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Kurzfassung

Wide Area Monitoring Systems (WAMS) werden verwendet, um Synchrophasordaten an ver-
schiedenen Standorten zu messen und den Betreibern ein nahezu Echtzeitbild des Geschehens
im System zu geben. Da Stromnetze kritische Infrastrukturen sind, sind WAMS verlockende
Ziele für alle Arten von Angreifern, einschließlich gut organisierter und motivierter Gegner wie
Terroristengruppen oder verfeindete Staaten.

Wir möchten die Sicherheit des Stromversorgungssystems verbessern, indem wir FDI-Angriffe
(False Data Injection) gegen WAMS erkennen. Durch die Einführung geeigneter statistischer
Methoden wollen wir die Leistungsfähigkeit bei der Erkennung von Anomalien verbessern und
gleichzeitig die Auswirkungen von Angriffen auf die Zustandsschätzung (State Estimation - SE)
abschwächen. Wir analysieren zunächst Smart-Grid-Bedrohungen mit Hilfe von Angriffsbäumen
und formulieren ein Modell, um verschiedene FDI-Angriffe darstellen zu können. Dann untersuchen
wir verschiedene Anomalieerkennungsmethoden hinsichtlich ihrer Fähigkeit, FDIs zu erkennen.
Um zu untersuchen, wie solche Angriffe erkannt werden können, verwenden wir Methoden zur
Erkennung von Zustandsschätzungen (SE) und fehlerhaften Daten (Bad Data - BD). Danach
untersuchen wir die Eignung einer statischen SE-Methode für gewichtete kleinste Quadrate
(Weighted Least Squares - WLS) und einer rekursiven SE-Methode für Kalman Filter (KFs).
Anschließend untersuchen wir die Eignung von Residuen aus WLS und DKF zur Erkennung
fehlerhafter Messungen. Drei Verfahren, einfache Pre-fit Residuen, L2-Norm- und normalisierte
Residuen-basierte Verfahren, werden zum Erfassen von fehlerhaften Messungen verwendet. Dann
untersuchen wir die Eignung verschiedener einfacher statistischer Methoden zur Erkennung von
Anomalien, mittlere absolute Abweichung vom Median (MAD), Kullback-Leibler-Divergenz (KLD)
und kumulative Summe (CUSUM). Die in den verschiedenen Experimenten verwendeten Daten
stammen von Phasor Measurement Units (PMUs) aus einem realen Stromnetz. Desweiteren
untersuchen wir die Verbesserung der Anomalieerkennung durch eine Kombination von Methoden
mit einer gewichteten Abstimmung. Schließlich wird eine Analyse der Minderung der Auswirkungen
von Angriffen auf die Zustandsschätzung durch Ersetzen der detektierten fehlerhaften Daten
durchgeführt.

Die Anwendungen für die Forschungsergebnisse sind vielfältig: Die Überwachung und Steuerung
von Smart Grids kann von der im Rahmen unserer Forschung durchgeführten Bedrohungsana-
lyse profitieren. Darüber hinaus können die verschiedenen statistischen Methoden, die in den
Experimenten untersucht und verwendet wurden, bei der Identifizierung des geeigneten Analyse-
werkzeugs für die Erkennung von Anomalien helfen. Unsere Untersuchungen zeigen, dass für einen
vertrauenswürdigen Mechanismus zur Erkennung von Anomalien eine Kombination verschiedener
Methoden erforderlich ist.
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Abstract

Wide area monitoring systems (WAMSs) are used to measure synchrophasor data at
different locations and give operators a near-real-time picture of what is happening in the
system. Since power grids are critical infrastructures, WAMSs are tempting targets for
all kinds of attackers, including well-organized and motivated adversaries such as terrorist
groups or adversarial nation states. Attacks on WAMSs can trigger wrong decisions and
severely impact grid stability, overall power supply, and physical devices.

We aim to improve power system security by detecting false data injection (FDI) attacks
against WAMSs. Through adoption of adequate statistical methods, we aim to enhance
anomaly detection performance and at the same time mitigate the effects of attacks on
state estimation (SE). We first analyze smart grid threats with the use of attack trees and
formulate a model to express different FDI attacks. Then we investigate different anomaly
detection methods with regard to their ability to detect FDIs. In order to investigate how
such attacks can be detected, we first look into SE and bad data (BD) detection methods.
We then investigate the suitability of a static SE method based on weighted least squares
(WLS) and a recursive SE method based on Kalman filters (KFs), and analyse the
suitability of using residuals from WLS and DKF for detecting bad measurements. Three
methods, i.e., plain pre-fit residuals, L2-norm and normalized residuals based methods
are used for detecting bad measurements. We then investigate the suitability of different
lightweight statistical anomaly detection methods median absolute deviation (MAD),
Kullback-leibler divergence (KLD) and cumulative sum (CUSUM). The data used in the
different experiments come from phasor measurement units (PMUs) installed in a real
power grid. Further, we investigate improving anomaly detection performance with a
combination of methods based on weighted voting. Finally, an analysis of mitigating the
effects of attacks on SE by replacing detected BD is conducted.

The impacts of this research are manifold: smart grid monitoring and control can
benefit from the threat analysis conducted as part of our research. Additionally, all the
different statistical methods investigated and utilised in the experiments can help in the
identification of the proper analytical tool for anomaly detection. Last but not least, our
research suggests that a combination of different methods are needed for a trustworthy
anomaly detection in smart grids.
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CHAPTER 1
Introduction

Notice of adoption from previous publications in Chapter 1
Parts of the contents of this chapter have been published in the following papers:

[129] S. Paudel, P. Smith, and T. Zseby. Data Integrity Attacks in Smart Grid Wide
Area Monitoring. 4th International Symposium for ICS and SCADA Cyber
Security Research, 2016

[130] S. Paudel, P. Smith, and T. Zseby. Attack models for advanced persistent
threats in smart grid wide area monitoring. In Proceedings of the 2Nd Workshop
on Cyber-Physical Security and Resilience in Smart Grids, CPSR-SG’17, pages
61–66, New York, NY, USA, 2017. ACM

[132] S. Paudel, P. Smith, and T. Zseby. Stealthy attacks on smart grid PMU state
estimation. In Proceedings of the 13th International Conference on Availability,
Reliability and Security, ARES 2018, Hamburg, Germany, August 27-30, 2018,
pages 16:1–16:10, 2018

[133] S. Paudel, T. Zseby, E. Piatkowska, and P.Smith. An evaluation of methods
for detecting false data injection attacks in the smart grid. In preparationa

Explanation text, on what parts were adopted from previous publications:
Text from motivation are based on the work done in [129], [130], [132] and [133]. A
part of text while describing research activities and performance metrics is based on
the work done in [129], [130] and [133].
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1. Introduction

S. Paudel implemented the methods and conducted all the experiments. Theoretical
considerations and experiment planning was done together with all co-authors, the
text and figures in the papers were created together by all authors.

aThe paper is in preparation.

1.1 Motivation

Integrated electric power system (EPS) networks consist of several components for power
generation and distribution. Natural disasters (e.g., earthquakes, hurricanes or flooding)
can cause malfunctions and damage to power systems equipment or installations like
power lines, power units and substations [26]. Failures of EPS components can lead to
critical states in grid operation, endanger devices, and even cause blackouts.

The integration of information and communication technology (ICT) into EPSs supports
enhanced monitoring and control capabilities. An important application of ICT in this
context is to enable situational awareness with respect to the EPS’s state. Situational
awareness [72] “relates to the perception of changes in environment with respect to time
(or space), projection of the status after changes”. Sharing of information is one aspect of
situational awareness.

Smart grids (SGs) improve the efficiency of the traditional power grids by adopting
modern communication and control technologies. Different devices from various vendors
are connected in multiple layers, and communicate via proprietary or open standard
protocols. Though integration of ICT helps power grids to be smarter, it introduces
security issues.

To enable situational awareness, a wide area monitoring system (WAMS) can be deployed
that includes distributed sensors, which measure power system state, and communication
technologies that enable the transmission of this state to a control center (CC). The data
that is collected using a WAMS can be used to support real-time decision making by
operators, e.g., in order to respond to a fault, and to facilitate grid planning.

An important technology that has emerged in recent years is phasor measurement units
(PMUs). These devices can measure the power system state – e.g., voltage, power, and
phase angle – at very high frequencies (50Hz), and can be used to support real-time
situational awareness. The data from PMUs can be transmitted over a wide-area network
using specialized protocols, such as IEC 61850 [63], to a CC. One important use of the
data that has been collected by PMUs is to estimate the state of the power system, e.g.,
where there is a lack of monitoring capability or to mitigate measurement noise. There
are several approaches to state estimation (SE).

WAMSs improve situational awareness in SGs and provide information to prevent critical
incidents [183]. They also support planning and optimization of grid operation. WAMSs
collect clock-synchronized measurement values from widely distributed PMUs, and
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provide input to various applications in the grid, e.g., as direct input to control functions,
feedback in control loops, or stored for future planning and post-incident analysis. The
measurement values are processed and decisions regarding appropriate grid control actions
are made in the CC. As a consequence, utilities are affected by the decisions in the CC.

WAMSs constitute a suite of different solutions consisting of various combinations of com-
ponents, such as intelligent electronic devices (IEDs), PMUs, phasor data concentrators
(PDCs and super PDCs), communication equipment, applications, visualization tools
and many more [80]. Phasor gateways (PGWs) offer a publish-subscribe framework for
sharing phasor measurements among different utilities or CCs [25]. Therefore, WAMSs
integrate many different components in different topological settings [156], and all devices
can be entry points for attacks. Global positioning system (GPS) synchronized PMUs in
the power grid provide accurate and time-synchronized measurements. They are required
for fine grained control and monitoring applications [49] for SE, fault detection, and
voltage and frequency stability.

PMUs help to secure operation, but various cyber attacks are possible to compromise
PMU devices, PMU measurements, communication protocols, and applications used for
monitoring, protection and control. For example, voltage manipulation attacks can cause
over voltage and under voltage in a power system. We assume all voltage magnitudes
are close to 1 per unit (p.u.). According to the European Standard EN 50260 [51], the
acceptable voltage fluctuation in normal operation is between 0.9 p.u. to 1.1 p.u.. A
voltage higher than 1.1 p.u. is considered as over voltage and less than 0.9 p.u. is
considered as under voltage. SE in real-time is often used to monitor the grid and achieve
situational awareness [33]. Increasingly, this task is realized using Kalman filters, in order
to account for variations in sensor measurements [139, 113].

Since power grids are critical infrastructures, WAMS is a tempting target for all kinds of
attackers, including well-organized and motivated adversaries, such as terrorist groups or
adversarial nation states. Such groups posses sufficient resources to launch sophisticated
attacks. With the introduction of new technology, there is a corresponding increase in
risk from cyber attacks. An example is the 2015 cyber attack on the Ukraine power grid
[96] that caused a regional blackout.

Attackers can perform malicious cyber attacks using existing vulnerabilities in SG devices,
hardware and software, or the communication channels. Different devices, communication
channels between the devices, hardware, software, and many more components in a SG
might be compromised to perform successful cyber attacks. Attackers can also gather
information by sniffing communication networks and use the information for attack
preparation. Data integrity attacks on WAMSs can lead to incorrect control decisions
and actions.

Cyber attacks to a WAMS could have significant consequences – in the short-term, if
they are used to support fault isolation, incorrect switching decisions could be made;
and in the longer-term, if the measurements derived from them are used to support
grid planning, sub-optimal and expensive investment strategies could be employed. For
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instance, the consequences of over voltage and under voltage include failures and damage,
which endanger grid operation.

Information about threats, vulnerabilities and indicators of compromise is a valuable
resource for system administrators of complex and interconnected ICT systems. Besides
detecting an attack, the detection delay is important. The faster an attack is detected,
the faster can countermeasures be put in place or decisions can be delayed until the data
is verified.

An important class of attacks to a WAMS are false data injection (FDI) attacks, wherein
an attacker manipulates data (e.g., voltage and power measurements) to misdirect the
processes and systems that use it. Moreover, researchers have investigated a class of
FDI attacks that are unobservable to algorithms that aim to detect bad data, normally
caused by measurement noise. It has been shown that these unobservable attacks can
result in significant consequences to an EPS [178, 168].

Application of countermeasures to the detected anomalies can help in maintaining the
correctness of a system state. Replacement of detected bad measurements can support in
mitigating the effect of attacks on monitoring and control applications like SE. As SE for
grid operation is critical, trustworthy estimated states need to be sent to the operators
in a CC.

With the increasing importance of securing SGs against the growing number and evolving
cyber attacks, awareness of security issues and countermeasures against attempted
disruption of the SGs has gained the attention of the research community. It is very
important to improve the security solutions developed for power systems. Thus in this
research, we aim to develop a model for improving the security of power systems.

1.2 Research Questions

The objective of this research is to improve the security of a power system. We investigate
the cyber threats, effect and countermeasures of FDI attacks in a WAMS. Our investigation
with the objective of improving power system security sets the following research questions:

RQ 1: What are possible attacks on wide area monitoring systems (WAMSs)?
WAMSs consist of multiple devices with different interfaces and therefore can provide
many entry points for different types of attacks. In this work, we analyse existing
literature and investigate which vulnerabilities and attack entry points exist in a WAMS,
and provide a comprehensive overview of vulnerabilities and attack possibilities. We then
focus our work on FDI attacks.

For FDI attacks, additional challenges arise from the fact that WAMSs usually deploy
SE methods and bad data detection (BDD) algorithms. Bad data algorithms interact
with attacks and attack detection mechanisms because the algorithms use residuals from
the SE for detecting bad data and the detection of bad data can be an indicator of an
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attack, so alarms should be triggered if needed. Therefore also the effects of FDI attacks
on such algorithms have to be investigated. This research question has following two
sub-questions:

• RQ 1.1: How can an attacker cause false data injection attacks in a wide area
monitoring system?

• RQ 1.2: How can multiple different false data injection attack forms be expressed
in one comprehensive attack model?

The research questions RQ 1.1 and RQ 1.2 will be addressed in Chapter 5. We will
further split up the research questions RQ 1.1 and RQ 1.2 into different sub-questions
in the corresponding Chapters.

RQ 2: How can one detect false data injection (FDI) attacks in WAMSs
data?
Many different methods exist to detect deviations from normal behavior. We need to
investigate which methods are suitable for which types of attacks regarding detection
performance and detection delay. Since detection methods are often specialized to detect
specific changes it is unlikely to find one detection method that performs well for all
attacks. Therefore, we also investigate a combination of methods. Additionally, the
interaction of attack detection with existing algorithms (SE, BDD) and possibilities for
attackers to influence such algorithms need to be analyzed. This research question has
three sub-questions as follows:

• RQ 2.1: To what extent can residual-based bad data detection methods detect
different FDI attacks?

• RQ 2.2: Can stealthy attacks of the form a = H · c as described in [100] be
detected by residual-based methods?

• RQ 2.3: Is it possible to detect the injected attacks with lightweight statistical
methods?

The research question RQ 2.1 will be addressed in Chapter 7. BDD methods are used
to check for errors in the measurements that would influence SE or to detect actively
manipulated data. In Chapter 7, we check if the attacks would raise any alarm at all (i.e.
detect at least one anomalous data point), how fast the methods detect that something is
wrong and then how many of the manipulated data points are recognized as anomalies.

The research question RQ 2.2 will be addressed in Chapter 8. We want to experiment if
an attack of form a = H · c (as described in [100]) is undetected using residuals of linear
weighted least squares (LWLS) and discrete Kalman filter (DKF) for SE.
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The research question RQ 2.3 will be addressed in Chapter 9. In order to prevent
stealthy attacks, we propose using multiple statistical anomaly detection methods in an
overall effort to achieve effective detection.

We will split the research questions RQ 2.1, RQ 2.2 and RQ 2.3 into different sub-
questions in the corresponding Chapters.

RQ 3: How can the effects of FDI attacks on state estimation (SE) be miti-
gated?
If due to an FDI attack, manipulated values are used for SE, then the estimated state
can differ from the real state. The fake states can lead to wrong control decisions which
can cause impact to devices and human lives. To avoid such impacts, we investigate
different methods to replace bad data in order to preserve the SE. This research question
has only one sub-question as follows:

• RQ 3.1: To what extent can the effects of FDI attacks on state estimation in
electric power systems (EPSs) be mitigated by replacing detected anomalies with
values derived from past data?

The research question RQ 3.1 will be addressed in Chapter 10. We will split the research
questions RQ 3.1 into different sub-questions in the corresponding Chapter.

The goal of this thesis is to answer the research questions formulated above.

1.3 Methodology and Approach

An overview of our research approach is depicted in Fig. 1.1. Our research approach
consists of four phases that are described in following sections. The research methodology
carried out in our study is depicted in Fig. (1.2). The activities shown in the research
methodology are mainly from the second, third and fourth phases of the research approach.
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Figure 1.1: An overview of the research approach.
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Figure 1.2: Major activities in our research.

1.3.1 Phase 1: Understanding State of the Art

The first phase includes a thorough understanding of theoretical concepts and preliminaries
for conducting the proposed research. As a first step of this phase, we conduct a literature
survey for better understanding the state-of-the-art. The undirected connection between
boxes in the Fig. 1.1 means knowledge gained from an upper box is used in a lower
box. Preliminaries of a power system like phasor measurements, WAMSs topologies, and
communication standards, safety limits etc. are studied. At the same time an overview
of available standards, guidelines and their support for improving security of SGs is
abstracted and relevant security threats in WAMS are identified. A study of WAMS key
components, applications used for monitoring and control functions is carried out which
helps us better understand the decisions and control actions based on the decisions in a
CC.

We identify vulnerabilities and potential attacks on the WAMSs based on the literature
survey. This is presented in detail in Chapters 2 and 3.
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1.3.2 Phase 2: Threat Analysis

The second phase of our research consists of a threat analysis. Details of the second
phase can be found in Chapters 4 and 5.

After identifying the threats in WAMS, we perform a threat analysis that helps us
in understanding the nature of attacks. We investigate advanced persistent threats
(APTs), and how physical and cyber attacks are combined for launching an attack. An
attacker can compromise software/hardware, or both. A detailed study of attack vectors
compromising field devices, like PMU, compromising a software which is based on input
data, compromising the communication between the components of WAMS etc. is carried
out.

After having gained knowledge from the study of the attack vectors in the wide area
network in SGs, we further investigate attack scenarios using the attack vectors. Our
study continues on the methods for presenting vulnerabilities, attack techniques and the
attackers’ goal. We model the dependencies and building blocks of APTs on WAMSs
using attack trees. The WAMSs infrastructure includes classical IT components, clock
synchronization, and data collection and aggregation points such as PDCs [8, 163]. We
consider the entire WAMS infrastructure. Since SGs are cyber-physical systems, we
consider physical perturbations, in addition to cyber attacks in our models. We develop
attack trees to analyze and assess the different paths an attacker can take. Generic attack
trees and specific attack trees are developed for different attack scenarios.

After understanding the nature of attacks, we defined specific FDI attack scenarios as
use cases for our research on detection methods and developed a comprehensive attack
model to specify different forms of FDI attacks. The model describes a generic way
how different attacks on PMU data can be expressed and generates types of false data
injection attacks. Attack parameters and the types of attacks are discussed with specific
values.

1.3.3 Phase 3: Investigation of Detection Methods

The third phase of our research consists of an investigation of detection methods. Details
of the third phase can be found in Chapters 7, 8 and 9.

From the literature, we selected suitable data sets for our experiments. Our study aims to
develop anomaly detection (AD) methods that could be deployed online and can help to
secure a real power system. We stick to our goal and use data from a real power system
in our experiments, which help us in understanding the behavior of a power system. We
use a data set from EPFL that is a representative network of a SG, an active distribution
network deployed on the EPFL campus [47].

Analysis of the real power system measurements (EPFL PMU measurements) helps us in
understanding the characteristics of the measurements. We use MATLAB, Python and
R for the analysis.

9



1. Introduction

We partition the data into historical, training and test data. Historical data is only used
for building a reference histogram for one AD method (Kullback-Leibler divergence).
Training data is used for setting thresholds for the BDD and AD methods. We then
proceed to BDD and AD experiments. Manipulated test data is used for BDD and AD.

Our SE experiment is carried out using two methods, a DKF and a LWLS. We analyse
the influence that attacks have on SE. We then look at BDD methods, which are often
integrated into SE and check to which extent those methods are useful to detect attacks.

Residuals from the SE are used for BDD. We use residual-based (RB) BDD methods,
L2-norm and normalized residuals. Since some attacks are not detected by BDD methods,
we investigate alternative methods for AD. Similarly, we investigate selected lightweight
statistical AD methods, median absolute deviation (MAD), Kullback-Leibler divergence
(KLD) and cumulative sum (CUSUM). These methods are based on different features
of data. MAD checks individual measurement values, KLD compares distribution of
measurements and CUSUM focuses on changes in the mean over time.

We then study the applicability of BDD methods and AD methods in our use case and
analyze the combination of methods in order to improve the AD performance. For having
a final AD decision, we combine results from the lightweight statistical AD methods.
A combination method, weighted voting, is used for combining the results. The final
decision is taken into consideration for mitigating the effects of attacks on SE. The results
from the mitigation of the effects of attacks on SE experiment shows how the effects of
attacks on SE is maintained.

In order to assess a detection method’s performance, we compare the original labels of
the manipulated test data with the predicted labels from the method. From this we
derive: a) true positives (TP), i.e. anomaly correctly identified as an anomaly, b) true
negatives (TN), i.e. normal data points correctly classified as normal, c) false positives
(FP), i.e. how many normal data points are classified as anomalies and d) false negatives
(FN), i.e. how many anomalies we miss (anomalies classified as normal). A confusion
matrix visualizes all of the above mentioned detection performance in a table as shown
in Tab. 1.1.

Detected as Labeled as
Non-malicious Malicious

Non-malicious True negative False negative
Malicious False positive True positive

Table 1.1: Confusion matrix

From the TP, TN, FP, FN we then calculate recall or true positive rate (TPR), false
positive rate (FPR), true negative rate (TNR), accuracy and precision as follows:

Recall = TP

TP + FN
(1.1)
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FPR = FP

FP + TN
(1.2)

TNR = TN

TN + FP
(1.3)

Accuracy = TP + TN

TP + TN + FP + FN
(1.4)

Precision = TP

TP + FP
(1.5)

We then determine the detection delay and show how fast an attack is detected by
calculating the difference between the real start of the attack ks and the ka measurement
when the first data point of the attack was classified as an anomaly.

1.3.4 Phase 4: Mitigating the Effects of Attacks on SE

The fourth phase of our research consists of mitigation of the effects of attacks on SE.
Details of the fourth phase can be found in Chapter 10.

In this phase, an evaluation of mitigation of the effects of attacks on SE is performed. In
a first step, we investigate on the methods for mitigating the effects of attacks on SE.
In a second step, we investigate the applicability of the bad data replacement methods
in our use case, then in the last step analyze mitigation of the effects of attacks on SE.
For this, we analyze SE with and without AD methods and the replacement of detected
anomalous data before sending them to SE.

1.4 Contribution

Here we describe the scientific contribution of this work and give an overview of the
methods used for our investigations. Table 1.2 illustrates an overview of the research
questions, methods and the contributions made in different chapters of this thesis.
Different methods are used to answer the research questions of this research. Details of
the methods and the contributions are available in different sections as shown in the last
column of the Tab. 1.2. Here, each of the contribution is briefly described as follows.

1.4.1 Threat Analysis and FDI Attack Model

Threat Analysis: We develop attack vectors, attack scenarios and attack trees in order
to derive vulnerabilities and attack scenarios in WAMS (see Tab. 1.2). For the attack
vectors, we provide how an attacker can use different attack entry points to compromise
hardware or software on compromising the physical device and communication. We
develop generic attack trees for compromising a device and develop specific attack trees
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for causing a blackout and manipulating sensor data (e.g., phase angle). In contrast to
existing research, we do a threat analysis on WAMS, which could be considered in the
transmission system organization (TSO) and the distributed system organization (DSO).

False Data Injection Attack Model: We design false data injection attack types
that poison the measurement data without exceeding any safety limits, as such attacks
can remain stealthy and result in wrong decisions in the CC. In addition, attackers can
change the states of the power grid by modifying the sensor readings (or injecting false
data in sensor measurements). We develop a false data injection (FDI) attack model
for generating different attack types: randomizing signal, adding constant offset, adding
incremental constant or random offsets to signal. In contrast to existing work, we specify
different types of attacks in a single FDI attack model.

1.4.2 State Estimation Methods Investigation

For investigating linear weighted least squares (LWLS) and Kalman filters (KF) (as
shown in Tab. 1.2), we implement them in MATLAB. For KF, we generate an example
to exemplify the influence of parameters settings and dependencies for estimating states
from observed measurements, modify the example and adopt it to our use case. We apply
the modified KF for estimating states based on real PMU data. We apply the LWLS
and the DKF in our use case with real data and find that the DKF better represents
measurements changes in residuals.
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ontribution
Table 1.2: Methods and contribution for answering the research questions; Sec. = section (sub-research questions of research
questions are in brackets; Exp. = experiment).

Research Question Method Contribution Sec.

What are possible
attacks on WAMSs?
(RQ 1.1, RQ 1.2)

Attack vectors - Threat analysis particularly for WAMS
architecture
- FDI attack model for generating different
types of attacks

5.1.1
Attack scenarios 5.1.2
Attack trees 5.1.3
Attack model 5.3

How can one detect
false data injection
(FDI) attacks
in WAMSs data?
(RQ 2.1, RQ 2.2,
RQ 2.3)

Weighted least squares applied to
real data - Detection method based on DKF residuals for

stealthy attack of form a = H · c as described
in [100] (where LWLS residuals are used)

4.1

Discrete Kalman filter example
model for parameter investigation 4.2.2

Discrete Kalman filter applied to
the real measurement 4.2.1

Plain residuals
Exp. L2-norm residuals
with Normalized residuals

real Median absolute deviation
(MAD)

data Kullback-Leibler divergence
(KLD)
Cumulative sum (CUSUM)

Weighted voting

- RB detection method applied to real data
(previously used for simulated data in [139])
- An adversary’s techniques for circumventing
RB BDD detection
- Application of lightweight statistical detection
methods
- Weighted voting scheme for combining statistical
methods (previously used for combining machine
learning methods in [101]) with higher precision

7.1.1
7.1.2
7.1.3
9.1.2

9.1.3

9.1.4

9.4.1
How can SE integrity
be preserved in the
presence of FDI
attacks? (RQ 3.1)

Replace bad data by prediction
- A method for mitigating the effects of
attacks on voltage SE using Kalman filter model

10.1.4

Voltage estimation with corrected
values
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1.4.3 Anomaly Detection

Bad Data Detection: We investigate the suitability of using residuals from LWLS and
a DKF for detecting bad measurements. After the investigation on the suitability of plain
residuals, L2-norm residuals and normalized residuals for detecting bad measurements,
we implement the methods in MATLAB. We reproduce an AD approach that has been
proposed in [139] which works with simulation data. We adopt the AD method and
apply it in our use case with real data. After that we analyze AD results of the promising
methods in literature; the L2-norm and normalized residuals methods with our real data
and find that some attacks cannot be detected. In contrast to existing research, we
implemented stealthy attacks as defined by Liu et al. in [100] for WLS also for pre-fit
residuals of KFs. We found that stealthy attack of form a = H · c as described in [100]
using residuals of LWLS does not remain stealthy using residuals of DKF.

Anomaly Detection: In SG (critical infrastructure setup), it is beneficial to rapidly
detect attacks with the few computational resources. Further, it is beneficial that a human
operator is able to understand the results from the detection methods and have them
readily explainable (in contrast to, for example, some machine learning and deep learning
methods where explainability remains an open issue). We investigate the suitability of
three lightweight statistical methods: MAD, KLD and CUSUM for detecting FDI attacks.
We analyze AD results performance of the methods KLD, CUSUM and MAD on different
attack types and investigate the attack parameter which affects the AD.

Methods Combination: We investigate whether a combination of methods can improve
the detection performance. We investigate the suitability of weighted voting method for
combining the AD methods. We analyze AD performance of the weighted voting method
for combination. In contrast to existing work, we apply the combination of lightweight
statistical methods in SGs. We use the weighted voting scheme in [101] previously used
for combining machine learning methods to combine statistical methods. An overview of
contributions made in AD is shown in Tab. 1.2.

1.4.4 Mitigating the Effects of Attacks on SE Analysis

We investigate methods for correcting bad (anomalous) measurement. We investigate
the suitability of bad measurement replacement by the prediction of DKF. We analyze
SE results after replacing anomalous measurement by predicted value of DKF in attack
types. In contrast to existing work (e.g., in [85, 84]), we use the prediction of Kalman
filter for mitigating the effects of attacks on SE and show how the effects of attacks on
voltage estimation is mitigated based on the AD results of the statistical methods (see
Tab. 1.2). Our approach covers the future work in [85]).
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1.5 Structure

The structure of this thesis is as follows:

Chapter 2 provides an overview of preliminary knowledge on SGs for conducting this
dissertation research. Phasor measurements, WAMSs topologies and communication
standards, safety limits of measurements (e.g., voltage, frequency) based on existing
standard are the main building blocks of this work. Understanding vulnerabilities and
potential attacks on SGs is an important step to carry out this research.

In Chapter 3, we present state-of-the-art on BDD, stealthy attacks, usage of SE for
detecting attacks, applicability of data and events aggregation for detecting the attack
against key components of a WAMS. Further, some relevant existing AD techniques for
detecting anomalies in SGs are presented in this chapter.

Chapter 4 presents SE methods in the context of power systems. In particular, a static
SE method weighted least squares (WLS) and a recursive SE method Kalman filters
(KFs) are discussed. Then, we present our use case of SE with experimental results.

In Chapter 5, we present the threat analysis and FDI attacks model. A threat analysis
is carried out for understanding potential attack vectors of WAMSs and developing
attack trees. Attack vectors (e.g., compromising hardware, software, communication)
against key components (e.g., PMU, PDC, Gateway) of a WAMS, how an attacker can
reach his/her ultimate goal (e.g., compromise field device, cause blackout) and achieve
intermediate goals are presented using attack trees. Moreover, we develop a FDI attack
model, consisting of generated types of FDI attacks.

Chapter 6 presents an analysis of the real PMU data we use. Analysis of voltage, frequency
and phase angle helps us in selecting a representative set of data for our experiment. This
chapter presents the analysis with figures and illustrates the selected historic, training
and test data. Further, we present data preprocessing.

Chapter 7 focuses on RB BDD methods. To this end, we look at plain pre-fit residuals,
L2-norm, and normalized residuals. First, we discuss the RB BDD methods; second we
present the experimental setup of how thresholds are defined for plain pre-fit residuals
based method, L2-norm, normalized residuals methods; and last demonstrate experimental
results.

Chapter 8 presents FDI attacks against SE and stealthy attacks from the literature. We
present FDI attacks in voltage and current measurements, and the FDI attacks’ effect on
SE using LWLS and DKF. Theoretical discussion is followed by preliminary experimental
results and a discussion on identification of attacks using residuals. Moreover, we present
stealthy attacks on voltage and current measurements.

Chapter 9 focuses on AD using lightweight statistical methods. We present an AD model
developed in this work. The model executes RB BDD methods and different lightweight
statistical methods for detecting anomalies. First, we briefly present the model and
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present lightweight statistical methods for AD. For the lightweight statistical methods
we use - MAD, KLD and CUSUM. Second we present the experimental setup of how
thresholds are defined for MAD, KLD and CUSUM; third we demonstrate experimental
results of single methods and then present the findings based on the results; fourth ROC
curves of the methods are presented. Then we focus on improving AD performance using
a combination of methods. To this end, we use weighted voting for combining AD results
of the statistical methods. Further, we present the combined results, and show the results
analysis - how the AD performance is improved using the weighted voting method.

Chapter 10 focuses on mitigating the effects of attacks on SE. In this chapter, first we
introduce proposed approach for mitigating the effects of attacks on SE. We then show
how the SE can be effected by FDI attacks. Finally, we show how AD and bad data
replacement support mitigating the effects of attacks and then present experimental
results for mitigating voltage estimation.

In Chapter 11, we summarize and conclude the dissertation research. The main outcomes
are summarized and an overview of future work is presented.

1.6 Support

The research in this dissertation is supported by the Austrian Research Promotion Agency
(FFG)1 dissertation project AdA (Adaptive Anomaly Detection in Smart Grids)2, project
number-854296.

This project focuses on providing novel methods for efficient anomaly detection in the
SGs, both relevant domains of anomaly detection and SG security.

1https://www.ffg.at/
2https://projekte.ffg.at/projekt/1359933
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CHAPTER 2
Background

Notice of adoption from previous publications in Chapter 2
Parts of the contents of this chapter have been published in the following papers:

[129] S. Paudel, P. Smith, and T. Zseby. Data Integrity Attacks in Smart Grid Wide
Area Monitoring. 4th International Symposium for ICS and SCADA Cyber
Security Research, 2016

[130] S. Paudel, P. Smith, and T. Zseby. Attack models for advanced persistent
threats in smart grid wide area monitoring. In Proceedings of the 2Nd Workshop
on Cyber-Physical Security and Resilience in Smart Grids, CPSR-SG’17, pages
61–66, New York, NY, USA, 2017. ACM

[131] S. Paudel, P. Smith, and T. Zseby. Data Attacks in Wide Area Monitoring
System. Symposium on Innovative Smart Grid Cybersecurity Solutions, 2017

[132] S. Paudel, P. Smith, and T. Zseby. Stealthy attacks on smart grid PMU state
estimation. In Proceedings of the 13th International Conference on Availability,
Reliability and Security, ARES 2018, Hamburg, Germany, August 27-30, 2018,
pages 16:1–16:10, 2018

Explanation text, on what parts were adopted from previous publications:
The voltage phasor measurements described in this chapter are based on the work
done in [132]. The wide area monitoring structure described in this chapter is based
on the work done in [129] and [131]. Some part of safety limits described in this
chapter is based on [132].

S. Paudel performed theoretical considerations together with all co-authors, the text
and figures in the papers were created together by all authors.
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In this chapter, we provide background knowledge for conducting our research. We provide
an overview of monitoring and control functions and major components of the smart
grid. Wide area monitoring system and its components, phasor measurements, and safety
limits are addressed.

Wide area monitoring systems (WAMSs) are used to measure synchrophasor data at
different locations and give operators a near-real-time picture of what is happening in
the system. The measurement data is periodically collected via communication channels
to monitor, predict and control the power consumption, and detect any problems in the
power grid.
A WAMS provides an essential building block for supervision and control. WAMSs
collect clock-synchronized measurement values from distributed phasor measurement
units (PMUs), and provide input to various applications in the grid, e.g., as direct input
to control functions, or are stored for future planning and post-incident analysis.

2.1 Phasor Measurements

In this section, we introduce the voltage phasor, its synchrophasor representation and
conversion of polar voltage to rectangular coordinates. A sinusoidal signal x(t) in a power
system can be represented as [5]

x(t) = Xmax · cos(wt + θ) (2.1)

where Xmax is the amplitude of the wave, w is the angular frequency, and θ is the phase
angle at t = 0. A phasor represents a sinusoidal wave in the form of a complex number,
which can be expressed using polar or rectangular coordinates. A phasor of the sinusoidal
wave given in Eq. (2.1) can be represented using Eq. (2.2), wherein the underscore (X) is
used to denote a complex number. As proposed by previous work [5, 23], the root mean
square (RMS), i.e. Xmax/

√
2, of the waveform is used for the phasor definition, instead

of the amplitude.
X = (Xmax/

√
2) · ejθ (2.2)

A synchrophasor representation of the signal x(t) is the value of X, where θ is interpreted
as the phase angle relative to a synchronized cosine function. The cosine function has a
maximum value at t = 0 i.e., phase angle is 0 degrees. Figure 2.1 shows the synchronized
cosine function for two different phase angles (θ and θ1). The curves in this figure have
Xmax at different time.
For our investigations, an attacker is assumed to be manipulating voltage phasors that
are measured by PMUs. The voltage phasor is defined based on the RMS, and we denote
the RMS of the voltage as V . The voltage phasor V is defined as

V = V · ejθ (2.3)
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2.1. Phasor Measurements

Figure 2.1: Synchrophasor representation

In order to apply linear state estimation using Kalman filters, the voltage phasor mea-
surements need to be converted from polar to rectangular coordinates [176, 149]. So we
express the voltage as real part and imaginary part:

V = Vre + jVim (2.4)

The real and imaginary part can be calculated as the projection of the polar voltage V
to the x-axis (Eq. (2.5)) and the y-axis (Eq. (2.6)). Figure 2.2 depicts the conversion of
polar voltage to real and imaginary voltages.

Vre = V · cos θ (2.5)

Vim = V · sin θ (2.6)

Figure 2.2: Conversion from polar voltage to real and imaginary voltages
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Voltage and current phasors can be measured with phasor measurements units. In order
to measure the exact phase shift between two signals at different locations, the PMUs need
to be clock synchronized. The synchronization is usually done with global positioning
system (GPS).

2.2 WAMS Structure and Topologies

Most WAMSs have a hierarchical structure (see in Fig. 2.3), and consist of intelligent
electronic devices (IEDs), PMUs, phasor data concentrators (PDCs), super PDCs,
phasor gateways (PGWs), and communication facilities to transfer data between these
components and a control center (CC) [136]. PMU measurements are time-stamped at
the source using the GPS to ensure clock synchronization.
Regional or organizational PDCs gather data from different PMUs, sort the data according
to the timestamps, create a combined record and forward the combined records up in the
hierarchy.
Distributed PMUs allow accurate clock-synchronized measurements of voltage and current
phasors (amplitudes, phase angles) and frequencies. The sensor data from PMUs provide
situational awareness in the grid, and are used as input for control decisions. The
measurement values are processed and decisions regarding appropriate grid control
actions are made in the CC. As a consequence, utilities are affected by the decisions in
the CC.
Mostly data flow is upwards in the hierarchy from PMUs to the CC, but commands (e.g.,
for device configuration), requests (e.g., requesting data formats or device information)
or software updates require communication in the reverse direction. PMU messages
are transferred using TCP (transmission control protocol) or UDP (user datagram
protocol) over IP or can also be transmitted directly over Ethernet or other available
transport means [169]. In addition to the measurement data reported from PMUs to
PDCs, also configuration files with data interpretation settings can be reported to PDCs.
Furthermore, PDCs can send command files to PMUs to request information [136]. All
these files have a common structure.
WAMS infrastructures can contain various combinations of components, communication
equipment, applications, visualization tools and many more [80]. The Fig. 2.3 shows
different variants of WAMS topologies.
PMUs report data to PDCs or directly to the controller. PDCs check and aggregate
PMU records and then forward them to super PDCs or to the CC. Additionally PDCs
may already calculate some values from the reported data [69]. That means PDCs need
to have access to credentials for decrypting PMU records and also need to be able to
sign PDC records.
Local storage, data verification and application functions are usually available in PDCs.
Another possible level of hierarchy is super data concentrators (SDCs), also called super
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Figure 2.3: WAMS Architecture (source Paudel et al. [131])

PDCs. Super PDCs have functions that are identical to regional PDCs. Further, the
data storage facility in the super PDCs can store the data associated with time-tags and
a stream of near real-time data that can be used for the applications in the entire system
[136],[169].

Furthermore, it is possible to deploy PGWs. PGWs are introduced by the North American
SynchroPhasor Initiative (NASPI)1 as a concept to interconnect multiple organizations.
PDCs or PMUs report their data to the PGW. A PGW then communicates the data
to other PGWs by a publish-subscribe system. PGWs can support Quality of Service
functions and serve as security gateway between organizations. At the top level, a CC is
connected via a WAN and controls all activities regarding monitoring, protection, and
control. Since PMUs may also directly report to a CC, all hierarchy levels (PDC, Super
PDC, PGW) are optional. We call all systems on the way from PMU to CC (PDC, Super
PDC, PGW, core and access routers) intermediate systems.

1https://www.naspi.org/
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2.3 WAMS Communication Standards

In a WAMS, different communication protocols from different standards are used. Fig-
ure 2.4 shows an overview of the most important standards used for end-to-end commu-
nication and the following paragraphs describe them briefly.

Figure 2.4: WAMS Communication Protocols (source Paudel et al. [129]).

IEEE C37.118 is used for phasor measurements communication in power systems. IEEE
C37.118.1 [70] specifies measurements of a synchrophasor, and IEEE C37.118.2 [71]
describes a protocol for the real time transfer of phasor data. It defines data messages,
configuration messages, header messages and command messages that are required for
communication [184].

The standard IEC 61850 [63] is a communication protocol that facilitates utility automa-
tion, including protection and control [37]. Originally, the standard was developed for
IEDs in substations. Nevertheless, now the standard includes various communication
features [10, 9]. Further, an architecture of electric power systems and data models that
are used for communication are defined by the standard [10, 9]. Abstract data models
defined in this standard are mapped to a variety of protocols. For example, some models
are mapped to generic object oriented events (GOOSE), generic substation events (GSE),
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and sampled measured values (SMV) [66]. It supports the sending of real-time data
and supervisory control functions using manufacturing message specification (MMS) via
TCP/IP and transmission of GOOSE via Ethernet in substation LANs.
IEC 61850-90-1 [67] provides guidelines of using IEC 61850 for the communication between
substations. Similarly, EN IEC 61850-90-1/5 and IEC 61850-8-1 provide guidelines for
communication between PMUs and PDCs within substations. IEC 61850-90-4 provides
guidelines for communication inside a substation. Standard IEC 61850-90-2 [68] covers
the communication within substations and the CCs using IEC 61850 standard [30].
Standard EN 60870-5-103 [61] provides guidelines for connecting PMUs/IEDs inside a
substation. EN 60870-5-101 [60] provides transmission procedures between substations.
Similarly, EN 60870-5-104 [62] is an extension of standard EN 60870-5-101 and provides
guidelines between PMUs and data concentrators between substations [30]. An overview
of the use of these protocols is presented in Figure 2.4.
The standard IEC 62351 has been developed for securing the communication protocols
that are defined in IEC 60870-5 and the IEC 61850 series of standards [64]. IEC 62351-6
[65] defines the security of IEC 61850 profiles by specifying messages, procedures, and
algorithms for securing the operations of all protocols that are derived from the standard
IEC 61850. IEC 61850 provides reliable communication in substations. For instance,
it supports intrusion detection before/after accessing networks, reduction of handshake
duration between devices [48]. The specification applies at least to the protocols IEC
61850-8-1, IEC 61850-9-2 and IEC 61850-6. It also provides security for profiles not
based on TCP/IP, e.g., GOOSE, GSSE (generic substation status event) and SMV. The
IEC 61850 profile using MMS over TCP/IP uses IEC 62351-3 and IEC 62351-4.
PGWs support IEEE C37.118 for phasor data traffic (e.g., traffic to and from PDCs,
super PDCs and PGWs), but it is not enough for additional control and administrative
traffic beyond the PGW [32].

2.4 Safety Limits

In this section, we present foundational information related to safety and security of a
power system. Safety limits according to standards and guidelines are presented below.
Table 2.1 illustrates operating conditions of voltage, frequency, phase angles, projected
situations and corresponding control actions for a 50Hz power system. The numerical
values of voltage, frequency, phase angles and the control actions in this table are based
on our literature survey.
Abnormal voltage and frequency conditions can cause failures like line tripping, generation
tripping etc. For example, under voltage or under frequency can cause generation trip,
and over load or loss of synchronization can cause line tripping. Control actions can
be triggered against the failures, proactive control actions can prevent failures, whereas
reactive control actions overcome the failures after they occurred [172].
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Table 2.1: Measurements, events, situation and control actions; Mea. = measurement;
Ref. = references; Freq. = frequency; Imp. = impedance.

Mea. Event Situation Control action Ref.

Voltage
(v)

v <0.9 p.u. Under voltage
Active power control,
reactive power control,
shed load

0.9 p.u. <v <1.1 p.u. Normal operation Continue operation
[1]
[51]
[172]

v >1.1 p.u. Over voltage Active power control,
reactive power control

Freq.
(f)

f <47.5 Hz Under frequency
Disconnect power
generation, partition
network

f <49 Hz Low frequency Load shedding [153]
[172]

49.8 <f <49.98 Hz
50.02 <f <50.2 Hz Normal operation Continue operation

f >51.5 Hz Over frequency Disconnect power
generation, blackout

Power
(P),
phase
angles
(θ1, θ2)

P >(v1 − v2)/Imp.
(θ1 − θ2) > 90◦

Line outage,
generation trip,
load change,
power oscillation

Load shedding,
partition network

[161]
[151]
[166]
[172]

(θ1 − θ2) <90◦ Normal operation Continue operation

Various standards and guidelines are developed for dealing with problems on high voltage
(HV), medium voltage (MV) and low voltage (LV) networks. The standards cover
different power and voltage levels. German standards VDE-AR-N 4105:2011 [6] and
BDEW-2008 [3] address LV and MV/HV, respectively. Similarly, IEC 61727-2004 [2]
focus on the PV systems network, and IEEE 1547 [1] was developed for primary and
secondary distribution voltages. Standards also specify a range for normal and abnormal
behavior of measurements (e.g., voltage, phase angle, frequency etc.) and define their
critical thresholds for protecting the power system.

The voltage magnitude in a network can be affected by power injection, e.g. due to
distributed generation. Protection schemes are applied to maintain secure operation
in a system. Over voltage and under voltage protection schemes ensure appropriate
voltage levels before applying control actions. For example, according to standard IEEE
1547 [1] voltage from 88% to 110% are considered as normal operation, greater or less
than this range requires protection actions, otherwise a network or a subsystem should
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be disconnected within the specified time. Some events can exist while transmitting
power across a network. Existence of events like load change, generation trip, line outage
etc. can change the voltage phase across the network. Thus the phase angle difference
between two points of a network correlates to the power being transferred from one point
to the other of the grid [166]. The phase angle difference within a power system is the
difference between the measured angles at two points at the same time instant and to
the same reference [119].
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CHAPTER 3
State of the Art

Notice of adoption from previous publications in Chapter 3
Parts of the contents of this chapter have been published in the following papers:

[129] S. Paudel, P. Smith, and T. Zseby. Data Integrity Attacks in Smart Grid Wide
Area Monitoring. 4th International Symposium for ICS and SCADA Cyber
Security Research, 2016

[130] S. Paudel, P. Smith, and T. Zseby. Attack models for advanced persistent
threats in smart grid wide area monitoring. In Proceedings of the 2Nd Workshop
on Cyber-Physical Security and Resilience in Smart Grids, CPSR-SG’17, pages
61–66, New York, NY, USA, 2017. ACM

[131] S. Paudel, P. Smith, and T. Zseby. Data Attacks in Wide Area Monitoring
System. Symposium on Innovative Smart Grid Cybersecurity Solutions, 2017

[132] S. Paudel, P. Smith, and T. Zseby. Stealthy attacks on smart grid PMU state
estimation. In Proceedings of the 13th International Conference on Availability,
Reliability and Security, ARES 2018, Hamburg, Germany, August 27-30, 2018,
pages 16:1–16:10, 2018

[133] S. Paudel, T. Zseby, E. Piatkowska, and P.Smith. An evaluation of methods
for detecting false data injection attacks in the smart grid. In preparationa

Explanation text, on what parts were adopted from previous publications:
The attacks on smart grids, FDI attacks on WAMSs, modeling attacks, challenges
and security issues, and existing approaches against security issues described in this
chapter are based on the work done in [130], [131] and [132]. Attack detection using
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state estimation described in this chapter is based on the work done in [129]. A part
of stealthy attacks described in this chapter is based on the work done in [133].

S. Paudel performed the theoretical considerations together with all co-authors, the
text and figures in the papers were created together by all authors.

aThe paper is in preparation.

In this chapter, we present an analysis of related work on attacks on smart grids, attacks on
wide area monitoring systems, modeling attacks, security issues, existing approaches, bad
data detection, stealthy attacks and attack detection techniques based on state estimation.
Attacks to major components of wide area monitoring systems can be detected by analyzing
available information in the system. In detection approaches, we focus on how the existing
work on estimated states, aggregated information (data or events) and anomaly detection
can help detecting attacks to key components of the wide area monitoring systems.

3.1 Attacks on Smart Grids

Smart grids (SGs) are cyber-physical systems. Therefore, we need to consider security in
both the physical and the cyber domains. Standards, guidelines and other existing works
address vulnerabilities, threats, attacks, security requirements, and intrusion detection in
SGs.

The north american electric reliability corporation (NERC)1 critical infrastructure protec-
tion (CIP) provides security requirements for bulk power system. The national institute
of standards and technology (NIST)2 provides documents on cybersecurity for SGs.
Guidelines provided by NIST in [123] discuss security requirements for secure architecture
and interfaces, ensuring reliable functionality and maintaining information confidentiality
and other security measures. Potential vulnerabilities, security problems of SGs are
discussed together with cybersecurity requirements of reliable and scalable operation
[124].

ATT&CK for industry control systems (ICSs) [110] present techniques which can be
considered by adversaries for compromising ICSs. Tactics used in the techniques, software
used for compromising assets of ICSs and impacts in control system addressed by
ATT&CK help in better understanding of adversary behaviour. Guidance for securing
ICSs (e.g., supervisory control and data acquisition (SCADA), distributed control system
(DCS), programmable logic controllers (PLCs)) are provided in [160]. In addition, it
points out threats and vulnerabilities of the ICSs, and provides countermeasures for
mitigating the risks.

1https://www.nerc.com
2https://www.nist.gov/
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3.2 FDI Attacks on WAMS

In wide area monitoring systems (WAMSs), false data injection (FDI) attacks modify
measurement or control data (either the original readings from phasor measurement units
(PMUs) or aggregated events from PDCs or super PDCs). In WAMS, the processing
of falsified data estimates incorrect states of the power system and can cause wrong
decisions, such as triggering protection elements when they are not needed or suppressing
a vital protective action. For example, the system may believe that it has secure voltage
in overloaded branches and vice versa [43]. This can cause delay, e.g., for load shedding
or grid reconfiguration. Advanced persistent threats (APTs) can be created that combine
different attack techniques. Information may be first gathered in a passive attack to learn
system state and vulnerabilities. Then an active attack can cause major damage to the
system.

Attackers aim to compromise key components in a WAMS. Here, we point out some attack
scenarios in WAMS. PMU measurements can be modified by compromising the PMU
itself, PDC, super PDC, PGW or routers during transmission. PMU data modification
attacks by compromising PMUs are presented in [43, 99, 83, 39, 126, 92]. Attack scenarios
of a PDC and super PDC are presented in [164, 126, 122]. Similarly, attacks on routers
are shown in [126]. These attack scenarios and applicable detection techniques will be
discussed in Sec. 3.8.

If attackers inject falsified information it could lead to implausible states in the power
system and therefore raise suspicion. State estimation (SE) methods usually consider
the case when wrong measurement data is received directly from PMUs, but the original
measurement data can also be modified in PDCs or on routers on the path, as described
in Sec. 5.1.2.2.

3.3 Modeling Attacks

Attack trees [152] are common models to represent complex attacks. An attack tree
contains a root, branches, several intermediate nodes and leaf nodes. The root represents
the ultimate goal of an attack, different branches shows different possibilities of reaching
the root node. Different possibilities could be reached by combining all branches or only
by following one branch. This depends on the type of relationship (AND/OR) while
branching the node. For an AND relationship, all sub goals must be reached; meanwhile,
for an OR relationship, reaching at least one sub goal is enough to reach the higher goal.
Each intermediate node is a sub goal of the attack, whereas leaf nodes represent the start
points. Moore et al. [116] propose an attack modeling method by describing format and
semantics of the attack trees; a straight solid line is used between the branches of a node
if they have AND relation and a curve solid line is used if they have OR relation. Figure
3.1 shows an example attack tree that uses the AND/OR relationship while branching
node. In the example attack tree, the ultimate goal can be achieved by achieving two sub
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goals which are shown by AND relationship between branch 1 and branch 2. A sub goal
in branch 2 can be achieved by either achieving the sub goal in branch 3 or achieving the
sub goal in branch 4.

Figure 3.1: An attack tree that uses the branches’ AND/OR relationship.

Attack trees provide a valuable overview of the pre-requisites and sub goal relations
for attacks that are based on the combination of multiple different actions. They help
to analyze attack goals and potential chains of actions. They assist in assessing the
likelihood and costs of specific sub goals and attack branches and support detection and
prevention of complex combined attacks.

Attack trees provide a suitable method for considering attacks in the physical as well as
in the cyber domain. In [28], the authors investigate vulnerabilities in MODBUS-based
SCADA systems using attack trees. MODBUS [111] is a serial communication protocol
that is used for transmitting information between intelligent electronic devices (IEDs)
using PLCs. There is also a TCP/IP version of MODBUS. The mostly used element is a
client-server command, which is used in MODBUS networks to send MODBUS messages
from a master to a slave. The protocol is used to connect a supervisory computer with a
remote terminal unit (RTU) in SCADA systems. The authors present attack trees for
gaining access to the SCADA system. Furthermore, they provide an estimated level of
technical difficulty, severity of impact, probability of detection and underlying critical
vulnerabilities for the sub-goals. Closely related to this work, a technical report from
the EU-funded SPARKS project [59] presents different attack patterns for compromising
components, communications, and functions for cyber-physical systems in the SG. The
authors identify attacks that can be performed by physical or cyber means, locally or
remotely.

Chen et al. [35] investigate the use of Petri nets [143] for modeling attack trees for
attacks to SGs. A Petri net model is a directed graph with states, transitions and
directed arcs that are used to model concurrent processes. In the graphs, states are
drawn as circles, transitions are drawn as boxes or bars [135, 118]. The authors in [35]
propose a hierarchical method to construct large Petri nets. Several Petri nets created
separately from various different domain experts can be integrated to create a large Petri
net. Authors also describe the usage of the model by constructing a cyber-physical attack
on smart meters. This example integrates both cyber and physical actions created by
domain experts and their integration in a single Petri net model. They also present how
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a low level detailed cyber attack and a detailed physical attack can be integrated in a
high level Petri net model. Additionally, authors do a validation of the method using
an example of the smart meter attack in a Python program. This is a good example of
modeling cyber and physical attacks, but the Petri nets method is mainly of advantage if
we want to model concurrency.

3.4 Challenges and Security Issues

WAMSs improve situational awareness in the SG but security is a major concern in
the system. Zseby et al. [183] study recent approaches for the WAMS communication
and point out the security challenges that need to be addressed. The authors describe
communication scenarios using PMUs and PDCs using unicast and multicast functions
in wide area networks (WANs). Sensor data or PMU data is transmitted from different
geographical locations over WANs. Latency and security are more challenging in a WAN
than in a LAN. The authors also discuss security challenges in WAMS. Attackers can try
to inject, modify or deny messages, e.g., measurement values in WAN.

In [98] Lui et al. present an overview of relevant security and privacy issues, and discuss
the potential research fields in SG based on a literature survey. Advanced metering
infrastructure (AMI), SCADA, Communication Protocols and Standards are pointed
out as key components of SGs. SG security has several challenges considering these
components, e.g., protocols communication requirements, designing and implementing
technologies and protocols without considering cyber security. Authors also point out
security issues as i) Device issues (e.g., smart meter, customer interface), ii) Networking
issues (network, wireless network, sensor network issues), iii) Dispatching and management
issue (asset management, cipher key management, real time operation management issues),
and iv) Anomaly detection issue (e.g., temporal information such as timestamping log
files, data service issues). Additionally, authors also mention demand response issues,
and protocol and standards issues.

3.5 Existing Approaches Against Security Issues

An overview of attack entry points and existing detection methods to data integrity
attacks is provided in [129]. The paper summarizes different methods to deal with
inconsistencies in sensor data. One common method is to use SE based on sensor data to
deduce the state of the grid and to check the plausibility of collected measurements. In
[43], authors discuss PMU data modification attacks during transmission from PMUs to
PDC and present detection technique by using SE. The authors calculate a state vector
Vi, where i is the number of PMUs in a network. Measurement values from all PMUs
except from the ith PMU is used to calculate the vector and same estimation process is
repeated for each of the i PMUs. The authors calculate the euclidean distance between
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each state vector and the average vector. The average vector is calculated using the
average state vector. The state vector that has the largest distance to the average vectors
is compared to the predefined threshold for finding the deviation. If the deviation is
greater than the threshold value, then the particular PMU is considered as attacked.
Similarly, a detection scheme using dynamic SE in a power grid is developed in [164]. In a
system, parameters and knowledge are always static and values that updated continuously
are dynamic. Authors use the knowledge, parameters and dynamic values to verify a
real-time depiction of a nominal system in the literature. They estimate unknown inputs,
detect malfunctions, cyber attacks and disturbances. After that they identify attack
locations and faulty channels in the system. Attacked components are reconfigured after
the diagnosis. Ensuring the power system’s observability, it is restored to the nominal
state and begins operations again.
Although there are various detection techniques already developed, new and unexpected
attacks are launched due to vulnerabilities in technology. Preventing attacks and pro-
tecting communication networks against these attacks is a challenging task [13, 15]. For
instance, packet drop attacks are possible in a communication network, but packet loss
can happen due to congestion or due to an attacker.
A real-time mechanism to detect packet drop attacks is proposed by Pal et al. [127]. The
authors develop a classifier which distinguishes the causes of a packet drop as either due
to congestion or an attacker. If PMU packets are dropped, the packets are classified as
due to an attacker and exceed the predefined threshold then an attack detection alarm
is generated. Similarly, a security analysis tool for AMI misconfiguration is proposed
by Rahman et al. [140]. The authors create a model representing the global behavior
of an AMI configuration, and compliance with security constraints applicable to AMI
configuration. It detects misconfiguration by verifying the constraint violation.
Soule et al. [159] compare four methods to analyze residuals for computer network
anomaly detection: (i) by setting a threshold based on the residual’s behaviour (ii) by
comparing a local and global variance; (iii) by analysing wavelet; and (iv) by using a
generalized likelihood ratio test. Pignati et al. [139] propose an algorithm that uses pre-fit
residuals to detect bad data in real-time PMU measurements. Bad data is assumed to
occur for benign reasons, such as communication network and timing errors. A Kalman
filter is used for SE, and pre-fit residuals are used to detect when an anomaly exists
in the observed data. A dynamic detection threshold is defined based on a confidence
level. If an anomaly is detected, the observed bad data is replaced. How the values are
replaced depends on whether the bad data was caused by power system fast dynamics
(e.g., line faults) or other root causes. Changes in a power system’s topology, e.g., caused
by faults or switching, can have an effect on SE. In their work, Møller et al. [113] review
the bad data detection algorithm proposed by Pignati et al. [139]. They propose a
method to detect branch errors by checking a bias in branch flows. The normalized bias
branch flow is calculated based on normalized measurement innovation for wide area
measurements. Detecting a branch error in the pre-estimation phase prevents severe
power system impacts, such as overloading branches.
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Some previous work also addresses the detectability of attacks. Barreto et al. [20]
present undetectable cyber attacks on packet-based time synchronization protocols using
a “delay box”. The resulting delay attacks exploit vulnerabilities of the protocol and
remain undetectable by passing the clock-servo algorithm inside the targeted slave clock.
Similarly, delay attacks to linear SE that manipulate time references are presented in
[19]. The attacks remain undetectable for classical methods like the χ2 test, largest
normalized residual tests, and bypass the bad data detection algorithm. In order to cope
with the dynamic evolution of cyber threats and system configurations the authors in [18]
propose an online anomaly detection algorithm for detecting anomalies in measurements.
They perform simulations using an IEEE 14 bus power system and demonstrate a
good balance of minimum attack magnitude and thresholds to improve the detection
performance. Dan et al. [42] present some protection schemes against stealthy attacks on
state estimators of power systems. The authors compute a security index for successful
stealthy attacks and use the index for quantifying the security of encrypted devices and
measurements.

