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Abstract

Optical flow (OF) estimation is an ambitious research field in computer vision that has met

with growing interest and has produced an increasing number of publications during the last 35

years. Several algorithms for OF estimation have been developed, and their performance has

been continuously improved. OF estimation has a large number of applications, such as the

tracking of moving objects and the analysis of the dynamical behavior of objects in an image

sequence.

In this thesis, we review the classical deterministic model for OF estimation and subsequently

reformulate it in a probabilistic framework. We then extend the probabilistic OF model to

account for temporal coherence. With the concept of optimal Bayesian filtering as our basis,

we derive the information form of the Kalman filter and the variational Bayesian filter, and we

formulate these filters in the specific context of OF estimation. Finally, we study and compare the

accuracy and computational complexity of the two filters for synthetic and real image sequences.

In particular, we discuss the potential benefit of the temporal coherence assumption for different

types of data.

The original contributions of this thesis include the following:

• We develop a probabilistic OF model that combines temporal coherence with a non-linear

brightness constancy constraint.

• We present a direct derivation of the information form of the Kalman filter and formu-

late the filter’s prediction and update steps in the context of temporally coherent OF

estimation.

• We derive a method for temporally coherent OF estimation based on variational Bayesian

filtering.

• We provide simulation results that assess and compare the accuracy and computational

complexity of the presented OF estimation methods for several synthetic and real image

sequences, and we investigate if and how much temporal coherence improves the results

of OF estimation.
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Kurzfassung

Die Schätzung des Optical Flow (OF) ist ein anspruchvolles Forschungsgebiet der digitalen Bild-

verarbeitung, dem in den letzten 35 Jahren große Aufmerksamkeit gewidment wurde, verbunden

mit einer zunehmenden Anzahl von Veröffentlichungen. Es wurden zahlreiche Algorithmen für

die OF-Schätzung entwickelt, und die Leistungsfähigkeit dieser Algorithmen wurde kontinuier-

lich verbessert. Für die OF-Schätzung gibt es eine Vielzahl von Anwendungen, z.B. die Verfol-

gung von sich bewegenden Objekten und die Analyse des dynamischen Verhaltens von Objekten

in einer Bildfolge.

In dieser Arbeit wird das klassische deterministische Modell für die OF-Schätzung erläutert

und in einem probabilistischen Rahmen neu formuliert. Anschließend wird das probabilistische

OF-Modell dahingehend erweitert, dass es die zeitliche Kohärenz von Bildfolgen berücksichtigt.

Auf der Grundlage des optimalen Bayesschen Filters werden sodann die Informationsform des

Kalman-Filters und das variationale Bayessche Filter hergeleitet und im spezifischen Kontext

der OF-Schätzung formuliert. Schließlich werden die Genauigkeit und der Rechenaufwand der

beiden Filter für verschiedene synthetische und reale Bildfolgen untersucht und verglichen, wobei

auch der potenzielle Nutzen der Annahme zeitlicher Kohärenz für verschiedene Arten von Daten

evaluiert wird.

Die Arbeit umfasst die folgenden Hauptbeiträge:

• Ein probabilistisches OF-Modell, das zeitliche Kohärenz mit einer nichtlinearen Model-

lierung konstanter Helligkeit kombiniert.

• Eine direkte Ableitung der Informationsform des Kalman-Filters sowie eine Formulierung

der Prädiktions- und Korrekturschritte des Filters im Kontext einer zeitlich kohärenten

OF-Schätzung.

• Eine Methode zur zeitlich kohärenten OF-Schätzung, die auf einem variationalen Bayes-

schen Filter beruht.

• Simulationsergebnisse, die die Genauigkeit und den Rechenaufwand der beschriebenen

OF-Schätzmethoden für mehrere synthetische und reale Bildfolgen angeben und verglei-

chen. Dabei wird untersucht, ob und wie stark zeitliche Kohärenz die Ergebnisse der

OF-Schätzung verbessert.
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eines Lebensabschnittes und den Beginn eines neuen. Einen Aufbruch in neue Möglichkeiten
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Chapter 1

Introduction

Optical flow (OF) estimation is a basic but non-trivial task in computer vision. In this thesis, we

develop models and methods for sequential OF estimation using spatial and temporal coherence

assumptions. Specifically, we establish a linear-Gaussian state-space model for spatially and

temporally coherent OF. Based on this model, we develop an information Kalman filter and

a variational Bayesian filter for sequential OF estimation. Subsequently, the two filters are

compared in terms of accuracy and complexity.

This introductory chapter is organized as follows. In Section 1.1, we explain the concept of

OF and mention some application areas. In Section 1.2, we give an overview of the state of the

art and refer to related works. Finally, an outline of this thesis and a summary of contributions

are provided in Section 1.3.

1.1 Background and Applications

Motion analysis in image sequences is one of the most important tasks in computer vision. It

offers the possibility to track objects, quantify deformations, analyze the dynamical behavior of

objects, and detect abnormal behavior. The task we consider in this thesis is the estimation of

a dense motion field, i.e., the motion field in every pixel in an image sequence. The motion field

is identified by the displacement of intensity patterns, called OF. This definition of OF is based

on the assumption that the brightness of moving intensity patterns remains constant during the

motion.

OF estimation has numerous applications in diverse domains. In multimedia, the video

compression standard MPEG uses OF estimation to predict image frames [1]. Applications

in biomedical imaging include the quantification of blood flow in arteries or in the heart [2],

and the restoration of medical images [3–5]. In robotics, it can be used as an input to control

systems for automated navigation [6] or autonomous car driving [7]. Other applications can be
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found in facial expression analysis [8], gesture recognition [9], meteorology [10], fluid analysis

and mechanics, oceanography, aerodynamics [11–13], and many other areas.

1.2 State of the Art

One of the most fundamental and earliest works in dense OF estimation is [14], which introduced

a method for OF estimation by assuming that the brightness of an infinitesimally small point

in the image is constant along the trajectory of that point. This assumption is known as the

brightness constancy constraint. It was furthermore assumed in [14] that neighboring points in

an image have similar velocities, i.e., the velocity field is spatially smooth. To obtain a tractable

algorithm, the authors of [14] used a linearized version of the brightness constancy constraint,

which is, however, only an approximation in general. This approximation tends to be poor for

large displacements between successive image frames.

In [15], the authors presented an extension of the dense OF estimation model by introducing

a temporal coherence constraint that penalizes large frame-to-frame deviations of the OF field.

Temporal coherence represents the prior knowledge or the assumption that the movement of

an observed object is smooth over time for the entire frame sequence. Accordingly, the OF

estimation method proposed in [15] is based on multiple image frames and not only on the

previous frame as in frame-to-frame estimation. More specifically, the information form of the

Kalman filter was applied to the temporally coherent model, providing an OF tracking algorithm

that is sequential and recursive in time.

In contrast to the synthetic images that were initially used to evaluate OF estimation meth-

ods, realistic scenery also includes transparency, depth discontinuities, independently moving

objects, shadows, and specular reflections. Thus, assumptions regarding brightness constancy

and spatial smoothness are violated, pushing the algorithms proposed in [14, 15] off their lim-

its. To address this issue, a robust estimation framework for OF estimation was proposed

in [16]. This framework relaxes the spatial and temporal coherence assumptions introduced

in [14] and [15], respectively, and thus reduces the sensitivity to violations of these assumptions.

In [17], a non-linear formulation of the brightness constancy constraint, extended by a gra-

dient constancy constraint, was presented. The resulting method is able to estimate even large

displacements, and is moreover robust against illumination variations.

A different robustification of the brightness constancy assumption was described in [18],

leading to an improved estimation performance. In addition, [18] presented new numerical

algorithms that allow real-time OF estimation for small images.

In [19], the spatial and temporal coherence constraints were decoupled and a new trajectorial

regularization that penalizes first-order OF variations along motion trajectories was introduced.
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One drawback of this method is that the motion fields at different time instants refer to different

images, and thus have to be repeatedly registered onto each other. These registrations can be

avoided by registering multiple frames onto one reference frame, as described in [20].

An outlier-robust approach to spatially non-smooth OF estimation that solely requires data

and dispenses with the need for an explicit regularization, smoothing, or an additional data

term was described in [21]. The authors also presented enhancements in outlier filtering, such

that the presented method is suitable to estimate OF for small objects.

In [22], a multi-frame OF estimation method that benefits from long-term temporal cues was

presented. The method first warps the OF field from previous frames to the current frame,

yielding multiple plausible estimates. Then, the complementary information carried by these

estimates is fused into an aggregate OF field.

1.3 Contribution and Outline

The contribution of this thesis is fourfold. First, we extend the temporally coherent OF esti-

mation model of [15] by the non-linear brightness constancy formulation of [17], and we present

a novel probabilistic model formulation for OF estimation. Second, we present a direct deriva-

tion of the information form of the Kalman filter, and we formulate the filter algorithm for the

problem of OF estimation. Third, we derive a method for temporally coherent OF estimation

based on the variational Bayesian filtering framework of [23]. Although variational methods for

OF estimation have been proposed previously [19, 24], the approach of [23] has not been used

in the context of OF estimation so far. Finally, we study the accuracy and complexity of the

presented methods for artificial and real image sequences.

This thesis is organized as follows:

• In Chapter 2, we start with a general description of OF. We then develop a Bayesian

probabilistic model for OF estimation, and finally extend this model to the estimation of

multi-frame OF sequences using temporal coherence assumptions.

• In Chapter 3, we discuss the concept of Bayesian filtering and its application to OF esti-

mation. We first review the general non-linear state-space model and the general Bayesian

filter. Subsequently, we describe the linear-Gaussian state-space model and derive the

information form of the Kalman filter, which we finally formulate for the problem of OF

estimation.

• In Chapter 4, we discuss variational Bayesian filtering and its application to OF estima-

tion. We first review variational Bayesian inference and the mean field approximation.

The application of these techniques to Bayesian filtering then leads to the variational



4 1. Introduction

Bayesian filter. Finally, we formulate the variational Bayesian filter for the problem of OF

estimation.

• In Chapter 5, we compare the information Kalman filter presented in Chapter 3 and the

variational Bayesian filter presented in Chapter 4 in terms of accuracy and complexity.

We validate the two filters on artificial and real image sequences and show that they are

comparable in accuracy but differ in complexity. We further show that the inclusion of

temporal coherence in OF estimation improves the estimation accuracy and reduces the

computational complexity for some but not all image sequences.

• In Chapter 6, we summarize our findings and suggest possible directions of future work.
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Chapter 2

Optical Flow Models

In this chapter, we discuss deterministic models for spatially coherent OF estimation and show

how they can be reformulated in a probabilistic framework and extended to account for temporal

coherence. In Section 2.1, we start with a deterministic description of OF based on the brightness

constancy constraint, which is followed by a discretization, a linearization, and a reformulation in

vector-matrix notation. In Section 2.2, we reformulate the deterministic model in a probabilistic

framework. Finally, in Section 2.3, the probabilistic OF model is extended to account for

temporal coherence in addition to spatial coherence. The probabilistic OF model developed in

this chapter constitutes a basis for the estimation of entire OF sequences subject to both spatial

and temporal coherence constraints.

2.1 Deterministic Optical Flow

Let us consider a differentiable space- and time-dependent function F̆ (x, y, t) that can be inter-

preted as the brightness of an image at spatial position (x, y) and time t. We will think of this

image as representing a time-dependent material continuum.

2.1.1 Brightness Constancy Constraint

The brightness constancy constraint [17] states that the brightness of a particular point in the

material continuum is locally constant along its trajectory. Introducing

F̆P(t) � F̆ (xP(t), yP(t), t), (2.1)

where (xP(t), yP(t))T is the trajectory of the considered point (see Figure 2.1), the brightness

constancy constraint postulates

F̆P(t + Δt) = F̆P(t) (2.2)
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t

x

y

P

xP(t)

yP(t)

yP(t+Δt)

xP(t+Δt)

Fig. 2.1: Movement of point “P” along its trajectory in the material continuum.

for a sufficiently small Δt. Using the definition of F̆P(t) in (2.1), we can equivalently write (2.2)
as

F̆ (xP(t + Δt), yP(t + Δt), t + Δt) − F̆ (xP(t), yP(t), t) = 0. (2.3)

Defining the functions ŭ(x, y, t) and v̆(x, y, t) as

ŭ(xP(t), yP(t), t) � xP(t + Δt) − xP(t), v̆(xP(t), yP(t), t) � yP(t + Δt) − yP(t), (2.4)

we have xP(t + Δt) = xP(t) + ŭ(xP(t), yP(t), t) and yP(t + Δt) = yP(t) + v̆(xP(t), yP(t), t). By

setting x = xP(t) and y = yP(t), we thus can rewrite (2.3) as

F̆ (x + ŭ(x, y, t), y + v̆(x, y, t), t + Δt) − F̆ (x, y, t) = 0. (2.5)

The displacement vector

w̆(x, y, t) �
�

ŭ(x, y, t)
v̆(x, y, t)

�
(2.6)

of a point in the material continuum that at time t resides at position (x, y) is referred to as the

OF vector. The task to be considered in later chapters is the estimation of this OF vector based

on the brightness constancy constraint in equation (2.5) and further modeling assumptions.

2.1.2 Discretization

For reasons of practical feasibility, we reformulate the problem in a discretized setting. First,

we discretize the image F̆ (x, y, t) on a uniform grid,

xi � (i − 1)Δx, i = 1, . . . , N , (2.7)

yj � (j − 1)Δy, j = 1, . . . , M , (2.8)

tk � (k − 1)Δt, k = 1, . . . , L, (2.9)
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where, in particular, x1 = y1 = t1 = 0. The discretized image is then obtained as

F [i, j, k] � F̆ (xi, yj , tk) = F̆ ((i − 1)Δx, (j − 1)Δy, (k − 1)Δt), (2.10)

for i = 1, ..., N , j = 1, ..., M , and k = 1, ..., L. The OF functions are similarly discretized by

u[i, j, k] � ŭ(xi, yj , tk) and v[i, j, k] � v̆(xi, yj , tk), (2.11)

for i = 1, ..., N , j = 1, ..., M , and k = 1, ..., L.

