algorithm 15 out of 31 times and ILS 13 out of 31 times, leaving Simulated Annealing
winning only on 3 of total 31 instances.

In Table 5.7 we can observe the precision of each algorithm separately, where the error
values are normalized with respect to the total error of the overall best model obtained
by our framework in its first hour of training. The precision values range between 1 and
0, where 0 represents an worst-case scenario model with only errors and 1 represents
a perfect model without any errors. From Table 5.7 we can clearly observe that there
is a significant increase in precision in almost all optimized algorithms gaining 3% in
precision overall.

Table 5.6: Metaheuristic Only F1-Score Performance Evaluation on Testing Benchmark

SA
N

ot
O

pt
im

iz
ed

SA
O

pt
im

iz
ed

Ta
bu

N
ot

O
pt

im
iz

ed

Ta
bu

O
pt

im
iz

ed

IL
S

N
ot

O
pt

im
iz

ed

IL
S

O
pt

im
iz

ed

Dataset

Bioresponse 0.64 0.71 0.66 0.71 0.68 0.73
Click_prediction_small 0.54 0.54 0.54 0.56 0.48 0.52
Diabetes130US 0.14 0.19 0.15 0.21 0.19 0.19
GesturePhaseSegmentation-Processed 0.23 0.30 0.22 0.32 0.25 0.32
Higgs 0.41 0.42 0.41 0.41 0.37 0.41
Internet-Advertisements 0.92 0.93 0.93 0.92 0.96 0.94
KDDCup99 0.29 0.36 0.30 0.34 0.30 0.38
PhishingWebsites 0.90 0.94 0.89 0.96 0.93 0.95
Satellite 0.87 0.84 0.84 0.83 0.76 0.82
ada 0.55 0.62 0.56 0.63 0.76 0.77
amazon-commerce-reviews 0.82 0.82 0.80 0.79 0.77 0.83
arcene 0.74 0.80 0.75 0.78 0.93 0.92
churn 0.50 0.54 0.49 0.55 0.54 0.54
cmc 0.43 0.46 0.44 0.48 0.42 0.46
dna 0.85 0.91 0.86 0.94 0.90 0.92
eucalyptus 0.46 0.44 0.46 0.46 0.38 0.42

64

5.2. Results

Table 5.6: Metaheuristic Only F1-Score Performance Evaluation on Testing Benchmark -
continued

first-order-theorem-proving 0.27 0.32 0.27 0.31 0.31 0.34
gina 0.91 0.97 0.89 0.99 0.93 0.95
kick 0.41 0.48 0.39 0.48 0.42 0.49
madeline 0.48 0.53 0.49 0.53 0.86 0.87
micro-mass 0.74 0.80 0.74 0.82 0.81 0.82
okcupid-stem 0.42 0.43 0.45 0.41 0.44 0.41
ozone-level-8hr 0.61 0.66 0.62 0.65 0.71 0.70
pc4 0.68 0.75 0.67 0.76 0.72 0.75
philippine 0.74 0.72 0.72 0.71 0.79 0.77
porto-seguro 0.50 0.49 0.50 0.50 0.46 0.49
qsar-biodeg 0.86 0.84 0.86 0.82 0.88 0.85
steel-plates-fault 0.76 0.79 0.76 0.77 0.68 0.66
wilt 0.93 0.94 0.95 0.95 0.90 0.92
wine-quality-white 0.07 0.07 0.08 0.09 0.05 0.05
yeast 0.55 0.53 0.56 0.54 0.47 0.51

Table 5.7: Metaheuristic Only Precision Performance Evaluation on Testing Benchmark

SA
N

ot
O

pt
im

iz
ed

SA
O

pt
im

iz
ed

Ta
bu

N
ot

O
pt

im
iz

ed

Ta
bu

O
pt

im
iz

ed

IL
S

N
ot

O
pt

im
iz

ed

IL
S

O
pt

im
iz

ed

Dataset

Bioresponse 0.71 0.71 0.70 0.70 0.68 0.71
Click_prediction_small 0.51 0.56 0.52 0.55 0.51 0.56
Diabetes130US 0.43 0.44 0.43 0.42 0.48 0.46
GesturePhaseSegmentation-Processed 0.45 0.46 0.47 0.47 0.50 0.47
Higgs 0.63 0.67 0.63 0.65 0.67 0.65
Internet-Advertisements 0.91 0.97 0.93 0.95 0.98 0.97
KDDCup99 0.43 0.44 0.41 0.45 0.36 0.43

65

5. Evaluation

Table 5.7: Metaheuristic Only Precision Performance Evaluation on Testing Benchmark -
continued

