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Abstract

Currently density functional theory is one of the most commonly used electronic struc-
ture calculation method, thanks to its good accuracy - computational cost ratio. Since
its invention the performance of DFT drastically increased, due to improvements both
in the numerical approaches and in the exchange-correlation(XC) functional approxima-
tions. XC functional approximations are often categorized based on their complexity and
these categories are referred to steps on Jacob’s ladder of DFT. The lowest step consists of
the local density approximations(LDAs), which use only the density to approximate the
XC energy at a given point. The higher rungs contain the generalized gradient approxi-
mations(GGAs), which also use the gradient of the density, and the meta-generalized gra-
dient approximations (mGGAs), which include the laplacian of the density or the kinetic
energy density as well. Since density functional approximations (DFAs) play a crucial role
in the success of DFT, they are a focus of research.

In the present thesis, we examine why the SCAN functional results in poor equilibrium
lattice parameter predictions for alkali - and alkaline earth metals, while it performs well
for the rest of the tested solids. It was found that the exchange part of the XC energy plays
the dominant role in the lattice parameter predictions. We identified the semi-core region
to be responsible for a push in the direction of larger lattice parameters in all solids, but in
materials with more interstitial electrons this effect was suppressed by the much stronger
effect of the interstitial region.

Using principal component analysis we also explored how much information does the
laplacian of the density carry when it is used alongside the gradient of the density and
the kinetic energy density for DFAs. We showed that in most cases the laplacian can be
reproduced as a linear combination of the other descriptors, an exception to this was only
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found in the middle of covalent bonds. As a result we concluded that while the laplacian
might contain some useful information its inclusion in DFAs alongside the kinetic energy
density is not expected to cause significant improvements in accuracy.

Employing unsupervised machine learning methods we developed a way to iden-
tify groups of materials in databases, which occupy similar regions in the space of mGGA
functional descriptors. This method was able to reproduce groups formed based on chem-
ical intuition in a purely data driven way. Using our method databases with strong biases
can be identified and rebalanced to produce better benchmarking or training datasets for
DFA development.

To find the limits of mGGA functionals and understand how specific changes in their
functional form affect their performance we trained 25 mGGAs with different weights on
equilibrium lattice parameter, cohesive energy and band gap errors. The training was
carried out on a set of 44 solids for lattice parameter and cohesive energy and on 440 ma-
terials for band gap. It was found that mGGAs express a similar tradeoff between the
accuracy of lattice parameters and cohesive energies as it was seen for GGA functionals,
but in the meantime they manage to predict the band gaps significantly better. Compared
to other existing functionals the trained ones showed better performance on this three spe-
cific errors, hinting that this might be the limit of mGGAs. The functional trained mostly
on cohesive energies showed similarities to the mBEEF functional, which also produces
low cohesive energy errors. And the functional trained mostly on band gaps resembled
the TASK functional, which was created to produce good band gaps. The similarities with
existing functionals indicate that our findings could be general rules for functionals which
excel at these specific properties.

Finally, we also developed a neural network based model to predict the infrared(IR)
spectra of polycyclic aromatic hydrocarbons(PAHs). These molecules are a focus of in-
terest for astronomers since they are abundant in the universe and are suspected to be
responsible for the so called "unidentified infrared emission" features in the IR spectra
of various interstellar sources. The vast number of possible PAH configurations makes
the bruteforce prediction of their IR spectra with DFT impossible. Our solution based on
Morgan fingerprints is many magnitudes faster and the accuracy of predictions is on par
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with DFT results. We also proposed a way to asses the accuracy of the predictions based
on an ensemble of neural networks and in cases of poor accuracy the calculation can fall
back to the traditional DFT approach.
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1 Introduction

1.1 Motivation and timeline

Since its invention density functional(DFT) theory grew to be one of the most used ab
initio electronic structure calculation methods thanks to its great accuracy compared to
the relatively low computational cost. While there are multiple more accurate methods,
those are often limited to a few atoms per calculation, yet with DFT calculations includ-
ing more than 1 million atoms are still possible. Nowadays DFT is commonly used in
drug screening, catalyst development, semiconductor research and many other fields of
chemistry.

Aside from the numerical limitations, the only accuracy restricting factor of DFT is the
approximation of the exchange-correlation energy. Through the years numerous approx-
imations were developed with different complexities and goals. These different level of
approximations are often referred to steps on the Jacob’s ladder of DFT. Functionals on
higher rungs tend to be more accurate, since they use more information to approximate
the exchange-correlation energy, like the electron density gradient or the kinetic energy
density. This fact can be viewed from two directions, either the multiple descriptors carry
more information about the underlying system, so this extra information can be used to
better predict the exchange energy, or simply more input parameters allow the functional
to fit the exact functional more accurately. The goal of my work was to understand the
behaviour of these functionals, explore their limitations and create a potentially better
approximation than the current ones.

The first step of this journey was to get familiar with the two most used functionals
for solid state calculations, namely the PBE and SCAN. SCAN being on a higher rung of
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Jacob’s ladder was expected to outperform PBE, which was true in most cases except for
alkali metals. Investigating this artifact led to a better understanding of how the exchange
functionals affect the different calculated properties of materials, and helped to create a
framework to analyze these discrepancies. This work was published in the "Comparative
study of the PBE and SCAN functionals: the particular case of alkali metals" paper, which
can be found in chapter 6.

The accuracy of a functional strongly depends on the information carried by its de-
scriptors. In my second work this extra information carried by the laplacian of the density
was analyzed to asses its usefulness along the density, density gradient and kinetic energy
density descriptors. The findings were presented in the "Orbital-free approximations to
the kinetic-energy density in exchange-correlation MGGA functionals: Tests on solids"
paper included in chapter 6.

Benchmarking or training a new functional is a complex problem, since the results
highly depend on the materials used in the process. To tackle this problem, or at least
quantify the biases in the dataset the next step of my work was to develop a method to
identify groups of materials which sample similar regions of the descriptor space. Us-
ing these groups we also proposed a method to create new balanced or rebalance exist-
ing datasets to minimize the effect of the previously mentioned biases. This work has
been submitted to Journal of Chemical Theory and Computation and the manuscript is
attached in chapter 6. Extensions to the manuscript are also included in chapter 4.

The final goal of my thesis was to explore the space of new functionals, understand
their behaviour and possibly create new, more accurate approximations than the currently
available. Based on the findings in the previous steps the newly created functional uses
the density gradient and the kinetic energy density as descriptors and aims to predict the
lattice parameter and cohesive energy of 44 solids, along with the band gap of more than
400 other materials. The results of the functional training are presented in chapter 3.

As a collaboration with the Guangxi University, I’ve also worked on developing a
neural network based approach to predict infrared spectra of polycyclic aromatic hydro-
carbons. These molecules are suspected to be responsible for a yet unexplained range of
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infrared emission observed in wide variety of interstellar sources. While DFT is a power-
ful tool to predict these spectra, the vast number of possible PAHs makes it inefficient. Our
method is able to predict these spectra orders of magnitudes faster than the "traditional"
DFT approach with comparable accuracy. The details are published in the "Machine-
learning Prediction of Infrared Spectra of Interstellar Polycyclic Aromatic Hydrocarbons"
paper and also included in chapter 6.
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2 Background

2.1 Density functional theory

Nowadays density functional theory is one of the most widely used electronic structure
calculation methods. Since its main accuracy limiting factor is the exchange-correlation
approximation, the potential improvements and general understanding of XC functionals
is a focus of research. The following sections cover the basics of DFT with an emphasis on
the different levels of exchange functional approximations and their accuracy measured
on a set of solids for lattice parameter, cohesive energy and band gap.

2.1.1 Interacting electron Hamiltonian

The non-relativistic Hamiltonian of an electronic system can be written the following way:

H = −1
2

N

∑
i
∇2

i +
N

∑
i<j

1
|ri − rj| +

N

∑
i

Vext(ri), (2.1)

where the first term describes the kinetic energy of electrons, the second term the electron-
electron interaction and the third term the external potential. In most cases the description
of nuclei can be separated from the description of electrons, so the external potential com-
ing from the them takes the form

Vext(r) =
M

∑
α

Zα

|r − Rα| (2.2)
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where Rα stands for the location and Zα for the charge of the fixed nuclei. Since the
external potential operators are simple multiplicative one-electron operators, the energy
coming from this term can be calculated based on the electron density:

Eext =
�

Vext(r)n(r)dr (2.3)

Because of the electron-electron interaction term the solution of this Hamiltonian becomes
impossible for larger systems, so approximations have to be made.

2.1.2 Hohenberg-Kohn theorems

The Hohenberg-Kohn theorems[18] serve as the foundation of density functional theory.
Both theorems can be derived from the variational principle of wavefunctions, which
shows that given the Hamiltonian of a system, the energy of any trial wavefunction is
larger than or equal to the ground state energy.

The first theorem states that the total energy, the wavefunction, the external poten-
tial and the Hamiltonian of a system are all defined by its ground state electron density.
Introducing an energy functional with a fixed external potential:

E[n] = I[n] +
�

n(r)Vext(r)d3r, I[n] = min
Ψ−→n

�Ψ| − 1
2

N

∑
i
∇2

i +
N

∑
i<j

1
|ri − rj| |Ψ� (2.4)

the second theorem proves

E[n0] = EGS < E[n1] for every n1 �= n0 (2.5)

where n0 is the ground state electron density belonging to the fixed Vext.

2.1.3 Kohn-Sham equations

In an effort to utilize the results of the Hohenber-Kohn theorems Walter Kohn and Lu Jeu
Sham proposed[21] an approach to calculate the ground state electron density with a fixed
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external potential. The problem is mapped to a system of non-interacting electrons in a
fictious potential, for which the total energy is partitioned in four parts:

E[n] = Ts[n] + EH [n] + Exc[n] + Eext[n] (2.6)

The wavefunction of this fictious system is a Slater determinant formed from the low-
est energy solutions of its Hamiltonian. The density of the system is simply:

n(r) = ∑
i
|ψi(r)|2 (2.7)

The kinetic energy of the noninteracting particles is:

Ts[n] = ∑
i
�ψi| − 1

2
∇2 |ψi� (2.8)

The classical Hartree energy of the electrons is:

EH [n] =
1
2

� � n(r1)n(r2)

|r1 − r2| dr1dr2 (2.9)

And the Eext term for the interaction with the external potential was described in Eq. 2.3.
The Exc[n] part is called the exchange-correlation energy, which includes all the neces-
sary corrections emerging because of the noninteracting particle model and the classical
Hartree-energy. Finding the ground state of this system can be done by minimizing the
total energy with respect to the single particle wavefunctions.

δE[n]
δψ∗

i (r)
= −1

2
∇2ψi(r) +

�� n(r�)
|r� − r|dr� +

Exc[n]
δn(r)

+ Vext(r)
�

δn(r)
δψ∗

i (r)
(2.10)

Adding the constraint of orthonormal wavefunctions using Lagrange multipliers re-
sults in:

δ

δψ∗
i

�
E[n] + ∑

i
∑

j
�ij

��
ψ∗

i ψjdr − δij

��
= 0 (2.11)
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where �ij are the Lagrange multipliers associated with the orthonormal condition of ψi

and ψj and δij is the Kronecker delta. With unitary transformations the wavefunctions can
be transformed in another basis, where the minimization takes the following Schrödinger-
equation like form:

− 1
2
∇2ψi(r) +

�� n(r�)
|r� − r|dr� +

δExc[n](r)
δn(r)

+ Vext(r)
�

ψi(r) = �iψi(r) (2.12)

the δExc
δn part is usually referred as the exchange-correlation potential. Following these

steps the original problem has been reduced to a noninteracting electron problem, which
can be tackled efficiently even for large structures. The only approximation in these
steps was the exchange-correlation functional. Even though with the exact exchange-
correlation functional this approach would result in perfectly accurate densities and ener-
gies, the form of this functional is unknown, and approximations have to be made.