3.6 Bad Data Detection

Data sources can have errors due to various reasons (e.g., sensor failures). Therefore,
many grid operators implement BDD methods to check for failures in the measurements
that could influence SE. For this, residuals from the SE are often used. If the residuals
are too high, it is inferred that the data is not correct [171]. Residual-based bad data
detection (BDD) methods are described in detail in Sec. 7, here we mainly provide closely
related work.

Post-fit residuals are the difference between estimation and observation, and pre-fit
residuals are the difference between prediction and observation. Generally, the traditional
BDD methods use post-fit residuals for checking bad measurements. For instance, linear
weighted least squares (LWLS) method has only post-fit residuals. Usually the traditional
BDD methods use some methods for instance L2-norm of the residuals, cumulative
chi-square distribution [86] for deriving the threshold for BD detection. The authors
in [22] define a BDD threshold based on the L2-norm of measurement residuals without
noise and compare the L2-norm of the residuals to the defined threshold for detecting
the bad measurements.

A BDD method based on the pre-fit residuals of SE using Kalman filter is presented
in [139]. This approach uses a dynamic threshold for detecting bad data, and compares
pre-fit residuals to the dynamic threshold. We adopt this BDD method in our attacks
scenarios (attacks generated using our attack model).
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3.7 Stealthy Attacks

A stealthy attack is an attack that can circumvent the detection. Most of the existing
works (e.g., [22]) assume that an attacker needs to know complete network information
for constructing stealthy FDIs attacks. But in contrast to this statement some of the
existing works [141, 79] show the necessary information to craft a stealthy attack can be
derived from incomplete information of the system (e.g., online grid topology, offline grid
topology, market data, power flow measurement etc.). Thus launching an FDI attack
needs to implement some techniques such that attackers inject errors on measurements
by keeping residuals under the threshold or by exploiting tolerated measurement error
in SE. We implement FDI attacks in a way they exploit the SE process such that the
pre-fit residuals are under the thresholds [132].

Undetected attacks which successfully circumvent the detection are classified as stealthy
attacks. Dan et al. [42] present stealthy attacks against state estimators. The difficulties
of performing stealthy attacks against measurements are defined by Sanberg et al. [148] as
security indices, and an efficient computation of the security indices is presented in [42].

These attacks are known as minimal stealthy and optimal stealthy, depending on the
compromised measurements while being stealthy.

3.7.1 Optimal and minimal Stealthy Attacks

Minimal stealthy attacks are stealthy attacks that manipulate only a minimum of the
measurements. Dan et al. [42] describe the minimum number of measurements to be
falsified for performing a stealthy attack. If an attacker can perform an attack from
a substation then the attacker potentially can manipulate all measurements from that
substation. In this case, an attacker can manipulate the optimal number of measurements
to be stealthy. It means an attacker can increase the number of manipulated measurements
until the attack remains stealthy. The authors in [42] address minimal stealthy attacks.
Similarly, optimal stealthy attacks on CPS are presented in [168]. Here, the difference
between minimal and optimal stealthy attacks is in the first case an attacker manipulates
the minimum number of measurements while being undetectable, and in latter case an
attacker manipulates the possible number of measurements while remaining undetectable.

3.8 Detection of FDI Attacks

Various mechanisms have been proposed to detect data injection attacks in SG systems.
We focus on data injection attacks on WAMS. Attackers can compromise key components
of a WAMS like PMUs, PDC, super PDC, PGW, core routers and access routers by having
physical access or remote access. Further details on the possibilities of accessing the
components and the consequences of the attack scenarios will be presented in Sec. 5.1.2.2.
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The attack scenarios describe data integrity attacks by compromising PMUs, PDC,
super PDC, PGWs or routers in WAMS. Here we classify the existing approaches and
investigate to which extent they can help to detect or mitigate the data integrity attacks.
We define three categories depending on the suitability of the methods:

• Category 1: Techniques that directly help to detect attacks at least in some parts
of the scenarios in WAMS.

• Category 2: Techniques that can be modified to be applied to our scenarios in
WAMS.

• Category 3: Techniques that do not help in our scenarios in WAMS.

We map each of the scenarios to the techniques using signs ✓ for category 1, ∼ for
category 2 and ✗ for category 3 in Table 3.1.

Table 3.1: Mapping of the scenarios S1 to S6 as described in Sec. 5.1.2.2 to the existing
techniques; signs ✓ for category 1, ∼ for category 2 and ✗ for category 3 (source Paudel
et al. [129]).

Detection Tech-
niques

PMUs PDCs super
PDCs

PGWs Access
routers

Core
routers

(S1) (S2) (S3) (S4) (S5) (S6)
State estimation ✓[43]

✓[99]
✓[83]
✓[39]
∼[164]
✓[126]

∼[43]
∼[99]
∼[83]
∼[39]
✓[164]
✓[126]

∼[43]
∼[99]
∼[83]
∼[39]
✓[164]
✓[126]

∼[43]
∼[99]
∼[83]
∼[39]
∼[164]
∼ [126]

∼[43]
∼[99]
∼[83]
∼[39]
∼[164]
✓[126]

∼[43]
∼[99]
∼[83]
∼[39]
∼[164]
✓[126]

Aggregation ✗ ∼[81]
✓[122]

∼[81]
✓[122]

∼[81] ✗ ✗

Anomaly detection ∼[162]
✓[92]

∼[162] ∼[162]
∼[140]

∼[140] ∼[127] ∼[127]

Table 3.1 illustrates the applicability of relevant existing works for detecting the attack
scenarios on PMUs, PDCs, super PDCs, PGWs, core routers and control routers. Three
categories of existing detection methods appear in the first column. In columns 2-7
(PMUs, PDCs, super PDCs, PGWs, core routers and control routers) it shows the
mapping of the techniques to the relevant scenarios. The existing works are described in
the following subsections.

3.8.1 State estimation

State estimation methods usually help to detect attacks on intermediate systems. We
denote this with a ∼ to indicate that the solution can be applied even if not originally

35



3. State of the Art

developed for the specific scenario. Nevertheless, if an attacker compromises a PDC and
can modify data from multiple PMUs it is easier to alter data so it still looks consistent
for SE. This is similar to the situation with a set of colluding attacks from multiple
compromised devices.

Dehghani et al. [43] discuss attacks by altering PMU data during transmission in PMUs
or PDCs. The authors develop an approach based on static SE (SSE) algorithm to detect
integrity attacks in PMU networks. The PMU network consists of i number of PMUs in
the network. The authors calculate a state vector Vi using measurements from all PMUs
except data from the ith PMU and then repeat this for all i PMUs. Then they use the
average of the state vectors to calculate the Euclidean distance between each state vector
and the average vector. They then select the state vector that has the largest distance to
the average vector and compare it to a predefined threshold for deviation. If it exceeds
the threshold, they assume that the measurement values from that particular PMU have
been altered by an attacker. Applying this algorithm in PMU networks, we can detect
compromised PMU frames in Scenario 1 (PMU compromised) in Sec. 5.1.2.2, but only if
the modifications are large enough to cause a large deviation. Also setting appropriate
thresholds for such systems is not trivial. The method was developed to detect attacks on
PMU measurement values. It may be applied to detect attacks in intermediate systems
as explained in Sec. 5.1.2.2, but with access to multiple PMU values in intermediate
systems it can be easier to make values to appear consistent.

A detection scheme using dynamic SE (DSE) has been developed by [164]. A real-time
depiction of the nominal system is verified based on the knowledge and parameters of
a power system model and real-time PMU measurements. Knowledge and parameters
are static, whereas measurements are dynamic as values are updated continuously. This
step verifies measurement values with the system model. Then the unknown power
system parameters and unknown inputs are estimated using real time PMU data and the
system model. As a third step, malfunctions, cyber attacks and disturbances are detected
by estimating attack vectors and using an attack detection filter. The filter detects
compromised nodes and compromised measurements. Fourth, attack locations and faulty
channels are identified. Fifth, the attacked components are diagnosed and reconfigured
ensuring observability of the power system. After ensuring the observability of the power
system, it is brought back to the nominal state and starts operation, otherwise it keeps
on diagnosing and reconfiguring the system. The method has been developed for the
National Electric Sector Cybersecurity Organization Resource (NESCOR)3 scenario for
attacks on PDCs [8], but can be applied to super PDCs also to detect direct attacks on
the PMU data modified at the PMU. This would also work if PMU data is changed on
PGWs and routers.

Pal et al. [126] assume that nominal transmission line parameters to which the PMUs
are connected are known. The authors then use the measured PMU data to estimate
transmission line parameters (bus voltages, current and phase angles). If the deviation

3https://smartgrid.epri.com/NESCOR.aspx
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between measured and nominal data exceeds a threshold, a data modification alarm is
generated. The method is developed for data manipulation attacks on PMU data. The
data can be modified in the PMU itself or on the way to the control center in PDCs,
super PDCs or routers. The authors do not mention PGWs, but the method can also be
applied if an attacker modifies original measurement values in a PGW.

Liu et al. [99] show how malicious attackers can craft a coordinated stealthy attack that
bypasses classical bad data detection in SE based on a DC power flow model. They show
that attack vectors exist, even if attackers have access only to selected measurements and
limited resources. In [83] the use of some highly secured observation points as trusted
references is proposed based on the same model. Those trusted anchors make it harder
for attackers to find suitable values for stealthy attacks. In [39] both approaches are
discussed and a distributed algorithm is proposed to detect coordinated data injection
attacks. The algorithm is defined for general coordinated attacks in the wide area system.

The methods proposed in [99], [83] and [39] are suitable to mitigate data injection attacks
on PMUs or intermediate systems. As described in Sec. 5.1.2.2 we assume that routers
may be also able to modify the data. Therefore the methods are also suitable against
attacks on routers.

3.8.2 Aggregation

For detection systems based on aggregation, we distinguish between two methods: Data
aggregation that deals with aggregating the measured data itself, and event aggregation
that aggregates the events that were derived by inspecting measurements from one or
multiple observation points.

3.8.2.1 Data Aggregation

Several components in a WAMS perform data aggregation. Aggregating measurement
data at certain points of a system helps to analyze the situation in the overall system,
without the need to store and transmit a vast amount of fine-grain information. Data
aggregation can also have a smoothing effect that reduces the impact of wrong data in a
larger dataset. Nevertheless, aggregation systems might be compromised.

In [122] a data aggregation scheme for smart metering reports is proposed that can
cope with malicious aggregating gateways. Their goal is to maintain non-repudiation
and integrity under the assumption that the gateways have been compromised. In their
scenario, the smart meters and the control center can be trusted and just an intermediate
aggregator on the path is compromised. In this scheme the aggregator does not own
credentials itself, but rather uses homomorphic authenticators to combine authenticated
messages from multiple records into an own authenticated aggregated record, but without
knowing the secret. In contrast to other schemes that assume that the gateway just
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eavesdrop on the data but otherwise follows protocol, the proposed solution does also
work if the aggregator does not comply to protocol operations.

The authors also show that their technique has less computational and communication
overhead, compared to existing techniques. The scheme can be applied to WAMS
scenarios to prevent malicious activities in aggregating devices such as PDCs or super
PDCs. But since PDCs mainly combine records, homomorphic operations on the data
may not even be necessary.

3.8.2.2 Event Aggregation

Kim et al. [81] present a security events aggregation system to provide situation analysis.
This system collects security events from sensors and aggregates the data periodically
or on demand. Event aggregation techniques are widely used for identifying correlated
activities based on the frequency of information. The assumption is that several suspicious
events indicate a problem, whereas a single outlier might be just a false positive.

We can modify and adjust event aggregation systems to aggregate events in PDCs, super
PDCs, PGWs and CCs.

3.8.3 Anomaly detection

It is challenging to protect communication networks from new and unforeseen attacks, as
new vulnerabilities and sophisticated attacks are introduced every day [13, 15]. Anomaly
detection techniques help to detect such attacks and provide hints to identify the cause
and origin of incidents.

Pal et al. [127] propose a real-time mechanism for detecting packet drop attacks (on
sensitive synchrophasor data) over the Internet. Packet loss can be due to congestion or
due to an attacker. The authors build a classifier to distinguish both cases. In a given
time interval, if dropped PMU packets are classified as attack drops and the number
exceeds a threshold, then an alarm is generated. This is applicable to attacks on routers.

Sun et al. [162] propose a cyber physical monitoring system to detect smart meter bad
data injection attacks. The authors use Snort [38] to analyze the traffic flow, and in
addition perform energy measurements in the physical system. Energy measurements
are verified against the physical topology and energy conservation laws. Alerts from
cyber network and physical systems are fused to detect attacks. This system checks
the injection energy by combining the energy consumption, total transmission loss and
measurement error. The threshold of total transmission and measurement error is defined
as 5% of the injected energy. If the total transmission and measurement error exceeds
the threshold then an alarm is triggered and it records IP address, date and time. The
method is targeted at smart meters, but by defining threshold values of measurement
error, and checking the difference between the generated values from PMUs and received
values in a PDC, we can detect compromised PMUs.
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Rahman et al. [140] propose a security analysis tool for detecting misconfigurations
in advanced metering infrastructures (AMI). They create a formal model representing
the global behavior of AMI configuration, compliance with security constraints and
verify the potential security threats violating the constraints. The method is targeted at
smart meters, but can be modified to be applied to PGWs and super PDCs to detect
misconfiguration.

Kwon et al. [92] propose a behavior-based Intrusion Detection System (IDS) for the
IEC 61850 protocol by using statistical analysis of classical network features and metrics
based on the protocol specification. The authors combine static features (e.g., protocol
consistency), dynamic features (e.g., frequency and distribution of GOOSE message) and
generic features (e.g., bits and packets per seconds) from the communication network.
They define three metrics for i) generic network features, ii) GOOSE behavior-based
usage pattern and iii) MMS protocol-based commands as input for the anomaly detection.
The authors implement the IDS in a substation and demonstrate that the system detects
attack scenarios successfully. We can apply a similar combined intrusion detection
technique in substation or intra-substation communication, in order to detect anomalous
transmission of PMU data using IEC 61850.

3.9 Summary

In this chapter, we presented the investigation of attacks on SGs, attack modeling
techniques; challenges, security issues and attacks on WAMSs; and existing approaches
for attack detection.

In a first step, we investigated the potential vulnerabilities, security problems, challenges
of SGs and adversary techniques in the literature. It provides insights into i) the effective
cybersecurity measures, ii) the sources of the threats, iii) attack techniques and impacts of
attacks to control systems. This existing work helps me to understand the vulnerabilities
in cyber-physical systems and assess the importance and impact of different attack types.
Our study finds that there is there’s only some research and there are still many open
issues on SG WAMS security. We therefore set the objective of this research to strengthen
the security of the WAMS.

In a second step, potential attacks on different components of SG WAMS are investigated.
It showed that data modification attacks (e.g. FDI attacks) on sensor measurements
at different components of WAMS could impact in the control systems of the power
grid. But literature review shows that existing body of research rarely focus on data
modification attacks against WAMS. Thus in contrast to existing research, we perform
a threat analysis particularly for WAMS architecture. To this end, we develop attack
vectors, attack scenarios and attack trees in order to derive vulnerabilities and attack
scenarios in WAMS. Further, we develop generic attack trees (e.g., for compromising
a device) and develop specific attack trees (e.g., for causing a blackout, manipulating
sensor data).
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In a third step, we study models to represent attacks. Based on our knowledge, existing
body of work on attack modeling represents one attack type with a model; none of them
generate multiple FDI attack types with a model. We bridge the gap by developing a
FDI attack model for generating different attack types.

In a fourth step, existing approaches for detecting bad data and attacks are studied. It
provides the insights into the nature of potential attacks and their detection methods. In
the literature, detection methods are classified in two categories; bad data and attack
detection methods. Bad data can be detected using residuals of SE methods. In order
to apply bad data detection methods in our use case, we implement SSE and DSE
methods namely linear weighted least squares and Kalman filters. We then develop the
promising methods from literature, L2-norm and normalized residual-based methods. In
addition, an existing plain residual-based anomaly detection method in literature [139]
which was previously used for simulated data is reproduced and adopted to our use
case with real data. Further, we design FDI attacks that circumvent detection of the
adopted method. We investigated anomaly detection methods and find that existing
anomaly detection approaches barely consider critical infrastructure setup (e.g., limited
computation resources) of SG. This motivates us to develop an anomaly detection model
considering the critical infrastructure setup. For this, we applied selected lightweight
statistical methods; median absolute deviation (MAD), Kullback-Leibler divergence
(KLD) and Cumulative sum (CUSUM). We further investigate methods for improving
detection performance. In contrast to existing work, we apply the combination of
lightweight statistical methods in SGs. We use weighted voting scheme in [101] previously
used for combining machine learning methods to combine the statistical methods.

In the final step, we investigate methods for correcting bad (anomalous) measurement.
Models in the literature use historical data for recovering inconsistent system state using
previous consistent (normal) state. Similarly, we develop a model for estimating current
system, replacing anomalous measurement by predicted value of DKF in attack types.
In contrast to existing work, we replace anomalous measurement by predicted value of
DKF in attack types and show how voltage estimation integrity is preserved based on
the anomaly detection results of the statistical methods. Our approach covers the future
work in [85]).
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CHAPTER 4
State Estimation for Power

Systems

Notice of adoption from previous publications in Chapter 4
Parts of the contents of this chapter have been published in the following papers:

[132] S. Paudel, P. Smith, and T. Zseby. Stealthy attacks on smart grid PMU state
estimation. In Proceedings of the 13th International Conference on Availability,
Reliability and Security, ARES 2018, Hamburg, Germany, August 27-30, 2018,
pages 16:1–16:10, 2018

[133] S. Paudel, T. Zseby, E. Piatkowska, and P.Smith. An evaluation of methods
for detecting false data injection attacks in the smart grid. In preparationa

Explanation text, on what parts were adopted from previous publications:
Discrete Kalman filter and a part of experimental setup described in this chapter are
based on the work done in [132]. Weighted least squares described in this chapter are
based on the work done in [133].

S. Paudel implemented the methods and conducted all the experiments. Theoretical
considerations and experiment planning was done together with all co-authors, the
text and figures in the papers were created together by all authors.

aThe paper is in preparation.

In this chapter, we use a simplified state estimation model (derived from [50]) for voltage
estimation based on one phase on a single link. We describe the two SE approaches, linear
weighted least squares and Kalman filter that we use for our experiments. We apply linear
weighted least squares and Kalman filter to data from real power system measurements
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and validate the methods. In addition, we implement an example of the Kalman filtering
and modify the Kalman filter model for adopting it to our context. Then we apply the two
state estimation methods (linear weighted least squares and Kalman filter) for estimating
states in our use case.

State estimation (SE) [16, 114] is used for system monitoring and estimating the unknown
system states of a power grid by evaluating the measurement and the power flow models.
Staff members in a control center (CC) or an operator reasons about potential problems
in the power grid based on the SE output. If anomaly detection thresholds are exceeded
then actions are taken against the problems and the effects of the problems. Static SE
[155, 154] relies on a single set of measurements all taken at one snapshot in time, whereas
dynamic SE [109, 181] covers the evolution of the state over consecutive measurement
instants and provides accurate dynamic states of the system.

A power flow model uses a set of equations representing the energy flow on transmission
lines of a power grid. An AC power flow model considers real power and reactive power
formulated by nonlinear equations, which is computationally expensive and may not
converge to a solution [100]. So power engineers often use a linearized model called a DC
model for approximating the AC power flow model. Our research considers the linear
DC model.

We denote the n states x1, x2, ...., xn (n is the number of sates) and m measurements
z1, z2, ....zm from the m meters. A system state of n is represented as state vector by
Eq. (4.1)

x = (x1, x2, ......, xn)T (4.1)

Similarly, a measurement set from the m meters is represented as a measurement vector
by Eq. (4.2)

z = (z1, z2, ......, zm)T (4.2)

where m ≥ n. The measurement error v is expressed in Eq. (4.3)

v = (v1, v2, ...., vm)T (4.3)

The measurements set depends on the state which is based on a function h(x) and the
measurement error v. It is represented by Eq. (4.4)

z = h(x) + v (4.4)

where h(x) = (h1(x), ...., hm(x))T .

By considering the DC model, the relationship between measurements and states is
represented as a linear relation, which is expressed in Eq. (4.5).

z = Hx + v (4.5)
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where H is a m × n matrix. It depends on the measurements and state variables. Due
to the linear relation it is called a linear model.

State estimations of variables (e.g, voltage, current [138], phase angle [42],) can be done
based on meter/sensor measurements (e.g., from a PMU). Multiple measurements from
different sensors/meters can be used for estimating states.

Existing works (e.g., [139, 137, 150, 77]) provide approaches for linear SE based on three
phases. If the phases are mutually coupled, SE depends on three phases. We do not have
any information about the mutual coupling between the phases. In a similar manner
to [176], we make the assumption that the phases are independent of each other, so that
we can estimate the states of each phase separately.

We use PMU measured voltage-phasors for estimating the system states. Using rectangular
coordinates allow us to apply linear SE [11]. Thus, the one phase system true state x is
represented by real voltage and imaginary voltage Eq. (4.6).

x = [Vretrue , Vimtrue ]T (4.6)

With the linear SE, the relationship between the measurements z and state x can be
represented as Eq. (4.7).

z = Hx + v (4.7)

where H is an identity matrix, and v is a measurement noise.

Using this simple model we apply the two SE methods, which have been compared in
[150]: linear weighted least squares (LWLS) and discrete Kalman filter (DKF).

4.1 Weighted Least Squares

We can express the measurement from a sensor zk at time step k by the true state xk

and the measurement noise vk and the matrix H describes how the state is related to
the measurements.

zk = Hxk + vk (4.8)

We assume the measurement noise to be Gaussian p(v) ∼ N(0, R) with covariance matrix
R and consider the measurement noise covariance matrix R as time-invariant [176].

SE using LWLS minimizes the objective function [50] represented by Eq. (4.9).

J(x) =
N�

j=1

(zj − �S
r=1 Hjrxr)2

Rjj
(4.9)

where N is the number of measurements, S is the number of states and Rjj is the variance
of the jth measurement.
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With LWLS the estimated state x̂LW LS,k at time step k is calculated from the measure-
ment zk, the matrix H , the noise covariance matrix R and the gain matrix G as follows
in Eq. (4.10) as shown in [50].

x̂LW LS,k = G−1HT R−1zk (4.10)

with
G = HT R−1H (4.11)

4.2 Kalman Filter

Table 4.1: Notation used in Kalman Filtering

Notation Description
A State-transition model
B Control input model
H Observation model
I Identity matrix
u Control input
v Measurement noise
vk Measurement noise (time-variant)
w Process noise
wk Process noise (time-variant)
Qk Process noise covariance matrix (time-variant)
R Measurement noise covariance matrix
P k|k−1 Predicted process covariance matrix (time-variant)
P k|k Process covariance matrix (time-variant)
zk Actual measurement (time-variant)
z Actual measurement
zv Observed measurement
ze Estimated measurement
zvk Observed measurement (time-variant)
yk Pre-fit residual (time-variant)
yk/k Post-fit residual (time-variant)
xk Real state (time-variant)
x̂k|k−1 Predicted state (time-variant)
x̂k|k Estimated state (time-variant)
Lk Kalman gain (time-variant)
γ Decision level (in DKF)

Kalman filters are widely used for SE in different domains. Kalman filters estimate a
system state x ∈ Rm based on the previous state and additional variables. xk represents
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the power system state at the current time step k. In the Kalman filter model, the true
system state at time k is represented by the linear equation

xk = Axk−1 + Buk + wk (4.12)

where A is a m × m matrix that links a system state at time step k to the previous
state [170]. In our case (estimating the voltage state from voltage measurements), A is
an identity matrix [176].

uk ∈ Rl represents a set of control variables at time step k, and B is a m × l matrix
that relates the system state to control variables at time step k. wk ∈ Rm represents the
process noise at time step k, which is assumed to be Gaussian white noise p(w) ∼ N(0, Qk)
with covariance matrix Qk.

Normally, the true state in a system is not observable, but one can perform measurements
that are influenced by measurement noise v. Like in Eq. (4.8), a measurement from a
sensor at time k is represented by zk in Eq. (4.13), wherein vk is the measurement noise
and the matrix H describes how the state is related to the measurements.

zk = Hxk + vk (4.13)

All of the notations used in this section (Kalman filtering) are illustrated in Tab. 4.1.
Types of Kalman filters (e.g., DKF [170], extended Kalman filter - EKF [73, 12] are
used for estimating states of different systems. For instance DKF is used for linear state
estimation (LSE), EKF is used for solving non-linear problems. In our work, we only use
DKF as LSE has a lower computational complexity than non-linear SE.

4.2.1 Discrete State Kalman Filter

In a steady state Kalman filter model, the noise covariances (process noise and mea-
surement noise) do not change over time. A case study in [105] illustrates the Kalman
filter steady state design. A state-space model uses state variables to describe a system.
It describes a system by a set of first order differential equations. A discrete plant as
expressed in [105] is a state-space system. The state-space system model has process
noise w, measurement noise v and a control signal u as inputs, and real measurement
z and measured signal zv as outputs. Details of the system and its parameters are in
Appendix A.2.

The model assumes the discrete plant with an additive Gaussian measurement and
process noise as an input to the model. The process noise vector w is chosen from a
normal distribution with covariance Q and the measurement noise vector v is chosen
from a normal distribution with covariance R.

A DKF model (Kalman state estimator) [52, 89] is designed by combining the discrete
plant and the Kalman function [104].
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DKFs are used for SE when measurements occur at discrete times. Here, we use LSE
using DKFs [27] to estimate power system voltage states, based on PMU measurements.
Thus, the voltage states have a linear dependency on the PMU measurements. The SE
has two stages, named prediction and estimation. Figure 4.1 depicts the process for
estimating states using a DKF. Table 4.1 summarizes the notation that we use for the
Kalman filter.

Figure 4.1: DKF Model for measuring and estimating states (source Paudel et al. [132]).

In our scenario, we do not have any control input [176]. Therefore, the model is reduced
to the influence of the previous state and the process noise [138]:

xk = Akxk−1 + wk (4.14)

Qk is the process noise covariance matrix. We assume that Qk is time-variant and
Gaussian, i.e., the covariance matrix of the process noise changes over time and use a
heuristic method to calculate Qk [177]. The heuristic method depends on the estimation
error which varies over time.

Here we recall a measurement from a sensor at time k is represented by zk in Eq. (4.13).
In our case, measurements are taken by PMUs.

We assume the measurement noise also to be Gaussian p(v) ∼ N(0, R) with covariance
matrix R and consider the measurement noise covariance matrix R as time-invariant [176].
This means the noise factor is random, but the distribution of the noise does not change
over time. In a similar manner as in [176], we assume measurements in a phase are
treated separately and project uncertainty of conversion from polar to rectangular
coordinates with known R. The matrix H is related to the real and imaginary parts
of the measurements. If a measurement is taken from the same power system bus and
phase, as in our scenario, H is an identity matrix [176].

4.2.1.1 Prediction and Estimation

In the prediction step, an a priori prediction of the current state is determined, based
on the previous estimated state (x̂k−1|k−1). This is also called the “time-update” step,
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because an update is performed that is looking forward in time prospective. The prediction
at time k is determined using Eq. (4.15).

x̂k|k−1 = Akx̂k−1|k−1 + wk (4.15)

The predicted process covariance matrix depends on the previous process covariance
matrix (P k−1|k−1) and the current process noise covariance matrix (Qk), where P k−1|k−1
is a m × m matrix:

P k|k−1 = P k−1|k−1 + Qk (4.16)

Meanwhile, for the estimation step, an a posteriori estimate of the current state is
performed, based on the predicted state and the observed measurements. This is also
called the “measurement-update” or “correction” step, because the prediction is corrected
with real measurements.

SE is based on the predicted state (x̂k|k−1) and the observation vector (zk), represented
by Eq. (4.17).

x̂k|k = Hx̂k|k−1 + Lk(zk − Hx̂k|k−1) (4.17)

Here, the Kalman gain (KG) Lk describes the relative weight of the measurements and
the current estimated state, i.e., it represents how trustworthy are the measurements.

If the KG is high, the filter puts more weight on the most recent measurements and
therefore follows them more responsively. If the KG is low, the filter follows the model
predictions more closely and puts less trust in the measurements. The KG is between
zero and one and can be used to measure the performance of the filter.

Eq. (4.18) shows the calculation of the Kalman gain Lk for time step k.

Lk = P k|k−1HT (HP k|k−1HT + R)−1 (4.18)

Lk is a m × n matrix that is chosen to minimize previous estimate error covariances. If
the measurement covariance R is small, there is more trust in the measurement.

The process covariance matrix is updated based on the KG (Lk) and the predicted
process covariance matrix (P k|k−1), represented by Eq. (4.19), where I is an identity
matrix.

P k|k = (I − LkH)P k|k−1 (4.19)

In this work, we use the LSE method that is proposed by Pignati et al. [139] and Møller et
al. [113]. The main reason for using LSE is that it has a lower computational complexity
than non-linear SE. For the measurement error a standard deviations of real voltage and
imaginary voltage of 0.001 p.u. are assumed as suggested in [150, 149]. The elements of
process noise (Qk) are initialized to 0.01, and we calculate the elements of Qk at each
step, as proposed by Method 2 in [177]. The filter we use for SE is partially steady state
as only the measurement noise covariance matrix R is time-invariant.
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4.2.2 Kalman Filter Example

In this section, an example is implemented for validating the concept of filtering.
A Matlab command represented in Eq. (4.20 ) returns a state space model kalmf , Kalman
gain L, innovation gain M (chosen in order to minimize estimation error covariance)
and steady state error covariance P . Kalmf model has two outputs, estimated plant
output ze and estimated state x̂k|k. We only take into consideration the estimated state
x̂k|k and discard ze.

[kalmf, M , P , L] = kalman(Plant, Q, R) (4.20)

A parallel connection between the plant and the Kalman filter are created using Matlab
command parallel(sys1, sys2) [106]. For a parallel connection both of the connecting
models should be either continuous or discrete. In our case we consider both of them
as discrete models. Here a system is formed connecting the plant and the Kalman filter
in parallel. The steady state Kalman filter model is shown in Fig. 4.2. Sub-figure 4.2a
shows the original model, parallel connection, inputs to the model and outputs from the
model. As shown in this sub-figure, in the original model (an example) we do not have
access to the observed measurement zv, which is used as input to the Kalman filter. The
model only provides access to the original measurement z (without the noise component).
Measurement noise v (input to plant) and actual measurement z are combined internally
and fed to Kalman filter using a positive feedback but the value is not exported. The
dotted line shows one could not access or see the values.

(a) Original
(b) Modified

Figure 4.2: Steady state Kalman filter.

As an attacker we want to manipulate zv. For the manipulation we need to access the
sensor or zv. So we modify the model such that we can access the measured value (zv).
Sub-figure 4.2b shows how we split up the sensor from the plant, so that we get zv.
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A sensor which has sensor noise (v) is connected to the output of the plant. In other
words the sensor connects the plant’s output (z) to the filter input (zv) with a positive
feedback [103]. The estimated value of zv by the filter is ze and the estimated state
based on zv is x̂k|k ; ze = H · x̂k|k where H relates states to measurement. From the
connection we can see in the figure zv is the output of the plant and also an input to the
Kalman filter.

We adopt this model to our use case in the power system. Modifications will be discussed
in Sec. 4.2.2.1.

4.2.2.1 Model Modification

Aim of modification: The original model described above in this section has inputs
(u, w, v) and outputs (z, ze, x̂k|k). As we use PMU measured values for our experiment,
as an attacker we want to manipulate the measured response zv which is the input to
the Kalman filter. Therefore, we want to have access to the measured response in the
above model. In addition we want to check innovation (residuals) yk, Kalman gain Lk

for all iterations.

Figure 4.3: Modified model with all output values.

Modification: We modify the model such that zv is assigned as input to the Kalman
filter. We simulate the plant and Kalman filter separately. At first we simulate the plant,
which has two outputs: true response and measured response. We assign the measured
response from the plant as input to Kalman filter. Using the estimated output and
estimated state from the filter we calculate yk and Lk. Figure 4.3 shows modified version
of the Kalman filter.

4.2.2.2 Experiment

Input signal is a sinusoidal signal u = sin(t/5) where t increases from 0 to 100 (t = [0 : 100]
discrete time steps). We set process noise covariance Q to 1. Similarly, measurement
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noise covariance R is set to 1. Process noise w and measurement noise v are randomly
selected noise of Gaussian distribution.

Figure 4.4: True signal, measured signal and estimated signal using the Kalman filter.

The measured signal is a combination of true signal and sensor noise (an additive Gaussian
noise). Figure 4.4 shows true, measured and estimated signal of the steady state Kalman
filter.
Sensor connected to the model can cause measurement error (zv − z) and estimation
error (ze − z). The measurement error due to the sensor noise is shown in sub-figure 4.5a
and estimation error is shown in sub-figure 4.5b.
Thus the filtering process filters out some noise such that the estimation error is less
than the measurement error. It indicates that after the filter process, the signal gets
closer to real signal than the measured signal. Similarly, pre-fit residuals and post-fit
residuals are shown in Fig 4.6. Pre-fit residuals in sub-figure 4.6a is greater than post-fit
residuals in sub-figure 4.6b.

4.3 Use Case

4.3.1 Power System Measurements

A measurement model connects the measurements to the system state via a matrix H
which we name as measurement matrix [176]. In this section, we present the measurement
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(a) Measurement error (b) Estimation error

Figure 4.5: Measurement error and estimation error in normal operation.

(a) Pre-fit residuals (b) Post-fit residuals

Figure 4.6: Pre-fit residuals and post-fit residuals in normal operation.

model and the measurement matrix used in our use case.

4.3.1.1 Measurement Model

A bus is a vertical line where components (e.g., loads, generators) are connected, and
a path between two buses is a branch. A measurement model [176, 149] (represented
by Eq.(4.5)) links the sets of measurements measured in buses, branches of a power
system to the system’s state variables. Let S be a set of buses and N be the set of state
variables of a one-phase-power-system. Then the network state is represented as x ∈ Rn

where n = 2s, s = |S|, and n = |N |. The state x at all buses is represented as Eq. (4.21)

x = [V1, .., Vi, .., Vn]T (4.21)
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We consider only one bus (n = 2) in the following, so the state vector x at the bus is
reduced to Eq. (4.22)

x = [V1, V2]T (4.22)

Let M be the set of phasor-measurements including voltage-phasors and current-phasors,
then measurements set z ∈ Rm where m = |M | is represented as Eq. 4.23.

z =
�
zV

zI

�
(4.23)

where zV is the set of voltage-phasors and zI is the set of current-phasors.

Current measurements contain a set of current injection and current flow in a system.
Current injection in a node or a bus, and current flow in a branch can be calculated
using the complex current-phasors. Sets of voltage, current injection and current flow
measurements are based on the sets of buses and branches. Thus Eq. 4.23 can be rewritten
as Eq. (4.24).

z =

 zV

zIinj

zIflow

 (4.24)

where zIinj is the set of current injection phasors and zIflow
is the set of current flow

phasors represented in Eq. (4.25).

zV = [V1, ..., Vi, ..., Vn]
zIinj = [I1, ..., Ii, ..., In]

zIflow
= [I1, ..., Ii, ..., In]

(4.25)

PMUs provide synchrophasor measurements, and they can be expressed in rectangular
coordinates. Thus SE is linear when we express state (Eq. 4.22) and measurements
(Eq. 4.25) in rectangular coordinates [167, 78, 76]. States (Eq. 4.22 in rectangular
coordinates are represented as Eq. (4.26).

x = [V1,re, ..., Vn,re, V1,im, ..., Vn,im]T (4.26)

Similarly, measurements (Eq. 4.25) in rectangular coordinates are represented as Eq. (4.27).

zV = [V1,re, ..., Vn,re, V1,im, ..., Vn,im]
zIinj = [I1,re, ..., In,re, I1,im, ..., In,im]

zIflow
= [I1,re, ..., In,re, I1,im, ..., In,im]

(4.27)

4.3.1.2 Measurement Matrix

The linear measurement model linearly relates the measurements to the state variables.
Therefore matrix H links measurements to states. Matrix H is time-invariant because it
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depends on the network topology, and electric parameters of the power system. It needs
recalculation only if there is a change in the network topology.

H is related to voltage-phasors, current injection and current flow phasors. Therefore,
H is splitted in three parts as represented by Eq. (4.28).

H =

 HV

HIinj

HIflow

 (4.28)

H for voltage-phasor measurements Elements of HV are either ones or zeros, and
they link real or imaginary part of the voltage measurement to real or imaginary part of
the state variable. HV is defined as

HV =
�
h1 h2
h3 h4

�
(4.29)

where h1 links real part to real part of voltage to real part of state, h2 links real part of
the voltage to imaginary part of state, h3 links imaginary part of voltage to real part of
state and h4 links imaginary part of voltage to imaginary part of the state.

Hv for a bus is represented by Eq.(4.30). Derivation of Hv for multiple buses is shown
in Appendix A.3.1.1.

HV =
�
1 0
0 1

�
(4.30)

H for current-injection-phasor measurements Elements of HIinj are the elements
of the admittance matrix, and they link current-injection measurement to the voltage
measurement. Admittance matrix for s buses network can be defined as a Y s×s matrix,
and it is represented by Eq. (4.31) [14, 76].

Y =

Y11 ... Y1s

... ... ....
Ys1 ... Yss

 (4.31)

Real and imaginary parts of the admittance matrix can be written as Eq. (4.32).

Y = G + jB (4.32)

where G is the real part and B is the imaginary part of Y .

HIinj for one bus is represented by Eq. (4.33). Derivation of HIinj for multiple buses is
shown in Appendix A.3.1.2.

HIinj =
�
G −B
B G

�
(4.33)
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H for current-flow-phasor measurements Elements of HIflow
link current-flow

measurement to the voltage measurement. Thus elements of HIflow
are the functions of

state variables. Considering a two port π model of transmission lines as shown in Fig. 4.7,
we can derive the elements of HIflow

. A two port π model has two buses l and h at two
ends of a transmission line. This transmission line is called a branch between the buses l
and h. The model has π-longitudinal admittance (also called as series admittance) and
π-transverse admittance (also called as shunt admittance).

Figure 4.7: 2 port π model of a transmission line (adapted from source Abur et al. [14]).

The π-longitudinal admittance is the inverse of the π-longitudinal impedance zlh of
the transmission line (or the branch). The impedance in rectangular coordinates is
represented by Eq. (4.34)

zlh = rlh + jxlh (4.34)

where rlh is resistance and xlh is the reactance. Thus the π-longitudinal admittance is
represented as Eq. (4.35)

ylh = 1
zlh

(4.35)

The π-transverse admittance yl0 from the side of bus l in rectangular coordinates is
represented by Eq. (4.36)

yl0 = gl0 + jbl0 (4.36)

where gl0 is conductance and bl0 is susceptance from the side of the bus l.

Similarly, π-transverse admittance matrix yh0 from the side of the bus h in rectangular
coordinates is represented by Eq. (4.37)

yh0 = gh0 + jbh0 (4.37)
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where gh0 is conductance and bh0 is susceptance from the side of the bus h.

Current flow in a branch from the two ends l and h of the branch are different. We
denote the current flow phasor in the branch from bus l to h by Ilh, and the current flow
phasor from bus h to bus l by Ihl. Calculation of IIh using voltage phasors (or using
state variables) is represented by Eq. (4.38) [176].

Ilh = ylh(Vl − Vh) + yl0Vl (4.38)

where Vl is the voltage at bus l and Vh is the voltage at bus h.

Real part of the current flow phasor Ilh is represented by Eq. (4.39)

Ilh,re = glh(Vl,re − Vh,re) − bih(Vl,im − Vh,im) + gl0Vl,re − bl0Vl,im (4.39)

Imaginary part of the current flow phasor Ilh is represented by Eq. (4.40)

Ilh,im = glh(Vl,im − Vh,im) + blh(Vl,re − Vh,re) + gl0Vl,im + bl0Vl,re (4.40)

Elements of H that relate current flow measurements to the state variables are defined
as a matrix HIflow

in Eq. (4.41). Each element of H is defined for relating real part (re)
and imaginary part (im) of the measurements and states variables. In our use case we
have one bus, so the matrix HIflow

for a bus is represented as Eq. (4.41) (see Appendix
A.3.1 for multiple buses).

HIflow
=

�
h1 h2
h3 h4

�
(4.41)

where
h re

1 re = glh + gl0 (4.42)

h re
2 im = −(blh + bl0) (4.43)

h im
3 re = blh + bl0 (4.44)

h im
4 im = glh + gl0 (4.45)

The superscripts in (4.42) to (4.45) mean the real part (re), the imaginary part (im) of
the measurements; and the subscripts mean the real part (re) and the imaginary part
(im) of the state variables.

4.3.2 Power System Use Case

We use PMUs measurements of a smart grid network in EPFL campus. Electric
parameters of lines used in the network are resistance R = 0.159 Ω/km, reactance
X = 0.113 Ω/km. It is a short lines network as all of the lines are less than a kilometer.
We do not have information about the shunt capacitance of the network, and according to
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Reta-Hernandez [144], for transmission lines less than 80 km effect of shunt capacitance
is negligible. In this case we consider only the available information of resistance and
reactance of the lines. We also do not have any information of mutual coupling of the
phases, therefore we make as assumption that phases are independent to each other [176].

We consider a model which has PMUs deployed in each of the nodes (buses) and have a
branch between the nodes. Current injection in a node is measured by a PMU installed
in the node. Current injection to the node and current flow from the side of the node
have different signs due to their directions. If there is only one branch between two nodes
(as depicted in Fig. 4.8) under the above circumstances (shunt admittance is negligible),
then using Kirchhoff’s law we can say current injection in a node equals the current flow
from the side of the node, only the difference is the positive/negative sign. Here we do
not distinguish between flow or injection and use the term current for representing the
current magnitude. Thus we develop a one-phase SE model intended to be deployed at
each node/bus. It uses PMU measurements at each node for estimating the states.

Figure 4.8: Current injection to a bus and current flow from the side of the bus in a
branch.

PMU measurements at each node is represented by Eq. (4.46).

z =
�
V
I

�
(4.46)

where z is a set of voltage V and current I measurements.

Separation of real and imaginary parts of the measurement z in Eq. (4.46) is as follows:

zre =
�
Vre

Ire

�
(4.47)

zim =
�
Vim

Iim

�
(4.48)

We consider the voltage phasor for states, which we express with real and imaginary part.
Thus, state at each node in rectangular coordinates is represented by Eq. 4.49.

x =
�

Vre

Vim

�
(4.49)
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As PMU measurements are the complex phasors of voltage and current. Separation of
real and imaginary parts of the system state x in Eq. (4.49) makes SE less complex.
Separation of the state’s real and imaginary parts is as follows:

xre =
�
Vre

�
(4.50)

xim =
�
Vim

�
(4.51)

Relationship between the measurements and the system state can be written as Eq.
(4.52).

z =
�
HV

HI

� �
Vre

Vim

�
+ v (4.52)

where HV is the identity matrix for voltage measuremetns and HI is the admittance
matrix for current measurement as shown in Equations (4.30) and (4.33) respectively.

Here again we recall the SE using both LWLS and DKF. Using LWLS method, estimated
state at time step k is represented by Eq. (4.53) [100].

x̂LW LS,k = G−1HT R−1zk (4.53)

where G is a gain matrix.

Similarly, using DKF method, estimated state at time step k is represented by Eq. (4.54).

x̂k|k = Hx̂k|k−1 + Lk(zk − Hx̂k|k−1) (4.54)

where x̂k|k−1 is the predicted state at time step k and Lk is kalman gain at time step k.

The states can be estimated in two ways i) using only voltage measurements or ii) using
both voltage and current measurements. We present these two cases in the following
sections.

4.3.2.1 Experimental setup

EPFL campus PMU network [47] is part of the electrical distribution network. A 20 kV
active distribution network (ADN) connects PMUs via a communication network. The
PMUs in the network are intended to meet the requirements of IEEE Std C37.118.1-
2011 [5] and IEEE Std C37.118.1a-2014 [7] for the synchrophasor measurements of power
systems. Some adjustments to the PMUs have been made for them to be used in an
ADN; therefore, the PMUs that are described in [145] are used. In this setting, UDP
datagrams are encapsulated according to IEEE Std C37.118.2-2011 [4] and communicated
over a secured communication network. A detail description of the system architecture
and characteristics of the PMUs is presented in [138]. The base voltage of the PMU
network is 11547.0054 kV.
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Polar voltages are derived from PMU provided voltage magnitudes and base voltage of
the network. Series impedance is calculated using resistance and reactance. First, we
calculate admittance using the impedance then calculate conductance (G) and suceptance
(B) using the admittance. According to closely related existing work [176] we define
standard deviations of real voltage, imaginary voltage, real current and imaginary current
current as 0.001 p.u. We keep the phase angle fixed by the first observed phase angle in
order to be able to apply the residual-based detection method, as explained in Section
6.2.

Let n be the number of states using m number of measurements at time step k. Table
4.2 shows matrices and their dimensions in SE using DKF and LWLS. In our scenario,
true system state x = [Vre, Vim]T . Thus the number of states is n = 2. We initialize the
true state x with the observed state and separate SE in two cases i) using only voltage
measurements i.e., m = 2 , z = zV where zV = [Vre, Vim]T and ii) using both voltage and
current measurements i.e., m = 4 and z = [zV , zI ]T where [zV , zI ]T = [Vre, Vim, Ire, Iim]T .

Table 4.2: Matrices of Kalman Filter and their dimensions.

Notation Dimension Description
xk n × 1 True state (time-variant)
zk m× 1 Measurement (time-variant)
Lk n ×m Kalman gain (time-variant)
Pk/k−1 n × n Predicted process covariance (time-variant)
Pk/k n × n Process covariance (time-variant)
Qk n × n Process noise covariance (time-variant)
A n × n State transition
H m × n Observation model
R m × m Measurement noise covariance
x̂k/k−1 n × 1 Predicted state (time-variant)
x̂k/k n × 1 Estimated state (time-variant)
G n × m LWLS gain
x̂LW LS,k n × 1 LWLS Estimated state

In the attack scenario, real voltage and imaginary voltage are calculated from manipulated
polar voltage whereas real current and imaginary current are calculated from actual (non-
manipulated) polar voltage. Voltage measurements under attack are zV = [Vre,m, Vim,m]T
and current measurements are zI = [Ire, Iim]T . The measurements are fed to the estimator.
Here non-manipulated measurements are illustrated without any additional subscripts.

In Kalman filtering, we initialize process noise Qk as diag(0.012, 0.012) where standard
deviations of estimated real state and imaginary states are assigned as 0.01.
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4.3.2.2 Using only voltage measurements

Two measurements (real voltage and imaginary voltage) are used for estimating two
states (real state and imaginary state). In this setup, we have a 2 × 2 identity matrix H
and a 2 × 2 measurement covariance matrix R, as shown below

R =
�
σ2

1 0
0 σ2

2

�
(4.55)

where σ2
1 is variance of real voltage and σ2

2 variance of imaginary voltage.

Voltage measurements using the measurement model are calculated as

z = Hx =
�
1 0
0 1

� �
Vre

Vim

�
=

�
1 · Vre

1 · Vim

�
(4.56)

Thus voltage measurements are just the same as the state represented as

zV,re = Vre (4.57)

zV,im = Vim (4.58)

Using LWLS, the objection function in Eq. (4.9) (see Sec. 4.1) can be simplified as

J(xV ) = (Vre − (1 · Vre + 0 · Vim))2

σ2
Vre

+ (Vim − (0 · Vre + 1 · Vim))2

σ2
Vim

(4.59)

Thus the objective function in Eq. (4.59) can be rewritten as

J(xV ) = (Vre − 1 · Vre)2

σ2
Vre

+ (Vim − 1 · Vim)2

σ2
Vim

(4.60)

It shows that the estimated value equals the observed value and residuals are zero. In
other words J(xV ) = 0.

Using DKF, the estimated value at time step k shown in Eq. (4.61) is based on the
predicted value (x̂k|k−1) and measurement (zk), thus values of pre-fit residual (zk − x̂k|k−1)
and post-fit residual (zk − x̂k|k) using DKF are non-zero.

x̂k|k = Hx̂k|k−1 + Lk(zk − Hx̂k|k−1) (4.61)

Estimated states of DKF and LWLS using only the voltage measurements are presented
in the following sections. First, we show estimated states in normal operation, then
illustrate the estimation under attack.
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Estimation Results Here we keep the phase angle constant with the first observed
phase for SE. Actual polar voltage is visualized in Fig.4.9 and first phase angle is 0.4340
radian.

Figure 4.9: Visualization of actual polar voltage.

Figure 4.10: Visualization of measured real voltage and imaginary voltage.

Real voltage and imaginary voltage are calculated using the polar voltage and the constant
phase angle. Figure 4.10 shows observed real voltage and imaginary voltage in normal
operation. From the figures 4.9 and 4.10, one can see polar voltage, real voltage and
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imaginary voltage have same pattern but different magnitudes. The two voltage signals
shown in Fig. 4.10 are fed to the estimator, where two estimation methods (LWLS and
DKF) are deployed.
We compare estimated states using the methods (LWLS and DKF) in normal operation,
which are visualized in Fig. 4.11. Sub-figure 4.11a shows estimated real and imaginary
voltage using LWLS. The estimated real and imaginary voltage using LWLS is the same
as the observed voltages signals. Similarly, sub-figure 4.11b shows estimated real voltage
and imaginary voltage using DKF. One can see from the sub-figure 4.11b that estimation
process filters out noise and smooths the real voltage and the imaginary voltage signals.
From the upper part of the sub-figure 4.11b, we can see the estimation process filters
out more noise and smooths the real voltage signal than in the imaginary voltage (see
lower part of the sub-figure 4.11b). It is because DKF puts less trust in real voltage
measurements and follows the model predictions, and puts more trust on imaginary
voltage measurements and follows the measurements more responsively. This can be
explained using Kalman gain. From Fig. 4.12, we can see that Kalman gain of real voltage
is lower than imaginary voltage because real voltage has higher variation than imaginary
voltage (see Fig. 6.3 in Chapter 6). This results less trust in real voltage measurements
(follows prediction model) and more trust on imaginary voltage measurements (follows
the measurements more responsively). This can be seen in the sub-figure 4.11b that DKF
follows prediction model so that estimated real voltage is less noisy and the estimated
imaginary voltage is close to the measurements as it follows the measurements.

(a) Estimated states using LWLS (b) Estimated states using DKF

Figure 4.11: Estimated real voltage and imaginary voltage in normal operation.

Using DKF, residuals are categorized in two categories, pre-fit residuals and post-fit
residuals but this is not the case using LWLS because there is just one estimation step in
LWLS. Thus we analyse and compare pre-fit residuals and post-fit residuals of DKF and
compare them to residuals of LWSE. Residuals of DKF and LWLS in normal operation are
visualized in Fig. 4.13. Sub-figure 4.13a shows pre-fit residuals and sub-figure 4.13b shows
post-fit residuals of real and imaginary voltage using DKF. From the sub-figures, one can
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Figure 4.12: Visualization of Kalman gain of real voltage and imaginary voltage in normal
operation.

see the pre-fit residuals and post-fit residuals are close to each other. But the residuals
look different for real and imaginary voltage as the estimation process follows prediction
model in real voltage and follows measurements in imaginary voltage. Magnitudes of the
residuals of LWLS aligns to the theory presented in the previous section and have zero
values.

(a) Pre-fit residuals of DKF (b) Post-fit residuals of DKF

Figure 4.13: Residuals of real voltage and imaginary voltage in normal operation.

In the case of SE using only voltage measurements, as expected residuals of LWLS is
zero but both pre-fit residuals and post-fit residuals using DKF are non-zero. In addition,
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as expected residuals of DKF follow the pattern of voltage signal, for instance residuals
fluctuates if voltage signal fluctuates and so on.

4.3.2.3 Using both voltage and current measurements

Here we use four measured values (real voltage, imaginary voltage, real current and
imaginary current) for SE. Two states (real and imaginary) are estimated using the
measurements.

Calculation of voltage measurements are shown in section 4.3.2.2, we recall representation
of real voltage and imaginary voltage as follows

zV =
�

Vre

Vim

�
(4.62)

Now we show calculation of current measurements using the measurement model. For
the current measurements, we name matrix H as HI . HI is a 2 × 2 matrix as shown
below

HI =
�
G −B
B G

�
(4.63)

where G is real part and B is imaginary part of the admittance H.

Current measurements using the measurement model are calculated as below

zI = HIx =
�
G −B
B G

� �
Vre

Vim

�
=

�
G · Vre − B · Vre

B · Vre + G · Vim

�
(4.64)

Thus real current and imaginary current are represented as

Ire = G · Vre − B · Vim (4.65)

Iim = B · Vre + G · Vim (4.66)

Thus measurements are represented as

z =


Vre

Vim

Ire

Iim

 (4.67)

Measurement covariance matrix R is represented as

R =


σ2

V,re 0 0 0
0 σ2

V,im 0 0
0 0 σ2

I,re 0
0 0 0 σ2

I,im

 (4.68)
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where σ2
V,re is variance of real voltage, σ2

V,im is variance of imaginary voltage, σ2
I,re is

variance of real current and σ2
I,im is variance of imaginary current.

Matrix H from voltage and current measurements is

H =


1 0
0 1
G −B
B G

 (4.69)

With LWLS the estimated state x̂LW LS,k at time step k is calculated from voltage and
current measurements zk, the matrix H , the noise covariance matrix R and gain matrix
G as shown in Eq. (4.70) [50].

x̂LW LS,k = G−1HT R−1zk (4.70)

Objective function of LWLS ( represented in Eq. (4.9)) for current measurement can be
simplified as

J(xI) = (Ire − (G · Vre − B · Vim))2

σ2
Ire

+ (Iim − (B · Vre + G · Vim))2

σ2
Iim

(4.71)

Thus the function in Eq. (4.71) can be rewritten as

J(xI) = (Ire − G · Vre + B · Vim)2

σ2
Ire

+ (Iim − B · Vim − G · Vim)2

σ2
Iim

(4.72)

The objective function using both voltage and current measurements is

J(xV,I) = J(xV ) + J(xI) (4.73)

J(xV ) = 0 but J(xI) is non zero. Thus in this case, residuals of LWLS are non-zero.

Using DKF, estimated value at time step k shown in Eq. (4.74) is based on the predicted
value (x̂k|k−1) and measurement (zk), thus in this case also values of pre-fit residual
(zk − x̂k|k−1) and post-fit residual (zk − x̂k|k) are non-zero.

x̂k|k = Hx̂k|k−1 + Lk(zk − Hx̂k|k−1) (4.74)

Estimated states using DKF and LWLS will be presented in the following sections.
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Estimation Results We use polar voltage shown in Fig. 4.9 and calculate voltage
measurements as mentioned in Sec. 4.3.2.2. Current measurements are calculated using
the real voltage and imaginary voltage derived from the actual signal. Observed voltage
and current measurements in normal operation is shown in Fig. 4.14. Sub-figure 4.14a
visualizes observed real and imaginary voltages, and sub-figure 4.14b visualizes observed
real and imaginary currents.

(a) Real and imaginary voltage (b) Real and imaginary current

Figure 4.14: Observed voltage and current measurements in normal operation.

(a) LWLS (b) DKF

Figure 4.15: Estimated states using LWLS and DKF in normal operation.

Figure 4.15 shows estimated real and imaginary voltage using LWLS and DKF. From
the sub-figures 4.15a and 4.15b, one can see that estimation using DKF smooths out
the signals. It is due to less trust on the recent measurements which can be explained
using Kalman gain. Kalman gain of real voltage is lower than imaginary voltage From
Fig. 4.16, one can see Kalman gain is low in normal operation because of high variation.
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Estimation using LWLS is quite close to the original real and imaginary voltage signals.
It can be seen by taking a closer look in the residuals.

Figure 4.16: Kalman gain in normal operation.

(a) Residuals of LWLS (b) Residuals of LWLS (zoomed in)

Figure 4.17: Residuals of real voltage and imaginary voltage using LWLS in normal
operation.

From Fig. 4.17, we can see residuals in LWLS are close to zero. Residuals of real and
imaginary voltage in LWLS are shown in sub-figure 4.17a. (Post-fit) Residuals (observed
values - estimated values) of LWLS for first 100 data points are shown in sub-figure
4.17b, this figure shows that estimated values are close to observed values. The estimated
values of real voltage are always greater than the measured (observed) values (because
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(a) Prefit residuals of DKF (b) Postfit residuals of DKF

(c) DKF (difference of prefit and postfit residuals
of real votlage)

Figure 4.18: Residuals of real voltage and imaginary voltage using DKF in normal
operation.

the signals of real voltage and real current are same, so estimated values are greater), so
the residuals of real voltage are always negative, but this is not the case in imaginary
voltage (because the signals of imaginary voltage and imaginary current are different so
estimated values are smaller).