Let us evaluate equation (2.5) for x = xi, y = yj , and t = tk. We obtain

F̆ (xi + ŭ(xi, yj , tk), yj + v̆(xi, yj , tk), tk + Δt) − F̆ (xi, yj , tk) = 0. (2.12)

Using (2.10) and (2.11), and noting that tk+Δt = tk+1, equation (2.12) can then be reformulated

as

F̆ (xi + u[i, j, k], yj + v[i, j, k], tk+1) − F [i, j, k] = 0, (2.13)

or equivalently

F̆ (xi(u[i, j, k]), yj(v[i, j, k]), tk+1) − F [i, j, k] = 0, (2.14)

with

xi(u[i, j, k]) � xi + u[i, j, k] and yj(v[i, j, k]) � yj + v[i, j, k]. (2.15)

2.1.3 Linearization

In view of the fact that F̆ (x, y, t) is a non-linear function of x and y, the left-hand side of (2.14) is
a non-linear function of the discrete OF functions u[i, j, k] and v[i, j, k]. In order to simplify the

numerical computation of the OF functions, we perform a linearization of (2.14) about discrete

reference points u0[i, j, k] and v0[i, j, k]. For simplicity, let us use the shorthands u, v, u0, and

v0 for u[i, j, k], v[i, j, k], u0[i, j, k], and v0[i, j, k], respectively. The left-hand side of (2.14) is

then approximated as

F̆ (xi(u), yj(v), tk+1) ≈ F̆ (xi(u0), yj(v0), tk+1) + ∂

∂u
F̆ (xi(u), yj(v0), tk+1)

����
u0

(u − u0)

+ ∂

∂v
F̆ (xi(u0), yj(v), tk+1)

����
v0

(v − v0). (2.16)
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Using the chain rule, we obtain

∂

∂u
F̆ (xi(u), yj(v0), tk+1) = F̆x(xi(u), yj(v0), tk+1) dxi(u)

du
(2.17)

and
∂

∂v
F̆ (xi(u0), yj(v), tk+1) = F̆y(xi(u0), yj(v), tk+1) dyj(v)

dv
, (2.18)

with

F̆x(x, y, t) � ∂F̆ (x, y, t)
∂x

, F̆y(x, y, t) � ∂F̆ (x, y, t)
∂y

. (2.19)

Since, according to (2.15), we have dxi(u)/du = dyj(v)/dv = 1, equation (2.16) can be rewritten

as

F̆ (xi(u), yj(v), tk+1) ≈ F̆ (xi(u0), yj(v0), tk+1) + F̆x(xi(u0), yj(v0), tk+1)(u − u0)

+ F̆y(xi(u0), yj(v0), tk+1)(v − v0). (2.20)

Using this approximation in the left-hand side of (2.14), we obtain the desired linearized version

of (2.14) as

F̆ (xi(u0), yj(v0), tk+1) + F̆x(xi(u0), yj(v0), tk+1)(u − u0) + F̆y(xi(u0), yj(v0), tk+1)(v − v0)

− F [i, j, k] ≈ 0,
(2.21)

or equivalently

F̌ [i, j, k + 1] + F̌x[i, j, k + 1](u − u0) + F̌y[i, j, k + 1](v − v0) − F [i, j, k] ≈ 0, (2.22)

with the shorthand notation

F̌ [i, j, k + 1] � F̆ (xi(u0[i, j, k]), yj(v0[i, j, k]), tk+1). (2.23)

Finally, to obtain a completely discrete formulation, we approximate the differential quotients

F̆x(x, y, t) and F̆y(x, y, t) in (2.19), evaluated at x = xi(u0), y = yj(v0), and t = tk+1, by finite

difference quotients. Therefore, we formally replace F̆x(xi(u0), yj(v0), tk+1) by

Fx[i, j, k + 1] �

������������������

F̌ [i+1, j, k + 1] − F̌ [i−1, j, k + 1]
2 Δx

, i = 2, . . . , N−1,

F̌ [i+1, j, k + 1] − F̌ [i, j, k + 1]
Δx

, i = 1,

F̌ [i, j, k + 1] − F̌ [i−1, j, k + 1]
Δx

, i = N ,

(2.24)
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and F̆y(xi(u0), yj(v0), tk+1) by

Fy[i, j, k + 1] �

��������������������

F̌ [i, j+1, k + 1] − F̌ [i, j−1, k + 1]
2 Δy

, j = 2, . . . , M−1,

F̌ [i, j+1, k + 1] − F̌ [i, j, k + 1]
Δy

, j = 1,

F̌ [i, j, k + 1] − F̌ [i, j−1, k + 1]
Δy

, j = M .

(2.25)

With these replacements, equation (2.22) finally becomes

Fx[i, j, k + 1](u − u0) + Fy[i, j, k + 1](v − v0) + Ft[i, j, k] ≈ 0, (2.26)

where

Ft[i, j, k] � F̌ [i, j, k + 1] − F [i, j, k]. (2.27)

2.1.4 Vector-Matrix Formulation

Next, we develop a vector-matrix formulation of the discretized brightness constancy equation

(2.26). For any k = 1, ..., L, we define the vector fk of dimension NM by stacking the columns

of F [i, j, k] (viewed as a matrix with row index j and column index i), i.e.,

(fk)(i−1)M+j � F [i, j, k] = F̆ (xi, yj , tk), (2.28)

for i = 1, . . . , N and j = 1, . . . , M . Analogously, we define the vectors fx,k+1, fy,k+1, ft,k, uk,

vk, uk,0, and vk,0 as stacked versions of Fx[i, j, k + 1], Fy[i, j, k + 1], Ft[i, j, k], u[i, j, k], v[i, j, k],
u0[i, j, k], and v0[i, j, k], respectively. We also define the stacked vectors

wk �
�
uk
vk

�
and wk,0 �

�
uk,0
vk,0

�
. (2.29)

Finally, we define the diagonal matrices of dimension NM × NM that have the entries of the

vectors fx,k+1 and fx,k+1 on their main diagonal, i.e.,

Fx,k+1 � diag{fx,k+1} and Fy,k+1 � diag{fy,k+1}, (2.30)

and we combine Fx,k+1 and Fy,k+1 into the NM × 2NM matrix

Gk+1 � (Fx,k+1 Fy,k+1). (2.31)
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Equation (2.26) can now be written in vector-matrix form as

Fx,k+1(uk − uk,0) + Fy,k+1(vk − vk,0) + ft,k ≈ 0, (2.32)

or more compactly as

Gk+1(wk − wk,0) + ft,k ≈ 0. (2.33)

2.1.5 Spatial Regularization

An estimate ŵk of the OF vector wk for a given k can, in principle, be obtained by minimizing

the squared norm of the left-hand side of (2.33), since (2.33) implies that that squared norm is

close to zero. That is,

ŵk = argmin
wk

E
(k)
d (wk), (2.34)

with

E
(k)
d (wk) � �Gk+1(wk − wk,0) + ft,k�2 = �Gk+1wk − dk�2, (2.35)

and

dk � Gk+1wk,0 − ft,k. (2.36)

According to [25, Section 11], the solution to this least squares problem is obtained as a solution

of the normal equation

GT
k+1Gk+1wk = GT

k+1dk. (2.37)

However, since according to (2.31) Gk+1 is of dimension NM × 2NM , the rank of the 2NM ×
2NM Gram matrix GT

k+1Gk+1 is at most NM . Therefore GT
k+1Gk+1 is rank deficient and the

normal equation (2.37) is under-determined. Thus, the minimization in (2.34) is an ill-posed

problem.

As in [26], we address this issue by enforcing spatial smoothness of the vectors uk and vk.

This can be done by augmenting E
(k)
d (wk) in (2.35) by a regularization term

Er(wk) � �uH,k�2 + �vH,k�2, (2.38)

where uH,k and vH,k are defined by

uH,k � Huk and vH,k � Hvk. (2.39)

The matrix H represents a linear filter matrix that passes the “non-smooth” components of the

OF vectors uk and vk. For spatially smooth OF vectors uk and vk, the filtered vectors uH,k and
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vH,k have small values, and thus the regularization term Er(wk) will be small. In this thesis,

following [27], H is defined as the discrete counterpart of the gradient operator ∇, i.e.,

H �
�

Hx

Hy

�
. (2.40)

Here,

Hx � 1
Δx

SN ⊗ IM , (2.41)

with the N × N matrix

SN �







−1 1

−1 1
. . .

. . .
−1 1
−1 1

����� , (2.42)

and

Hy � 1
Δy

IN ⊗ SM , (2.43)

where SM is constructed equivalently to SN but with N replaced by M . Note that ⊗ denotes

the Kronecker product. Expanding (2.38) yields

Er(wk) = (Huk)T Huk + (Hvk)T Hvk = uT
k ΛHuk + vT

k ΛHvk, (2.44)

where

ΛH � HT H =
�
HT

x HT
y

� �
Hx

Hy

�
= HT

x Hx + HT
y Hy. (2.45)

By setting

MH �
�ΛH 0

0 ΛH

�
, (2.46)

expression (2.44) can be written compactly as

Er(wk) = wT
k MHwk. (2.47)

Augmenting E
(k)
d (wk) by Er(wk), the overall objective function is then defined by (cf. (2.35)

and (2.47))

E
(k)
d-r (wk) � E

(k)
d (wk) + αEr(wk) = �Gk+1(wk − wk,0) + ft,k�2 + αwT

k MHwk, (2.48)

where α > 0 is a parameter that balances the influence of E
(k)
d (wk) and Er(wk). The regularized

minimization – replacing (2.34) – is then formulated as

ŵk,d-r = argmin
wk

E
(k)
d-r (wk) = argmin

wk

{�Gk+1(wk − wk,0) + ft,k�2 + αwT
k MHwk}, (2.49)
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for k = 1, ..., L − 1. The solution to this minimization problem can be shown to be

ŵk,d-r = (GT
k+1Gk+1 + αMH)−1GT

k+1dk, (2.50)

where again dk = Gk+1wk,0 − ft,k (see (2.36)).

2.2 Probabilistic Optical Flow

In this section, we reformulate the optimization problem in (2.49) in a probabilistic setting.

2.2.1 Measurement Model

We can rewrite (2.33) as

Gk+1wk ≈ dk, (2.51)

with the NM -dimensional “data vector” dk = Gk+1wk,0 − ft,k. This can furthermore be for-

mulated as the exact relation

dk = Gk+1wk + nk, (2.52)

where nk = dk − Gk+1wk reflects the approximation error. We can interpret (2.52) as a

measurement model with “data vector” dk and “measurement noise” nk. Note that (2.51)
implies that nk is small.

We now pass from the deterministic OF description developed so far to a probabilistic de-

scription by modeling the measurement noise nk as a random vector. More specifically, we

assume that nk is an iid (across entries and across time k) zero-mean Gaussian random vector

with variance λ−1, i.e.,

nk ∼ N (0, λ−1INM ). (2.53)

From (2.52) and (2.53), the conditional probability distribution function (pdf) of dk is obtained

as

p(dk|wk) = N (dk; Gk+1wk, λ−1INM ) =
� λ

2π

�NM/2
exp

�
− λ

2 �dk − Gk+1wk�2
�
. (2.54)

We furthermore assume that nk is statistically independent of wk and also of all wk� with k� �= k.

The maximum-likelihood (ML) estimate of the OF vector could in theory be obtained by

maximizing (2.54) with respect to wk for a fixed (observed) data vector dk. This is easily

verified to reduce to the minimization in (2.34), which was recognized earlier to be an an ill-

posed problem.
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2.2.2 Augmented Measurement Model

We address this issue by incorporating a probabilistic formulation of the spatial regularization

discussed in Section 2.1.5. Whereas regularization terms are usually incorporated in probabilistic

formulations via a suitable definition of the prior pdf, we here follow [15] and introduce additional

“pseudo-measurements” �u,k and �v,k, defined as noisy versions of the filtered OF vectors uH,k

and vH,k, respectively, i.e.,

�u,k � uH,k + mu,k and �v,k � vH,k + mv,k, (2.55)

where uH,k = Huk and vH,k = Hvk as introduced in (2.39). The measurement noise vectors

mu,k and mv,k are assumed to be mutually independent, independent of nk, zero-mean Gaussian,

iid across entries and across time with “small” variance β−1, i.e.,

mu,k ∼ N (0, β−1I2NM ) and mv,k ∼ N (0, β−1I2NM ). (2.56)

We now combine the OF measurement model (2.52) and the “pseudo-measurement” model

(2.55) into the augmented measurement model

d̃k = G̃k+1wk + ñk, (2.57)

with the augmented data vector d̃k, the augmented measurement matrix G̃k+1, and the aug-

mented measurement noise vector ñk defined as

d̃k �

 dk

�u,k
�v,k

 , G̃k+1 �

Fx,k+1 Fy,k+1
H 0
0 H

 , ñk �

 nk

mu,k
mv,k

 . (2.58)

Using (2.53), (2.56), and the independence of nk, mu,k, and mv,k, we see that ñk is zero-mean

Gaussian, iid across entries and across time. In particular,

ñk ∼ N (0, Q−1) (2.59)

with the augmented precision matrix

Q �
�

λINM 0
0 βI4NM

�
. (2.60)

From (2.57) and (2.59), the conditional pdf of the augmented data vector d̃k is therefore obtained
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as

p(d̃k|wk) = N (d̃k; G̃k+1wk, Q−1)

=
� λ

2π

�NM/2� β

2π

�2NM
exp

�
− 1

2(d̃k − G̃k+1wk)T Q(d̃k − G̃k+1wk)
�
. (2.61)

For a fixed augmented data vector d̃k i.e., fixed data vector dk and fixed pseudo-measurements

�u,k and �v,k, equation (2.61) is the likelihood function corresponding to the augmented mea-

surement model.