PhishingWebsites 0.92 0.94 0.93 0.95 0.94 0.93
Satellite 0.90 0.92 0.90 0.90 0.93 0.94
ada 0.73 0.75 0.73 0.73 0.81 0.79
amazon-commerce-reviews 0.84 0.83 0.83 0.82 0.86 0.85
arcene 0.82 0.81 0.81 0.82 0.88 0.92
churn 0.76 0.80 0.77 0.81 0.82 0.81
cmc 0.47 0.47 0.48 0.49 0.49 0.48
dna 0.84 0.92 0.83 0.91 0.87 0.91
eucalyptus 0.47 0.46 0.47 0.46 0.46 0.47
first-order-theorem-proving 0.36 0.41 0.37 0.40 0.39 0.43
gina 0.99 0.97 1.00 0.95 0.95 0.95
kick 0.62 0.59 0.59 0.62 0.55 0.59
madeline 0.51 0.56 0.53 0.56 0.81 0.87
micro-mass 0.74 0.81 0.74 0.82 0.79 0.82
okcupid-stem 0.50 0.48 0.50 0.46 0.50 0.49
ozone-level-8hr 0.67 0.66 0.65 0.68 0.65 0.69
pc4 0.78 0.80 0.77 0.82 0.71 0.78
philippine 0.67 0.72 0.68 0.72 0.75 0.77
porto-seguro 0.42 0.48 0.40 0.47 0.42 0.49
qsar-biodeg 0.84 0.83 0.86 0.82 0.78 0.83
steel-plates-fault 0.75 0.83 0.74 0.80 0.69 0.76
wilt 0.91 0.95 0.92 0.94 0.91 0.94
wine-quality-white 0.14 0.13 0.13 0.13 0.12 0.15
yeast 0.61 0.60 0.60 0.60 0.52 0.55

5.2.2 Comparison of proposed framework with state-of-the-art

This section evaluates the proposed framework as a whole against the most recent state-
of-the-art frameworks. Just as in the inter-algorithm comparison, the test benchmark
collection was used for evaluation of framework performance. The performance metrics
are the same as in the previous section. Also for this part of the evaluation a Logistic
Regression classifier was evaluated as well to serve as a baseline comparison for the other
frameworks.

As can be observed in the graph in Figure 5.3 and Table 5.8, there are a couple of
frameworks which consistently outperform the rest; this mostly consists of the AutoSklearn

66

5.2. Results

Figure 5.2: F1-Score Evaluation of Metaheuristic Algorithms on the Testing Benchmark
for 15 datasets

67

5. Evaluation

framework as well as AutoWeka. However, even with these high performing algorithms
there are still significant numbers of times where the MetaheuristicSklearn framework
outperforms this set of frameworks. The proposed framework managed to find a better
performing pipeline 8 out of 31 times. Consistent with previous results, this mainly
consists of the ILS and Tabu Search algorithms, which seem to be working on a more
feature simple optimization datasets compared to other more complex datasets inside
this benchmark.

Whereas Table 5.9 illustrates the precision performance of the metaheuristic framework
in comparison with state-of-the-art frameworks for the Testing Benchmark. Compared to
the other frameworks, our framework was only 2% less precise than the best performing
framework for all of the datasets.

Also part of the evaluation is the resulting classifier found after training has finished.
Tables 5.10 and 5.11, for the best performing dataset Arcene and the worst one Higgs,
display the best performing classifiers found for each framework after one hour of training.

Due to their more complex structure and wide range of parameters to optimize, AutoML
problems will often require a much longer training period than standard classification
problems. Therefore, as part of the evaluation, the top ten worst performing datasets for
the MetaheuristicSklearn framework were put into a separate experiment with the goal of
increasing the running time for allowing a greater and better search of the solution space.

The graph in Figure 5.4 and Table 5.12 display the F1-Score performances of the done
experiment. The longer running time resulted in an improvement of 52% in F1-Score
performance for the MetaheuristicSklearn framework and an state-of-the-art frameworks
improvement of 16%.

Table 5.8: Overall Framework F1-Score Performance Evaluation on Testing Benchmark

T
P

O
T

A
ut

oW
ek

a

A
ut

oS
kl

ea
rn

H
yp

er
op

tS
kl

ea
rn

A
ut

oM
L

Ta
bl

es

M
et

ah
eu

ri
st

ic
Sk

le
ar

n

Si
m

ul
at

ed
A

nn
ea

l

Ta
bu

IL
S

Lo
gi

st
ic

R
eg

re
ss

io
n

Dataset Name

Bioresponse 0.77 0.77 0.77 0.80 0.44 0.73 0.71 0.68 0.73 0.72
Click_prediction_small 0.60 0.56 0.55 0.52 0.55 0.55 0.54 0.55 0.54 0.54
Diabetes130US 0.40 0.40 0.41 0.35 0.30 0.20 0.19 0.18 0.20 0.36
GesturePhaseSegmentation-
Processed

0.67 0.65 0.65 0.57 0.42 0.30 0.30 0.28 0.29 0.33

68

5.2. Results

Table 5.8: Overall Framework F1-Score Performance Evaluation on Testing Benchmark -
continued

Higgs 0.63 0.64 0.62 0.35 0.46 0.42 0.42 0.42 0.42 0.63
Internet-Advertisements 0.91 0.92 0.92 0.89 0.66 0.94 0.93 0.93 0.94 0.94
KDDCup99 0.28 0.30 0.27 0.08 0.09 0.37 0.36 0.34 0.37 0.14
PhishingWebsites 0.97 0.95 0.98 0.93 0.80 0.94 0.94 0.93 0.93 0.94
Satellite 0.88 0.88 0.86 0.84 0.53 0.87 0.84 0.87 0.82 0.84
ada 0.79 0.80 0.80 0.81 0.09 0.77 0.62 0.60 0.77 0.76
amazon-commerce-
reviews