Figure 4.18 shows residuals of DKF. Sub-figures 4.18a and 4.18b visualize pre-fit residuals
and post-fit residuals of real voltage and imaginary voltage respectively. From sub-figure
4.18c we can see there is very small difference in pre-fit and post-fit residuals of real
voltage. Thus pre-fit and post-fit residuals are similar in normal operation.
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4.4 Summary

In this chapter, we presented the SE model, accompanied by two SE approaches (i.e.,
LWLS and DKF). These two approaches represent two classes of methods for SE: LWLS
is a static SE method and DKF is a dynamic SE method. The results analysis showed
that dynamic SE is better than static SE because the residuals from dynamic SE are non
zero and also the changes are visible in the residuals.

In the first step, we used an example to demonstrate SE. Concept validation of Kalman
filtering was demonstrated using the Kalman filter example, which was later modified
and adopted in order to validate results from our use case.

In the second step, our use case of a power system was presented. A measurement
matrix was used to describe the relationship between the system-states and the measured
values (voltage phasors, current-injection phasors and current-flow phasors). The SE
using the approaches WLS and DKF was presented for two cases i) using only voltage
measurements, and ii) using both voltage and current measurements. The experimental
results of the SE were presented for the cases.
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CHAPTER 5
Attacker Model

Notice of adoption from previous publications in Chapter 5
Parts of the contents of this chapter have been published in the following papers:

[129] S. Paudel, P. Smith, and T. Zseby. Data Integrity Attacks in Smart Grid Wide
Area Monitoring. 4th International Symposium for ICS and SCADA Cyber
Security Research, 2016

[130] S. Paudel, P. Smith, and T. Zseby. Attack models for advanced persistent
threats in smart grid wide area monitoring. In Proceedings of the 2Nd Workshop
on Cyber-Physical Security and Resilience in Smart Grids, CPSR-SG’17, pages
61–66, New York, NY, USA, 2017. ACM

[132] S. Paudel, P. Smith, and T. Zseby. Stealthy attacks on smart grid PMU state
estimation. In Proceedings of the 13th International Conference on Availability,
Reliability and Security, ARES 2018, Hamburg, Germany, August 27-30, 2018,
pages 16:1–16:10, 2018

[133] S. Paudel, T. Zseby, E. Piatkowska, and P.Smith. An evaluation of methods
for detecting false data injection attacks in the smart grid. In preparationa

Explanation text, on what parts were adopted from previous publications:
Introduction of this Chapter is based on the work done in [132]. The threat analysis
described in this chapter is based on the work done in [129] and [130], the attack
vectors is based on the work done in [129] and the attack trees is based on [130]. The
attack model described in this chapter is based on the work done in [133]. The false
data injection attacks described in this chapter is based on the work done in [132]
and [133].
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S. Paudel implemented the model and conducted all the experiments. Theoretical
considerations and experiment planning was done together with all co-authors, the
text and figures in the papers were created together by all authors.

aThe paper is in preparation.

In this chapter, we present an overview of attackers motivation, a threat analysis describing
potential attack vectors, measurement manipulation attacks and potential consequences of
the attacks. We then introduce false data injection attacks and present an attack model
with a generation of attack types using this model.

Attacks on computer networks can be classified in two categories, namely (i) active
attacks and (ii) passive attacks. In an active attack, the adversary manipulates data
or equipment in the network. Data injection, data modification, packet drop attacks
etc. are examples of active attacks. Passive attacks are related to gathering critical
information in the network and learning the characteristics of the network or data being
transferred, for example, by sniffing or eavesdropping. Passive attacks are often used to
gather information for attack preparation. Multiple attack components can be combined
to create a more advanced type of attack called an advanced persistent threat (APT), in
which for instance first information is exfiltrated in a passive attack to learn the system
state and its vulnerabilities, and then an active attack is launched to cause major damage
to the system. An APT combines different attack methodologies, intrusion technologies,
techniques and tools to compromise interconnected information and their target [34].
APTs usually implement several stages or sub goals before achieving an ultimate goal.

Phasor measurement units (PMUs) report high-frequency real-time voltage, frequency,
phase angle, and many more measurements. Amongst other applications, they can be
used to support real-time situation awareness, enabling operators to rapidly identify
problems, such as line faults, and take informed corrective actions. Measurements from
PMUs can be input to a state estimator, e.g., based on weighted least squares or Kalman
filters, to mitigate measurement errors and provide estimates about the state of regions
of a power grid that are not being directly observed. It is expected that PMUs and
state estimation will play an increasingly important operational role in power systems
monitoring and control.

Meanwhile, there have been several recent cases in which an attacker – by cyber means –
has successfully caused operational impact [93, 94, 75]. Perhaps the most notable example
of this form of attack being the incident in the Ukraine in December 2015, in which
a major power blackout was caused [94]. In almost all of these cases, the attacker is
thought to have implemented a series of attack steps – a so-called kill chain – using
relatively advanced and stealthy techniques over an extended period of several months.

Our research questions about attacks on a wide area monitoring system (WAMS) read:
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• RQ 1.1: How can an attacker cause false data injection attacks in a WAMS?
Rationale: Components used for critical functions and making decisions in a WAMS
use sensor data (e.g., PMU data). Attackers target to compromise the components
used for critical functions and making decisions. We want to identify potential
attacks against a WAMS by investigating major possibilities of how an attacker
can launch severe attacks against critical components.

• RQ 1.2: How can multiple different false data injection attack forms be expressed
in one comprehensive attack model?
Rationale: An attacker can generate different attack types. For instance, an attacker
aims to appear normal, aims to hide a faulty system state and so on. We investigate
the possibilities of generating different attack types. Consequently, we assume we
could generate different attack types using different attack parameters. It is of
advantage to have a general model that covers different attack forms. With this
theoretical considerations the model can be formulated in a more general way.

In this context, a potentially attractive target for an attacker is the measurement and
state estimation infrastructure, which leverages PMUs, that is used to inform control
decisions. The goal of an attacker would be to manipulate measurements, such that
they do not reflect the actual system state, so that an operator – or an automated
system acting on their behalf – performs incorrect control decisions. For example, an
attacker could manipulate measurements to appear normal, to hide a faulty system state
that should be mitigated (and vice versa). Such an attack could result in the severe
power systems effects that have been explored by previous work [113]. For the attacker
ideally, this data manipulation attack should be implemented in a way that it is hard to
detect, i.e., the attack should be stealthy. In previous work, we already have explored
the different ways how an attacker can use several attacks steps to compromise WAMSs,
which includes PMUs, using cyber and physical means [129]. For establishing an attack
model, we perform the following steps

• We first look at the attack vectors that can be used to attack a WAMS architecture.

• We then provide descriptions of different attack scenarios.

• Based on the scenarios, we generate attack trees to show different options how an
attacker can reach his goal and discuss which strategies an attacker may choose.

5.1 Threat Analysis

A WAMS has many components for critical functions and making decisions. Attackers
launch complex sophisticated attacks targeting WAMS. In this section, we will consider
all the devices, their interfaces, hardware and software in WAMS and will investigate on
major possibilities how an attacker can launch severe attacks using these components.
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For this, we will use attack trees and will present generic and specific attack models on
WAMS by representing them in graphical and in simple text lines tree format.

5.1.1 Attack Vectors

Each device in a WAMS is a combination of hardware and software. For the attack
model, we distinguish between a) the physical device itself, b) the software running on
the device and c) the communication components. We explain the influencing factors of
the different components for attacks below.

5.1.1.1 Physical Device

Physical devices are connected to each of the phasor components. PMUs are the physical
devices that measure the electrical waves on an electricity grid. Different devices are
used for hosting PMUs, PDCs, super PDCs, or control processes. Routers are used for
interconnection of different components and devices in the Smart Grid network. The
level of protection for the devices differs based on the functionality. PMUs are at different
locations in the power grid, for instance in substations. Therefore, some protection of
the physical device can be assumed. PDCs collect data from multiple PMUs and may be
even more protected. PMUs and PDCs can also have some tampering detection methods
installed to prevent unauthorized opening of the chassis. Since a direct attack to the
CC allows an attacker to directly invoke control decisions, it is considered as the most
severe case. The CC is therefore assumed to be the best protected element. Intermediate
network devices such as routers also typically reside in physically protected server rooms.

5.1.1.2 Software

Software is used for different functionality, providing the operating system, monitoring
tasks, and taking decisions. A software can have different components for example, a
component for dealing with input data, a component for computing core functionality
and processing data, and a component for sending data to other components as output.
Services are used to communicate between the components. Therefore, software used to
produce such services can have intermediate services and/or public services.

Software used in WAMS are not free from vulnerabilities. Therefore, exploiting such
vulnerabilities attackers can gain access to WAMS components. Nevertheless, we as-
sume that the amount of different software and services running on WAMS devices is
comparatively small compared to classical Internet devices.
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5.1.1.3 Communication

Physical devices have interfaces to connect and communicate with other components
in WAMS. Each device has multiple interfaces. This is important for the attack model,
because the interfaces can be used for injecting or exfiltration of data as part of an attack.

Figure 5.1: PMU interfaces (source Paudel et al. [130]).

In Fig. 5.1 the interfaces of a PMU device are shown. The device is connected to the
power network in order to measure voltage and current phasors. For transmitting the
measurement data it is connected to a communication network using wired or wireless
technologies. A PMU can have local interfaces, such as a serial or USB port to connect
media or other devices locally and it has a GPS receiver for receiving clock synchronization
signals. All those interfaces can be used as elements in an attack and therefore need to
be considered in the attack trees.

The selection of communication protocols depends on the type of communication. For
example, for configuration information and commands a reliable data transmission is
preferable, whereas for the transmission of PMU measurement records a low latency is
more important.

For WAMS communication different communication protocols are used from different
standards. For example, standard IEC 61850 [63] is a communication protocol that
facilitates utility automation including protection and control [37]. Although initially
it was developed for the IEDs within substations, now it covers various communication
features [10, 9]. Additionally, it defines an architecture, the data models used for the
communication within electric power systems [10, 9] (see also Chapter 2).
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5.1.2 Scenarios

WAMSs use synchrophasor technology and different devices to generate, receive and
utilize synchrophasor data [156]. Such devices are vulnerable to various security threats.
Attackers can compromise devices by leveraging the vulnerabilities in the system. The
impact of failures and attack scenarios in a WAMS is dependent on the data used for
monitoring, protection and control [121]. For example, in a wide area network if a
monitoring application is also used for protection and making control decisions then
failures in such applications can cause higher impact than a failure in an application used
only for monitoring.

PMUs, IEDs, PDCs, super PDCs, PGWs and various network components are connected
to support communication between the devices and applications that are used in a WAMS.
A number of attack scenarios are presented in Sec. 5.1.2.2, which examine these impacts.

In this study, our focus is on data integrity attacks that modify measurement data, either
the original readings from PMUs or aggregated data (or just events) from PDCs, Super
PDCs or PGWs. After processing falsified data, the WAMS may estimates inaccurate
states of the power system. The impact can be wrong decisions such as triggering
protection elements if not needed or suppress a vital protective action. For example, due
to modified measurement data the system may believe that overloaded branches have
secure voltage and vice versa [43]. It can also cause delay in taking actions, e.g., for load
shedding or grid reconfiguration. Cascading failures across utilities and can be caused
due to the system delays in other utilities[121] and also to equipment damage.

5.1.2.1 Assumptions

Our threat model mainly considers the problem of compromised machines in a WAMS:
PMUs, PDCs, Super PDCs, PGWs and routers in the path. We consider intrusions that
concern both physical power systems, as well as communication networks. For example,
intrusions in PMU devices (physical components) and in their embedded software (cyber
part). We suppose that software and hardware of WAMS components, as any other
systems, are not free from vulnerabilities and assume that an attacker gets access to a
WAMS component using any kind of exploit. Furthermore, attackers may have physical
access to systems in the field. We concentrate only on data integrity attacks on the
measurement data itself. So, we consider only the data flow from the sensors (PMUs)
towards the data collection (CC), and do not consider data integrity attacks on the
control data that is sent to IEDs.

In general, we assume that if a device is compromised that the attacker has access to all
data including cryptographic keys on the system1. That means the attacker can generate
valid message authentication codes or digital signatures for the measurement data and
also can encrypt and decrypt data with the appropriate keys. But this applies only for

1In well-secured systems keys may be stored in a separated trusted platform.
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the end-to-end communication. Devices on the path that are not configured to access or
modify the data (e.g., access or core routers) do not have access to appropriate keys. If
measurement data is integrity protected and encrypted, attacks on such intermediate
devices such as routers are limited to data dropping or duplication attacks. Routers may
also delay data in a way that they arrive too late to contribute to control applications.
Attacks to routing protocols or those directed to the CC are out of scope of this work.
Also attacks on the clock synchronization system, required in a WAMS, are not considered
in this work.

5.1.2.2 Attack Scenarios

The National Electric Sector Cybersecurity Organization Resource (NESCOR)2 has
investigated cybersecurity failure scenarios that result in a failure to maintain the
confidentiality, integrity and availability (CIA) of cyber assets, which have a negative
impact on generation, transmission, and delivery of power. In [121] they provide failure
scenarios and prioritize them. Further, they developed detailed information for the
scenarios with the highest priority. We study the NESCOR failure scenarios related to
wide area monitoring, taking them as basis to derive six failure scenarios that are related
to PMUs, PDCs, super PDCs, PGWs, access routers and core routers in a WAMS. We
also describe the WAMS’s response to the scenarios and their impact on the system. Key
components and attack points of a WAMS are shown in Fig. 5.2.

Scenario 1 - PMU compromised In this scenario an attacker gets access to a PMU
and forges PMU frames with wrong data. The frames with wrong information are then
sent to a PDC or CC. Such an attack is, for instance, described in [43]. If we have PGWs
in the network, then frames can also be sent directly to a PGW. We separate this scenario
into three cases, based on how a PMU reports falsified data up in the hierarchy.

• Case 1: PMUs have a PDC as data aggregation point. A local or regional PDC
aggregates the falsified data and sends it up in the hierarchy.

• Case 2: PMUs are connected directly to a PGW. Falsified data are sent directly to
a PGW, which shares information with other PGWs.

• Case 3: PMUs are connected directly to a CC. Falsified data are directly sent to
a CC. Due to the lack of an aggregation step, the severity of damage in this case
could be higher than in the other cases.

Scenario 2 - PDC compromised Although access control and connection authenti-
cation between a PDC and a PMU are already considered in some protocols [63], PDCs

2https://smartgrid.epri.com/NESCOR.aspx
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Figure 5.2: WAMS with key components, compromised points and attacks (source Paudel
et al. [129]).

may be compromised due to a backdoor or an attack to an authentication database. An
attacker can get access to the database in the PDC and modify or steal the information
that allows malicious introduction of false measurement data [121]. A PDC can be
connected to other regional PDCs, super PDC, PGW or directly to the CC. We have
four cases depending on how a PDC sends false measurement data to other components
in a WAMS.

• Case 1: The PDC sends false measurements to another PDC, which then processes
the false measurement values.

• Case 2: The PDC sends false measurements to a Super PDC.

• Case 3: The PDC sends false measurement values directly to a PGW. The PGW
shares the false information to other PGWs.

• Case 4: The PDC sends false measurement values directly to a CC. The CC uses
the falsified information as inputs in the applications.

Scenario 3 - super PDC compromised If a super PDC is compromised, it may send
wrong information about all its connected devices (PDCs and PMUs), which are reporting
to the Super PDC according to the hierarchical topology. In addition, a super PDC may
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be misconfigured to not recognize other super PDCs, regional PDCs or PMUs in the
network, or just send incomplete measurement data up in the WAMS hierarchy. Super
PDCs may report to other super PDCs, PGWs or CC. We have three cases depending
on how a super PDC sends false measurements data to other components in a WAMS.

• Case 1: The super PDC sends false measurements to another super PDC, which
then processes the false measurement values.

• Case 2: The super PDC sends false measurements to the next level in hierarchy
represented by a PGW. The PGW directly shares information to other PGWs.

• Case 3: The super PDC sends false measurement values directly to a CC. The
falsified information is used as inputs in the WAMS applications.

Super PDCs are above in the hierarchy and therefore probably better protected. So we
assume that compromising a super PDC is harder than compromising a PDC.

Scenario 4 - PGW compromised If a PGW is compromised, it can not only falsify
the collected data, but may also refuse to share synchrophasor measurement data with
other PGWs. Since PGWs provide security isolation of trusted internal systems to the
external ones, and create a trusted gateway-to-gateway connection [120], PGWs should
present only a smaller attack surface. So if all proposed PGW’s security measures are
implemented, it should be harder to launch attacks against a PGW.

Scenario 5 - access router compromised An attacker that gains control of access
routers on the path from a PMU to a CC can drop or duplicate synchrophasor packets
on the access routers that belong to the PMU communication. If the data is not integrity
protected (e.g., by a message authentication code or digital signature), an attacker on
a router can act as man in the middle and modify the data or inject own data packets.
Routers may also delay data in a way that they arrive too late to contribute to control
applications. If the data is not encrypted, an attacker on a router can read the PMU
data, which may include configuration and location information. This does not change
the measurement data, but such information may be useful for attack preparation.

Scenario 6 - core router compromised Attacks on core routers can have the same
impact as those on access routers. But core routers handle many more data flows from
many different locations, so data from many PMUs, PDCs or PGWs may be affected if
an attacker gains control over devices in the core. Nevertheless, core routers are usually
better protected than access routers.

For our analysis we assume that (core and access) routers are able to modify data, either
because credentials have been compromised from end systems or because data is not
end-to-end integrity protected. Furthermore, PDCs mainly aggregate and reorder the
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records received from multiple PMUs, and do not perform any operation on the sensor
data itself. So an attack on PDCs or super PDCs usually does not change the original
measurement data (nor any derived values or events). As a consequence, mitigation
strategies based on sensor data plausibility analysis can also help against attacks in
intermediate systems.

We also assume that colluding and coordinated attacks are quite likely. Devices deployed
in smart grids are often equal or similar regarding hardware, software and configuration
(e.g., multiple PMUs from one vendor). Therefore, it is quite possible that an attacker
can gain access to multiple systems at the same time or that attackers collude. Attacks
on intermediate systems (PDCs, routers) can enable an attacker to launch a coordinated
attack, even if he has only access to one system.

Impacts of all above mentioned attacks can be a failure to take actions when needed,
improper synchronous closing, leading to equipment damage, a line trip leading to
cascading failures and many more [121].

5.1.3 Attack Trees

Attack trees [152] are common models to represent complex attacks. An attack tree
contains a root, branches, several intermediate nodes and leaf nodes. The root represents
the ultimate goal of an attack, different branches shows different possibilities of reaching
the root node. Different possibilities could be reached by combining all branches or only
by following one branch. This depends on the type of a relationship AND/OR while
branching the node. For an AND relationship, all sub goals must be reached; meanwhile,
for an OR relationship, reaching at least one sub goal is enough to reach the higher goal.
Each intermediate node is a sub goal of the attack, whereas leaf nodes represent the
start points. Moore et al. [116] propose an attack modeling method by describing format
and semantics of the attack trees. Authors use a straight line between the branches of a
node if they have AND relation and use curve lines if they have OR relation. Both of
the cases use solid lines. Attack trees provide a valuable overview of the pre-requisites
and sub goal relations for attacks that are based on the combination of multiple different
actions. They help to analyze attack goals and potential chains of actions. They assist in
assessing the likelihood and costs of specific sub goals and attack branches and support
detection and prevention of complex combined attacks.

These models help to assess which branches are easier to achieve for attackers, and
provide strategic guidance for the deployment of suitable countermeasures. Therefore,
attack models for WAMS environments provide useful insights to improve wide area
monitoring security.
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5.1.3.1 Assumptions

In cyber physical systems cyber attacks can have implications on physical components.
Both aspects, direct physical attacks and cyber attacks with physical impact, need to be
covered in our models. Furthermore, attacks have different visibility, depending on the
methods used and also the costs for achieving sub goals are different.

We argue that cyber attacks to the power grid are much easier and have several advantages
compared to physical attacks. We especially assume the following advantages:

• Remote access: A physical attack requires the physical presence of one or more
persons. Attackers may need to travel and need to access the premisses. All this
requires resources and detailed information on the physical target, which may need
costly reconnaissance at the premises. Physical presence can lead to an easier
detection and identification of the attackers (e.g., video supervision, intrusion
alarms). In contrast, cyber attacks can be performed remotely. This is especially
of advantage if attacks are launched from other countries.

• Deniability: In cyber attacks, it is easier to conceal traces and deny any involvement
in attacks. This is a critical advantage especially in espionage and cyber war.

• Scalability: Cyber attacks can target multiple systems simultaneously and can be
launched by a single person. For physical attacks coordination and logistics are
required for colluding attackers.

• Safety: Destroying equipment, cutting transmission lines or breaking physical
protection methods contain a personal risk for the attacker to get injured. So the
personal barrier to launch a physical attack is higher then for cyber attacks. This
also makes it easier (and inexpensive) for criminals to recruit persons for cyber
attacks than for physical attacks.

We therefore assume that the leaf nodes in the attack trees that can be achieved by cyber
means will be preferred by attackers and therefore have a higher likelihood. APTs can
also be a combination of physical and cyber attacks. For instance a spy might gather some
information about the premises, before a cyber attack is launched or a cyber attack can
be used to disable video surveillance to assist in a physical attack. We clearly distinguish
physical and cyber leaf nodes in our attack trees to provide an enhanced assessment of
specific branches based on the attack types (cyber or physical) involved to achieve sub
goals.

For the assessment of sub goals and the likelihood of specific branches in attack trees, we
make the following assumptions about the attackers preferences:

• Cyber over physical: Cyber attacks have many advantages over physical attacks.
We provide several reasons for this above. Therefore, we assume that cyber attacks
are more attractive to an adversary than physical attacks.
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• Stealthiness: Although it is obvious that something happened when a blackout or
major disruptions occur, we assume that the attacker(s) prefer stealthy methods
(that are harder to detect) during the attacking process .

• Cost reduction: We assume that attackers prefer methods that are inexpensive
regarding resources. So if a sub goal can be achieved by different means, the
inexpensive method is likely chosen.

However, despite these general assumptions, assigning specific costs (and likelihoods)
to the attacks is infrastructure-specific. The architecture of a system, installed coun-
termeasures, its vulnerabilities, technical difficulty of an attack, and an attack’s cost
are interrelated [28]. Therefore, we concentrate on attack techniques – assigning, cost,
feasibility, and likelihood is out of scope of this work.

5.1.3.2 Generic Attack Tree

Attackers use various methodologies, techniques and tools to compromise communication,
software or hardware of devices to reach an ultimate goal of an attack. Compromising
a communication protocol requires different techniques than those used to compromise
hardware or software on a device.

Compromising a field device In this section, we describe generic techniques that
attackers can use to compromise a device. Since compromising different devices in the
WAMS architecture occur as sub goals in our attack trees and similar means can be used
to compromise different devices, we use this generic tree as one building block for the
specific trees for WAMS attacks.

We define “compromise device” as gaining full access to a machine and its data, including
login credentials, root access, the ability to run arbitrary software, as well as gaining
access to keys for establishing secure connections, encryption and signing messages (e.g.,
PMU records). Figure 5.3 shows a generic tree for compromising a device.

The root node shows the final goal, in our case compromising the devices. Connected
child nodes represent sub goals that are required to achieve the parent goal. In accordance
with [116], we mark child connections with one additional straight line to denote that all
of the subgoals are required to achieve the parent goal (AND connection). If any of the
subgoals is sufficient to achieve the parent goal, we use two curved lines (OR connections).
Leaf nodes marked with a star require compromising a (different) device and therefore
can be considered as root nodes for another “compromise device” attack tree, with the
same structure that then needs to be attached there.

A device can be compromised locally and remotely. We define a local attack as a condition
in which the attacker has direct physical access to the device. Therefore, all local attacks
require physical access to the installation. An attacker can have physical access in many
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Figure 5.3: Generic attack tree for compromising a device (source Paudel et al. [130])

ways, for example, by stealing a key to get inside, social engineering by convincing
someone who has access, piggybacking into a facility, etc. An attacker then has three
options to exploit a device. He either can physically tamper with the device. For this he
needs to open the chassis, circumventing any chassis intrusion detection, if present.

Subsequently, he can either swap out hardware devices like the hard disc or a crypto chip,
or connect to pins on the board to read or modify data. A second option is that he can
login locally. For this he needs the login credentials. He can get the credentials either by
social engineering, buying zero day vulnerabilities, exploiting unpatched vulnerabilities,
use some form of side channel attack, or exploit protocol flaws. After getting the login
credentials, the attacker can use the credentials by using input devices like keyboard,
mouse or connection of I/O port on the device. A third option is that he can connect to
the local network that the device is connected to. This can happen in two ways: either he
can compromise a device on the LAN or install his own device on the LAN. Installing a
device on the LAN requires some steps, at first he needs to get LAN credentials, connect
the device to the LAN and prevent detecting the installed new device, for example, by
preventing that the MAC is denied by MAC access list.

Remote attacks are a condition in which an attacker can compromise a device remotely,
connecting via the Internet. All remote attacks require login credentials to acquire a
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connection to a device remotely. The attacker can get login credentials either from a side
channel attack, social engineering, using protocol flaws, buying zero-days, or by exploiting
unpatched vulnerabilities. Then he can connect the device either by compromising a
connected device or connecting his own remote device.

To summarise, we present the compromise device attack tree as text, showing all the
AND/OR relationships.

1 Attack Goal : Compromise dev i c e
2 OR
3 1 . Lo ca l l y
4 AND
5 1 . 1 . Get p h y s i c a l a c c e s s to the i n s t a l l a t i o n
6 OR
7 1 . 1 . 1 . S t e a l a key to get i n t o the f a c i l i t y
8 1 . 1 . 2 . S o c i a l e n g i n e e r i n g
9 1 . 1 . 3 . Piggybacking

10 1 . 2 . Exp lo i t dev i c e
11 OR
12 1 . 2 . 1 . Connect to l o c a l network
13 OR
14 1 . 2 . 1 . 1 . I n s t a l l own dev i ce on LAN
15 AND
16 1 . 2 . 1 . 1 . 1 . Get LAN c r e d e n t i a l s
17 1 . 2 . 1 . 1 . 2 . Connect dev i ce on LAN
18 1 . 2 . 1 . 1 . 3 . Prevent d e t e c t i o n o f new dev i ce
19 ( e . g . , MAC a c c e s s l i s t s )
20 1 . 2 . 1 . 2 . Compromise dev i c e on LAN
21 1 . 2 . 2 . Local l o g i n
22 AND
23 1 . 2 . 2 . 1 . Get l o g i n c r e d e n t i a l s
24 OR
25 1 . 2 . 2 . 1 . 1 . S o c i a l Engineer ing
26 1 . 2 . 2 . 1 . 2 . Buying zero−days
27 1 . 2 . 2 . 1 . 3 . Exp lo i t unpatched v u l n e r a b i l i t i e s
28 1 . 2 . 2 . 1 . 4 . S ide channel
29 1 . 2 . 2 . 1 . 5 . Protoco l f l a w s
30 1 . 2 . 2 . 2 . Use c r e d e n t i a l s l o c a l l y
31 OR
32 1 . 2 . 2 . 2 . 1 . Use input dev i ce ( keyboard , mouse )
33 1 . 2 . 2 . 2 . 2 . Connect to an I /O port on the dev i ce
34 1 . 2 . 3 . Phys i ca l manipulat ion
35 AND
36 1 . 2 . 3 . 1 . Chass i s i n t r u s i o n
37 1 . 2 . 3 . 2 . Tamper hardware
38 OR
39 1 . 2 . 3 . 2 . 1 . Swap out hardware par t s
40 ( e . g . , hard d i sc , crypto chip , e t c . )
41 1 . 2 . 3 . 2 . 1 . Connect to p ins on c i r c u i t board
42 2 . Remotely
43 AND
44 2 . 1 . Acquire connect ion to dev i c e
45 OR
46 2 . 1 . 1 . Compromise a connected dev i c e
47 2 . 1 . 2 . Connect own remote dev i ce
48 2 . 2 . Get l o g i n c r e d e n t i a l s
49 OR
50 2 . 2 . 1 . S ide channel
51 2 . 2 . 2 . S o c i a l e n g i n e e r i n g
52 2 . 2 . 3 . Protoco l f l a w s
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53 2 . 2 . 4 . Buying zero−days
54 2 . 2 . 5 . Exp lo i t unpatched v u l n e r a b i l i t i e s

5.1.3.3 Specific Attack Trees

In this section, we introduce two specific attack trees for WAMS scenarios:

• Blackout tree: This tree shows different opportunities to cause a blackout in the
power grid. It can be considered as a high level goal of the attacker, and multiple
subtrees can be defined to achieve some of the sub goals shown in the tree.

• Manipulate input data: This tree shows the subgoals that must be achieved to
manipulate input data to a control algorithm. Here we show as an example how to
manipulate the phase angle data that is sent to a controller. This tree can be seen
as one subtree attached to the blackout tree, at the leaf node “send wrong input
values to controller”.

In the figures, we mark all sub goals that require to compromise a specific device with a
star. The sub goals for compromising a device are described in the generic compromise
device tree.

Blackout Tree In the blackout tree (Fig. 5.4), the root goal is to cause a power
blackout. This can be done by destroying critical equipment or disconnecting parts of the
grid. Both goals can be achieved by physical or cyber means. Disconnecting parts of the
grid can be done by physical means, by cutting transmission lines or physically tampering
with Circuit Breakers (CB). Disconnections can also be invoked by cyber means, by
sending a trip command to a CB. Triggering trip commands is achievable using three
different approaches: a) compromising an IED, which then sends the trip command; b)
invoking incorrect control decisions in the controller, which are then forwarded to the
IED; or c) modifying controller commands on the path from the controller to the IED.

Option a) requires an attacker to compromise an IED, which is an achievable option. But
tampering with IEDs might be easily detected by comparing IED actions to the commands
that were sent by the controller. For option c), it is necessary to get access to credentials
to modify controller commands (i.e., decryption and signing credentials), and then
compromise a device on the path or install an own device to launch a man-in-the-middle
(MITM) attack.

As shown in the generic “compromise device” attack tree, there are different ways to gain
access to credentials, such as using side channels, social engineering or buying them on
the market. If those options are not available, it may require attackers to compromise
the controller itself, which then opens the possibility for direct tampering with controller
commands (described as sub goals under option b)), and does not require modification
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Figure 5.4: Attack tree for causing a power blackout (source Paudel et al. [130]).

of commands on the path. In addition, running a man-in-the middle (MiTM) attack
requires to install fast processes for modifying data in transit to not cause an unusually
high delay. Since many grid processes are time critical, and latencies are kept to a
minimum, any additional delay may be detectable. Another difficulty with tampering
with data on the path, is that it may raise suspicions if commands that arrive at the IED
differ from those that were sent by the controller. In our attack tree, we assume that
the attacker gains access to the credentials, but it would be simple to implement some
additional checking mechanism to compare commands issued by the IED with those sent
by the controller.

Due to the reasons described above we argue that option b), invoking wrong control
decisions in the controller, is a more attractive option for the attacker. Here again there
are three options to accomplish this. In order to trigger a control process to send incorrect
commands, one can influence the control process or modify control commands on the
controller. Both options require to compromise the controller. Due to their central role,
we assume that controllers are much more protected (physically and in cyber space) than
other devices, and therefore consider it as more costly to attack them directly.

An alternative is to indirectly influence controller decisions by sending wrong input values
to the controller, which then invoke wrong control decisions. Sensors (such as PMUs) are
typically deployed in the field, and are therefore more easily accessible than a controller
in a CC. Therefore, we consider it as a reasonable, and the most attractive scenario, for
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attackers to manipulate input data to invoke wrong control decisions. We provide a more
detailed attack tree for this scenario in the next section.

The second major option is the destruction of equipment. This can be done by physical
means, by just accessing and destroying devices or it can be done using cyber means.
For a destruction using cyber attacks, an attacker needs to find parameter settings that
lead to conditions that in the short or long term cause malfunctions in the devices.
For example, the slow destruction of centrifuges that were manipulated by the Stuxnet
malware. Nevertheless, it is not always possible to invoke parameter settings that
can cause malfunctions or degeneration, because most devices have local protection
mechanisms to prevent critical conditions. Furthermore, an attacker needs to hide the
new parameter settings and, to achieve this, may need to alter measurement reports from
supervision functions (as done in the Stuxnet attack). The third sub goal “manipulate
control commands” can be achieved by the same child nodes as shown for the “invoke
wrong control decisions” for tripping a circuit breaker.

We present the provoke blackout attack tree also as text showing all the AND/OR
relationships. A node having only one branch is just listed next to it without AND/OR
condition.

1 Attack Goal : Provote b lackout
2 OR
3 1 . Disconnect par t s o f the g r i d
4 OR
5 1 . 1 . Phys i ca l
6 OR
7 1 . 1 . 1 . Cut t r a n s m i s s i o n l i n e s
8 1 . 1 . 2 . P h y s i c a l l y manipulate c i r c u i t breaker
9 1 . 1 . 2 . 1 . Gain p h y s i c a l a c c e s s to c i r c u i t breaker

10 1 . 2 . Cyber
11 1 . 2 . 1 . Send t r i p command to c i r c u i t breaker (CB)
12 OR
13 1 . 2 . 1 . 1 . Compromise IED
14 1 . 2 . 1 . 2 . Invoke wrong c o n t r o l d e c i s i o n in c o n t r o l l e r
15 OR
16 1 . 2 . 1 . 2 . 1 . Modify c o n t r o l p r o c e s s

17 2 . 1 . 2 . 1 . 1 . Compromise c o n t r o l l e r
18 1 . 2 . 1 . 2 . 2 . Modify c o n t r o l commands
19 AND
20 1 . 2 . 1 . 2 . 2 . 1 . Compromise c o n t r o l l e r
21 1 . 2 . 1 . 2 . 2 . 2 . Get a c c e s s to command
22 m o d i f i c a t i o n c r e d e n t i a l s

23 1 . 2 . 1 . 2 . 3 . Send wrong input va lue s to c o n t r o l l e r

24 1 . 2 . 1 . 3 . Modify c o n t r o l l e r commands on path ( in t r a n s i t )
25 OR
26 1 . 2 . 1 . 3 . 1 . I n s t a l l own dev i ce
27 AND
28 1 . 2 . 1 . 3 . 1 . 1 . Get a c c e s s to command
29 m o d i f i c a t i o n c r e d e n t i a l s
30 1 . 2 . 1 . 3 . 1 . 2 . Get a c c e s s to communication
31 path
32 1 . 2 . 1 . 3 . 2 . Modify command on e x i s t i n g dev i c e
33 AND
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34 1 . 2 . 1 . 3 . 2 . 1 . Get a c c e s s to command
35 m o d i f i c a t i o n c r e d e n t i a l s
36 1 . 2 . 1 . 3 . 2 . 2 . Compromise dev i ce on path
37 2 . Destroy c r i t i c a l equipment
38 OR
39 2 . 1 . Phys i ca l
40 AND
41 2 . 1 . 1 . Gain p h y s i c a l a c c e s s to equipment
42 2 . 1 . 2 . Apply p h y s i c a l d e s t r u c t i o n method
43 2 . 2 . Cyber
44 AND
45 2 . 2 . 1 . Find parameter s e t t i n g s that des t roy eqipment
46 2 . 2 . 2 . Manipulate c o n t r o l commands
47 2 . 2 . 3 . Prevent d e t e c t i o n o f c r i t i c a l parameter s e t t i n g s

Manipulate Input Data Tree In this section, we concentrate on data manipulation
attacks. The final goal is to influence a control decision by manipulating input data to a
controller or decision making process in a control loop. Figure 5.5 shows the attack tree
for manipulating input data. The most important measurement values for grid stability
are usually: i) the phase angle between measured sinusoidal signals at different locations;
ii) the frequency; and iii) the voltage.

Figure 5.5: Attack tree for manipulating the phase angle (source Paudel et al. [130]).

Figure 5.5 shows an attack tree for manipulating the phase angle between measurements
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at two different locations. The phase angle is calculated from measurements at two
PMUs placed at different locations in the power grid. One possibility is to modify the
PMU records on the PMU directly. For this, it is necessary to compromise a PMU device
(including gaining access to credentials for encrypting and signing records). For the
goal “compromise PMU”, we can use the compromise device tree defined in Sec. 5.1.3.2.
The specifics of the PMU are the specific interfaces that are described in Fig. 5.1. The
connected devices for the PMU are shown in Fig. 2.3.

Another possibility to modify the phase angle in a PMU record is to change the local
time on the PMU. Clock settings can be changed locally if the PMU is compromised.
Nevertheless, it is also possible to modify the clock without acessing the PMU by
tampering with the GPS signal, which the PMU requires as input [74].

If the attacker cannot get access to the PMU, it is also possible to modify data on the
path from the PMU to the CC. PMU data is usually send to a PDC. So it is also possible
that the attacker gets access to a PDC and modify the PMU records there. However,
to achieve this it is a pre-requisite to have access to the credentials required to encrypt
and sign PMU records. PDCs combine multiple PMU records into an aggregated record,
and may need to be able to decrypt the records. Therefore, decryption credentials may
be accessible on the PDC itself. The PDC may send data to a super PDC, to a phasor
gateway, or directly to a CC [129]. In order to provide the network connectivity on the
path, there may be also multiple routers or other network devices. All these devices
provide additional entry points for an attacker so that the attacker can modify the PMU
data. But always with the pre-requisite that credentials for modifying the records or the
protocol for sending records does not provide authentication or integrity checks.

For instance, routers are not required to decrypt PMU data, and therefore have no access
to the credentials. Furthermore, if a modification to data is implemented on a router,
it has to be ensured that no unusual delay is caused by the modification. If PMU data
arrives with too high delay, the values may be discarded or it may be detected.

We also present the manipulate phase angle attack tree as text, showing all the AND/OR
relationship.

1 Attack Goal : Manipulate phase ang le d i f f e r e n c e used in input to c o n t r o l loop
2 OR
3 1 . Manipulate phase ang le in PMU r e c o r d s on PMU ( at r e s t )
4 OR
5 1 . 1 . Manipulate l o c a l time on PMU
6 OR
7 1 . 1 . 1 . GPS attack
8 1 . 1 . 2 . Compromise PMU
9 1 . 2 . Manipulate phase ang le va lue s in PMU r e c o r d s on PMU

10 1 . 2 . 1 . Compromise PMU
11 2 . Manipulate phase ang le in PMU r e c o r d s on path ( in t r a n s i t )
12 OR
13 2 . 1 . Manipulate PMU r e c o r d s on own dev i ce on path
14 AND
15 2 . 1 . 1 . I n s t a l l own dev i c e in path
16 2 . 1 . 2 . Get c r e d e n t i a l s f o r record m o d i f i c a t i o n
17 2 . 2 . Manipulate PMU data on r o u t e r on the path
18 OR
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19 2 . 2 . 1 . I n s t a l l message m o d i f i c a t i o n p r o c e s s on r o u t e r
20 2 . 2 . 2 . Compromise r o u t e r on path
21 2 . 2 . 3 . Get c r e d e n t i a l s f o r record m o d i f i c a t i o n
22 2 . 3 . Manipulate PMU r e c o r d s in PDC or sPDC
23 2 . 3 . 1 . Compromise PDC
24 3 . Manipulate input va lue s on c o n t r o l l e r
25 3 . 1 . Compromise c o n t r o l l e r

5.2 False Data Injection Attack

An attacker can compromise meters in a substation or hack the computers storing the
meter measurements and inject malicious data. These malicious measurements can affect
the SE and the resulting wrong information can reduce the situation awareness (SA) of
the operators, which helps the attacker reaching the malicious goals. Such data attacks
are named as false data injection (FDI) attacks.

We make an assumption that an attacker has the required knowledge of the power
system (e.g., measurements, topology) for constructing the FDI attacks. An attacker
can also gain access to the power network model, some specific areas e.g., substations,
meters/sensors and other devices; and use the resources for constructing the FDI attacks.

Depending on the knowledge and resources, attackers can construct FDI attacks targeting
functional or operational components (e.g., states, topology, load) of a power system.
In [182] authors mention that FDI attacks can be of 3 types i) state attacks [100, 88] ii)
topology attacks [82, 171] and ii) load redistribution attacks [175]. Our focus is the FDI
attacks on SE as described in [100, 88].

FDI attacks on SE can construct attack vectors targeting to have different impact e.g.,
lead to wrong estimation of states and with this mislead the CC by to make wrong
decisions. Wrong information about states in a CC can trigger wrong control actions.
Consequences due to the FDI attacks on SE are discussed in [97].

FDI attacks against SE are presented by Liu et al. [100]. Authors make an assumption
that an attacker gets access to power system configuration information and manipulates
the meters. Additionally, authors in [100, 44] show that an attacker can inject arbitrary
errors into state variables not detected by bad data detection algorithms. Liu et al. [100]
show that an attacker can systematically and efficiently construct attack vectors that
arbitrarily change the SE in two scenarios i) the attacker can manipulate only the meters,
ii) the attacker is constrained to the specific meters.

Here we adopt the definition of FDI attacks from Liu et al. [100]. Let z = (z1, ......, zm)T

be a vector of original measurements, then the observation which may contain malicious
measurements is defined as [100]

za = z + a (5.1)
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where a = (a1, ...., am)T is an attack vector, and elements of a are the malicious mea-
surements. If an element ai is non zero then attacker has manipulated ith meter and
replace zi by zi + ai.
FDI attacks can be detected if a system (states) is observable. But if an attacker is
aware of configuration of a power system and injected malicious measurements then it
can mislead SE without being detected by BDD techniques. In addition, an attacker
can increase the impact of FDI attacks without triggering alarms (or being detected) by
utilizing the tolerance of measurement errors in SE.

5.3 Attack Model

In this section, we introduce a model for FDI attacks. Similar to [100, 39, 24, 112], we
focus on FDI attacks of a power system. In our model we address several capabilities
(randomizing the signal, adding constant offset, adding incremental constant or random
offsets to the signal) of an attacker in a form of a single model.
We show different methods to manipulate measurements assuming that the attacker
does not want the changes to be detected. We use attacks on voltage measurements as
an example. Similar attacks can be performed on other measurement values, such as
frequency, current or phase angle.
We assume that an attacker does not want to exceed any safety limits to cause immediate
action but rather wants to poison the measurement data. This poisoning can aim at
influencing historic data for planning or post-incident analysis, influencing the state
estimation or also preparing an attack, e.g., by poisoning the “new normal”, such that
the manipulated data points are taken as reference for the subsequent time step.
In our example, the attacker is manipulating only the polar voltage measurement values,
as follows. Since we only manipulate voltage, the equation can be expressed with scalars
instead of vectors.

zk,a := zk + ak (5.2)

Here zk is the kth voltage measurement value, ak is the attack component (that the
attacker adds to the measurements) and zk,a is the manipulated measurement value at k.
In order to define different attacks, we describe the attack component as a combination
of a random component rk, with r ∼ N (µ, σ2) , a linear increasing component s · k + c
with a slope s and a constant offset c.

ak :=
�

rk + s · k + c during attack
0 else

(5.3)

By varying the attack parameters, we implement different types of injection attacks. In
our experiments, we consider four general types of attacks:

89



5. Attacker Model

1. constant offset (CO), where c > 0 and all other parameters are zero. In our
experiments an attacker adds an offset such that the first manipulated voltage
reaches an additional 75% of the nominal voltage, and then keeps the offset constant
for all observations.

2. random offset (RO), where we add a random component r and a constant c.

3. incremental constant offset (ICO), where we linearly increase the offset with s ·k +c

4. incremental random offset (IRO), where we add a random and a linear component
rk + s · k + c

5. incremental random offset with more noise (IROMN), where we add a random and
a linear component rk + s · k + c. Here the random component is higher than in
the incremental random offset attack.

6. incremental constant offset with high slope (ICOHS), where we linearly increase
the offset with s · k + c. Here the linearly increasing offset is higher than in the
incremental constant offset attack.

Table 5.1 illustrates the types of attacks and shows the values we used.

Table 5.1: Attack parameters and attack types

Type Random Slope Constant
Constant offset (CO) r = 0 s = 0 c = 0.075
Random offset (RO) r ∼ N (0, 4 · 10−6) s = 0 c = 0
Incremental constant offset (ICO) r = 0 s = 1.96 · 10−7 c = 0
Incremental random offset (IRO) r ∼ N (0, 1.6 · 10−7) s = 1.96 · 10−7 c = 0
IRO with more noise (IROMN) r ∼ N (0, 4 · 10−6) s = 1.96 · 10−7 c = 0
ICO with high slope (ICOHS) r = 0 s = 4.33 · 10−7 c = 0

The actual measurement in rectangular form is represented as Eq. (5.4).

zk :=
�

Vk,re

Vk,im

�
(5.4)

The attack on the polar voltage affects the measurements in rectangular form. The
manipulated real and imaginary voltage can be expressed as Eq. (5.5).�

V ∗
k,re

V ∗
k,im

�
:=

�
Vk,re

Vk,im

�
+

�
ck,1
ck,2

�
(5.5)

where ck,1 is the resulting offset in real voltage and ck,2 is the resulting offset in imaginary
voltage at time step k that is caused by adding the different signals from the different
attacks to the true voltage values.
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We craft the attacks so that the attacks remain stealthy as they can be seen in Chapter
7. Also in the incremental offset attacks, the offset values are arbitarily selected so that
the manipulated signal would have approximately 45 degree.

By varying and combining the attack parameters, we implemented four additional attacks
that are variations of the basic attacks in Tab. 5.1. In our experiments, we consider four
types of attacks:

1. Small deviation (SD), where c = 0.006 and all other parameters are zero. In order
to make this attack similar to an attack in [139], we inject only a small offset in
the signal. The offset value that we selected is greater than the value used in [139]
and the attack starting data point is different than in [139].

2. Random signal with changing variance (RSCV), where we add different random
components in different intervals. For instance, we add r ∼ N (0, 4 · 10−4) from
data point 1,000 to data point 1,500, r ∼ N (0, 5 · 10−4) from data point 1,500 to
data point 2,000 and so on. We select the random values in order to circumvent
detection of residuals based method in Sec. 7.1.1.

3. Incremental constant offset stepwise (ICOS), where we add many constants in an
increasing order in different intervals. For instance, we add c = 0.002 from data
point 1,000 to data point 1,500, c = 0.003 from data point 1,500 to data point
2,000 and so on. We select the offsets values so that residuals remain below the
threshold in both real and imaginary voltages.

4. Incremental random offset with changing variance (IROCV), where we add different
random components and different constant components in different intervals. For
instance, c = 0.0005 and r ∼ N (0, 3.8 · 10−4) are added from data point 1,000 to
data point 1,500, c = 0.0009 and r ∼ N (0, 9 · 10−5) are added from data point
1,500 to data point 2,000 and so on. We select the offsets values so that the attacks
are able to circumvent detection of residuals based method in Sec. 7.1.1 in both
real and imaginary voltage.

Table 5.2 illustrates the types of attacks with extension and shows the values we used.
The extended attacks are constructed combining different values of attack parameters.
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Table 5.2: Extension of attack parameters and attack types

Type Random Slope Constant
Small deviation (SD) r = 0 s = 0 c = 0.006

Random signal with
changing variance
(RSCV)

r ∼ N (0, 4 · 10−4)
r ∼ N (0, 4.5 · 10−4)
r ∼ N (0, 5 · 10−6)
r ∼ N (0, 5.4 · 10−4)

s = 0 c = 0

Incremental constant offset
stepwise
(ICOS)

r = 0 s = 0

c = 0.002
c = 0.0025
c = 0.003
c = 0.053

Incremental random offset with
changing variance
(IROCV)

r ∼ N (0, 3.8 · 10−4)
r ∼ N (0, 4 · 10−4)
r ∼ N (0, 9 · 10−4)

s = 0
c = 0.0005
c = 0.0009
c = 0.001

5.4 Summary

In this chapter, we presented the threat analysis on WAMS and an attack model for false
data injection.

We first presented an analysis of attack vectors on the physical devices, software and
communication networks. Then we discussed the attack scenarios against the components
of WAMS and their consequences. The attack scenarios of PMUs, PDCs, super PDCs,
PGW and routers in the WAMS and the possibilities of transforming falsified data in
the control center highlighted the attack surfaces and the difficulties of launching such
attacks. Additionally, we presented a generic attack tree for compromising a device and
specific attack trees for i) causing a blackout and ii) manipulating phase angle. The
attack trees demonstrated the different opportunities to gain local or remote access to
the different components of WAMS. The above mentioned threat analysis, analysis of
attack vectors, attack scenarios and attack trees supports answering RQ 1.1 (How can
an attacker cause FDI attacks in a WAMS?) and a part of RQ 1.2 (How can multiple
different false data injection attack forms be expressed in one comprehensive attack
model?).

As we already expected for our reasoning RQ 1.1, potential attacks are identified
by investigating major possibilities how an attacker can launch severe attacks using
components for critical functions and making decisions.

In the second step, we introduced FDI attacks. A model for injecting false data attacks is
provided. Typical attack parameters and the types of attacks were discussed with specific
attack parametrers values. To this end, we developed an attack model that generates
types of FDI attacks namely, CO, RO, ICO, IRO, IROMN and ICOHS. Further, we
generate attacks SD, RSCV, IROCV and IROS by extending attack parameters and their
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values. We used the attack model to show how the multiple different FDI attack forms
could be expressed using one comprehensive attack model. The generation of attack
types using the attack model supported answering RQ 1.2.

As we already expected for our reasoning RQ 1.2, the generation of attacks using different
attack parameters and extention of the attack parameters showed that an attacker model
could generate different attack types using different attack parameters.
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CHAPTER 6
PMU Data Analysis

Notice of adoption from previous publications in Chapter 6
Parts of the contents of this chapter have been published in the following papers:

[132] S. Paudel, P. Smith, and T. Zseby. Stealthy attacks on smart grid PMU state
estimation. In Proceedings of the 13th International Conference on Availability,
Reliability and Security, ARES 2018, Hamburg, Germany, August 27-30, 2018,
pages 16:1–16:10, 2018

[133] S. Paudel, T. Zseby, E. Piatkowska, and P.Smith. An evaluation of methods
for detecting false data injection attacks in the smart grid. In preparationa

Explanation text, on what parts were adopted from previous publications:
The introduction of EPFL network and phase angle and frequency in this chapter is
based on the work done in [132]. The selected data in this chapter is based on the
work done in [132]. The preprocessing of data in this chapter is based on the work
done in [133].

S. Paudel implemented the methods and conducted all the experiments. Theoretical
considerations and experiment planning was done together with all co-authors, the
text and figures in the papers were created together by all authors.

aThe paper is in preparation.

In this chapter, we provide an overview of real power system network PMU data along
with the analysis of the PMU data. First, we present a voltage, phase angle and frequency
analysis and show how we selected data for the experiments. Then we present training
and test data, and show data preprocessing.
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For our experiments, data is used from the EPFL1 campus PMU network [47], wherein a
smart grid infrastructure has been deployed as part of the electrical distribution network.
A 20 kV active distribution network (ADN) connects PMUs via a communication network.
The PMUs in the network are intended to meet the requirements of IEEE Std C37.118.1-
2011 [5] and IEEE Std C37.118.1a-2014 [7] for synchrophasor measurements in power
systems. The PMUs that are described in [145] are deployed in the network. In this
setting, for the transmission of measurement data, the PMU records are transmitted
using the IEEE Std C37.118.2-2011 [4] standartd with UDP. and communicated over a
secured communication network. A detail description of the system architecture and
characteristics of the PMUs is presented in [138]. The base voltage of the PMU network
is 11, 547.0054 kV.

Here we show an initial analysis of the measured PMU data. The analysis helps us to
understand the nature of voltage, phase angle and frequency, and selecting representative
datasets for our experiment. The data analysis is presented in the following sections.

6.1 Voltage

Our analysis starts with analyzing voltage values. First we check whether voltage values
lie within the safety limits. Further we check missing values and analyze weekly, daily,
hourly patterns. Comparison of weekly, daily, hourly basis voltage profiles helps us to
better understand the nature of the power system data. For our experiment, we use PMU
data from March and April of 20162. All voltage magnitudes in this work are assumed to
be per unit (p.u.).

A study of voltage statistical properties, for instance, minimum, maximum, mean,
standard deviation makes our analysis supports in selecting a representative dataset for
our experiment. The analysis is done for 24 hours of a day for two months March and
April, and at different times of a day. For instance, here we briefly show a comparison
of voltage profiles at different times of a day in Tab. 6.1. From the table we can see
minimum, maximum, mean and standard deviation of voltage do not vary much among
the days of months and times of day. Mean and median are very similar, difference of
means and medians are approximate 2 × 10−3. Based on our analysis, we have chosen a
representative voltage profile from 02:00-03:00 of UTC (Coordinated Universal Time)
because it is in the night and therefore we assume it is more stable. We observe the
data pattern and find it is more stable at night. The local time where the grid located is
UTC+01:00.

Weekly voltage profiles for several weeks look similar, voltage variation on weekdays and
weekends for different weeks look similar. Variation on voltage magnitudes also depends
on time of the day. Here we present detail results of a day (1st March 2016) and show
voltage statistical properties at different times.

1https://www.epfl.ch/en/
2http://nanotera-stg2.epfl.ch/
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Table 6.1: Voltage analysis at different times of the day, DP: data points, Med: median,
STD: standard deviation.

Day Time
UTC Total DP Voltage

Min Max Mean Med STD
01.03-14.04 46 full days 198,720×103 0.951 1.077 1.053 1.054 8 × 10−3

01.03 08:00-09:00 180,000 1.025 1.060 1.050 1.050 6 × 10−3

01.03 12:00-13:00 180,000 1.025 1.065 1.060 1.060 6.5 × 10−3

01.03 18:00-19:00 180,000 1.048 1.068 1.064 1.064 5 × 10−3

01.03 21:00-22:00 180,000 1.040 1.070 1.068 1.068 6 × 10−3

6.2 Voltage and Phase Angle

Here we show rectangular coordinates (real voltage and imaginary voltage) from polar
coordinate (polar voltage, phase angle) in two cases i) time invariant phase angle (i.e. by
fixing the phase angle by the first angle in the data set) and ii) time variant phase angle
(i.e. by considering the different phase angles). Some models (e.g., in [139]) we use from
literature assume a fixed phase angle as they use simulations. As we use the model, for
some experiments we also fix the phase angle by the first observed phase angle in the
first case (time invariant phase angle).

Figure 6.1: Voltage and phase angle change over time. Upper part: observed polar
voltage. Lower part: observed phase angle.

Here we aim for analyzing the difference between the voltages in the above mentioned
cases. Figure 6.1 shows the observed polar voltage and phase angle, the upper part
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visualizes the voltage signal and the lower part visualizes the phase angle.

Figure 6.2 shows the calculated real voltage and imaginary voltage in the cases of constant
and varying phase angles. In sub-figure 6.2a, the upper part visualizes the real voltage
with fixed phase angle, the middle part visualizes real voltage with varying phase angle,
and the lower part depicts the difference between the voltage signals in upper and middle
subplots. The real and imaginary part for the varying phase angle are the signals that
occur in reality as derived from the original data set. If we fix the phase angle one can see
that the real and imaginary voltage differ a lot from the original data. Nevertheless, we
decided to do some experiments based on the modified data, in order to analyze methods
that only work with a fixed phase angle (see Chapter 4). Similarly Fig. 6.2b shows for
imaginary voltage, the difference between constant phase angle and time-variant phase
imaginary voltage is significant.

(a) Real voltage (b) Imaginary voltage

Figure 6.2: Observed real and imaginary voltage of time variant and invariant (fixed by
first phase angle).

From the figures, one can see that there is a close relation between the real and imaginary
voltages and the phase angles. Changes in the magnitudes of real and imaginary voltages
depends on the changes in the phase angle.

In the case with fixed phase angle, from the Fig. 6.2 we can see that variance of real
voltage is larger than variance of imaginary voltage. As we fix the phase angle to -0.344
radian (first phase angle) the variation of polar voltage has much higher impact on the
variation of imaginary voltage.

As expected, from Fig. 6.3, we can see that with small phase angle (smaller phase angle
than in Fig. 2.2 of Chapter 2) the conversion of polar voltage to real and imaginary
voltage has high influence in real voltage. Thus it causes the variation of real voltage is
higher than in imaginary voltage.
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Figure 6.3: Conversion from polar voltage to real and imaginary voltages (small phase
angle).

In the first case (with fixed phase angle), if an attacker manipulates voltage then the
signal changes significantly which can trigger an alarm but in second case (with changing
phase angle) if an attacker manipulates voltage while the signal is in lower peak or
while phase angle changes slowly then there is less chance of triggering an alarm. If an
attacker manipulates voltages by adding offset to the signal then there is less possibility
of detecting the offset. Figure 6.4 shows histograms of phase angles from training and
test data.

(a) Histogram of training data phase angles. (b) Histogram of test data phase angles.

Figure 6.4: Histograms of PMU measured phase angles from training and test data.

6.3 Phase Angle and Frequency

A real power system’s frequency usually varies over time around its nominal value (50
hertz (Hz) in Europe). Frequency changes cause changes in the phase angle. We make
an assumption that the system is in a quasi steady state. Under our assumption the
transition matrix A is an identity matrix.
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6. PMU Data Analysis

We assume a 50 Hz power system. Our data shows that the frequency is in the range
of 49 Hz in most of the time, that is around the nominal frequency 50 Hz. Figure 6.5
depicts the frequency and how the phase angle changes due to the frequency variations.

Figure 6.5: Phase angle and frequency change over time (source Paudel et al. [132]).

6.4 Selected Data

In order to build reference data for our experiments, we use data from different days.
We always select the same hour (02:00-03:00 time of UTC) per day in order to compare
similar behaviour.

We first separate the data into three portions: historical, training and test data. Table
6.2 shows information of data separation.

Table 6.2: Separation of datasets, time of UTC.

Dataset Day Time
Historic 01.03.2016-24.03.2016 02:00-03:00 (24×1h)
Training 25.03.2016-31.03.2016 02:00-03:00 (7×1h)
Test 01.04.2016-14.04.2016 02:00-03:00 (14×1h)

The historical data is only used for building a reference histogram for the distribution-
based KLD method, and for this we take data from three weeks. Derivation of the
reference histogram will be presented in the experimental setup of KLD in Sec. 9.2.2.