2.2.3 Probabilistic Formulation of Spatial Regularization

Let us recall that the constraint of spatial smoothness of the vectors uk and vk was expressed

in Section 2.1.5 via our assumption that uH,k and vH,k have a small norm (cf. (2.38)). Because
of (2.55), we can express this by setting the pseudo-measurements �u,k and �v,k to zero, i.e.,

�u,k = �v,k = 0. Indeed, (2.55) here yields

uH,k = −mu,k and vH,k = −mv,k. (2.62)

Because β−1 is assumed small, mu,k and mv,k are small with high probability, and thus (2.62)
implies that uH,k and vH,k will be small with high probability. The augmented data vector d̃k

is then given by

d̃k =

 dk

0NM

0NM

 . (2.63)

Using this augmented data vector, we can furthermore reformulate the augmented likelihood

function p(d̃k|wk) in (2.61). To this end, we first expand the quadratic form in the argument of

the exponential function in (2.61), i.e.,

(d̃k − G̃k+1wk)T Q(d̃k − G̃k+1wk) = d̃T
k Qd̃k − d̃T

k QG̃k+1wk − wT
k G̃T

k+1Qd̃T
k

+ wT
k G̃T

k+1QG̃k+1wk. (2.64)

Using (2.58) and (2.60), the term G̃T
k+1QG̃k+1 in (2.64) can be rewritten as

G̃T
k+1QG̃k+1 =

	
F T

x,k+1 HT 0
F T

y,k+1 0 HT

� �
λINM 0

0 βI4NM

� Fx,k+1 Fy,k+1
H 0
0 H

 = βMH+λGT
k+1Gk+1,

(2.65)
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where also (2.31), (2.45), and (2.46) were used. Furthermore, using (2.63), the term G̃T
k+1Qd̃k

in (2.64) can be rewritten as

G̃T
k+1Qd̃k =

	
F T

x,k+1 HT 0
F T

y,k+1 0 HT

� �
λINM 0

0 βI4NM

� dk

0
0

 = λGT
k+1dk. (2.66)

Finally, we rewrite the term d̃T
k Qd̃k in (2.64) as

d̃T
k Qd̃k =



dT

k 0 0
� �

λINM 0
0 βI4NM

� dk

0
0

 = λdT
k dk. (2.67)

Thus, (2.64) becomes

(d̃k − G̃k+1wk)T Q(d̃k − G̃k+1wk) = λ(dT
k dk − dT

k Gk+1wk − wT
k GT

k+1dk + wT
k GT

k+1Gk+1wk)

+ βwT
k MHwk

= λ(dk − Gk+1wk)T (dk − Gk+1wk) + βwT
k MHwk

= λ�dk − Gk+1wk�2 + βwT
k MHwk. (2.68)

Defining �k � (�T
u,k �T

v,k)T , the augmented likelihood function p(d̃k|wk) in (2.61) can finally be

reformulated as

p(dk, �k = 0|wk) =
� λ

2π

�NM/2� β

2π

�2NM
exp

�
− λ

2 �dk − Gk+1wk�2
�

exp
�

− β

2 wT
k MHwk

�
.

(2.69)
Therefore we see that λ−1, the variance of nk, reflects the influence of the data term, i.e., for

large values of λ−1 that influence increases. Similarly, β−1, the variance of mu,k and mv,k,

reflects the influence of the spatial regularization term, i.e., for large values of β−1 that influence

increases.

The ML estimate of wk is now obtained by maximizing the logarithm of (2.69) with respect

to wk for a fixed (observed) dk and �k set to zero, i.e.,

ŵk,ML = argmax
wk

ln p(dk, �k = 0|wk). (2.70)

By (2.69), we have

ln p(dk, �k = 0|wk) = −λ

2 �dk − Gk+1wk�2 − β

2 wT
k MHwk + c, (2.71)
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where c does not depend on wk. By setting α � β

λ
, equation (2.70) can thus be rewritten as

ŵk,ML = argmax
wk

{−�dk − Gk+1wk�2 − αwT
k MHwk}

= argmin
wk

{�Gk+1wk − dk�2 + αwT
k MHwk}. (2.72)

Recalling that dk = Gk+1wk,0 − ft,k, this is seen to be identical to (2.49), and thus the ML

estimate ŵk,ML is recognized to be equal to our least squares estimate ŵk,d-r in (2.49), (2.50).
We have thus reformulated the deterministic OF model and least squares framework for OF

estimation of Section 2.1 as a probabilistic OF model and an ML framework for OF estimation.

2.3 Temporal Evolution Model

So far, we considered the estimation of wk for every frame k separately. In this section, we

consider the estimation of the entire OF vector sequence w1:L−1 �
�
wT

1 , . . . , wT
L−1

�T
. This

offers the opportunity to exploit temporal dependencies (temporal coherence) in addition to the

already stated spatial dependencies. To model temporal coherence, we assume that w1:L−1 is a

Markov chain, i.e.,

p(wk|w1:k−1) = p(wk|wk−1), k = 1, ..., L − 1. (2.73)

The transition pdf p(wk|wk−1) in (2.73) can be expressed in the form of an evolution model.

The Eulerian evolution model [28] is based on the assumption that the functions ŭ(x, y, t) and

v̆(x, y, t) defined in (2.4) evolve slowly over time. This can be expressed by setting

∂ŭ(x, y, t)
∂t

= r̆(u)(x, y, t) and ∂v̆(x, y, t)
∂t

= r̆(v)(x, y, t), (2.74)

where r̆(u)(x, y, t) and r̆(v)(x, y, t) are mutually independent random fields that have zero mean

and a “small” variance for all x, y, t. In the discrete domain, we approximate the temporal

derivatives by finite difference quotients, resulting in

1
Δt

(uk − uk−1) = r
(u)
k and 1

Δt
(vk − vk−1) = r

(v)
k , for k = 2, ..., L − 1. (2.75)

Here, r
(u)
k and r

(v)
k are random vector sequences that are mutually independent, zero-mean

Gaussian, independent of uk and vk, iid across k and across elements, and with a “small”

variance γ−1, i.e.,

r
(u)
k ∼ N (0, γ−1INM ) and r

(v)
k ∼ N (0, γ−1INM ). (2.76)
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We note that γ, the inverse variance of r
(u)
k and r

(v)
k , quantifies the temporal coherence of the

OF sequences uk and vk, i.e., for large values of γ the OF sequences exhibit a strong temporal

coherence.

Hereafter, for simplicity, we set Δt = 1. Equation (2.75) can then be written in the form of

an evolution model as

uk = uk−1 + r
(u)
k and vk = vk−1 + r

(v)
k , (2.77)

or more compactly as

wk = wk−1 + rk, (2.78)

where

rk �
	

r
(v)
k

r
(v)
k

�
. (2.79)

Because of (2.76) and the fact that r
(u)
k and r

(v)
k are independent, we have

rk ∼ N (0, γ−1I2NM ), (2.80)

or equivalently

p(rk) = N (rk; 0, γ−1I2NM ) =
� γ

2π

�NM
exp

�
− γ

2 �wk�2
�
. (2.81)

Finally, by (2.78), the transition pdf involved in (2.73) is obtained as

p(wk|wk−1) = N (wk; wk−1, γ−1I2MN ) =
� γ

2π

�NM
exp

�
− γ

2 �wk − wk−1�2
�
. (2.82)
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Chapter 3

Bayesian Filtering

In this chapter, we discuss the concept of Bayesian filtering and its application to OF estimation.

We start by introducing the general non-linear state-space model in Section 3.1, followed by a

presentation of the general Bayesian filter in Section 3.2. In Section 3.3, we consider a linear-

Gaussian state-space model, which leads to a tractable form of the general Bayesian filter—the

information Kalman filter (Section 3.4). In Section 3.5, we apply the information Kalman filter

to the problem of OF estimation.

3.1 State-space Model

Let us consider a non-linear, non-Gaussian, time-varying state-space model [25], where the state

vector θk ∈ Rn evolves over time k according to the state-transition equation

θk = ak(θk−1, τk), k = 1, 2, . . . , (3.1)

and the observed data vector xk ∈ Rm is related to the state θk via the measurement equation

xk = bk(θk, ϕk), k = 1, 2, . . . . (3.2)

Here ak(·, ·) and bk(·, ·) are arbitrary non-linear, time-dependent functions, and the driving noise

τk and the measurement noise ϕk are temporally and mutually independent random vector

processes with known pdfs p(τk) and p(ϕk) respectively; they are furthermore independent of

the state process θk. The initial state θ0 is a random vector with an arbitrary pdf p(θ0).
The state-space model formulated by (3.1) and (3.2), together with the statistical assumptions,

determines the transition pdf p(θk|θk−1) and the likelihood function p(xk|θk).
Two conditional statistical independence properties follow from the assumptions above [23].

First, the current state vector θk is conditionally independent of all past data vectors xk−1 given
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θk−1, i.e.,

p(θk|θk−1, x1:k−1) = p(θk|θk−1), k = 1, 2, . . . . (3.3)

Second, the data vector xk is conditionally independent of all past data vectors xk−1 given θk,

i.e.,

p(xk|θk, x1:k−1) = p(xk|θk), k = 1, 2, . . . . (3.4)

3.2 General Bayesian Filter

The task we consider is estimation of the state θk from all data vectors up to time k, x1:k, for

k = 1, 2, . . . In the Bayesian framework, this essentially amounts to calculating the posterior pdf

p(θk|x1:k). Indeed, using the posterior pdf, many different Bayesian estimators of θk can be

constructed. We will consider in particular the minimum mean square error (MMSE) estimator,

which is given by

θ̂k,MMSE � E{θk|x1:k} =
�
Rn

θkp(θk|x1:k) dθk, k = 1, 2, . . . . (3.5)

Based on the conditional independence properties in (3.3) and (3.4), the posterior pdf can be

calculated recursively by performing the following two steps at each k [23, Section 2.3]:

1. In the prediction step, the predicted posterior pdf p(θk|x1:k−1) is calculated from the pre-

vious posterior pdf p(θk−1|x1:k−1) and the transition pdf p(θk|θk−1) by

p(θk|x1:k−1) =
�
Rn

p(θk|θk−1)p(θk−1|x1:k−1) dθk−1, k = 1, 2, . . . . (3.6)

2. In the update step, the posterior pdf p(θk|x1:k) is calculated from the predicted posterior

pdf p(θk|x1:k−1) and the likelihood function p(xk|θk) by

p(θk|x1:k) = p(xk|θk)p(θk|x1:k−1)
p(xk|x1:k−1) , (3.7)

where

p(xk|x1:k−1) =
�
Rn

p(xk|θk)p(θk|x1:k−1) dθk, k = 1, 2, . . . . (3.8)

This recursion is initialized with p(θ0|x1:0) = p(θ0). The overall recursive algorithm is sometimes

called the general Bayesian filter, since it applies to the general (i.e., possibly non-linear and

non-Gaussian) state-space model.
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3.3 Linear Gaussian State-space Model

Assuming that the functions ak(·, ·) and bk(·, ·) in (3.1) and (3.2) are linear and τk and ϕk are

Gaussian distributed, we obtain the linear-Gaussian state-space model [25] with state-transition

equation

θk = Akθk−1 + τk, k = 1, 2, . . . , (3.9)

and measurement equation

xk = Bkθk + ϕk, k = 1, 2, . . . . (3.10)

Here Ak and Bk are matrices of size n × n and m × n, respectively. Furthermore, the driving

noise τk and the measurement noise ϕk are temporally and mutually independent, Gaussian,

zero-mean vector processes that are also independent of the state process θk, with covariance

matrices Στ ,k and Σϕ,k respectively, i.e.,

p(τk) = N (0, Στ ,k), p(ϕk) = N (0, Σϕ,k). (3.11)

We also assume that the initial state vector θ0 is Gaussian distributed with mean µ0 and

covariance matrix Σ0, i.e.,

p(θ0) = N (µ0, Σ0). (3.12)

The transition pdf is therefore Gaussian with mean Akθk−1 and covariance Στ ,k, i.e.,

p(θk|θk−1) = (2π)−n/2 det(Στ ,k)−1/2 exp
�

− 1
2(θk − Akθk−1)T Σ−1

τ ,k(θk − Akθk−1)
�
, (3.13)

and the likelihood function (viewed as the conditional pdf of xk) is Gaussian with mean Bkθk

and covariance Σϕ,k, i.e.,

p(xk|θk) = (2π)−m/2 det(Σϕ,k)−1/2 exp
�

− 1
2(xk − Bkθk)T Σ−1

ϕ,k(xk − Bkθk)
�
. (3.14)

3.4 Information Kalman Filter

For the linear-Gaussian state-space model in (3.9) and (3.10), the prediction and update steps

of the general Bayesian filter, given in (3.6) and (3.7), respectively, reduce to the Kalman filter

(KF) equations [29]. For practical reasons, which will be explained in Section 3.5, we consider

the information form of the Kalman filter (IKF) [15, 29]. In the IKF, the posterior pdf is

parametrized by the precision matrix rather than the covariance matrix.
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By choosing the prior pdf p(θ0) to be Gaussian, it follows from (3.9) and (3.10) that the

posterior pdf p(θk|x1:k) will be Gaussian for arbitrary k. Denoting the mean and precision

matrix of the posterior pdf as µk|k and Jk|k, respectively, we have

p(θk|x1:k) = N (µk|k, J−1
k|k)

= (2π)−n/2 det(Jk|k)1/2 exp
�

− 1
2(θk − µk|k)T Jk|k(θk − µk|k)

�
. (3.15)

Note that µk|k and Jk|k depend on x1:k In the following, we will derive the IKF equations, which

provide a recursive algorithm for calculating µk|k and Jk|k for k = 1, 2, . . ..