0.49 0.50 0.48 0.50 0.38 0.83 0.82 0.83 0.83 0.82

arcene 0.88 0.81 0.80 0.88 0.75 0.92 0.80 0.78 0.92 0.76
churn 0.67 0.69 0.68 0.64 0.51 0.55 0.54 0.54 0.55 0.57
cmc 0.45 0.43 0.47 0.46 0.48 0.46 0.46 0.46 0.45 0.47
dna 0.96 0.95 0.97 0.98 0.91 0.93 0.91 0.89 0.93 0.91
eucalyptus 0.49 0.48 0.51 0.51 0.28 0.46 0.44 0.46 0.43 0.47
first-order-theorem-
proving

0.51 0.52 0.49 0.46 0.52 0.33 0.32 0.31 0.33 0.34

gina 0.93 0.97 0.97 0.89 0.93 0.97 0.97 0.95 0.95 0.83
kick 0.50 0.48 0.50 0.40 0.28 0.49 0.48 0.46 0.49 0.50
madeline 0.87 0.90 0.91 0.89 0.04 0.87 0.53 0.52 0.87 0.55
micro-mass 0.87 0.87 0.89 0.80 0.90 0.80 0.80 0.79 0.80 0.80
okcupid-stem 0.58 0.61 0.58 0.57 0.59 0.44 0.43 0.44 0.43 0.53
ozone-level-8hr 0.70 0.75 0.74 0.60 0.29 0.70 0.66 0.65 0.70 0.67
pc4 0.75 0.73 0.77 0.67 0.61 0.75 0.75 0.73 0.73 0.74
philippine 0.76 0.82 0.83 0.74 0.08 0.77 0.72 0.74 0.77 0.73
porto-seguro 0.49 0.49 0.51 0.45 0.41 0.51 0.49 0.51 0.47 0.49
qsar-biodeg 0.83 0.81 0.84 0.85 0.57 0.86 0.84 0.86 0.84 0.85
steel-plates-fault 0.80 0.82 0.82 0.82 0.64 0.79 0.79 0.79 0.66 0.72
wilt 0.95 0.93 0.94 0.96 0.34 0.95 0.94 0.95 0.92 0.69
wine-quality-white 0.40 0.41 0.38 0.34 0.33 0.08 0.07 0.08 0.07 0.22
yeast 0.51 0.51 0.51 0.52 0.27 0.55 0.53 0.55 0.51 0.49

69

5. Evaluation

Figure 5.3: Overall Framework F1-Score Evaluation on the Testing Benchmark for 15
datasets

70

5.2. Results

Table 5.9: Overall Framework Precision Performance Evaluation on Testing Benchmark

T
P

O
T

A
ut

oW
ek

a

A
ut

oS
kl

ea
rn

H
yp

er
op

tS
kl

ea
rn

A
ut

oM
L

Ta
bl

es

M
et

ah
eu

ri
st

ic
Sk

le
ar

n

Si
m

ul
at

ed
A

nn
ea

l

Ta
bu

IL
S

Lo
gi

st
ic

R
eg

re
ss

io
n

Dataset Name

Bioresponse 0.78 0.77 0.77 0.69 0.61 0.72 0.71 0.72 0.70 0.72
Click_prediction_small 0.70 0.65 0.68 0.54 0.58 0.58 0.56 0.57 0.58 0.56
Diabetes130US 0.41 0.41 0.41 0.42 0.40 0.44 0.44 0.42 0.44 0.43
GesturePhaseSegmentation-
Processed

0.67 0.69 0.65 0.61 0.56 0.48 0.46 0.48 0.45 0.46

Higgs 0.63 0.61 0.63 0.26 0.60 0.69 0.67 0.69 0.69 0.64
Internet-Advertisements 0.96 0.95 0.98 0.86 0.86 0.99 0.97 0.97 0.99 0.97
KDDCup99 0.34 0.35 0.34 0.07 0.04 0.46 0.44 0.42 0.46 0.13
PhishingWebsites 0.97 0.97 0.99 0.94 0.92 0.96 0.94 0.92 0.96 0.94
Satellite 0.93 0.93 0.92 0.84 0.54 0.92 0.92 0.90 0.90 1.00
ada 0.82 0.82 0.82 0.76 0.82 0.79 0.75 0.74 0.79 0.78
amazon-commerce-
reviews

0.65 0.63 0.63 0.56 0.65 0.85 0.83 0.84 0.85 0.85

arcene 0.89 0.80 0.80 0.85 0.80 0.92 0.81 0.81 0.92 0.76
churn 0.67 0.69 0.65 0.62 0.44 0.82 0.80 0.80 0.82 0.81
cmc 0.46 0.46 0.47 0.41 0.21 0.48 0.47 0.47 0.48 0.47
dna 0.96 0.97 0.97 0.92 0.89 0.94 0.92 0.94 0.94 0.91
eucalyptus 0.50 0.52 0.49 0.48 0.23 0.48 0.46 0.48 0.48 0.48
first-order-theorem-
proving