The training data is used as a reference for setting thresholds. For this, we take data
from 7 different days, always taking one hour from each day. The test data is used to
test our algorithms. For this, we use data from 14 different days, considering the same
hour per day. In order to test the algorithms, we inject different attacks starting at same
data point on all test data sets, so that we have normal and anomalous data points (for
detail see Sec. 6.5).
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Figure 6.6 shows histograms of all 7 days training data and all 14 days test data. The
histogram of training data (shown in sub-figure 6.6a) has several peaks and is not normal
distributed. But the Fig. 6.6 shows the histogram of test data (shown in sub-figure 6.6b)
looks a bit closer to normal than the training data, but it still differs from a normal
distribution. In order to see how much the distributions differ, quantile-quantile plots of
training and test data are shown in Fig. A.7 of Appendix A.6.

(a) Training data (b) Test data

Figure 6.6: Histograms of all 7 days training data and all 14 days test data.

Figure 6.7 shows histograms and signals of the day 1 (25.03 Friday), day 2 (26.03
Saturday), day 3 (27.03 Sunday), and day 4 (28.03 Monday) of the training data. One
can see from the Fig. 6.7a, data from the days are different from a normal distribution
and further, can clearly see a shift in the mean. So it could be that due to the change of
the mean in the signal we here have two distributions that overlap. In order to further
analyse the distribution we generated quantile-quantile (Q-Q) plots that can be found in
Appendix A.6. Q-Q plots of the day 1 to day 7 of the training data are shown in Fig.
A.8 of the Appendix A.6.
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(a) Histogram (b) Signal

Figure 6.7: Day 1, day 2, day 3 and day 4 of training data.
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Similarly, Fig. 6.8 shows histograms and signals from day 5 (29.03 Tuesday), day 6 (30.03
Wednesday) and day 7 (31.03 Thursday) of the training data. The signals look a bit
different in the way that we do not see a clear jump to a different mean. At the end of
the day 7 the signal (see sub-figure 6.8b), labelled benign anomalies which were then
substituted by us with the median (see sec. 6.5). The substitution causes a high peak in
the histogram of the day 7 shown in sub-figure 6.8a.

(a) Histogram (b) Signal

Figure 6.8: Days 5, 6 and 7 of training data.

Figure 6.9 shows histograms and signals of the day 1 (01.04 Friday), day 2 (02.04 Saturday)
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and day 3 (03.04 Tuesday) of the test data. One can see from the Fig. 6.9a, data from
the day 1 and day 2 seem to have only one main peak but are far from normal distributed.
Day 3 has two distributions which could be the change in the mean in the signal. Q-Q
plots of the day 1 to day 14 of the test data are shown in Fig. A.9 of Appendix A.6.

(a) Histogram (b) Signal

Figure 6.9: Days 1, 2 and 3 of test data.

Figure 6.10 shows histograms and signals for day 4 (04.04 Wednesday), day 5 (05.05
Thursday), day 6 (06.05 Friday), and day 7 (07.04 Saturday). From sub-figure 6.10a, one
can see data from days 4, 5, and 6 have a single main peak and day 7 has two peaks.
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(a) Histogram (b) Signal

Figure 6.10: Days 4, 5, 6 and 7 of test data.
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Figure 6.11 shows histograms and signals for day 8 (08.04 Sunday), day 9 (09.04 Monday)
and day 10 (10.04 Tuesday).

(a) Histogram (b) Signal

Figure 6.11: Days 8, 9 and 10 of test data

Figure 6.12 shows histograms and signals for day 8 (08.04 Sunday), day 9 (09.04 Monday)
and day 10 (10.04 Tuesday). Sub-figure 6.12a shows data from the days 11, 12, 13 and
14 look a bit closer to normal than others.
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(a) Histogram (b) Signal

Figure 6.12: Days 11, 12, 13 and 14 of test data.
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6.5 Preprocessing

We work with data from a real power system and first perform some pre-processing.
Preprocessing consists of a) converting the data to rectangular coordinates b) splitting
the data in historic, training and test sets c) labelling the data and d) defining thresholds
for the detection.

Converting the data to rectangular coordinates: PMU measurements are ob-
served as a voltage V and phase angle θ, for each of the (three) phases, represented in
polar coordinates. We convert the polar coordinates to rectangular coordinates to obtain
the real Vre and imaginary Vim voltages because for state estimation we need the real
and imaginary voltage for state estimation. The conversion for the ith measurement from
a phase is represented by Eq. (6.1) and (6.2) [149].

Vi,re = Vi · cos θi (6.1)

Vi,im = Vi · sin θi (6.2)

Splitting the data: The measurement granularity is always 50 measurement values/sec.
The selected data (see in Sec. 6.4) is split into historic, training and test data. Table 6.3
shows detailed information about the data sets used in our experiment, including the
total number of data points, number of benign anomalies (BAs) (after the labeling step),
number of injected malicious anomalies (MAs). Only the data in the interval of 1 hour is
used.

Table 6.3: Data sets used for the experiment, showing number of all data points (Total
DP), benign anomalies (BA), malicious anomalies (MA), substituted (subs.) (source
Paudel et al. [133])

Data Duration Time Total DP BAs MAs

Historical 24 days 2am-3am 24 * 180,000 not
labeled 0

Training
(cleaned) 7 days 2am-3am 7 * 180,000 0

(8,796 subs.) 0

Test 14 days 2am-3am 14 * 180,000 7,727 0
Manipulated

test 14 days 2am-3am 14 * 180,000 7,727 1673,087

Labelling the data: Data is labelled with the MAD method to distinguish between
normal and benign anomaly (BA) data in the original data. Then all modified values are
labeled as malicious anomaly (MA). We consider an attack to be detected as soon as at
least one data point is detected as an anomaly.

Labels in training data are needed to find any non-malicious anomalies (BAs). In our
case, those BAs are substituted by the median to form a clean set of reference data. And
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labels in test data help to assess the detection performance, e.g. to identify whether the
detection is due to benign or malicious anomalies. We inspect the data for significant
non-malicious anomalies (extremely high values) and found some high values but not
with a long duration. In order to decide about anomalies, existing work [139]) use pre-fit
residuals based method with a decision level 3. They use simulated data and simulate
the data with a Gaussian noises.

For our experiment, as we use real data that vary and also also noisier than the simulated
data, we use the MAD method with a decision level 3.5 to mark all data outside the
interval median − 3.5 · MAD < xi < median + 3.5 · MAD (median of 1 hour dataset) as
BAs and all data within the interval as normal data points. In the training data, we then
replace the data outside of the interval (the BAs) by the median to get a data set with
only normal data points. The training data then is used to set suitable thresholds in a
way that all normal data points are below the threshold. Figure 6.13 shows labeling data
and generating normal data. Sub-figure 6.13a shows labeling polar voltage using MAD
interval, and sub-figure 6.13b shows generated polar voltage signal after substituting
BAs. In the data set shown there are 462 BAs detected between data points 129797
and 130259. They were then substituted by the median 1.0523 p.u. and the 462 values
remain under the threshold. So we still see some unusually low values in the figure.

(a) Original data. (b) Data with substituted benign anomalies.

Figure 6.13: Labeling with MAD interval and substituting benign anomalies.

Treatment of BAs: In the test data we keep the benign anomalies and in addition
inject the four different attack types described in Sec. 5.3 and label those data points
(which are not labeled as benign anomalies) as malicious anomalies. If a benign anomaly
is detected as an anomaly then it is counted as a true positive. We add the attack in each
of the 14 test data files, which each contain 1 hour of measurement data. All attacks
start at the 60, 001st measurement. We assume that the attacker is just running some
program to add an attack component and does not check the values before. So therefore
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we manipulate the data by always adding the component a(k) to the original value.

We calculate confidence intervals based on the confidence levels of the predicted values of
real voltage and imaginary voltage for the plain pre-fit residuals based method described
in [139]. The confidence levels of the predicted values are indicated by the measurement
innovation covariance matrix.

Defining thresholds for the detection: The cleaned training data is used to define
thresholds for the methods L2-norm, normalized residuals, MAD, KLD and CUSUM. For
the plain residuals, we use a different method and calculate the threshold at time step k
based on the assumed decision level and the standard deviation of innovation at the time
step.

For the L2-norm, we use the sequence of L2-norms of the pre-fit residuals from the real
voltage and imaginary voltage, and the median absolute deviation to check which decision
level we need to set so that all normal data points lie within the interval. Thus, we
use a level of decision that covers the L2-norm of pre-fit residuals from real voltage and
imaginary voltage of the training data (without benign anomalies) and define a threshold.

For the normalized residuals, we use a level of decision that covers normalized pre-fit
residuals of real voltage and imaginary voltage from the training data (without benign
anomalies) and define a threshold. For the residual-based detection, we work with
rectangular coordinates and a fixed phase angle. But for the lightweight statistical
detection methods, we use the original voltage in polar coordinates to set and check the
thresholds.

For the MAD, we use a level of decision that covers generated normal training data and
define a threshold. For the KLD, we use a level of decision that covers KLD sequence
from the cleaned training data and define a threshold. For the CUSUM, we use maximum
allowed variation in mean and standard deviation from the cleaned training data, and the
desired maximum probability of accepted false alarms to define a threshold. A detailed
description about the different parameters, the anomaly detection methods and the
thresholds is presented in Sec. 7.1.1.

Figure 6.14 shows the data processing steps. It visualizes the steps for defining a
reference histogram, defining thresholds for different anomaly detection methods and the
application of the defined thresholds in attack scenarios.

110



6.6. Summary

Figure 6.14: Overview of data processing (source Paudel et al. [133]).

6.6 Summary

In this chapter, we provided an overview of the data from the EPFL PMU network and
analysed the data set to investigate the relationships between the parameters.

Voltage analysis helped us in the selection of “time per day” in order to select data for
our experiment. Further we showed the statistical properties of the data at different
times and days. The relationship of the voltage and the phase angle was also clearly
shown using this data set. Additionally, the relationship of phase angle and frequency
was investigated.

Then the selection of historic, training and test data was provided. Presentation and
explanation of histograms and signals of the training and the test data clarified the
distribution and outliers of the selected data.

Finally, we provided an overview of the training and testing phases of our experiment.
We described the dependencies and the methods used to set parameters and thresholds.
Further, details on how data is refined and used in the experiments is provided.
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CHAPTER 7
Residual-Based Bad Data

Detection Methods

Notice of adoption from previous publications in Chapter 7
Parts of the contents of this chapter have been published in the following papers:

[132] S. Paudel, P. Smith, and T. Zseby. Stealthy attacks on smart grid PMU state
estimation. In Proceedings of the 13th International Conference on Availability,
Reliability and Security, ARES 2018, Hamburg, Germany, August 27-30, 2018,
pages 16:1–16:10, 2018

[133] S. Paudel, T. Zseby, E. Piatkowska, and P.Smith. An evaluation of methods
for detecting false data injection attacks in the smart grid. In preparationa

Explanation text, on what parts were adopted from previous publications:
The plain pre-fit residual-based bad data detection in this chapter is based on the
work done in [132]. The L2-norm and normalized residual-based bad data detection
in this chapter is based on the work done in [133].

S. Paudel implemented the methods and conducted all the experiments. Theoretical
considerations and experiment planning was done together with all co-authors, the
text and figures in the papers were created together by all authors.

aThe paper is in preparation.

In this chapter, in a first step, we review an anomaly detection method that uses mea-
surement pre-fit residuals of linear Kalman filters to detect unusual measurement values
in power grid systems and present two bad data detection methods. To this end, we de-
scribe classical residual-based bad data detection methods using L2-norm and normalized
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residuals. In a second step, we present the experimental setup of residual-based bad data
detection methods. In the experimental setup, training data usage for setting thresholds
for the methods is shown with an overview of methods and their thresholds. Then we
present results from the experiment. For this, first we present anomaly detection with the
plain pre-fit residual-based method in Sec. 7.3.1), second we show undetected attacks by
the plain pre-fit residual-based method in Sec. 7.3.2 and last experimental results using
L2-norm and normalized residual-based methods in Sec. 7.3.3. We present experimental
results of attacks introduced in Tab. 5.2 of Chapter 5 using the plain pre-fit residual-based
method and show that the attacks are not detected by the plain pre-fit residual-based
method. Similarly, we present experimental results of attacks introduced in Tab. 5.1 of
Chapter 5 using L2-norm and normalized residual-based.

Since data sources can have errors, many grid operators implement bad data detection
(BDD) methods to check for errors in the measurements that would influence state
estimation (SE). For this, usually residuals from the SE are used. Residuals show
the difference between predictions and observations (pre-fit residuals) or the difference
between estimation and observation (post-fit residuals) [42, 40]. If those residuals get too
high, the BDD would be triggered. The residual-based (RB) approach has the advantage
that residuals can be simply calculated as a by-product of SE [42, 171].

It seems likely, that BDD also would detect actively manipulated data. Therefore, our
research question about using residual-based bad data detection methods reads:

• RQ 2.1: To what extent can residual-based bad data detection methods detect
different FDI attacks?

Here we assume an attack is detected if at least one of the injected malicious data point
is detected. We want to investigate different methods proposed in the literature, we
divide the research question RQ 2.1 into the following sub-research questions:

• RQ 2.1.1: Can the plain pre-fit residual-based method proposed in [139] detect
the injected attacks in our data set?
Rationale: The method proposed in [139] uses plain pre-fit residuals from SE using
Kalman filter to detect bad data. Therefore, we assume that the method proposed
in [139] can also be used to detect the attacks introduced in Tab. 5.2 of Chapter 5
and maybe also other attack types in our data. One difference to our approach is,
that [139] uses data from a simulation whereas we use data from real measurements.
Therefore, we investigate two variants: our data set but with a fixed phase angle
(as in the simulated data) and our data set with a varying phase angle (as in our
original data).

• RQ 2.1.2: Can attackers avoid being detected if plain pre-fit residuals are used
for detection?

114



Rationale: Anomaly detection methods use pre-fit residuals from SE. But SE
adjusts to measurements values. Therefore also the pre-fit residuals change if the
measurement values change. Therefore, we would like to check if an attacker who
is aware of the pre-fit based detection method can manipulate the measurements
in a way that the manipulation does not cause significant changes in the residuals
and therefore the attack remains undetected.

• RQ 2.1.3: Can the L2-norm residual-based method using LWLS proposed in [100],
which is based on LWLS SE, detect our injected attacks in our data set also if we
use residuals from DKF?
Rationale: In [100] the L2-norm of the residuals from LWLS SE is used for BDD.
Since BDD detects deviations from the expected measurement sequence, we assume
it can also detect the manipulated measurements from our attacks. In [100] LWLS
is used for SE and for calculating the residuals. Since DKF can be used as an
alternative for SE, we check both: the detection with residuals from LWLS (as used
in [100]) and in addition the detection based on residuals from DKF SE.

• RQ 2.1.4: Can the normalized residual-based method proposed in [14] using DKF
detect our injected attacks in our data set?
Rationale: In [14] the normalized residual-based method is used for BDD. The
normalized residual-based method proposed in [14] use residuals from SE using
DKF. We assume the normalized residual-based method can detect the attacks
that are generated by our model. Therefore, we check the detection of the injected
attacks in our data set using the normalized residual-based method if we use
residuals from DKF.

In order to show if BDD works on our attacks, we use three BDD methods based on
the pre-fit residuals of a linear Kalman filter. We use plain pre-fit residuals, L2-norm
and normalized residuals for detecting bad data. Plain pre-fit residuals use a dynamic
threshold (based on the confidence level of the prediction) to detect bad data, whereas
L2-norm and normalized residuals methods are based on pre-defined thresholds.

Table 7.1 shows the intention of using the residual-based methods and the data used for
the experiment. Details on parameter settings for the experiment are presented in Sec.
7.2.
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Table 7.1: Overview of residual-based methods.

Methods Data* Goals Sections

Plain pre-fit
residuals

Test data
(01.04.2016)

- to answer RQ 2.1.1
- to answer RQ 2.1.2

7.1.1
7.2.1
7.3.1
7.3.2

L2-norm

Training data
(22.03 - 31.03)
Test data
(01.04.2016 - 14.04.2016)

- to answer RQ 2.1.3
7.1.2
7.2.2
7.3.3

Normalized
residuals

Training data
(22.03.2016 - 31.03.2016)
Test data
(01.04.2016 - 14.04.2016)

- to answer RQ 2.1.4
7.1.3
7.2.3
7.3.3

* For training and test data of plain pre-fit residuals, L2-norm and normalized residuals, for
each day one hour at 00:00-01:00 UTC is used.

7.1 Theoretical Background

7.1.1 Plain Pre-Fit Residuals

Using a DKF, anomalous measurements can be detected using either pre-fit [139, 113]
or post-fit residuals [159, 36, 41]. The former tracks prediction errors and the latter
estimation errors. In this work, we make use of a pre-fit residual-based approach to
anomaly detection that has been proposed by Pignati et al. [139]. This existing work has
shown good detection performance for anomalies with several benign root causes. We
adopt the anomaly detection method and apply it in our use cases.

The SE process consists of two stages, as described in Sec. 4.2.1. We do not consider any
control input. The true system state at time k with no control input is represented by
the linear Eq.(4.14). Similarly, a measurement from a sensor zk and the predicted state
(x̂k−1|k−1) at time step k are represented in the equations (4.13) and (4.15) respectively
in Sec. 4.2.1.

Anomalies are assumed when the DKF is unable to accurately predict the measured
values, so that there is a significant difference between the predicted and the measured
value. Pre-fit residuals (yk) (or innovation) are determined using Eq. (7.1), where zk

is the observed measurement vector at iteration k, H is the observation model (i.e.,
a matrix that shows how the state is related to the measurements) and x̂k|k−1 is the
predicted state, predicted from the previous state, and Hx̂k|k−1 therefore expresses the
measurement vector that one would expect from the predicted state. Figure 7.1 depicts
the steps of the anomaly detection method using the pre-fit residuals (notations are
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shown in Tab. 4.1 of Chapter 4).

yk = zk − Hx̂k|k−1 (7.1)

Figure 7.1: Anomaly detection using pre-fit residuals, innovation covariance and mea-
surement noise (only real voltage shown) (source Paudel et al. [132]).

The innovation covariance (Sk) is based on the past and current iterations of the DKF,
and is determined using Eq. (7.2), where P k|k−1 is the predicted process covariance
matrix.

Sk = HP k|k−1HT + R (7.2)

Sk changes in response to sudden changes in system state. In addition, the Eq. (7.2)
with the vectors and the matrices can be represented as Eq. (7.3).

Sk = H

�
σ2

Pk|k−1,re
0

0 σ2
Pk|k−1,im

�
HT +

�
σ2

re 0
0 σ2

im

�
(7.3)

where σ2
Pk|k−1,re

is the variance of real part process noise, σ2
Pk|k−1,im

is the variance of
imaginary part process noise, σ2

re is the variance of the real part measurement noise and
σ2

im is the variance of the imaginary part measurement noise. Derivation of the variance
of the real part σ2

re and imaginary part σ2
im are shown in Appendix A.12. The predicted

process covariance matrix P k|k−1 depends on the previous process covariance matrix
(P k−1|k−1) and the current process noise covariance matrix (Qk) (see Eq. (4.16) in Sec.
4.2.1).

Calculation of Sk using P k|k−1 and R from Eq. (7.2) is represented by Eq. (7.4). We
assume H as an identity matrix (see Chapter 4).

Sk =
�
Pk|k−1,re + σ2

re 0
0 Pk|k−1,im + σ2

im

�
(7.4)
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where σ2
re is the variance of real voltage and σ2

im is the variance of imaginary voltage.

To calculate Sk, the prediction error covariance matrix (P k|k−1) and the measurement
error covariance matrix (R) are used. The prediction error covariance matrix uses the
process noise covariance matrix. Therefore, innovation gain depends on the process noise
and measurement noise covariance matrix. In our scenario, yk is represented by Eq. (7.1)
and (7.5) and Sk is represented by Eq. (7.6).

yk =
�

yk,re

yk,im

�
(7.5)

Sk =
�
σ2

yk,re
0

0 σ2
yk,im

�
(7.6)

Sk gives the measurement innovation covariance matrix. The first diagonal element of S
represents the variance of the innovation for the real voltage and the second diagonal
element represents the variance of the innovation for the imaginary voltage variance.

A confidence interval is calculated based on the confidence level of the predicted values,
which is indicated by Sk. Each of the elements in yk satisfy Eq. (7.7) in normal operation
(shown for real voltage). We use the following method proposed in [139] to detect
anomalies:

| yk,re | ≤ γσyk,re
(7.7)

where | yk,re | is the magnitude of the real voltage pre-fit residual at time step k, γ is
a confidence level, σ2

yk,re
equals the variance of the innovations up to time step k; and

σyk,re
=

�
σ2

yk,re
. Similarly, for measured real voltage zk,re at time step k since residual

yk = zk − Hx̂k|k−1, the Eq. (7.7) can be also expressed based on the measurement
and the predicted state. An anomaly is detected if the voltage zk,re exceeds one of the
thresholds shown in Eq. (7.8) and Eq. (7.9).

zk,re ≤ x̂k|k−1,re + γσyk,re
(7.8)

zk,re ≥ x̂k|k−1,re − γσyk,re
(7.9)

where x̂k|k−1,re is a predicted state at time step k. It is also done for the imaginary
voltage. A data point is considered as an anomalous if it is detected as an anomaly in
real or imaginary voltage.

7.1.1.1 Evading Offset Attacks

Here we show how an attacker can evade the plain pre-fit residual-based detection using
the attacker model presented in Sec. 5.3.

We consider that an attacker is manipulating the voltage measurement data in the polar
coordinates, as it is sent from the PMUs. Suppose that an offset is added in the kth

118



7.1. Theoretical Background

measurement of the polar voltage magnitude. The real and imaginary voltages after
manipulation are given by Eq. (7.10) and (7.11).

Vk,re,a = (Vk + offsetpolar) · cos θ (7.10)

Vk,im,a = (Vk + offsetpolar) · sin θ (7.11)

The resulting offsets in the real and imaginary voltages depend on the phase angle, and
are shown in Eq. (7.12) and (7.13).

offsetk,re = Vk,re,a − Vk,re (7.12)

offsetk,im = Vk,im,a + Vk,im, (7.13)

The manipulated measurement vector zk,a is represented by Eq. (7.14), where offset
represents the vector with the offset in real offsetre,k and imaginary voltage offsetim,k

shown in Eq. (7.15).
zk,a = zk + offset (7.14)

offset = (offsetk,re, offsetk,im)T (7.15)

Similarly, the manipulated measurements affect the pre-fit residuals yk,a and the measure-
ment innovation covariance matrix Sk, as shown in Eq. (7.16) and (7.17), respectively.

yk,a = zk,a − Hx̂k|k−1 (7.16)

Sk = zk,a − HkP k|k−1HT
k + R (7.17)

Considering the observed PMU measurements, the anomaly detection method tests
whether each of the elements in the pre-fit residuals vector – given by Eq. (7.16) – satisfy
the condition that is represented by Eq. (7.7). We calculate the maximum undetectable
offset by combining equations (7.14), (7.16), (7.17) and (7.7). The result for the real
part is given in Eq. (7.18) as shown in [139] and used in [132].

| yk,re,a | ≤ γσyk,re

| zk,re,a − Hx̂k|k−1,re | ≤ γσyk,re

| zk,re + offsetk,re − Hx̂k|k−1,re | ≤ γσyk,re

| offsetk,re + yk,re | ≤ γσyk,re
(7.18)

This means an attack remains undetected if an attacker can add an offset in the polar
voltage in a way, such that the resulting offsets in the real and imaginary voltages fulfil
Eq. (7.18) (i.e., the offset has to be small enough not to exceed the typical variations in
the residuals).

To achieve this, the attacker needs to have knowledge about the power system, the SE
method, and the anomaly detection system. For instance, knowledge about the power
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Figure 7.2: An attack detection system, showing major information that is needed for
detection (source Paudel et al. [132]).

system infrastructure, nominal values (e.g, voltage, frequency) and SE is required to adjust
to the expected innovation covariance matrix Sk, which depends on the measurement
noise covariance matrix R, process noise covariance matrix Qk and the predicted process
covariance matrix P k. In addition, an attacker who wants to circumvent detection, needs
to know the factor γ that is used in the anomaly detection system to adjust the threshold.
Figure 7.2 depicts an attack detection system. It shows the information that is available
from the power system and the anomaly detection system. It is not that easy to gain
access to the information of a power system. As pre-fit residuals depend on the predicted
value and the observation, the attacker can add a maximum offset remaining within the
interval and be undetectable. Such stealthy data attacks can lead to incorrect SE and
trigger wrong control actions.

7.1.2 L2-norm of residuals

Instead of plain pre-fit residuals, BDD can also use L2-norm residuals [100]. Here we
check the residuals’ length calculated using a standard method L2-norm. Generally, the
L2-norm residuals method is applied in weighted least squares based SE. In contrast to
existing work, here we also make use of the L2-norm pre-fit residuals of Kalman filters
based SE to detect false data injection attacks.

The L2-norm of the residual is defined as �z − Hx̂�. The L2-norm is defined as shown
in Eq. (7.19) [100].

�y� =
�

y2
re + y2

im) (7.19)

Usually a BDD alarm is triggered if �y� > t where t is a pre-defined threshold.
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7.1.3 Normalized residuals

Instead of plain pre-fit residuals and L2-norm, we can use normalized residuals [14, 87] for
BDD. The normalized residuals method works well for independent and non-correlated
measurements [100, 53, 115], i.e. a measurement is not interacting with other measurement
at time k. We make use of normalized residuals in our use case as in our use case the
covariance of real and imaginary voltage is zero.

Normalized residual for kth measurement is calculated as expressed in Eq. (7.20).

yk,norm = |yk|�
Sk,k

(7.20)

where
�

Sk,k is a diagonal element of residual covariance matrix Sk, i.e. it is the standard
deviation of the residuals up to time step k.

The normalized residual yk,norm is compared to the pre-defined threshold t for checking
bad measurement. If yk,norm > t then the kth measurement is detected as a bad data.

7.2 Experimental Setup

7.2.1 Plain Pre-fit Residuals Based Method

For our experiments, we have implemented a DKF and the pre-fit residual-based anomaly
detection method (described in Sec. 7.1.1) in MATLAB. To determine the correctness
of our implementation, we repeated the experiments that were conducted in [139], but
in contrast to using simulation-based data, we use measurement data from the EPFL
campus network (see Chapter 6). We conduct an experiment with the small deviation
(SD) attack (introduced in Tab. 5.2 of Chapter 5) – a similar experiment was conducted
by Pignati et al. in [139]. This is a small deviation type attack described in Sec. 5.3.
The offset is introduced to the measured data from iteration 1,500 to 18,000.

7.2.1.1 Detection with Varying Phase Angle

In the original approach described in [139], it is assumed that the network frequency
is fixed, e.g., constant at 50Hz. By using simulated data in [139] this condition could
easily be established. However, in the true measured data from the EPFL campus, the
network frequency changes over time. This is normal behavior in deployed systems, as
frequency changes in response to shifting generation and load profiles. Due to the small
frequency changes in the measurement data also the phase angle changes over time, as
shown by Fig. 6.5 in Sec. 6.3. This is an important difference for the anomaly detection
method. The detection method is based on data in the rectangular notation and the

121



7. Residual-Based Bad Data Detection Methods

network frequency has a direct influence on the phase angle, and consequently on the
real and imaginary voltages that are used for the anomaly detection.

In [139, 146] the confidence interval is defined using a decision level 3 for Gaussian noises.
The data we considered for our experiment is from a real power system which is noisy
and varies over time so that it results in high standard deviation. Therefore, for our
experiment, we define the confidence interval of innovation at decision level 2. Thus, the
threshold for a time step k is defined as 2 times the standard deviation of innovation at
the time step.

We experiment with the method with a varying phase angle. The results are shown in
Sec. 7.3.1.1. From our experiment, we see that in this case the anomaly detection does
not work and therefore conclude that the anomaly detection method proposed in [139]
only works if there are no frequency changes in the network and therefore the phase angle
remains constant. So for real PMU data with varying phase angle the approach does not
provide a satisfactory detection performance.

If the detection method proposed in [139] is applied in a network without any modifications,
small frequency changes in the system would be sufficient to confuse the detection method.

7.2.1.2 Detection with Fixed Phase Angle

In order to provide comparability with the results in [139], in a similar manner to [137, 50]
we fix the phase angle in the measured data with the first observed value. This is a
small but important change and due to the modification in the phase angle the new
real and imaginary voltage do not reflect the original real and imaginary voltage in the
data. Using this modification the method proposed in [139] performs as expected and
our implementation of the anomaly detection method is able to successfully detect the
offset that is introduced to the measurements (see results in Sec. 7.3.1.2).

In a similar manner to Sec. 7.2.1.1, we assume decision level 2 (see Tab. 7.4). Thus, the
threshold for a time step k is 2 times the standard deviation of innovation at the time
step. The experiments described in Sec. 7.2.2 and Sec. 7.2.3 were conducted with the
modified data (fixed phase angle).

7.2.2 L2-Norm Residuals

The L2-norm method is described in Sec. 7.1.2. In order to set a threshold, we calculate
L2-norm of residuals (pre-fit residuals) from the training data without BAs. Values of
the L2-norm residuals in training data are then considered as the normal behavior.

In order to set a threshold, we apply the MAD method to the L2-norm residuals of real
and imaginary voltages. First MAD is calculated from the L2-norm residuals of real and
imaginary voltages, then we calculate the decision level that covers normal behavior based
on the maximum L2-norm residual in the training data and the MAD. An interval that
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covers all L2-norm residuals of real and imaginary voltages is calculated. It could simply
calculate the minimum and maximum value from the timeseries of the L2-norm residuals
and use as boundaries, but we make use of the MAD method to calculate the interval
because with this we put the boundaries a bit larger than the minimum and maximum
values of L2-norm and get a safety margin. We expect high deviations as the variance of
the data is quite large, this might be due to high variations in the given time interval.
Table 7.2 depicts intervals for different decision levels, the upper boundaries of real and
imaginary voltage L2-norm residuals values in a decision level that covers normal behavior
are shown in bold numbers. In the table, normal behaviors of both real voltage and
imaginary voltage are covered in decision level 7. We use the MAD of the L2 Norm e.g.
MADL2. The interval using the MAD is median − 7 · MAD < xi < median + 7 · MAD,
it results in −0.49 < xi < 0.67 for real voltage and −0.95 < xi < 1.41 for imaginary
voltage. As the interval at this level covers the normal behavior, we define the greater
L2-norm value among the real and imaginary voltages as a threshold. We could also
use different thresholds for real and imaginary voltage but we use same threshold for
both in a similar manner to existing works using the method (e.g., in [100, 22]). The
authors in [100] use chi-square distribution of squares of L2-norm residuals for defining a
threshold where a significance level can be chosen based on the system noise. A smaller
value of significance level can result in a smaller threshold. Authors in [100] set L2-norm
residuals of the actual measurement (without injected bad data) as a threshold. Residuals
are very small if there are not any changes. As we aim for detecting an anomaly caused
due to the changes, we consider the upper boundary of imaginary voltage for defining a
threshold. Therefore the defined threshold for L2-norm is 1.41.

Table 7.2: Upper and lower boundaries of L2-norm residuals of training data for different
decision levels, DL = decision level, UB = upper boundary, LB = lower boundary.

DL Real voltage Imaginary voltage
UB LB UB LB

3.0 0.34 −0.16 0.73 −0.28
4.0 0.42 −0.24 0.90 −0.45
5.0 0.50 −0.33 1.07 −0.62
6.0 0.59 −0.41 1.24 −0.79
7.0 0.67 −0.49 1.41 −0.96

7.2.3 Normalized Residuals

The normalized residuals method is described in Sec. 7.1.3. In order to set a threshold of
the level of decision, we use the training data without BAs. We calculate the normalized
residuals of real and imaginary voltage from the training data. The normalized residuals
(pre-fit residuals) from the training data represents the normal behavior.
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Table 7.3: Upper and lower boundaries of normalized residuals of training data for different
decision levels, DL = decision level, UB = upper boundary, LB = lower boundary.

DL Real voltage Imaginary voltage
UB LB UB LB

3.0 1.54 −1.01 2.05 −0.99
4.0 1.96 −1.44 2.55 −1.50
5.0 2.39 −1.86 3.06 −2.00
6.0 2.81 −2.29 3.56 −2.51
7.0 3.24 −2.71 4.07 −3.02
8.0 3.66 −3.14 4.58 −3.52
9.0 4.09 −3.56 5.08 −4.03
10.0 4.51 −3.99 5.59 −4.53
11.0 4.94 −4.41 6.09 −5.04
12.0 5.36 −4.84 6.60 −5.55
13.0 5.79 −5.26 7.11 −6.05
14.0 6.21 −5.69 7.61 −6.56
15.0 6.64 −6.11 8.12 −7.07
16.0 7.06 −6.54 8.63 −7.57
17.0 7.49 −6.96 9.13 −8.08
18.0 7.91 −7.39 9.64 −8.58
19.0 8.34 −7.81 10.14 −9.09
20.0 8.76 −8.24 10.70 −9.60

MAD (represented by Eq. (9.2)) is applied to the normalized residuals of real-and-
imaginary voltages. In a similar manner to Sec. 7.2.2, first MAD is calculated from
the normalized residuals of real and imaginary voltages, then different decision levels
are tested for defining an interval that covers normal behavior. An interval that covers
all normalized residuals of real and imaginary voltages is calculated. Table 7.3 depicts
intervals for different decision levels, the upper boundaries of real and imaginary voltage
normalized residuals values in a decision level that covers normal behavior are shown
in bold numbers. We select an interval of a decision level that covers the normal
behaviors of both real voltage and imaginary voltage. Decision level 20 covers the normal
behavior. We use the MAD of the normalized residuals. The interval using the MAD is
median − 20 · MAD < xi < median + 20 · MAD, it results in −8.24 < xi < 8.76 for real
voltage and −9.60 < xi < 10.7 for imaginary voltage. A maximum value among real and
imaginary voltages at the interval is defined as a threshold. Thus in a similar manner to
Sec. 7.2.2, we define threshold as 10.7.

Table 7.4 shows an overview of residual-based methods, parameter settings, thresholds
and injected attacks. We recall that the plain pre-fit residual-based method has a dynamic
threshold, so threshold at time step k is different from time step k+1, and the threshold of
real voltage is different than threshold of imaginary voltage at each time step. We could
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Table 7.4: Overview of residual-based methods parameters setting, thresholds and injected
attacks; Exp. = experiment; DL = decision level; σyk,re

= stdev of real voltage innovation;
σyk,im

= stdev of imaginary voltage innovation; CO = constant offset; RO = random
offset; ICO = incremental constant offset; IRO = incremental random offset; IROMN =
incremental random offset with more noise; ICOHS = incremental constant offset with
high slope.

Exp. Methods Data* Param.
setting Threshold Injected

attacks Sec.

7.1 Plain pre-fit
residuals

Test data
(01.04.2016) DL = 2 2 · σyk,re

2 · σyk,im

SD
RSCV
IROCV
ICOS

7.3.1.2
7.3.2

7.2 L2-norm

Training data
(22.03.2016
- 31.03.2016)
Test data
(01.04.2016
- 14.04.2016)

DL = 7 1.41 p.u.

CO, RO
ICO, IRO
IROMN,
ICOHS

7.3.3.1

7.3 Normalized
residuals

Training data
(22.03.2016
- 31.03.2016)
Test data
(01.04.2016
- 14.04.2016)

DL = 20 10.70 p.u.

CO, RO
ICO, IRO
IROMN,
ICOHS

7.3.3.1

* For test data of plain pre-fit residuals, one hour at 00:00-01:00 UTC is used.
* For all the given days of training and test data of L2-norm and normalized residuals, one hour at

00:00-01:00 UTC is used.

also use different thresholds for real and imaginary voltage but we use same threshold for
both in a similar manner to existing works using the method (e.g.,in [87]). The threshold
for real voltage depends on σyk,re

- the standard deviation of real voltage innovation,
and the threshold for imaginary voltage depends on σyk,im

. For L2-norm and normalized
residual-based methods real voltage and imaginary voltage have a static threshold defined
from the training data.

7.3 Results

7.3.1 Plain Pre-fit Residual-Based Detection

In order to repeat the experiments conducted in [139], we conduct experiment 7.1 where
we also defined a small deviation (SD) attack (introduced in Tab. 5.2 of Chapter 5) and
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analyze if the attack can be detected. We apply the plain pre-fit residual-based method
to SD attack in two cases: i) varying phase angle and ii) fixed phase angle. Instead of
using data from a simulation (as in [139]) we use the manipulated EPFL data set.

7.3.1.1 Results for Varying Phase Angle

Figure 7.3 shows the results of applying the anomaly detection method described in [139]
and in Sec. 7.1.1 on the measured data (with keeping the varying phase angle of the
original data). As an attack we inject a 0.006 p.u. offset between data points 1500 to
18,000. It can be seen that the anomaly detection method does not perform well at
all. More specifically, the method generates over four thousand false positives, i.e., it
detected anomalies in the non-manipulated portion of the data, and fails to detect over
ten thousand anomalous points (false negatives). As already presented in Fig. 6.5 and
Fig. 7.3, there is a clear relationship between frequency, phase angle and the anomalies
that are detected in the real and imaginary voltages – during periods when the phase
angle is relatively steep (e.g., between 3,000 and 4,000 data points), the detection method
identifies the voltages as anomalous.

(a) Real voltage (upper figure - residuals, lower
figure - voltage)

(b) Imaginary voltage (upper figure - residuals,
lower figure - voltage)

Figure 7.3: Anomalies that have been detected in the real and imaginary voltage when
an offset of 0.006 p.u. is introduced at data point 1,500, (with changing phase angles)
(source Paudel et al. [132]).

Figure 7.3a visualizes the detected anomalies in real voltage. When steepness in the
phase angle is high then the difference between consecutive measurements is also high.
Thus it results in high pre-fit residual (see upper part of Fig. 7.3a).

Figure 7.4 shows steepness of the phase angle and residuals of real voltage and imaginary
voltage increase at the same time. From the figure we can see up to data points 2,000 the
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(a) Phase angle (upper part) and observed polar
voltage (lower part)

(b) Residuals (upper - real voltage, lower - imag-
inary voltage)

Figure 7.4: Phase angle together with the residuals and the polar voltage (steepness
zoomed in between data points 24,245 and 53,745 of Fig. 7.3).

phase angle steepness and residuals are in same proportion (both of them have a stable
period), and between data points 2,000 and 2,900 the phase angle steepness decreases
and the residuals also decrease, and thus the periods of the signal increases and decreases
again. Therefore, the chance that residuals exceed the threshold and raise an alarm is
high when steepness of phase angle is high. If the phase angle is changing fast, then the
real and imaginary voltage signal is also changing fast and is therefore harder to predict
with the linear model. Therefore the value predicted with a linear model differs from the
measurements the residuals also get a high value.

Detected as Labeled as
Non-malicious Malicious

Non-malicious 41,500 (TN) 13,805 (FN)
Malicious 1,999 (FP) 2,696 (TP)

Table 7.5: Confusion matrix of real voltage

Table 7.5 depicts the confusion matrix for real voltage. It shows that the method detects
4,695 anomalies, among them 1,999 non-malicious points and 2,696 malicious points are
detected as attacks.

Similarly also in imaginary voltage high steepness of phase angle results in high difference
between consecutive measurements. This ends up with high pre-fit residuals. Thus the
chance that residuals exceed the threshold and raise an alarm are related to the phase
angle changes. If the phase angle changes faster, the difference between predicted state
and the observed measurement increases.

The confusion matrix for imaginary voltage is shown in Tab. 7.6 which shows that the
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method detects 5,220 anomalies, among them 2,236 are non-malicious points and 2,984
malicious points are detected as malicious.

Detected as Labeled as
Non-malicious Malicious

Non-malicious 41,263 (TN) 13,517 (FN)
Malicious 2,236 (FP) 2,984 (TP)

Table 7.6: Confusion matrix of imaginary voltage

Here, we visualize anomalies of real and imaginary voltages together in polar voltage.
Figure 7.5 shows the visualization in the polar voltage. From the experiment, it is clear
in the figure that the anomaly detection method proposed in [139] only works well when
phase angle steepness is normal during an attack. In Fig. 7.5, the attack starts at data
point 1,500 and ends at 18,000; around 30,000 data points polar voltage magnitudes are
normal but phase angle steepness is very high. So, these points are detected as anomalies.

Figure 7.5: Visualisation of detected anomalies in polar voltage - attack starts at data
point 1,500 and ends at 18,000 (red points are anomalies detected in real voltage, orange
points are anomalies detected in imaginary voltage).

The confusion matrix of the joint results is shown in Tab. 7.7. In the previous paragraphs,
it is mentioned that 4,713 anomalies are detected in real voltage and 5,223 anomalies
are detected in imaginary voltage but some of the points are detected as anomalies in
both cases. So, the method detects total 9,730 points as anomalies. In the joint results,
it detects 4,209 non-malicious and 5,521 malicious points as attacks.

Detected as Labeled as
Non-malicious Malicious

Non-malicious 39,290 (TN) 10,980 (FN)
Malicious 4,209 (FP) 5,521 (TP)

Table 7.7: Confusion matrix of polar voltage
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From the detection results, we conclude that the anomaly detection method proposed
in [139] does not work with our data. Our assumption is that this is because in our data
the frequency and therefore also the phase angle varies. Therefore, we also conducted
additional experiments with a fixed phase angle.

7.3.1.2 Results for Fixed Phase Angle

In order to check the method with similar conditions proposed in [139], we fixed the
phase angle to −0.3443 radian which is the first phase angle (the phase angle reported in
the first PMU message of the test data set) and repeated the experiments. Results can be
seen in Fig. 7.6. With the phase angle fixed, the method detects anomalies successfully.
In Fig. 7.6a, when the attack starts pre-fit residuals are out of the threshold boundaries
in the upper part of the figure. These are pointed out by orange stars. The detected
anomalies are visualized in real voltage in the lower part of the figure where zre is the
observed measurement for the real voltage and pred zre is the prediction. . Green dots
represent replaced values of BD during the attack (proposed by the BDD method in
[139]).

(a) Real voltage (b) Imaginary voltage

Figure 7.6: Anomalies that have been detected in the real and imaginary voltage when
an offset of 0.006 p.u. is introduced, (with constant phase angles) (source Paudel et al.
[132])

Real voltage confusion matrix in Tab. 7.8 shows that the TP is equal to the number of
total malicious points and the FP is 0. Thus the method detects all malicious points as
attacks. TN equals to total non-malicious points, so none of the non-malicious points are
detected as attacks.

Figure 7.6b visualizes pre-fit residuals and anomalies in imaginary voltage. Resulting
offset in imaginary voltage causes pre-fit residuals cross the threshold boundaries. Points
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Detected as Labeled as
Non-malicious Malicious

Non-malicious 43,499 (TN) 0 (FN)
Malicious 0 (FP) 16,501 (TP)

Table 7.8: Confusion matrix of real voltage.

detected as anomalies are pointed out by orange stars in the figure. Green dots during
attack represent the replacement of BD.

Imaginary voltage confusion matrix in Tab. 7.9 shows that it hits all of the malicious
points. TP equals total malicious points and FN is 0. Thus, it also detects all of the
malicious points as attacks in imaginary voltage.

Detected as Labeled as
Non-malicious Malicious

Non-malicious 43,499 (TN) 0 (FN)
Malicious 0 (FP) 16,501 (TP)

Table 7.9: Confusion matrix of imaginary voltage.

Here, we present the offset and anomaly detection due to the offset in polar voltage.
During the attack offset 0.006 is clearly visible in polar voltage as shown in Fig. 7.7. All
of the malicious points are detected as anomalies in both real and imaginary voltage. So
in the visualization, all anomalies in real voltage overlap with anomalies in imaginary
voltage.

Figure 7.7: Anomaly detection and visualisation in polar voltage.

Confusion matrix in Tab. 7.10 shows joint anomaly detection of real and imaginary
voltages. Joint anomaly detection of real and imaginary voltages hits 100% of the
anomalies as it hits all the attacks in real and imaginary voltages.

As expected the method works well if the phase angle is fixed. We therefore conclude
that the anomaly detection method proposed in [139] only works if the frequency does
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Detected as Labeled as
Non-malicious Malicious

Non-malicious 43,499 (TN) 0 (FN)
Malicious 0 (FP) 16,501 (TP)

Table 7.10: Confusion matrix of polar voltage.

not change and therefore the phase angle remains constant.

7.3.1.3 Results Findings for Plain Pre-fit Residuals

From the results analysis, we conclude the following findings:

• F 2.1.1: With the fixed phase angle, the method proposed in [139] works as expected
and detects all attacks, but if the frequency and therefore the phase angle varies the
method does not work. Since in a normal power grid, the frequency typically varies,
it is unrealistic, that the phase angle is fixed. Therefore, the method proposed
in [139] is not well applicable in real power grid scenarios.

• F 2.1.2: With knowledge about the system an attacker can craft an attack such that
it cannot be detected in the residuals, i.e., an attacker crafts an attack making sure
the residuals remain under the threshold (see Sec. 7.1.1). Nevertheless, the changes
have to stay below the normal variations in the pre-fit residuals and therefore
usually only small changes may be possible. Relations between the offsets in real
and imaginary voltages, and the details are described in Sec. 7.1.1.1.

In the following experiments on residual-based detection, we continue to use the data set
with the fixed phase angle.

7.3.2 Undetected Attacks using Plain Pre-fit Residuals

In this section the results of experiment 7.1 are discussed where we present three types
of undetected attacks (introduced in Tab.5.2 of Chapter 5), which meet the conditions of
detecting offset attacks on real and imaginary voltage that are presented in Sec. 7.1.1.1
(the conditions mean residual yk at time step k satisfy | yk | ≤ γσyk

) and test with the
pre-fit residual-based anomaly detection system in Sec. 7.1.1 with fixed phase angle. In
all cases, we arbitrarily choose the 745th data point as attack start point in the data
and continue to manipulate the voltage measurements until the end of the measurement
series. This results in 17201 manipulated data points. Figure 7.8 depicts an example of
the original voltage signal from April 01, 00:00-01:00 of UTC and its histogram. The
histogram shows the voltage magnitude in the original signal ranges from 1.0565 p.u.
to 1.0605 p.u. The voltage manipulation attacks change the voltage magnitudes and
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the range of the values as we will show in the subsequent sections. Figure 7.9 shows
actual signals of real and imaginary voltage, and their dynamic threshold upper and
lower boundaries. From the figure, one can see how the threshold is adjusted based on
the signal.

Figure 7.8: EPFL data: original signal and histogram (source Paudel et al. [132]).

(a) Real voltage (b) Imaginary voltage

Figure 7.9: Actual signal and dynamic threshold boundaries of real and imaginary voltage
(the threshold boundaries of the voltages are shown in Eq. (7.8) and Eq. (7.9)).

7.3.2.1 Randomize Signal with Changing Variance (RSCV)

Figure 7.10 shows the added signal (in polar voltage) in RSCV attack. The randomized
signal (actual + added signal) and its histogram is shown in Fig. 7.11. In this (RSCV)
attack, the ranges (different intervals) and random offsets values are selected based on
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Figure 7.10: Added random signal in RSCV attack (the variations in the stdev is too
small to be visible).

Figure 7.11: Randomized signal and histogram (source Paudel et al. [132])

the signal and the expected residuals so that the residuals stay within the threshold
boundaries and remain undetected: random offsets from the range r ∼ N (0, 4 · 10−4) are
added from steps 745 to 1,944; the range r ∼ N (0, 5 · 10−4) is added from step 1,945 to
step 8,744; the range r ∼ N (0, 4.5 · 10−4) is added from steps 8,745 to 9,044; the range
r ∼ N (0, 5.4 · 10−4) from steps 9,045 to 9,644; and randomization varies for intervals
till the end. The ranges from which the random values are selected are chosen so that
residuals stay with the threshold boundaries and the attack remains undetected.

As can be seen in Fig. 7.12a (bottom), once the signal starts to be manipulated, the pre-fit
residuals are clearly affected. This is caused by consecutive (manipulated) measurements
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(a) Real voltage (b) Imaginary voltage

Figure 7.12: Upper part: real voltage and imaginary voltage. Lower part: pre-fit residuals
and threshold boundaries of real voltage and imaginary voltage pre-fit residuals (the
dynamic threshold boundaries of the residuals (shown in Eq. 7.7) have a small variation).
No anomalies detected (source Paudel et al. [132]).

(a) Real voltage (b) Imaginary voltage

Figure 7.13: Manipulated signal and dynamic threshold boundaries of real and imaginary
voltage (the threshold boundaries in the voltage are shown in Eq. (7.8) and Eq. (7.9)).

having a high difference, which is an abnormal behavior. However, an anomaly is not
detected using the threshold presented in Tab. 7.4 and satisfying the condition that
residuals stay below the variance (see Sec. 7.1.1.1) to be undetected in both real voltage
and imaginary voltage by adding offsets and maintaining residuals below threshold.
The dynamic thresholds for the residuals vary but variations cannot be seen because
the variation is too small. Figure 7.12a (bottom) shows that the pre-fit residuals for
the real voltage stay within the threshold boundaries. The effect of randomization in
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Figure 7.14: Voltage represented in polar coordinates for RSCV attack. No anomalies
detected (source Paudel et al. [132]).

real or imaginary voltage depends on the phase angle (in our case constant). In our
case the randomization has a higher effect in the real voltage than in the imaginary
voltage. Figure 7.12b shows the randomized imaginary voltage and the corresponding
pre-fit residuals. Similarly, Fig. 7.13 shows manipulated signals of real and imaginary
voltage and the dynamic thresholds (upper and lower boundaries) of the voltages which
are calculated based on the predicted states. The threshold boundaries in the voltage
are shown in Eq. (7.8) and Eq. (7.9)) which are calculated based on the predicted
state, measurement, confidence level and standard deviation of the residuals. From this
figure, we can see how the thresholds adjust to the manipulated signal because with the
manipulation of the signal also the variation of the residuals changes so that manipulated
signal is always within in the boundaries. The original and randomized polar voltages are
shown in Fig. 7.14. The original signal is clearly different from the manipulated signal,
but the manipulation is not detectable by the anomaly detection system because the
variance of the residuals is updated and therefore the residuals values do not exceed the
threshold boundaries.

7.3.2.2 Incremental Constant Offset Stepwise (ICOS)

In this ICOS attack, an increasing offset is added in polar voltage starting at the 745th

data point. Figure 7.15 shows added signal in ICOS attack. The offset keeps on increasing,
remaining undetectable in both real and imaginary voltages. A constant offset of 0.002 is
added from step 745 to 944, 0.0025 from step 945 to 1,044, 0.0030 from step 1,045 to
1,244 and so on. The attack ends with a 0.045 offset. During the attack, the maximum
offset such that the attack is not detected (taken from Eq. (7.18)) is added ensuring the
pre-fit residuals remain within the threshold boundaries. The manipulated signal with
its histogram is shown in Fig. 7.16. The histogram shows that after manipulation, the
voltage range is shifted and continues up to 1.105 p.u. The polar voltage manipulation
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attack results in real and imaginary voltage manipulation.

Figure 7.15: Added signal in ICOS attack.

Figure 7.16: Incremental offset-manipulated signal and histogram (source Paudel et al.
[132]).

Figure 7.17a (bottom) shows that pre-fit residuals, due to the resulting offsets in the real
voltage, do not cross the threshold boundaries whilst an attacker keeps on increasing the
offset. Meanwhile, Fig. 7.17b shows the attack is undetectable in the imaginary voltage,
as pre-fit residuals do not cross the boundaries of the threshold.

136



7.3. Results

(a) Real voltage (b) Imaginary voltage

Figure 7.17: Upper part: real voltage and imaginary voltage. Lower part: pre-fit residuals
and threshold boundaries of real voltage and imaginary voltage pre-fit residuals (changes
in the dynamic threshold boundaries are very small). No anomalies detected (source
Paudel et al. [132]).

(a) Real voltage (b) Imaginary voltage

Figure 7.18: Manipulated signal and dynamic threshold boundaries of real and imaginary
voltage (the threshold boundaries are shown in Eq. (7.8) and Eq. (7.9)).

Similarly, Fig. 7.18 shows the manipulated signals of real and imaginary voltage remain
within the threshold boundaries. Figure 7.19 visualizes the undetected offsets in polar
voltage. Since the resulting offsets in the real and imaginary voltages remain undetected,
the attack remains undetected in the polar voltage as well. The first experiment with the
stealthy attack ends with 0.053 p.u. offset. We further increased the stealthy attack up
to 30,000 data points, so up to an offset of 0.63 p.u. in polar voltage which was also not
detected. By slowly increasing the offset we create a condition in which the manipulated
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Figure 7.19: Voltage represented in polar coordinates for incremental offset. No anomalies
detected (source Paudel et al. [132]).

voltage is 1.121 p.u., while the original voltage is 1.058 p.u. Thus if we increase the
offsets slow enough then with the higher offsets the attack can still remain undetected.

7.3.2.3 Incremental Random Offset with Changing Variance (IROCV)

In this scenario (IROCV attack), an attacker adds an increasing offset to the polar
voltage measurements, along with a random component that similarly changes over
time. The aim of this attack is to hide potential over- or under-voltage situations whilst
remaining undetected. Specifically, an offset of 0.0005 plus a random value in the range
r ∼ N (0, 3.8 · 10−4) is added from steps 745 to 1,944. Thereafter, 0.0009 plus a random
value r ∼ N (0, 9·10−5) are added from 1,945 to 2,244 steps; 0.0009 plus r ∼ N (0, 4·10−4)
are added from steps 2,245 to 2,944; 0.001 plus a random value r ∼ N (0, 4 · 10−4) are
added from 2,945 to 3,244 steps, and so on. The attack ends with an incremental offset
of 0.0136.

Figure 7.20 shows added signal in IROCV attack. Figure 7.21 shows how an attacker
manipulates the voltage measurements. The histogram in Fig. 7.21 shows that the voltage
range is from 1.057 p.u. to 1.072 p.u. Most of the voltage values are greater than the
maximum voltage value in the original signal. There are two peaks reaching 1,200 in this
range.

As shown in Fig. 7.22a (bottom), as in the previous attack, when the attack is started at
the 745th step the real voltage pre-fit residuals are clearly affected. Spikes in the pre-fit
residuals of the imaginary voltage are visible once the attack takes place, as shown in
Fig. 7.22b. The attack noise is visible by observing the voltage behaviour. From Fig.
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Figure 7.20: Added signal in IROCV attack.

Figure 7.21: Random offset-manipulated signal and its histogram (source Paudel et al.
[132]).

7.23, one can see the thresholds of manipulated real and imaginary voltage are adjusted
so that the manipulated signals are within the upper and lower boundaries. Figure 7.24
shows how the observed voltage is different from the actual voltage. In this way, the
attacker hides in the attack noise and is able to insert offsets. This is possible due the
randomness (measurement noise) because the Kalman filter follows the prediction model
more precisely. Thus it will be undetected if small enough incremental random noise
is added in the signal. The anomaly detection system does not detect this abnormal
behavior and the attack remains undetectable.
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(a) Real voltage (b) Imaginary voltage

Figure 7.22: Upper part: real voltage and-imaginary voltage. Lower part: pre-fit residuals
and threshold boundaries of real voltage and imaginary voltage pre-fit residuals (changes
in the dynamic threshold boundaries are very small). No anomalies detected (source
Paudel et al. [132]).

(a) Real voltage (b) Imaginary voltage

Figure 7.23: Manipulated signal and dynamic threshold boundaries of real and imaginary
voltage (the threshold boundaries are shown in Eq. (7.8) and Eq. (7.9)).

7.3.2.4 Discussion about Undetected Attacks

We presented attacks that were especially crafted to avoid detection and the anomaly
detection method in Sec. 7.1.1 does not detect any of the attacks in the real and imaginary
voltages, so attacks also remain undetected in the polar form.

The confusion matrix of the undetected attacks (RSCV, ICOS and IROCV) for real,
imaginary, and polar voltages is shown in Tab. 7.11. The confusion matrix looks the
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Figure 7.24: Voltage represented in polar coordinates for incremental random offset. No
anomalies detected (source Paudel et al. [132]).

same for all attacks, because the attack always starts at the same data point, so there
are the same number of malicious anomalies and in all three cases no anomaly has been
detected. Thus, here the number of false negatives (FN) equals the total number of
malicious measurement values that were injected, and the number of true positives (TP)
equals 0 – i.e., no attack behavior was detected. In order to work with the method
proposed in [139], we had to fix the phase angle. Therefore, real and imaginary voltages
look much different from the original measured real and imaginary voltages.

Table 7.11: Confusion matrix for the undetected attacks (RSCV, ICOS and IROCV)
(source Paudel et al. [132]). It is same for all attacks as the attack always starts at the
same data point and remains undetected.

Detected as Labeled as
Non-malicious Malicious

Non-malicious 744 (TN) 17,201 (FN)
Malicious 0 (FP) 0 (TP)

We conclude the following findings from the results:

• F 2.1.3: If there are slow changes (slowly increasing offsets) then due to the dynamic
threshold that increases when adding the new manipulated values, the dynamic
threshold will get larger so that the attack will not be detected. It is because
they slowly increase and the changes over a specific time interval remain small but
influences the variance of the innovation.

• F 2.1.4: The delta from the original signal can grow large if the attacker slowly
increases step by step such that residuals stay below the threshold. We have small
attacks but if we increase offset stepwise (e.g., in ICO stepwise) so the anomaly
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detection system will not detect the attack. Nevertheless, alarms could be raised if
the safety threshold is exceeded.

• F 2.1.5: For the IROCV attack, the pre-fit residuals have a changing variance
which indicates abnormal behavior. However, this is not the case in the ICOS. We
suggest that the ICOS attack is perhaps the most challenging to detect using pre-fit
residuals.

Evidence from these experiments suggest that alternative methods to detect the attacks
need to be used. For instance, changes in the histograms can be used to observe
characteristics that make the attacks detectable. Furthermore, observing the evolution of
pre-fit residual over time could yield insights about a potential attack. For instance, in
Fig. 7.12, residuals before starting the attack are much smaller than after starting the
attack.