2.1.4 Exchange-correlation functionals

The only theoretical limit on the accuracy of DFT calculations is the accuracy of the used
XC functional. Since the birth of DFT numerous functionals were developed. These func-
tionals are usually grouped based on their complexity and computational cost on different
levels of the so called Jacob’s ladder.[34]

The first few steps of the ladder are the local and semi-local functionals, since they can
be written in the form of

�
�xc(r)n(r)d3r. Generally the exchange and correlation parts are

approximated separately in the form of
�
(�x(r) + �c(r))n(r)d3r.

Local density approximation

The simplest form of XC functionals are the local density approximations (LDAs). These
functionals rely only on the local density and are often derived from the homogeneous
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electron gas (HEG) model. The exchange energy density of HEG can be calculated ex-
actly:[21]

�LDA
x (n) = −3

4

�
3
π

�1/3

n1/3 (2.13)

while for the correlation energy parametrizations[36, 55] of quantum Monte Carlo calcu-
lations are available.

Generalized gradient approximations

It is possible that a system contains multiple regions with the same electron density, but
in very different chemical environments. LDA functionals are not able to differentiate
between these regions, ultimately restricting their accuracy. The gradients of the den-
sity also carry important information, so including these in the functional is beneficial.[2]
Functionals relying not only on the density, but also its gradient are the family of gen-
eralized gradient approximations (GGA).[3, 35] The gradient of the density is not used
directly in the construction of these functionals, but its reduced version ∇n/n4/3. In the
present treatment we will use the reduced gradient normalized to the scale of the local
Fermi wave length.

p = s2 =
|∇n|2

4(3π2)2/3n8/3 (2.14)

In practice exchange functionals are usually defined based on the LDA exchange:

�GGA
x (r) = �LDA

x (r)Fx(p), (2.15)

where the Fx is called the enhancement factor. One of the most widely used GGA func-
tional is the PBE[35] functional defined as:

FPBE
x (p) = 1 + κ − κ

(1 + µp/κ)
, (2.16)

where µ = 0.21951 and κ = 0.804 are constants set to satisfy constraints known for the
exact functional. At p = 0 PBE starts at Fx = 1 to reproduce the LDA results, then the slope
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FIGURE 2.1: Enhancement factors of various exchange functionals[2, 9, 16,
21, 35, 39]

is determined based on the linear response function of the homogeneous electron gas[8],
finally at p → ∞ the enhancement factor converges to Fx = 1.804 to satisfy the Lieb-
Oxford bound.[24] GGA functionals having multiple parameters can also be fine-tuned
for specific groups of materials, like molecules[9] or solids [39] or a specific property, like
adsorption energies.[16] The enhancement factors of these GGAs are shown on Fig. 2.1,
which also shows the general shape of most GGA functionals.
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Meta-generalized gradient approximations

Following the logic of extending the information available to the functional, meta-generalized
gradient approximations can use also the kinetic energy density(KED) and/or the lapla-
cian of the density as well. Just like in the case of GGAs usually in the formulation of
mGGA functionals also the normalized/reduced values are used. Based on the Kohn-
Sham kinetic energy density τKS = (1/2)∑N

i=1 |∇ψi|2 and the kinetic energy density of
the HEG[13, 48] τTF = (3/10)(3π2)2/3n5/3 the normalized kinetic energy density is:

t =
τKS

τTF (2.17)

In iso-orbital regions where the density is dominated by one or two orbitals of the same
shape, the KED is given exactly by the von Weizsäcker limit:[56]

τvW =
1
8
|∇n|2

n
(2.18)

which leads to another useful descriptor

α =
τKS − τvW

τTF = t − 5p
3

(2.19)

In iso-orbital regions α = 0[4] and in regions with slowly varying density α ≈ 1.[45] Low
α values can also be an indicator of covalent bonds, while interlayer regions of graphite
has been shown to have large values.[27]

An example of how the α dependence can be incorporated in mGGA functionals is
shown on the left panel of Fig. 2.2 through the enhancement map of SCAN[44]. Com-
pared to PBE an important difference is that the derivative of the enhancement factor
w.r.t. p is negative at high p values, and the SCAN enhancement factor also decreases
with increasing α, which is not possible for a GGA. On the right panel the enhancement
factor curves are shown for SCAN, and two other successful functionals, the mBEEF[57]
and the TASK[1] for low and high α values. These functionals not only differ in their
α = 1 curves, but the way these curves change when α shifts from 1 to 10. For both
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FIGURE 2.2: Enhancement factor of the SCAN functional (left panel) and
comparison of three mGGA functionals on small and high α values (right

panel).

SCAN and TASK the enhancement factors decrease with increasing α, while mBEEF does
not show this kind of behaviour. These three examples already show how versatile the
mGGA functionals can be, hinting that they might be able to fit the exact functional more
closely resulting in better accuracy for multiple properties.

Hybrid functionals

Solving Eq. 2.12 results in the electronic orbitals which reproduce the real densities. These
orbitals then can be used to calculate the exchange energy of this hypothetical system
exactly:

Ex = −1
2

occ

∑
i,j

δσ,σ�
� � ψ∗

i,σ(r)ψ
∗
j,σ�(r�)ψi,σ(r�)ψj,σ(r)

|r − r�| drdr� (2.20)

The idea of hybrid functionals[5] is to mix this exchange with approximations from the
previously mentioned levels.
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FIGURE 2.3: p − t descriptor map of Rb with a 1% compressed and 1%
expanded structure compared to experimental lattice parameter

Success of GGAs and mGGAs

One of the biggest drawbacks of the LDA approximation is the overbinding of solids,
which is reflected in the -1.5% mean relative error of lattice parameters in the benchmark
of 44 materials.

The GGAs can correct this overbinding, using the normalized density gradient, p,
defined in Eq. 2.14. When expanding the unit cell of a solid, the interstitial regions tend to
have larger p values compared to the compressed case, an example of this behaviour for
Rb is shown Fig. 2.3.

One of the most widely used GGA functionals is the PBE, defined as Eq. 2.16. The PBE
enhancement factor as shown on Fig. 2.1 is strictly increasing with respect to p, thus the
regions in the expanded structure with larger p values experience higher enhancement
factors, reducing the total energy of the stretched structures and shifting the calculated
lattice parameter towards larger values.

This behaviour is very well represented by the functionals shown on Fig. 2.1. The
mean relative lattice parameter errors of the LDA, PBEsol, PBE and RPBE on the 44 solids
set[50] are -1.5%, -0.1%, 1.1% and 2.4% respectively, showing that functionals with larger
enhancements predict more expanded structures.
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mGGA functionals extending the available information with the kinetic energy den-
sity or the laplacian of the density are able to better distinguish between different regions,
thus they are able to predict multiple properties more accurately.

Theoretical constraints on exchange functionals

While the exact form the of exchange functional from Eq. 2.6 is unknown some constraints
can be derived for it, which helps the development of approximations. It is important to
note that these constraints are constraints on the exact functional and the approximations
are not obliged to satisfy them. The SCAN functional satisfies most known "constraints"
an mGGA level functional can:

• Negativity: The exchange energy is negative for every electron density. A sufficient,
but not necessary condition for the enhancement factors to satisfy this is: F > 0

• Spin-scaling:[32] The exchange energy of a spin polarized system can be calculated
as:

Ex[n↑, n↓] =
1
2

Ex[2n↑] +
1
2

Ex[2n↓] (2.21)

This equality does not put any constraint on the enhancement factor.

• Uniform density scaling:[23] Introducing a scaled density as:

nλ(r) = λ3n(λr) (2.22)

The exchange energy of the scaled density scales with λ:

Ex[nλ] = λEx[n] (2.23)

Using the previously introduced dimensionless reduced variables p and t to calcu-
late the exchange energy in the form of Ex[n] =

�
�LDA

x (r)n(r)F(p(r), t(r))dr auto-
matically satisfies this constraint.
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• Fourth order gradient expansion:[46] The enhancement factor in a slowly varying
density (s � 1 and α ≈ 1) can be approximated:

Fx ≈ 1 +
10
81

s2 − 1606
18255

s4 +
511

13500
s2(1 − α) +

5913
405000

(1 − α)2 (2.24)

while this expansion sets the derivative of the enhancement factor with respect to
s2 = p, other approximations are also available. As an example PBE uses the linear
response of the uniform electron gas[8] to set the same gradient to µ = 0.21951.

• Non-uniform density scaling:[41] Following the example of Eq. 2.22 one can define:

nx
λ(x, y, z) = λn(λx, y, z) (2.25)

for this scaled density and its exchange energy:

lim
λ→∞

Ex[nx
λ] > −∞ (2.26)

which can be achieved by making the enhancement factor decay with s− 1
2 as s → ∞.

• Tight bound for two-electron densities:[38] The lower bound of the total exchange
energy of a two electron toy system[38] with density n was derived:

Ex[n] ≥ 1.174ELDA
x [n] (2.27)

since the mentioned system could take any constant p values in its whole region
with α = 0, the previous equation was translated into F(p, α = 0) < 1.174.

• Lieb-Oxford bound:[38] A less strict version of the previous bound was derived
using a reformulation of the Lieb-Oxford bound[24] in the case of spin-unpolarized
electron densities, which results in:

Fx(p) < 1.804 (2.28)
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This bound was used to set the asymptotic limit of the PBE functional in the p → ∞
case.

• LDA limit: The homogeneous electron gas is characterized by p = 0 and α = 1 and
its exchange energy density is known exactly. This sets our last constraint on the
enhancement factor:

F(p = 0, α = 1) = 1 (2.29)

This constraint serves as the starting point of numerous functionals, such as PBE,
SCAN, PW91[37], SOGGA[59], TASK[1],TM[47] and many others.

To reiterate, these constraints are set on the exact exchange functional and its enhance-
ment factor, an approximation is not obliged to satisfy any of them. For example in the
case of a GGA functional the LDA constraint forces the enhancement factor to be 1 at
p = 0, regardless of the α value, even in regions with α �= 1 which are not well ap-
proximated by the HEG. Because of this for specific systems breaking any of the afore-
mentioned limits could be beneficial for the overall accuracy, while deteriorating their
performance for the systems which the limits were derived on.

2.1.5 DFT accuracy

While the accuracy of DFT calculations depends on multiple different factors, in the case
of optimal settings it is only limited by the underlying XC functional. Extensive stud-
ies[7, 15, 50, 51] have been made to benchmark the vast range of functionals available
nowadays. The comparison of these functionals is only meaningful when they are eval-
uated on the same dataset for the same properties, since some of them would excel on
one property or one type of materials, but may completely fail for others. There are also
functionals which perform generally well for a wide range of properties, but they can be
overshadowed by specialized functionals if compared only on one property.

Notable datasets for molecules are the G2/97[10] and G3/99[11] with 302 and 376
atomization- and ionization energies, reaction barrier heights and proton- and electron
affinities respectively. For solids a set[43] of 18 materials and an extended set[50] of 44
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strongly bound materials exists for lattice parameters, cohesive energies and bulk moduli.
Also for band gap calculations a set of 473 materials is available.[7]

As stepping up the ladder of DFT funtionals better accuracy is expected, since higher
steps of the ladder rely on more information. The LDA, GGA and mGGA levels with
the functionals used in the benchmark of 44 solids[50] are shown on Fig. 2.4 for lattice
parameter and cohesive energy. Strictly deciding that a functional is better than the other
is complicated, since one functional can give better results for one property and fail for
the others. The ME and MRE plots show straight lines on which the GGA and mGGA
functionals lie, with line of mGGA functionals being closer to the origin showing their
superior accuracy.

As Fig. 2.4 shows the overall best functionals are two mGGAs, closely followed by
GGAs. The SCAN mGGA[44] has the smallest MARE for lattice parameter and with
4.9% MARE for cohesive energy it performs only slightly worse than PBEalpha with 4.1%.
SCAN also has the smallest MARE for bulk modulus with 6.5%.

The same tendency of improving accuracy was reported for dipole moments[15], where
the calculations were done on 152 different molecules showing a best RMSE of 13.67%,
8.85% and 7.56% on the LDA, GGA and mGGA levels. In this benchmark SCAN placed
as the 2nd best functional of these three levels, only mBEEF[57] being more accurate.