0.52 0.49 0.50 0.50 0.13 0.41 0.41 0.39 0.40 0.41

gina 0.93 0.97 0.97 0.92 0.97 0.97 0.97 0.97 0.95 0.83
kick 0.55 0.55 0.57 0.56 0.21 0.61 0.59 0.59 0.61 0.60
madeline 0.87 0.91 0.91 0.86 0.91 0.87 0.56 0.54 0.87 0.55
micro-mass 0.88 0.90 0.86 0.80 0.67 0.82 0.81 0.82 0.82 0.81
okcupid-stem 0.56 0.55 0.58 0.57 0.22 0.48 0.48 0.48 0.47 0.61
ozone-level-8hr 0.70 0.80 0.80 0.61 0.80 0.69 0.66 0.68 0.69 0.78

71

5. Evaluation

Table 5.9: Overall Framework Precision Performance Evaluation on Testing Benchmark -
continued

pc4 0.76 0.74 0.75 0.66 0.46 0.81 0.80 0.80 0.81 0.79
philippine 0.76 0.83 0.83 0.67 0.83 0.77 0.72 0.73 0.77 0.73
porto-seguro 0.48 0.49 0.49 0.51 0.23 0.50 0.48 0.50 0.48 0.48
qsar-biodeg 0.85 0.87 0.86 0.81 0.81 0.84 0.83 0.82 0.84 0.85
steel-plates-fault 0.83 0.85 0.85 0.75 0.85 0.84 0.83 0.84 0.76 0.74
wilt 0.93 0.95 0.95 0.85 0.95 0.96 0.95 0.96 0.94 0.86
wine-quality-white 0.42 0.43 0.41 0.33 0.42 0.13 0.13 0.11 0.12 0.27
yeast 0.53 0.52 0.52 0.51 0.52 0.61 0.60 0.61 0.55 0.52

Table 5.10: Best performing classifier for each AutoML framework for the arcene dataset

AutoML Framework Best Performing Classifier

TPOT StackingEstimator
AutoWeka lazy.LWL
AutoSklearn Ensemble
Hyperopt-Sklearn ExtraTreesClassifier
AutoML Tables Neural Network Ensemble
MetaheuristicSklearn RandomForestClassifier

Table 5.11: Best performing classifier for each AutoML framework for the Higgs dataset

AutoML Framework Best Performing Classifier

TPOT SGDClassifier
Auto-Weka meta.RandomSubSpace
Auto-Sklearn MyDummyClassifier
Hyperopt-Sklearn SGDClassifier
AutoML Tables Neural Network Ensemble
MetaheuristicSklearn SGDClassifier

72

5.2. Results

Figure 5.4: Overall Framework F1-Score Evaluation on the Testing Benchmark for Top 10
worst performing datasets of MetaheuristicSKlear with an extended experiment running
time of 10 hours

73

5. Evaluation

Table 5.12: Overall Framework F1-Score Evaluation on the Testing Benchmark for Top 10
worst performing datasets of MetaheuristicSKlear with an extended experiment running
time of 10 hours

T
P

O
T

A
ut

oW
ek

a

A
ut

oS
kl

ea
rn

H
yp

er
op

tS
kl

ea
rn

A
ut

oM
L

Ta
bl

es

M
et

ah
eu

ri
st

ic
Sk

le
ar

n

Si
m

ul
at

ed
A

nn
ea

l

Ta
bu

IL
S

Dataset Name

GesturePhaseSegmentation-
Processed

0.70 0.75 0.76 0.62 0.48 0.42 0.42 0.36 0.32

wine-quality-white 0.54 0.49 0.56 0.49 0.40 0.28 0.28 0.20 0.16
Higgs 0.71 0.74 0.68 0.42 0.58 0.54 0.42 0.49 0.54
Diabetes130US 0.47 0.41 0.46 0.55 0.44 0.40 0.26 0.21 0.40
first-order-theorem-
proving

0.53 0.65 0.52 0.55 0.56 0.52 0.45 0.45 0.52

okcupid-stem 0.68 0.64 0.69 0.69 0.65 0.51 0.43 0.45 0.51
churn 0.73 0.78 0.69 0.66 0.63 0.67 0.67 0.56 0.61
micro-mass 0.89 0.91 0.90 0.84 0.92 0.84 0.81 0.84 0.83
Bioresponse 0.81 0.79 0.84 0.83 0.46 0.77 0.77 0.75 0.74
dna 0.97 0.95 0.97 0.98 0.94 0.95 0.92 0.90 0.95

74

CHAPTER 6
Conclusion

In this thesis, we proposed a novel metaheuristics framework that is built on the Simulated
Annealing, Tabu Search, and Iterated Local Search algorithms for solving the difficult
Automated Machine Learning problem.

A new framework, named MetaheuristicSklearn, was developed that enables the devel-
opment and reproduction of multi-step supervised classification pipelines in a unified
way. The MetaheuristicSklearn framework offers a common manner in which pipeline
steps and parameters are implemented and integrated through different methods. In the
context of solver algorithms for optimal solutions the metaheuristic algorithms Simulated
Annealing, Tabu Search and Iterated Local Search were introduced.

To finally fine-adjust the framework, an extensive data set benchmark collection containing
over 70 datasets was used to optimize the algorithms by SMAC as part of the framework
optimization process.