7.3.3 L2-norm and Normalized Pre-fit Residual-Based Detection

In this section the results of experiments 7.2 and 7.3 are discussed where we present
detection with L2-norm and normalized residuals. As shown in Tab. 7.4, we investigate
the detection performance of L2-norm and normalized residuals for the different attacks
(introduced in Tab. 5.1 of Chapter 5): CO, RO, ICO, IRO, IROMN and ICOHS. Then
as an example, we visualize anomaly detection results for the first test data (April 01,
02:00-03:00 of UTC). Figure 7.25 visualizes voltage signal from the first data set. The
actual voltage signal (polar voltage) has a voltage fluctuation which cause voltage drops
between data points 7,093 and 7,815, and between data points 150,735 and 171,043. We
label these high voltage drops as benign anomalies.

Here also we continue with a fixed phase angle. As described in Sec. 6.2, we set the
phase angle to a constant value of the first observed phase angle (−0.3443 radian) before
converting from polar to rectangular coordinates. Figure 7.26 depicts the actual voltage,
estimated voltage, pre-fit residuals, L2-norm and normalized residuals in normal operation
of the voltage signal in Fig. 7.25. From the figure 7.26, we can see that the L2-norm
shows some steps but normalized shows a big peak at the benign anomalies.

The six types of attacks described in Tab. 5.1 of Sec. 5.3 are simulated on the voltage
signal visualized in the Fig. 7.25. All attacks start at 60, 001st data point and continue
until the end of the hour. None of the attacks are detected by the L2-norm residuals
method with the pre-defined threshold 1.41 derived from the training data.

As L2-norm detects neither the attacks (MAs) nor BAs with this threshold, as the
L2-norm continues increasing the attacks could be detected if they continue further. Here
we present the detection performance metrics, distinguished detection rates of benign
and malicious anomalies, and the detection delay of the different attacks only for the
normalized residual-based method.
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Figure 7.25: Actual voltage signal (polar voltage) for an hour (April 01, 02:00-03:00 of
UTC).

(a) Real voltage (b) Imaginary voltage

Figure 7.26: Observed voltage, estimated voltage, residuals, L2-norm residuals and
normalized residuals in normal operation (y-axis of observed signal, estimated signal and
plain residuals are in p.u.).
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We present detection based on single data points. For the calculation of the performance
metrics we use the original labels, which are normal or anomalous (BA or MA), and
compare it with the labels provided by the detection methods. From this we derive: a)
true positives (TP), i.e. BA or MA correctly identified as an anomaly, b) true negatives
(TN), i.e. how many normal data points are correctly classified as normal, c) false
positives (FP), i.e. how many normal data points are classified as anomalies and d) false
negatives (FN), i.e. how many anomalies we miss (anomalies classified as normal), From
the TP, TN, FP, FN we then calculate accuracy, recall, false positive rate (FPR) and
precision. The minimum, maximum and average detection performance metrics for data
points-based approach of the 14 test data sets are shown in Tab. 7.12.

Table 7.12: Anomaly detection performance of normalized residual-based method (BAs
and MAs not separated). The values shown are the minimum, maximum and average
anomaly detection performance metrics of the 14 test data sets. Min/max for FPR is
always (0/0)%, and min/max for precision is always (100/100)% for all attack types
(source Paudel et al. [133]).

Method Attack
Accuracy
average

(min/max)

Recall
average

(min/max)

FPR
average

Precision
average

Normalized
residuals

(polar voltage)

CO 94.54%
(33.30/100)%

91.81%
(0/100)% 0% 100%

RO 48.06%
(33.14/98.86)%

22.18%
(0/98.29)% 0% 100%

ICO 44.96%
(33.27/98.86)%

17.53%
(0/98.29)% 0% 100%

IRO 47.43%
(33.27/98.86)%

21.23%
(0/98.29)% 0% 100%

IROMN 52.15%
(33.14/99.20)%

28.31%
(0/98.80)% 0% 100%

ICOHS 48.01%
(33.27/98.86)%

22.10%
(0/98.29)% 0% 100%

Table 7.13 shows the different detected attack types for the residual-based methods. In
the Tab. 7.13, detected attacks means that at least one malicious data point was detected
as an anomaly. The table depicts the number of test datasets in which the attacks are
detected, and the average detected data points on 14 test data sets. Malicious and benign
data points on the 14 test data sets are shown in Tab. 6.3 of Chapter 6. Detected data
points on each data sets using normalized residuals are shown in Tab. A.1 of Appendix
A.10. One can see that no anomalies are detected with L2-norm and only some with the
normalized residuals.

Malicious data points are detected only for the constant offset attack. In attack type RO,
IROMN the detected anomalies are all from benign anomalies, even some of the benign
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Table 7.13: Detected attacks (at least one malicious data point was detected as an
anomaly) out of the 14 injected attacks using L2-norm and normalized residual-based
methods (rounded average values are shown for the detected data points).

Methods Attacks (average detected data points)
CO RO ICO IRO IROMN ICOHS

Normalized
residuals 13(2,453) 5(65) 7(565) 8(544) 6(56) 8(5,487)

L2-norm
residuals 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

anomalies are missed once the attack starts, and in attack type ICO, ICOHS, IRO only
the benign anomalies are detected. From the variation of recall, one can see that in some
data sets no anomalies (neither BAs nor MAs) are detected. CO attack is not detected in
1 test data set, RO attack is not detected in 9 test data sets, ICO attack is not detected
in 7 test data sets, IRO attack is not detected in 6 test data sets, IROMN attack is not
detected in 8 test data sets and ICOHS attack is not detected in 6 test data sets.

For the normalized residual-based case we showed the detection results for the voltage
expressed in polar coordinates. Since we use a linear Kalman filter the actual detection
is based on the detection of anomalies in the imaginary and real part of the voltage (see
[132] for details). We then just combine all anomalies detected in either the real or in
the imaginary voltage.

In order to analyze the detection performance for the manipulated data points, we check
how many of the detected anomalies belong to benign (BAs) or malicious anomalies
(MAs). If one data point was BA and MA, it was labeled only as BA; we have only 7,727
BAs and 1673,087 MAs in the manipulated test data sets (see Tab. 6.3 in Sec. 6.5). From
the analysis using normalized residuals, we find that most of the detected anomalies are
BAs. Since we use the same data as a basis for injecting different attacks, the BAs are
the same in the basis data sets and therefore also remain BAs when the four attacks are
inserted. For attack types RO, ICO, ICOHS, IRO and IROMN the detection is only due
to benign anomalies. For attack type CO, malicious data points are detected but some
benign anomalies were missed. Therefore, we can say that the spikes caused by BAs are
detected with the normalized residuals, but the attacks (MAs) often remain undetected.
Table 7.14 shows detection rates of benign anomalies and malicious anomalies in polar
voltage.

Table 7.15 in addition shows detection delay of the normalized residual-based method.
It considers detection delay of the anomalous data points. Minimum and maximum
detection delay among 14 test data sets are in first and second columns respectively.
Average detection delay of the 14 test data sets is in the third column. Detection delay
varies from 1st anomalous data point to 17, 004th data point in constant offset attack. In
attack type RO, ICO, ICOHS and IRO, minimum detection delay is the same. This is
caused by a BA on day 12 that is located at data point 61,957 and therefore falls in the
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Table 7.14: Average detection rates of benign and malicious anomalies by normalized
residual-based method. TPRB = TPR benign, TPRM = TPR malicious (source Paudel
et al. [133]).

Method Attack TPRB TPRM

Normalized residuals
(polar voltage)

CO 58.40% 1.89%
RO 39.67% 7.30×10−6%
ICO 56.93% 0.36%
IRO 57.06% 0.34%
IROMN 37.86% 1.37×10−5%
ICOHS 51.32% 4.48%

Table 7.15: Minimum, maximum and average anomaly detection delay of normalized
residual-based method (source Paudel et al. [133]).

Method Attack Detection Delay
min max average

Normalized residuals
(polar voltage)

CO 1 17,004 9,786.86
RO 2,056 17,858 93,399.14
ICO 2,056 10,7675 98,972.14
IRO 2,056 10,7675 94,536.79
IROMN 1,440 70,670 86,047.00
ICOHS 2,056 10,7675 93,487.36

period of the attack exactly at 2056 data points after the attack start. It is clear from
the table where BAs are located and the anomalous data points are detected. In attack
type IROMN detection delay varies from 1, 440th anomalous data point to 70, 670th data
point. From the table, we also can deduce that all attacks, except the CO attack, are
detected only because of BAs that exceed the threshold and not because of the attack
itself. It may be that the BA itself is large enough to trigger the detection or that it
exceeds the threshold only because the attack is added to an already high value.

In the following we describe details about the detection of the different attacks.

7.3.3.1 Detailed Detection Results per Attack

Constant Offset Attack The normalized residual-based method detects only the
constant offset attack only in real voltage. Figure 7.27 depicts manipulated and esti-
mated real voltage and imaginary voltage signals, their residuals, L2-norm residuals and
normalized residuals during constant offset attack. In the sub-figure 7.27a, we can see
constant offset attack has high impact in real voltage such that there is significant change
(near 6) in real voltage. A jump in residuals between data points 150,735 and 171,043 is
due to BAs. The attack causes significant change in residuals once it starts. This change
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causes L2-norm residuals increases till end whereas normalized residuals have significant
change at attack start only. BAs cause high jump in normalized residuals whereas it has
less impact in L2-norm. Thus normalized residual-based BDD method detects BAs.

(a) Real voltage (b) Imaginary voltage

Figure 7.27: Observed voltage, estimated voltage, residuals, L2-norm and normalized
residuals in constant offset attack (y-axis of observed signal, estimated signal and plain
residuals are in p.u.) (source Paudel et al. [133]).

Similarly, sub-figure 7.27b shows manipulated and estimated imaginary voltage signals,
their residuals, L2-norm residuals and normalized residuals. Residual changes significantly
in imaginary voltage. As in the real voltage signal, first jump (near 6) is due to the attack
and a second jump (between data points 150,735 and 171,043) in imaginary voltage is
due to the BAs.

Constant offset attack is not detected by L2-norm but detected by normalized residual-
based method (see Tab. 7.13). Figure 7.28 shows L2-norm residuals for CO attack. From
this figure, we can clearly see a jump in the L2-norm residuals but the attack is not
detected. The CO attack could be detected in real voltage if it continues further but the
pre-defined threshold is very high for detecting the CO attack in imaginary voltage.

The normalized residual-based method detects the BAs and also some MAs when the
attack starts and the voltage changes abruptly in the attack and therefore in the given
example detects some anomalous data points. After the detection of some anomalies the
algorithm adapts the prediction and therefore it does not detect the subsequent malicious
data points as such. On average, it detects only 2,453 data points on all 14 test data sets
(see Tab. 7.13).
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(a) Real voltage (b) Imaginary voltage

Figure 7.28: L2-norm residuals in constant offset attack (the change is visible but the
selected threshold is too high).

The results for the real, imaginary and polar voltage for the first test data set are shown
in Fig. 7.29. It depicts that anomaly is missed in imaginary voltage.

(a) Real voltage (b) Imaginary voltage (c) Polar voltage

Figure 7.29: Visualization of detected anomalies in constant offset attack using normalized
residuals (shown on April 01, 02:00-03:00) (source Paudel et al. [133]).

Random Offset Attack Figure 7.30 depicts manipulated and estimated voltage
signals, L2-norm residuals and normalized residuals in real voltage and imaginary voltage
during random offset attack. Sub-figure 7.30a shows effect of the attack in real voltage,
residuals, L2-norm and normalized residuals in real voltage. Similarly, sub-figure 7.30b
shows about imaginary voltage.

L2-norm residuals does not detect random offset attack but normalized residuals trigger
some alarms only due to BAs (see Tab. 7.13). Normalized residual-based method does not
detect malicious points, it detects only the benign anomalies (which cause high jumps in
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(a) Real voltage (b) Imaginary voltage

Figure 7.30: Observed voltage, estimated voltage, residuals, L2-norm residuals and
normalized residuals in random offset attack (y-axis of observed signal, estimated signal
and plain residuals are in p.u.).

the signal). In some data there are some fluctuations in the signal which triggers alarms
after the starting point of attacks. In these cases an operator does not know whether
the alarm is due to benign or malicious anomalies. It can be seen in Fig. 7.31 that the
attack is not identified and some of the benign anomalies are identified as anomalies.
It detects only the first benign anomalies (between data points 7,093 and 7,815) and
then when noise is added from attack it does not detect the benign anomalies (between
data points 150,735 and 171,043). The normalized residual-based method fails to detect
several benign anomalies, therefore the overall performance with 14 test data sets is
rather low (i.e only 65 data points on average see Tab. 7.13).

Incremental Constant Offset Attack Figure 7.32 depicts manipulated and esti-
mated voltage signals, L2-norm residuals and normalized residuals in real voltage and
imaginary voltage during incremental constant offset attack. Sub-figure 7.32a shows
effect of the attack in real voltage, residuals, L2-norm and normalized residuals in real
voltage. Similarly, sub-figure 7.32b shows about imaginary voltage.

L2-norm does not identify anomalous points but normalized residuals identify only some
benign anomalies during incremental constant offset attack (see Tab. 7.13). Normalized
residual-based approach detects attacks of type ICO in 7 data sets and on average only
565 data points from the 14 test data sets. The detection is only due to the presence of
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(a) Real voltage (b) Imaginary voltage (c) Polar voltage

Figure 7.31: Visualization of detected anomalies in random offset attack using normalized
residual based method (shown on April 01, 02:00-03:00) (source Paudel et al. [133]).

(a) Real voltage (b) Imaginary voltage

Figure 7.32: Observed voltage, estimated voltage, residuals, L2-norm residuals and
normalized residuals in incremental constant offset attack (y-axis of observed signal,
estimated signal and plain residuals are in p.u.).

the benign anomalies before or after the attack starting points. It can be clearly seen in
Fig. 7.33 that only the high fluctuation in the signal is identified as an anomaly.
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(a) Real voltage (b) Imaginary voltage (c) Polar voltage

Figure 7.33: Visualization of detected anomalies in incremental constant offset attack
using normalized residual-based (shown on April 01, 02:00-03:00).

Incremental Random Offset Attack Figure 7.34 depicts manipulated and estimated
voltage signals, L2-norm residuals and normalized residuals in real voltage and imaginary
voltage during incremental random offset attack. Sub-figure 7.34a shows effect of the
attack in real voltage, residuals, L2-norm and normalized residuals in real voltage.
Similarly, sub-figure 7.34b shows about imaginary voltage.

(a) Real voltage (b) Imaginary voltage

Figure 7.34: Observed voltage, estimated voltage, residuals, L2-norm residuals and
normalized residuals in incremental random offset attack (y-axis of observed signal,
estimated signal and plain residuals are in p.u.).

L2-norm does not identify anomalous points but normalized residuals identify only some
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anomalies during incremental random offset attack (as shown in Tab. 7.13). Normalized
residual-based also does not detect attacks of type IRO in all of the 14 data sets. Similar
to other cases, the detection is due to the benign anomalies before or after the attack
starting points. On average, it detects only 544 data points on all 14 test data sets (see
Tab. 7.13). Figure 7.35 clearly depicts the attack is not identified and only the high
fluctuation in voltage signal is identified as anomalous.

(a) Real voltage (b) Imaginary voltage (c) Polar voltage

Figure 7.35: Visualization of detected anomalies in incremental random offset attack
using normalized residual-based (shown on April 01, 02:00-03:00) (source Paudel et al.
[133]).

Incremental Random Offset Attack with More Noise Here we show the effect
of adding more noise in IRO attack. Figure 7.36 depicts manipulated and estimated
voltage signals, L2-norm residuals and normalized residuals in real voltage and imaginary
voltage during incremental random offset attack with more noise. Sub-figure 7.36a shows
effect of the attack in real voltage, residuals, L2-norm and normalized residuals in real
voltage. Similarly, sub-figure 7.36b shows about imaginary voltage.

L2-norm does not identify anomalous points but normalized residuals identify only benign
anomalies during incremental random offset attack with more noise (as shown in Tab.
7.13). Normalized residual-based method also does not detect attack type IROMN in all
of the 14 data sets. Similar to other cases, the detection is due to the benign anomalies
before or after the attack starting points. Figure 7.37 clearly depicts the attack is not
identified and only the high fluctuation before starting the attack in voltage signal is
identified as anomalous, the fluctuation after starting the attack is not detected. On
average, it detects only 56 data points (as shown in Tab. 7.13). In comparison to Fig.7.35,
one can see addition of more noise reduces performance of detection.
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(a) Real voltage (b) Imaginary voltage

Figure 7.36: Observed voltage, estimated voltage, residuals, L2-norm residuals and
normalized residuals in incremental random offset attack with more noise (y-axis of
observed signal, estimated signal and plain residuals are in p.u.).

(a) Real voltage (b) Imaginary voltage (c) Polar voltage

Figure 7.37: Visualization of detected anomalies in incremental random offset attack
with more noise using normalized residual-based (shown on April 01, 02:00-03:00).

Incremental Constant Offset Attack with High Slope Here we show the effect
of increasing slope in ICO attack. Figure 7.38 depicts manipulated and estimated voltage
signals, L2-norm residuals and normalized residuals in real voltage and imaginary voltage
during incremental constant offset attack with high slope. Sub-figure 7.38a shows effect
of the attack in real voltage, residuals, L2-norm and normalized residuals in real voltage.
Similarly, sub-figure 7.38b shows about imaginary voltage.

L2-norm does not identify anomalous points but normalized residuals identify only benign
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(a) Real voltage (b) Imaginary voltage

Figure 7.38: Observed voltage, estimated voltage, residuals, L2-norm residuals and
normalized residuals in incremental constant offset attack with high slope (y-axis of
observed signal, estimated signal and plain residuals are in p.u.).

(a) Real voltage (b) Imaginary voltage (c) Polar voltage

Figure 7.39: Visualization of detected anomalies in incremental constant offset attack
with high slope using normalized residual-based (shown on April 01, 02:00-03:00) (source
Paudel et al. [133]).

anomalies during incremental constant offset attack with high slope (as shown in Tab.
7.13). Normalized residual-based method does not detect attacks of type ICOHS in all
of the 14 data sets. The detection is only due to the presence of the benign anomalies
before or after the attack starting points. It can be clearly seen in Fig. 7.39 that only
the high fluctuation in the signal is identified as an anomaly. On average, it detects
only 5,487 data points (as shown in Tab. 7.13). In comparison to Fig. 7.33, one can see
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increasing the slope also does not trigger alarms.

7.3.3.2 Results Findings for L2-Norm and normamlized residuals

Plain pre-fit uses a different threshold but this can be used by the attacker to adjust
the threshold. L2-norm residuals thresholds are based on training data and cannot be
adjusted by the attacker. Similarly, normalized residuals threshold is also based on
training data. We can conclude the following findings from the results:

• F 2.1.6: L2-norm residual-based method detects none of the attacks and also no
benign anomalies. This might be due to the high threshold as we set a safety margin
while defining the threshold but the attacks could be detected if they continue
further.

• F 2.1.7: Normalized residual-based method detects only one of the attacks (attack
type CO). The normalized residual-based method does not work for all data points
but detects at least 1 data point in many manipulated test data sets. The method
only detects BAs. Either the BA was already large enough to trigger an alarm or
the data points exceeded the threshold after the attack was added. In this case, the
attack only became visible if added to an already untypically high (or low) data
value.

• F 2.1.8: The normalized residual-based method detects changes quickly but also
adapts to the changes quickly so after a short time the residuals get smaller and
then remain within the threshold. So after some anomalies occurred, it does not
detect subsequent anomalies for long.

• F 2.1.9: With the normalized residual-based method attackers may be able to
train the detection system to adapt to the changes similar to the plain pre-fit
residuals. Attack types RO, ICO, ICOHS, IRO and IROMN are not detected by
the normalized residual-based method as the detection is due to the BAs in actual
data.

7.4 Summary

In this chapter, we presented residual-based methods for detecting bad data.

The advantage of using residual-based detection methods is that residuals are available as
a side product from SE. We made use of BDD methods based on plain pre-fit residuals,
L2-norm and normalized residuals.

We described the relation of anomaly detection with varying phase angle, with fixed phase
angle and how we concluded using fixed phase angle with residual-based methods for
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our experiment. We showed the setup for the experiment with the plain pre-fit residuals,
described the parameters for setting the thresholds for L2-norm and normalized residuals.

Finally, we provided the anomaly detection results using the residual-based BDD methods
(plain pre-fit residuals, L2-norm and normalized residuals). The following major results
findings from the plain pre-fit residual-based method supported answering our research
questions RQ 2.1.1 (Can the plain pre-fit residual-based method proposed in [139] detect
the injected attacks in our data set?) and RQ 2.1.2 (Can attackers avoid being detected
if plain pre-fit residuals are used for detection?).

• The plain pre-fit residual-based method did not detect any of the injected attacks
on our real data. The method detected our attacks with similar attack parameters
as used in [139] only when we fixed the phase angle in our real data.

• The plain pre-fit residual-based method detected only the SD type attack among
the attacks that have been introduced in Tab. 5.2 of Chapter 5 as the SD attack
has a quick high increase in offsets whereas the undetected attacks have slowly
increasing offsets.

As we already expected for our reasoning RQ 2.1.1, the evidence from experiments
showed that we can detect the injected attacks in our data set using the plain pre-fit
residuals but only if the phase angle is fixed. Similarly, as we already expected for our
reasoning RQ 2.1.2, the evidence from the experiments showed that attackers can avoid
plain pre-fit residual-based detection because the plain pre-fit residual-based method did
not detect the attacks that have slowly increasing offsets.

The following major results findings from the L2-norm residual-based method supported
answering our research questions RQ 2.1.3 (Can the L2-norm residual-based method
using LWLS proposed in [100], which is based on LWLS SE, detect our injected attacks
in our data set also if we use residuals from DKF?).

• The L2-norm residual-based method did not detect any of the attacks that have
been introduced in Tab. 5.1 of Chapter 5.

• There was a significant change in the L2 norm, when the attacks started, but the
threshold was not exceeded. The results showed the attacks were too small to be
detected by the L2-norm method using the defined threshold based on the training
data.

For our reasoning RQ 2.1.3, we expected that we can detect the injected attacks in
our data set using the L2-norm residuals from DKF. But the evidence from experiments
showed that the L2-norm residual-based method did not detect any of the attacks.

The following major findings from the normalized residual-based method supported
answering our research questions RQ 2.1.4 (Can the normalized residual-based method
proposed in [14] using DKF detect our injected attacks in our data set?).
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• The normalized residual-based method detected only one of the attack (attack type
CO) among the attacks that have been introduced in Tab. 5.1 of Chapter 5. The
normalized residual-based method did not work for all data points but detected at
least 1 data point in many manipulated test data sets.

• The normalized residual-based method detected changes quickly but also adapted
to the changes quickly so that residuals became small quickly and remained within
threshold. So after some anomalies occurred, it did not detect subsequent anomalies
for long.

• The residuals were calculated from measurements, so they would adapt if we
increase the offsets higher and higher slowly, but if a quick high increase is made
in the offsets, then it would result in high residuals so that the attack would be
detected.

We expected for our reasoning RQ 2.1.4 that we can detect the injected attacks in our
data set using the normalized residuals from DKF. But the evidence from experiments
showed that the normalized residual-based method detected only some of the attacks.
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CHAPTER 8
Stealthy Attacks

Notice of adoption from previous publications in Chapter 8
Parts of the contents of this chapter have been published in the following papers:

[132] S. Paudel, P. Smith, and T. Zseby. Stealthy attacks on smart grid PMU state
estimation. In Proceedings of the 13th International Conference on Availability,
Reliability and Security, ARES 2018, Hamburg, Germany, August 27-30, 2018,
pages 16:1–16:10, 2018

[133] S. Paudel, T. Zseby, E. Piatkowska, and P.Smith. An evaluation of methods
for detecting false data injection attacks in the smart grid. In preparationa

Explanation text, on what parts were adopted from previous publications:
The stealthy attacks described in this chapter is based on the work done in [132] and
[133]. A part of state estimation under attack scenario described in this chapter is
based on the work done in [132].

S. Paudel implemented the methods and conducted all the experiments. Theoretical
considerations and experiment planning was done together with all co-authors, the
text and figures in the papers were created together by all authors.

aThe paper is in preparation.

In this chapter, first we present necessary conditions for a stealthy attack on state
estimation and the effect of the false data injection attacks on the state estimation process.
In a second step, we present the experimental setup of the stealthy attacks in Sec. 8.2,
then show results in Sec. 8.3
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For state estimation (SE) with linear weighted least squares (LWLS) or Kalman filters
(KFs), which are often used for SE in smart grids, a residual-based approach to bad
data detection (BDD) has the advantage that residuals can be readily calculated as a
by-product of the SE process. Most of the BDD algorithms make an assumption, when
there is a bad measurement then the difference between the observed measurement and
their corresponding estimated values becomes significant [40].

The SE process uses sensor (e.g., PMU) data, and bad data detection algorithms use
the residuals from SE to detect bad data due to the measurement system’s failures. In a
setting where attackers can gain access to modify the sensor data, they can exploit the
fact that SE is used to process the data and modify the sensor data so that the attacks
remain stealthy in the SE process. Further, an attacker can evade bad data detection if
the attacker uses knowledge about the smart grid system (e.g., anomaly detection system,
the method used for state estimation) to craft the attack. A false data injection (FDI)
attack is a stealthy attack if it does not trigger BDD alarms. The alarms are triggered if
there is a deviation from the expected physical state.

Let m be the number of meters and z be the vector of m measurements that are sent to
the state estimator. An attacker is able to change measurements by physically accessing
the meter or accessing the communication channel. We recall that the manipulated
measurement is represented by Eq. (8.1) [100].

za = z + a (8.1)

where z is the actual measurement, a is attack vector and za is the manipulated
measurement vector.

Attackers aim to fool the energy management system (EMS) and a human operator with
misinformation, such that a particular measurement is zk,a = zk +ak and not zk for time
step k where ak is an attack vector. Authors in [100] use the L2-norm of the residuals
from LWLS SE for BDD. The L2-norm of the residuals in normal operation is �z − Hx̂�
and during an attack is �za − Hx̂bad�. An attacker that wants to remain undetected,
needs to ensure that the L2-norm of the residuals from LWLS SE using the manipulated
measurement is below the threshold as expressed in Eq. (8.2) (see Sec. 7.1.2).

�za − Hx̂bad� ≤ t (8.2)

where x̂bad is the estimated state considering manipulated measurement and t is the
pre-defined threshold.

In [100] authors show that an attack of type a = H · c is not detected by residual-based
BDD using the L2-norm if LWLS are used for state estimation. Thus the stealthy attacks
are expressed as Eq. (8.3) in [100].

�za − Hx̂bad� ≤ �z − Hx̂� + �(a − Hc)� (8.3)

where x̂ is true state, c is a vector of offsets and a is a vector of attack.

Our research question RQ 2.2 about stealthy attacks reads:
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• RQ 2.2: Can stealthy attacks of the form a = H · c as described in [100] be
detected by residual-based methods?

Further, we divide the research question RQ 2.2 into the following sub-research questions:

• RQ 2.2.1: Can attacks of form a = H · c against state estimation from [100]
remain stealthy if we analyze residuals from state estimation using LWLS?
Rationale: [100] shows that attacks of form a = H · c remain stealthy for a residual-
based detection methods for LWLS SE. If LWLS is used for SE and only one metric
(voltage) is measured, residuals are zero for LWLS SE. Therefore, we assume that
in a simple scenario with only voltage measurements, voltage manipulation and
LWLS SE, attacks cannot be detected. If multiple metrics (e.g. voltage and current)
are measured we assume that (as shown in [100]) an attacker can remain stealthy
as long as the attacker can manipulate both metrics to bring them in the form
a = H · c. That means that also for high values of c the attack cannot be detected.
If the attacker can only manipulate one metric, we assume that the attack can be
detected, because the second metric can be used to check the plausibility of the
values.

• RQ 2.2.2: Can attacks of form a = H · c against state estimation from [100] be
detected if we analyze residuals from state estimation using DKF?
Rationale: In [100] stealthy attacks are shown for LWLS SE. As Kalman filters are
widely used for SE in different domains, we also use DKF for SE and here we want
to check if attacks of the form a = H · c also remain stealthy if DKF is used as
SE method. Since DKF SE takes past values into account, we expect a different
behaviour and rather assume that with DKF the attacks do not remain stealthy.

Table 8.1 shows the intention of using the stealthy attacks, data used for the experiment
and findings. Details on parameter settings for the experiment are presented in Sec. 8.2.

Table 8.1: Overview of stealthy attacks.

Methods Data* Goals Sections

Stealthy attacks
of form a = H · c

Test data
(01.04.2016)

- to answer RQ 2.2.1
- to answer RQ 2.2.2

8.1
8.2
8.3

* Test data, one hour at 02:00-03:00 UTC is used.
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8.1 Theoretical background

8.1.1 Stealthy attack on voltage measurements

We aim to check the conditions of stealthy attack of form a = H · c from [100] using only
voltage measurements for state estimation. We recall the expression of the measurement
z and true state x as

z = Hx + v (8.4)
where v is the measurement noise, H equals to an identity matrix, measurement z is
represented by Eq. (8.5) and true state x is represented by Eq. (8.6).

z =
�

Vre

Vim

�
(8.5)

x =
�

V t
re

V t
im

�
(8.6)

Under the condition defined by Liu et al. in [100], an attack is undetected if a = H · c.
The condition is expressed in Eq. (8.7), and the manipulated measurement under the
condition is represented in Eq. (8.8).

Hc =
�
1 0
0 1

� �
c1
c2

�
=

�
c1
c2

�
(8.7)

za = z + a =
�

Vre

Vim

�
+

�
c1
c2

�
(8.8)

The resulting manipulated measurements in rectangular coordinates are represented by
Eq. (8.9) and Eq. (8.10).

z1 = Vre + c1 (8.9)
z2 = Vim + c2 (8.10)

8.1.2 Stealthy attack on voltage and current measurements

We aim to check the conditions of the stealthy attack of form a = H · c from [100]
using both voltage and current measurements for state estimation. In this case, the
measurement z is represented by Eq. (8.11). We recall that the true state x is represented
by Eq. (8.6) (see Sec. 8.1.1) and the matrix H is represented by Eq. (8.12).

z =


Vre

Vim

Ire

Iim

 (8.11)

162



8.2. Experimental Setup

H =


1 0
0 1
G −B
B G

 (8.12)

The condition defined by Liu et al. in [100] to be a stealthy attack on voltage and current
measurements is expressed in Eq. (8.13).

Hc =


1 0
0 1
G −B
B G


�
c1
c2

�
=


c1
c2

Gc1 − Bc2
Bc1 + Gc2

 (8.13)

So if we add a constant to Vre and Vim and then add values to the current measurements
that depend on c1, c2, G and B then the attack remains undetected by residual-based
BDD methods for LWLS.

8.2 Experimental Setup

Based on the stealthy attacks definitions presented in Sec. 8.1, we manipulate measure-
ments (see below) and analyze the residuals from SE using LWLS and DKF.

8.2.1 Manipulate only voltage measurements

We assume a case where an attacker manipulates only the voltage measurements. The
attack vectors in the measurement of the current are zero. Thus the attack vector a is
represented by Eq. (8.14).

a =


c1
c2
0
0

 (8.14)

Manipulated measurement can be rewritten in Eq. (8.15).

za = z + a =


Vre

Vim

Ire

Iim

 +


c1
c2
0
0

 (8.15)

Thus the resulting manipulated measurements are

z1 = Vre + c1 (8.16)
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z2 = Vim + c2 (8.17)

z3 = Ire + 0 (8.18)

z4 = Iim + 0 (8.19)

In order to investigate whether the attack remains stealthy with different detection
methods, we add a constant offset attack (CO) that stars at 2, 000th data point and ends
at 18, 000th data point. Figure (8.1) shows the manipulated real voltage and imaginary
voltage.

Figure 8.1: Visualization of measured real voltage and imaginary voltage during an
attack.

8.2.2 Manipulate both voltage and current measurements

We assume a case where an attacker manipulates both the voltage and current measure-
ments. Thus the attack vector a is represented by Eq. (8.20).

a =


c1
c2

Gc1 − Bc2
Bc1 − Gc2

 (8.20)
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Manipulated measurement can be rewritten in Eq. (8.21).

za = z + a =


Vre

Vim

Ire

Iim

 +


c1
c2

Gc1 − Bc2
Bc1 − Gc2

 (8.21)

Thus the resulting manipulated measurements are

z1 = Vre + c1 (8.22)

z2 = Vim + c2 (8.23)

z3 = Ire + Gc1 − Bc2 (8.24)

z4 = Iim + Bc1 − Gc2 (8.25)

In [100] the authors show that attacks of this type remain stealthy but only for the
LWLS method. We first look at detection from LWLS but then also investigate whether
those attacks get visible when we use DKF for the state estimation. We show both
method (LWLS and DKF) for two different cases a) only with voltage measurements
and b) with voltage and current measurements. For the stealthy attack on LWLS state
estimation [100], we add one experiment with a very large offset (experiment 8.2), in
order to check if the attack remains stealthy, even if the measurements deviate a lot from
the original values.

Table 8.2 shows an overview of stealthy attacks, measured vectors, SE methods, manipu-
lation of the vectors, parameter settings and injected attacks. Here we aim to analyze the
residuals while starting and ending the attacks. We recall that the starting and ending
data points of the stealthy attacks are different than those in the attacks generated using
the attack model. We do this because here we aim to analyze residuals in both starting
and ending data points of the attacks; in the attacks using the attack model there are no
attack ending data points for the given time interval. Further, the manipulation attack
is the CO type attack with different offset magnitude than the magnitude in the attack
model as we do not compare the results of the stealthy attack to CO attack.
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Table 8.2: Overview of experiment with stealthy attacks of form a = H · c, attacks
parameters setting and injected attack; SE = State estimation; Exp. = experiment; MV
= measured vector; CO = constant offset. It is all for the test data∗ (01.04. 2016)

SE Method Exp. MV Manipulation Param.
setting

Injected
attacks

LWLS 8.1 Voltage Voltage

start =
2,000,
end =
18,000

CO
(offset =
0.0195 p.u.)

LWLS 8.2 Voltage Voltage

attack
start =
2,000,
end =
18,000

CO
(offset =
10 p.u.)

LWLS 8.3 Voltage,
current Voltage

attack
start =
2,000,
end =
18,000

CO
(offset =
0.0195 p.u.)

LWLS 8.4 Voltage,
current

Voltage,
current

attack
start =
2,000,
end =
18,000

CO
(offset =
0.0195 p.u.)

DKF 8.5 Voltage Voltage

attack
start =
2,000,
end =
18,000

CO
(offset =
0.0195 p.u.)

DKF 8.6 Voltage,
current Voltage

attack
start =
2,000,
end =
18,000

CO
(offset =
0.0195 p.u.)

DKF 8.7 Voltage,
current

Voltage,
current

attack
start =
2,000,
end =
18,000

CO
(offset =
0.0195 p.u.)

* Test data, one hour at 02:00-03:00 UTC is used.
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8.3 Results

In this section, we present attacks, which meet the definition of stealthy attacks on
measurements that are of the form a = H · c and therefore should remain stealthy as
shown in Sec. 8.1. The experiment setup is presented in Sec. 8.2. We analyze residuals
of SE using LWLS and DKF with fixed phase angle.

8.3.1 State estimation based on voltage measurements

Here we first present SE results under an attack scenario using only voltage measurement.
In this section, we are showing experiments 8.1, 8.2 and 8.5 of Tab. 8.2. An attacker adds
a constant offset during the attack. In experiments 8.1 and 8.5, we assume the attacker
adds an offset 0.0195 at 2, 000th data point so that the manipulated polar voltage value
reaches 1.075 p.u. at the data point, and then add the same offset 0.0195 p.u. to all data
values until the attack is over at data point 18,000. Since we fixed the phase angle, the
constant offset in polar coordinates also will add a constant offset to real and imaginary
parts.

(a) Estimation using LWLS (b) Estimation using DKF

Figure 8.2: Estimated real voltage and imaginary voltage (Exp. 8.1 and 8.5 of Tab. 8.2).

With the estimation of LWLS method based on voltage data only, the estimation is equal
to the actual measured value. Therefore the estimated signal from LWLS is exactly the
same as the original observed signal and all residuals are zero. Also for LWLS we do
not have a separate prediction step and therefore do not distinguish between pre-fit and
post-fit residuals. Figure 8.2 visualizes estimated real voltage and imaginary voltage
using LWLS and DKF during the attack mentioned above. Estimated real voltage and
imaginary voltages from LWLS are shown in sub-figure 8.2a. Similarly, sub-figure 8.2b
shows estimated real voltage and imaginary voltage using DKF. Similar to the estimation
in normal operation, the main difference that can be seen is that SE using the DKF
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smooths out the voltage signals. Since with the fixed phase angle, we have a higher
variation in the real voltage (see Sec. 6.2 of Chapter 6) the smoothing effect for the real
voltage is larger than for the imaginary voltage.

(a) Pre-fit residuals of DKF (b) Postfit residuals of DKF

(c) Difference of pre-fit and post-fit residuals for
real voltage using DKF

Figure 8.3: Residuals of real voltage and imaginary voltage under attack (Exp. 8.5 of
Tab. 8.2).

Using LWLS with only voltage measurement, residuals are zero. Thus the attack can not
be identified analysing results from the estimation process. Using DKF, estimated values
follow the manipulated voltage signal pattern causing a delay between prediction and
estimation. The delay causes high jumps in pre-fit and post-fit residuals shown in Fig.
8.3. The pre-fit residuals and post-fit residuals are shown in sub-figures 8.3a and 8.3b
respectively. The difference of the pre-fit residuals and the post-fit residuals are shown in
sub-figure 8.3c. Using DKF, when an attack starts, predicted value on the data point
depends on the estimated value of the previous non-manipulated data point, whereas the
estimated value at the data point considers both the predicted value and the observed
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value. Therefore while starting an attack, pre-fit residuals have a higher magnitude than
post-fit residual. When an attacker stops manipulating voltage values, prediction in the
next data point still is affected by the attack, and as estimation considers prediction
it is also effected by the previous manipulated data. Thus for some next data points
the estimated value is closer to the predicted value, this results in a higher magnitude
of post-fit residuals. From this we conclude, while also for this simple case the attack
remains undetected for LWLS (as predicted by Liu et al. in [100]), it can be clearly
identified if DKFs are used for the state estimation.

In experiment 8.2, we assume an attacker adds a high constant offset value of 10 p.u. to
voltage measurements during the attack. We did this, to check if the attack still remains
stealthy (as claimed in [100]). Figure 8.4 shows observed and estimated real voltage
and imaginary voltage. After starting an attack at 2, 000th data point, the manipulated
voltage is very high and continue till the attack ends at 18, 000th data point. We can
see this in sub-figure 8.4a, the original signal is small compared to the attack. Similarly,
from the sub-figure 8.4b, we can see estimated voltage using LWLS does not filter noise
and estimated voltage is very high during the attack.

(a) Observed voltage (b) Estimated voltage using LWLS

Figure 8.4: Observed and estimated real voltage and imaginary voltage (Exp. 8.2 of Tab.
8.2, the original signal is small compared to the manipulated signal).

Thus we conclude in SE using LWLS considering a simple setup with only voltage
measurements, attacks cannot be detected by the residual-based method if LWLS is used
for the SE but is detected if DKF is used for state estimation.

8.3.2 State estimation based on voltage and current measurements

Here we present results for residual-based detection for a SE based on LWLS and DKF
SE where for the SE uses both, voltage and current measurements, are used. We then
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distinguish two different attacks a) one attack where only voltage measurements can
be manipulated by the attacker and b) one attack where the attacker can manipulate
both voltage and current measurements. So here the SE is always based on voltage and
current measurements.

8.3.2.1 Manipulating only voltage measurements

Here, we consider an assumption presented in Sec. 8.2, the SE is based on voltage and
current measurements but the attacker manipulates only voltage measurement. Thus the
manipulated real and imaginary voltage measurements, and the non-manipulated real
and imaginary current measurements are considered for state estimation.

Observed voltage and current measurements are shown in Fig. (8.5). Sub-figure 8.5a
depicts observed real voltage and imaginary voltage. The real and imaginary voltages
are calculated from the manipulated polar voltage with fixed phase angle (fixed with
first observed phase angle). Similarly, sub-figure 8.5b depicts observed real current and
imaginary current. The real and imaginary currents are calculated from the actual
(non-manipulated) measurement.

(a) Real and imaginary voltage (b) Real and imaginary current

Figure 8.5: Observed voltage and current measurements under attack scenario.

In experiment 8.1, estimated states using DKF and LWLS during the attack scenario are
shown in Fig. (8.6). From the figure, one clearly can see the estimated states from both
LWLS and DKF follow the attack. Sub-figure 8.6a depicts estimated real voltage and
imaginary voltage using LWLS. Another sub-figure 8.6b depicts estimated real voltage
and imaginary voltage using DKF, it shows the estimation process smooths out the real
voltage and imaginary voltage signals. From here, one can see estimated real voltage
and imaginary voltage in the sub-figure 8.6a (estimated with LWLS) are not as much
smoothed as estimated by DKF (shown in sub-figure 8.6b).
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(a) SE using LWLS (b) SE using DKF

Figure 8.6: Estimated states using LWLS and DKF under an attack (Exp. 8.3 and 8.6 of
Tab. 8.2).

Residuals in DKF and LWLS are visualized in Fig. (8.7). Sub-figure 8.7a shows the
residuals using LWLS. One can clearly see that the attack is visible in the residuals
of LWLS. Sub-figure 8.7b shows pre-fit residuals of real and imaginary voltages using
DKF. The attack clearly leads to some peak in the residuals. In contrast to the LWLS
residuals the DKF residuals are much smaller and decrease immediately after the first
peak. The reason for this is that in the DKF previous values are taken into account
and this way the SE is “trained” to accept the new high value as normal. Sub-figure
8.7c shows post-fit residuals of real and imaginary voltage using DKF. As shown in
sub-figure 8.7d, one can see pre-fit residuals are higher in attack starting data point
and post-fit residuals are greater in attack ending data point (shown for real voltage).
When an attack starts, predicted value on the data point depends on the estimated
value of the previous non-manipulated data point, whereas estimated value at the data
point considers both the predicted value and observed value. Therefore while starting an
attack pre-fit residuals have higher magnitude than post-fit residuals. When an attacker
stops manipulating voltage values, prediction in the next data point still is affected by
the attack, and as estimation considers prediction it is also affected by the previous
manipulated data.

From the sub-figures of residuals, one can see that residuals using DKF are higher than
the residuals using LWLS because at a time step k, SE using LWLS considers only the
measurements at the time step, whereas SE using DKF considers previous value and the
measurements at the time step.

We conclude in SE using LWLS considering voltage and current measurements, if constant
offsets are added only to voltage measurements then attack can be seen in the residuals
of LWLS and DKF.

171



8. Stealthy Attacks

(a) Residuals of LWLS (b) Pre-fit residuals of DKF

(c) Post-fit residuals of DKF (d) Diff. of pre-fit and post-fit residuals of DKF
(shown for real voltage).

Figure 8.7: Residuals of real and imaginary voltage under attack (SE is based on voltage
and current; but only voltage is manipulated) (Exp. 8.3 and 8.6 of Tab. 8.2).

8.3.2.2 Manipulating both voltage and current measurements

Here we again assume SE is based on both voltage and current measurement both in
a similar manner as presented in Sec. 8.1.2, but also the attacker can manipulate both
voltage and current measurements. The real and imaginary voltages are calculated
from the manipulated polar voltage with fixed phase angle (fixed with first observed
phase angle). The real and imaginary currents are also calculated from the manipulated
voltage using the measurement model shown by Eq. 4.64 in Sec. 4.3.2. Also using
the measurement model, the calculation of real and imaginary voltages are shown in
Eq. 4.65 and Eq. 4.66 respectively. Thus the manipulated real and imaginary voltage
measurements, and the manipulated real and imaginary current measurements are
considered for state estimation.
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(a) Actual current measurement (b) Manipulated current measurement

Figure 8.8: Actual current measurement and current measurement during an attack.

Figure 8.9: Estimated states using LWLS under an attack (Exp. 8.4 of Tab. 8.2).

The manipulated voltage measurement is shown by Fig. 8.1 The actual and manipulated
current measurements are shown in Fig. 8.8. Comparing the sub-figures 8.8a and 8.8b, we
can see real current increases and imaginary current decreases during the attack. From
the Fig. 8.1, one can see the real voltage is higher than the imaginary voltage. Since the
real part G of admittance matrix H has positive value and the imaginary part B has
negative value, one clearly can see from the Eq. 4.65 that the real current increases and
from Eq. 4.66 that the imaginary current decreases during the attack.

LWLS uses the manipulated voltage and current measurements (shown in Fig. 8.1 and
Fig. 8.8b) and estimates voltage states. The estimated voltage states are shown in
Fig. 8.9. Another sub-figure 8.10a shows residuals for both real and imaginary voltage
which is just a tiny signal. The magnitude of the residuals is similar to the magnitude of
the residuals in normal operation shown by Fig. 4.18 in Sec. 4.3.2.3 and the residuals
are close to zero. From sub-figure 8.10b, we can see the estimated signal are close to
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(a) Residuals using LWLS (b) Residuals using LWLS (zoomed in)

(c) Pre-fit residuals using DKF

Figure 8.10: Residuals of real and imaginary voltages under an attack (Exp. 8.4 and 8.7
of Tab. 8.2).

observation, and there is tiny difference due to the admittance matrix (as the observed
values are multiplied by the admittance matrix). Thus, we conclude the attack can not
be detected looking at the residuals if the attacker can manipulate both voltage and
current measurements. This is in-line with the work of Liu et al. in [100], that says that
attacks remain stealthy for the LWLS residuals if the the attacker can fit them to the
form a = H · c. In case that voltage and current measurements are used for the SE the
attacker needs to be able to manipulate both, since otherwise (as shown in this section
above) the attack is visible.

If DKF is used for SE instead of LWLS, the attack can be detected in the residuals as
shown in sub-figure 8.10c. So, if a DKF is used for the SE, the attack is visible in the
residuals even if the attacker can manipulate both, voltage and current.

We conclude that attacks of the form a = H · c as defined by Liu et al. in [100]
remain stealthy for a residual-based detection if LWLS SE based on voltage and current
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measurements is used and both, voltage and current measurements, can be manipulated.

Nevertheless, if DKF SE is used based on voltage and current measurements, the attacks
can be detected by residual-based detection.

8.3.3 Results Findings

From our experiments, we conclude the following:

• F 2.2.1: Constant offset attacks of the form a = H · c remain stealthy for residual-
based detection methods if we use LWLS as SE method based only on voltage
measurement and only manipulate the voltage. In this case, the LWLS residuals
are always zero (as shown in Exp. 8.1 and Exp. 8.2).

• F 2.2.2: Constant offset attacks of the form a = H · c can be detected by residual-
based detection methods if we use LWLS as SE method based on voltage and
current measurement and only the voltage can be manipulated (as shown in Exp.
8.3).

• F 2.2.3: Constant offset attacks of the form a = H · c remain stealthy for residual-
based detection methods if we use LWLS as SE method based on voltage and
current measurement and both voltage and current can be manipulated (as shown
in Exp. 8.4).

• F 2.2.4: Constant offset attacks of the form a = H · c can be detected for residual-
based detection methods if we use DKF as SE method. This was shown for the
three different cases: a)SE based on voltage with manipulation of voltage (as shown
in Exp. 8.5), b) SE based on voltage and current with manipulation of voltage (as
shown in Exp. 8.6) and c) SE based on voltage and current with manipulation
of voltage and current (as shown in Exp. 8.7). In all three cases the attack was
detected.

• F 2.2.5: With residual-based detection based on LWLS SE the residuals remain
high (in the cases where the detection works) whereas with DKF we get one peak
when the signal changes and then the signal adjusts to the manipulated values and
considers the manipulated signal as the new normal.

The possibility of detecting the manipulation attacks on voltage and current measurements
depends on the method and measured vectors used for state estimation. A summary of
the results is shown in Tab. 8.3.
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Table 8.3: Possibility of detecting stealthy attacks defined by Liu et al. in [100] using
residual-based methods; Exp. = experiment; Det. = detection possible.

SE method Exp. Measured vector Manipulation of Detectable
LWLS 8.1, 8.2 Voltage Voltage No
LWLS 8.3 Voltage, current Voltage Yes
LWLS 8.4 Voltage, current Voltage, current No
DKF 8.5 Voltage Voltage Yes
DKF 8.6 Voltage, current Voltage Yes
DKF 8.7 Voltage, current Voltage, current Yes

8.4 Summary

In this chapter, we presented the stealthiness of the FDI attacks for residual-based
detection methods based on LWLS and DKF. Two cases were shown; SE using i) only
voltage measurements and ii) both voltage and current measurements. Then we provided
an experimental setup of the data manipulation for the stealthy attacks.

We showed the relation of residuals and the SE methods (LWLS and DKF). The following
finding help us to answer RQ 2.2.1 (Can attacks of form a = H · c against state
estimation from [100] remain stealthy if we analyze residuals from state estimation using
LWLS?):

• Under the conditions defined by Liu et al. in [100] for LWLS SE, attacks remained
stealthy for the case that all measured values used for the SE were manipulated.

For our reasoning RQ 2.2.1, we already expected that the attacks of form a = H · c
against SE from [100] remain stealthy if SE is based on voltage measurement and voltage
can be manipulated. The evidence from experiments confirmed that if the attacker could
manipulate the voltage measurements then the attacks of form a = H · c remained
stealthy in the SE using LWLS and based on voltage. Further, as we already expected
that the attacks of form a = H · c remain stealthy if SE is based on voltage and voltage
can be manipulated adding high offsets. The evidence from experiments confirmed that
the attacks remained stealthy if the attacker could manipulate the voltage measurements
considered for LWLS SE based on voltage even if the c was quite large. Similarly, for our
reasoning, we expected that the attacks of form a = H · c remain stealthy if SE is based
on voltage and current; and both voltage and current measurements can be manipulated.
The evidence from experiments confirmed that the attacks remained stealthy only if the
attacker could manipulate both voltage and current measurements considered for LWLS
SE based on voltage and current.

The following finding help us to answer RQ 2.2.2 (Can attacks of form a = H · c against
state estimation from [100] be detected if we analyze residuals from state estimation
using DKF?):
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• The attacks defined in [100] did not remain stealthy if DKF was used for SE because
the attacks were detected by analysing residuals from SE using the DKF.

For our reasoning RQ 2.2.2, we expected that the attacks of form a = H · c do not
remain stealthy if we use DKF for SE based on voltage and voltage could be manipulated.
The evidence from experiments confirmed that the attacks of form a = H · c are detected
by analysing the residuals from SE using DKF and based on only voltage. Similarly,
as we expected for our reasoning, the evidence from experiments confirmed that the
attacks of form a = H · c are detected in if SE is based on both voltage and current and
either only voltage or both voltage and current could be manipulated. In both cases, we
identified a different by analysing the residuals from SE using the DKF.
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CHAPTER 9
Lightweight Statistical Methods

Notice of adoption from previous publications in Chapter 9
Parts of the contents of this chapter have been published in the following papers:

[133] S. Paudel, T. Zseby, E. Piatkowska, and P.Smith. An evaluation of methods
for detecting false data injection attacks in the smart grid. In preparationa

Explanation text, on what parts were adopted from previous publications:
Median absolute deviation, Kullback-Leibler divergence, cumulative sum and weighted
voting methods in this chapter are based on the work done in [133].

S. Paudel implemented the methods and conducted all the experiments. Theoretical
considerations and experiment planning was done together with all co-authors, the
text and figures in the papers were created together by all authors.

aThe paper is in preparation.

In this chapter, we aim to detect the injected attacks introduced in Chapter 5. In a first
step, we propose an anomaly detection model. In a second step, we present multiple
statistical anomaly detection methods: median absolute deviation (MAD), Kullback-
Leibler divergence (KLD), and cumulative sum (CUSUM). In a third step, we present the
experimental setup of lightweight statistical methods - MAD, KLD, and CUSUM. In the
experimental setup, usage of training data for setting thresholds for these methods is shown.
Further, the effect of anomaly detection parameters on anomaly detection performance is
presented. In a fourth step, we present results from the experiments and show receiver
operating characteristic (ROC) curves of the methods. Our analysis shows, in contrast to
L2-norm and normalized residual-based methods (presented in Chapter 7), lightweight
statistical methods - MAD, KLD and CUSUM detect at least one anomaly (a malicious
or benign anomaly that is also a malicious anomaly) during all attacks introduced in the
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Tab. 5.1 of Chapter 5. Then we focus on enhancing the anomaly detection performance
through a combination of methods and explore a way to combine methods in order to
increase detection performance. First, we investigate using a weighted voting scheme
where we assign weights on the methods based on their detection performance; second,
we present the experimental setup and last the results from the approach are analyzed
to better understand the anomaly detection performance on attack types. The goal is
to analyze to which extent the combination approach can increase the overall detection
performance.

An attacker can modify voltage measurements and, with some knowledge, can hide the
attack in the normal operation of the state estimation and circumvent detection of the
attack. Table 9.1 shows the possibility of detecting false data injection attacks generated
using an attack model introduced in Chapter 5.

From the Tab. 9.1, we can see some attacks that are not detected by using residuals
of LWLS (see exp. 8.1, 8.2 and 8.4) are detected using residuals of DKF (see exp. 8.5
and 8.7). Nevertheless a DKF is not always implemented because this is some effort
to implement in a power system. The results analysis in Chapters 7 and 8 shows if
a quick high increase is made in the offsets, then it would result in high residuals so
that residual-based methods detect the attack if DKF is used for state estimation, but
they have poor detection performance due to the following features (weakness that are
particular to DKF):

• Residuals are calculated from measurements, so they would adapt if we increase
the offsets slowly.

• The residual-based method detected changes quickly but also adapted to the changes
quickly so that residuals became small quickly and remained within the threshold.
So after some anomalies occurred, it did not detect subsequent anomalies for long.

In order to prevent such stealthy attacks, we propose using multiple statistical anomaly
detection methods in an overall effort to achieve effective detection. To this end, we
use lightweight statistical methods which have been applied to similar problems (e.g.,
in [107, 29, 179, 180, 142]).

Our research questions about using lightweight statistical methods read:

• RQ 2.3: Is it possible to detect the injected attacks with the lightweight statistical
methods?

Further, we divide the research question RQ 2.3 into the following sub-research questions:
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Table 9.1: Detection of FDI attacks (BDD methods detect only some of the FDI attacks
as shown in chapters 7 and 8, here we summarize the detection of FDI attacks using the
residuals-based BDD methods). Attack parameters as described in Sec. 5.3, methods
and thresholds as described in sections 7.2 and 8.2; MV = measured vectors; SEM =
SE methods; Det. = detection; DP = detection possible in our experiments; MO =
manipulation of; Y = yes; N = no.

Exp. MV SEM Det. methods MO Attacks DP

7.1 Voltage DKF Plain RB Voltage SD Y
RSCV, ICOS

IROCV N1

7.2 Voltage DKF L2-norm Voltage CO, RO, ICO, IRO,
IROMN, ICOHS N2

7.3 Voltage DKF Normalized RB Voltage CO Y
RO, ICO, IRO,

IROMN, ICOHS N1

8.1
8.2 Voltage LWLS Plain residuals Voltage CO N3

8.3 Voltage,
current LWLS Plain residuals Voltage CO Y

8.4 Voltage,
current LWLS Plain residuals Voltage,

current CO N3

8.5 Voltage DKF Plain residuals Voltage CO Y

8.6 Voltage,
current DKF Plain residuals Voltage CO Y

8.7 Voltage,
current DKF Plain residuals Voltage,

current CO Y
1 Slowly changing offsets are adopted in the residuals.
2 With our method the threshold based on the training data was too high.
3 Attacks of the form a = H · c as described in [100].

• RQ 2.3.1: Is it possible to detect at least one of the injected malicious anomalies
during our injected attacks with the lightweight statistical methods?
Rationale: As it can be seen in Chapter 8, the attacks that are generated by
our model are clearly observable in the signal; we might therefore assume that
simple lightweight statistical methods will be sufficient to detect them. It would be
beneficial to rapidly detect the attacks and with few computational resources, both
to limit the potential consequence of the attack and to accommodate the rate that
measurements are generated by a PMU (50Hz). Furthermore, as critical decisions
will be based on the outcomes of the detection methods (e.g. regarding network
switching decisions), it is beneficial that a human operator is able to understand
the results from the detection methods and have them readily explainable (in
contrast to, for example, some machine learning and deep learning methods where
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explainability remains an open issue [157]). We propose that detecting at least
one (or a small number of) anomalous data point(s) is sufficient to raise an alarm
and invoke further actions, such as an in-depth analysis of the situation. However,
this is only the case if the methods do not generate many false positives – if this
were the case, single alarms would likely be lost or dismissed (as a weak indicator)
by an operator and not acted on. Finally, the rationale for using several methods
(as opposed to one that attempts to detect all the attack forms that our model
can generate), is that different configurations of the model clearly generate distinct
signals that, presumably, a carefully selected set of detection methods that use
different statistical properties can detect.

• RQ 2.3.2: How long do the methods take until the first malicious anomaly during
the attack is detected?
Rationale: The earlier we detect an attack, the earlier we can invoke counter-
measures (e.g., invoke additional analysis steps, substitute values for state estima-
tion, etc.) The methods that detect the first malicious anomaly fast are beneficial
because we can avoid that the attacks can cause damage on the state estimator and
subsequently the power system. An aggressive attack can have significant changes
in the statistical properties of data, but slow changes during an attack can take
time to have significant changes in the statistical properties of the data. Therefore
we investigate how long it takes until attacks are detected.

• RQ 2.3.3: How many of the malicious anomalies are detected?
Rationale: The detection of at least one of the injected malicious anomalies during
our injected attacks trigger an alarm so that operators conduct an in-depth analysis
of the situation. In situations with many false positives, it can help to get the
number of positives and only put an alarm if too many positives are detected.
The number of detected malicious anomalies can help us to rate the detection
performance of methods. In addition, the detection of more than one anomaly can
help us to maintain the correctness of state estimation e.g., replacing the detected
anomalies before sending the data to state estimation.