Another important property of bulk materials is the band gap, which was also ex-
tensively studied[7] using 33 XC functionals of various levels (LDA, GGA, mGGA and
hybrid). Not surprisingly the modified Becke-Johnson mGGA potential[49] performed
the best with 30% MARE and 0.5 eV MAE on the set of 473 materials, since it was created
specifically for band gaps. The interesting speciality of the mBJ potential is the inclusion
of a non-local descriptor in the otherwise local potential:

c = α + β

�
1

Vcell

�
cell

|∇n(r)|
n(r)

d3r
�1/2

(2.30)

As shown on Fig. 2.5 the best semi-local functionals are the HLE17,[54] M06L,[58]
SCAN and TASK(mGGA)[1], yet they still result in larger than 32% MAREs. Both the
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FIGURE 2.5: Predicted band gaps with the SCAN functional compared to
experimental values (left panel) and mean absolute relative band gap er-
rors with a selection of mGGA and GGA functionals (right panel). Both
plots were calculated using a 440 material subset of the database from the

original study[7]

M06L and SCAN underestimates the gaps by around 20% on average, and even the
HLE17 produces a MRE of -11%. The TASK functional which was constructed focus-
ing on the derivative discontinuity, contrary the other functionals overestimates the band
gaps by 14% and also results in the lowest MAE right after mBJ. On the higher level the
HSE06 hybrid functional[17] performed the best, with slightly larger than 30% MARE.
Also in this case the LDA and GGA level approximations resulted in worse accuracy than
the more complex ones, except for the HLE16[53] GGA, which shows similar accuracy as
the HLE17 mGGA.

2.2 Machine learning

Machine Learning is the study of computer algorithms that improve automatically through
experience.[29] Thanks to improvements in machine learning (ML) algorithms and the in-
crease in affordable computational power, nowadays machine learning based approaches
are widely used basically everywhere from scientific research to sorting cat photos on
social media. ML consists of three main branches: supervised learning, unsupervised
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learning and reinforcement learning. During my work I employed various unsupervised
learning methods to find and understand connections between groups of materials and
also supervised approaches to predict specific properties or optimize functionals. While
reinforcement learning is also a very powerful tool for various problems, in the present
thesis it has not been utilized, so we will only focus on the other two branches.

2.2.1 Supervised learning

In supervised learning the training samples are labeled, meaning that for every sample
input we know the expected output. The goal of the training is to create a mapping from
the input(descriptor) space to output space, so that the outputs match with the labels as
good as possible. This very general approach can be used on a vast range of different
models:

• tables

• decision trees

• Bayesian networks

• support-vector machines

• neural networks (NN)

• ...

In our work we used two of these models, decision trees for their simplicity and explain-
ability, and neural networks for their flexibility.

Neural networks

A neural network is a computational model loosely based on the structure of biological
neural networks. It consists of nodes (neurons) and edges (synapses). Every edge is asso-
ciated with a weight, and every node with an activation function. The nodes take input
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from their incoming edges and generate a numeric output which can be passed to mul-
tiple other nodes. The output of a node is calculated by applying the activation function
to the weighted sum of the incoming edges. According to the universal approximation
theorem sufficiently large networks of these structures are able[19] to approximate any
"well behaved" function on a compact region.

After fixing the architecture of a neural network, during training the weights of the
edges are changed so that the output of the network is as close as possible to the expected
output. To change the weights the most often used algorithm is a variant of the gradient
descent algorithm. Since we use neural networks in supervised learning, for every input
we know the ideal output of the network, so we can define a function describing how
much the actual result differs from the expected one. This function is called a loss function,
which is the subject of our gradient descent minimization process.

During training, the samples of the training set are shown to the network and the
weights are updated the following way:

wt+1 = wt − α
δL(x)

δw
(2.31)

where x is the input vector, wt the list of weights at a given step t, L the loss function
and α the learning rate. The input samples are shown to the network and the weights are
updated until convergence or other stopping criterion is reached.

Decision trees

Just like other models in supervised learning, decision trees are used to predict a value
(number or tag) based on one or multiple inputs. They do it by iteratively splitting the
training dataset in two parts, based on one of the descriptors at a time, until a maximum
depth or the desired accuracy is reached. Then for evaluation a new sample is passed
through this decision tree, and the last group it ends up in determines the predicted value
or tag of that given sample.
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2.2.2 Unsupervised learning

Unsupervised learning algorithms opposed to the supervised ones learn patterns based
on unlabeled data. They are often used for clustering, anomaly detection or dimension
reduction. In our work we mostly used clustering algorithms, so some of those will be
introduced in detail.

k-means clustering

One of the simplest and well known clustering algorithm is the k-means clustering. It is
used to split n input samples into k groups, so that every sample belongs to the cluster
of the nearest centroid. The algorithm[25] iteratively updates the assigned clusters until
convergence. The iteration steps are the following:

• Initialization: The k centroid of the clusters are chosen randomly of the n samples.

• Assigning clusters: Every sample is assigned to the cluster with the nearest cen-
troid.

• Recalculating centroids: For every cluster a new centroid is calculated as the aver-
age position of its elements.

• Repeat until convergence: Steps 2-4 are repeated until the clusters do not change
or other stopping criteria is met.

Because of the random initialization in step 1, the resulting clusters can change from run
to run. The "goodness" of a clustering in this case can be characterized with the average
distance of the samples from its cluster centers. To overcome the issue of randomness the
algorithm is usually ran multiple times with different seeds and the final result is the one
with the lowest average distance.

Affinity propagation

Affinity propagation[14] is another example of clustering algorithms. Unlike k-means
clustering affinity propagation does not need a preset number of clusters, only a similarity
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function and results not only in clusters, but also generates representatives of each cluster.
The similarity function s(i, j) represents how similar the samples i and j are and results
in larger values for samples more similar to each other. The flow of the algorithm is the
following:

• Initialize the responsibility and availability matrices as 0.

• Calculate the new responsibility matrix:

r�(i, j) = s(i, j)− maxk �=j [at(i, k) + s(i, k)] (2.32)

• Calculate the new availability matrix:

a�(i, j) = min

0, rt(j, j) + ∑
k �∈{i,j}

rt(k, j)

 (2.33)

• Update the old matrices through mixing with the new matrices:

rt+1(i, j) = λrt(i, j) + (1 − λ)r�(i, j) (2.34)

at+1(i, j) = λat(i, j) + (1 − λ)a�(i, j) (2.35)

• Repeat steps 2-4 until convergence or a fixed number of steps.

• Materials for which r(i, i) + a(i, i) > 0 are chosen as exemplars. The number of
formed clusters is the same as the number of exemplars.

Hierarchical clustering

Hierarchical clustering is a method to cluster samples based on some kind of similarity
of distance. The difference compared to the previously mentioned algorithms is that this
method does not only create one clustering, but a list of different level of clusterings from
every sample having its own cluster to every sample belonging in the same cluster. These
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lists are most commonly represented as dendograms. The algorithm for the greedy ag-
glomerative approach:

• All samples start as their own cluster.

• A linkage criteria is calculated between all clusters.

• The two clusters with the lowest linkage criteria between each other are merged in
one.

• Repeat steps 2-3 until only one cluster remains.

Based on the type of samples one wants to cluster multiple linkage functions are available.
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3 Exchange functional training

Since the first LDA approximation the number of exchange-correlation functionals grew
rapidly with more than 400 functionals existing today in the LibXC library[22]. In the
development of these functionals two general approaches took place, both with compa-
rable success. Two of the already mentioned functionals, SCAN and PBE were developed
to obey many of the constraints known to be true for the exact functional, some of which
were listed in section 2.1.4. This approach is very attractive from an ab initio point of view,
since it relies on exact theoretical results, even tough there are still multiple functional
forms, which can satisfy the constraints. Since these constraints are universal, functionals
created this way are expected to be transferable to various systems. The other approach
is to fit a flexible functional[40, 57, 58] to reproduce experimental results or results cal-
culated with a higher level method. In recent years replacing the traditional functional
forms neural networks also have been employed[12, 20, 31] as XC functional approxima-
tions. These functionals can strongly depend on the database they were trained on and
might perform worse on systems far from the training data or for properties not included
in the training. On the other hand the previously mentioned constraints are only con-
straints of the exact functional, and it is possible that a semi-local approximation perform
better without them.

As shown on Fig. 2.4 mGGAs have the ability to be more accurate for lattice param-
eters and cohesive energies than GGA functionals, yet still exhibit the tradeoff between
the accuracy for these two properties. As shown in Fig. 2.5 mGGAs furthermore showed
a systematic improvement over GGAs w.r.t. band gaps. However, the state of the art
functionals were still not able to fully match the mBJ potential in accuracy. It is therefore
interesting that Fig 2.2 showed how mGGA functionals with quite distinct functional form
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and "construction philosophies" can lead to rather similar results for the lattice parame-
ters and cohesive energy. In this regard, it is an open question whether the extra flexibility
of mGGA over GGA functionals coming from the normalized kinetic energy descriptor
can be utilized to predict more accurate band gaps and to what degree this results in a
deterioration of the lattice parameter and cohesive energy errors.

In this chapter, I present the functionals obtained with the optimization of a flexible
mGGA functional form using 44 solids for lattice parameter and cohesive energy pre-
dictions and more than 400 materials for band gap calculations as reference. Multiple
functionals were trained with different relative weight on the importance of these prop-
erties. The trained functionals are used to analyze the tradeoff in detail and to draw the
surface of achievable accuracy in the lattice parameter - cohesive energy - band gap error
space

3.1 Material database

As the idea of "garbage in garbage out" is clearly true in the case of most machine learning
methods, the first important step in an exchange functional training is to find or generate
an accurate and big enough dataset. In our case these datasets were available for lattice
parameters, cohesive energies, bulk moduli and band gaps by extracting them from pre-
vious WIEN2k[6] calculations. The dataset consists of four converged calculations (three
on different volumes around the experimental lattice parameter and one for the atomic
cases) for materials used for the lattice parameter and cohesive energy prediction and
three converged calculations (one for a neutral case and two for the ±1 electron cases) for
the band gap calculations. The data about a converged run contains the densities, density
gradients and kinetic energy densities on a dense grid of a unit cell. Since the goal is to
train an exchange functional for every converged run the other components of the total
energy, namely Ts[n], EH [n], Eext[n] and Ec in Eq. 2.6 are also stored.

The set used for band gap calculations contains 440 materials, a subset of the materials
used in the benchmark[7] mentioned in the introduction. The other set for lattice param-
eter and cohesive energy calculations contain the same 44 materials as the benchmark[50]
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producing Fig. 2.4.
Since during the training only the exchange energy is reevaluated and our approxi-

mation follows the idea established in Eq. 2.15 the size of the dataset can be significantly
reduced.This reduction can be done by binning sample points with similar p-t values to-
gether and replacing them with a single point using their averaged p-t values and the sum
of their LDA exchange energy. If the bins are chosen too small, there would be no reduc-
tion in the database size, while too large bins can deteriorate the accuracy. In our case the
bin size was chosen to be 0.005 in both the p and t directions, which reduced the memory
and training time requirements by a factor of 10, while still keeping a good accuracy.

3.2 Calculation of different properties

The calculation of the lattice parameter, cohesive energy and band gap all rely on total
energy differences. Since all components of the total energy except the exchange part are
stored in the dataset, we only have to care about the latter, which is calculated as

Ex = ∑
i

ELDA
x (i)F(pi, ti) (3.1)

where i runs through all the previously defined bins of the specific material, pi and ti are
the averaged p and t of the bin and ELDA

x (i) is the sum of the LDA exchange energy in
bin i. After calculating the exchange part it is added to the rest of the other components
to obtain the total energy.

For the lattice parameter calculation the three runs with different volumes are used.
The total energies for all volumes are calculated and the minimum of the fitted parabola
is used to estimate the lattice parameter and the total energy on this optimal value. We
checked that using three volumes is accurate enough for our purposes, therefore using
more points would have increased the training time with no significant benefit.