In order to evaluate the framework, the three-solver algorithms have been applied in
various dataset benchmarks. We used well-known literature benchmark collections,
OpenML-CC18 Benchmarking Suite, where the framework was applicable to a wide
variety of datasets. Inter-algorithm performance was evaluated and compared while also
comparing the framework to the most state-of-the-art frameworks for solving AutoML
problems.

The Tabu Search and ILS have been found to perform better than their Simulated An-
nealing equivalent. Where Tabu Search was the most successful algorithm top performing
15 out of 31 cases, ILS in 13 out of 31, and Simulated Annealing was only the best
performing algorithm in 3 out of 31 cases. The algorithm parameter tuning process was
also proven to be quite effective, where the overall improvement in F1-Score was 7% on
average.

75

6. Conclusion

Furthermore, a better performance of pipeline 9 out of 31 times has been found through
the proposed framework. The precision of the metaheuristic framework was two percent
less precise than the best performing framework for all datasets compared to state of the
art systems for the test benchmark.

Finally, we want to emphasize that this is a working framework that has already been
applied to real-world Machine Learning problems. The implementation is very easy
and can be used by anyone who knows and understands the fundamentals of AutoML.
To conclude, take into account that we have developed an easy way to automate ma-
chine learning problems with state-of-the-art metaheuristics algorithms like Simulated
Annealing, Tabu Search, and Iterated Local Search.

This research presents a number of opportunities in this field for further research. The
future works remain to improve the precision of the MetaheuristicSklearn framework and
apply the framework to more complicated issues and evaluate supervised problems of
regression. We also suggest that the search space methods should be parallelized in order
to enhance performance and to evaluate alternative algorithms such as population based
algorithms.

76

List of Figures

2.1 A depiction of a typical machine learning pipeline [EMS19] 5
2.2 TPOT Machine Learning System Overview Diagram 8
2.3 Auto-Weka Machine Learning System Overview Diagram 14
2.4 Auto-Sklearn Machine Learning System Overview Diagram 17
2.5 Google AutoML Tables System Overview Diagram 25

3.1 High-level System Design Diagram that highlights the framework components 28
3.2 High-level system design diagram that highlights the framework components 35

4.1 A flowchart diagram of the Simulated Annealing implementation inside Meta-
heuristicSklearn for solving AutoML problems. 45

4.2 A flowchart diagram of the Tabu Search implementation inside Metaheuristic-
Sklearn for solving AutoML problems. 48

4.3 A flowchart diagram of the Iterated Local Search implementation inside
MetaheuristicSklearn for solving AutoML problems. 50

5.1 An overview of total experiment settings for the AutoML framework evaluation 61
5.2 F1-Score Evaluation of Metaheuristic Algorithms on the Testing Benchmark

for 15 datasets . 67
5.3 Overall Framework F1-Score Evaluation on the Testing Benchmark for 15

datasets . 70
5.4 Overall Framework F1-Score Evaluation on the Testing Benchmark for Top 10

worst performing datasets of MetaheuristicSKlear with an extended experiment
running time of 10 hours . 73

77

List of Tables

2.1 TPOT Automated Machine Learning Pipeline Operators [OUA+16b] . . . 9
2.2 TPOT Automated Machine Learning Configuration Parameters [noac] . . 10
2.3 Auto-Weka Automated Machine Learning Pipeline Operators [THHLB13] 15
2.4 Auto-WEKA Automated Machine Learning Configuration Parameters . . 15
2.5 Auto-Sklearn Automated Machine Learning Pipeline Operators [FKE+15] 18
2.6 Auto-Sklearn Automated Machine Learning Configuration Parameters [noaa] 19
2.7 Hyperopt-Sklearn Automated Machine Learning Pipeline Operators [noa20]. 21
2.8 Hyperopt-Sklearn Automated Machine Learning Configuration Parameters

[noa20]. 22
2.9 Google AutoML Tables Automated Machine Learning Pipeline Operators

[noab] . 25
2.10 Google AutoML Tables Configuration Parameters [noab] 26

3.1 Shared Parameters for all metaheuristic algorithms, descriptions, and their
default values . 31

3.2 Best variables accessible after having finished the optimization process, and
their descriptions . 31

3.3 Classifiers and their respective Hyperparameters included in the Metaheuristics-
Sklearn framework . 36

4.1 Parameters for the Simulated Annealing algorithm, descriptions, and their
default values . 44

4.2 Parameters for the Tabu Search algorithm, descriptions, and their default
values . 47

4.3 Parameters for the Iterated Local Search algorithm, descriptions, and their
default values . 51

5.1 List of train benchmark datasets and their properties 55
5.1 List of train benchmark datasets and their properties - continued 56
5.1 List of train benchmark datasets and their properties - continued 57
5.2 List of test benchmark datasets and their properties 58
5.2 List of test benchmark datasets and their properties - continued 59
5.3 Comparison of evaluated AutoML Systems 60
5.4 Experiment AutoML Frameworks and Configurations 62

79

5.5 Metaheuristic parameters, parameter ranges for SMAC and optimized values. 63
5.6 Metaheuristic Only F1-Score Performance Evaluation on Testing Benchmark 64
5.6 Metaheuristic Only F1-Score Performance Evaluation on Testing Benchmark

- continued . 65
5.7 Metaheuristic Only Precision Performance Evaluation on Testing Benchmark 65
5.7 Metaheuristic Only Precision Performance Evaluation on Testing Benchmark