3.4.1 Prediction Step

Inserting (3.13) and (3.15) with k replaced by k − 1, we recognize that (3.6) can be written (up

to a constant factor that does not depend on θk) as

p(θk|x1:k−1) ∝
�
Rn

exp
�

− 1
2(θk − Akθk−1)T Jτ ,k(θk − Akθk−1)

�
× exp

�
− 1

2(θk−1 − µk−1|k−1)T Jk−1|k−1(θk−1 − µk−1|k−1)
�

dθk−1

∝
�
Rn

exp
�

− 1
2Φk(θk, θk−1)

�
dθk−1, (3.16)

with

Φk(θk, θk−1) � (θk − Akθk−1)T Jτ ,k(θk − Akθk−1)

+ (θk−1 − µk−1|k−1)T Jk−1|k−1(θk−1 − µk−1|k−1), (3.17)

where Jτ ,k � Σ−1
τ ,k. Expanding (3.17) and gathering all terms in θk−1 yields

Φk(θk, θk−1) c= θT
k Jτ ,kθk + θT

k−1(Jk−1|k−1 + AT
k Jτ ,kAk)θk−1

−2θT
k−1(AT

k Jτ ,kθk + Jk−1|k−1µk−1|k−1), (3.18)

where “
c=” denotes equality up to an additive constant (which does not depend on θk or θk−1).

Note that µT
k−1|k−1Jk−1|k−1µk−1|k−1 was absorbed into the additive constant.

We will now show that Φk(θk, θk−1) can be written (up to an additive constant) as the sum

of a quadratic form in θk−1 and a quadratic form in θk. To this end, we first complete the square

with respect to θk−1, which introduces new terms in θk. Defining

Pk � Jk−1|k−1 + AT
k Jτ ,kAk, (3.19)
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we can rewrite (3.18) as

Φk(θk, θk−1) c= θT
k−1Pkθk−1 − 2θT

k−1(AT
k Jτ ,kθk + Jk−1|k−1µk−1|k−1) + θT

k Jτ ,kθk

c= (θk−1 − mk)T Pk(θk−1 − mk) + θT
k Jτ ,kθk

− (AT
k Jτ ,kθk + Jk−1|k−1µk−1|k−1)T P −1

k (AT
k Jτ ,kθk + Jk−1|k−1µk−1|k−1),

(3.20)

with

mk � P −1
k (AT

k Jτ ,kθk + Jk−1|k−1µk−1|k−1). (3.21)

Next, we expand (3.20) and gather all terms in θk. We obtain

Φk(θk, θk−1) c= (θk−1 − mk)T Pk(θk−1 − mk) + θT
k (Jτ ,k − Jτ ,kAkP −1

k AT
k Jτ ,k)θk

− 2θT
k Jτ ,kAkP −1

k Jk−1|k−1µk−1|k−1, (3.22)

where µT
k−1|k−1Jk−1|k−1P −1

k Jk−1|k−1µk−1|k−1 was absorbed into the additive constant. Defining

Jk|k−1 � Jτ ,k − Jτ ,kAkP −1
k AT

k Jτ ,k, (3.23)

we can rewrite (3.22) as

Φk(θk, θk−1) c= θT
k Jk|k−1θk − 2θT

k Jτ ,kAkP −1
k Jk−1|k−1µk−1|k−1 + (θk−1 − mk)T Pk(θk−1 − mk).

(3.24)
Completing the square with respect to θk then yields

Φk(θk, θk−1) c= (θk−1 − mk)T Pk(θk−1 − mk) + (θk − µk|k−1)T Jk|k−1(θk − µk|k−1), (3.25)

with

µk|k−1 � J−1
k|k−1Jτ ,kAkP −1

k Jk−1|k−1µk−1|k−1. (3.26)

Thus, we showed that Φk(θk, θk−1) is (up to an additive constant) the sum of a quadratic form

in θk−1 and one in θk. Inserting (3.25) into (3.16) then yields

p(θk|x1:k−1) ∝ exp
�

− 1
2(θk − µk|k−1)T Jk|k−1(θk − µk|k−1)

�
×

�
Rn

exp
�

− 1
2(θk−1 − mk)T Pk(θk−1 − mk)

�
dθk−1. (3.27)

Here the integral is constant w.r.t. θk and can thus be absorbed into the multiplicative constant.

Hence, the predicted posterior pdf is recognized to be Gaussian with mean µk|k−1 and precision



24 3. Bayesian Filtering

matrix Jk|k−1, i.e.,

p(θk|x1:k−1) = N (µk|k−1, J−1
k|k−1)

= (2π)−n/2 det(Jk|k−1)1/2 exp
�

− 1
2(θk − µk|k−1)T Jk|k−1(θk − µk|k−1)

�
. (3.28)

The expression for the predicted mean in (3.26) can be simplified as follows. By inserting

(3.23) into (3.26), we obtain

µk|k−1 = (Jτ ,k − Jτ ,kAkP −1
k AT

k Jτ ,k)−1Jτ ,kAkP −1
k Jk−1|k−1µk−1|k−1. (3.29)

Using the matrix inversion lemma [29, Section 6.3] (Z−1 −HR−1HT )−1HR−1 = ZH(HT ZH

−R)−1 with Z−1 = Jτ ,k, H = Jτ ,kAk, and R = Pk in (3.29), we obtain

µk|k−1 = J−1
τ ,kJτ ,kAk(AT

k Jτ ,kJ−1
τ ,kJτ ,kAk + Pk)−1Jk−1|k−1µk−1|k−1. (3.30)

Noting that J−1
τ ,kJτ ,k = I and inserting (3.19), we obtain further

µk|k−1 = Ak(AT
k Jτ ,kAk + Jk−1|k−1 − AT

k Jτ ,kAk)−1Jk−1|k−1µk−1|k−1

= AkJ−1
k−1|k−1Jk−1|k−1µk−1|k−1

= Akµk−1|k−1. (3.31)

Furthermore, inserting (3.19) into (3.23) yields

Jk|k−1 = Jτ ,k − Jτ ,kAk(Jk−1|k−1 + AT
k Jτ ,kAk)−1AT

k Jτ ,k. (3.32)

To summarize, the prediction step for the linear-Gaussian model reduces to the mapping (µk−1|k−1,
Jk−1|k−1) → (µk|k−1, Jk|k−1) as described by (3.31) and (3.32).

3.4.2 Update Step

Next we calculate the posterior pdf p(θk|x1:k) in (3.7). Noticing that p(xk|x1:k−1) in (3.7) is

not a function of θk, we can write

p(θk|x1:k) ∝ p(xk|θk)p(θk|x1:k−1). (3.33)

Inserting (3.14) and (3.28) yields

p(θk|x1:k) ∝ exp
�

− 1
2Φk(θk)

�
, (3.34)
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where

Φk(θk) � (xk − Bkθk)T Jϕ,k(xk − Bkθk) + (θk − µk|k−1)T Jk|k−1(θk − µk|k−1), (3.35)

with Jϕ,k � Σ−1
ϕ,k. By expanding the right-hand side and gathering all terms in θk, we obtain

Φk(θk) c= θT
k (Jk|k−1 + BT

k Jϕ,kBk)θk − 2θT
k (BT

k Jϕ,kxk + Jk|k−1µk|k−1), (3.36)

where xT
k Jϕ,kxk and µT

k|k−1Jk|k−1µk|k−1 were absorbed into the additive constant. Defining

Jk|k � Jk|k−1 + BT
k Jϕ,kBk, (3.37)

we can rewrite (3.36) as

Φk(θk) c= θT
k Jk|kθk − 2θT

k (BT
k Jϕ,kxk + Jk|k−1µk|k−1). (3.38)

Completing the square with respect to θk and dropping some terms that do not depend on θk,

we further obtain

Φk(θk) c= (θk − µk|k)T Jk|k(θk − µk|k), (3.39)

with

µk|k � J−1
k|k(BT

k Jϕ,kxk + Jk|k−1µk|k−1). (3.40)

Inserting (3.39) into (3.34), we recognize that the posterior pdf is Gaussian with mean µk|k and

precision matrix Jk|k, i.e.,

p(θk|x1:k) = N (µk|k, J−1
k|k). (3.41)

We thus see that the update step for the linear-Gaussian model reduces to the mapping (µk|k−1,
Jk|k−1) → (µk|k, Jk|k) as described by (3.37) and (3.40).

3.4.3 Summary of the Information Kalman Filter Algorithm

We can now summarize the IKF algorithm. For k = 1, 2, . . ., convert (µk−1|k−1, Jk−1|k−1) into

(µk|k, Jk|k) via the following two steps:

1. Prediction step (see (3.32) and (3.31)):

Jk|k−1 = Jτ ,k − Jτ ,kAk(Jk−1|k−1 + AT
k Jτ ,kAk)−1AT

k Jτ ,k, (3.42)

µk|k−1 = Akµk−1|k−1. (3.43)
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2. Update step (see (3.37) and (3.40)):

Jk|k = Jk|k−1 + BT
k Jϕ,kBk, (3.44)

µk|k = J−1
k|k(BT

k Jϕ,kxk + Jk|k−1µk|k−1). (3.45)

This recursion is initialized with J0|0 = J0 = Σ−1
0 and µ0|0 = µ0 (see (3.12)).

3.5 Information Kalman Filter for Optical Flow Estimation

Looking at the model for OF estimation in (2.78) and (2.57), we recognize that these equations

constitute a special case of the linear-Gaussian state-space model presented in Section 3.3 with

θk = wk, τk = rk−1, xk = d̃k, ϕk = ñk, Ak = I2MN , Bk = G̃k+1, Στ ,k = γ−1I2MN (thus,

Jτ ,k = γI2MN ), and Σϕ,k = Q−1 (thus, Jϕ,k = Q). Hence, the IKF of Section 3.4 can be directly

applied.

3.5.1 Prediction and Update Steps

The k-th recursion for k = 1, . . . , L − 1 is summarized in the following two steps:

1. Prediction step (see (3.42), (3.43)):

Jk|k−1 = γI2MN − γ2(Jk−1|k−1 + γI2MN )−1, (3.46)

µk|k−1 = µk−1|k−1. (3.47)

2. Update step (see (3.44), (3.45)):

Jk|k = Jk|k−1 + G̃T
k+1QG̃k+1, (3.48)

µk|k = J−1
k|k(Jk|k−1µk|k−1 + G̃T

k+1Qd̃k). (3.49)

Recalling from (2.65) and (2.66) that

G̃T
k+1QG̃k+1 = βMH + λGT

k+1Gk+1 (3.50)

and

G̃T
k+1Qd̃k = λGT

k+1dk, (3.51)
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the update step (3.48), (3.49) becomes

Jk|k = Jk|k−1 + βMH + λGT
k+1Gk+1, (3.52)

µk|k = J−1
k|k(Jk|k−1µk|k−1 + λGT

k+1dk). (3.53)

This recursion is initialized with arbitrary J0|0 = J0 and µ0|0 = µ0. The MMSE estimate of the

OF vector w is obtained as the mean of the posterior pdf (cf. (3.5)), i.e.,

ŵk,MMSE = µk|k = J−1
k|k(Jk|k−1µk|k−1 + λGT

k+1dk). (3.54)

3.5.2 Reduced-Parameter Formulation

In the following, we will show that the IKF given by (3.46), (3.47), (3.52), and (3.53) can be

reformulated in terms of only the two parameters

η � γ

λ
and ψ � β

λ
, (3.55)

rather than the three parameters β, γ, and λ. Let us we rewrite Jk|k−1 in the prediction step

(cf. (3.46)) as
Jk|k−1 = λJ̄k|k−1 (3.56)

with

J̄k|k−1 � 1
λ

Jk|k−1 = γ

λ
I2MN − γ2

λ
(Jk−1|k−1 + γI2MN )−1. (3.57)

Similarly, we rewrite Jk|k in the update step (cf. (3.52)) as

Jk|k = λJ̄k|k, (3.58)

with

J̄k|k � 1
λ

Jk|k

= 1
λ

Jk|k−1 + β

λ
MH + GT

k+1Gk+1

= 1
λ

Jk|k−1 + ψMH + GT
k+1Gk+1

= J̄k|k−1 + ψMH + GT
k+1Gk+1, (3.59)
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where we used (3.56) in the last line. Inserting (3.58), with k replaced by k − 1 into (3.57), we
then obtain

J̄k|k−1 = γ

λ
I2MN − γ2

λ
(λJ̄k−1|k−1 + γI2MN )−1

= γ

λ
I2MN −

�γ

λ

�2
(J̄k−1|k−1 + γ

λ
I2MN )−1

= ηI2MN − η2(J̄k−1|k−1 + ηI2MN )−1. (3.60)

Next, we consider µk|k in the update step (cf. (3.53)), which is given as

µk|k = λJ−1
k|k

� 1
λ

Jk|k−1µk|k−1 + GT
k+1dk

�
=

� 1
λ

Jk|k
�−1� 1

λ
Jk|k−1µk|k−1 + GT

k+1dk

�
= J̄−1

k|k(J̄k|k−1µk|k−1 + GT
k+1dk). (3.61)

Thus, we can finally summarize reduced-parameter our reformulation of the IKF:

1. Prediction step (see (3.60), (3.47)):

J̄k|k−1 = ηI2MN − η2(J̄k−1|k−1 + ηI2MN )−1, (3.62)

µk|k−1 = µk−1|k−1. (3.63)

2. Update step (see (3.59), (3.61)):

J̄k|k = J̄k|k−1 + ψMH + GT
k+1Gk+1, (3.64)

µk|k = J̄−1
k|k(J̄k|k−1µk|k−1 + GT

k+1dk). (3.65)

Assuming that the initialization of the IKF recursion does not involve λ, i.e., µ0|0 and J0|0 are

chosen such that they do not depend on λ (e.g., µ0|0 = 02MN and J0|0 = 02MN×2MN ), we see

that the IKF is formulated in terms of η and ψ rather than β, γ, and λ. This formulation of the

IKF is finally recognized to be identical to the IKF given in (3.46), (3.47), (3.52), and (3.53) for
λ = 1, which will therefore be used in the following.