Since the data for the atomic cases are also available the calculation of the cohesive
energy is easily carried out by subtracting the previously calculated energy at the optimal
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lattice parameter from the sum of the total energy of the constituent atoms. This calcula-
tion is also affected by the accuracy of the lattice parameter prediction, but the differences
are not significant here either.

In density functional theory, the difference between the ionization energy and electron
affinity, the fundamental band gap, is often approximated with the energy difference of
the highest occupied and lowest unoccupied orbitals, the Kohn-Sham gap.

Eg = I(N)− A(N) = [Etot(N − 1)− Etot(N)]− [Etot(N)− Etot(N + 1)]

≈ EKS
g = �LUMO(N)− �HOMO(N)

(3.2)

Yet in the case of the Kohn-Sham framework it was shown that these two quantities
differ by the so called derivative discontinuity,

Eg = EKS
g + Δxc (3.3)

which arises from the fact, that the exchange-correlation potential exhibits jumps at inte-
ger electron numbers, and finally results in an underestimation of the fundamental gap.

Kinetic energy based exchange mGGA functionals, thanks to their non-multiplicative
exchange potential, can result in nonzero derivative discontinuity, thus they have the pos-
sibility to lead to larger, and therefore more accurate, band gaps than GGA and LDA
functionals.

As it has been shown previously[51] using Eq. 3.2 without approximation can be
done for periodic solids relatively easily. The total energy of the system consisting of
Nk unit cells, Nk being the number of k-points used in the calculation, is evaluated with
the density ρ(N − 1) = ρ(N) − 1/Nk|ψHOMO|2 and kinetic energy density t(N − 1) =

t(N) − 1/Nk∇ψ∗
HOMO∇ψHOMO for the N − 1 case. For the N + 1 case the same process

is done by adding the LUMO orbital. In the case of real solids where Nk → ∞ adding
or removing one electron does not influence the orbitals, thus all three energies can be
evaluated using the same orbitals calculated for the neutral system".
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3.3 Details of training

This chapter presents the methods and approximations used in the training.

3.3.1 Approximation form

After initial attempts with a densely connected neural network to describe the form of the
trained functional, we opted for a less complex solution, the Padé-approximant.[33] This
approximation in 1D takes the form of:

A(x) =
a0 + a1x + a2x2 + ...
b0 + b1x + b2x2 + ...

(3.4)

which we extended for the 2D descriptor space for mGGA approximations as:

F(p, t) =
ct + at p + btt + a2t p2 + xt pt + b2tt2

cb + ab p + bbt + a2b p2 + xb pt + b2bt2 (3.5)

The advantage of this approximation, is that it is expected to produce smooth deriva-
tives in the relevant region of the phase space and contains considerably less parameters
than a general neural network, so less prone to overfitting. This functional form is also
flexible enough to reproduce the PBE functional presented in Eq. 2.16 exactly, with ct = 1,
at = µ + µ/κ, cb = 1 and ab = µ/κ while all other coefficients are zero. For more com-
plicated functionals when the exact representation is not possible, the Padé form can still
result in good approximations. On Fig. 3.1 the SCAN functional and the 2nd order Padé
approximant fitted to reproduce the SCAN enhancement factors in the α, p ∈ [0, 5] region
with minimizing the squared errors are shown, along with the relative error of the ap-
proximation for every point. While the approximation has less than 4% error for every
point of the relevant phase space area the calculated lattice parameter, cohesive energy
and band gap errors still differ significantly from the SCAN results.



30 Chapter 3. Exchange functional training

0 1 2 3 4 5

p

0

1

2

3

4

5

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0 1 2 3 4 5

p

0

1

2

3

4

5

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0 1 2 3 4 5

p

0

1

2

3

4

5

2.4

1.6

0.8

0.0

0.8

1.6

2.4

3.2

4.0

FIGURE 3.1: SCAN and its Padé approximation enhancement factors on left
and middle. The relative error of the approximation on the right.

3.3.2 Loss function

As mentioned in the introduction deciding which functional is better is not straight-
forward, so defining the loss function is also a non-trivial task. The most common error
metrics are the mean absolute error(MAE) and mean absolute relative error(MARE), but
other, more complex descriptions like the deviation from a specific density distribution
calculated with a higher level approximation are also possible.[31] In our case the gra-
dient descend training method restricts the loss function only to differentiable functions
with respect to the parameters.

To sample the whole space of possible functionals we described our loss as a mixture
of lattice parameter, cohesive energy and band gap errors, and trained a functional for
multiple different mixing of these errors.

L =
[a0,Ecoh,gap]

∑
prop

wprop MAREprop (3.6)

3.3.3 Training steps

The training was carried out on a 2nd order Padé approximation as shown in Eq. 3.5 for 25
different mixing of errors in the loss function using the SCAN correlation energies. The
starting parameters of the first functional were ct = cb = 1, at = 0.05 and everything else
set to 0. Setting the at coefficient helped to avoid divergences in the early stages of the
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training. All following functionals used the result of the previous training as the starting
configuration. The training was considered finished for a specific error mixing, when the
loss did not decrease for 40 consecutive epochs.

To investigate the effect of the LDA limit two constraining approaches were employed.
The first was to enforce the LDA limit only approximately by adding the α(F(0, 1)− 1)2

term to the loss function and continue training the functional, where α can be used to
tune the importance of this term. Functionals trained this way with α = 5 are the softly
constrained functionals. The second approach was to set F(p = 0, t = 1) exactly to 1, by
fixing the cb as cb = ct + bt + b2t − bb − b2b an continue training in a similar fashion.

During the training the whole database is used, so no test or validation sets are avail-
able. This ensures that the resulting functionals are as good as possible for the given
dataset at the cost of generalization and transferability. Since our goal was to explore the
limits of the functionals and not necessarily create a new general purpose one, the over-
fitting caused by this approach is actually beneficial for us. It is also important to note
that our functional form has only 12 free parameters and the training set contains 528
experimental values to fit for so the effect of overfitting is not expected to be strong.

3.4 Results

The results of the previously described training process are shown on Fig. 3.2 and Fig. 3.3.
As seen on Fig. 3.3 the mGGA functionals outperform the GGAs in almost every case.
GGAs only show similar accuracy in the 0.8-1.1% lattice parameter MARE region on the
left panel of Fig. 3.3, but even for those functionals the mGGAs results in better band gap
errors. This confirms that the kinetic energy carries useful information for functionals.

On the right panel of Fig. 3.2 only the mGGA functionals are shown with no/soft/exact
LDA constraint. The fact that all three set of points lie on the same surface shows that even
when the LDA limit was not enforced the trained functionals did not severely violate this
limit. Since obeying this limit had no considerable effect on the accuracy, in the following
only the exact LDA constrained mGGA functionals are considered.
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The tradeoff between the accuracy of lattice parameters and cohesive energies shown
on Fig. 2.4 can also be seen on the right panel of Fig. 3.2. The points with small cohesive
energy errors have large lattice parameter error and the other way around. The same effect
can be seen between the band gap and cohesive energy. The relationship of the lattice
parameter and band gap errors is harder to see, since most of the trained functionals
are at least partially trained on cohesive energy errors as well. Including the cohesive
energy in the training even with a small weight deteriorates the accuracy for the other
two properties, so for most of the functionals the lattice parameter errors are correlated
with the band gap errors, yet this correlation is only caused by the inclusion of cohesive
energy in the loss function. The true tradeoff between these two properties can only be
seen for functionals not trained on cohesive energy at all.

In the following the mGGA results will be presented in more detail, along with a more
accurate description of the tradeoffs between the three properties.
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FIGURE 3.2: Lattice parameter, cohesive energy and band gap MAREs of
the trained GGA and mGGA functionals (left panel) and the mGGA func-

tionals with no/soft/exact LDA constraint (right panel).
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FIGURE 3.3: Comparison of GGA and mGGA functionals on lattice param-
eter, cohesive energy and band gap errors.

3.4.1 Lattice parameter - cohesive energy tradeoff

The tradeoff between the lattice parameter and cohesive energy is shown on Fig. 3.4. The
best functional for lattice parameter results in 0.44% MARE, but at the same time with
more than 6% MARE for cohesive energies. On the other side of the plot the best cohesive
energy functional has 3% error, with more than 1.3% error for lattice parameter.
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FIGURE 3.4: Lattice parameter and cohesive energy errors of the 25 trained
functionals. The enhancement factor curves of the highlighted functionals

are shown on Fig. 3.5.

This behaviour can be explained by comparing the enhancement factor curves of the
functionals represented by colored points on Fig. 3.4. As it was shown[26] previously in



34 Chapter 3. Exchange functional training

GGA functionals a steeper slope and a larger enhancement factor at large p values pushes
materials to larger equilibrium lattice constants.
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FIGURE 3.5: Enhancement factor plots of the functionals with fixed α or
p trained on mostly lattice parameter and cohesive energy as the weights
shifts from the cohesive energy to the lattice parameter. The legends contain
the cohesive energy MARE and lattice parameter MARE for that specific

functional.

For most of the materials the functional weighted towards cohesive energy, purple
curve on Fig. 3.5, overestimated the lattice parameter, but for the alkali- and alkaline-
earth metals there is an underestimation. The orange functional with the overall slightly
decreased enhancement factors partially fixes the overestimations, but the red and green
functionals with the drastically reduced enhancements also manage to correct the over-
estimated lattice parameters. The α = 1 purple curve with the large initial slope and
reaching a plateau around F = 1.2 shows some similarity with the mBEEF functional,
shown on Fig. 2.2, which performs very well for cohesive energies. On the other end
the green functional with a smaller initial slope with respect to p, a negative gradient on
high p values and relatively large negative δF

δα values resembles the SCAN functional, also
presented on Fig. 2.2, which was shown to give accurate lattice parameter results.
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3.4.2 Band gap - cohesive energy tradeoff

As shown on Fig. 3.6, the relationship between the band gap MAREs and cohesive energy
MAREs is very similar to the one between the lattice parameter and cohesive energy.
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FIGURE 3.6: Band gap and cohesive energy errors of the 25 trained func-
tionals. The enhancement factor curves of the highlighted functionals are

shown on Fig. 3.7.

While the explanation of this behaviour is more complicated than the previous one,
one can expect the enhancement factor curves to show some similarity based on the simi-
larity of the error curves.
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p trained on mostly cohesive energy and band gaps as the weights shifts
from the cohesive energy to the band gap. The legends contain the cohesive

energy MARE and band gap MARE for that specific functional.

Just like in the previous case, reducing the importance of the cohesive energy errors
results in generally smaller enhancement factors and smaller δF

δp and δF
δα derivatives. But

in the case of band gaps these effects are stronger. While the best functional for lattice pa-
rameters changes from F(0, 0) = 1.15 to F(0, 5) = 0.87 the best one for band gaps changes
from F(0, 0) = 1.2 to F(0, 5) = 0.76, also in the fix α = 1 case the best band gap functional
takes significantly smaller than 1 values. This kind of behaviour is characteristic for the
TASK functional, which is one of the most accurate functional for band gaps. In the case
of TASK the strong negative derivative w.r.t. α was an intentional choice to obtain a large
derivative discontinuity, and arriving to a similar result in a purely data driven approach
also confirms this idea.

3.4.3 Band gap - lattice parameter tradeoff

When compared to cohesive energy, the band gap and lattice parameter errors show an-
ticorrelation. Above we showed that functionals with larger cohesive energy error tend
to do better for the other properties. The case of lattice parameter - band gap errors is
more complex as shown on Fig. 3.8; the functionals on the right side of both plots are
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mostly trained on cohesive energies, and as the weight decreases both the gap and lattice
parameter errors improve up to some point. Weighting the lattice parameter even more
in the training causes not only the cohesive energy, but the band gap errors to deteriorate
as well.
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FIGURE 3.8: Band gap and lattice parameter errors of the 25 trained func-
tionals. The enhancement factor curves of the highlighted functionals are

shown on Fig. 3.9.