- continued . 66
5.8 Overall Framework F1-Score Performance Evaluation on Testing Benchmark 68
5.8 Overall Framework F1-Score Performance Evaluation on Testing Benchmark -

continued . 69
5.9 Overall Framework Precision Performance Evaluation on Testing Benchmark 71
5.9 Overall Framework Precision Performance Evaluation on Testing Benchmark

- continued . 72
5.10 Best performing classifier for each AutoML framework for the arcene dataset 72
5.11 Best performing classifier for each AutoML framework for the Higgs dataset 72
5.12 Overall Framework F1-Score Evaluation on the Testing Benchmark for Top 10

worst performing datasets of MetaheuristicSKlear with an extended experiment
running time of 10 hours . 74

80

Bibliography

[AL97] Emile Aarts and Jan K. Lenstra. Local Search in Combinatorial Optimization.
John Wiley amp; Sons, Inc., USA, 1st edition, 1997.

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. The Journal of Machine Learning Research, 13(1):281–305,
2012.

[BBBK11] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-
rithms for hyper-parameter optimization. In Advances in neural information
processing systems, pages 2546–2554, 2011.

[BCdF10a] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian
optimization of expensive cost functions, with application to active user mod-
eling and hierarchical reinforcement learning. CoRR, abs/1012.2599, 2010.
URL: http://arxiv.org/abs/1012.2599, arXiv:1012.2599.

[BCDF10b] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian opti-
mization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599,
2010.

[BCF+19] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel
Lang, Rafael G. Mantovani, Jan N. van Rijn, and Joaquin Vanschoren.
Openml benchmarking suites, 2019. arXiv:1708.03731.

[Bis19] Ekaba Bisong. Building Machine Learning and Deep Learning Models on
Google Cloud Platform: A Comprehensive Guide for Beginners. Apress,
Berkeley, CA, 2019. URL: http://link.springer.com/10.1007/
978-1-4842-4470-8, doi:10.1007/978-1-4842-4470-8.

[BJP20] Víctor Blanco, Alberto Japón, and Justo Puerto. Optimal arrangements of
hyperplanes for SVM-based multiclass classification. Advances in Data
Analysis and Classification, 14(1):175–199, March 2020. URL: http:
//link.springer.com/10.1007/s11634-019-00367-6, doi:10.
1007/s11634-019-00367-6.

81

http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1708.03731
http://link.springer.com/10.1007/978-1-4842-4470-8
http://link.springer.com/10.1007/978-1-4842-4470-8
https://doi.org/10.1007/978-1-4842-4470-8
http://link.springer.com/10.1007/s11634-019-00367-6
http://link.springer.com/10.1007/s11634-019-00367-6
https://doi.org/10.1007/s11634-019-00367-6
https://doi.org/10.1007/s11634-019-00367-6

[BLS13] Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. A survey on optimiza-
tion metaheuristics. Information Sciences, 237:82–117, 2013.

[BS91] Bruno Betrò and Fabio Schoen. A stochastic technique for
global optimization. Computers Mathematics with Applications,
21(6):127–133, 1991. URL: https://www.sciencedirect.
com/science/article/pii/0898122191901673, doi:https:
//doi.org/10.1016/0898-1221(91)90167-3.

[D+02] Thomas G Dietterich et al. Ensemble learning. The Handbook of Brain
Theory and Neural Networks, 2:110–125, 2002.

[Den14] Li Deng. A tutorial survey of architectures, algorithms, and applications for
deep learning. APSIPA Transactions on Signal and Information Processing,
3:e2, 2014. doi:10.1017/atsip.2013.9.

[DPI+20] Piali Das, Valerio Perrone, Nikita Ivkin, Tanya Bansal, Zohar S. Karnin,
Huibin Shen, Iaroslav Shcherbatyi, Yotam Elor, Wilton Wu, Aida Zolic,
Thibaut Lienart, Alex Tang, Amr Ahmed, Jean Baptiste Faddoul, Rodolphe
Jenatton, Fela Winkelmolen, Philip Gautier, Leo Dirac, Andre Perunicic,
Miroslav Miladinovic, Giovanni Zappella, Cédric Archambeau, Matthias W.
Seeger, Bhaskar Dutt, and Laurence Rouesnel. Amazon sagemaker autopilot:
a white box automl solution at scale. CoRR, abs/2012.08483, 2020. URL:
https://arxiv.org/abs/2012.08483, arXiv:2012.08483.

[EFH+13] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra,
Jasper Snoek, Holger Hoos, and Kevin Leyton-Brown. Towards an empirical
foundation for assessing bayesian optimization of hyperparameters. In NIPS
workshop on Bayesian Optimization in Theory and Practice, volume 10,
page 3, 2013.

[EHH18] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural Architecture
Search: A Survey. arXiv e-prints, page arXiv:1808.05377, August 2018.
arXiv:1808.05377.

[EMS19] Radwa Elshawi, Mohamed Maher, and Sherif Sakr. Automated ma-
chine learning: State-of-the-art and open challenges. arXiv preprint
arXiv:1906.02287, 2019.

[FD02] Dimitris Fouskakis and David Draper. Stochastic optimization: a review.
International Statistical Review, 70(3):315–349, 2002.