3.5.3 Sparsity of Jk|k

In OF estimation, we prefer the IKF over the conventional KF because the covariance matrices

arising in the conventional KF are typically dense and therefore operations involving these

matrices are costly, whereas the precision matrices Jk|k and Jk|k−1 arising in the IKF are sparse.

In particular, when using the IKF rather the conventional KF, the sparsity of the precision
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matrices is preserved in the update step (3.52), (3.53). Indeed, assuming that Jk|k−1 is sparse

and using the fact that MH and Gk+1 are sparse by definition (see (2.30), (2.31), (2.45), and
(2.46)), we conclude from (3.52) that Jk|k is also sparse. Unfortunately, a similar result does

not hold directly for the prediction step, because (3.46) does not yield a sparse Jk|k−1 even if

Jk−1|k−1 is sparse. For a dense matrix Jk|k−1, the update step (3.52) will then yield a dense

matrix Jk|k, and henceforth the IKF will be similarly complex as the conventional KF.

To address this problem, we replace (3.46) by a reduced order-approximation that is obtained

by expanding the matrix inverse by a series as follows [15]:

(Jk−1|k−1 + γI2MN )−1 = Ψ−1 − Ψ−1ΩΨ−1 + Ψ−1ΩΨ−1ΩΨ−1 − . . . , (3.66)

where Ψ and Ω are chosen such that

Ψ + Ω = Jk−1|k−1 + γI2MN . (3.67)

This series converges if all eigenvalues of Ψ−1Ω lie inside the unit disk, or equivalently if Ψ + Ω
is strictly diagonally dominant [30]. Convergence is especially fast if the eigenvalues of Ψ−1Ω
are close to zero. In this thesis, we investigate two alternative definitions of Ψ:

1. Ψ is a block diagonal matrix whose 2×2 diagonal blocks are identical to the corresponding

diagonal blocks of the original matrix Jk−1|k−1 + γI2MN (as proposed in [15]);

2. Ψ is a diagonal matrix whose main diagonal is identical to the corresponding main diagonal

of the original matrix Jk−1|k−1 + γI2MN (as proposed in [30]).

As a consequence, Ψ−1 is sparse. By (3.67), matrix Ω is then given by the remaining elements

of Jk−1|k−1 + γI2MN , i.e.,

Ω = Jk−1|k−1 + γI2MN − Ψ. (3.68)

The series in (3.66) may be truncated after any number of terms depending on the desired level

of accuracy. However, a large number of terms results in a relatively dense approximation, thus

there is a tradeoff between accuracy and computational complexity. We observed that using the

first two terms typically yields a good approximation of the inverse. Therefore we approximate

(3.46) according to

Jk|k−1 ≈ γI2MN − γ2(Ψ−1 + Ψ−1ΩΨ−1), (3.69)

which, unlike the original expression, is sparse and thus preserves the sparse structure of Jk−1|k−1

(because Ψ−1 is sparse).

We note that besides the presented approach, other techniques for sparse approximate matrix

inversion can be found in the literature, see e.g. [31], [32].
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3.5.4 Efficient Iterative Computation the OF Estimate

The sparsity of Jk|k and Jk|k−1 can also be exploited for an efficient computation of the OF

estimate ŵk,MMSE. We can reformulate (3.54) (with λ = 1) as Jk|kŵk,MMSE = Jk|k−1µk|k−1 +
GT

k+1dk, i.e., ŵk,MMSE is the solution to the linear equation

Jk|kwk = bk, (3.70)

with bk � Jk|k−1µk|k−1+GT
k+1dk. An iterative solution of this linear equation can be obtained by

the conjugate gradient (CG) algorithm with Jacobi preconditioning [33]. This method produces

a sequence of approximate solutions that converge to the solution wk = J−1
k|kbk in a reasonable

rate. Since the precision matrix Jk|k only appears as matrix/vector multiplications, (3.70) can

be solved efficiently if Jk|k is sparse. Weaknesses of this iterative method are typically, the rate

of convergence, the computational complexity per step, the required storage, and the pattern of

memory access.
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Chapter 4

Variational Bayesian Filtering

In this chapter, we discuss variational Bayesian filtering and its application to OF estimation.

First, in Section 4.1, we introduce variational Bayesian inference. Next, we present the mean field

approximation in Section 4.2. In Section 4.3, we apply variational inference and the mean field

approximation to the general Bayesian filter, which leads to the formulation of the variational

Bayesian filter. Finally, in Section 4.4, we apply the variational Bayesian filter to the problem

of OF estimation.

4.1 Variational Inference

The principle of variational inference (VI) is to approximate the posterior pdf p(θ|x) by a

tractable variational pdf q(θ) [34]. This pdf is found in a set of variational pdfs, referred to as

the variational family, such that it is closest to the posterior pdf in terms of a metric.

4.1.1 Kullback-Leibler Divergence

One commonly used metric that measures “closeness” of two pdfs is the Kullback-Leibler (KL)

divergence [34], which is defined as

KL(p(θ)�q(θ)) � Ep

�
ln p(θ)

q(θ)

�
=

�
Rn

p(θ) ln p(θ)
q(θ) dθ, (4.1)

or equivalently

KL(p(θ)�q(θ)) = Ep{ln p(θ)} − Ep{ln q(θ)}. (4.2)

In terms of the KL divergence, the VI problem can be formulated as the optimization problem

[34]
�
q (θ) = argmin

q(θ)∈Q
KL(q(θ)�p(θ|x)), (4.3)
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where Q is the variational family.

4.1.2 Evidence Lower Bound

Given the joint pdf p(x, θ) of the data vector x and parameter vector θ, we define the evidence

lower bound (ELBO) for any variational pdf q(θ) as [34]

L(q) � Eq

�
ln p(x, θ)

q(θ)

�
=

�
Rn

q(θ) ln p(x, θ)
q(θ) dθ = Eq{ln p(x, θ)} − Eq{ln q(θ)}. (4.4)

Expanding the KL divergence in (4.3), using (4.2) and the identity

p(θ|x) = p(x, θ)
p(x) , (4.5)

we obtain

KL(q(θ)�p(θ|x)) = Eq{ln q(θ)} − Eq{ln p(θ|x)}
= Eq{ln q(θ)} − Eq{ln p(x, θ)} + Eq{ln p(x)}
= −L(q) + ln p(x). (4.6)

The minimization in (4.3) can now be rewritten as

�
q (θ) = argmin

q(θ)∈Q
{−L(q) + ln p(x)} = argmin

q(θ)∈Q
{−L(q)} = argmax

q(θ)∈Q
L(q). (4.7)

This shows that the VI problem (4.3) can be reformulated as a maximization of the ELBO. This

is an essential result in VI, because the optimization can be performed without having direct

access to the posterior pdf p(θ|x) (cf. (4.4)).

4.2 Mean Field Approximation

The most important variational family is based on partitioning the parameter vector θ ∈ Rn

into m ≤ n disjoint sub-vectors, i.e.,

θ =





θ1
θ2
...

θm

��� , (4.8)
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with the sub-vectors θj ∈ Rnj where j = 1, . . . , m and
�m

j=1 nj = n. Let Q be the variational

family whose members q(θ) factorize into the variational pdfs of the sub-vectors θj , i.e.,

q(θ) =
m�

j=1
qj(θj). (4.9)

Thus, according to the variational approximation q(θ) in (4.9), the sub-vectors θj are statistically

independent and distributed according to qj(θj), and each qj(θj) is a marginal pdf of q(θ). The
variational family Q defined by (4.9) is termed the mean field (MF) variational family [34].

Combining the VI optimization problem defined in (4.7) with the MF variational family de-

fined in (4.9), we recognize that this optimization problem is equivalent to the joint optimization

of the ELBO with respect to all qj(θj), j = 1, . . . , m. To find an approximate solution for this

problem, we use an iterative algorithm that optimizes the ELBO with respect to each factor

qj(θj) individually, while the other factors qi(θi) with i �= j are fixed. The sequence of optimiza-

tion steps for j = 1, . . . , m is repeated iteratively several times, i.e., the iteration index � ranges

from 1 to some maximum value and every iteration � has m sub-steps labeled by the sub-step

index j. Then in the current iteration, the jth sub-step updates qj(θj) by solving

q∗
j (θj) = argmax

qj(θj)∈Qj

L(q). (4.10)

Here Qj is the set of all possible pdfs for a nj-dimensional random vector and the q(θ) involved

in L(q) is given by (4.9) where all factors qi(θi) with i �= j are equal to the result of the most

recent update from the previous or current iteration. This iterative algorithm is known as the

coordinate ascent variational inference (CAVI) algorithm [34].

The optimization problem (4.10) can be solved analytically in terms of an expectation and a

normalization. It is shown in [34] that

q∗
j (θj) ∝ exp(Eq∼j {ln p(x, θ)}), (4.11)

where

Eq∼j {ln p(x, θ)} =
�
Rn∼j

ln p(x, θ)q∼j(θ∼j) dθ∼j . (4.12)

Here, θ∼j denotes the parameter vector θ without the sub-vector θj , and n∼j � n − nj is the

dimension of θ∼j . Furthermore, q∼j(θ∼j) denotes the posterior pdf q(θ) with the jth factor

qj(θj) removed, i.e.,

q∼j(θ∼j) �
�
i�=j

qi(θi), (4.13)

wherein each factor qi(θi), i �= j equals the result of the most recent update from the current or
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previous iteration.

4.3 The Variational Bayesian Filter

In the general Bayesian filter considered in Section 3.2, the prediction step (cf. (3.6)) consists of a
high-dimensional integral which, in general, is difficult to evaluate. For the linear-Gaussian state-

space model, this integral becomes tractable, and the closed-form solution of the prediction step

is given by (3.42) and (3.43). However, as discussed in Section 3.5, this is still problematic within

the IKF framework because the matrix inversion in (3.42) produces a dense precision matrix,

which renders the subsequent update step computationally infeasible. As we show below, using

the VI principle presented in Section 4.2, it is possible to derive a variational Bayesian filter

(VBF) in which the matrix inversion of (3.42) is avoided altogether. If we apply the VBF to the

problem of OF estimation, we find that no dense matrices emerge in the calculation, and that

the algorithm is computationally feasible.

4.3.1 VI Approach to Bayesian Filtering

The principal idea behind the VBF is to approximate the joint posterior pdf p(θk, θk−1|x1:k) by
a variational pdf from the MF family [23], i.e.,

p(θk, θk−1|x1:k) ≈ q(θk, θk−1|x1:k) = q(θk|x1:k)q(θk−1|x1:k). (4.14)

Therefore, in the case of the VBF, the role of the posterior pdf p(θ|x) that is approximated in

the generic VI approach of Section 4.1 is played by the joint posterior pdf p(θk, θk−1|x1:k). The
application of the product rule (with “background condition” x1:k−1) yields

p(θk, θk−1|x1:k) = p(θk, θk−1|xk, x1:k−1) = p(xk, θk, θk−1|x1:k−1)
p(xk|x1:k−1) . (4.15)

Using the chain rule and the assumption (3.3) along with the assumption that the data vector

xk is conditionally independent of all past data vectors x1:k−1 and the previous estimate θk−1

given θk, i.e.,

p(xk|θk, θk−1, x1:k−1) = p(xk|θk), k = 1, 2, . . . , (4.16)

we obtain for the numerator in (4.15)

p(xk, θk, θk−1|x1:k−1) = p(xk|θk, θk−1, x1:k−1)p(θk|θk−1, x1:k−1)p(θk−1|x1:k−1)

= p(xk|θk)p(θk|θk−1)p(θk−1|x1:k−1). (4.17)
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Note that the joint pdf p(xk, θk, θk−1|x1:k−1) here plays the role of the joint pdf p(x, θ) consid-

ered in the generic VI approach. Comparing the factorization in (4.14) with (4.8) and (4.9), we
see that the full parameter vector is

θ� =
�

θ�
1

θ�
2

�
=

�
θk

θk−1

�
, (4.18)

and the variational factors qj(θ�
j) for j = 1, 2 are identified as

q1(θ�
1) = q(θk|x1:k) and q2(θ�

2) = q(θk−1|x1:k). (4.19)

Note also that the pdfs q∼j(θ�∼j) are given by

q∼1(θ�
∼1) = q(θk−1|x1:k) and q∼2(θ�

∼2) = q(θk|x1:k). (4.20)

We now use the CAVI algorithm to calculate the variational factors q(θk|x1:k) and q(θk−1|x1:k).
By applying (4.11) with the joint pdf p(θ�, xk|x1:k−1) given by (4.17) and the posterior pdf

p(θ�|x1:k) given by (4.14), we obtain update equations for our variational factors q(θk|x1:k) and

q(θk−1|x1:k). These update equations will be derived next.

4.3.2 Variational Filtering and Smoothing pdfs

For q(θk|x1:k), which we refer to as the variational filtering pdf, we obtain (cf. (4.11), (4.14),
and (4.17))

q∗(θk|x1:k) ∝ exp
�
Eq(θk−1|x1:k){ln p(xk, θk, θk−1|x1:k−1)}

�
(4.21)

∝ exp
�
Eq(θk−1|x1:k){ln p(xk|θk)p(θk|θk−1)p(θk−1|x1:k−1)}

�
= exp

�
Eq(θk−1|x1:k){ln p(xk|θk)} + Eq(θk−1|x1:k){ln p(θk|θk−1)} (4.22)

+ Eq(θk−1|x1:k){ln p(θk−1|x1:k−1)}
�
.