• RQ 2.3.4: To which extent does detection performance improve if we combine
lightweight statistical methods?
Rationale: The attacks that are generated by our model have different characteristics.
Different detection methods use different statistical properties for detecting the
attacks. Therefore, it is likely that some methods are well-suited to detect one form
of an attack but fail for other attack forms. Thus, the different methods can detect
different types of attacks, and anomaly detection performance can be improved
by combining the results of the methods. A combination of lightweight statistical
methods can produce trustworthy results.

To combine methods, we use a combination technique from literature, a weighted voting
scheme which is originally applied to machine learning algorithms in [101]. We describe
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the following lightweight statistical methods 1) median absolute deviation (MAD), 2)
Kullback-Leibler divergence (KLD), 3) cumulative sum (CUSUM), and 4) combination
of methods using weighted voting. Further, we make theoretical considerations whether
the methods (MAD, KLD and CUSUM) are able to detect different attacks introduced
in Tab. 5.1 of the Chapter 5.

Table 9.2: Overview of lightweight statistical methods.

Methods Data* Goal of experiment Section

MAD

Training data
(22.03.2016-31.03.2016)
Test data
(01.04.2016-14.04.2016)

- to answer RQ 2.3.1
- to answer RQ 2.3.2
- to answer RQ 2.3.3

9.1.2
9.2.1
9.3

KLD

Training data
(22.03.2016-31.03.2016)
Test data
(01.04.2016-14.04.2016)

- to answer RQ 2.3.1
- to answer RQ 2.3.2
- to answer RQ 2.3.3

9.1.3
9.2.2
9.3

CUSUM

Training data
(22.03.2016-31.03.2016)
Test data
(01.04.2016-14.04.2016)

- to answer RQ 2.3.1
- to answer RQ 2.3.2
- to answer RQ 2.3.3

9.1.4
9.2.3
9.3

Weighted
voting

Training data
(22.03.2016-31.03.2016)
Test data
(01.04.2016-14.04.2016)

- to answer RQ 2.3.4 9.4

* For all the given days of training and test data, one hour at 02:00-03:00 UTC is used.

Table 9.2 shows the intention of using the lightweight statistical methods and data used
for the experiment. Details on parameter settings for the experiment are presented in
Sec. 9.2.

9.1 Theoretical Background

9.1.1 Anomaly Detection Model

Here we introduce our model for detecting anomalies. Different false data injection (FDI)
attacks on PMU measurements can be detected by analysing different data features. We
investigate the characteristics of important and distinct methods for detecting FDI attacks
to a wide area monitoring system (WAMS). We are interested in detecting different types
of attacks. A single method may not detect all types of attacks or may not perform best
for all attack types. A combination of different methods may help to improve anomaly
detection performance and enables to detect different attack types.
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Our anomaly detection model has three main components, namely bad data detection
as shown in Chapters 7 and 8, lightweight statistical methods, and a combination of
lightweight statistical methods. Figure 9.1 shows the anomaly detection model. An
overview of the model is presented in the following paragraphs.

Figure 9.1: Anomaly detection model.

Errors in data sources or FDI attacks could influence state estimation. Therefore, bad
data detection (BDD) methods are needed to be implemented in grid operators. Since
BDD methods detect data that deviates from normal operation, they could also detect
manipulated data [139]. We applied different residual-based BDD algorithms to the FDI
attacks described in Sec. 5.3, our investigation found that we cannot detect anomalies in
some of the FDI attacks using the residual-based methods. Sophisticated attacks can
bypass the classical BDD detection methods [46]. Therefore to complement the detection,
we argue that one has to use additional anomaly detection (AD) methods.

To more effectively detect the FDI attacks, we propose the use of three statistical anomaly
detection methods [107, 29, 179, 180, 142]: i) a measure of dispersion – the MAD; (ii) a
histogram (distribution) based method – the KLD; and (iii) a change point detection
method – the CUSUM methods. We have chosen to apply simple statistical methods, in
contrast to, e.g., machine learning-based approaches because a) we believe that they are
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sufficient to detect our proposed attacks b) to promote the scrutability (understanding)
of the results they produce – a desirable property for use in a critical infrastructure
setting, such as power distribution networks and c) to keep computational overhead small.
Further, considering the computational overhead in the critical infrastructure, we make a
selection of lightweight algorithms as they can be deployed and executed with limited
resources and memory.

The anomaly detector is connected to two components, namely bad data detection and
lightweight statistical methods of the model. Here we check with lightweight statistical
methods though attacks are not detected with residual-based bad data detection methods.
PMU measurements are fed to the state estimation and the lightweight statistical methods
of the anomaly detector. Residuals from the state estimation are fed to the bad data
detection component of the anomaly detector. After processing the residuals, results are
produced from the bad data detection methods. In the lightweight statistical methods
detection component, after processing the measurements the detection results of the
lightweight statistical methods are used for combining different methods. Then final
anomaly detection results are produced from the combination method.

The lightweight statistical methods are expected to be variously suitable for detecting
different attack types. Overall detection performance could be improved by combining
their output. To this end, we propose the use of a combination technique in literature
namely, a weighted voted scheme to increase precision of the results by reducing false
alarms. The voting system is usually used as ensemble methods in machine learning
algorithms [101], here we apply it for combining different statistical methods. Weights
on the methods are assigned based on their anomaly detection performance metrics (e.g.,
TPR, TNR).

9.1.2 Median Absolute Deviation

Mean and standard deviation are sensitive to outliers and therefore are not efficient
estimators [147, 95]. A robust alternative to the mean is median, the median is less biased
than the mean by outliers. Median absolute deviation (MAD) is a robust estimator
of dispersion, as it estimates the median of the absolute deviations from the median
[146, 147]. MAD can be used in both normal and non-normal distributions [147].

The MAD is defined as Eq. (9.1) [146, 102, 147].

MAD = b · median(|xi − M |) (9.1)

where b is a scale factor, M is the median of the data points, xi − M is the difference
of each data point to the median. Thus the MAD is then defined as median of those
differences.

In order to use the MAD as an estimator for dispersion, the value is multiplied by a
constant scale factor b, which depends on the distribution and is set to b = 1.4826 for
normal distributed data [146].
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For setting a threshold for decisions based on the MAD, one can establish a MAD interval
as follows:

median − l · MAD < xi < median + l · MAD (9.2)

Here l is the decision level. So similar to saying values should stay within 2 or 3 standard
deviations from the mean, we here can say the values should stay within 2 or 3 · MAD
from the median.

We later use the MAD method in different processing steps. We first use it for labeling
the training data. All data points outside the MAD limits are labelled as anomalous.

We then use the MAD method for anomaly detection with a threshold that we set based
on training data. We calculate MAD from the training data and set the level of decision
such that all normal data in the training data remain within the interval. The upper
limit and lower limit of the interval defined by the MAD from the training data are set
as a threshold for the classification of the test data.

We also use the MAD method to establish thresholds for the KLD values in a way that
we calculate the MAD from the KLD sequence and set the level of decision from the
training set (such that anomalies are outside the interval) and then use the resulting
MAD interval (of the KLD sequence) to classify the test data.

Theoretical considerations about the detection performance: MAD is suitable
to detect deviations from the median (less influenced by the outliers). For setting the
MAD boundaries in the test data, we take the median and the MAD of the whole training
data set as a reference to set the interval. Based on our data analysis, detectability
depends on a) if the test data have a different median from the training data and b) if
the test data has a higher deviation from the median of the training data (see Tab. A.4
and Tab. A.5 in Appendix A.11). Attacks are expected to be detected if the data value
deviates significantly from the median of the training data.

Table 9.3 shows the expected detecting possibility and detection speed of the types of
attacks using MAD. Measurement zk at a time step k is detected as anomalous if the
precondition is true. It is expected to detect CO attacks immediately, i.e, when an offset
is large, then the first manipulated data value already remains outside of the interval.
As ICO and ICOHS have increasing offsets these attacks are expected to be detect after
some time. The MAD method can detect RO, IRO, IROMN attacks if they exceed the
boundaries (upper limit or lower limit). Detection can happen due to three reasons a) the
deviations from the median in test data differs from the one in training data b) median
changes due to an attack c) deviations from median increases due to an attack.
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Table 9.3: Detectability of attacks using MAD.

Attacks Parameters Precondition Detection delay

CO constant (c)
mediantrain − l ∗ MADtrain

> zk + c >
mediantrain + l ∗ MADtrain

Immediately

RO random (r)
mediantrain − l ∗ MADtrain

> zk + r >
mediantrain + l ∗ MADtrain

Immediately

ICO,
ICOHS slope (s)

mediantrain − l ∗ MADtrain
> zk + s · k >

mediantrain + l ∗ MADtrain

Delayed

IRO,
IROMN

random (r),
slope (s)

mediantrain − l ∗ MADtrain
> zk + rk + s · k >

mediantrain + l ∗ MADtrain

Immediately

9.1.3 Kullback-Leibler Divergence

The Kullback-Leibler divergence (KLD) measures the difference of two probability distri-
butions over the same variable [91, 90]. The KLD of a distribution Q(x) from a reference
distribution P (x) is a measure of information loss, if we use Q(x) to approximate P (x),
i.e., it measures how close are the two distributions [91, 90].

The KLD between two discrete probability distributions P (x) and Q(x) over a discrete
domain is represented by Eq. (9.3) [54, 31]

DKL(P || Q) =
�
x∈X

P (x)log

�
P (x)
Q(x)


(9.3)

The KLD is ≥ 0 and only gets zero if P (x) and Q(x) are equal. The KLD can be used
to check a distribution of observations against a reference distribution. In our case, we
derive a reference distribution from historic data and then use the KLD to compare our
test data with the reference distribution to see if there are distributions that are atypical
(anomalous) for the given data.

Figure 9.2 depicts a diagram for calculating KLD. It shows how the KLD sequence is
calculated from the reference histogram and the observation.

Figure 9.3 depicts a diagram for detecting anomalies using KLD. Both data points-based
and window-based approaches are visualized in the figure. A window is marked as
anomalous when it contains at least one anomalous data point. In this case, all data
points in the anomalous window are marked as anomalous data points.
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Figure 9.2: A diagram for calculation of KLD.

In the data point-based approach, we look at the fraction of correctly classified anomalous
data points and the number of all data points. The accuracy of the data points-based
approach is calculated as shown in Eq. (9.4).

ACCDP = TPDP + TNDP

all DP
(9.4)

where TPDP represents the correctly classified anomalous data points, TNDP represents
the correctly classified normal data points, and the number of all data points all DP =
TPDP + FPDP + TNDP + FNDP .

In the window-based approach, we look at the fraction of correctly classified anomalous
windows and the number of all windows. The accuracy of the window-based approach is
calculated as shown in Eq. (9.5).

ACCW in = TPW in + TNW in

all Win
(9.5)

where TPW in represents the correctly classified anomalous windows, TNW in represents
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Figure 9.3: Anomaly detection using KLD (data points-based and window-based).

the correctly classified normal windows, and the number of all windows all W in =
TPW in + FPW in + TNW in + FNW in

Theoretical considerations about the detection performance: KLD detects
changes in the distributions. So it highly depends on the choice of the reference histogram
(e.g., from historical, from training or from previous window), on the window size and
on the shifting speed (see Sec. 9.2.2). In order to make a selection of a representative
historic data, we consider the historic data from three weeks (see Sec. 6.4) and derive a
minute reference histogram as a representative distribution. The one minute histogram
represents the distribution of the data (see Sec. 9.2). So we make a comparison of
the reference histogram to the histogram of 1 minute (the distribution of values from 1
minute). The reference histogram has a broad distribution in compare to histograms per
hour (1.0463 to 1.0728 for an hour - see Sec. 9.2.2). As we set the threshold using the
KLD values from the training data, we tolerate a high deviation because the training data
already deviates from the historic data. Thus only when values in the test data deviate
much more from the histogram from historic data than the values from the training data
then it is detected as anomalous.

Table 9.4 shows the expected detecting possibility and detection speed of the types of
attacks using KLD. It is expected that the KLD method detects CO attacks immediately
only if c is large enough; ICO, IRO, IROMN and ICOHS attacks are expected to be
detected after some time because distribution of the data points shifts as the magnitude
of the offsets increase with time. Based on the data analysis, we saw that the mean of
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Table 9.4: Detectability of attacks using KLD

Attacks Parameters Precondition Detection delay

CO constant (c)
DKL(Histotest, Historef)

> t with t =
max(DKL(Histotrain, Historef))

Immediately

RO random (r) DKL(Histotest, Historef) > t Not Detected
ICO,
ICOHS slope (s) DKL(Histotest, Historef) > t Delayed

IRO,
IROMN

random (r),
slope (s) DKL(Histotest, Historef) > t Delayed

test data is different from training data. However, to be detected as an anomaly, the
difference should be significant to change the histogram. So for the attack that makes
small changes in mean may not be detected. For instance, for the RO attack (if the mean
of the test data is similar to the mean of the training data), it may not significantly
change the histogram and may not be detected. An anomaly is assumed to be detected
if the 1 minute histogram of test data deviates more than the histogram of training data
to the reference histogram.

9.1.4 Cumulative Sum

The cumulative sum (CUSUM) is a sequential analysis method to detect change points
in time series. We use a two-sided CUSUM algorithm to detect changes (a decrease or
an increase) in the means. Table 9.5 shows an overview of the notation used in CUSUM.
Using the definition from [21], we define the sufficient statistic si for detecting a change of
the mean from µ0 to µ1 in a Gaussian distribution with constant variance σ2, as follows
(Eq. 9.6, derived from the log-likelihood ratio as shown in [21]).

si = µ1 − µ0
σ2

�
xi − µ0 − µ1

2


(9.6)

This can be rewritten as

si = µ1 − µ0
σ2

�
xi − µ0 − µ1

2


= b

σ

�
xi − µ0 − ν

2


(9.7)

si = b

σ

�
xi − µ0 − ν

2


(9.8)

with the change magnitude ν and the signal-to-noise ratio b = µ1−µ0
σ .

For detecting a change point at time tn from observations xi to xk we build the sum Sn

from the si as shown in Eq. (9.9):

Sn =
i=k�
i=1

si (9.9)
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Table 9.5: Notations used in Cumulative Sum.

Notation Description
µ0 Mean before a change
µ1 Mean after a change
σ2 Variance of distribution
si Sufficient statistics
b Signal-to-noise ratio
ν Allowed change magnitude
xi Observation at time step i

xk Observation at time step k

Sn Sum of si from i = 1 to i = k

µ+
1 Deviation from µ0 in positive direction

µ−
1 Deviation from µ0 in negative direction

g+
n Cumulative change in positive direction

g−
n Cumulative change in negative direction

g+
min Minimum value of g+

n

g−
min Minimum value of g−

n

h Threshold
α Allowed false alarm
N Size of a block

Since we want to detect deviations from µ0 in both directions the change is either
µ+

1 = µ0 + ν or µ−
1 = µ0 − ν and we use the two-sided CUSUM algorithm to detect

if in either of the two cases the value exceeds the threshold h. As shown in [21], we
incorporate b

σ in the threshold and can therefore express the si in a more simple way as

si = xi − µ0 − v

2 (9.10)

We then define g+
n and g−

n as

g+
n = (g+

n−1 + xn − µ0 − ν

2 ) (9.11)

g−
n = (g−

n−1 − xn + µ0 − ν

2 ) (9.12)

The threshold is defined by Eq. (9.13) as in [117].

h = − σ

ν/2 ln α (9.13)

where ν is the maximum variation allowed in the mean of the signal, α is the false alarm
probability and σ is the standard deviation of the signal.
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In normal condition both g+
n and g−

n continue with negative slopes indicating that the
signal is inside the reference variation ν and has normal values. Thus the minimum value
of g+

n (g+
min) and minimum value of g−

n (g−
min) are updated in each data point.

Once a positive jump is detected then g+
n increases until it reaches a maximum value

g+
max as the following data points do not show big differences anymore, after reaching

the maximum value g+
n starts decreasing. The maximum value is the point at which the

difference in means stops being significant. Figure 9.4 shows an illustrative plot where
we can see the change in g+

n due to a significant change in mean of the signal.

Figure 9.4: A sample CUSUM plot representing a change in g+
n due to a significant

change in mean of the signal.

Similarly, once a negative jump is detected then g−
n increases until it reaches a maximum

value and again starts decreasing after reaching the maximum value g−
max. The alarm is

set to the point where either of them exceeds the threshold h.

g+
n − g+

min > h

OR

g−
n − g−

min > h

(9.14)

It could be necessary to process blocks of data for a fast computation (e.g., online
processing), thus we compute blocks of data with length N after the block is over g+

n is
reset to:

g+
0 = g+

max − g+
min (9.15)

Similarly, we reset g−
n to

g−
0 = g−

max − g−
min (9.16)

Figure 9.5 depicts a sample plot for detecting a change using g+
n . The plot shows the

behaviour of the g+
n for normal operation and after starting a change. We can see the
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Figure 9.5: A sample CUSUM plot for detecting the change using g+
n .

normal behaviour on the first block before starting a change, in latter blocks (blocks 2
and 3) g+

n always increases due to the change and reset at the end of each block.

Theoretical considerations about the detection performance: CUSUM detects
variations in the mean. It tracks if the mean changes over time. It usually depends on
the assumption that the data is normally distributed. One can see from the time series
of the selected data in Sec. 6.4 that in many cases our PMU data is partially normally
distributed and there are already abrupt changes of the mean in the normal data. To
tolerate this, we set a large enough threshold. As we define the threshold using the overall
mean value of all the training data and maximum variation in the mean of training data
the detectability depends on if the mean of the test data deviates significantly from the
mean of the training data. Data analysis shows that the mean of test data is different
from the mean of training data (see Tab. A.4 and Tab. A.5 in Appendix A.11). The
attacks that cause significant changes in mean are expected to be detected.

Table 9.6 shows the expected detecting possibility and detection speed of the types of
attacks using CUSUM. In a CO attack the mean changes abruptly and should be detected
immediately as changes in mean cross the allowed variation ν, and for ICO, IRO, IROMN
and ICOHS attacks, mean has significant change if the magnitude of the offsets are large
then they are expected to be detected. For the RO attack, we have the mean of the
attack signal = 0, and the randomization component added negative and positive offsets
such that the mean does not change. Thus RO is not expected to be detected, but due
to changes in the actual data might cause the detection during the attack type RO.
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Table 9.6: Detectability of attacks using CUSUM.

Attacks Parameters Precondition Detection delay

CO constant (c)
g+

n of zk + c − g+
min > h

or
g−

n of zk + c − g−
min > h

Immediately

RO random (r)
g+

n of zk + r − g+
min > h

or
g−

n of zk + r − g−
min > h

Delayed

ICO,
ICOHS slope (s)

g+
n of zk + s · k − g+

min > h
or
g−

n of zk + s · k − g−
min > h

Delayed

IRO,
IROMN

random (r),
slope (s)

g+
n of zk + rk + s · k − g+

min > h
or
g−

n of zk + rk + s · k − g−
min > h

Delayed

9.2 Experimental Setup

We aim to detect the manipulation attacks introduced in Tab. 5.1 of Chapter 5. Some
of these attacks are not detected by RB BDD (shown in Sec. 7.3.3). Here we aim at
detecting the attacks with the methods MAD, KLD and CUSUM. We use the same data
sets and process for defining normal and malicious data points as described in Sec. 6.5.
Figure 6.14 shows the processing steps that are performed on the data. Depending on
the method, we proceed with different steps.

Additionally, we present influencing factors of the anomaly detection methods. We briefly
discuss on methods’ parameters, dependency of the one parameters to other parameters of
the methods, along with methods’ goals and anomaly detection performances. Table 9.7
illustrates methods goals, parameters and the key parameters on which anomaly detection
performance depends.

In contrast to existing work of the statistical methods using simulated-based data (e.g.,
in [165],[56],[58],[174],[57]), we use real measurement from the EPFL campus network
(see Chapter 6). We recall that since we have noisy real data and we may have high
thresholds as they are defined based on the real noisy data. The high thresholds may
influence the detection performance of the statistical methods.

9.2.1 MAD

For the MAD method, we use the interval (with decision level 3.5) that was used for
labelling the training and test data as the threshold. With this we can ensure that all
BAs in the test data will be detected as anomalies. Using the MAD threshold, we classify
the data points of the manipulated test data as normal or anomalous.
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Table 9.7: Influencing factors of detection methods; DPs = data points.

Methods Detection
goal Parameters Parameters

dependency
Parameters
for testing

MAD

If data
is outside
of MAD
interval

- Reference median
- Time window for
calculating reference
median
- Decision level for
threshold interval
- MAD scale factor
- Threshold (interval)

- Median from
training data
- MAD scale
factor (b) to
1.14826
- Threshold
covers all DPs
from training
data

- Threshold

KLD

If
distribution
differs from
reference
distribution

- Reference histogram
- Time window
of histograms
- Sliding time
of histograms
- Decision level
for divergence
- MAD scale factor
- Threshold for
divergence

- Time window
set to 1 min
- Sliding tine
set to 1 sec
- Median from
training data
divergence
- MAD scale
factor from
training data
divergence
- Threshold
covers all
divergences
from training
data

- Reference
histogram
- Window size
- Sliding size
- Threshold

for
divergence

CUSUM
If mean
changes
over time

- Threshold for
gn

+, gn
−

- Maximum allowed
variation ν
- Mean value µ0
- Standard deviation

σ
- False alarm
probability α

- Variation in
mean from
training data
- Probability of
false alarm
- Standard
deviation from
training data

- Threshold
for

gn
+, gn

−

Parameters for anomaly detection: MAD checks whether a data point is outside
the MAD interval, an interval represents lower boundary and upper boundary of the
voltage magnitude (see Tab. 9.8).
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MAD has a reference median calculated from the training dataset. Thus the reference
median depends on the time window from which reference median is calculated. The
interval for voltage depends on scale factor b which depends on the distribution of the
reference data. In our case, we fixed the value of b, and b is set to b = 1.14826 [146]
which is used for normal distribution. Decision level l is set such that it covers the
MAD interval. Thus the two thresholds, upper and lower boundaries of the intervals of l
depends on the reference data. In our case l is set to l = 2.

MAD’s performance depends on how well the thresholds are set. We checked the
distribution of the training voltage and found it has partial normal distribution and
therefore we select b = 1.4826 [146] which is used for the normal distribution.

9.2.2 KLD

For the KLD method, we first need to calculate a reference histogram. For this, we use
all the data points from the historical data. It is possible to compare and calculate an
average histogram from histograms with the same range (lower and upper boundaries).
Consequently, we set the histogram range to the minimum and maximum value of the
historical data; the number of bins to 60 and determine the width of the bins (edges). For
all histograms, we hold the same range, bins and edges. First, we calculate 60 histograms
per day (1 hour) as we have a 1-minute window and only consider 1 hour per day; second,
we calculate an average histogram (1-minute window) per day out of the 60 histograms,
resulting in 31 histograms (1-minute window) from 31 days. Then, from all days, we
calculate the average reference (1-minute) histogram. Figure 9.6 depicts the generated
reference histogram. It uses 3,000 data points. The highest value is 1.0712 and the lowest
is at 1.

Figure 9.6: Reference histogram (source Paudel et al. [133])

We then calculate the KLD for the training data. Based on our analysis on different
window sizes and shifting time, windows of size 1 minute that shift in steps of 1 second
visualizes changes in the distribution. Thus, we use a sliding time window of size 1 minute
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that progresses in steps of 1 second and then calculate for each window a histogram and
compare it with the reference histogram by generating a KLD value. We use the sequence
of KLD values from the training data to set a KLD threshold. For this we apply the
MAD method to the KLD sequence and check how we would need to set the decision
level so that all normal data points lie within the interval.

We then calculate the KLD sequence for the manipulated test data (using the reference
histogram from the historical data) and then use the KLD threshold to classify the data
points as normal or anomalous.

Parameters for anomaly detection: KLD checks whether the distribution of
measurements differs from the reference distribution. Proper adjustment of time window
of histogram and sliding time of histogram can increase anomaly detection performance.
Thus, the threshold of KLD depends on the MAD scale factor b which depends on
the distribution of training data KLD sequence. The MAD scale factor b is set to the
reciprocal of the inverse of quantile function [146] (computed for 0.75 probability of the
KLD sequence distribution). Decision level l is set for covering the normal behavior of
the training data.

KLD’s anomaly detection performance depends on how the reference histogram is calcu-
lated, and how representative is the histogram for normal traffic.

Since normal traffic changes over time, a better option can be having a sliding window
and comparing the sliding window with more recent value. For instance, use the KLD
differences to the previous time window. But in this case, the method adapts to changes.
Similar to the residuals in state estimation, it therefore could be used by attackers to
trick the system. As we aim detecting changes, we do not use the KLD differences of
subsequent time windows.

9.2.3 CUSUM

For the CUSUM method, we use maximum variation ν, standard deviation σ, mean
value µ0 from the training data and a target false alarm rate of α between 0.1 and 0.9 to
calculate a threshold. We then calculate the CUSUM for the manipulated test data and
then use the CUSUM threshold to classify the data points as normal or anomalous.

CUSUM resets once the block of length N is computed. If N is large then false negative
would be small but at the same time false positives may increase. We tried different
values of N and looked at the trade of positives and negatives. In order to avoid large
false positives, we have chosen small value of N = 3,000 (data of 1 minute). Then it
continues calculating g+

n , g−
n from the next data point.

Parameters for anomaly detection: CUSUM checks if the mean changes over time.
The threshold for gn

+ and gn
− is set using the maximum allowed variation ν, mean µ0

and standard deviation σ from the training data. In addition, the probability of false
alarm α is considered for calculating the threshold.
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CUSUM’s anomaly detection performance depends on the selection of values for calculat-
ing the threshold, for instance the value of allowed variation (value of ν), accepted false
alarms (value of α). Block length N also has an influence on the detection performance.
For instance, if N is too large then history data are taken into account so that the method
gets confused and triggers false alarms.

Table 9.8: Overview of methods, parameter setting, thresholds and injected attacks; Exp.
= experiment; DL = decision level; b = scale factor; t = threshold; LL = lower limit; UL
= upper limit; WS = window size; ST = window sliding time; CO = constant offset; RO
= random offset; ICO = incremental constant offset; IRO = incremental random offset;
IROMN = incremental random offset with more noise; ICOHS = incremental constant
offset with high slope.

Exp. Methods Data* Param.
setting Threshold Injected

attacks Sec.

9.1 MAD

Training data
(22.03.2016
- 31.03.2016)
Test data
(01.04.2016
- 14.04.2016)

For labeling
(DL = 3.5)

For AD
(DL = 2)

b = 1.4826

For AD
UL = 1.07
LL = 1.051

CO, RO
ICO, IRO
IROMN,
ICOHS

9.3.1

9.2 KLD

Training data
(22.03.2016
- 31.03.2016)
Test data
(01.04.2016
- 14.04.2016)

DL = 3.2,
ST = 1 sec,
WS = 1 min

t = 8.95

CO, RO
ICO, IRO
IROMN,
ICOHS

9.3.1

9.3 CUSUM

Training data
(22.03.2016
- 31.03.2016)
Test data
(01.04.2016
- 14.04.2016)

ν = 0.0076,
σ = 0.0046,
α = 0.005
N = 3,000

t = 6.41

CO, RO
ICO, IRO
IROMN,
ICOHS

9.3.1

* For all the given days of training and test data, one hour at 02:00-03:00 UTC is used.

Table 9.8 shows an overview of lightweight statistical methods (MAD, KLD and CUSUM),
parameter settings, thresholds and injected attacks. We recall that the thresholds of the
methods are defined for polar voltage and no transformation into rectangular coordinates
is necessary.
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9.3 Results

Here we present the results of the three lightweight statistical methods from experiments
9.1, 9.2 and 9.3. We use anomaly detection results for data points-based and windows-
based approaches. In the data points-based approach, a method checks for each data
point if it is an anomaly. In the window-based approach, a method checks for a window
(a whole set of subsequent data points) if the characteristics of the window differ from
the normal behavior. For MAD and CUSUM, we only use a data points-based approach.
For KLD we use both, a data points-based (KLD-DPB) and a window-based (KLD-WB)
approach as they reflect how both approaches would be used in practice. We compare how
close the histogram of the data points of a sliding window is to a reference histogram. If
the difference exceeds the threshold, then in both approaches (KLD-DPB and KLD-WB)
all data points of the sliding window are marked as an anomaly. For the performance of
the KLD-DPB approach, we compare anomalous data points to total data points. And
for the performance of KLD-WB, we compare anomalous windows to total windows as
explained in Sec. 9.1.3.

9.3.1 Detection of Anomalies per Attack

9.3.1.1 Constant Offset Attack

The CO attack is well detected by all methods, if we count the detection of at least one
malicious data point during the attack. Table 9.9 shows that the CO attack type is
detected in all test data sets by all methods. Nevertheless, if we look at the detection
delay we can see big differences. MAD picks up the attack always immediately when the
first anomalous data point occurs (see Tab. 9.10).

The KLD-DPB detects the attack earlier then the window-based approach. KLD-WB
needs longer than MAD to detect that a change has occurred (between 1499 and 3049
data points). This can be explained, because the window progresses over the attack data
points and only after some time the histogram of the data points in the window differs
sufficiently from the reference histogram so that it is detected as an anomaly.

CUSUM needs longer than MAD and shorter than KLD to detect the attacks (570 to
653 data points). This is because it needs some time until the constant change influences
the mean value.

In the following we look further into details to explain the different effects.

Figure 9.7 shows the manipulated voltage for attack CO for the first (out of the 14) test
data set (April 1, 2016). The anomalies that were detected by the three different methods
are shown as red data points. Figure 9.8a shows upper and lower bound of simple MAD
where one can see the attack crosses the upper bound immediately. It can be seen in the
sequence of KLD values shown in Fig. 9.8b, where each data point represents the KLD
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which compares the histogram calculated from a sliding window (size 1 min, sliding step
1 sec) of the data with the reference histogram. From Fig. 9.8c one can see the calculated
CUSUM sequence for the CO attack.

(a) MAD (b) KLD (data points-based) (c) CUSUM

Figure 9.7: Visualization of detected anomalies in constant offset attack (shown on April
01, 02:00-03:00) (source Paudel et al. [133]).

(a) MAD interval (b) KLD sequence (c) CUSUM sequence

Figure 9.8: MAD interval, KLD and CUSUM sequences for constant offset attack.

One can see how the simple MAD method picks up the anomaly generated by the attack
immediately (at the 60, 001st measurement) and detects most of the following anomalous
data points (Fig. 9.7a). This is not surprising because the attack just suddenly increases
the voltage and the MAD just checks for a threshold. The MAD also correctly detects
the benign anomaly between data points 7,093 and 7,815.

For the KLD-DPB method one can see that the attack is detected but a bit earlier (Fig.
9.7b) because we mark all data points of a window as anomalies if the window contains
one anomalous data. The CUSUM method detects a change point at data point 570, it
takes a bit more time (until the data point 570) to recognize the change. Also one can
clearly see how the benign anomaly in the beginning is not detected as a change point by
CUSUM, because it just consist of a few outliers that do not significantly change the
mean. This is according to the observation described in Sec. 9.3.4.4
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9.3.1.2 Random Offset Attack

The malicious data points due to RO attack are quite difficult to detect. From Tab. 9.9,
we can see the number of average detected anomalous data points is the smallest than the
other attack types. With the MAD method the overall accuracy for all test data is only
36.10% and the recall is 4.65%. That means we miss more than 95% of the anomalous
data points. KLD-DPB performance is similar to the MAD, the overall accuracy is
36.48% and the recall is 7.94% but the KLD-WB performs worse. CUSUM also detects a
few anomalous data point of the attacks type RO (recall= 34.32%). KLD-WB detects
less then 2 % of the anomalies (recall= 1.6%) in all 14 data sets.

The bad detection performance from KLD and CUSUM can be explained, because the
random offset is performed by adding values from a random normal distribution with
mean µ = 0 (see table 5.1). For KLD it seems that most of the added random values
stay within the reference histogram, because the reference histogram was selected from 3
weeks and therefore is already quite broad. Also with a mean µ = 0 the attack does not
influences the mean over time and therefore will not exceed the CUSUM threshold.

Figure 9.9 shows the manipulated data for attack RO for the first day of the test data set.
It can be seen from Fig. 9.10a that the MAD method only detects those random data
points which by chance exceeded the threshold. KLD (both KLD-DPB and KLD-WB)
detects not a single anomaly in the first data set, because even with the random added
data points the histograms in the sliding windows do not differ much from the reference
histogram. This can be seen in the sequence of KLD-WB values shown in Fig. 9.10b,
where each data point represents the KLD value calculated from the comparison of the
histogram calculated from a sliding window (size 1 min, sliding step 1 sec) of the data
with the reference histogram. On average, KLD-DPB detects only 3,018 data points on
all 14 test data sets (see Tab. 9.9). From Fig. 9.10c one can see that also the calculated
CUSUM values stay within the threshold 6.41 in most of the test data sets (see Tab. 9.9).
In the first test data set (April 01, 02:00-03:00), CUSUM detects change points between
data points 161,904 and 171,000 as g−

n crosses the threshold. One can see from sub-figure
9.10c that g−

n has significant changes between the data points 161,904 and 171,000.

9.3.1.3 Incremental Constant Offset Attack

ICO attack is detected (at least one malicious anomaly) in all test data sets by all
methods (see Tab. 9.9). Figure 9.11 visualizes detected anomalies on the first test data
set.

Due to the incremental increase, the attack is only detected after it exceeds a threshold.
Therefore the overall performance for MAD and KLD is slightly worse than for the
constant offset and the detection takes much longer (see Table 9.10).

CUSUM also detects the attack (see first red point in Fig. 9.11c) but also quite late (the
fastest detection was 12249 data points after the attack start). From Fig. 9.12a one
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(a) MAD (b) KLD (c) CUSUM

Figure 9.9: Visualization of detected anomalies in random offset attack (shown on April
01, 02:00-03:00) (source Paudel et al. [133]).

(a) MAD interval (b) KLD sequence (c) CUSUM sequence

Figure 9.10: MAD interval, KLD and CUSUM sequences for random offset attack (source
Paudel et al. [133]).

can see the manipulated voltage crosses the upper boundary of MAD only after adding
the high offsets. Figure 9.12b shows the sequence of KLD values, where each data point
represents the KLD which compares the histogram calculated from a sliding window (size
1 min, sliding step 1 sec) of the data with the reference histogram. From Fig. 9.12c one
shows the calculated CUSUM sequence for the ICO attack.

9.3.1.4 Incremental Random Offset Attack

IRO attack is also detected (at least one malicious anomaly) in all test data sets by all
methods (see Tab. 9.9) but on average it takes longer than for the pure incremental
offset (ICO attack) until anomalies are detected (see Fig. 9.13). This can be explained
by the random component that in some cases prevents that thresholds are exceeded.

Figure 9.14a shows the MAD interval on IRO attack. Figure 9.14b shows the sequence of
KLD values, where each data point represents the KLD which compares the histogram
calculated from a sliding window (size 1 min, sliding step 1 sec) of the data with the
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(a) MAD (b) KLD (c) CUSUM

Figure 9.11: Visualization of detected anomalies in incremental constant offset attack
(shown on April 01, 02:00-03:00) (source Paudel et al. [133]).

(a) MAD interval (b) KLD sequence (c) CUSUM sequence

Figure 9.12: MAD interval, KLD and CUSUM sequences for incremental constant offset
attack.

(a) MAD (b) KLD (c) CUSUM

Figure 9.13: Visualization of detected anomalies in incremental random offset attack
(shown on April 01, 02:00-03:00) (source Paudel et al. [133]).

reference histogram. From Fig. 9.14c one shows the calculated CUSUM sequence for the
IRO attack.
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(a) MAD interval (b) KLD sequence (c) CUSUM sequence

Figure 9.14: MAD interval, KLD and CUSUM sequences for incremental random offset
attack.

9.3.1.5 Incremental Random Offset Attack with More Noise

Table 9.9 shows that the IROMN attack is also detected on all test data sets by all
methods but on average it takes longer than for the IRO attack until anomalies are
detected (see Fig. 9.15). This can be explained by the random component that in some
cases prevents that thresholds are exceeded.

(a) MAD (b) KLD (c) CUSUM

Figure 9.15: Visualization of detected anomalies in incremental random offset attack
with more noise (shown on April 01, 02:00-03:00).

From Fig. 9.16a one can see even with a high random component some data points
remain within the boundary. Figure 9.16b shows the sequence of KLD values, where
each data point represents the KLD which compares the histogram calculated from a
sliding window (size 1 min, sliding step 1 sec) of the data with the reference histogram.
From Fig. 9.16c one shows the calculated CUSUM sequence for the IRO attack.
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(a) MAD interval (b) KLD sequence (c) CUSUM sequence

Figure 9.16: MAD interval, KLD and CUSUM sequences for incremental random offset
attack with more noise.

9.3.1.6 Incremental Constant Offset Attack with High Slope

The ICOHS attack is detected well by all methods (see Tab. 9.9) Figure 9.17 shows
detected anomalies in first test data sets.

Due to the incremental increase with high slope, the attack is only detected after it
exceeds a threshold. Therefore the overall performance for MAD and KLD is slightly
worse than for the constant offset and the detection takes much longer (see Tab. 9.10).
But it is better than for the incremental constant offset.

From Fig. 9.18a one can see due to increment in slope, the attack is detected earlier than
ICO and a jump (between 14 and 16) remain outside of the MAD interval. CUSUM also
detects the attack (see Fig. 9.17c). The fastest detection was 1661 data points after the
attack start. Figure 9.18b shows the sequence of KLD values, where each data point
represents the KLD which compares the histogram calculated from a sliding window (size
1 min, sliding step 1 sec) of the data with the reference histogram. From Fig. 9.18c one
shows the calculated CUSUM sequence for the ICOHS attack.

(a) MAD (b) KLD (c) CUSUM

Figure 9.17: Visualization of detected anomalies in incremental constant offset attack
with high slope (shown on April 01, 02:00-03:00) (source Paudel et al. [133]).
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(a) MAD interval (b) KLD sequence (c) CUSUM sequence

Figure 9.18: MAD interval, KLD and CUSUM sequences for incremental constant offset
attack with high slope.

9.3.2 Attack Detection

An attack is assumed to be detected if at least one of the malicious data points is detected
as an anomaly. We show the detected data points that are calculated from all data points
from all 14 manipulated test data sets (which always include 14 attacks of one type).
Here we use original labels (i.e., BA or MA for an anomaly and normal for a normal data
point) for the calculation of the performance metrics. Labels provided by the detection
methods as explained in Sec. 6.5 are compared to the original labels.

Table 9.9 shows the different detected attack types for all methods. The table depicts
the number of test datasets in which the attacks are detected, and the average detected
anomalous (malicious and/or benign) data points for the 14 test data sets. Malicious and
benign data points on the 14 test data sets are shown in Tab. 6.3 of Chapter 6. In the
Tab. 9.9, we consider detection of only those anomalies during the attacks (the benign
anomalies after staring and before ending the attacks are counted as malicious). It can
happen that BAs are above threshold but here we show what can happen only during
attacks.

For the attacks at least one data point was detected except for the random offsets attack.
Detected data points using MAD, KLD and CUSUM for each data sets are shown in
Tab. A.3 of Appendix A.10. We detect at least one anomalous data point in all attacks.

Detection delay (measure in number of data points after the attack started) results are
shown in Tab. 9.10. In the window-based approach, we measure the number of windows
after the attack started as a detection delay. KLD window-based detection delay results
are shown in Tab. 9.11. Additionally, Tab. 9.10 shows how fast the attacks are detected.
It therefore only summarizes the detection delay for the malicious anomalies and does
not consider the detection delay for the benign anomalies that occured before the attack.
The detection delay shows the number of data points between attack start and the first
detection of an anomaly. The table shows the minimum, maximum and average detection
delay observed in the 14 test data sets.
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Table 9.9: Detected data points using MAD, KLD and CUSUM methods (rounded
average values are shown for the detected data points); an attack is detected if one data
point is detected.

Method Detected Attacks (average detected data points)
CO RO ICO IRO IROMN ICOHS

MAD 14
(114,088)

14
(5,586)

14
(71,771)

14
(71,871)

14
(71,977)

14
(97,871)

KLD 14
(119,289)

1
(3,018)

14
(82,614)

14
(81,525)

14
(68,468)

14
(106,896)

CUSUM 14
(119,379)

6
(41,196)

14
(92,773)

14
(93,437)

14
(92,625)

14
(105,760)

Table 9.10: Minimum, maximum and average anomaly detection delay of different
methods (source Paudel et al. [133]).

Methods Attack Detection Delay
min max average

MAD

CO 1 1 1.00
RO 4 35,382 4,696.10
ICO 2,055 70,669 34,593.50
IRO 1,847 70,669 32,126.00
IROMN 1 21,824 2,763.07
ICOHS 2,044 39,230 18,626.00

KLD

CO 1 1 1.00
RO 70,350 70,350 70,350
ICO 350 58,650 7,792.86
IRO 19,850 58,500 38,475.00
IROMN 28,900 73,750 49,821.43
ICOHS 9,250 22,700 12,714.29

CUSUM

CO 570 653 621.29
RO 1,810 10,1903 23,875.57
ICO 1,574 56,952 27,226.64
IRO 1,740 50,814 26,563.07
IROMN 1,580 56,935 27,374.57
ICOHS 1,661 23,994 14,239.64

The attack detection delays shown in the Tab. 9.10 are illustrated, visualizing the attack
detection for all test datasets. Figure 9.19 shows detection delay of CO and RO attacks.
Sub-figure 9.19a shows the detection delay of CO attack using MAD, KLD and CUSUM.
Detection delay of the CO attack using MAD and KLD is 1 in all test datasets. Therefore,
bars of the detection delay using MAD and KLD are very short. From the sub-figure,
we can see CUSUM has long bars as it is slower than MAD and KLD methods while
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Table 9.11: Minimum, maximum and average anomaly detection delay of KLD window-
based (source Paudel et al. [133]).

Methods Attack Detection Delay
min max average

KLD

CO 1,499 3,049 2,470.43
RO 73,349 73,349 73,349
ICO 66 2,091 1,185.214
IRO 22,849 104,649 60,620.43
IROMN 637 2,095 1,423.214
ICOHS 12,249 46,399 28,370.43

detecting the CO attack; and able to detect only at 570 earliest and delays up to 650.

Similarly, sub-figure 9.19b shows the detection delay for RO attack. MAD detects RO
type attack in 8 datasets early (between 4 and 707), a bit later in 4 dataset (between
1,455 to 4,271) and a delayed detection in 2 datasets (at 17,612 and 35,382). From the
sub-figure, one can see MAD detects RO attack on second, third and fourth datasets very
fast (as the bars are very short). KLD detects RO attack only on 1 dataset (eleventh
dataset) with detection delay 70,350. CUSUM detects the attack only in 6 datasets;
among them detection in 3 datasets are earlier (1810, 1935 and 1956) than in 2 datasets
(at 17,727 and 17,923) and a delayed detection in 1 dataset (at 101,903). Thus, we can
see that methods KLD and CUSUM do not have bars in many datasets; for instance, in
fifth and sixth datasets.

(a) CO attack (b) RO attack

Figure 9.19: Anomalies detection delay in constant offset and random offset attacks.

Figure 9.20 shows the detection delay of ICO and IRO attacks. From sub-figure 9.20a
one can see MAD detects anomaly in only 3 datasets early, and delayed detection in
11 datasets. KLD detects anomalies in 12 datasets quickly and delayed in remaining 2
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datasets. CUSUM also detects anomalies in 4 datasets early and delayed detection in
10 datasets. Figure 9.20b shows the detection delay of IRO attack on 14 test datasets.
MAD detects the ICO attack in 3 datasets earlier and delayed detection in 11 datasets.
Detection using KLD is delayed in all datasets. Detection using CUSUM is earlier in 4
datasets and delayed in 10 datasets.

(a) ICO attack (b) IRO attack

Figure 9.20: Anomalies detection delay in ICO and IRO attacks.

Figure 9.21 shows the detection delay in IROMN and ICOHS attack. Sub-figure 9.21a
shows the detection delay of IROMN attack. MAD detects IROMN in 10 datasets very
quick. KLD has delayed detection delay and has same detection delay in 51,450 in 11
datasets. CUSUM detects the attack in 4 datasets earlier and has a delayed detection
in 10 datasets. Similarly, Fig. 9.21b shows the detection delay of ICOHS attack. MAD
detects IROHS in 2 datasets and has delayed detection delay in 12 datasets. KLD has
delayed detection in all datasets. CUSUM has detection delay in 4 datasets earlier than
in 10 datasets.
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(a) IROMN attack (b) ICOHS attack

Figure 9.21: Anomalies detection delay in IROMN and ICOHS attacks.

9.3.3 Detection of manipulated data points

We show the overall performance metrics that are calculated from all data points from
all 14 manipulated test data sets (which always include 14 attacks of one type). Here we
use original labels (i.e., BA or MA for an anomaly and normal for a normal data point)
for the calculation of the performance metrics. Labels provided by the detection methods
as explained in Sec. 6.5 are compared to the original labels.

Table 9.12 shows the detection performance (data points-based) for all methods and the
different attack types. The table depicts minimum, maximum and average values of the
performance metrics from 14 test data sets; the best results per attack are shown in bold
letters. Accuracy and recall of MAD, KLD and CUSUM for 14 test datasets will be
illustrated in Sec. 9.4.3. The KLD window-based detection performance is shown in Tab.
9.13.

All methods detect the CO attack well. The RO attack is better detected by CUSUM
than by MAD and KLD. Similarly, the ICOHS and IROMN are better detected than the
ICO and IRO attacks by all methods.

MAD has a lower false positive rate than KLD and CUSUM in all attack types. Similarly,
MAD also has higher precision than KLD and CUSUM in attack types CO, ICO, IRO,
IROMN and ICOHS.

For the RO attack, CUSUM has higher precision than MAD and KLD. We observed a
high variation in the recall. For instance, highest recall values are seen for the data of
day 2 and the lowest recall values are seen for the data of day 4. MAD detects only a
few malicious data points in the manipulated signal (details are shown in Fig. A.14 in
Appendix A.7) which causes the minimum value 0.01% in recall of MAD. Other methods
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Table 9.12: Anomaly detection performance of different methods. The values shown are
the minimum, maximum and average anomaly detection performance metrics from the
14 test data sets. Best results per attack are shown in bold letters (source Paudel et al.
[133]).

Methods Attack
Accuracy
average

(min/max)

Recall
average

(min/max)

FPR
average

(min/max)

Precision
average

(min/max)

MAD

CO 96.38%
(78.61/100)%

95.03%
(68.29/100)%

0.91%
(0/12.02)%

99.52%
(92.60/100)%

RO 36.10%
(33.23/57.66)%

4.65%
(0.01/42.50)%

0.91%
(0/12.02)%

91.09%
(87.61/100)%

ICO 72.89%
(39.43/94.38)%

59.81%
(15.16/91.94)%

0.91%
(0/12.02)%

99.20%
(71.61/100)%

IRO 72.93%
(39.40/94.39)%

59.86%
(15.11/91.95)%

0.91%
(0/12.02)%

99.25%
(71.55/100)%

IROMN 70.42%
(40.40/90.09)%

56.11%
(16.60/85.50)%

0.91%
(0/12.02)%

99.20%
(73.43/100)%

ICOHS 87.37%
(73.22/97.40)%

81.52%
(65.84/96.10)%

0.91%
(0/12.02)%

99.44%
(91.64/100)%

KLD

CO 96.70%
(93.90/99.64)%

99.36%
(91.27/100)%

8.63%
(0.76/9.95)%

95.84%
(95.28/99.59)%

RO 36.48%
(30.75/49.39)%

7.94%
(0/27.79)%

6.36%
(0/7.44)%

71.41%
(0/88.23)%

ICO 77.08%
(67.10/82.39)%

68.82%
(50.88/77.29)%

6.36%
(0/7.44)%

95.59%
(94.76/100)%

IRO 76.47%
(67.18/86.50)%

67.91%
(51.01/83.46)%

6.36%
(0/7.44)%

95.53%
(94.75/100)%

IROMN 69.22%
(56.46/75.94)%

57.04%
(35.00/67.63)%

6.36%
(0.00/7.44)%

94.72%
(93.90/100)%

ICOHS 90.57%
(84.04/92.39)%

89.04%
(76.18/92.29)%

6.36%
(0/7.44)%

96.55%
(96.04/100)%

CUSUM

CO 97.44%
(87.19/99.66)%

99.43%
(98.98/99.51)%

6.56%
(0/37.42)%

96.81%
(84.17/100)%

RO 54.00%
(33.23/96.67)%

34.32%
(0/98.49)%

6.56%
(0/37.42)%

91.28%
(84.02/100)%

ICO 82.66%
(67.86/96.38)%

77.28%
(52.54/98.69)%

6.56%
(0/37.42)%

95.93%
(84.06/100)%

IRO 83.02%
(69.58/97.08)%

77.83%
(57.66/98.55)%

6.56%
(0/37.42)%

95.96%
(84.01/100)%

IROMN 82.57%
(67.85/96.37)%

77.16%
(52.55/98.68)%

6.56%
(0/37.42)%

95.92%
(84.06/100)%

ICOHS 89.87%
(80.20/98.43)%

88.09%
(80.01/98.62)%

6.56%
(0/37.42)%

96.41%
(83.99/100)%
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Table 9.13: Anomaly detection performance of KLD window-based approach. The values
shown are the minimum, maximum and average anomaly detection performance metrics
from of the 14 test data sets (source Paudel et al. [133]).

Methods Attack Accuracy Recall FPR Precision

KLD
(window-

based)

CO 87.80%
(60.82/98.59)%

82.22%
(42.21/97.92)%

0.19%
(0/2.63)%

99.89%
(97.64/100)%

RO 32.75%
(29.77/47.51)%

1.60%
(0/22.58)%

0.19%
(0/2.63)%

94.76%
(0/100)%

ICO 62.42%
(40.93/77.46)%

45.04%
(12.88/66.75)%

0.19%
(0/2.63)%

99.80%
(98.03/100)%

IRO 64.93%
(40.90/85.48)%

48.73%
(12.83/78.58)%

0.19%
(0/2.63)%

99.82%
(98.10/100)%

IROMN 57.12%
(40.82/68.67)%

37.29%
(12.71/54.58)%

0.19%
(0/2.63)%

99.76%
(97.76/100)%

ICOHS 83.11%
(73.81/93.11)%

75.35%
(61.38/89.83)%

0.19%
(0/2.63)%

99.88%
(98.59/100)%

KLD and CUSUM do not even detect any anomalous data points in the manipulated
signal (details are shown in Fig. A.29 in Appendix A.8 and in Fig. A.43 in Appendix
A.9) which causes the minimum value 0% in recall of KLD and CUSUM.

CUSUM has the higher accuracy and recall than KLD and MAD in CO, RO, ICO , IRO
and IROMN attack types. For the ICOHS attack, KLD-DPB has higher accuracy and
recall than MAD and CUSUM.

The number of data points marked as anomaly in both KLD-DPS and KLD-WB ap-
proaches are equal. But the detection performance of KLD-WB approach differs as we
count the number of windows instead of the number of data points.Total number of
windows in KLD-WB approach is 3540, it has influence in the overall performance of
KLD-WB approach as it results in fewer false positive rate and higher precision than
KLD-DPB approach.

9.3.3.1 ROC Curves

In order to see how the detection rates change for different parameter settings, we here
look at the ROC curves for the different methods. ROC curves can be used to select
a threshold that would fit best to the desired outcome with respect to FPR and TPR.
With the ROC curves, we also can see how a specific algorithm performs for the different
attack types.

Here we discuss the detection performance of the lightweight statistical methods (MAD,
KLD and CUSUM) using their ROC curves. Detection of the attack types CO, RO,
ICO, IRO, IROMN and ICOHS using the lightweight statistical methods at different
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thresholds are discussed in the following paragraphs. Anomaly detection results shown
in the previous sections are the experimental results using the threshold, which is shown
as a plus sign (+) in each method’s ROC curve.

MAD Main finding: MAD has better detection performance on CO then on ICO, IRO,
IROMN and IROHS attack types; and a very bad detection performance on RO attack
type.

Figure 9.22: ROC curve of MAD.

Figure 9.22 shows the ROC curve for MAD. From the figure, one can see attack type CO
is well detected by MAD. Detection performance on RO type attack is very bad. The
slope of the ICOHS attack influences MAD’s detection performances. From the ROC
curves of ICO and ICOHS attacks, we can see the detection performance has significant
difference due to the higher slope. Curves of ICO, and IRO attacks almost overlap but
curve of IROMN attack differs slightly i.e., the influence of the random offsets depends
on the magnitudes of randomization, IROMN has more noise than IRO attack. TPRs
and FPRs of the attacks of same slope are very similar.

The threshold at decision level 2 which covers the minimum and maximum values in the
training data has less FPR and high TPR than other thresholds. It has FPR 0.0091 and
high TPR using the threshold (see Tab. 9.12). For the smaller thresholds than at decision
level 2, increment in FPR is higher than increment in TPR. As expected with smaller
thresholds, MAD detects more anomalies but also has higher probability of triggering
false alarms, i.e high TPRs and high FPRs.
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KLD (data points-based) Main finding: KLD has better detection performance on
CO attack than on other attack types.

Figure 9.23: ROC curve of KLD.

Figure 9.23 shows KLD’s ROC curve. From the figure, one can see KLD detects CO well,
does not detect attack type RO and also does not have good detection performance on
ICO, IRO, IROMN attacks. In a similar manner to MAD, anomaly detection performance
of KLD is also influenced by the slope. We can see the influence from the curves of ICO
and ICOHS attacks. Similarly, from the curves of ICO, IRO and IROMN attacks we can
see randomization influences its detection performance. More noise reduces the detection
performance (see curve of IRO and IROMN attacks).

With the threshold 8.95 at decision level 3.2, it covers the minimum and maximum
divergence of the training data to the reference data. As shown in Tab. 9.12, KLD
also has less FPR (8.63% for CO attack and 6.36% for RO, ICO, IRO, IROMN, ICOHS
attacks) and high TPR (99.43%) using the threshold. With smaller thresholds, it only
increases FPR until it reaches very small threshold. For instance, at decision level 2.5
KLD has TPR = 99.95% and FPR = 40.52%.

CUSUM Main finding: CUSUM detects attack types CO, ICO, IRO, IROMN and
ICOHS. In addition, it has better detection performance than MAD and KLD on RO
attack type.

Figure 9.24 shows CUSUM’s ROC curve. From the figure, we can see CUSUM detects
attack type CO very well and also detects RO attack type. Similar to methods MAD and
KLD, slope influences CUSUM’s anomaly detection performance. Curves of ICO and
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Figure 9.24: ROC curve of CUSUM.

ICOHS attacks differ significantly. From the curves of ICO, IRO and IROMN attacks,
one can see noise influences the detection. IRO attack is detected better than ICO attack.
Similarly, due to more noise IROMN attack is detected better than IRO attack.

Anomaly detection results of CUSUM using threshold 6.41 has high TPR and less FPR
than using other thresholds. The results using the threshold are shown in Table 9.12.
With the smaller thresholds, increment in FPR is higher than in TPR.

9.3.4 General Observations

After going into the details of the individual attacks, here we make some general observa-
tions:

9.3.4.1 MAD does not detect all anomalous data points

After some time MAD detects at least one malicious data point within all attacks as
anomalous. Therefore, although MAD does not detect all maliciously modified values it
would detect at least one malicious data point as part of the attack.

9.3.4.2 KLD window-based detection leads to many false positives

The KLD window-based approach determines whether a window of test data is anomalous.
As a window is counted as anomalous when it contains at least one anomalous data
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point, some of the data from the anomalous window may not be a part of the attack.
To calculate the detection performance in the window-based approach, all of the data
within an anomalously labelled window is marked as such. In other words if a window
has 1 anomalous data point then the whole window is marked as anomalous; in this case
1 data point is a true positive and 2,999 data points are false positives. Consequently,
more data points are marked as anomalous, resulting in a higher recall and false positive
rates; this was confirmed by calculating the results by discriminating between normal
and anomalous data within a window.

9.3.4.3 CUSUM generates a high number of false negatives

Our implementation of CUSUM processes blocks of data and resets g+
n and g−

n after
each block. In each block, a change point is detected only when the increase in g+

n or
g−

n reaches the defined threshold. An alarm is triggered (or the change is detected) only
when the increase in g+

n or g−
n reaches the threshold (see Fig. 9.5 in Sec. 9.1.4). Thus,

the instances of the detected change point are missed until the change is detected as we
continue marking anomalies after detecting the change point. Repetition of this in each
block increases false negatives.

9.3.4.4 CUSUM misses isolated outliers

Despite the correct detection of nearly all malicious data points (all except for attack
type ICOHS) CUSUM misses some benign anomalies. Many BAs are correctly classified
by CUSUM and RB, but some BAs are missed. This is mainly due to isolated BAs with
a very short duration. They are too small in duration to introduce a significant change
in the mean. CUSUM would also miss any malicious increase or decrease of the voltage
if it is only over a short time period because in a short time period, the changes in mean
may not have a significant deviation. So only using CUSUM alone as detection method
would leave many possibilities to an attacker to circumvent detection.

9.3.4.5 Methods differ significantly regarding detection delay

As can be seen in Tab. 9.10 the number of modified data points that pass undetected
until a method detects the attack differs significantly for different methods and different
attacks. For instance, the CO attack type is detected immediately by MAD while KLD,
and CUSUM’s detection is delayed.

9.3.4.6 Methods differ significantly regarding the number of detected data
points

The number of detected data points in the 14 test data sets differs significantly for the
different methods and the different attacks. From Tab. 9.9, we can see an attack type is
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detected on the same number of test data sets and the number of detected data points
are different (e.g., in ICO, IRO, IROMN).

9.3.4.7 Methods differ significantly regarding detection of RO attack type

We can see from Tab. 9.9, detection of RO attack type differs significantly for different
methods. MAD detects RO attack type on 14 test data sets, whereas KLD detects only
on 2 test data sets, and CUSUM detects only on 6 test data sets.

9.3.5 Results Findings

Besides the general observations already discussed in Sec. 9.3.4 we can conclude the
following findings from the results:

• F 2.3.1: MAD works for the distribution of our noisy real data as it detects all
attacks (at least one anomalous data point) on all test data sets. Though MAD
detects all attacks, it does not work well for all data points; this might be due to
our assumption of a normal distribution although the distribution of our real data
is partially normally distributed.