[FH19] Matthias Feurer and Frank Hutter. Hyperparameter optimization. In
Automated Machine Learning, pages 3–33. Springer, Cham, 2019.

[Fil19] Peter Filzmoser. Lecture notes in advanced methods for regression and
classification, October 2019.

82

https://www.sciencedirect.com/science/article/pii/0898122191901673
https://www.sciencedirect.com/science/article/pii/0898122191901673
https://doi.org/https://doi.org/10.1016/0898-1221(91)90167-3
https://doi.org/https://doi.org/10.1016/0898-1221(91)90167-3
https://doi.org/10.1017/atsip.2013.9
https://arxiv.org/abs/2012.08483
http://arxiv.org/abs/2012.08483
http://arxiv.org/abs/1808.05377

[FKE+15] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. Efficient and robust automated machine
learning. In Advances in neural information processing systems, pages
2962–2970, 2015.

[GJ05] Michael J. Grimble and Michael A. Johnson, editors. Introduction to Genetic
Algorithms, pages 325–336. Springer London, London, 2005. doi:10.1007/
1-84628-121-0_14.

[Glo90] Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.

[Glo95] Fred Glover. Tabu search fundamentals and uses. Graduate School of
Business, University of Colorado Boulder, 1995.

[GLP+19] P. Gijsbers, E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J. Vanschoren.
An open source automl benchmark. arXiv preprint arXiv:1907.00909 [cs.LG],
2019. Accepted at AutoML Workshop at ICML 2019. URL: https://
arxiv.org/abs/1907.00909.

[HHLB11] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-
based optimization for general algorithm configuration. In International
conference on learning and intelligent optimization, pages 507–523. Springer,
2011.

[HS04] Daniel P Heyman and Matthew J Sobel. Stochastic models in operations
research: stochastic optimization, volume 2. Courier Corporation, 2004.

[HSCS19] Kashif Hussain, Mohd Najib Mohd Salleh, Shi Cheng, and Yuhui Shi.
Metaheuristic research: a comprehensive survey. Artificial Intelligence
Review, 52(4):2191–2233, 2019.

[KBE14] Brent Komer, James Bergstra, and Chris Eliasmith. Hyperopt-sklearn:
automatic hyperparameter configuration for scikit-learn. In ICML workshop
on AutoML, volume 9, page 50. Citeseer, 2014.

[KGV83] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by
simulated annealing. science, 220(4598):671–680, 1983.

[KH00] Alexandros Kalousis and Melanie Hilario. Model selection via meta-learning:
A comparative study. pages 406 – 413, 02 2000. doi:10.1109/TAI.2000.
889901.

[LLG12] Hongtao Lei, Gilbert Laporte, and Bo Guo. A generalized variable neigh-
borhood search heuristic for the capacitated vehicle routing problem with
stochastic service times. Top, 20(1):99–118, 2012.

83

https://doi.org/10.1007/1-84628-121-0_14
https://doi.org/10.1007/1-84628-121-0_14
https://arxiv.org/abs/1907.00909
https://arxiv.org/abs/1907.00909
https://doi.org/10.1109/TAI.2000.889901
https://doi.org/10.1109/TAI.2000.889901

[LMS03] Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle. Iterated Local
Search, pages 320–353. Springer US, Boston, MA, 2003. doi:10.1007/
0-306-48056-5_11.

[MF] Arlind Kadra Pieter Gijsbers Neeratyoy Mallik Sahithya Ravi Andreas
Mueller Joaquin Vanschoren Frank Hutter Matthias Feurer, Jan N. van Rijn.
Openml-python: an extensible python api for openml. arXiv, 1911.02490.
URL: https://arxiv.org/pdf/1911.02490.pdf.

[Moc94] Jonas Mockus. Application of bayesian approach to numerical methods of
global and stochastic optimization. Journal of Global Optimization, 4(4):347–
365, 1994.

[noaa] auto-sklearn — AutoSklearn 0.8.0 documentation. URL: https://automl.
github.io/auto-sklearn/master/.

[noab] AutoML Tables features and capabilities. URL: https://cloud.google.
com/automl-tables/docs/features.

[noac] Examples - TPOT. URL: http://epistasislab.github.io/tpot/
examples/.

[noa20] hyperopt/hyperopt-sklearn, July 2020. original-date: 2013-02-19T16:09:53Z.
URL: https://github.com/hyperopt/hyperopt-sklearn.

[OL96] Ibrahim H Osman and Gilbert Laporte. Metaheuristics: A bibliography,
1996.

[OM19] Randal S. Olson and Jason H. Moore. TPOT: A Tree-Based Pipeline
Optimization Tool for Automating Machine Learning. In Frank Hutter, Lars
Kotthoff, and Joaquin Vanschoren, editors, Automated Machine Learning,
pages 151–160. Springer International Publishing, Cham, 2019. URL: http:
//link.springer.com/10.1007/978-3-030-05318-5_8, doi:10.
1007/978-3-030-05318-5_8.

[OUA+16a] Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A.
Lavender, La Creis Kidd, and Jason H. Moore. Applications of Evolu-
tionary Computation: 19th European Conference, EvoApplications 2016,
Porto, Portugal, March 30 – April 1, 2016, Proceedings, Part I, chap-
ter Automating Biomedical Data Science Through Tree-Based Pipeline
Optimization, pages 123–137. Springer International Publishing, 2016.
URL: http://dx.doi.org/10.1007/978-3-319-31204-0_9, doi:
10.1007/978-3-319-31204-0_9.