For the analysis of the tradeoff, the functionals which were trained only on lattice
parameters and band gaps are shown in detail on Fig. 3.9, since the inclusion of cohesive
energy worsens the accuracy for both these properties and its effect was already analyzed
in previous two sections. Shifting the focus of the training from the band gaps to the
lattice parameter, from the light blue functional to the red one, the overall enhancement
factor increases, but still remains at much lower values than it was seen in the case purple
functional which produced the best cohesive energies. One interesting property of the
light blue functional can be found in the low p region, where a slight positive gradient of
the enhancement factor can be observed w.r.t. p.
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FIGURE 3.9: Enhancement factor plots of the functionals with fixed α or
p trained on mostly lattice parameter and band gaps as the weights shifts
from the lattice parameter to the band gap. The legends contain the lattice

parameter MARE and band gap MARE for that specific functional.

3.4.4 Comparison with existing functionals

The MARE and MAE values of the colored functionals, notable general purpose function-
als (PBE, SCAN) and band gap specific functionals (TASK, HLE17) are shown in Table 3.1.

The trained functionals are expected to perform at least as good as any previous ex-
change functional. First of all, the Padé approximation form is very flexible and the same
database was used for evaluation and training. Secondly, the only constraint forced on
the functionals was the LDA limit and this was shown not to impact the accuracy.
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Name
Lattice constant Cohesive energy Band gap

MARE(%) MAE(Å) MARE(%) MAE(eV/atom) MARE(%) MAE(eV)
Trained 1.38 0.07 3.1 0.14 44.39 1.01
Trained 1.21 0.06 3.17 0.15 43.34 0.99
Trained 0.65 0.03 3.95 0.17 39.19 0.87
Trained 0.45 0.02 6.1 0.25 42.35 0.95
Trained 1.3 0.06 3.02 0.13 47.67 1.09
Trained 0.53 0.03 5.45 0.22 35.45 0.75
Trained 0.61 0.03 5.43 0.23 32.37 0.64
Trained 1.03 0.05 3.58 0.17 36.68 0.82
Trained 0.81 0.04 4.4 0.2 33.06 0.69
Trained 0.69 0.03 6.08 0.25 31.75 0.61

PBE 1.2 0.06 5.0 0.19 47.03 1.07
SCAN 0.6 0.03 4.9 0.19 35.22 0.76

HLE17* 2.9 0.12 14.6 0.57 31.42 0.6
TASK* 4.6 0.23 35.2 1.34 37.68 0.54

TABLE 3.1: Lattice parameter, cohesive energy and band gap errors of the
colored trained functionals and four reference ones. The color coding of the
trained functionals correspond to the colors on Fig. 3.5, 3.7 and 3.9. *Band

gap results taken from a benchmark[7] based on 473 materials.
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FIGURE 3.10: Lattice parameter and cohesive energy errors for some no-
table functionals and the 25 trained ones. The functionals from Table 3.1

are also marked.

Fig. 3.10 shows how the trained functionals perform compared to a few known func-
tionals for lattice parameters and cohesive energies. As expected, for all the existing func-
tionals there is at least one trained functional which is not worse in any way, meaning
both the lattice parameter and cohesive energy MAREs and MAEs are not larger. If only
these two properties are considered the new functionals show a significant improvement
in accuracy. Even if we include the band gaps there is a new functional which perform
better than the SCAN, the best general purpose functional in our tests. The new functional
results in only 0.03% worse MARE for lattice parameters, but improve on SCAN by 0.45%
and 1.72% in cohesive energy and band gap MAREs respectively.

The other interesting result comes from the functional trained more for the band gap,
marked by light blue in Fig. 3.9. This functional performs on par with HLE17, with only
0.3% worse band gap MARE, but improves both the lattice parameter and cohesive energy
errors significantly. Compared to TASK it has 0.07eV larger band gap MAE, but performs
significantly better in every other error metric.
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3.4.5 mGGA surface

Showing all the trained functionals on Fig. 3.2 draws a well defined surface of possi-
ble mGGAs in the 2nd order Padé approximation form on the given dataset. The fact
that none of the considered already existing functionals performed strictly better than the
trained ones might suggest that this surface is the limit of "well behaved" mGGAs. It’s
important to note that for the training of mGGAs the SCAN correlation functional was
used, so in that part there might still be room for improvement. Also in the formulation
of these mGGAs the Laplacian of the density was not used after early results showed no
significant improvement,[52] but including it also might increase the accuracy slightly.





43

4 Similarity clustering for
representative sets of solids for
density functional testing

The following chapter aims to extend the work presented in the "Similarity clustering for
representative sets of solids for density functional testing" paper. In this paper our goal
was to create a method which can be used to efficiently create small datasets of materials
to represents various regions of the descriptor space of most mGGA functionals, render-
ing these datasets useful for functional training and low-cost functional evaluation. As a
secondary goal the elements of the small set were chosen in a way that the errors calcu-
lated with the larger and smaller sets differ as little as possible.

4.1 Additional similarity metrics

As mentioned in the paper, the classical Euclidean-distance between the maps of materials
is unusable in our case, since even when there are no overlapping regions this distance
would depend on the exact shape of the occupied density regions.



44
Chapter 4. Similarity clustering for representative sets of solids for density functional

testing

4.1.1 Normalized dot-product

Our choice to calculate the similarities between materials was the normalized dot product,
which is very similar to the correlation of the materials and is defined the following way:

S(A, B) =
∑i,j A[i, j]B[i, j]

N(A)N(B)
(4.1)

with A and B being the p − t maps of the materials, and i, j indexing the bins of the map-
pings in the two directions. The N normalization function is:

N(A) =

�
∑
i,j

A[i, j]2 (4.2)

Having the similarity, the distance of materials is 1-S(A, B).

4.1.2 Normalized Euclidean distance

It is also possible to fix the Euclidean-distance to satisfy the necessary conditions with
proper normalization. Treating the p − t maps as vectors and renormalizing them to unit
length maximizes the distance of any two non-overlapping materials to

√
2, regardless of

their shape on the maps. The definition of this distance is:

d2(A, B) =

����∑
i,j

�
A[i, j]
N(A)

− B[i, j]
N(B)

�2

(4.3)

with the normalization factors:

N(A) =

�
∑
i,j

A[i, j]2 (4.4)
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The similarity based on this error metric is defined as:

S(A, B) = 1 − 1√
2

d2(A, B) (4.5)

4.1.3 Normalized Manhattan distance

Following the logic of the normalized Euclidean distance, one can also try to modify the
Manhattan distance of the two maps to find a usable distance definition.

d1(A, B) = ∑
i,j

���� A[i, j]
N(A)

− B[i, j]
N(B)

���� (4.6)

with the normalization:
N(A) = ∑

i,j
|A[i, j]| (4.7)

In this case the similarity is:

S(A, B) = 1 − 1
2

d1(A, B) (4.8)

4.1.4 Comparison of distance metrics

In the paper the similarity matrix of the 44 materials already helped to identify clusters of
materials which are alike. These matrices with all three distance definitions are shown on
Fig. 4.1.
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FIGURE 4.1: Similarity matrices of the 44 materials with different distance
metrics. Normalized dot product on the left, normalized Euclidean distance

in the middle and the normalized Manhattan distance on the right.

With all three metrics the two large groups of materials, the metals and the semicon-
ductors, are easily identifiable in the high similarity regions. The dissimilarity of the ionic
materials, the alkali- and earth alkali metals to everything else is also visible with all met-
rics, but in the case of the Euclidean distance it is much more pronounced. The smaller
but still visible groups of the ionic materials and earth alkali metals are also noticeable on
all three plots.

Doing the k-means clustering using these similarity maps results in only small differ-
ences amongst the formed clusters. One of the differences is the LiH moving between the
[MgO, Al, Rb, Cs] and [Li, Na, K] clusters, where the [LiH, MgO, Al, Rb, Cs] cluster was
already identified as the least stable one. The only other difference is the AlAs and GaN
materials jumping between the two semiconductor clusters.

4.2 Additional clustering methods

If the results of the clustering would significantly change depending on the used clus-
tering method, that could indicate that the formed clusters are unstable or are simply an
artifact of the specific algorithm. To rule out this possibility, we carried out the clustering
with affinity propagation and two types of hierarchical clustering as well.
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4.2.1 Affinity propagation

The affinity propagation, described in section 2.2.2, can be directly applied to the similar-
ity matrix, so the errors coming from the MDS can be avoided. Tweaking the preference
parameter the number of clusters can be set to seven, resulting in the following grouping:
[C, Si, SiC, BN, BP, AlN, AlP, AlAs, LiH, MgO, Al, V], [Ge, Sn, GaN, GaP, GaAs, InP, InAs,
InSb], [LiF, LiCl, NaF, NaCl], [Li, Na, K], [Ca, Sr, Ba], [Rb, Cs], [Ni, Cu, Nb, Mo, Rh, Pd,
Ag, Ta, W, Ir, Pt, Au].

The only large difference compared to the k-means result is the [LiH, MgO, Al, Rb, Cs]
group splitting up, removing the [Rb, Cs] alkali metals, but the rest merging with one of
the semiconductor groups. Another small difference is [V] moving from the metals to the
previously mentioned semiconductor group.

4.2.2 Hierarchical clustering

Using an agglomerative clustering method, gives insight not only into the formed clusters,
but also into the order and stability. Carrying out the clustering using the Ward linkage
results in the same clusters as the k-means algorithm, except moving the [Rb, Cs] materials
from the [LiH, MgO, Al] to the [Li, Na, K] group, collecting all the alkali metals in one
group.



48
Chapter 4. Similarity clustering for representative sets of solids for density functional

testing

N
a
F

L
iC
l

L
iF

N
a
C
l

S
r

C
a

B
a A
l

L
iH

M
g
O

R
b

C
s L
i

N
a K V N
i

C
u Ir P
t

R
h W T
a

N
b

M
o

A
g

P
d

A
u

G
e

G
a
A
s

In
A
s

S
n

In
S
b

G
a
N

G
a
P

In
P C S
i

S
iC B
P

A
lN B
N

A
lP

A
lA
s

FIGURE 4.2: Dendogram of the agglomerative clustering using Ward link-
age. For better visibility the top part of the dendogram is discarded.

Looking at the structure of the dendogram on Fig. 4.2 the three distinct groups of
materials can be noticed, which link only on the later stages of the clustering. The clusters
are also stable with respect to the used linkage method, using the "maximum" linkage,
shown on Fig. 4.3, results in the same cluster, except the two semiconductor clusters being
merged when 6 clusters are used. Going to seven only splits down the [NaF] from the
ionic cluster, yet in the case of eight clusters the semiconductors are also broken up in two
clusters.
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FIGURE 4.3: Dendogram of the agglomerative clustering using "maximum"
linkage. For better visibility the top part of the dendogram is discarded.
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5 Outlook

My thesis consists of three distinct lines of work, all of which can be improved upon.

5.1 Exchange-correlation functionals

With the development of new ML methods and the increasing application of the newest
discoveries in quantum chemistry, ML applications have a real potential to revolutionize
electronic structure calculations. Recent examples in this direction are:

• Good approximation of electron correlation through neural network wavefunction
approximations[42]

• Significant speedup in molecular dynamics calculations using machine learned force
field on par with DFT accuracy[30]

• Complete replacement of the XC functional by a neural network trained on only a
small number of molecules[31]

Yet these applications are not completely replacing traditional functionals or DFT cal-
culations, however with the fast progress of the field it could be possible in the near future.

As a direct extension of the method presented in the current thesis, the ML functional
could be used to predict both correlation and exchange energies, removing the require-
ment of relying on correlation energies calculated with previous approximations. While
correlation is the smaller part of the exchange-correlation energy, using it in the fitting
could make significant improvements in the accuracy.
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Other than extending the functional for correlation, one can include more descriptors
as inputs for the functional. The first candidate for this could be the laplacian of the den-
sity, but as it was shown previously this descriptor contains only a small amount of extra
information when it is used alongside the kinetic energy density. The more interesting
extensions would be non-local descriptors, which could help to incorporate long range
interactions.