Absorbing the term Eq(θk−1|x1:k){ln p(θk−1|x1:k−1)} into the multiplicative constant (since it is

not a function of θk), and using the equality Eq(θk−1|x1:k){ln p(xk|θk)} = ln p(xk|θk), which
holds since p(xk|θk) does not involve θk−1, we obtain

q∗(θk|x1:k) ∝ exp(ln p(xk|θk)) exp
�
Eq(θk−1|x1:k){ln p(θk|θk−1)}

�
= p(xk|θk)Γ1(θk), (4.23)

with

Γ1(θk) � exp
�
Eq(θk−1|x1:k){ln p(θk|θk−1)}

�
. (4.24)
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For q(θk−1|x1:k), which we refer to as the variational smoothing pdf, we obtain (cf. (4.11),
(4.14), and (4.17))

q∗(θk−1|x1:k) ∝ exp
�
Eq(θk|x1:k){ln p(xk, θk, θk−1|x1:k−1)}

�
(4.25)

∝ exp
�
Eq(θk|x1:k){ln p(xk|θk)p(θk|θk−1)p(θk−1|x1:k−1)}

�
= exp

�
Eq(θk|x1:k){ln p(xk|θk)} + Eq(θk−1|x1:k){ln p(θk|θk−1)} (4.26)

+ Eq(θk|x1:k){ln p(θk−1|x1:k−1)}
�
.

Absorbing Eq(θk|x1:k){ln p(xk|θk)} into the multiplicative constant (since it is not a function of

θk−1), and using the equality Eq(θk|x1:k){ln p(θk−1|x1:k−1)} = ln p(θk−1|x1:k−1), we obtain

q∗(θk−1|x1:k) ∝ exp(ln p(θk−1|x1:k−1)) exp
�
Eq(θk|x1:k){ln p(θk|θk−1)}

�
= p(θk−1|x1:k−1)Γ2(θk−1), (4.27)

with

Γ2(θk−1) � exp
�
Eq(θk|x1:k){ln p(θk|θk−1)}

�
. (4.28)

4.3.3 The Variational Bayesian Filter Recursion

In the VBF, the posterior pdf p(θk|x1:k) of θk is approximated by the variational filtering

pdf q(θk|x1:k). Thus, also p(θk−1|x1:k−1) involved in (4.27) is replaced by its approximation

q(θk−1|x1:k−1). That is, the update equation (4.27) is replaced by q∗(θk−1|x1:k) ∝ q(θk−1|x1:k−1)
×Γ2(θk−1). The VBF recursion for the general state-space model in Section 3.1 is thus given by

(4.23) and by this modified version of (4.27):

q∗(θk|x1:k) ∝ p(xk|θk)Γ1(θk), (4.29)

q∗(θk−1|x1:k) ∝ q(θk−1|x1:k−1)Γ2(θk−1), (4.30)

with (cf. (4.24), (4.28))

Γ1(θk) = exp
�
Eq∗(θk−1|x1:k){ln p(θk|θk−1)}

�
, (4.31)

Γ2(θk−1) = exp
�
Eq∗(θk|x1:k){ln p(θk|θk−1)}

�
. (4.32)

Thus, at time step k, q(θk−1|x1:k−1) is converted into q∗(θk|x1:k) and into q∗(θk−1|x1:k). Ac-

cording to the CAVI algorithm, these conversions are repeated in an iterative manner. This

corresponds to performing the following steps:

1. Initialize q∗(θk|x1:k) arbitrarily.
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×q(θk−1|x1:k−1)

Γ2(θk−1)

q
∗(θk−1|x1:k)×Γ1(θk)

p(xk|θk)

q
∗(θk|x1:k)

(4.30)(4.29)

Γ1(θk), (4.31)

Γ2(θk−1), (4.32)

iterate� �initialized at

first iteration

obtained from

time k − 1

q(θk−1|x1:k−1)

q
∗(θk|x1:k)

Fig. 4.1: CAVI iteration performed by the VBF recursion at time k, converting q(θk−1|x1:k−1) into q∗(θk|x1:k).
The block × calculates a normalized pdf from the product of the input functions. Dotted arrows indicate calcu-
lating an expectation and passing the result, and dashed arrows indicate passing the result of one recursion to
the next.

2. Calculate Γ2(θk−1) using (4.32).

3. Calculate q∗(θk−1|x1:k) using (4.30). This involves q(θk−1|x1:k−1), which was calculated

at the previous time step k − 1.

4. Calculate Γ1(θk) using (4.31).

5. Update q∗(θk|x1:k) using (4.29).

6. Repeat steps 2–5 until convergence is reached [23, Section 7.2].

7. Use q∗(θk|x1:k) as the variational pdf approximating the posterior pdf p(θk|x1:k).

8. Propagate q∗(θk|x1:k) to the next time step k+1, where it will take the place of q(θk−1|x1:k−1)
used at time step k (cf. step 3).

These iteration steps of the CAVI algorithm are visualized in Figure 4.1. At time k = 1, the
VBF algorithm is initialized with an arbitrary pdf q(θk−1|x1:k−1) = q(θ0|x1:0) = q(θ0).

To obtain an estimate of θk from q∗(θk|x1:k), we consider the MMSE estimator (see Section

3.2) based on q∗(θk|x1:k), i.e.,

θ̂k,VBF = Eq∗(θk|x1:k){θk} =
�
Rn

θk q∗(θk|x1:k) dθk, (4.33)

which approximates θ̂k,MMSE = E{θk|x1:k} = Ep(θk|x1:k){θk}.

4.4 Variational Bayesian Filtering for Optical Flow Estimation

Let us now apply the VBF of the previous section to the linear-Gaussian state-space model in

(2.57) and (2.78). The roles of θk and xk are now played by wk, and d̃k, respectively.
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4.4.1 Calculation of Γ1(wk) and Γ2(wk−1)

Formally replacing θk with wk and xk with d̃k, equation (4.31) becomes

Γ1(wk) = exp
�
Eq(wk−1|d̃1:k){ln p(wk|wk−1)}

�
, (4.34)

and (4.32) is given by

Γ2(wk−1) = exp
�
Eq(wk|d̃1:k){ln p(wk|wk−1)}

�
. (4.35)

It is seen that Γ1(wk) and Γ2(wk−1) are obtained by evaluating the expectation of the loga-

rithm of the transition pdf p(wk|wk−1) in (2.82) with respect to q(wk−1|d̃1:k) and q(wk|d̃1:k),
respectively. The logarithm of (2.82) can be written as

ln p(wk|wk−1) c= −γ

2 (wk − wk−1)T (wk − wk−1) = −γ

2 (wT
k wk − 2wT

k wk−1 + wT
k−1wk−1).

(4.36)

Inserting the result into (4.34), we obtain

Γ1(wk) ∝ exp
�

− γ

2 Eq(wk−1|d̃1:k){wT
k wk − 2wT

k wk−1 + wT
k−1wk−1}

�
= exp

�
− γ

2


wT

k wk − 2wT
k Eq(wk−1|d̃1:k){wk−1} + Eq(wk−1|d̃1:k){wT

k−1wk−1}��
∝ exp

�
− γ

2


wT

k wk − 2wT
k µk−1|k

��
, (4.37)

with

µk−1|k � Eq(wk−1|d̃1:k){wk−1}. (4.38)

Here, the term Eq(wk−1|d̃1:k){wT
k−1wk−1} was absorbed into the multiplicative constant since it

is not a function of wk. Similarly, by inserting (4.36) into (4.35), we obtain

Γ2(wk−1) ∝ exp
�

− γ

2 Eq(wk|d̃1:k){wT
k wk − 2wT

k wk−1 + wT
k−1wk−1}

�
= exp

�
− γ

2


Eq(wk|d̃1:k){wT

k wk} − 2 Eq(wk|d̃1:k){wT
k }wk−1 + wT

k−1wk−1
��

∝ exp
�

− γ

2


wT

k−1wk−1 − 2µT
k|kwk−1

��
, (4.39)

with

µk|k � Eq(wk|d̃1:k){wk}. (4.40)

Here, the term Eq(wk|d̃1:k){wT
k wk} was absorbed into the multiplicative constant since it is not

a function of wk−1.
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4.4.2 Variational Filtering pdf

The update equation (4.29) for the variational filtering pdf q(wk|d̃1:k) now reads

q∗(wk|d̃1:k) ∝ p(d̃k|wk)Γ1(wk). (4.41)

Expanding (2.61), we see that the augmented likelihood p(d̃k|wk) function is given by

p(d̃k|wk) ∝ exp
�

− 1
2



d̃T

k Qd̃k − 2wT
k G̃T

k+1Qd̃k + wT
k G̃T

k+1QG̃k+1wk

��
, (4.42)

where we used the fact that Q is symmetric (cf. (2.60)). Inserting (4.42) and (4.37) into (4.41),
we obtain

q∗(wk|d̃1:k) ∝ exp
�

− γ

2


wT

k wk − 2wT
k µk−1|k

� − 1
2



wT

k G̃T
k+1QG̃k+1wk − 2wT

k G̃T
k+1Qd̃k

��
.

(4.43)

Note that the term d̃T
k Qd̃k was dropped since it is not a function of wk. Rewriting (4.43) as

q∗(wk|d̃1:k) ∝ exp
�

− 1
2



wT

k (γI2MN + G̃T
k+1QG̃k+1)wk − 2wT

k (γµk−1|k + G̃T
k+1Qd̃k)

��
, (4.44)

and completing the square with respect to wk, the updated variational filtering pdf is recognized

to be Gaussian i.e.,

q∗(wk|d̃1:k) = N (wk; µ∗
k|k, J∗−1

k|k )

= (2π)−NM det(J∗
k|k)1/2 exp

�
− 1

2


wk − µ∗

k|k)T J∗
k|k(wk − µ∗

k|k
��

, (4.45)

with precision matrix

J∗
k|k = γI2MN + G̃T

k+1QG̃k+1 (4.46)

and mean

µ∗
k|k = J∗−1

k|k (G̃T
k+1Qd̃k + γµk−1|k). (4.47)

We recall from (2.65) and (2.66) that

G̃T
k+1QG̃k+1 = λGT

k+1Gk+1 + βMH (4.48)

and

G̃T
k+1Qd̃k = λGT

k+1dk. (4.49)
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Thus, the expressions (4.46) and (4.47) can be rewritten as

J∗
k|k = γI2MN + λGT

k+1Gk+1 + βMH (4.50)

and

µ∗
k|k = J∗−1

k|k
�
λGT

k+1dk + γµk−1|k
�
, (4.51)

respectively. Note that J∗
k|k can be calculated directly, whereas µ∗

k|k is a function of µk−1|k,

which was obtained in the previous iteration of the CAVI algorithm (cf. (4.55)).

4.4.3 Variational Smoothing pdf

The update equation (4.30) for the variational smoothing pdf q(wk−1|d̃1:k) reads

q∗(wk−1|d̃1:k) ∝ q(wk−1|d̃1:k−1)Γ2(wk−1). (4.52)

Inserting (4.39) into (4.52) yields

q∗(wk−1|d̃1:k) ∝ q(wk−1|d̃1:k−1) exp
�

− γ

2


wT

k−1wk−1 − 2µT
k|kwk−1

��
. (4.53)

Identifying the first factor in (4.53) as the variational filtering pdf from recursion k − 1, i.e.,
q∗(wk−1|d̃1:k−1) as given by (4.45) with k replaced by k − 1, we can rewrite (4.53) as

q∗(wk−1|d̃1:k) ∝ exp
�
−1

2


wT

k−1(γI2MN +Jk−1|k−1)wk−1−2wT
k−1(γµk|k+Jk−1|k−1µk−1|k−1)

��
.

Note that the term µT
k−1|k−1Jk−1|k−1µk−1|k−1 was dropped because it is not a function of wk−1.

By rearranging terms and completing the square with respect to wk−1, the updated variational

smoothing pdf is recognized to be Gaussian i.e.,

q∗(wk−1|d̃1:k) = N (wk−1; µ∗
k−1|k, J∗−1

k−1|k),

with precision matrix

J∗
k−1|k = γI2MN + Jk−1|k−1 (4.54)

and mean

µ∗
k−1|k = J∗−1

k−1|k(γµk|k + Jk−1|k−1µk−1|k−1). (4.55)

Note that J∗
k−1|k can be calculated directly, whereas µ∗

k−1|k is a function of µk|k, which was

obtained in the previous sub-step of the current iteration of the CAVI algorithm (cf. (4.51)).
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4.4.4 Closed-form Solution for µk|k

The expressions (4.51) of µk|k and (4.55) of µk−1|k establish a circular dependency, because

the expression of µk|k involves µk−1|k and the expression of µk−1|k involves µk|k. According

to the CAVI algorithm, the calculation of µk|k and µk−1|k would be performed iteratively by

alternating between (4.51) and (4.55), where µk−1|k and µk|k are always set to the most recent

value. However, as we will show next, we can avoid this iterative scheme and obtain a closed-form

solution for µk|k and µk−1|k.

Substituting the expression of µ∗
k−1|k in (4.55) for µk−1|k in (4.51), and using J∗

k−1|k = Jk−1|k
and J∗

k|k = Jk|k, yields

µ∗
k|k = J−1

k|k


λGT

k+1dk + γJ−1
k−1|k(γµk|k + Jk−1|k−1µk−1|k−1)

�
= γ2J−1

k|kJ−1
k−1|kµk|k + λJ−1

k|k(GT
k+1dk + γJ−1

k−1|kJk−1|k−1µk−1|k−1).

Setting µ∗
k|k = µk|k and grouping terms, we obtain further

(I2MN − γ2J−1
k|kJ−1

k−1|k)µk|k = J−1
k|k(λGT

k+1dk + γJ−1
k−1|kJk−1|k−1µk−1|k−1),

which yields the explicit solution

µk|k = (I2MN − γ2J−1
k|kJ−1

k−1|k)−1J−1
k|k(λGT

k+1dk + γJ−1
k−1|kJk−1|k−1µk−1|k−1). (4.56)

To avoid nested inversions of time-varying matrices in (4.56), we first rewrite this expression as

µk|k = (I2MN − γ2J−1
k|kJ−1

k−1|k)−1J−1
k|kJ−1

k−1|k(Jk−1|kλGT
k+1dk + γJk−1|k−1µk−1|k−1).