• F 2.3.2: MAD performs well and fast for sudden increases, but fails for random
offset that remains below the threshold. The detection is delayed for incremental
offset attacks because at the beginning the manipulated values are very small and
remain within the threshold boundaries.

• F 2.3.3: KLD (both data points-based and window-based) detects all attacks (at
least one data point) on all test data sets except the RO attack. RO attack type
is performed by adding values from a random normal distribution, so for KLD it
seems that most of the added random values stay within the reference histogram
(as the reference histogram has a broad distribution for an hour).

• F 2.3.4: KLD’s (both data points-based and window-based) detection is delayed for
incremental offset attacks because distribution after the manipulation stays within
the limits of the reference histogram at the beginning of the attacks. But once
KLD detects anomalies then it consistently detects subsequent anomalies.

• F 2.3.5: CUSUM shows a better performance than MAD and KLD for correctly
identifying anomalous data points. It detects all attacks (at least one data point)
on all test data sets except RO attack. In RO attack, random negative and positive
values are added, which do not change the mean much (as it added µ = 0 from the
distribution), so it stays within the allowed variation in the mean of most of the
test data.
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• F 2.3.6: CUSUM’s detection is delayed for incremental offset attacks because at
the beginning changes in mean due to the attacks stay within the allowed variation
in the mean.

• F 2.3.7: Detection delay varies a lot among methods and attack types, MAD picks
up changes earlier then KLD or CUSUM. Further, results analysis shows adding
a random component in the signal delays detection. For instance, incremental
random offset attack detection is delayed then incremental constant offset by all
methods. Thus, adding some random noise can be of advantage for attackers to
hide malicious activities and prevent early detection.

• F 2.3.8: Though all of the methods have quite bad detection performance on RO
attack, some malicious behavior not detected by residual-based bad data detection
methods are detected by the statistical methods MAD, KLD and CUSUM (e.g.,
detection of incremental offsets attacks). This finding could be a valuable input to
researcher using statistical methods.

As a consequence we conclude that one should not rely on a single method but instead
a combination of several methods in order to prevent that an attacker can circumvent
detection.

9.4 Combination of Methods

Anomaly detection performance can be improved by combining output of different
methods. Different methods focus on different properties for anomaly detection and thus
can detect different types of attacks as shown in Sec. 9.3. A combined application of
methods can be used for better detecting anomalous behaviour in a system. In other
words, one can select a type of combination method based on what is to be achieved, either
generate more false alarms together with hitting more anomalous data points or hitting
anomalous data points with reducing false alarms. In other words, a combination method
can be selected depending on the goal, for instance achieving higher precision, detection
of at least one data point per attack, higher hit rate etc. To this end, we propose using a
combination technique namely, weighted voting. Output of the lightweight statistical
anomaly detection methods (MAD, KLD and CUSUM) are combined using the weighted
voting. In contrast to existing work (that use weighted voting for combining machine
learning techniques) in smart grid domain (e.g., in [108],[101]), we use weighted voting
to combine lightweight statistical anomaly detection methods.

9.4.1 Theoretical Background

Weighted voting is a technique for combination of methods. In weighted voting [45]
weights are assigned for each of the methods. The weights are assigned based on their
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anomaly detection performance on the test dataset. Figure 9.25 visualize steps of weighted
voting method.

Figure 9.25: Weighted Voting Approach.

Here, we review the weighted voting method in [101]. A function is used for calculating
weights for the methods. The function integrates true negative rate (TNR) and recall
(true positive rate) for assigning weights for each methods. The function is expressed in
Eq.(9.17) as in [101].

w(x) = 1
(1 − x) · a + b

(9.17)

where x is a TNR or TPR (recall), a and b are control variables of the weight assignment
function. Recall is used if a data point is detected as an anomalous otherwise TNR is
used.

One can see from the Eq.(9.17), if value of x (TNR or recall) is closer to 1 then there
would be better prediction i.e., higher values of the TNR and the recall lead to higher
weights to the methods.

A smaller x results in higher (1 − x) value. This leads to lower weight value. Here
the value of a comes in place and controls steepness of the slope. A lower performance
method together with small a can result on higher weight. Thus the value of a is selected
in a way that a method with better performance has higher weight than the methods
with worse performance.

The variable b is used to control magnitude of the weights. Smaller values of b results
in higher weights and vice versa. Thus the value of b is adjusted for controlling the
maximum weight so that it avoids infinite weight value.

Using the function (represented by Eq. (9.17)), positive weight is calculated as

wpos = 1
(1 − Recall) · a + b

(9.18)
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Similarly, negative weight is calculated as

wneg = 1
(1 − TNR) · a + b

(9.19)

The reachable positive weight is the sum of positive weight of all methods. It is represented
as

wall,pos = wMAD,pos + wKLD,pos + wCUSUM,pos (9.20)

Similarly, reachable negative weight is the sum of the negative weight of all methods. It
is represented as

wall,neg = wMAD,neg + wKLD,neg + wCUSUM,neg (9.21)

The probability of being anomalous is calculated using the reachable positive weight
(wall,pos) as

Ppos =
�

wpos

wall,pos
(9.22)

where �
wpos is the sum of positive weights of the methods that detect an attack type.

Similarly, probability of being negative is calculated using the sum of negative weights of
the methods (wall,neg) as

Pneg =
�

wneg

wall,neg
(9.23)

where �
wneg is the sum of negative weights of the methods that do not detect an attack

type.

Finally, we compare Ppos (probability of being anomalous) and Pneg (probability of being
normal) to detect anomalies. If the probability of being anomalous is greater than the
probability of being normal i.e. Ppos > Pneg then a data point is detected as an anomaly.

Here we explain an example of anomaly detection using the weighted voting method.
There may be some attack scenarios where only one method is good at detecting the
type of attack. For instance, Tab. 9.14 shows sample recall and TNR for three methods.
From the Tab. 9.14 , one can see that method 3 has higher recall than method 1 and
method 2, and method 1 has higher TNR than method 2 and method 3.

Table 9.14: An example recall and true positive rate.

Method Recall TNR
Method 1 10% 95%
Method 2 20% 89%
Method 3 80% 90%
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Table 9.15: Positive and negative weights for the recall and TNR shown in Tab. 9.14;
Pos. = positive, Neg. = negative; see Sec. 9.4.2 for values of a and b.

Method Pos. weight Neg. weight
Method 1 1.10 16.66
Method 2 1.23 8.33
Method 3 4.76 9.10
Sum 7.09 34.09

For the recall and TNR shown in the Tab. 9.14, positive and negative weights derived
using the formulae in equations 9.18 and 9.19 are shown in Tab. 9.15. The weights vary
between 0.99 and 100.

Let us suppose only the method 3 detects a data point as an anomaly then positive
weight = 4.76 and negative weight = 16.66 + 8.33 = 24.99. The probability of being an
anomaly equals to 4.76/7.09 = 0.67 and probability of being a normal data point equals
to 24.99/34.09 = 0.73. Since 0.73 > 0.67 the data point is not detected as an anomaly.

9.4.2 Experimental Setup

For setting up an experiment, first we need to select a threshold for the methods MAD,
KLD and CUSUM. Then we use the anomaly detection results using the thresholds.

Threshold selection: Thresholds could be selected in different ways. Optimal
threshold can be selected from the analysis of ROC curves in Sec. 9.3.3.1. The methods
have different detection performance using different thresholds for each attack types. For
instance, a threshold can be an optimal threshold for detecting an attack type but not
for detecting another attack type. From CUSUM’s ROC curve shown in Fig. 9.24, we
can see threshold 6.41 is an optimal threshold for ICO, IRO, IROMN and ICOHS; and a
smaller threshold (3.62) is an optimal threshold for CO attack. Min/max values of
training data could be used to define the thresholds. For the thresholds, we use the one
in Sec. 7.2 in chapter 7 and Sec. 9.2 in this chapter. MAD of voltage values at decision
level 2 covers the minimum and maximum voltage values of training data. Thus, we use
lower bound (1.051) and upper bound (1.07) at the decision level as threshold. Similarly,
MAD of distances at decision level 3.2 covers the minimum and maximum distance values
of training data to the reference data. As we are looking at the divergence, we set the
maximum distance (8.95) as a threshold. A threshold for CUSUM is defined using the
standard deviation (σ) and maximum variation (ν) of training data combined with a
small probability (0.005) of false alarm (α). The derived threshold (6.41) is set as a
threshold for CUSUM. Here we have chosen a threshold for each methods that are shown
as plus sign (+) in ROC curves (experimental results using the thresholds are shown in
Sec. 9.3). Table 9.16 shows an overview of the thresholds for the statistical methods.

221



9. Lightweight Statistical Methods

Table 9.16: An overview of thresholds for statistical methods, MAD, KLD and CUSUM.

MAD KLD CUSUM

DL = 2
UB = 1.070
LB = 1.051

DL = 3.2
t = 8.95

ν = 0.0076
σ = 0.0046
α = 0.005
t = 6.41

Weighted voting uses the recall and TNR of the anomaly detection performance. Table
9.17 shows recall and TNR of the anomaly detection methods for each attack types. In
attack type CO, CUSUM has highest recall (0.9943) and MAD has highest TNR (0.9909).
In attack type RO, recall of all methods are not that good but among the methods
CUSUM has highest recall (0.3432). Similarly, CUSUM has highest recall in ICO, IRO
and IROMN attacks. MAD has the highest TNR (0.9909) in all types of attacks. KLD
has highest recall for attack types ICOHS.

Table 9.17: Recall and true negative rates of MAD, KLD and CUSUM.

Attack Metrics MAD KLD CUSUM

CO Recall 95.03% 99.37% 99.43%
TNR 99.09% 91.38% 93.44%

RO Recall 4.65% 7.94% 34.32%
TNR 99.09% 93.64% 93.44%

ICO Recall 59.81% 68.82% 77.28%
TNR 99.04% 93.64% 93.44%

IRO Recall 59.86% 67.91% 88.09%
TNR 99.09% 93.64% 93.44%

IROMN Recall 56.11% 57.04% 77.16%
TNR 99.04% 93.64% 93.44%

ICOHS Recall 81.52% 89.04% 88.09%
TNR 99.09% 93.64% 93.44%

Using the rates in Tab. 9.17, we calculate positive and negative weights per method for
all attack types. Aiming to get higher weights for good methods, similar to work in [101],
we tried different values of a and b and set values of a and b to 1 and 0.01 respectively (as
they provide the expected results) in the function shown in Eq. (9.17). In other words,
our intention of selecting the values of a and b is to assign higher weights (positive or
negative) for the methods with good performance and increase the likelihood of a correct
prediction. Thus the value of a controls the proportion of the weights and value of b
avoids infinite weight value.

Table 9.18 shows derived positive and negative weights of the methods for each attack
types. Since weights of the methods are based on the detection rates, weights vary
for each attack types. MAD has high impact to detect malicious data point as it has
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Table 9.18: Positive and negative weights of MAD, KLD, and CUSUM.

Attack Weight MAD KLD CUSUM Sum

CO Positive 16.75 59.88 63.69 140.32
Negative 52.36 10.40 13.23 75.98

RO Positive 1.04 1.07 1.50 3.61
Negative 52.36 13.59 13.23 79.17

ICO Positive 2.43 3.11 4.22 9.75
Negative 51.02 13.59 13.23 77.83

IRO Positive 2.43 3.02 4.32 9.77
Negative 52.36 13.59 13.23 79.17

IROMN Positive 2.23 2.27 4.19 8.70
Negative 52.08 13.59 13.23 78.90

ICOHS Positive 5.13 8.36 7.75 21.24
Negative 52.36 13.59 13.23 79.17

high negative weights in all attack types. Last column in the table 9.18 shows the sum
of all positive or negative weights for each of the attacks. It represents the maximum
possible negative and positive weights for each attack types while combining the methods.
The reachable positive weight (shown in Eq. (9.20)) could be achieved only if all of
the methods detect a data point as an anomaly at same time. Similarly, the reachable
negative weight (shown in Eq. (9.21)) could be achieved only if all of the methods miss
an anomaly at same time.

The positive weights and negative weights based on methods’ anomaly detection results
help to predict whether a data point is anomalous or normal. The prediction is done by
comparing the probability of being anomalous or normal.

Table 9.19: Overview of weighted voting, parameter setting and injected attacks; Exp. =
experiment; CO = constant offset; RO = random offset; ICO = incremental constant
offset; IRO = incremental random offset; IROMN = incremental random offset with
more noise; ICOHS = incremental constant offset with high slope; Sec = section.

Exp. Method Data*1 Param.
setting

Injected
attacks Sec.

9.4 Weighted
voting

Training data
(22.03.2016
- 31.03.2016)
Test data
(01.04.2016
- 14.04.2016)

Weights (see Tab. 9.18)
of each methods

for each attack types

CO, RO
ICO, IRO
IROMN,
ICOHS

9.4.3

* For all the given days of training and test data, one hour at 02:00-03:00 UTC is used.

1For all the given days of training and test data, one hour at 02:00-03:00 UTC is used.
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Table 9.19 shows an overview of weighted voting, parameter settings and injected attacks.
We recall that the TPR (recall) and TNR of the methods are used to assign weights for
the methods.

9.4.3 Results

Here we describe our experimental results in detail from experiment 9.4. We show overall
detection performance metrics calculated from all 14 manipulated test data sets.

Table 9.20 shows results of the weighted voting method. The values shown in the table
are the average, minimum and maximum anomaly detection performance metrics from
the 14 test data sets. Table 9.21 shows how fast the attacks are detected after combining
the results using the combination method.

Similarly, Tab. 9.22 shows the average anomaly detection performance of the individual
methods and the combination method (weighted voting) from the 14 test data sets. From
the table, one can directly compare the anomaly detection of the individual methods to
the combined results. Further, looking at figures in sections 9.3.1 and 9.4.3.2, we can
see that only MAD detects benign anomalies before starting attacks therefore weighted
voting misses the benign anomalies in most of the cases. Further, in some cases (e.g., in
CO, IROMN attacks) the individual methods detect anomalies in different locations but
weighted voting consistently detects anomalies once it detects an attack which produces
more precise results than the individual methods as we can see in the Tab. 9.22.

Table 9.20: Minimum, maximum and average anomaly detection performance metrics of
the weighted voting method from the 14 test data sets.

Methods Attack
Accuracy
average

(min/max)

Recall
average

(min/max)

FPR
average

(min/max)

Precision
average

(min/max)

Weighted
Voting

CO 99.48%
(96.66/100)%

99.95%
(99.46/100)%

1.46%
(0/10.02)%

99.28%
(95.23/100)%

RO 37.27%
(33.23/60.41)%

6.45%
(0/44.74)%

0.99%
(0/8.27)%

92.89%
(52.33/100)%

ICO 78.72%
(68.60/94.19)%

68.60%
(52.89/92.49)%

0.99%
(0/8.27)%

99.29%
(94.34/100)%

IRO 79.01%
(69.80/93.82)%

69.03%
(54.92/91.95)%

0.99%
(0/8.27)%

99.29%
(94.18/100)%

IROMN 75.19%
(67.87/90.16)%

63.30%
(52.03/86.46)%

0.99%
(0/8.27)%

99.23%
(93.38/100)%

ICOHS 90.46%
(84.51/97.21)%

86.19%
(76.88/96.42)%

0.99%
(0/8.27)%

99.43%
(95.61/100)%
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Table 9.21: Minimum, maximum and average anomaly detection delay of the weighted
voting method.

Methods Attack Detection Delay
min max average

Weighted
Voting

CO 1 1 1.00
RO 1,825 101,905 35,647.38
ICO 1,574 53,170 24,943.57
IRO 2,048 51,333 32,387.07
IROMN 1,580 51,459 26,990.50
IROHS 2,044 23,994 15,568.50

Table 9.22: Average anomaly detection performance of the individual and the weighted
voting methods from the 14 test data sets. Best results per attack are shown in bold
letters.

Methods Attack Accuracy Recall FPR Precision

MAD

CO 96.38% 95.03% 0.91% 99.52%
RO 36.10% 4.65% 0.91% 91.09%
ICO 72.89% 59.81% 0.91% 99.20%
IRO 72.93% 59.86% 0.91% 99.25%
IROMN 70.42% 56.11% 0.91% 99.20%
ICOHS 87.37% 81.52% 0.91% 99.44%

KLD

CO 96.70% 99.36% 8.63% 95.84%
RO 36.48% 7.94% 6.36% 71.41%
ICO 77.08% 68.82% 6.36% 95.59%
IRO 76.47% 67.91% 6.36% 95.53%
IROMN 69.22% 57.04% 6.36% 94.72%
ICOHS 90.57% 89.04% 6.36% 96.55%

CUSUM

CO 97.44% 99.43% 6.56% 96.81%
RO 54.00% 34.32% 6.56% 91.28%
ICO 82.66% 77.28% 6.56% 95.93%
IRO 83.02% 77.83% 6.56% 95.96%
IROMN 82.57% 77.16% 6.56% 95.92%
ICOHS 89.87% 88.09% 6.56% 96.41%

Weighted
Voting

CO 99.48% 99.95% 1.46% 99.28%
RO 37.27% 6.45% 0.99% 92.89%
ICO 78.72% 68.60% 0.99% 99.29%
IRO 79.01% 69.03% 0.99% 99.29%
IROMN 75.19% 63.30% 0.99% 99.23%
ICOHS 90.46% 86.19% 0.99% 99.43%

225



9. Lightweight Statistical Methods

Table 9.23: Detected data points using weighted voting scheme (rounded average values
are shown for the detected data points).

Method Attacks (average detected data points)
CO RO ICO IRO IROMN ICOHS

Weighted
Voting

14
(119,995)

8
(7,742)

14
(82,348)

14
(82,869)

14
(75,992)

14
(103,478)

Table 9.23 shows the different detected attack types using weighted voting scheme. The
table depicts the number of test datasets the attacks are detected, and the average
detected data points on 14 test data sets. Malicious and benign data points on the 14
test data sets are shown in Tab. 6.3 of Chapter 6. Detected data points using weighted
voting on each data sets are shown in Tab. A.2 of Appendix A.10.

Table 9.22 shows that weighted voting has higher precision in most of the attacks (RO,
ICO, IRO and IROMN). In the following paragraphs, we illustrate the accuracy and
recall of methods MAD, KLD, CUSUM and weighted voting shown in the Tab. 9.22
for all test datasets. The minimum and maximum values of the accuracy and recall for
weighted voting is shown in Tab. 9.20 and for MAD, KLD and CUSUM are shown in
Tab. 9.12 in Sec. 9.3.3.

Accuracy: Accuracy of methods MAD, KLD, CUSUM and weighted voting are il-
lustrated from Fig. 9.26 to 9.28. Figure 9.26 shows accuracy of CO and RO attacks.
Sub-figure 9.26a shows the accuracy of CO attack using MAD, KLD, CUSUM and
weighted voting. From the sub-figure 9.26a, we can see MAD has minimum accuracy
which is 78.61% for dataset 11 (as shown in Tab. 9.12), and the accuracy varies up to
100%. Further from the sub-figure 9.26a, one can see that minimum accuracy of KLD is
above 80% (for dataset 11) but does not reach 100%. In all of the datasets, weighted
voting has higher accuracy than KLD and CUSUM. In some datasets (e.g., datasets 1,
4) weighted voting and MAD have equal accuracy (100%) but in most of the datasets
weighted voting has higher accuracy.

Similarly, sub-figure 9.26b shows the accuracy for RO attack. As we know that detection
performance of RO attack is not good, from the sub-figure 9.26b one can see MAD has
accuracy between 33.23% and 40% in 13 datasets and maximum accuracy is 57.66% in a
dataset. KLD has accuracy between 30.75% and 35% in 10 datasets and 49.39% in 4
datasets. CUSUM has more accuracy than MAD, KLD and weighted voting in 6 datasets
and varies up to 96.67%. Weighted voting has higher accuracy than MAD and KLD in 2
datasets. In 7 datasets weighted voting and CUSUM have equal accuracy.

In datasets 3, 7, 8, 11 and 13 though CUSUM has higher accuracy weighted voting does
not have high accuracy as CUSUM. This can be explained using recall, TNR, weights and
probability of being an anomaly. We calculate the probability of being an anomaly using
the weights shown in the Tab. 9.18 in Sec. 9.4.2. The weights are calculated using the
recall and TNR shown in Tab. 9.17. From the Tab. 9.17, one can see that for RO attack
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(a) CO attack (b) RO attack

Figure 9.26: Accuracy in constant offset and random offset attacks.

i) recall of CUSUM is higher than recalls of MAD and KLD, and ii) TNR of MAD is
higher than KLD and CUSUM, and KLD and CUSUM have almost equal TNR. During
RO attack if only CUSUM detects a data point as an anomaly then positive weight is
calculated using CUSUM’s recall whereas negative weight is calculated using TNRs of
MAD and KLD which results in a higher negative weight. Therefore, weighted voting
does not detect the data point as an anomaly. For instance, if MAD and KLD detect a
data point as normal; and CUSUM detects the data point as an anomaly. Then total
positive weight = 1.50, total negative weight = 52.36+13.59 = 65.94, positive probability
= 1.50/3.61 = 0.41 and negative probability = 65.94/79.17 = 0.83. In this case (RO
attack), as negative probability is greater than positive probability (0.83 > 0.41) weighted
voting detects the data point as normal.

Detection due to the changes in the original signals after starting an attack results in
CUSUM’s higher accuracy but if there is no attack then such changes in the signal cause
a lot of false alarms.

Figure 9.27 shows accuracy in ICO and IRO attacks. Sub-figure 9.27a shows the accuracy
of ICO attack using MAD, KLD, CUSUM and weighted voting. From the sub-figure
9.27a, one can see in most of the datasets accuracy of the methods are between 70% and
80%. CUSUM has higher accuracy than other methods in 9 datasets and weighted voting
also has higher accuracy than MAD and KLD in 6 datasets.

Sub-figure 9.27b shows the accuracy of IRO attack using MAD, KLD, CUSUM and
weighted voting. Similar to ICO attack, for many datasets accuracy of the methods are
between 70% and 80%. From the sub-figure, one can see MAD is better than KLD in
6 datasets and KLD is better than MAD in 8 datasets. Here also CUSUM has more
accuracy than other methods in 10 datasets and weighted voting has more accuracy in 8
datasets.
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(a) ICO attack (b) IRO attack

Figure 9.27: Accuracy in ICO and IRO attacks.

Figure 9.28 shows the frequency of accuracy in IROMN and ICOHS attacks. Sub-figure
9.28a shows the accuracy of IROMN attack using MAD, KLD, CUSUM and weighted
voting. Similar to ICO and IRO the accuracy of the methods on many datasets are
around 80%. CUSUM has more accuracy than other methods in 12 datasets and has
highest accuracy 96.39%. Another sub-figure 9.28b shows the accuracy of ICOHS attack
using MAD, KLD, CUSUM and weighted voting. From the sub-figure 9.28b, one can see
that the methods have accuracy between 80% and 90%. It means accuracy of ICOHS is
higher then IROMN in all datasets, one can also see by comparing sub-figure sub-figure
9.28a and 9.28b).

(a) IROMN attack (b) ICOHS attack

Figure 9.28: Accuracy in IROMN and ICOHS attacks.
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Recall: Recall of methods MAD, KLD, CUSUM and weighted voting are illustrated
from Fig. 9.29 to 9.31. Figure 9.29 shows the recall in CO and RO attacks. Sub-figure
9.29a shows the recall of CO attack using MAD, KLD, CUSUM and weighted voting.
From the sub-figure 9.29a, one can see MAD has recall 68.29% in dataset 13 and 75.30%
in dataset 11, except these all methods have recall almost 100% in rest of the datasets.
Sub-figure 9.29b shows the recall of RO attack using MAD, KLD, CUSUM and weighted
voting. From the sub-figure 9.29b, one can see that RO attack is not detected in most of
the datasets and if detected then CUSUM has higher recall than other methods. CUSUM
has 98% recall in 3 datasets (datasets 3, 11, 13). This is due to abnormal behaviour
(significant changes) in the original signals (see figures 6.10, 6.11, 6.12 in Sec. 6.4).
CUSUM detects such changes in the original signals, further if the changes affect the
distribution, then MAD and KLD also detect the changes. Therefore, the changes after
starting an attack results in higher recall in 5 datasets.

(a) CO attack (b) RO attack

Figure 9.29: Recall in constant offset and random offset attacks.

Figure 9.30 shows the frequency of recall in ICO and IRO attacks. Sub-figure 9.30a
shows the recall of ICO attack using MAD, KLD, CUSUM and weighted voting. From
the sub-figure 9.30a, one can see that majority of recall is around 65%. KLD has higher
recall than other methods in 4 datasets. CUSUM has higher recall than other methods in
10 datasets. Sub-figure 9.30b shows the recall of IRO attack using MAD, KLD, CUSUM
and weighted voting. From the sub-figure 9.30b, one can see that recall of the methods
in IRO are similar to ICO attack.

Figure 9.31 shows the recall in ICO and IRO attacks. Sub-figure 9.31a shows the recall
of IROMN attack using MAD, KLD, CUSUM and weighted voting. From the sub-figure,
one can see that CUSUM has higher recall than other methods in most of the datasets
and weighted voting has higher recall than MAD and KLD in 9 datasets. Sub-figure
9.31b shows the recall of ICOHS attack using MAD, KLD, CUSUM and weighted voting.
The sub-figure shows that recall of ICOHS attack is higher than IROMN attack and
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(a) ICO attack (b) IRO attack

Figure 9.30: Recall in ICO and IRO attacks.

majority is around 85%. KLD has higher recall than other methods in 8 datasets and
CUSUM has higher recall than other methods in 6 datasets.

(a) IROMN attack (b) ICOHS attack

Figure 9.31: Recall in IROMN and ICOHS attacks.

9.4.3.1 General observations

Here we make some general observations on anomaly detection performance of the
combination methods.
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Weighted voting decreases false alarm Weighted voting triggers an alarm if and
only if an anomaly is detected with higher probability of being an anomalous than not
being an anomalous. The probability is calculated based on the anomaly detection results
from multiple methods. More than one method can detect anomalies in the same location
due to extreme outliers or due to long term abnormal behavior in the signal. Thus
weighted voting generates more trustworthy results than the KLD and CUSUM (see
Tab. 9.22) as it triggers fewer false alarms (only 0.99%). Anomaly detection performance
of weighted voting shows that it ends up with more precise detection results than the
individual methods.

Weighted voting detects an attack with a single method The weights of each
method for detecting anomalous data points in attack types are different. In some cases,
even with one method, the positive probability for detecting a data point as anomalous
is higher than the negative probability using negative weights of more methods. In such
cases, even with a single method, weighted voting surprisingly may detect the data point
as anomalous. For instance, in attack type IRO, weighted voting detects anomalous
data point between data point 7,093 and 7,815, even if the data points are detected as
anomalous by only one method MAD.

Weighted voting detects at least some data points in all attack types The
attack type RO is detected by MAD and KLD with low recall but CUSUM detects RO
with higher recall. The weighted voting method detects the attack type RO with less
recall but in more datasets than the individual methods (see tables 9.9 and 9.23). Overall
results show the combination method detects all types of attacks.

Weighted voting is slower in detection In general, weighted voting has detection
delay larger than one of the methods for detecting the attacks (see tables 9.21 and 9.10)
but produces trustworthy results, as it triggers less false alarms (see Tab. 9.22). By
comparing the figures in Sec. 9.3.1 to 9.4.3.2, one can see the detection of weighted
voting is delayed than the detection of one of the statistical methods.

9.4.3.2 Detailed Detection Results per Attack

Constant offset attack Weighted voting method detects attack type CO immediately.
Figure 9.32 visualizes detected anomalies using weighted voting method in constant offset
attack.

In the first test data, it does not generate any false alarms and also misses BAs between
7,093 and 7,815 data points. It has higher precision 99.28% than KLD and CUSUM, and
it also detects CO attack on first malicious data point. Further, it has higher recall than
the individual methods (see Tab. 9.22).
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Figure 9.32: Visualization of detected anomalies in constant offset attack (shown on
April 01, 02:00-03:00).

Random offset attack RO type attack is a challenging attack, but the weighted
voting method detects at least some data point as anomalous in the attack type RO.
Detection with weighted voting is delayed because weighted voting detected it only when
CUSUM detects the RO attack although MAD detects the attack earlier (see sub-section
9.3.1.2). Figure 9.33 shows detected anomalies in random offset attack.

The Variation in recall, FPR and precision is high in RO attack. These can be explained.
As only MAD detects the attack, weighted voting does not detect any points as anomalous
on the data set of day 3 so that they have minimum value 0.00% in recall and in FPR
(see Tables 9.12 and 9.20).

From the Fig. 9.33, one can see weighted voting does not detect BAs data points 7093
and 7815 in this attack type (on first test data) and detects malicious data points with
delay. MAD method and CUSUM cause the detection of malicious data points. Detection
delay of the voting method vary from 1,825 to 101,905. MAD starts detecting some data
points during the attack at 4th data point after that attack started and CUSUM starts
detecting the attack at data point 1,810. And these two methods detect the attack at
1, 825th data point after the attack started, it leads weighted voting detects earliest at
this data point.

Incremental constant offset attack Weighted voting method detects attack type
ICO with delay. Figure 9.34 shows detected anomalies in incremental constant offset
attack.
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Figure 9.33: Visualization of detected anomalies in random offset attack (shown on April
01, 02:00-03:00).

Figure 9.34: Visualization of detected anomalies in incremental constant offset attack
(shown on April 01, 02:00-03:00).

The detection by weighted voting delays because only the positive weights of KLD is
not enough, and waits until CUSUM detects the attack. Weighted voting has 99.29%
precision which is higher than single methods. The detection delay of anomalies varies
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from 1,574 to 53,170. KLD starts detecting some data points during the attack at 350th

data point while CUSUM starts detecting the attack only at data point 1,574. Therefore,
weighted voting detects the attack at data point 1,574.

Incremental random offset attack Attack type IRO is also detected by the voting
method. Figure 9.35 shows detected anomalies using the voting method in incremental
random offset attack.

Figure 9.35: Visualization of detected anomalies in incremental random offset attack
(shown on April 01, 02:00-03:00).

Regarding BAs between 7,093 and 7,815 data points in IRO attack type, only MAD
detects the BAs. From the table 9.18, we can see for the attack type IRO positive weight
is 2.4307 out of possible weight 9.7687 and negative weight is 26.8145 out of possible
weight 79.1705. From the weights, probability of being an anomalous (25%) is higher
than the probability of not being an anomalous (22%), and thus the weighted voting
detects the BAs. Regarding the detection speed, weighted voting detects the attack
earliest at data point 2,048. It is due the detection by CUSUM as MAD already starts
detecting the attack at data point 1,847.

Incremental random offset attack with more noise Figure 9.36 shows detected
anomalies in incremental random offset attack. The weighted voting method detects attack
type IROMN. Detection delay of weighted voting varies from 1,580 to 51,459 whereas
simple combination detects 1st malicious data point and varies to 21,824 depending
on the signal. Methods MAD and CUSUM detect IROMN attack at data point 1,580,
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therefore the weighted voting detects the IROMN attack earliest at the data point. At
the beginning of detection, it detects the data points only on the upper side of the signal.
The detection in upper side is due to the detection of MAD (see Fig. 9.15 in Sec. 9.3.1).
After some time when CUSUM starts detecting the attack, weighted voting detects the
attack on both side (upper and lower side) of the signal (from data point 138,000).

Figure 9.36: Visualization of detected anomalies in incremental random offset attack
with more noise (shown on April 01, 02:00-03:00).

Incremental constant offset attack with high slope The weighted voting method
detects attack type incremental constant offset attack with high slope. Figure 9.37 shows
detected anomalies in incremental constant offset attack. Weighted voting has more
precise results (99.43%) than KLD (96.55%), CUSUM (96.41%) methods (93.48%).

One can see that even with higher slope the detection is delayed up to the data point
13,994. The earliest detection of this type of attack by weighted voting is at data point
2,044 which is caused due to the detection of MAD and CUSUM.
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Figure 9.37: Visualization of detected anomalies in incremental constant offset attack
with high slope (shown on April 01, 02:00-03:00).

9.4.3.3 Results Findings

• F 2.3.9: The combination method weighted voting works for the combination of
statistical methods. It detects at least one of the anomalous data points in all
attack types, so alarms are triggered for all attacks such that an operator in a
power system is informed and an appropriate protection action can take in place.

• F 2.3.10: The weighted voting method detects at least some anomalous data points
in the attack type RO, and also detects anomalous data points on more test data sets
than the KLD and CUSUM methods. This evidence confirms that a combination
method improves anomaly detection performance.

• F 2.3.11: Weighted voting generates less false alarms than the MAD and KLD
methods. So it provides better precision than individual methods for most of the
attack types. Thus, this evidence confirms that the combined results are more
trustworthy than the results of individual methods, so that an operator in a control
center could trust the results.

Table 9.24 shows an overview of attack detection using methods, MAD, KLD, CUSUM
and weighted voting. The sign ○ represents an attack is detected immediately, sign
� represents delayed detection, and the number in brackets represents the number
of datasets for which an attack was detected. Here an attack is said to be detected
immediately if an attack is detected within the first 100 malicious data points, otherwise
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it is said to be delayed detection. From the Tab. 9.24, one can see that although weighted
voting has delayed detection, it detects all attack types in more datasets than the methods
KLD and CUSUM. From the analysis, we conclude that one should use combination
method in order to detect at least some data points on all types of attacks.

Table 9.24: An overview of attack detection using methods MAD, KLD, CUSUM, and
weighted voting. Sign ○ represents an attack is detected immediately, and sign �
represents delayed detection; an attack is meant to be detected immediately if an attack
is detected with in 100 data points.

Attacks Weighted Voting MAD KLD CUSUM
CO ○(14) ○(14) ○(14) �(14)
RO �(8) ○(6), �(8) �(1) �(6)
ICO �(14) ○(3) �(11) �(14) �(14)
IRO �(14) �(14) �(14) �(14)
IROMN �(14) ○(4), �(7) �(14) �(14)
ICOHS �(14) �(14) �(14) �(14)

9.5 Summary

In this chapter, we presented our model for detecting anomalies. The model was designed
to implement different anomaly detecting methods.

We proposed using lightweight statistical methods for anomaly detection. For this we
have chosen three different methods 1) a simple threshold based on the MAD, 2) a
histogram (distribution) based approach using the KLD with a sliding window and 3)
the CUSUM as a representative of a change point detection method.

Methods for defining thresholds for anomaly detection were presented for the lightweight
statistical methods and some details on calculating parameters of the methods. Further,
influence of method-parameters on anomaly detection performance was discussed for
each of the methods.

Then we presented the results of the lightweight statistical methods; MAD, KLD and
CUSUM. The results showed that many attacks not detected by the residual-based
methods (see Chapter 7) are detected by the lightweight statistical methods but as we
fixed the phase angle by the first phase angle, the data differs in the residual-based
and the lightweight statistical methods. And therefore cannot directly be compared.
Further, performance metrics and detection speed were presented for each attacks types.
Visualization of the detected anomalies on attack types provided details on anomaly
detection.

Additionally, we provided the ROC curves of the statistical methods (MAD, KLD and
CUSUM). To this end, the analysis of the attack detection with different thresholds for
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each method was presented.

The following major results findings supported answering the research questions RQ
2.3.1 (Is it possible to detect at least one of the injected malicious anomalies during our
injected attacks with the lightweight statistical methods?), RQ 2.3.2 (How long do the
methods take until the first malicious anomaly during the attack is detected?) and RQ
2.3.3 (How many of the malicious anomalies are detected?):

• The lightweight statistical methods detected some malicious behaviour that were
not detected by the residual-based methods in Chapter 7 but as we fixed the phase
angle the data differs in the residual-based and the lightweight statistical methods.
At least one anomalous data point was detected in each attack type so that alarms
were triggered for all attacks.

• Different methods detected different attack types, and the detection delay varied a
lot among methods and the attack types.

• Almost all malicious anomalies during an attack were detected if the anomaly
detection was fast as we assumed an attack is detected if the first anomalous data
point is detected.

As we expected for our reasoning RQ 2.3.1, the evidence from the experiment showed
that we could detect at least one malicious data point during all attacks with the
lightweight statistical methods. Additionally, the evidence from the experiment showed
that depending on the attack types and characteristics of the methods, the anomaly
detection could be achieved immediately or be delayed. For instance, MAD detects RO
attack type (in case of large offset) immediately, using CUSUM it is expected a delayed
detection and using KLD it is not expected to be detected.

As we expected for our reasoning RQ 2.3.2 the experimental evidence showed that i)
attacks that caused significance change in the statistical properties (e.g., CO attack)
are detected earlier and ii) attacks that caused slow changes in the statistical properties
(e.g., ICO, IRO attacks) were detected with delay. Further, as we already expected for
reasoning RQ 2.3.3, nearly all malicious anomalies were detected for the early detected
attacks.

We argued that multiple methods should be used together via a combination method to
prevent that attackers can circumvent detection and propose combining results from the
different anomaly detection methods.

We proposed using weighted voting scheme for methods combination. Experimental setup
for assigning weights to the methods were presented based on their detection performance.
Then we combined results from different anomaly detection methods using the weighted
voting method. An analysis of the combined results showed the combination method
enhanced anomaly detection performance by detecting at least some anomalous data
points on all types of false data injection attack introduced in Sec. 5.3. Combined results
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using weighted voting method were more precise than the individual methods (MAD,
KLD and CUSUM) methods in most of the attack types. The following major results
finding supported answering the research question RQ 2.3.4 (To which extent does
detection performance improve if we combine lightweight statistical methods?):

• The combination method weighted voting enhanced anomaly detection performance
as it detected all attacks (at least some anomalous data points); and the results
had higher precision than the individual methods as it triggered less false alarms.
Thus, the combined results were more trustworthy than the results of the individual
methods.

As we expected for our reasoning RQ 2.3.4, the evidence from the experiment showed
that i) different methods had their own strengths and weaknesses, when detecting different
types of attacks, and ii) the combination of results of the lightweight statistical methods
improved the anomaly detection performance of the injected false data injection attacks
on the test data sets.
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CHAPTER 10
Mitigating the Effects of Attacks

on State Estimation

Notice of adoption from previous publications in Chapter 10
The contents of this chapter have not been published so far.

In this chapter, we give an overview of how inconsistent states can be recovered using
previous consistent (normal) states and propose an approach for maintaining correctness
of state estimation. First we present our approach, second, we show how state estimation
is affected by attacks, third how the effects of attacks on state estimation can be mitigated
with the proposed approach. And then we show experimental results and discuss how the
effects of attacks on the state estimation is mitigated using the approach.

Consistency of a system state can be analyzed based on the data collected and the
functionalities of a system. For instance, a state that meets normal behavior of a system
can be called a consistent or a normal state. Due to faults or attacks, a system can be
caused to be inconsistent with other states. Here we aim at recovering from inconsistent
states.

Figure 10.1 depicts an overview of a process recovering inconsistent state using information
from a consistent state. We make an assumption that a state at time step k is estimated
based on the actual (original) measurements. The left part of the figure shows an
inconsistent state caused due to faults or attacks, and right part of the figure shows a
model for prediction uses information (e.g., data) from the consistent state for instance,
compare the estimated state at time step k to previous consistent state at time step
k − 1.
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10. Mitigating the Effects of Attacks on State Estimation

Figure 10.1: An overview of an inconsistent state recovery process.

Kong et al. [85, 84] present an approach for predicting a consistent state at the current
time by using previous consistent states. In this work, historical information (global
consistent states) has been used for making a prediction of a roll forward state. The
proposed approach in [85, 84] uses a system model for current state prediction. As shown
in Fig. 10.1, the system model uses the latest stored correct (globally consistent) state
for the prediction of the current state. The authors mention that instead of using the
prediction by their model, prediction by Kalman filter can be used for such state recovery,
and leave it as a future work. Here we want to bridge the gap and show how prediction
by Kalman filter can be used for the state recovery. Table 10.1 shows an overview of
difference of our approach to the approach in [85, 84]. In a similar manner in [85, 84],
we assume other existing mechanism discover whether a particular sensor is faulty or
compromised. In our case, we can use the detection methods shown in Chapters 7 and 9.
After discovering the fault or attack, we execute our model for state recovery.

In this chapter, we aim to mitigate the effects of attacks on state estimation (SE) by
correcting the detected anomalous data before sending them to a state estimator. As we
correct the anomalous data, the estimated states based on the corrected data are different
from the original (actual) states. Though the states are different from the original states,
they represent previously known normal behaviour from the system; if the state of the
actual system does not change significantly, the corrected values should closely represent
the actual system state. In this way, we aim to provide a form of SE integrity. In
this sense, in the following sections of this chapter, we use the term preservation of SE
integrity for mitigating the effects of attacks on SE by correcting the detected anomalous
data. Our research question for preserving SE integrity reads:

• RQ 3.1: To what extent can the effects of FDI attacks on SE in electric power
systems (EPSs) be mitigated by replacing detected anomalies with values derived
from past data?
Rationale: In [85, 84], it is shown that an inconsistent state can be rolled forward to
current state if past consistent states are used for predicting the current state. The
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Table 10.1: An overview of our contribution.

Appraoch in [85, 84] Our approach
- assume some mechanism exists for
attacks/faults detection

- detect attacks using the methods
presented in Chapters 7 and 9

- focus on cyber-physical-state - focus only on cyber-state
- use a Linear-Time Invariant (LTI)
model based on historical information
and control inputs for a system
state recovery

- use Kalman filter (KF) based
on measurements and without control
inputs to mitigate the effects of
attacks on state estimation

- use LTI model for prediction
of current state

- use KF model for prediction
and estimation of current state

- the model use historical information
(e.g., previous global consistent
state based on measurements) and
control inputs from physical states
between previous global consistent
state and inconsistent state to
predict states of failed
(compromised) elements (e.g., sensor)

- the KF model use only measurements
for prediction and estimation of
current state
- replace detected anomalous data
with the predicted value of Kalman
filter which is called corrected value
- also use the predicted and
the corrected value (no control
input) to estimate current system state

- the predicted state is considered
as current consistent system state

- the estimated state is considered
as current consistent system state

- detection delay and difference of
the recovered state to the reference
are used to evaluate the approach.

- evaluate how the approach reduces
unnecessary voltage reporting to a control
center with different detection methods
and the corrected value

- future work in [85]: prediction can
be done by Kalman filter - covers the future work in [85]

correctness of SE is important as control actions in a power system will be taken
based on the decisions of the SE; the importance of SE correctness or SE integrity
preservation motivates us to investigate methods for the SE integrity preservation.
We assume SE integrity can be preserved by replacing the detected anomalous
measurements with the predicted value of Kalman filter before sending them to SE.
As can be seen in Chapters 8 and 10, the false data injection attacks introduced
in Chapter 5 are detected faster or slower depending on the method. In this way,
we can do both: detect anomalies in the measurement data and preserve state
estimation by using past data.

Here, we use Kalman filter for SE. When a state is detected as anomalous by anomaly
detection methods then the state is considered as inconsistent or abnormal state of a
system. In order not to influence SE with the anomalous states, the predicted state by
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10. Mitigating the Effects of Attacks on State Estimation

the Kalman filter is then used for replacing the anomalous state.

Table 10.2 shows the intention of using the SE integrity preservation model and data
used for the experiment. Details on parameter settings for the experiment are presented
in Sec. 10.2.

Table 10.2: Overview of state estimation integrity preservation, Sec. = section.

Method Data* Goal of experiment Sec.

Anomalous
data
replacement

Training data
(22.03.2016-31.03.2016)
Test data
(01.04.2016-14.04.2016)

- to answer RQ 3.1
10.1
10.2
10.3

* For all the given days of training and test data, one hour at 02:00-03:00 UTC is
used.

All of the notations used in this chapter are illustrated in Tab. 10.3.

Table 10.3: Notations used in state estimation integrity preservation.

Notation Description
H Observation model
zk Observed measurement
Δz An offset due to an attack
zk,a Manipulated measurement
zk,c Corrected (substituted) value
x̂k|k−1 Predicted state
x̂k|k Estimated state
Lk Kalman gain
x̂k|k,a Estimated state based on manipulated measurement

Δx̂k|k
Difference between estimated state based on manipulated
and actual measurements

x̂k|k,c Estimated state based on corrected (substituted) values

Serr
Sum of difference of estimated voltage during attack and
in normal operation

Sdiff
Sum of voltage of SE based on substituted
value and actual measurement
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10.1. Theoretical Background

10.1 Theoretical Background

10.1.1 Approach

In our scenario, PMU measurements are used for estimating states of a system. Estimated
states based on manipulated measurements can lead to wrong control decisions and can
cause impact to devices and also in human lives. We aim at avoiding such impacts by
preserving SE integrity. To this end, we substitute detected anomalous data by the
values predicted by the Kalman filter. Here we present our approach for SE integrity
preservation.

Figure 10.2: State estimation integrity preservation model.

Figure 10.2 shows our approach for replacing detected anomalous data and preserving SE
integrity. If there is no anomaly detection scheme, then the PMU measurement (normal
or anomalous) is directly used for SE which will estimate the wrong state if one or more
observations are anomalous or manipulated. Thus, the PMU measurement needs to be
sent to an anomaly detector where anomaly detection method is deployed, so that the
detected anomalous data can be corrected before sending it to the state estimator. If
a data point is accidentally detected as an attack (false positive) then it replaces the
normal data point which will influence the state estimation in a way that it predicts the
wrong state. We investigate on protecting SE integrity during abnormal behaviour of a
system and propose a model which detects anomalies, corrects the detected anomalous
data before feeding them to state estimator.

PMU measurement is fed to an anomaly detector where methods for detecting anomalies
are deployed. For our experiment, we selected only some anomaly detection methods
because we want to compare SE integrity preservation results from different types of
methods. To this end, we use a method from bad data detection (BDD), we decided to
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use KLD and a method that combines these approaches (in this case all three lightweight
statistical methods are used). Methods are selected based on our experimental results
analysis in Chapter 9 and 9. L2-norm RB method does not detect any type of attacks
(generated by FDI attack model presented in Sec. 5.3). Therefore, this method is not
considered here. Normalized RB method detects one of the attacks (type CO attack) and
also detects extreme benign anomalies (see Sec. 7.3.3). Both slow-changing attacks and
abrupt-changing attacks can circumvent the detection methods. But the slow changes are
reflected in distribution. Kullback-Leibler divergence (KLD) detects these types of attacks
and consistently detects subsequent anomalies. KLD has higher true positives than MAD
and CUSUM (see Sec. 9.3)) Further a type of combination approach, weighted voting
(WV) combines anomaly detection results from median absolute deviation (MAD), KLD
and cumulative sum (CUSUM), and enhance anomaly detection performance generating
low false alarm (see Sec. 9.4.3). Therefore, we selected KLD and the combined method
for our experiments. We assume the selected methods are deployed in the anomaly
detector and anomaly detection results of each methods are treated separately.

Data different than original data (rectangular coordinates with fixed phase) is used in
state estimation, it results the prediction which is not close to the original data. The
substitution of anomalous data with the prediction will result in the state that is not
close to the original data. Though the resulting state is not close to the original state,
the substitution avoids the effect of an attack by replacing the manipulated data with
representative normal data in the state estimation process.

If a measurement is detected as being anomalous then the measurement is replaced by
prediction otherwise the measurement is sent to the estimator. SE based on the corrected
or normal measurement is sent to the operators. Operators take decisions for control
actions based on the estimated states.

The input for the RB method is different than for the other methods. Therefore, we
cannot directly compare the errors reported to CC while deploying RB method to the
errors while deploying other methods.

Anomalous data replacement can preserve SE integrity and reduce reporting the wrong
measurements to the CC. Methods to preserve the integrity of SE is presented in next
section. But with false positive it influences the state estimation in a way that it predicts
the wrong state. Therefore, we make an assumption that we do not have too high false
positive.

10.1.2 Integrity of State Estimation

A state estimator estimates power system states based on observations. We use PMU
measurements for SE using a DKF and estimate voltage states. If estimated voltage is
normal no reactions are needed to be triggered, and if the estimated voltage is under
voltage or over voltage then necessary protection actions need to be applied in the system.
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When an attacker is able to manipulate voltage values, these manipulated voltage values
are used for estimating states. Estimated states based on the manipulated values can be
different than the real states of the system. Table 10.4 shows possibilities how an attack
can fake the system’s states. The possibilities are i) real state is normal and estimated
(manipulated) state shows either over voltage or under voltage ii) real state is under
voltage and estimated state shows either over voltage or normal iii) real state is over
voltage and the estimated state is either normal or under voltage.

Table 10.4: Possibilities of fake states.

Real state Normal Under votlage Over voltage

Estimated state Over voltage Normal Normal
Under voltage Over voltage Under voltage

Due to the data manipulation attack, operators may trigger protection actions in the
system based on the fake estimated states. So, unnecessary actions are triggered in the
system leading to critical condition. For example if the system is in under voltage and
fake state shows it is in over voltage, then reactions can lead the system to invoke wrong
power control actions. For SE with Kalman filters, estimated state at time step k is
based on the predicted state (x̂k|k−1) and the observation vector (zk). Here we recall SE
using DKF in normal operation in Eq. (10.1) (as presented in Sec. 4.2.1).

x̂k|k = Hx̂k|k−1 + Lk(zk − Hx̂k|k−1) (10.1)

where Lk is Kalman gain at time step k.

Figure 10.3: State estimation process based on actual signal (without manipulation).

Figure 10.3 depicts the SE process at a time step k based on the actual signal. At the
time step k, zk is the original (actual) measurement, first a prediction x̂k|k−1 is calculated
based on the previous estimated value x̂k−1|k−1 and then a new estimate x̂k|k for time
step k is calculated from the prediction x̂k|k−1 at time step k and the measurement zk at
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time step k. In the next time step k + 1, state is predicted from estimated value x̂k−1|k−1
and estimation process continues considering observed measurement and the prediction.

The manipulated voltage value is represented by Eq. (10.2)

zk,a = zk + Δz (10.2)

where Δz is an offset due to an attack at time step k.

SE using a DKF under attack is represented by Eq. (10.3)

x̂k|k,a = Hx̂k|k−1 + Lk(zk,a − Hx̂k|k−1) (10.3)

Figure 10.4: State estimation process based on manipulated signal.

Figure 10.4 depicts SE process at a time step k based on manipulated signal. Suppose an
attack starts at time step k. At the time step k, zk,a is manipulated measurement and the
prediction of the state at time step k (denoted as x̂k|k−1) from previous estimated value
x̂k−1|k−1. Current state (x̂k|k,a) is estimated from the predicted state x̂k|k−1 and the
manipulated measurement zk,a. From this step we can see estimation process estimates
wrong value considering manipulated measurement for estimation. In the next time step
k + 1, prediction is done from the wrong estimated value x̂k|k,a and estimation process
continues considering the wrong prediction and observed measurement.

Integrity of SE affected due to an attack can be formulated as Eq. (10.4) using the
equations (10.3) and (10.1).

Δx̂k|k = x̂k|k,a − x̂k|k (10.4)

where x̂k|k is the estimated state based on the original (non manipulated) measurement
at time step k and x̂k|k,a is estimated state based on the manipulated measurement at
time step k.

248



10.1. Theoretical Background

10.1.3 Calculating Voltage Differences

Unnecessary voltage can be reported to an operator due to an attack because wrong
states can be estimated based on the manipulated measurements. We aim to calculate
total amount of the voltage error reported to a CC due to an attack. To this end, we
analyse how much unnecessary voltage is reported to the CC with and without the
anomaly detection scheme.

In our use case (as shown in Chapter 4), we have discrete time signal. Here, we want
to calculate voltage in a discrete time signal to investigate how an attack affects the
integrity and how we can preserve using anomaly detection schemes.

Figure 10.5: An example figure of estimated states in normal operation and in an attack
scenario.

Figure 10.5 shows an example figure of estimated states in normal operation and in an
attack scenario, the area between two the curves represents the error reported to the
operator due to an attack.

Total difference of estimated voltages in normal operation and in an attack scenario over
time (i.e., the sum of the errors) can be calculated using Eq. (10.5).

Serr =
N�

i=1
| x̂i|i,a − x̂i|i | (10.5)

where time interval between two consecutive data points is constant.

We take the sum of the errors due to an attack (Serr) as a metric to compare how much
the reported values differ from the original measured values. Thus, we take Serr as a
metric to see if our methods works well for preserving the SE integrity. Calculation of
the unnecessary amount of energy or voltage is very important as it invokes protection
actions such as load shedding, active or reactive power control in the power system. Thus
we focus on preserving SE integrity by replacing detected anomalous state with predicted
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state. Contribution of anomaly detection methods to preserve SE are discussed in the
next section.

10.1.4 Preservation of Estimated State Integrity

The situation of a system is evaluated based on estimated states. Operators in a CC
being aware of a system’s current situation trigger necessary control actions. Therefore
here we aim increasing trustworthiness of estimated states by detecting anomalous data
and correcting them before sending it to the estimator.

We replace the detected anomalous data by the predicted value which we name as
corrected value. Thus, anomalous data are corrected and sent to the state estimator.
It helps increasing trustworthiness of estimated states. The “corrected” value differs
from the “correct” value (which is the actual measurement). Corrected voltage value is
represented by Eq. (10.6).

zk,c = x̂k|k−1 (10.6)

where x̂k|k−1 is the predicted value.

Estimated state using the corrected measurement is represented by Eq. (10.7)

x̂k|k,c = Hx̂k|k−1 + Lk(zk,c − Hx̂k|k−1) (10.7)

Figure 10.6: State estimation process considering anomaly detection and corrected
measurement.

Figure 10.6 depicts SE process at a time step k considering anomaly detection and
bad measurement replacement scheme. Current state is predicted (denoted as x̂k|k−1)
from previous estimated value x̂k−1|k−1. Suppose an attack starts at time step k and is
detected immediately at the time step k. Then, the manipulated measurement at time
step k zk,a is replaced by the predicted value x̂k|k−1, and the corrected value is denoted
as zk,c. A corrected estimated state at time step k (denoted as x̂k|k,c) is estimated from
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the predicted value x̂k|k−1 and the corrected measurement zk,c. Thus in next time step
k + 1, state is predicted from x̂k|k,c and the estimation process continues considering
corrected data and correct prediction.

Error on reporting the voltage to CC can vary depending on the detection delay of
anomaly detection methods but also since the corrected value may differ from the original
measurement. Thus, the sum of the errors after the correction (the difference between
the corrected value and the real state) can be calculated using Eq. (10.8).

Sdiff =
N�

k=1
| x̂k|k,c − x̂k|k | (10.8)

We take the difference as a metric and do experiments with different anomaly detection
methods. Further, we compare for which method we get the smallest difference.

Residual-based algorithm checks bad measurements but the slow changes in measure-
ment can circumvent the residual-based detection. Therefore, sometimes malicious
measurements can hide in normal operation and keep having negative impact in the
system.

10.2 Experimental Setup

We use PMU data from EPFL campus PMU network for our experiment (see Chapter
6). 50 frames/sec are reported from a PMU. i.e. a frame is sent every 20 milliseconds.
Data preprocessing (see Sec. 6.5) and experimental setup for normalized residuals based
method (see Sec. 7.2.3), KLD (see Sec.9.2.2) remain the same as presented in Chapter 9.
Experimental setup of weighted voting remains the same as described in Sec. 9.4.2 of
Chapter 9.

We use Sdiff as a metric to compare how the data replacement works with the different
AD methods. An attacker may bypass a detection system, but measurement changes
can be detected using a different method (may be with detection delay). A combination
method’s decision has better detection performance than a single method and can thus
help to minimize the issue of feeding anomalous data to the state estimator.

SE using Kalman filter is executed in normal operation and attack scenarios. If an
anomaly is detected then the anomalous data is replaced by the predicted value. In
addition, we run SE with and without the proposed scheme. We use discrete Kalman
filter as shown in Sec. 4.2.1.

10.2.1 With attacks, detection and data substitution

In this setup, states are estimated with attacks, detection methods and data replacement.
The proposed scheme has three methods for detecting anomalies. Detected bad data is
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corrected based on the detection results of each method. Figure 10.7 shows experimental
setup of the methods.

Figure 10.7: State estimation with attacks and the proposed integrity preservation
scheme.

We test the integrity preservation with three different AD methods: normalized RB,
KLD, combination method (weighted voting). We use KLD among other lightweight
statistical methods (MAD and CUSUM) shown in Chapter 9 because it consistently
detects the slow changes or abrupt changes attacks with higher true positives.

If the methods detect an observation at time step k as anomalous then the observation is
replaced by the predicted value at the time step k. In other hand if a method has high
false positives then it impacts the state estimation as we correct a measurement that has
not been manipulated.

Table 10.5 shows an overview of SE integrity preservation, parameter settings and injected
attacks. Predicted and estimated states under this setup are used for results analysis.
Results are presented in the next section.
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Table 10.5: Overview of state estimation integrity preservation, parameter setting and
injected attacks; Exp. = experiment; CO = constant offset; RO = random offset; ICO =
incremental constant offset; IRO = incremental random offset; IROMN = incremental
random offset with more noise; ICOHS = incremental constant offset with high slope;
Sec = section.

Exp. Methods Data* Param.
setting

Injected
attacks Sec.

10.1
Anomalous
data
replacement

Training data
(22.03.2016
- 31.03.2016)
Test data
(01.04.2016)

- Results from normalized
residual-based method
with threshold 10.7,
- KLD with threshold 8.95
- weighted voting

CO, RO
ICO, IRO
IROMN,
ICOHS

10.3

* For all the given days of training and test data, one hour at 02:00-03:00 UTC is used.

10.3 Results

10.3.1 State estimation in normal operation

In this section, we present estimated voltage states based on actual voltage. We do not
deploy any anomaly detection methods and execute the SE process. Extreme values due
to jumps in the signal have less influence in SE as Kalman filter puts less trust in the
measurements and follows the prediction model more closely.

Figure 10.8: State estimation in normal operation (y axis represents polar voltage).
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10. Mitigating the Effects of Attacks on State Estimation

Figure 10.8 shows the observed voltage signal without attack and the estimated voltage.
Blue signal shows the observed signal and orange line shows the estimated signal. Since
the estimation process smooths out noise, the estimated signal does not fluctuates like
the original signal.