5.2 Machine learning in IR prediction

Our work described in the "Machine-learning Prediction of Infrared Spectra of Interstellar
Polycyclic Aromatic Hydrocarbons" study focuses on predictions for polycyclic aromatic
hydrocarbons, yet none of the steps in the process requires the materials to come from this
specific group. A straightforward improvement of our current model could be to simply
include larger databases of different materials in the training. Additionally to the obvious
advantages of being able to predict for different material groups, this would allow us to
investigate how transferable our model is and if the extra information from training on
other materials groups improves or deteriorates the accuracy on PAHs.

While an extended connectivity fingerprint with sufficiently large radius contains all
the information of a molecular graph, it might not be to most efficient descriptor for IR
spectra prediction. The usage of message passing on a molecular graph to create the
input of feed forward neural network for IR spectra prediction was also shown[28] to be
a successful approach, which could be investigated as the replacement of the ECFP in our
process.

Another interesting application would be the reverse prediction, meaning that the NN
takes an IR spectra and reconstructs the ECFP or directly the molecular graph. While the
ECFP prediction for fixed set of bits can be done with a traditional feed forward neural
network, reconstructing the molecular graph is more complicated.
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5.3 Similarity clustering of materials

The methodology presented in the "Similarity clustering for representative sets of solids
for density functional testing" study is used to cluster materials which sample similar
regions of p-t space of mGGA functionals. This has been used to investigate how well
balanced the 44 solids dataset used for the lattice parameter and cohesive energy calcu-
lation of the exchange functional training is and to present a possibly better balanced
"representative set".

The natural extension to this study could be to simply apply the methodology to other
notable datasets, like the one used for bandgap benchmarks[7] with 473 solids or the
G2/97[10] and G3/99[11] with 302 and 376 molecules respectively.

A probably more interesting line of research could be extending the type of materials
used. Currently the methodology was only tested on bulk solids, but testing on solids
with defects, surfaces or organic molecules could reveal new knowledge which could
help to tackle these kind of materials more accurately with DFT.
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ABSTRACT

The SCAN meta-generalized gradient approximation (GGA) functional is known to describe multiple properties of various materials with
different types of bonds with greater accuracy, compared to the widely used PBE GGA functional. Yet, for alkali metals, SCAN shows worse
agreement with experimental results than PBE despite using more information about the system. In the current study, this behavior for alkali
metals is explained by identifying an inner semicore region which, within SCAN, contributes to an underbinding. The inner semicore push
toward larger lattice constants is a general feature but is particularly important for very soft materials, such as the alkali metals, while for
harder materials the valence region dominates.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5092748

I. INTRODUCTION

Presently, the most common theoretical approach to calculat-
ing the properties of solids and molecules is Kohn-Sham density
functional theory (KS-DFT).1 The main accuracy restricting factor
of this method is the functional form of the exchange-correlation
energy, Exc. For local and semilocal functionals, Exc is given by

Exc = ∫ exc(r)dr, (1)

where exc is the exchange-correlation energy per volume unit and is
a function of local electronic properties, such as the electron den-
sity, electron density gradient, or kinetic-energy density (KED). The
simplest approximation of exc is the local density approximation
(LDA).1 The next step of functional development was to add a func-
tional dependence on the gradient of the density. This led to the
generalized gradient approximations (GGAs),2,3 which have better
accuracy in multiple cases. In the meta-GGA (MGGA) functionals,
the KED and/or the Laplacian of the density are also used in the
parameterization of exc. Several MGGAs with different constraints
and goals have been developed (see Ref. 4 for a review), and bench-
marks of these different functionals have shown how MGGAs can
improve the overall accuracy compared to GGAs.5–8 The improved
performance can, depending on the point of view, be related to

the MGGAs being able to distinguish more bonding situations,9–11
better fit reference data,12 or satisfy more exact constraints.13

One of the recent MGGAs, which has gained considerable
attention, is the SCAN functional.13 For instance, it has shown suc-
cesses in calculating the formation enthalpy of various solids14 or the
structural and energetic properties of ferroelectric materials.15 On
the other hand, SCAN performs poorly for the magnetic properties
of transitionmetals.16–19 It is natural to compare SCANwith the PBE
GGA.3 First of all, they are constructed following a similar philoso-
phy of constraint satisfaction. Furthermore, PBE can be considered
as a good functional for solids since it gives reasonable equilibrium
lattice constants, a0, and cohesive energies, Ecoh (see, e.g., Ref. 5).
While it is possible to construct GGA functionals which give bet-
ter results than PBE for the lattice constants,20–23 these will tend to
overestimate the cohesive energies of solids.5 Thus, for SCAN to be a
systematic improvement on PBE for solids, one requirement would
be that it simultaneously improves on the lattice constants and the
cohesive energy. Numerical tests have shown that on average the
SCAN does exactly this for a wide range of solids.5,24

The improvement of SCAN over PBE is, however, not uni-
versal. A close look at the results in Ref. 5 also reveals how SCAN
performs disappointingly for most alkali metals. This is illustrated in
Fig. 1 where SCAN is compared to LDA and PBE for a few selected
materials. Considering first Si and Ge, which we use for illustrative
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FIG. 1. Relative error (in %) in the lattice constant (a) and cohesive energy (b)
obtained with the LDA, PBE, and SCAN functionals for Si, Ge, and the alkali
metals.

purposes as representatives for a large group of systems (covalent
semiconductors), the well known tendencies of LDA to overestimate
the cohesive energies, thereby underestimating the lattice constant,
and PBE to overestimate the lattice constants, thereby underesti-
mating the cohesive energies, can be seen. For Si and Ge, SCAN
systematically improves both the lattice constant and cohesive ener-
gies over PBE. For the alkali metals on the other hand, we can see
that SCAN underbinds even more, i.e., gives even larger lattice con-
stants (except for Na) and even smaller cohesive energies, than PBE
(Fig. 1).

In the present study, we aim at a detailed understanding of how
the poor performance of SCAN for the alkali metals is related to its
functional form. Apart from the obvious interest in the alkali metals
themselves, understanding the disappointing performance of SCAN
for this class of materials is also important for developingmore accu-
rate density functionals in general.While SCANmay performwell in
statistical studies, where the focus is on average errors for databases
containing a large number of strongly ionic and covalently bonded
materials, these studies may somewhat hide a systematic problem
for the more weakly bonded alkali metals because these systems only
make up a small subset of the database. Actually, the density distri-
bution in the alkali metals is rather particular. The bonding region is
characterized by both the density and reduced gradients being low.
This means that the correlation energy becomes comparable to the
exchange and that regions of exc that are otherwise not sampled are
probed.

II. METHODOLOGY

As will be discussed below, we will focus on the exchange
energy in the present analysis. To describe the analytical form of

an exchange functional, it is common to define the enhancement
factor

Fx(r) = ex(r)
eLDAx (r) , (2)

where eLDAx = −Cxn4/3 [Cx = (3/4)(3/π)1/3, atomic units are used
throughout this work] is the LDA exchange-energy density for the
homogeneous electron gas1 and n = ∑N

i=1 ∣ψ i∣2 is the electron den-
sity. For GGA functionals, Fx depends on the gradient of the density,∇n, while for MGGA functionals it also depends on the noninter-
acting KS KED τKS = (1/2)∑N

i=1 ∣∇ψ i∣2 (in the present work, we
are not concerned with Laplacian-dependent MGGAs). In the fol-
lowing, we will use dimensionless expressions to characterize the
density, namely, the reduced density gradient

p = ∣∇n∣2
4(3π2)2/3n8/3 (3)

and reduced KED

t = τKS

τTF
, (4)

where τTF = (3/10)(3π2)2/3n5/3 is the Thomas-Fermi (TF) KED25,26

which is exact for the homogeneous electron gas. Here, we note
that in our previous studies8,10 and others,11,12 τKS/τTF was instead
labeled as t−1. In iso-orbital regions where the density is dominated
by one orbital, the KED is given exactly by the von Weizsäcker
form27

τvW = 1
8
∣∇n∣2
n

, (5)

which makes

α = τKS − τvW
τTF

(6)

a convenient measure of how much the density n at a point of space
is dominated by a single orbital.9 Since one can write τvW/τTF = 5p/3,
then

α = t − 5
3
p. (7)

Note that τvW is a strict lower bound to the KED9,28–30 so that 5p/3 is
a lower bound to t.

As mentioned in Sec. I, the goal of the present work is to ratio-
nalize the SCAN results on the alkali metals and to understand
the worsening in the performance compared to PBE. For this pur-
pose, potassium is the case study that will be considered in Sec. III.
The analysis will consist of a careful comparison of the PBE and
SCAN enhancement factors Fx. The calculations were carried out
with the WIEN2k code.31 The SCAN calculations were done non-
self-consistently using the PBE densities and orbitals5,32 so that the
only difference in the total energy stems from the functional form
of exc. Note that in our previous work,5 the self-consistent effects
were estimated to be quite small, below 0.01 Å in most cases, except
for the van der Waals systems where they could be larger. For
the spatial distribution analysis of the exchange-correlation energy,
the sampling of the Voronoi cell of one atom was done on an
equidistant radial mesh for 400 different directions from the atom.
The distance between the sample points is the same for both vol-
umes, resulting in a larger number of samples for the expanded
structure.
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III. ANALYSIS

We start by showing in Fig. 2 the difference between PBE and
SCAN of the exchange-correlation energy Exc as a function of lat-
tice constant a for the alkali metal potassium. Since all terms in the
total energy except Exc are the same for the PBE and SCAN cal-
culations and the SCAN energy is evaluated with PBE density, the
slope of ESCANxc − EPBExc is directly related to the difference between
the equilibrium lattice constants aPBE0 and aSCAN0 . As seen in Fig. 2,
the slope of the exchange-energy difference ESCANx −EPBEx is negative.
As a direct consequence, the SCAN equilibrium lattice constant a0 is
“pushed” toward a larger value than the one obtained with PBE. As
PBE already overestimates a0 of potassium (as well as Rb and Cs, see
Fig. 1), then SCAN worsens the agreement. Thus, it is the exchange
component of ESCANxc that is responsible for the overestimated lattice
constant of K. An interesting feature about the alkali metals is that
the low density in the bonding region means that the correlation
energy density is comparable to the exchange energy density. Fig-
ure 2 shows that the correlation energy exhibits the opposite trend
and somewhat compensates for the “push” toward larger volume
by the SCAN exchange. However, the compensation is only partial
and the slope of the total exchange-correlation energy curve remains
negative. In the following, we will thus focus on a detailed analy-
sis of the exchange energy, which is the driving force behind the
overestimated lattice constant.

The variation of Ex with respect to the lattice constant a can
be explained in terms of changes in the density n and enhancement
factor Fx [Eq. (2)]. We separate these two effects by expanding the
exchange energy shifts and keeping only terms that are first order in
the perturbation

δex ≈ −Cx(n + δn)4/3(Fx + δFx) + Cxn4/3Fx≈ −Cx(n4/3δFx + 4
3
n1/3Fxδn). (8)

The first part, δeenhax = −Cxn4/3δFx, corresponds to the changes
in the enhancement factor and the second part, δedensx =−Cx(4/3)n1/3Fxδn, to the changes in the density upon volume
change. Two unit cell volumes V (or equivalently two different lat-
tice constants a) were used to obtain δex. The smaller and bigger
volumes correspond to Vsmall = 0.97Vexp and V large = 1.03Vexp,

FIG. 2. Energy differences between SCAN and PBE in potassium. A shift,
E∗(a) = E(a) − E(aexp0 ), is added so that E(aexp0 ) = 0. X, C, and XC denote
the exchange, correlation, and exchange-correlation energies, respectively.

respectively. This choice of volumes for calculating δex is somehow
arbitrary; however, the linearmonotonic behavior of Ex seen in Fig. 2
shows that it is unimportant for the conclusion. For the sampling
of δex, we have chosen grids of equidistant points starting at the
atomic positions. Since the grid contains more points for the larger
volume, an additional contribution, δenewx = −Cxn4/3Fx, represent-
ing the new sample points has to be taken into account and added
to δeenhax and δedensx to get the full δex. Figure 3(a) illustrates these
components to the difference δeSCANx −δePBEx as functions of distance
from the potassium atom. δenewx is small and only appears for dis-
tances larger than 4 bohrs because of the shape of the Voronoi cell.
In the valence region that we define as the distance beyond 2 bohrs,
the density and enhancement terms tend to cancel each other. Actu-
ally, δeenha,SCANx −δeenha,PBEx is positive, which indicates that the SCAN
exchange enhancement factor is less sensitive to a change in the vol-
ume. On the other hand, δedens,SCANx −δedens,PBEx is negative reflecting
that FPBEx is larger than FSCANx .