Applying now the relation A−1B−1 = (BA)−1 twice, we obtain

µk|k =


I2MN − γ2(Jk−1|kJk|k)−1�−1


Jk−1|kJk|k
�−1


Jk−1|kλGT
k+1dk + γJk−1|k−1µk−1|k−1

�
=



Jk−1|kJk|k(I2MN − γ2(Jk−1|kJk|k)−1)

�−1

Jk−1|kλGT

k+1dk + γJk−1|k−1µk−1|k−1
�

= (Jk−1|kJk|k − γ2I2MN )−1(Jk−1|kλGT
k+1dk + γJk−1|k−1µk−1|k−1). (4.57)

The VBF for OF estimation is now given by (4.50) and by (4.57) with the right-hand side of

(4.54) substituted for Jk−1|k, i.e.,

Jk|k = γI2MN + λGT
k+1Gk+1 + βMH , (4.58)

µk|k =


(γI2MN + Jk−1|k−1)Jk|k − γ2I2MN

�−1

(γI2MN + Jk−1|k−1)λGT

k+1dk + γJk−1|k−1µk−1|k−1
�
,

(4.59)
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Jk|k = γI2MN + λGT

k+1Gk+1 + βMH , (4.58)

Jk−1|k−1
µk|k(4.59)

µk−1|k−1

Fig. 4.2: Structure of the VBF algorithm for sequential OF estimation based on the linear-Gaussian state-space
model at time k. The precision matrix Jk|k is calculated by (4.58) and does not involve results from the previous
time k − 1. The mean µk|k is calculated by (4.59) and involves Jk|k as well as µk−1|k−1 and Jk−1|k−1.

where k = 1, . . . , L−1. Thus, in contrast to the IKF described in Section 3.5, the precision matrix

Jk|k is calculated according to (4.58) independently for every iteration, and not recursively using

Jk−1|k−1, i.e., the precision matrix of the previous iteration. On the other hand, according to

(4.59), the calculation of the mean µk|k requires the precision matrix of the current iteration

step, Jk|k, as well as the mean and precision matrix of the previous iteration, µk−1|k−1 and

Jk−1|k−1. The recursion for µk|k is initialized at time k = 1 with arbitrary Jk−1|k−1 = J0|0 = J0

and µk−1|k−1 = µ0|0 = µ0. Note that the VBF algorithm is not structured into a prediction step

and an update step like the IKF. The structure of the VBF algorithm is visualized in Figure

4.2.

To obtain an estimate of wk from q(wk|x1:k) = N (wk; µk|k, J−1
k|k), we consider the MMSE

estimator (see Section 3.2) based on q(wk|x1:k), i.e.,

ŵk,VBF = Eq(wk|x1:k){wk} = µk|k =


(γI2MN + Jk−1|k−1)Jk|k − γ2I2MN

�−1

× 

(γI2MN + Jk−1|k−1)λGT

k+1dk + γJk−1|k−1µk−1|k−1
�

(4.60)

(see (4.59)), which approximates ŵk,MMSE = E{wk|x1:k} = Ep(wk|x1:k){wk}.

4.4.5 Reduced-Parameter Formulation

As in the IKF (see Section 3.5), the VBF can be reformulated as a function of η = γ
λ and ψ = β

λ ,

rather than β, γ, and λ. To this end, we rewrite Jk|k in (4.58) as

Jk|k = λJ̄k|k, (4.61)

with

J̄k|k � 1
λ

Jk|k = γ

λ
I2MN + GT

k+1Gk+1 + β

λ
MH = ηI2MN + GT

k+1Gk+1 + ψMH . (4.62)
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Inserting (4.62) into (4.59) then yields

µk|k =


(γI2MN + λJ̄k−1|k−1)λJ̄k|k − γ2I2MN

�−1

× 

(γI2MN + λJ̄k−1|k−1)λGT

k+1dk + γλJ̄k−1|k−1µk−1|k−1
�

=
�
λ2

��γ

λ
I2MN + J̄k−1|k−1

�
J̄k|k −

�γ

λ

�2
I2MN

��−1

× λ2
��γ

λ
I2MN + J̄k−1|k−1

�
GT

k+1dk + γ

λ
J̄k−1|k−1µk−1|k−1

�
= 1

λ2

��γ

λ
I2MN + J̄k−1|k−1

�
J̄k|k −

�γ

λ

�2
I2MN

�−1

× λ2
��γ

λ
I2MN + J̄k−1|k−1

�
GT

k+1dk + γ

λ
J̄k−1|k−1µk−1|k−1

�
=



(ηI2MN + J̄k−1|k−1)J̄k|k − η2I2MN

�−1

ηI2MN + J̄k−1|k−1)GT

k+1dk + ηJ̄k−1|k−1µk−1|k−1
�
.

(4.63)

Thus, we summarize our reduced-parameter reformulation of the VBF as

J̄k|k = ηI2MN + GT
k+1Gk+1 + ψMH , (4.64)

µk|k =


(ηI2MN + J̄k−1|k−1)J̄k|k − η2I2MN

�−1

ηI2MN + J̄k−1|k−1)GT

k+1dk + ηJ̄k−1|k−1µk−1|k−1
�
.

(4.65)

Assuming that µ0|0 is chosen such that it does not depend on λ (e.g., µ0|0 = 02MN ), we see

that the VBF is a function of η and ψ rather than β, γ, and λ. This formulation of the VBF is

identical to the VBF given in (4.58) and (4.59) for λ = 1, which will therefore be considered in

the following.

4.4.6 Efficient Iterative Computation of the OF Estimate

Looking at the expression of the precision matrix Jk|k of the VBF given in (4.58), and using

that Gk+1 and MH are sparse by definition (see (2.30), (2.31), and (2.45), (2.46)), we see that

Jk|k is sparse for k = 1, 2, . . .. Similarly to the IKF, the sparsity of Jk|k can be exploited for an

efficient computation of the OF estimate ŵk,VBF. We can rewrite (4.60) (with λ = 1) as



(γI2MN + Jk−1|k−1)Jk|k − γ2I2MN

�
ŵk,VBF = (γI2MN + Jk−1|k−1)GT

k+1dk + γJk−1|k−1µk−1|k−1.
(4.66)

Thus, ŵk,VBF is the solution to the linear equation Akwk = bk with Ak = (γI2MN +Jk−1|k−1)Jk|k−
γ2I2MN and bk = (γI2MN + Jk−1|k−1)GT

k+1dk +γJk−1|k−1µk−1|k−1. Since Jk−1|k−1 and Jk|k are

sparse, Ak will also be sparse. Thus, as for the IKF in Section 3.5, we can use the CG algorithm

with Jacobi preconditioning [33] to solve (4.66) efficiently.
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Chapter 5

Simulation Results

In this chapter, we evaluate the performance of the IKF and the VBF for OF estimation, derived

in Section 3.5 and Section 4.4, respectively, on artificial and real image sequences. In Section

5.1, we present visualization methods and a quantitative metric, which we will use in Section 5.3

to assess the accuracy of the OF estimates. In Section 5.2, we introduce the datasets underlying

our experiments. Finally, in Section 5.3, we present and discuss the results of our experiments.

5.1 Visualization and Error Metrics

In order to compare the performance of different OF estimation algorithms, multiple approaches

for evaluation of the OF estimates have been developed [35]. In this section, we describe methods

for visual representation of the OF that enable a qualitative evaluation, and we define error

metrics that allow a quantitative evaluation.

5.1.1 Visualization

In the literature, two methods for visualizing the OF field have been established. First, the

visualization using arrows [35], which is shown in Figure 5.1. For a given frame index k, this

method directly shows the OF vectors (u[i, j, k] v[i, j, k])T on a uniform grid, where the origin of

the (i, j)-th vector is shifted to (xi, yj). This method offers an easy interpretation of the OF field.

However, for high-resolution images, the arrows are overlapping, which necessitates subsampling

of the OF field in order to obtain a clear visualization. Second, the visualization using color

coding [35], which associates hue to orientation and saturation to magnitude, as shown in Figure

5.2. This method allows the visualization of a dense OF field without subsampling, and is thus

better suited for high-resolution images.
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a) b) c) d)

Fig. 5.1: OF visualization using arrows. The OF field corresponding to the temporally successive images depicted
in a) and b) is visualized in c) using arrows that indicate the direction and magnitude of the movement. For
reference, in d) we show the arrow pattern corresponding to a diverging OF field with the OF magnitude increasing
proportionally to the distance from the center.

a) b) c) d)

Fig. 5.2: OF visualization using color coding. The OF field corresponding to the temporally successive images
depicted in a) and b) is visualized in c) using color coding. For reference, in d) we show the color pattern
corresponding to a diverging OF field, with the OF magnitude increasing proportionally to the distance from the
center. Note that OF orientation and OF magnitude are represented by hue and saturation, respectively.

5.1.2 Error Metrics

For a quantitative evaluation of the OF estimates, the following error metric is commonly used

in the literature. Let (û[i, j, k] v̂[i, j, k])T (cf. (2.11)) denote the estimated OF vector for a pixel

at position (i, j) and time k, and let (ū[i, j, k] v̄[i, j, k])T denote the corresponding ground-truth

OF vector. The endpoint error (EE) at position (i, j) and time k is then defined as the Euclidian

distance between the estimated OF vector and the the ground-truth OF vector, i.e. [35]

EE(i, j, k) �
�

(û[i, j, k] − ū[i, j, k])2 + (v̂[i, j, k] − v̄[i, j, k])2. (5.1)

The EE is rather insensitive to OF estimation errors with small magnitude but strongly penalizes

OF estimation errors with large magnitude.

5.2 Datasets

Next, we describe three datasets that we will use to evaluate the performance of our methods.

First, we present synthetic image sequences that show moving brightness patterns. We consider

the rotation of the whole image, and small brightness patterns (“objects”) that move in front of

a static background. These image sequences will also be used to validate the concept of temporal
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a) b) c)

Fig. 5.3: Two successive image frames of the rotation dataset are shown in a) and b). The corresponding OF is
shown in c).

coherence introduced in Section 2.3. Then, we consider the real image sequences provided by

the college of Middlebury.1 This dataset is freely available and widely used for evaluating OF

estimation algorithms.

5.2.1 Rotation Dataset

Our first synthetic dataset, termed the rotation dataset, was generated according to the equa-

tions stated in [27, Section 5]. The first image, at time k = 1, was constructed by evaluating

the spatial function

F [x, y, 1] = 1
2(cos(πx) cos(πy) + 1) (5.2)

for (x, y) taken from a uniformly spaced 20×20 grid within [−1, 1]×[−1, 1]. Then, the subsequent
images for k = 2, 3, . . . were generated recursively as

F [x, y, k] = F [x, y, k − 1] − Fx[x, y, k − 1]u[x, y] − Fy[x, y, k − 1]v[x, y], (5.3)

where Fx[x, y, k] and Fy[x, y, k] are defined in (2.24) and (2.25), respectively. Using (5.2) and

(5.3), we generated image sequences consisting of 20 frames. Here, the OF functions are constant

with respect to time k and given by

u[x, y] = −π sin(πx) cos(πy), v[x, y] = −π cos(πx) sin(πy). (5.4)

Since the OF functions do not change with time, the rotation angle is constant for all frames.

Two successive image frames along with the corresponding ground-truth OF are shown in Figure

5.3.

1https://vision.middlebury.edu/flow/data/

https://vision.middlebury.edu/flow/data/
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a) b) c)

Fig. 5.4: Two successive image frames of the moving object dataset are shown in a) and b). The corresponding
OF is shown in c).

5.2.2 Moving Object Dataset

The moving object dataset features a square object of 7 × 7 pixels with a distinguishable bright-

ness pattern that moves linearly in front of a static background. The brightness pattern Z is

given by

Z[i, j] � sin
�
([j − 1]n + i) π

n2

�
+ sin

�
([i − 1]n + j) π

n2

�
, (5.5)

for i = 1, . . . , n and j = 1, . . . , n, where n = 7. In order to increase the contrast to the back-

ground, the object contains a one-pixel border constituted by pixels with constant brightness.

The background is equal to the first frame of the rotation dataset. Bilinear interpolation was

used to enable displacements that do not conform to the pixel grid. We consider a frame-to-

frame displacement of 0.3 pixels in the direction from the upper left corner to the lower right

corner. Two successive frames along with the corresponding ground-truth OF are shown in

Figure 5.4. We generated image sequences of 20 frames where all images were constructed on a

grid of 20 × 20 pixels.

5.2.3 Middlebury Dataset

The Middlebury dataset contains synthetic and real image sequences. The ground-truth OF

for two successive frames is publicly available only for some of the sequences. Two successive

frames from the “Rubber Whale” sequence of the Middlebury dataset with the corresponding

ground-truth OF were shown in Figures 5.1 and 5.2.

5.3 Results and Discussion

Next, we present and discuss our simulation results. In particular, we also discuss benefits and

drawbacks of using temporal coherence, introduced in Section 2.3, compared to using spatial

regularization alone. As described in Sections 2.2 and 2.3, the influence of spatial regularization

and of temporal coherence is quantified by the parameters β and γ, respectively, where larger
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values correspond to a stronger influence. We evaluate the accuracy and complexity of the IKF

and the VBF on the synthetic datasets presented in the previous section, and on those sequences

of the Middlebury dataset where the ground truth is available. To study the effect of spatial

regularization and temporal coherence, we vary the parameter tuple (β, γ) on a uniform grid

within [0.1, 1] × [0.01, 5]. The lower limit of this grid was chosen such that the linear equations

solved in the execution of our methods (see Sections 3.5.4 and 4.4.6) are still well-conditioned,

and the upper limit was chosen such that the influence of the spatial and temporal regularization

can be investigated over a sufficiently large value range. For each dataset and each parameter

tuple (β, γ), we evaluate:

• the average EE (AEE) with the averaging performed over all pixels and all frames;

• the runtime of the methods averaged over 15 execution runs for the synthetic datasets and

three execution runs for the Middlebury dataset;

• and the number of iterations of the CG method that is needed to achieve a difference

of 10−5 or smaller between two subsequent iteration steps (see Sections 3.5.4 and 4.4.6),

averaged over 15 execution runs for the synthetic datasets and three execution runs for

the Middlebury dataset.