The estimated signal aligns with the nature of the signal for instance between data points
7,093 and 7,815 voltage signal drops and slowly following the nature of the voltage signal
the estimated signal also drops between the data points 7,093 and 7,815. Also after the
drop at data point 120,000 the estimated signal slowly follows the nature of the actual
voltage signal. The original values will be reported to the control center, so they see the
real drops (and also could raise an alarm).

10.3.2 Anomalous data replacement and state estimation

In this section, we present SE under attack scenarios. Here we compare SE results before
and after deploying anomaly detection methods. Anomaly detection is performed on
the reported measurement values. For the comparison we execute SE process with the
proposed scheme. We execute different anomaly detection methods and replace detected
anomalous data before sending data to state estimator.

10.3.2.1 Constant offset attack

We execute normalized RB, KLD and weighted voting methods, and replace detected
anomalous data before executing SE during constant offset attack. Further, for comparison
of SE results we execute the SE process during the constant offset attack without deploying
any anomaly detection method.

Figure 10.9 shows estimated voltage states during the constant offset attack with and
without protection scheme for the test data set on April 1, 2016. Sub-figure 10.9a shows
estimated states without deploying any anomaly detection method. Therefore, from the
sub figure we can see the estimated signal follows the manipulated signal. Sub-figure 10.9b
shows estimated signal after deploying normalized RB BDD method. The normalized
RB BDD method is executed before estimating states and if any data point is detected
as anomaly then the data point is replaced by predicted value. As presented in Chapter
7, normalized RB BDD method detects benign anomaly between data points 7,093 and
7,815 (due to a jump between the data points), and replaces the anomalous data with the
prediction. When an attack starts at 60, 001st data point, we can see estimation is already
affected due to the attack and the estimated values increase. When the normalized
RB BDD method detects a data point as an anomaly, the anomalous data is replaced
with the predicted value, and in the next iteration pre-fit residuals remain high and
detects another data point also as an anomaly. Due to the replacement scheme, all
detected malicious data points are replaced by the predicted values. On the other hand
due to the substitution also the peaks will be missing. But since the CC also gets the
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(a) Without anomaly detection (b) Anomaly detection with normalized RB

(c) Anomaly detection with KLD (d) Anomaly detection with weighted voting

Figure 10.9: Observed and estimated signal in standard operation (a) and with different
anomaly detection methods (b,c,d) and data replacement for constant offset attack.

(manipulated) measurement values, they will see the value but cannot asses if it is due to
the manipulation or due to another cause.

Similarly, another sub-figure 10.9c shows results from SE where KLD method is executed
before sending data to state estimator. From the sub-figure, we can see KLD is quick in
detecting the anomaly but near data point 160,000 the divergence of the manipulated
signal to the reference decreases and stays below the defined threshold. The changes
in distribution caused due to the attack stay within the threshold because the original
signal decreases near data point 160,000 and the manipulated values stay within the
reference histogram distribution as it has quite broad distribution per hour (see Chapter
9). As anomalies are not detected, states are estimated based on the manipulated
measurements. From the sub-figure 10.9c, one can see that the estimated state is based
on the manipulated voltage which causes that the estimated signal raises (increases) until
it detects an anomaly again (see increasing red line near data point 160,000). Sub-figure
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10. Mitigating the Effects of Attacks on State Estimation

10.9d shows weighted voting detects anomalies till the end, and is better than other
methods.

10.3.2.2 Random offset attack

(a) Without anomaly detection (b) Anomaly detection with weighted voting

Figure 10.10: Observed and estimated signal in standard operation (a) and with weighted
voting method (b) and data replacement for random offset attack.

As presented in Chapter 7, normalized RB and KLD do not detect any malicious data
points during the random offset attack. But weighted voting detects some malicious data
points during this type of attack. Therefore we here only did experiments with weighted
voting. Figure 10.10 shows the estimated voltage states during the random offset attack.

The estimation process is able to filter out noise up to point 12,000. After that the
estimated signal starts becoming noisy because since anomaly is not detected, the SE
process considers the noisy measurements for estimating the states. If anomaly is detected
detected then also after the initial detection only some points are considered anomalous
e.g. “even after the first point is detected as anomaly several subsequent manipulated
data points are not detected as anomalies”.

Although the variation in the estimated signal is not normal, the random offset attack
is able to bypass the detection methods. So even with weighted voting the attack is
only detected very late. As only few data points are detected as anomalies by weighted
voting (see Fig. 9.33 in Chapter 9); only data points that are detected as anomalous are
substituted; therefore one cannot see the substitution in Fig. 10.10b.

10.3.2.3 Incremental constant offset attack

The SE process is executed during the incremental constant offset attack without deploying
any of the anomaly detection methods.
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(a) Without anomaly detection (b) Anomaly detection with normalized RB

(c) Anomaly detection with KLD (d) Anomaly detection with weighted voting

Figure 10.11: Observed and estimated signal in standard operation (a) and with different
anomaly detection methods (b,c,d) and data replacement for incremental constant offset
attack.

Figure 10.11 shows estimated voltage states during the incremental constant offset
attack with and without protection scheme. Sub-figure 10.11a shows estimated states
without deploying any anomaly detection method during incremental constant offset
attack. Sub-figure 10.11b shows estimated signal after deploying normalized RB BDD
method. Normalized RB BDD method is executed before sending data to the estimator.
As presented in Chapter 7 normalized RB BDD method detects this type of attack very
late. The detected anomalies are the benign anomalies caused due to the high jump in
the signal, we can see from the sub-fig. 10.11b that SE could not be protected using this
method because of the late detection and not all manipulated data points after the first
point are detected. Similarly, sub-figures 10.11c and 10.11d show estimated signal after
deploying KLD and weighted voting methods respectively. From the sub-figures we can
see contribution of KLD and weighted voting in protecting SE.
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10.3.2.4 Incremental random offset attack

(a) Without anomaly detection (b) Anomaly detection with normalized RB

(c) Anomaly detection with KLD (d) Anomaly detection with weighted voting

Figure 10.12: Observed and estimated signal in standard operation (a) and with different
anomaly detection methods (b,c,d) and data replacement for incremental random offset
attack.

As presented in Chapters 7 and 9, normalized RB, KLD and weighted voting detect
malicious data points during incremental random offset attack. Therefore, we here did
experiments with the normalized RB, KLD and weighted voting methods where the
detected anomalous data are substituted before sending the data to SE. In addition
one without substitution as reference for comparison, the SE process is executed during
incremental random offset attack without deploying any of the anomaly detection methods.

Figure 10.12 shows estimated voltage states during incremental random offset attack
with and without protection scheme. Sub-figure 10.12a shows estimated states without
deploying any anomaly detection method during incremental random offset attack.
Sub-figure 10.12b shows estimated signal after deploying normalized RB BDD method.
Normalized RB BDD method is executed before sending data to the estimator. As
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presented in Chapter 7, normalized RB BDD method detects this type of attack very
late (detection is only the benign anomalies caused due to the high jump), we can see
from the sub-fig. 10.12b that SE could not be protected using this method.

Sub-figures 10.12c and 10.12d show estimated signal after deploying KLD and weighted
voting methods respectively. From the sub-figures we can see anomaly detection is
delayed. As a consequence, it delays the contribution of KLD and weighted voting in
preservation of SE integrity.

10.3.2.5 Incremental random offset attack with more noise

(a) Without anomaly detection (b) Anomaly detection with KLD

(c) Anomaly detection with weighted voting

Figure 10.13: Observed and estimated signal in standard operation (a) and with different
anomaly detection methods (b,c) and data replacement for incremental random offset
attack with more noise.

As presented in Chapters 7 and 9, normalized RB, KLD and weighted voting detect
malicious data points during incremental random offset attack with more noise. Therefore,
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we here did experiments with the normalized RB, KLD and weighted voting where the
detected anomalous data are substituted before sending the data to SE. In addition one
without substitution as reference for comparison, the SE process is executed during the
incremental random offset attack with more noise without deploying any of the anomaly
detection methods.

Figure 10.13 shows estimated voltage states during incremental random offset attack
with and without protection scheme. Sub-figure 10.13a shows estimated states without
deploying any anomaly detection method during incremental random offset attack. As
presented in Chapter 7, normalized RB BDD method does not detect this type of attack,
so the figure is the same as sub-figure 10.13a, and SE could not be protected using this
method. Sub-figures 10.13b and 10.13c show estimated signal after deploying KLD and
weighted voting methods respectively.

From the sub-figures we can see anomaly detection is delayed. This can be caused due
to the random component, in some cases it prevents that thresholds are exceeded. If
the detection is delayed, then the new estimate also is at a much higher level than the
original (unmanipulated). As a consequence, it delays the contribution of KLD and
weighted voting in preservation of SE integrity.

10.3.2.6 Incremental constant offset attack with high slope

Normalized RB, KLD and weighted voting detect malicious data points during incremental
constant offset attack with high slope. Therefore, we here did experiments with the
methods where the detected anomalous data are substituted before sending the data to
SE. In addition one without substitution as reference for comparison, the SE process
is executed during the incremental constant offset attack without deploying any of the
anomaly detection methods.

Figure 10.14 shows estimated voltage states during incremental constant offset attack
with high slope with and without protection scheme. Sub-figure 10.14a shows estimated
states without deploying any anomaly detection method during incremental constant
offset attack with high slope. Sub-figure 10.14b shows estimated signal after deploying
normalized RB BDD method. Normalized RB BDD method is executed before sending
data to the estimator. As presented in Chapter 7 the normalized RB BDD method
detects anomalies (counted as malicious anomalies) caused due to a high jump in this
type of attack, we can see from the sub-fig. 10.14b that SE could not be protected
using this method. Similarly, sub-figures 10.14c and 10.14d show estimated signal after
deploying KLD and Weighted Voting methods respectively. From the sub-figures we can
see contribution of KLD and weighted voting in protecting SE.

260



10.3. Results

(a) Without anomaly detection (b) Anomaly detection with normalized RB

(c) Anomaly detection with KLD (d) Anomaly detection with weighted voting

Figure 10.14: Observed and estimated signal in standard operation (a) and with different
anomaly detection methods (b,c,d) and data replacement for incremental constant offset
attack with high slope.

10.3.3 Effects on Voltage Estimates

Here we want to provide details or further insights about the effects of attacks in voltage
estimates and the process of preserving the voltage estimation. We present estimated
voltage values in different scenarios and provides details about how SE is preserved using
anomaly detection methods and anomalous data replacement. Further examples of SE
based on actual measurement, and manipulated measurement with and without the
proposed scheme are shown.

We show how the estimation process works without manipulation, how it changes with
the manipulation, and how anomaly detection and bad measurement replacement correct
the SE.

Figure 10.15 shows an example of SE process based on actual measurements. Sub-figure
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(a) Actual, prediction and estimation (b) Zooming predicted and estimated values

Figure 10.15: State estimation without manipulation.

10.15a visualizes actual measurements by blue curve, predicted and estimated values
by green and black points respectively. From the sub-figure, we can see prediction and
estimation are very similar but differ from the actual values because prediction of current
step depends on previous estimated state, and estimation of current step depends on
predicted and observed (actual) values. The estimated values are close to the prediction
as they both are related to the previous estimated values and observed values. Another
sub-figure 10.15b zooms into predicted and estimated values to show that they slightly
differ. From the sub-figures, we can see the estimated value lies between the prediction
and observation because the state is estimated using the predicted and observed (original)
value.

(a) Actual, manipulated measurement, predic-
tion and estimation (b) Zooming into predicted and estimated values

Figure 10.16: State estimation with manipulation and without correction.

Figure 10.16 shows an example of SE process based on manipulated measurements.
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Sub-figure 10.16a visualizes actual, manipulated measurements together with prediction
and estimation. When an attack starts at the third data point, manipulated measurement
has the higher value than the actual value. From sub-figure 10.16b, we can see estimated
value at the third data point increases and lies between manipulated value and predicted
value instead of between original and predicted values. In the next steps, predicted and
estimated values keeps on increasing.

(a) Actual, manipulated measurement, predic-
tion and estimation (b) Zooming predicted and estimated values

Figure 10.17: State estimation with manipulation and correction.

Figure 10.17 shows an example of SE process with correction of anomalous measurement.
Sub-figure 10.17a shows manipulated measurements, predicted values, estimated values
and substituted values (substituted by prediction). From the sub-figure, we can see
predicted and corrected (substituted) values overlap, and the estimated value is very
similar to the predicted value (it is zoomed-in in sub-figure 10.17b). In the first and
second data points, predicted and estimated values have very small differences, but from
the third data point onwards prediction and estimation overlap (i.e., they are equal). It
is due to replacement of bad measurement.

Table 10.6 illustrates actual, measured, predicted and estimated values that are shown
in Fig. 10.17. The fourth column shows whether the observation is detected as an
anomaly. Depending on the anomaly detection, it is decided whether the corresponding
measurement should be corrected (it is shown in column six). For the first two data
points, measurements are not detected as anomaly and there is no need of correction.
Once anomalies are detected from the third data point, the measurements are corrected
by replacing them with the predicted value. From the table starting from the third data
point, corrected values, predicted values, and estimated values are equal.
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Table 10.6: Estimation with correction; Orig. = original; Report. = reported; Correct.
= corrected; A = anomalous; NA = not applicable; Y = yes; N = no; Diffest,org =
difference between estimated and original value.

Orig. Report. A Predict* Correct. Estimate Diffest,org

1.0565727 1.05657272 N 1.05679358 NA 1.05679357 220.8 × 102

1.0565709 1.05657095 N 1.05679357 NA 1.05679356 222.6 × 102

1.0565600 1.07500000 Y 1.05679356 1.05679356 1.05679356 233.5 × 102

1.0565166 1.07495661 Y 1.05679356 1.05679356 1.05679356 276.9 × 102

1.0564994 1.07493936 Y 1.05679356 1.05679356 1.05679356 294.1 × 102

1.0564080 1.07484802 Y 1.05679356 1.05679356 1.05679356 385.5 × 102

* Predicted value at time step k is always the estimated value from k − 1.

Now we proceed to discuss the long term effect of voltage estimation without/with
manipulation and without/with detection and correction process.

We calculate difference between estimated voltage in attack scenarios and estimated
voltage in normal operation, denoted as Serr. Serr is the amount of unnecessary voltage
due to voltage manipulation (error in reporting voltage due to an attack).

Table 10.7 shows an overview of unnecessary voltage amount reported to CC in different
attack scenarios, and total estimated voltage after applying AD methods in the attack
scenarios and its effect in estimated voltage integrity preservation. The voltage values are
in p.u. From the table (Serr shown in second column), we can see that highest amount
of unnecessary voltage is reported to CC during the ICOHS attack.

Table 10.7: Estimated voltage values (in p.u.) in attack scenarios, and state estimation
preservation using different anomaly detection methods; Serr = sum of difference between
estimated voltage in attack scenarios (without substitution) and normal operation (i.e.,
error in voltage reporting), Sdiff = sum of difference of estimated values after applying
AD method together with anomalous data replacement and estimated values in normal
operation.

Attack Serr
Sdiff after applying method

Normalized RB BDD KLD Weighted Voting
CO 21.55 × 102 2.3698 × 102 1.0091 × 102 0.0169 × 102

RO 0.9783 × 102 1.009 × 102 97.78 × 102 0.0013 × 102

ICO 12.45 × 102 12.45 × 102 9.656 × 102 8.541 × 102

IRO 13.65 × 102 13.68 × 102 10.80 × 102 8.646 × 102

IROMN 13.64 × 102 13.64 × 102 12.87 × 102 10.41 × 102

ICOHS 30.23 × 102 30.25 × 102 12.42 × 102 10.98 × 102

Here, we proceed to the estimation results in attack scenarios while applying anomaly
detection methods and bad data replacement. Total estimated voltage after applying
anomaly detection methods together with bad data replacement in each of the attack
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scenarios (shown in first column) is shown in third column (see Sdiff ). It shows the
voltage reported to an operator after deploying the anomaly detection and mitigation
scheme (i.e., voltage reported while deploying normalized RB BDD, KLD and weighted
voting). The amount of voltage depends on anomaly detection delay.

Total difference between estimated values after applying the detection methods together
with bad data replacement and estimated values in normal operation (named as Sdiff ) is
shown in third column of the table. We want to minimize the error due to an attack and
show that the error is minimized if the substitution is done.

Figure 10.18 visualizes estimated voltage signals while deploying different methods in
attack scenarios. Different curves in the sub-figures visualize estimated voltage signals in
five conditions (given below). Thus estimated voltage values in five conditions, differences
between them, illustrated in Table 10.7 are visualized in Fig. 10.18.

• Actual (blue curve): estimated based on actual (non-manipulated or normal)
voltage.

• Nothing (orange curve): estimated voltage signal during attack without any detec-
tion method.

• Normalized RB (black curve): estimated voltage signal during attack while applying
normalized RB BDD method and substitution.

• KLD (yellow curve): estimated voltage signal during attack while applying KLD
method and substitution.

• Weighted voting (purple curve): estimated voltage signal during attack while
applying Weighted voting method and substitution.

Mapping of values in Table 10.7 to the figures 10.18 is based on the following information.

• Sum of differences between orange and blue curve over time is calculated as Serr.

• Sum of estimated voltage represented by black/yellow/purple curve over time is
calculated SADR.

• Sum of differences between black/yellow/purple curve and blue curve over time is
calculated as Sdiff .
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(a) Constant offset attack (b) Random offset attack

(c) Incremental constant offset attack (d) Incremental random offset attack

(e) ICO attack with more noise (f) ICO attack with high slope

Figure 10.18: State estimation integrity preservation using different methods in attack
scenarios CO, RO, ICO, IRO, IROMN and ICOHS.
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10.3.4 Results Findings

Our results show that the proposed SE integrity preservation scheme depends on anomaly
detection delay and detection performance of the methods.
Here we conclude our results analysis.

• F 3.1.1: SE integrity preservation works well in CO type attack as it is detected
immediately by all methods (normalized residual-based, KLD and weighted voting)
and states can be corrected from the beginning.

• F 3.1.2: SE integrity preservation is challenging in RO type attack because detection
of the RO attack type is also challenging. As expected, if an anomaly is not detected
then SE integrity preservation does not work, for instance normalized RB methods
and KLD do not detect RO type attack so in this attack type SE integrity cannot be
preserved. for instance SE integrity preservation in IRO type attack is challenging
than in ICO type attack as the detection of IRO is delayed than the detection of
ICO.

• F 3.1.4: Combination method - weighted voting has better integrity preservation
than the normalized residual-based and KLD methods because the combined
results has better anomaly detection performance than the methods (normalized
residual-based and KLD).

Since we do not know the original measurements the corrected state usually deviate from
the original state. This leads to state deviations especially if attacks persist for a longer
time span (as in our case). Also for a long sequence of anomalous values all corrected
subsequent values equal since we lack fresh measurement information. Therefore for the
preservation of the state estimation, it would be useful to also detect the end of an attack.

10.4 Summary

In this chapter, we presented our proposed approach for maintaining correctness of SE.
The approach was designed to replace detected anomalous data and preserve SE integrity.
We showed how SE was affected by attacks. For this we presented possibilities how an
attack could fake the system’s states.
Voltage in discrete time signal is presented to calculate total amount of voltage over time.
For this, amount of unnecessary voltage reported to the control center (i.e., error on
voltage reporting to CC due to an attack) is analysed with and without the anomaly
detection scheme.
We aimed at increasing trustworthiness of estimated states by detecting anomalous data
and correcting them before sending to the estimator, and showed how estimated state
integrity could be preserved.
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Settings on estimating states with and without anomaly detection, and the proposed
anomalous data replacement schemes were presented in the experimental setup. The
results confirmed that the proposed SE integrity preservation scheme depended on
anomaly detection delay and performance of the methods.

The following major results findings supported answering our research question RQ 3.1
(To what extent can the effects of FDI attacks on SE in electric power systems (EPSs)
be mitigated by replacing detected anomalies with values derived from past data?):

• SE integrity preservation works well if an anomaly was detected, for instance SE
integrity preservation worked well for CO attack type and challenging for RO attack
type.

• SE integrity was preserved by replacing detected anomalous measurements that
have been detected by the residuals-based and lightweight statistical methods and
the quality of integrity preservation depended on the detection delay.

• Combined anomaly detection results using weighted voting had better integrity
preservation than the normalized residual-based and KLD methods as the weighted
voting are trustworthy than the normalized residual-based and KLD methods.

• If we detect a false positive and correct the value that has not been manipulated
then with a correction also the corrected value and true value have a difference.
This difference can increase over time. Therefore, it would be also important to
detect the end of an attack.

As we expected for reasoning RQ 3.1, the evidence from the experiments showed that
the effects of attacks on SE was mitigated by replacing detected anomalous data by the
predicted values from the Kalman filter.
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CHAPTER 11
Summary and Conclusions

Notice of adoption from previous publications in Chapter 11
Parts of the contents of this chapter have been published in the following papers:

[129] S. Paudel, P. Smith, and T. Zseby. Data Integrity Attacks in Smart Grid Wide
Area Monitoring. 4th International Symposium for ICS and SCADA Cyber
Security Research, 2016

[130] S. Paudel, P. Smith, and T. Zseby. Attack models for advanced persistent
threats in smart grid wide area monitoring. In Proceedings of the 2Nd Workshop
on Cyber-Physical Security and Resilience in Smart Grids, CPSR-SG’17, pages
61–66, New York, NY, USA, 2017. ACM

[132] S. Paudel, P. Smith, and T. Zseby. Stealthy attacks on smart grid PMU state
estimation. In Proceedings of the 13th International Conference on Availability,
Reliability and Security, ARES 2018, Hamburg, Germany, August 27-30, 2018,
pages 16:1–16:10, 2018

[133] S. Paudel, T. Zseby, E. Piatkowska, and P.Smith. An evaluation of methods
for detecting false data injection attacks in the smart grid. In preparationa

Explanation text, on what parts were adopted from previous publications:
Text is based on the work done in [129], [130], [132] and [133].

S. Paudel implemented the methods and conducted all the experiments. Theoretical
considerations and experiment planning was done together with all co-authors, the
text and figures in the papers were created together by all authors.

aThe paper is in preparation.
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11.1 Summary

A smart grid relies heavily on ICT in order to incorporate new functions into electricity
grid monitoring and control. Increased deployment of information technology in smart
grids opens new attack vectors and requires the deployment of methods to detect unusual
activities. The fast changing landscape of threats in cyber-physical systems, the increasing
complexity of control systems and the need to work in adversarial settings makes anomaly
detection in smart grids very challenging.

This research focused on how power system security can be improved by detecting FDI
attacks against WAMSs. We investigated FDI attacks at different attack entry points of a
WAMS, and their impacts on the smart grid system. We also developed an attack model
for generating different types of attacks. By providing an in-depth analysis of attack
possibilities on WAMSs using attack trees and validating them through experiments and
data analysis, we showed that a combination of different statical methods is necessary
for effective detection of such attacks.

Figure 11.1 shows an overview of research questions and contributions in this work.
Activities performed while addressing the research questions are summarized in the
following paragraphs.

Figure 11.1: An overview of research questions and contributions.
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11.1.1 Conclusions for Research Question 1

We investigated various possibilities of data integrity attacks at different points in a
WAMS. For this we used a generic model of a WAMS, which is comprised of all possible
components that could be present in the system. We considered different attack entry
points and elaborated on the consequences for attackers and mitigation strategies. Six
attack scenarios were considered based on a hierarchical WAMS structure with the
following key components: PMUs, PDCs, super PDCs, PGWs, access and core routers.
We analysed their impacts on the system. We identified that there are some gaps, e.g.,
no existing technique directly addresses PGWs misconfiguration. The different attack
entry points, attack scenarios on the key components of a WAMS and their impacts on
the system supported answering research question RQ 1.1.

We investigated attack models for cyber and physical attacks, which can be combined
and can be a part of an APT in a WAMS using attack trees, and provided insights into
sub goals that can be used to craft an attack for reaching a higher goal. We pointed out
the different aspects (WAMS environment specific) of using physical and cyber means
for attacks. Subsequently, we developed a generic attack tree for compromising a device
in a WAMS. Based on the generic tree, we provided two specific attack trees in order to
trigger wrong control decisions: i) maliciously provoking a blackout and ii) manipulating
input data for grid control. The attack trees have been used as a method to model
attacks in smart grid environments (e.g., for SCADA systems or smart meters). Since
WAMSs provide many attack entry points, we believe that a detailed insight into WAMS
attack possibilities is critical for smart grid protection. We considered different devices,
their interfaces, hardware and software components in the WAMS, and investigated the
possibilities that an attacker can use to launch severe attacks using these components.
We described a generic attack model for compromising a device. Using the generic model
as a building block, we showed how an attacker can launch specific attacks with two
example models: i) provoking a power blackout; and ii) manipulating a phase angle. The
attack models showed the different paths for launching the attacks from different entry
points. The attack vectors, generic and specific attack trees in the context of a WAMS
supported answering research question RQ 1.1 (How can an attacker cause false data
injection attacks in a wide area monitoring system?) and RQ 1.2 (How can multiple
different false data injection attack forms be expressed in one comprehensive attack
model?).

Attack models helped us to understand i) the different ways of launching an attack in
order to achieve the final goal in different ways ii) the vulnerabilities, security issues, and
possible threats on the paths for cyber and physical attacks. The models also helped
us to assess which branches are easier to achieve for attackers. Further, they provided
strategic guidance for the deployment of suitable countermeasures. Therefore, attack
models for WAMS environments provided useful insights to improve wide area monitoring
security. The possibilities of launching an attack, vulnerabilities, security issues, possible
threats and strategic guidance for suitable countermeasures supported answering RQ
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1.2.

We developed an FDI attack model that generates types of attacks namely, CO, RO,
ICO, IRO, IROMN and ICOHS. Additional attacks (SD, RSCV, IROCV and IROS) were
generated by extending attack parameters and their values. The generation of multiple
different FDI attack forms using one comprehensive attack model supported answering
RQ 1.2.

11.1.2 Conclusions for Research Question 2

We showed how an attacker can modify voltage measurements and circumvent detection
methods in systems that use Kalman filter based state estimation. Such data integrity
attacks on PMU measurements stay under the safety limits and poison the measurements.
We used linear state estimation (LSE) with weighted least squares (WLS) and discrete
Kalman filter (DKF) using public PMU measurements from a real power grid. We
reviewed an anomaly detection method that uses pre-fit residuals from Kalman filter
based state estimation to detect anomalous measurement values in a power grid system.
We implemented the method in MATLAB. We then showed different scenarios on how
an attacker can modify voltage measurements and can hide the attack in the normal
operation of the state estimation. The attacks remain stealthy because the attacker
slowly makes the changes such that residuals stay below the threshold. The evidence
from the experiments showed that one can detect the attacks using alternative methods.
For instance, observing the changes in the histograms of the pre-fit residuals, and the
evolution of the pre-fit residuals over time, one could yield insights about a potential
attack. In order to prevent such stealthy attacks, we suggested to include further detection
methods in an overall effort to achieve effective countermeasures. The evidence from the
experiments of residual-based bad data detection methods supported answering research
question RQ 2.1 (To what extent can residual-based bad data detection methods detect
different FDI attacks?).

We investigated stealthy attacks of the form a = H · c against state estimation from [100]
and presented the stealthiness of the false data injection attacks on the state estimation
using the weighted least squares. Under the conditions defined by Liu et al. in [100] for
LWLS state estimation, attacks remained stealthy only if the attacker could manipulate
all of the measurements considered for state estimation and in our experiments the
attacks are detected for DKF state estimation. So with DKFs we are able to detect the
stealthy attack. The evidence from the experiments of stealthy attacks of form a = H · c
under the conditions defined by Liu et al. in [100] supported answering research question
RQ 2.2 (Can stealthy attacks of the form a = H · c as described in [100] be detected by
residual-based methods?).

We presented an investigation into the characteristics of important and distinct methods
for detecting false data injection against WAMSs. To this end, we have chosen bad data
detection methods and lightweight statistical methods: a) three residual-based approaches
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(plain pre-fit residuals, L2-norm and normalized residuals) using pre-fit residuals from
Kalman filter based state estimation, as an example of an adaptive bad data detection
method, b) a measure of dispersion using the median absolute deviation (MAD), c)
a distribution-based approach using the Kullback-Leibler Divergence (KLD) and d)
the cumulative sum (CUSUM) as a representative of a change point detection method.
After data analysis, we made a selection of representative PMU measurements for our
experiment. The selected data was partitioned into historic, training and test data sets.
The training data sets were used to derive suitable thresholds for the methods. The
measurements that appeared later in time were used as test data. To see how differently
these methods perform, we injected six different attack types into the test data sets. Then
we analysed the anomaly detection performance using the bad data detection methods
and the lightweight statistical methods. In addition, the anomaly detection performance
of the statistical methods when using different thresholds were discussed using the ROC
curves. Further, we analysed the detection delay of the methods that showed how fast
the different methods raise an alarm for the different attack types.

Our findings showed that different methods detect different attack types and there is no
single superior method that performs best for all attack types. Traditional residual-based
bad data detection methods may be tricked by attackers. For instance, L2-norm does
not detect any of the attacks and three of the attacks are not detected by the normalized
residual-based method. But if additional anomaly detection methods are applied, the
detection performance can be significantly improved even with simple methods for some
attacks. CUSUM has better recall than MAD and KLD on CO, RO, ICO, IRO and
IROMN attacks as it is better in correctly identifying anomalous data points. KLD has
better recall than MAD and CUSUM on ICOHS attack. Our analysis showed that the
lightweight statistical methods detected at least one anomaly during all attacks (more
data points are detected in many cases). Especially the combination of methods from
different detection concepts (e.g., simple threshold, distribution-based, change point
detection) proved to be powerful in order to detect a broad variety of attacks. A further
important finding is that the detection delay varies a lot and highly depends on the attack
type and the method. The analysis of the combined results showed the combination
of methods enhanced anomaly detection performance and provided trustworthy results.
This needs to be taken into account since this influences the time needed to invoke
countermeasures and therefore can influence the damage caused by an attack. From
our findings, we argued that grid operators need to combine a set of multiple different
methods in order to detect different attack types. It helped in detecting sophisticated
attacks, which might be able to bypass a detection method.

We further investigated on the combination of methods to enhance anomaly detection
performance. A combination method weighted voting is applied to the anomaly detection
results of the three lightweight statistical methods MAD, KLD and CUSUM, then the
anomaly detection performance on the six types of attacks were analysed. Our findings
showed i) we should use a combination of methods to detect at least some anomalous
data point in all types of attacks and ii) we can select a combination method based on the
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goal (requirements) of combination, for instance achieving higher precision, detection of
at least one data point per attack, higher recall etc. The evidence from the experiments
of the lightweight statistical methods (MAD, KLD, CUSUM) and a combination method
(weighted voting) supported answering research question RQ 2.3 (Is it possible to detect
the injected attacks with lightweight statistical methods?).

11.1.3 Conclusion for Research Question 3

We investigated mitigating the effects of attacks on state estimation by replacing the
anomalous measurement with the predicted values based on past data. An anomalous
data replacement scheme was applied on the anomaly detection results from normalized
residuals, KLD and weighted voting. The states were estimated based on the corrected
measurement. We then performed an anlysis of mitigating the effects of attacks on
voltage state estimation.

Our findings showed that the effects of attacks on voltage estimation can be mitigated by
correcting measurements before sending them to the estimator. The weighted voting has
better mitigation performance than the normalized residual-based and KLD methods, as
the combined results have better anomaly detection performance than the normalized
residual-based and KLD methods. Another finding is that the detection delay influences
the mitigation of the effects of attacks on state estimation. Selection of an appropriate
anomaly detection threshold influences anomaly detection delay and thus the mitigation
of the effects of attacks.

The evidence from the experiments of state estimation with the corrected data (replacing
detected anomalous data by predicted value of Kalman filter) supported answering
research question RQ 3.1 (To what extent can the effects of FDI attacks on state
estimation in electric power systems (EPSs) be mitigated by replacing detected anomalies
with values derived from past data?).

11.2 Research Outlook and Future Directions

The research questions in this thesis have been addressed by applying several different
methods, however, several research topics and future directions have emerged during the
course of this research.

11.2.1 Improvements in Anomaly Detection Performance

Anomaly detection performance always depends on the data we use on the methods,
parameter settings and changes in the signal. The detection performance can be improved
by using more data sets and by adjusting the influencing factors of the anomaly detection
methods. For instance, regarding the KLD method, a careful selection of a reference
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histogram, its time window, sliding time, threshold etc. can improve anomaly detection
performance. Further, frequent changes in the signals (training and test) influences the
anomaly detection performance in our scenarios. In particular, setting the thresholds in
a suitable way is crucial for the detection performance.

Selection of appropriate values of the method’s parameters can also improve the detection
performance of combination methods. Further, an appropriate setting of parameters
of combination methods also influence the overall detection performance. For instance,
an appropriate selection of probability threshold for weighted voting improves anomaly
detection performance.

A possible future direction of research could be parameter (influencing factors) optimiza-
tion of methods to improve performance. We propose using a parameter optimizing
method for selecting best parameters of the methods to improve anomaly detection
performance (e.g., in [173, 134]). For instance, we could combine different parameter
values of the methods and check the combination for better performance.

For more sophisticated attacks also the application of machine learning methods might
be useful. But in our scenarios, machine learning methods are not really needed and
we consider a desirable property for use in a critical infrastructure setting with few
computational resources. There is a lot of space for setting thresholds for the statistical
methods, machine learning is an option and would work if we use them for setting
thresholds of the statistical anomaly detection methods. For instance, in a similar manner
as in [125] we could use machine learning experiments to set thresholds for the anomaly
detection methods.

Contextual information of a system can help identifying situations of a system. Combina-
tion of the contextual information and the decisions (results) from the different methods
can improve overall anomaly detection performance (e.g., in [158, 128]).

11.2.2 Knowledge Based Anomaly Identification System

Highly dynamic measurements gathered from the distributed PMUs are used for state
estimation and reflect the dynamic performance of a power system in real time. Data
injection attacks in PMU measurements can lead to incorrect SE and invoke wrong
control actions. Therefore, an operator needs to know the root cause of an anomaly
to apply an appropriate remedy. Early anomaly detection, identifying its cause, and
applying appropriate remedy can help avoiding such critical situation.
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Figure 11.2: A potential next step of the research would be to integrate a knowledge-based
approach.

A possible future direction of research could be to integrate contextual information and
data analytics results for threat and attack detection. We propose using a knowledge-
based anomaly identification system (see Fig. 11.2), which uses an ontology to identify
anomalous behaviour. The ontology uses knowledge about the system and decisions
from the anomaly detection algorithms for analysis. If an observation is detected as an
anomaly then an appropriate remedy is applied before sending it to a control center for
estimating states.
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APPENDIX A
Appendix

A.1 List of Notations

A State-transition model
B Control input model
H Observation model
I Identity matrix
u Control input
v Measurement noise
vk Measurement noise (time-variant)
w Process noise
wk Process noise (time-variant)
Qk Process noise covariance matrix (time-variant)
R Measurement noise covariance matrix
P k|k−1 Predicted process covariance matrix (time-variant)
P k|k Process covariance matrix (time-variant)
zk Real measurement (time-variant)
z Real measurement
zv Observed measurement
ze Estimated measurement
zvk Observed measurement (time-variant)
yk Pre-fit residual (time-variant)
yk/k Post-fit residual (time-variant)

277



A. Appendix

xk Real state (time-variant)
x̂k|k−1 Predicted state using DKF (time-variant)
x̂k|k Estimated state using DKF (time-variant)
Lk Kalman gain (time-variant)
γ Decision level (in DKF)
x̂LW LS,k Estimated state at time step k using WLS
J(x) objective function of weighted least squares
Rjj variance of the jth measurement
G gain matrix of WLS
Δz An offset due to an attack
zk,a Manipulated measurement
zk,c Corrected (substituted) value
x̂k|k,a Estimated state based on manipulated measurement

Δx̂k|k
Difference of estimated state based on manipulated and
actual measurements

x̂k|k,c Estimated state based on corrected (substituted) measurement

Serr
Sum of difference of estimated voltage during attack and
in normal operation

Sdiff
Sum of voltage of state estimation based on substituted value
and actual measurement

A.2 Command for KF concept validation

A discrete plant as expressed in [105] as a state space system is defined as

Plant = ss(A, [B B], H, D, T, ‘inputname‘, {‘u‘, ‘w‘, ‘v‘}, ‘outputname‘, {‘z‘, ‘zv‘})
(A.1)

where A is state transition model, B is control input model, H is measurement model,
D links real measurement to control input u, as measurement is based only on the
measurement model we set D to 0, setting T to −1 marks this model as a discrete model,
w is process noise, v is measurement noise and y is real measurement. u and w are inputs
to the model and y is output of the model.
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A.3 Measurement

A.3.1 Measurement Matrix

A.3.1.1 H for voltage-phasor measurements

Elements of HV , h1 to h4 for multiple buses are represented as A.2

h l,re
1 h,re =

�
1 if l = h

0 if l �= h
(A.2)

h l,re
2 h,im = 0 (A.3)

h l,im
3 h,re = 0 (A.4)

h l,im
4 h,im =

�
1 if l = h

0 if l �= h
(A.5)

In the equations (A.2) - (A.5) superscripts I and h refer to the bus, re refers to the real
part and im refers to the imaginary part of the voltage measurements, re refers to the
real part and im refers to the imaginary part of the state variables. Here, element H i,re

1 h,re

links real part of the measurement at bus i (Vi,re) to the imaginary part of the state at
the bus (Vh,re).

A.3.1.2 H for current-injection-phasor measurements

The current injection phasor Ij at bus l is represented as Eq. (A.6)

Ij =
s�

h=1
YlhVh (A.6)

Real part of the current injection phasor is represented by Eq. (A.7)

Ij,re =
s�

h=1
[GlhVh,re − BlhVh,im] (A.7)

Similarly imaginary part of the current injection phasor is represented by Eq. (A.8)

Ij,im =
s�

h=1
[GlhVh,im + BlhVh,re] (A.8)
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HIinj can be derived from the equations (A.7) and (A.8) as

HIinj =
�
h1 h2
h3 h4

�
(A.9)

where
h l,re

1 h,re = Glh (A.10)

h l,re
2 h,im = −Blh (A.11)

h l,im
3 h,re = Blh (A.12)

h l,im
4 h,im = Glh (A.13)

A.4 Influence of Phase Angle Variation

In a real power system frequency and phase angle changes. We adopt the changes
using a rotation matrix of the system. A rotation matrix defines rotation (clockwise
or anticlockwise) of a power system [55, 17]. Rotation matrix for clockwise rotation is
defined as Rk:

Rk =
�
cosθk −sinθk

sinθk cosθk

�
(A.14)

We adjust a state transition matrix Ak in a Discrete Kalmam Filter (DKF) model for the
real networks applications. The state transition matrix considers rotation of the phase
angle θk (represented by Rk). For a time step k, Ak is represented by Eq. (A.15).

Ak =
�
cosθk · I −sinθk · I
sinθk · I cosθk · I

�
(A.15)

where θk is a phase angle at step k and I is a n × n identity matrix where n is dimension
of a state xk.

A DKF process model after adjusting Ak for the real system as shown by Eq. (A.16).

xk = Akxk−1 + wk (A.16)

Thus for state estimation considering rotation matrix of the system, the rotation matrix
needs to be adjusted in the state transition matrix Ak (see Eq. (A.15)). But the model
we use from literature [139] assumes fixed phase angle and time invariant state transition
matrix A as an identity matrix. In the literature the model is validated using simulation.
Therefore in our use case we also assume constant phase angle and A as an identity
matrix where rotation matrix is not used. Here, we recall the DKF process model as

xk = Axk−1 + wk (A.17)
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From Eq. (A.15), we can figure out that if the angle (θ) becomes 0 radian then A results
to an identity matrix.

For a time step k, real voltage Vk,re and imaginary voltage Vk,im from polar voltage Vk

and phase angle θ = 0 is represented as

Vk,re = V · cos(0) = V (A.18)

Vk,im = V · sin(0) = 0 (A.19)

(a) Real voltage. (b) Imaginary voltage.

Figure A.1: Estimated real and imaginary voltage (voltage and residuals are in p.u.).

We fix the phase angle value to zero and run the state estimation using DKF. Figure
A.1 shows estimated real and imaginary voltages, and the corresponding pre-fit residuals
(using the Vk,re and the Vk,im). Sub-figure A.1a shows observed and estimated real voltage
and pre-fit residuals. From the sub-figure we can see estimation process smooths out
the signal. But from sub-figure A.1b we can see estimated signal is noisy then observed
signal.

We conclude, state estimation using phase angle zero contrasts to the goal of filtering
process. And as we use pre-fit residuals of real-and-imaginary voltage for detecting bad
measurements this may not effectively detect bad measurements. Further, we make a use
of a pre-fit residual-based approach that has been proposed by Pignati et al. [139]. They
use the method for simulation-based data where frequency was fixed and phase angle did
not vary. Therefore, here we fix phase angle by the first observed phase angle.

A.5 Moving Average, Median and Variance

Here we present moving average, median and variance of training and test data sets.
An average, median and variance of 3,000 data points are considered in a window, and
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the window slides in each data point. Thus, a new data point is considered and the
oldest data point is removed while moving the window. First, we show moving average,
median and variance of training data; second we show moving average, median, and
variance of actual test data; then we show the moving average, median and variance
of the manipulated test data. To this end, moving average, median and variance of all
attacks (CO, RO, ICO, IRO, IROMN, and ICOHS) on the test data are shown.

Figure A.2 shows moving average and moving median of all training data sets. Sub-figures
A.2a to A.2g in the Fig. A.2 show moving average and moving median from day 1 to day
7 of the training data.

(a) Day 1 (b) Day 2 (c) Day 3

(d) Day 4 (e) Day 5 (f) Day 6

(g) Day 7

Figure A.2: Moving average and moving median of training data per day.

Figure A.3 shows moving variance of all training data sets.. Sub-figures A.3a to A.3g in
the Fig. A.3 show moving variance from day 1 to day 7 of the training data.
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(a) Day 1 (b) Day 2 (c) Day 3

(d) Day 4 (e) Day 5 (f) Day 6

(g) Day 7

Figure A.3: Moving variance of training data per day.

Similarly, Fig. A.4 shows moving average and moving median of all actual test data sets.
Sub-figures A.4a to A.4 show moving average and moving median from day 1 to day 14
of the actual test data. Figure A.5 shows moving variance of all actual test data sets.
Sub-figures A.5a to A.5n in the Fig. A.5 show moving variance from day 1 to day 14
of the actual test data. Figure A.6 shows moving average of the manipulated test data
(attacks on the test data). Sub-figures A.6a to A.6n in Fig. A.6 show moving average
from day 1 to day 14 of the attacks on the test data from day 1 to day 14.
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(a) Day 1 (b) Day 2 (c) Day 3

(d) Day 4 (e) Day 5 (f) Day 6

(g) Day 7 (h) Day 8 (i) Day 9

(j) Day 10 (k) Day 11 (l) Day 12

(m) Day 13 (n) Day 14

Figure A.4: Moving average and moving median of actual test data per day.
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(a) Day 1 (b) Day 2 (c) Day 3

(d) Day 4 (e) Day 5 (f) Day 6

(g) Day 7 (h) Day 8 (i) Day 9

(j) Day 10 (k) Day 11 (l) Day 12

(m) Day 13 (n) Day 14

Figure A.5: Moving variance of actual test data per day.
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(a) Day 1 (b) Day 2 (c) Day 3

(d) Day 4 (e) Day 5 (f) Day 6

(g) Day 7 (h) Day 8 (i) Day 9

(j) Day 10 (k) Day 11 (l) Day 12

(m) Day 13 (n) Day 14

Figure A.6: Moving average of test data with attacks per day.
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Our analysis of the moving average, median and variance of the training and test data
concludes the following:

• Moving average of actual and RO attack almost overlap.

• Moving average of ICO, IRO and IROMN attacks almost overlap.

• Moving average of ICOHS attack has significant difference to ICO.

• Moving average has significant difference due to slope. Difference in slope changes
magnitudes of offsets in one direction, it makes a difference in average value.

• Randomization of signal (adding random negative and random positive offsets)
does not have much effect in average. But adding only positive or only negative
random offsets can change average and may trigger an alarm.

A.6 Quantile-Quantile plots

Here we compare distribution of training and test data to the standard normal distribution.
We visualize quantile-quantile of the given data versus quantile values from a theoretical
normal distribution using qqplot in MATLAB. The red lines in the plots represent the
theoretical normal distribution and the given data points are plotted in blue + markers.
If the distribution of given data points is normal then the data plot appears linear, so
that red line and blue data plot are close

(a) Training data (b) Test data

Figure A.7: Quantile-quantile plot of all 7 days training data and all 14 days test data.

Figure A.7 shows quantile-quantile plot of all 7 days training data and all 14 days test
data. The quantile-quantile plot of training data (shown in sub-figure A.7a) has non-linear
data plot which is an indication that the training data is slightly different than a normal
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distribution. From the sub-figure A.7a, we can see the distribution of first and third
quantiles of the data is partially normal distributed because blue plot deviates a bit from
the theoretical normal distribution at the beginning and end of the plot (these are caused
due to the multiple peaks in histogram – see Fig. 6.6a in Sec. 6.4). The second quantile
is normally distributed and thus the blue plot produces approximately a straight line that
follows the normal distribution (red line). Sub-figure 6.6b shows the quantile-quantile
plot of test data.

From the sub-figure, we can see test data is a bit more normal than the training data,
but it still differs from a normal distribution. The distribution of first quantile of the
test data deviates from theoretical normal distribution (this is due to the tail on left side
of histogram – see Fig. 6.6b in Sec. 6.4). The distribution of second and third quantile
of the test data is normally distributed.

Figure A.8 shows moving quantile-quantile plot of all training data sets. Sub-figures A.8a
to A.8g in the Fig. A.8 show quantile-quantile plot from day 1 to day 7 of the training
data.

(a) Day 1 (b) Day 2 (c) Day 3

(d) Day 4 (e) Day 5 (f) Day 6

(g) Day 7

Figure A.8: Quantile-quantile plot of training data per day.
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(a) Day 1 (b) Day 2 (c) Day 3

(d) Day 4 (e) Day 5 (f) Day 6

(g) Day 7 (h) Day 8 (i) Day 9

(j) Day 10 (k) Day 11 (l) Day 12

(m) Day 13 (n) Day 14

Figure A.9: Quantile-quantile plot of actual test data per day.
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Similarly, Fig. A.9 shows quantile-quantile plots of all actual test data sets. Sub-figures
A.9a to A.9 show quantile-quantile plot of day 1 to day 14 of the test data. From the
figure, we can see some test data sets are normally distributed ( e.g., qq-plots of day 2,
day 4, day 5).

A.7 MAD Interval on Test Data

Here we visualize the MAD interval on test data. First, MAD interval are visualized on
actual test data then the intervals are visualized on the manipulated test data. We show
MAD intervals for all attacks (CO, RO, ICO, IRO, IROMN, and ICOHS) on the test
data.

Figure A.10 shows MAD interval on all actual test data. Sub-figures A.10a to A.10n
show the MAD intervals from day 1 to day 14 of the actual test data. Figures A.11
to A.24 show MAD interval on test data from day 1 to day 14 with attacks. Similarly,
sub-figures in the figures show the MAD intervals on CO, RO, ICO, IRO, IROMN, and
ICOHS attacks for the corresponding day.

From the figures one can see, generally the manpulated data points remain outside of the
interval if the magnitude of added offset is high. But if the the original signal is close to
the defined threshold (upper or lower bound) then small offsets can trigger alarms. An
attack with high slope may cross the defined bound earlier and trigger an alarm earlier
than an attack with lower slope.
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(a) Day 1 (b) Day 2 (c) Day 3

(d) Day 4 (e) Day 5 (f) Day 6

(g) Day 7 (h) Day 8 (i) Day 9

(j) Day 10 (k) Day 11 (l) Day 12

(m) Day 13 (n) Day 14

Figure A.10: MAD interval on test data.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.11: MAD interval on test data - day 1 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.12: MAD interval on test data - day 2 with attacks.

292



A.7. MAD Interval on Test Data

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.13: MAD interval on test data - day 3 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.14: MAD interval on test data - day 4 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.15: MAD interval on test data - day 5 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.16: MAD interval on test data - day 6 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.17: MAD interval on test data - day 7 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.18: MAD interval on test data - day 8 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.19: MAD interval on test data -day 9 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.20: MAD interval on test data - day 10 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.21: MAD interval on test data - day 11 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.22: MAD interval on test data - day 12 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.23: MAD interval on test data - day 13 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.24: MAD interval on test data - day 14 with attacks.
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A.8 KLD Sequence

Here we visualize the KLD sequence of training and test data. For the test data, we
visualize KLD sequence of the actual and manipulated data. Figure A.25 shows KLD
sequence of training data per day. Sub-figures A.25a to A.25g show the KLD sequence
from day 1 to day 7 of the training data. Similarly, figures A.26 to A.39 show KLD
sequence of test data with attacks. Sub-figures in the figures show KLD sequences of
CO, RO, ICO, IRO, IROMN, and ICOHS attacks for the corresponding day.

An analysis of the figures shows reference data has broad distribution and thus actual
test data has high divergence to the reference data. In attack type RO, the manipulated
test data is even closer to the reference data and thus the divergence to the reference
data decreases. KLD divergence keeps on increasing and stops increasing at some point
(i.e., at maximum divergence value). Therefore, we can see that the KLD stops increasing
after the maximum divergence value in some figures e.g., in A.26a.

(a) Day 1 (b) Day 2 (c) Day 3

(d) Day 4 (e) Day 5 (f) Day 6

(g) Day 7

Figure A.25: KLD sequence of training data per day.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.26: KLD sequence of test data - day 1 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.27: KLD sequence of test data - day 2 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.28: KLD sequence of test data - day 3 with attacks. Detection of anomalies in
RO signal is false positive.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.29: KLD sequence of test data - day 4 with attacks.

301



A. Appendix

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.30: KLD sequence of test data - day 5 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.31: KLD sequence of test data - day 6 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.32: KLD sequence of test data - day 7 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.33: KLD sequence of test data - day 8 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.34: KLD sequence of test data - day 9 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.35: KLD sequence of test data - day 10 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.36: KLD sequence of test data - day 11 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.37: KLD sequence of test data - day 12 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.38: KLD sequence of test data - day 13 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.39: KLD sequence of test data - day 14 with attacks.
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A.9 CUSUM Sequence

Here we visualize the CUSUM sequence of manipulated test data. CUSUM sequence of
all attacks (CO, RO, ICO, IRO, IROMN, and ICOHS) on different days of the test data
are visualized in separate figures.

Figures A.40 to A.53 show CUSUM sequence of test data from day 1 to day 14 with
attacks. Sub-figures in the figures show the CUSUM sequence of the corresponding day.

An analysis of the figures shows there are already abrupt changes in trainig data and test
data. In addition, g+

n and g−
n of actual signal and RO attack on test data are similar.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.40: CUSUM sequence of test data - day 1 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.41: CUSUM sequence of test data - day 2 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.42: CUSUM sequence of test data - day 3 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.43: CUSUM sequence of test data - day 4 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.44: CUSUM sequence of test data - day 5 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.45: CUSUM sequence of test data - day 6 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.46: CUSUM sequence of test data - day 7 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.47: CUSUM sequence of test data - day 8 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.48: CUSUM sequence of test data - day 9 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.49: CUSUM sequence of test data - day 10 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.50: CUSUM sequence of test data - day 11 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.51: CUSUM sequence of test data - day 12 with attacks.

(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.52: CUSUM sequence of test data - day 13 with attacks.
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(a) CO (b) RO (c) ICO

(d) IRO (e) IROMN (f) ICOHS

Figure A.53: CUSUM sequence of test data - day 14 with attacks.

A.10 Detected Data Points in Each Test Data Sets

Here we show data points detected as anomalous by methods, normalized residual-based
bad data detection method, lightweight statistical methods (MAD, KLD, and CUSUM),
and combination method (weighted voting).

Table A.1 shows data points detected as anomalous by the normalized residual-based
method on all test data sets. Similarly, Tab. A.3 shows for the methods, MAD, KLD
and CUSUM; and Tab. A.2 shows for weighted voting.

314



A.10. Detected Data Points in Each Test Data Sets

Table A.1: Detected data points using normalized residual-based method.

Method Data
set

Attacks (detected data points in each test data)
CO RO ICO IRO IROMN ICOHS

Normalized

1 3597 286 487 520 286 289
2 2002 0 0 0 0 0
3 61 164 0 0 51 0
4 1169 0 0 0 0 0
5 2482 0 2909 2808 0 73211
6 3219 0 0 0 0 0
7 3149 0 402 397 0 290
8 2827 0 0 0 1 0
9 3636 0 0 19 0 51
10 4197 4 380 382 20 314
11 3447 52 3026 2789 10 2061
12 2240 409 422 422 416 420
13 0 0 0 0 0 0
14 2316 0 281 272 0 176

Table A.2: Detected data points using weighted voting method.

Method Data
set

Attacks (detected data points in each test data)
CO RO ICO IRO IROMN ICOHS

Weighted
voting

1 119924 984 66473 66221 62738 92694
2 120000 0 93906 93670 86082 109821
3 120000 11152 89243 89001 87868 115699
4 120000 0 81267 80375 75168 107900
5 120000 0 75296 75925 70378 102127
6 120000 0 77200 80300 70004 100269
7 120000 1068 72237 75337 68915 96822
8 120000 1079 81994 78394 70475 96006
9 120000 0 83547 80502 72899 96870
10 120000 0 82105 80458 75243 105721
11 120000 53688 82726 80300 69953 107900
12 120000 11 63473 69186 63267 96804
13 120000 40024 110993 110341 103755 113810
14 120000 379 92418 100150 87138 106253
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Table A.3: Detected data points using MAD, KLD and CUSUM methods.

Method Data
set

Attacks (detected data points in each test data)
CO RO ICO IRO IROMN ICOHS

MAD

1 119920 2094 66033 66191 65638 90037
2 120000 912 93906 93670 92968 109821
3 112705 11459 87969 89001 91519 115318
4 120000 8 77718 77742 77924 102056
5 120000 8 67239 67078 66669 95145
6 120000 45 62856 63310 64150 95570
7 119580 1405 63896 63785 63465 93765
8 120000 1736 66232 66205 65897 84587
9 119606 411 74390 74199 73940 94505
10 119587 444 78172 77875 77805 102766
11 90249 51004 18186 18133 18115 79005
12 118714 1243 52617 52827 53126 88142
13 81944 6947 110322 110337 110386 113810
14 114922 485 85256 85842 86076 105666

KLD

1 110050 0 61350 61500 42200 91850
2 120000 0 73750 76550 68550 104200
3 120000 0 80450 80300 68550 107900
4 120000 0 83950 80300 68550 107900
5 120000 0 83950 80300 68550 107900
6 120000 0 83950 80300 68550 107900
7 120000 0 83950 80300 68550 107900
8 120000 0 83950 80300 68550 107900
9 120000 0 83950 80300 68550 107900
10 120000 0 83950 80300 68550 107900
11 120000 37800 83950 80300 68550 107900
12 120000 0 83950 80300 68550 107900
13 120000 0 92750 100150 81150 110750
14 120000 0 92750 100150 81150 110750

CUSUM

1 119348 18097 69308 75173 69311 97212
2 119430 0 108064 114793 108092 117212
3 119362 118190 117674 118260 117650 118339
4 119389 0 90203 93182 90194 111041
5 119388 0 75296 75925 75289 102127
6 119363 0 78026 81571 78019 100269
7 119392 102077 72237 75337 72215 96822
8 119360 102273 117694 78394 117666 96006
9 119374 0 87004 87814 85027 96870
10 119347 0 87308 99691 87317 105721
11 119393 118044 118426 117931 118420 117757
12 119368 0 63048 69186 63065 96804
13 119416 118065 117521 118124 117493 118212
14 119372 0 97018 102736 96998 106253316



A.11. Statistical Properties of Training and Test Data Sets

A.11 Statistical Properties of Training and Test Data
Sets

The mean, median and standard deviation of whole training data is different from the
median of each test data set. Mean and median have deviations (around 0.01) in most
test data sets. The deviation of the median influences anomaly detection performance
of MAD, deviations of the mean influences anomaly detection performance of CUSUM.
For instance, if the the deviation of the mean is significant then CUSUM may detect
anomaly in actual data or small changes due to an attack already cause detection.

Table A.4: Statistical property of whole training and test data sets.

Data Mean Median Stdev
All training data 1.0607 1.0607 0.0046
All test data 1.0590 1.0587 0.0041

Table A.5: Statistical properties of test data per day.

Test data per day
Day Mean Median Stdev

1 1.0569 1.0570 0.0019
2 1.0633 1.0635 0.0015
3 1.0657 1.0663 0.0019
4 1.0599 1.0602 0.0016
5 1.0594 1.0594 0.0013
6 1.0581 1.0581 9.7630e-04
7 1.0561 1.0563 0.0020
8 1.0557 1.0555 0.0019
9 1.0578 1.0574 0.0016
10 1.0592 1.0594 0.0018
11 1.0517 1.0521 0.0035
12 1.0581 1.0581 0.0025
13 1.0636 1.0639 0.0034
14 1.0603 1.0607 0.0022

A.12 Derivation of measurement noise covariance matrix
R

We assume Vz is the measured voltage magnitude, Vx is the true voltage magnitude, θz

is the measured phase angle and θx is the true phase angle. There can be measurement
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errors. Thus the measured voltage magnitude and phase angle are represented as

Vz = Vx + Ṽ (A.20)

θz = θx + θ̃ (A.21)

where Ṽ is the voltage measurement error and θ̃ is the phase measurement error.

We recall that the conversion of the measurements in rectangular coordinates from the
polar coordinates below

Vre,z = Vzcos(θz) (A.22)

Vim,z = Vzsin(θz) (A.23)

where Vre,z is the measured real voltage and Vim,z is the measured imaginary voltage.

Vre,z = Vre,x + Ṽre = (Vx + Ṽ )cos(θz + θ̃) (A.24)

Vim,z = Vim,x + Ṽim = (Vx + Ṽ )sin(θz + θ̃) (A.25)

The measurement error of real and imaginary parts are

Ṽre = Vre,z − Vre,x (A.26)

Ṽim = Vim,z − Vim,x (A.27)

So the variance of real and imaginary parts (real and imaginary voltage) measurement
errors are

σ2
re = σ2

Ṽre
(A.28)

σ2
im = σ2

Ṽim
(A.29)
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