In Fig. 3(a), one can also identify a region, between 1
and 2 bohrs, where the total exchange energy density difference
δeSCANx − δePBEx is negative, thus forcing SCAN lattice constant to
be larger than the PBE one. This region of negative values is clearly
due to the component δeenhax , i.e., a faster increase in the magni-
tude of FSCANx in a region with a high density when the volume gets
bigger, which is particularly important for the lattice constant [see
Fig. 3(b)].

Actually, a strong influence on the equilibrium lattice con-
stant coming from the region between 1 and 2 bohrs is at first
sight somewhat surprising as one would associate it with an inner
semicore region. To understand its origin, we first show 5p/3 and
t, Eqs. (3) and (4), and the normalized orbital densities of a free
potassium atom as functions of the distance to the atom in Fig. 4.
It is seen that the 1–2 bohr region is indeed dominated by the 3s
and 3p semicore orbitals. In this region, the electron density n is
very large compared to the valence region such that even small
changes δFx in the enhancement factor have a large impact on
the exchange energy [since δFx is multiplied by n4/3, Eq. (8)] and
thereby lead to large values of δeenhax . From Fig. 4, it is also possible
to understand why the 4s shell also contributes to δeSCANx − δePBEx
below 2 bohrs. Indeed, at a distance around 1.6 bohrs from the
atom, the outer lobe of the 4s shell starts to become important.
Since the 4s shell is strongly perturbed by the chemical bonding,
then its influence on δFx in the 1.6–2.0 bohr region should be
important.

To obtain insight into the individual contributions33 to δFx in
δeenhax , we proceed by expanding it as

δFx = ∂Fx
∂p
∣
a0

δp + ∂Fx
∂t
∣
a0

δt. (9)

We first consider the variations δp and δt due to an expansion of the
volume. These are depicted for the inner semicore region in Fig. 5(a).
As expected, the reduced density gradient p gets larger when the vol-
ume increases, i.e., δp > 0, especially for a distance larger than 1.6
bohrs. The reduced KED, t, on the other hand, shows an interest-
ing behavior. δt is negative up to about 1.9 bohrs, where it changes
sign. This illustrates that the KED contains important information
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FIG. 3. The differences in δex between
SCAN and PBE in potassium. (a)
The differences are integrated over
shells centered at the atomic posi-
tions ex (r) = r2 ∫ex (r)dΩ. The
integration is done in the Voronoi
cell of one atom. (b) Integrated
energy differences, ESCAN-PBEx (R)= ∫ R

0 δeSCANx (r) − δePBEx (r)dr.

that is not available in the gradient of the electron density, some-
thing that is a premise for the development of MGGA. The behavior
of t can be understood from Fig. 4. As observed earlier,33,34 one
can clearly identify peaks in the reduced density gradient p that are

FIG. 4. (a) 5p/3 [Eq. (3)], α [Eq. (7)], and t [Eq. (4)] for the free potassium atom
plotted as functions of the distance from the atom. (b) Normalized densities of the
different shells, where the maximum of every curve is set to 1.

located in transition regions where the dominating shell is switching
from one to another. In these inter-shell regions, t is substantially
larger than 5p/3 (see Fig. 4) so that α is, as expected from Eq. (7),
larger in such regions with contributions coming from different
shells.9 In the inner semicore (1–2 bohrs) region, α is small, reflect-
ing how it is dominated by orbitals of similar shape (n = 3). In the
solid, the inner semicore region becomes increasingly dominated by
the 3s and 3p orbitals as the unit cell expands, thereby becoming
more “atomiclike.” As p hardly changes [δp ≈ 0 for r < 1.6 bohrs,
Fig. 5(a)], the smaller values of α are the result of smaller values of
t (δt < 0).

The partial derivatives in Eq. (9), depicted in Fig. 5(b), reflect
the dependence of the functional on changes in p and t around
their values at the equilibrium lattice constant a0. Figure 5(b) also
shows that ∂FSCANx /∂p is approximately twice larger than ∂FPBEx /∂p.
Actually, the large derivatives of SCAN are somewhat surprising
because earlier illustrations (see, e.g., Fig. 1 of Ref. 13) give more
the impression of a smooth and subdued functional form. How-
ever, in Fig. 6(a), we show that the smooth behavior is mainly along
lines of constant values of α. Perpendicular to these lines, FSCANx
shows a somewhat more “bumpy” behavior. Such bumps lead to
an erratic behavior of the derivatives, as shown in Figs. 6(b) and
6(c).

The large positive ∂FSCANx /∂p will, when multiplied by the neg-
ative −Cxn4/3, Eq. (8), and the positive δp in the inner semicore
region, Fig. 5(a), contribute to the negative slope of ESCANx − EPBEx
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FIG. 5. Various functions in potassium plotted as functions of the distance from the
atom. (a) δp = p(V large) − p(Vsmall) and δt = t(V large) − t(Vsmall). (b) ∂Fx /∂p and
∂Fx /∂t for PBE (dashed) and SCAN (solid). ∂FPBEx /∂t = 0, as a GGA functional
has no dependence on t. (c) δFSCAN

x − δFPBE
x [Eq. (9)] and its two components.

observed in Fig. 2. We have already discussed how δt shows a differ-
ent behavior than δp in the inner semicore region and, in principle,
a MGGA could compensate for this contribution in its dependence
on the KED. However, as both δp and the corresponding partial
derivative ∂FSCANx /∂p have opposite signs of δt and ∂FSCANx /∂t, their
contributions to δFSCANx add up instead of canceling [see Fig. 5(c)].
Thereby, both contribute to a too large value for a0.

Equation (9) underlines how the partial derivatives are an
important factor in determining energy differences and thereby
the performance of a MGGA. This would suggest that they should
be routinely shown when reporting a new functional. We should
also point out that the partial derivatives in Eq. (9) are part of
the analytical expression of the MGGA potential for self-consistent
calculations,35 and the behavior observed in Figs. 6(b) and 6(c)
could thus be responsible for SCAN resulting in a large overesti-
mation of the magnetic moment in itinerant transition metals.16–19
In this context, it is interesting to note that a fixed-spin moment
calculation, which involved only the SCAN energy and used the
PBE potential, resulted in the same overestimation of the mag-
netic moment as a self-consistent calculation.19 The expansion with
respect to volume, Eq. (8), highlights how features of the analytic
form of the energy functional are directly related to the potential.
Similar to the expansion with respect to volume, the exchange-

FIG. 6. Maps of the SCAN exchange enhancement factor Fx and its partial deriva-
tives. On the 2D plots, slices of these maps are shown for constant p values as a
function of α, where α = t − 5p/3. The view is set so that lines of constant values
of α are perpendicular to the paper.

correlation energy can also be expanded with respect to themagnetic
moment.

The observation of an erratic behavior of the functional also
falls in line with recent observations of relative strong grid depen-
dence of SCAN results.36,37 Such a grid dependence has also been
analyzed previously in Ref. 38 for other MGGA functionals, where it
was also pointed out that poor convergence with grid size can lead
to unintended contributions to the energy differences.

It is noteworthy that among the 44 solids tested in Ref. 5, the
alkali and alkaline earth metals are the only ones for which lattice
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constants obtained with SCAN are larger than those obtained with
PBE. The analysis above raises the question why the SCAN inner
semicore push toward larger volumes is not observed for more sys-
tems. To answer this, we will use the closed packed metal Al, where
the semicore region, as in the alkali metals, constitutes a significant
part of the volume. Despite this, SCAN actually predicts a smaller
lattice constant, a0 = 4.012 Å, than both PBE a0 = 4.041 Å and exper-
iment a0 = 4.022 Å (see the supplementary material of Ref. 5). The
plot of δeSCANx − δePBEx for Al is shown in Fig. 7. The inner semicore
region can be identified between 0.5 and 1.0 bohrs and does indeed
have a negative total δeSCANx − δePBEx due to the δFx contribution.
It will therefore push SCAN to have a larger lattice constant com-
pared to PBE, similar to what was observed for potassium (Fig. 3).
However, contrary to potassium, the influence of the valence region
is much larger than the inner semicore region. The valence contri-
bution is mainly positive which results overall in a smaller SCAN
equilibrium lattice constant than with PBE. We have performed the
same analysis for FCC-Ca (not shown) Si in the diamond lattice.
Also here, an inner semicore push toward larger lattice constants
due to δeenhax can be identified. However, this is compensated by the
valence region, whichmeans that SCAN and PBE lead to very similar
lattice constants for Ca.

Finally, one could also argue that the SCAN underbinding of
the alkali metals should be cured by explicitly adding contributions
for the long-range dispersion interactions.36 Such corrections will
however universally strengthen the bonding and thus lead to a worse
performance in cases such as Ca and Al where SCAN already tends
to overbind. Thus, two strategies could be followed to cure the prob-
lem of SCAN for the alkali metals: either by modifying the func-
tional form such that the results for the alkali metals are improved
or by adding a term that explicitly accounts for the dispersion term.

FIG. 7. The differences in δex between SCAN and PBE in Al. (a) The differences
are integrated over shells centered at the atomic positions ex (r) = r2 ∫ex (r)dΩ.
The integration is done in the Voronoi cell of one atom. (b) Integrated energy
differences, ESCAN-PBEx (R) = ∫ R

0 (δeSCANx (r) − δePBEx (r))dr.

However, in the latter case, the functional form of SCAN should also
be modified in order to avoid an overbinding for other systems like
Ca or Al.

IV. SUMMARY

In the current study, we have analyzed in detail the results
obtained with the MGGA functional SCAN for the alkali metals.
For these systems, SCAN is less accurate than the more simple GGA
functional PBE. SCAN has a clear tendency to underbind the alkali
metals; i.e., the equilibrium lattice constants are too large and the
cohesive energies are too small. We have shown that this behav-
ior of SCAN is attributed to an inner semicore push toward larger
lattice constants, which was revealed by a careful comparison of
the PBE and SCAN enhancement factors. Such an inner semicore
push toward larger lattice constants can probably be identified for
many materials; however, it is the most important mechanism for
soft materials such as alkali metals, while for harder materials (e.g.,
semiconductors and ionic insulators) the valence region dominates
(as shown for Al).

A detailed analysis, such as the one that we have presented,
leads to a clear understanding of the failures or unexpected results
that a functional produces. A functional may have an analytical form
that is inappropriate within a particular regime, e.g., for low densi-
ties or high density gradients, and the precise identification of the
problem in the functional formmay give a clue of how to modify the
functional form to cure the problem. Our study furthermore high-
lights the importance of the partial derivatives in determining energy
differences and suggests that these should be routinely shown when
reporting a new functional.
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Abstract

We design and train a neural network (NN) model to efficiently predict the infrared spectra of interstellar
polycyclic aromatic hydrocarbons with a computational cost many orders of magnitude lower than what a first-
principles calculation would demand. The input to the NN is based on the Morgan fingerprints extracted from the
skeletal formulas of the molecules and does not require precise geometrical information such as interatomic
distances. The model shows excellent predictive skill for out-of-sample inputs, making it suitable for improving the
mixture models currently used for understanding the chemical composition and evolution of the interstellar
medium. We also identify the constraints to its applicability caused by the limited diversity of the training data and
estimate the prediction errors using a ensemble of NNs trained on subsets of the data. With help from other
machine-learning methods like random forests, we dissect the role of different chemical features in this prediction.
The power of these topological descriptors is demonstrated by the limited effect of including detailed geometrical
information in the form of Coulomb matrix eigenvalues.