In addition, we present the optimum values of the parameter tuple (β, γ) (minimizing the AEE

of the IKF or the VBF) and the corresponding minimal AEE for the considered sequences of

the Middlebury dataset.

For the CG method, the final threshold is chosen as 10−5 because using a smaller value would

lead to an excessive computational complexity. In order to improve the estimation accuracy of

the IKF, the update step (see (3.52) and (3.53)) is executed m times for each time k. In the

m-th execution, the linearization point w
(m)
k,0 (see (2.36)) is set to the estimate of the (m − 1)-th

execution, i.e.,

w
(m)
k,0 = ŵ

(m−1)
k . (5.6)

Looking at (2.36), we see that w
(m)
k,0 is used to calculate the data term d

(m)
k from which the

estimate ŵ
(m)
k is obtained (cf. (3.54)). This repeated execution is initialized by setting

w
(0)
k,0 = ŵk−1, (5.7)

and terminated when

|ŵ(m)
k − ŵ

(m−1)
k | ≤ 0.001 or m = 30. (5.8)

The threshold in (5.8) is chosen as 0.001 because using a smaller value does not affect the

accuracy of the estimates significantly. For the same reason, we use the restriction to m ≤ 30.
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a) b) c)

Fig. 5.5: AEE vs. γ for the rotation dataset and a) β = 0.1, b) β = 0.55, and c) β = 1.

Similarly, the calculation of the VBF estimate (see (4.59)) is repeated multiple times in each

recursion, with the linearization point updated accordingly. As discussed in Section 3.5, we

consider both a block-diagonal and a diagonal definition of Ψ. We will refer to the IKF using

the block-diagonal definition as “IKF-block” and to the IKF using the diagonal definition as

“IKF-diag”.

5.3.1 Rotation Dataset

We first present our results for the rotation dataset. In Figure 5.5, the AEE of the three methods

(IKF-block, IKF-diag, and VBF) is plotted versus the temporal coherence parameter γ for three

different values of the spatial regularization parameter β. We see that for all three methods and

values of β, the AEE decreases with increasing γ. Thus, temporal coherence typically improves

the accuracy of the OF estimates. For β = 0.1, IKF-diag yields slightly more accurate estimates

than IKF-block and VBF, whereas the AEEs of IKF-block and VBF are comparable. As the

spatial regularization parameter β increases, VBF achieves a slightly higher accuracy than the

IKF methods for γ sufficiently large, while the results of IKF-diag and IKF-block are similar.

Figure 5.6 shows the average runtime versus γ. Comparing the two IKF methods, we see

that IKF-block is considerately slower than IKF-diag. This is intuitive because Ψ is denser for

IKF-block than for IKF-diag, and thus the matrix inversion in the prediction step (cf. (3.46))
takes longer. The runtimes of VBF and IKF-diag are comparable. We furthermore see that the

runtime of all methods initially decreases for increasing values of γ but then stays approximately

constant for γ larger than a certain value below 1.

Finally, Figure 5.7 depicts the average number of CG iterations versus γ. It can be seen that

for all three methods, the number of CG iterations decreases with increasing γ, although for

IKF-block and IKF-diag it effectively stays constant for γ above a certain value below 1. Thus,

temporal coherence typically leads to a reduced number of CG iterations, which in turn results

in a reduced runtime. It can also be seen that for all filter methods, the number of CG iterations

increases with a higher value of β, i.e., with a stronger spatial regularization. This may be due
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a) b) c)

Fig. 5.6: Average runtime vs. γ for the rotation dataset and a) VBF, b) IKF-diag, and c) IKF-block.

a) b) c)

Fig. 5.7: Average number of CG iterations vs. γ for the rotation dataset and a) β = 0.1, b) β = 0.55, and c)
β = 1.

to the fact that for a stronger spatial regularization, the system matrix of the equation system

iteratively solved by the CG method is more different from a diagonal matrix.

5.3.2 Moving Object Dataset

Next, we present results for the moving object dataset. In Figure 5.8, the AEE versus γ is

plotted for three different values of β. We see that for all values of β, the AEE of the VBF

attains its minimum for some γ ∈ [1, 3] and increases as γ moves away from that point. This

result indicates that temporal coherence can improve the accuracy of the estimation if γ is set

correctly. For γ too small, the effect of temporal coherence is negligible, whereas for γ too large,

the estimated OF field retains a “trailing trace” after the moving object as depicted for VBF

in Figure 5.9. This latter effect increases the overall error. The IKF methods show a similar

behavior for β = 0.55 and β = 1, whereas for β = 0.1 the AEE monotonously decreases with

growing γ within the displayed range γ ∈ [0, 5]. In fact, for β = 0.1, the minimum AEE of the

IKF methods is obtained around γ = 10. For β = 0.1, VBF achieves a lower AEE than the IKF

methods for γ < 3 and a higher AEE for γ > 3.5. For β = 0.55 and β = 1, on the other hand,

IKF-diag always yields a lower AEE than IKF-block.
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a) b) c)

Fig. 5.8: AEE vs. γ for the moving object dataset and a) β = 0.1, b) β = 0.55, and c) β = 1.

a) b) c)

Fig. 5.9: OF fields for the moving object dataset. a) Ground truth, b) and c) estimated OF fields obtained with
VBF using β = 0.1 and b) γ = 2.5 and c) γ = 5.

In Figure 5.10, the average runtime is plotted versus γ. For all values of β, the runtime of

all methods decreases with growing γ for γ above a certain threshold, indicating that temporal

coherence here reduces the runtime. For smaller values of γ, the runtime partly increases with

growing γ. Furthermore, the runtime is larger for a higher value of β. As for the rotation

dataset, IKF-block is slower than IKF-diag due to the higher density of Ψ. For β = 0.55 and

β = 1, the runtime of VBF is larger than the runtime of IKF-diag, whereas for β = 0.1, the
runtime of the two methods is comparable.

In Figure 5.11, the average number of CG iterations is plotted versus γ. The results are

a) b) c)

Fig. 5.10: Average runtime vs. γ for the moving object dataset and a) VBF, b) IKF-diag, and c) IKF-block.
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a) b) c)

Fig. 5.11: Average number of CG iterations vs. γ for the moving object dataset and a) β = 0.1, b) β = 0.55,
and c) β = 1.

similar to those obtained for the rotation dataset.

5.3.3 Middlebury Dataset

Finally, we analyze the effect of temporal coherence on the accuracy and runtime of our methods

using the “Hydrangea” sequence of the Middlebury dataset. We found that the conclusions

drawn from this analysis apply also to all the remaining sequences of the Middlebury dataset

for which a ground truth is available. Thus, for the other sequences, we only show the AEE for

the optimal values of the parameters β and γ.

In Figure 5.12, the AEE is plotted versus γ for three different values of β. We see that for

all three methods, the AEE initially increases with increasing γ and remains constant for larger

values of γ for β = 0.55 and β = 1. For β = 0.1, the AEE of the IKF methods slightly decreases

for growing values of γ whereas the AEE of VBF still increases. Thus, contrary to the result

obtained for the rotation and moving object datasets, temporal coherence reduces the accuracy

of the OF estimates. This is probably caused by large displacements between two subsequent

frames in the sequence. For β = 0.1, IKF-block achieves a smaller AEE than IKF-diag, while

VBF yields the highest AEE. As the spatial regularization parameter β increases, VBF achieves

a lower AEE than the IKF methods, whereas IKF-diag and IKF-block yield the same AEE.

Figure 5.13 shows the average runtime versus γ. Comparing the two IKF methods, we again

see that IKF-block is slower than IKF-diag, due to the higher density of Ψ as explained in

Section 5.3.1. In contrast to the other considered datasets, VBF now is slower than the IKF

methods for all values of β. We conjecture that this is because, using the considered values of

β and γ, the system matrix of the equation system solved by the CG method is more poorly

conditioned for VBF than for the IKF methods. We furthermore see that for all values of β,

the runtime of VBF decreases for γ < 1.2 and remains constant as γ exceeds this value; thus,

temporal coherence results in a reduced runtime of VBF. IKF-diag and IKF-block show this

behavior only for β = 0.55 and β = 1. For β = 0.1, the runtime initially decreases with growing
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a) b) c)

Fig. 5.12: AEE vs. γ for the “Hydrangea” sequence of the Middlebury dataset and a) β = 0.1, b) β = 0.55, and
c) β = 1.

a) b) c)

Fig. 5.13: Average runtime vs. γ for the “Hydrangea” sequence of the Middlebury dataset and a) VBF, b)
IKF-diag, and c) IKF-block.

γ and then slightly increases for γ > 1.2.
In Figure 5.14, the average number of CG iterations is plotted versus γ. The results are again

similar to those we obtained for the other datasets.

Finally, we present the optimal values of the parameters β and γ along with the corresponding

AEE for those sequences of the Middlebury dataset where the ground truth is available. These

results were obtained by means of the grid search described at the beginning of this section.

We found for each image sequence individually that the parameter values β = 0.1 and γ = 0.01
(the lower bound for γ used in our grid search) produce the lowest AEE. This indicates that, as

mentioned earlier, temporal coherence is not beneficial for the Middlebury dataset. For these

optimal parameter values, the absolute AEE and the AEE relative to the maximum magnitude of

the ground truth OF field of the corresponding sequence are given for each considered sequence

and for each of the three methods in Table 5.1. It can be seen that the AEE values obtained by

the three methods tend to be very similar, with the exception of the image sequences “Urban2”,

“Urban3”, and “Grove2”, where VBF achieves a lower AEE than the IKF methods.



5.3. Results and Discussion 55

a) b) c)

Fig. 5.14: Average number of CG iterations vs. γ for the “Hydrangea” sequence of the Middlebury dataset and
a) β = 0.1, b) β = 0.55, and c) β = 1.

Sequence Filter Method and AEE
IKF-diag IKF-block VBF

Rubber Whale 0.414 (8.97 %) 0.414 (8.97 %) 0.411 (8.9 %)
Venus 0.838 (8.93 %) 0.838 (8.93 %) 0.838 (8.93 %)

Hydrangea 0.402 (3.61 %) 0.402 (3.61 %) 0.419 (3.76 %)
Dimetrodon 0.220 (4.71 %) 0.220 (4.71 %) 0.220 (4.71 %)

Urban 2 4.987 (22.47 %) 4.975 (22.42 %) 3.591 (16.18 %)
Urban 3 2.933 (16.65 %) 2.932 (16.64 %) 2.814 (15.97 %)
Grove 2 0.354 (7.03 %) 0.354 (7.03 %) 0.296 (5.88 %)
Grove3 1.115 (5.99 %) 1.115 (5.99 %) 1.102 (5.92 %)

Tab. 5.1: Minimum AEE obtained for the optimal parameter values β = 0.1 and γ = 0.01 for the considered
sequences of the Middlebury dataset.

5.3.4 Summary

To investigate the effect of using temporal coherence in OF estimation, we evaluated the per-

formance of the IKF, both with the block-diagonal and the diagonal approximation, and of the

VBF on two synthetic datasets and certain sequences of the Middlebury dataset. To this end, we

varied the parameter tuple (β, γ) over a uniformly spaced grid and calculated the AEE, the av-

erage runtime, and the average number of CG iterations for all three methods. We showed that

for some datasets, temporal coherence leads to a higher accuracy and a lower runtime when com-

pared to using spatial regularization alone, but this is not true for all datasets. We also showed

that the considered methods have similar accuracy but differ in computational complexity.

In addition, for the synthetic datasets, we also measured the sparsity of the precision matrices

calculated in our methods. As discussed in Sections 3.5 and 4.4, the sparsity measure is 99.3%
for IKF-diag and VBF and 99.6% for IKF-block.
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Chapter 6

Conclusions

In this thesis, we studied Bayesian probabilistic models and methods for optical flow (OF)

estimation with both spatial regularization and temporal coherence. We first reviewed the

classical deterministic OF model based on the brightness constancy constraint and a spatial

coherence assumption. Next, we reformulated the deterministic model in a probabilistic setting

and subsequently extended the resulting probabilistic model to account for temporal coherence

of the OF field. We then described the optimal Bayesian state estimator (filter) for a general

non-linear and non-Gaussian state-space model. Restricting to a linear-Gaussian state-space

model, we next derived the information form of the Kalman filter from the general Bayesian

filter and specialized the filter equations to the problem of OF estimation. As an alternative

approach to OF estimation, we considered variational Bayesian inference and discussed the

mean field approximation and the coordinate ascent algorithm. The application of variational

Bayesian inference to the filtering problem led to the formulation of the variational Bayesian

filter and its specialization to OF estimation.

We evaluated the accuracy and computational complexity of the information Kalman filter

and the variational Bayesian filter for artificially generated data and a commonly used real

dataset. Our experimental results show that accounting for temporal coherence in OF estimation

can yield improvements in terms of accuracy and computational complexity, but this is not

generally true.

To model temporal coherence, we used the Eulerian evolution model. It is possible that

other evolution models, such as the Langrangian evolution model proposed in [28], allow an

improved exploitation of temporal coherence in OF estimation. This appears to be an interesting

direction of future research. Furthermore, we conjecture that performance improvements can

also be obtained by modeling the measurement noise vectors nk, mu,k, and mv,k in (2.53) and

(2.56) using a “robust” distribution like the Laplacian or Student’s t-distribution, rather than

the Gaussian distribution.
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