[OUA+16b] Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender,
La Creis Kidd, and Jason H. Moore. Automating biomedical data science
through tree-based pipeline optimization. arXiv:1601.07925 [cs], January
2016. arXiv: 1601.07925. URL: http://arxiv.org/abs/1601.07925.

84

https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/0-306-48056-5_11
https://arxiv.org/pdf/1911.02490.pdf
https://automl.github.io/auto-sklearn/master/
https://automl.github.io/auto-sklearn/master/
https://cloud.google.com/automl-tables/docs/features
https://cloud.google.com/automl-tables/docs/features
http://epistasislab.github.io/tpot/examples/
http://epistasislab.github.io/tpot/examples/
https://github.com/hyperopt/hyperopt-sklearn
http://link.springer.com/10.1007/978-3-030-05318-5_8
http://link.springer.com/10.1007/978-3-030-05318-5_8
https://doi.org/10.1007/978-3-030-05318-5_8
https://doi.org/10.1007/978-3-030-05318-5_8
http://dx.doi.org/10.1007/978-3-319-31204-0_9
https://doi.org/10.1007/978-3-319-31204-0_9
https://doi.org/10.1007/978-3-319-31204-0_9
http://arxiv.org/abs/1601.07925

[Pol12] Robi Polikar. Ensemble learning. In Ensemble machine learning, pages 1–34.
Springer, 2012.

[RLMS00] Helena Ramalhinho-Lourenço, Olivier C Martin, and Thomas Stützle. Iter-
ated local search. 2000.

[RM51] Herbert Robbins and Sutton Monro. A stochastic approximation method.
The Annals of Mathematical Statistics, pages 400–407, 1951.

[Rut89] Rob A Rutenbar. Simulated annealing algorithms: An overview. IEEE
Circuits and Devices Magazine, 5(1):19–26, 1989.

[Sch13] Robert E Schapire. Explaining adaboost. In Empirical inference, pages
37–52. Springer, 2013.

[Spa03] James C. Spall. Introduction to Stochastic Search and Optimization: Estima-
tion, Simulation, and Control. John Wiley & Sons, Inc., Hoboken, NJ, USA,
March 2003. URL: http://doi.wiley.com/10.1002/0471722138,
doi:10.1002/0471722138.

[THHLB13] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
Auto-weka: Combined selection and hyperparameter optimization of classifi-
cation algorithms. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’13, page
847–855, New York, NY, USA, 2013. Association for Computing Machinery.
doi:10.1145/2487575.2487629.

[TyHCPP] Jack Smyth Tin-yun Ho, Enrique Ibarra Anaya Chris Pocock, and Carlos S.
Perez. Tackling high-value business problems using automl on structured
data (cloud next ’19). URL: https://www.youtube.com/watch?v=
MqO_L9nIOWM.

[Vap95] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer New
York, New York, NY, 1995. URL: http://link.springer.com/10.
1007/978-1-4757-2440-0, doi:10.1007/978-1-4757-2440-0.

[VLA87] Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing. In
Simulated annealing: Theory and applications, pages 7–15. Springer, 1987.

[VvRBT13] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml:
Networked science in machine learning. SIGKDD Explorations, 15(2):49–
60, 2013. URL: http://doi.acm.org/10.1145/2641190.2641198,
doi:10.1145/2641190.2641198.

[WM97] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82, April
1997. URL: http://ieeexplore.ieee.org/document/585893/,
doi:10.1109/4235.585893.

85

http://doi.wiley.com/10.1002/0471722138
https://doi.org/10.1002/0471722138
https://doi.org/10.1145/2487575.2487629
https://www.youtube.com/watch?v=MqO_L9nIOWM
https://www.youtube.com/watch?v=MqO_L9nIOWM
http://link.springer.com/10.1007/978-1-4757-2440-0
http://link.springer.com/10.1007/978-1-4757-2440-0
https://doi.org/10.1007/978-1-4757-2440-0
http://doi.acm.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
http://ieeexplore.ieee.org/document/585893/
https://doi.org/10.1109/4235.585893

[Yan10] Xin-She Yang. Nature-inspired metaheuristic algorithms. Luniver press,
2010.

[YL99] Yiming Yang and Xin Liu. A re-examination of text categorization methods.
In Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, pages 42–49, 1999.

[ZM12] Cha Zhang and Yunqian Ma. Ensemble machine learning: methods and
applications. Springer, 2012.

86

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aims of this Thesis
	Contribution
	Organization

	Problem Statement and Related Work
	Problem Statement
	Related Work

	MetaheuristicSklearn - An AutoML Framework
	Instance and Solution Representation
	Initialization and the Base Estimator
	Automated Machine Learning

	AutoML through Metaheuristic Algorithms
	Introduction
	Initialization
	Search-space Exploration
	Evaluation
	Simulated Annealing
	Tabu Search
	Iterated Local Search (ILS)

	Evaluation
	Experiment Settings
	Results

	Conclusion
	List of Figures
	List of Tables
	Bibliography