Unified Astronomy Thesaurus concepts: Polycyclic aromatic hydrocarbons (1280); Interstellar molecules (849);
Infrared astronomy (786); Neural networks (1933)

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are among the
most widely studied organic compounds in the fields of
astronomy (Herbst & van Dishoeck 2009), chemistry (Zhang
et al. 2015), biology, and environmental science (Ravindra et al.
2008; Moorthy et al. 2015). As some of the most abundant
molecules in the universe (Snow & Witt 1995), PAHs are
understood to play an essential role in the evolution of the
interstellar medium (ISM; Tielens 2008; Hardegree-Ullman et al.
2014; McGuire et al. 2018; Qi et al. 2018; Hanine et al. 2020).
They are also thought to have acted as elemental building blocks
of complex organic molecules related to the origin of life
(Ehrenfreund & Charnley 2000). Since the infrared (IR)
spectrum of a molecule contains valuable information of the
molecular bonding configuration (Meier 2003; Neubrech et al.
2017), IR spectroscopy has become an indispensable tool in
many observatory projects such as the Stratospheric Observatory
for Infrared Astronomy and the Spitzer Space Telescope (Young
et al. 2012; Deming & Knutson 2020).

Due to their complex structure–property relationship, identifying
PAHs from their IR spectra is anything but straightforward. Since
IR activity is related to changes in the molecular dipole moment, a
good characterization requires knowledge of both the dynamics of
the atomic nuclei, specifically in the form of a set of normal
modes, and of the electronic charge distribution. In many cases, the
best option available at a reasonable computational cost is density
functional theory (DFT). Unfortunately, the number of possible
existing PAH species in the ISM is so vast that a brute-force
application of DFT is unlikely to be successful in interpreting
experimentally measured IR spectra from mixtures of arbitrary
molecules (Andrews et al. 2015; Croiset et al. 2016; Shannon
et al. 2018). Indeed, while the “unidentified” infrared emission
(UIE) features dominating the mid-IR spectra of a wide variety of
interstellar sources has been linked to PAHs (Allamandola et al.
1999; Maltseva et al. 2015; Bouwman et al. 2019) the exact

chemical species responsible for UIE are still under debate (Kwok
& Zhang 2011; Li & Draine 2012; Kwok & Zhang 2013).
Therefore, developing efficient approaches to the prediction of IR
spectra of interstellar PAHs remains an important goal with a view
to the accurate identification of the UIE band carriers among other
sources.

Recently, the rapid development of machine-learning (ML)
methods has opened new and reliable ways of investigating
molecular structure–property relationships (Gastegger et al.
2017; Butler et al. 2018; Marquez-Neila et al. 2018; Ghosh
et al. 2019). However, vibrational spectra are a challenging
property for any ML method as they cannot be explained in
terms of global composition or local bonding, but depend on
hybridizations involving many atoms. In the present study we
aim at developing a neural-network (NN) based accelerated
model to predict the IR spectra of PAHs using just their skeletal
formula as an input. Such formulas encode the topology of the
molecule without reference to the exact coordinates of the
atoms and, despite their abstraction of the geometric details, are
central in any discussion of the structure of organic molecules
and exhibit a large amount of predictive power. They thus
provide an ideal starting point for the kind of accelerated model
that we develop here and do not require computationally
intensive electronic structure calculations to determine opti-
mized geometries.

We present an efficient, data-driven approach to the prediction
of the IR spectra of PAHs that combines a NN and inputs extracted
from the NASA Ames PAH IR spectroscopic database. The
potential of NNs to predict the IR spectra of organic molecules was
explored more than 20 yr ago (Weigel & Herges 1996; Selzer et al.
2000). However, the discriminatory power of these pioneering
attempts was not particularly convincing. Moreover, recent
developments in deep learning have led to large improvements
in the effectiveness of NN. The results of a NN depend intricately
on the descriptors and penalty function used for training. In the
present paper we demonstrate that it is possible to obtain good
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predictive power from a multilayer NN trained on Morgan
descriptors that represented skeletal formulas. We discuss the
success of these descriptors in detail and show how including the
Coulomb matrix (Rupp et al. 2012; Schütt et al. 2014), which has
otherwise been very successful for encoding molecular structure,
does not improve the predictive power of the model.

We furthermore train random forests (RFs) on the same data.
Generally speaking, RFs have lower quantitative predictive
skill than well-trained NNs. However, they can be easier to
interpret. For instance, RFs have an intrinsic metric for the
importance of each feature that can be computed simply by
reverting all the choices based on that feature. Moreover, they
are naturally resistant to overfitting and work well with
correlated inputs. In this study we use NNs to provide
quantitative predictions and RFs to take a closer look at the
effect of adding and removing information from the input.

2. Methods

2.1. Data Set

The NASA Ames Research Center has assembled computed
and experimental IR spectra of PAHs into a public database,
available since 2010 (Bauschlicher et al. 2010). This database
comprises more than 3000 spectra, and has undergone two major
updates (Boersma et al. 2014; Bauschlicher et al. 2018). It
includes PAH IR spectra obtained using DFT, as well as a
number of spectra from experimental measurements. This
database is an important tool for determining the IR spectra
of PAHs in order to develop and test hypotheses regarding
astronomical PAHs (Allamandola et al. 1989; Draine & Li 2007;
Tielens 2008; Peeters 2011).

For this work, we take the structures and IR spectra of all PAHs
in the computational data set version 3.00. As detailed in the next
subsection, we use topological descriptors, so we discard those
cases in which several geometries exist that are compatible with
the same topology. Such cases include, but are not limited to,
topologically equivalent structures with different charge states.
That leaves us with 2670 molecules from the 3129 in the
database. We then turn the set of discrete lines of the IR spectrum
into a histogram with a bin width of 21.39 cm−1 determined using
Knuth’s Bayesian rule (Knuth 2006). Each histogram consists of
252 bins covering the range from 6.95 to 5376 cm−1. Bins beyond
the 176th (i.e., beyond 3751 cm−1) are discarded since there is a
single compound in the whole database contributing to this region
of the spectrum with a single (and possibly spurious) peak. We
then split each of the truncated histograms into a low-frequency
and a high-frequency part. The splitting is done at the 106th bin
(2253 cm−1) because it lies in the middle of a gap without
contributions from any compound in the database. Frequencies
above this cutoff typically correspond to localized vibrations
involving hydrogen atoms. Finally, each of the two subhistograms
is normalized with the obvious exception of histograms composed
entirely of zeros. At the end of this round of preprocessing, the IR
spectrum of each compound in the database is represented by two
vectors, one for the low-frequency part of the histogram and the
other for the high-frequency part, and the components of each add
up to one. Those vectors are the targets for the prediction.

2.2. Loss Function

A key piece of a good ML model is a suitable loss function,
i.e., a target to be minimized during the training process. A
common way to build such a function is to introduce a notion

of distance between output values and then sum the distances
between the known and predicted values of the output over the
training set. In the context of the current application, each of
those values comes in the form of an array representing a
normalized histogram. Therefore, it is of critical importance to
define a sensible idea of distance between two histograms that
takes into account the nature of the elements in those arrays.
Among the requirements for that distance is that a slight
misprediction of the position of a line should contribute less to
the distance than a significantly larger error in that prediction.
General-purpose distances like the Euclidean norm of the
difference between histograms do not fulfill this criterion, since
they do not take the distance between bins into account.
Therefore we opt for a more specialized function, in particular a
version of the earth mover’s distance (EMD; Monge 1781;
Dobrushin 1970). Introduced in 1781 in the context of the
literal transport of dirt between two sites and now known to
be a special case of the Wasserstein metric, the EMD measures
the minimal cost of transforming a histogram into another
when the cost of moving a unit of mass from bin i to bin j is set
to a fixed nonnegative value cij. We specifically make cij

proportional to the distance between the center of the bins,
-i j∣ ∣. With this choice, if one takes the spectrum of a

molecule and introduces a random perturbation in all
frequencies of the order of the bin width, the distance between
the two histograms will be rather small, and in particular much
smaller than the distance to another arbitrary molecule. In
contrast, big errors in the placement of lines will increase the
distance much more significantly. Moreover, this particular
choice of costs allows for a simple and efficient implementation
of the EMD. Let = =a ai i

N
1( ) and = =b bi i

N
1( ) be two normal-

ized histograms with the same set of bins, and =Ai i
N

1( ) and

=Bi i
N

1( ) the corresponding cumulative histograms, with
= å =A ai j

i
j1 and a similar expression for Bi. The distance

between the histograms is computed as

å å å= - = -


a b A B a bEMD , . 1
i

i i
i j i
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There is a clear connection with other measures of differences
between distributions like the Kolmogorov–Smirnov statistic
(Smirnov 1944), in which the distance is the maximum value
of -A Bi i∣ ∣.

In addition to its role in building the loss function, we also
employ the EMD to evaluate the quality of a prediction and to
quantify the similarity between two spectra.

To illustrate the distribution of EMD values, the IR spectra
of perylene is calculated with two different hybrid functionals
and basis sets using the NWChem software package (Valiev
et al. 2010). The spectra are then scaled according to the
prescription for version 3.0 of the database (Bauschlicher et al.
2018), which splits the peaks in three different regions and
scales the frequencies for these regions individually to get
better agreement with experimental results. Figure 1 shows
the EMD values between these calculated spectra. As expected,
the (B3LYP, 4-31g) calculation matches the data included
in the database. A change in the functional introduces only
small differences, whereas changing the basis set causes larger
EMD values between the calculated spectra. The worst
agreement can be found between the (B3LYP, 4-31g) and
(PBE0, cc-pVDZ) calculations, as illustrated in the bottom half
of Figure 1. The EMD in that case is 2.79, which we will use as
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a reference value for “good” predictions since they are
comparable to the variance among DFT calculations.

2.3. Descriptors

We focus on topological fingerprints as our primary
descriptors of the skeletal formula. Often used for substructure
and similarity searching, such fingerprints express whether a
molecular graph contains particular subgraphs and how many
copies of those subgraphs it contains. We specifically use the
implementation of extended connectivity fingerprints (ECFPs;
Rogers & Mathew 2010) in RDKit3. These fingerprints are
calculated using a modified version of the Morgan algorithm
(Morgan 1965), originally designed to create a canonical
numbering scheme for atoms in molecules. Each nonhydrogen
atom is initially assigned a 32-bit integer identifier derived
from the properties used in the Daylight atomic invariants rule
(Weininger et al. 1989). The algorithm then proceeds for a
predefined number of iterations, replacing that identifier with
the hash of an array formed by the identifiers of the atom and
its first neighbors listed in a deterministic order. In Figure 2
four examples of substructures are shown, generated by 0 (red,
blue), 1 (green), and 2 (yellow) iterations. The results of all
iterations are put together and the occurrences of each

substructure counted to create the final fingerprint. To be able
to detect large substructures of potential relevance for the low-
frequency portions of the spectrum, we perform 11 iterations of
the algorithm.

The structures are extracted from the database in the form of
a set of atomic coordinates, which are then converted to the
SDF format (Dalby et al. 1992) using Open Babel (O’Boyle
et al. 2011) and finally to a simplified molecular-input line-
entry system (SMILES) string from which the aforementioned
descriptors are extracted. Since the XYZ to SDF conversion
involves the use of bond detection heuristics not guaranteed to
work in every case, the conversion fails for 18 compounds and
those are dropped at this stage.

As mentioned in the previous section, topologically
equivalent structures with different charge states were removed
from the data set. The remaining charged molecules with
unique descriptors make up around 7% of the data set. The
average EMD for these molecules (5.3) is around 2.9 times
larger than that for the neutral ones (1.8). We conclude that
charged molecules are not accurately described by the SMILES
in our processing pipeline. To check if this has an impact on the
results, we also train NNs only on neutral molecules. However,
the average EMD remains the same and the only significant
difference was a thinner tail in the EMD histogram. We
therefore keep those charged molecules.

The topological fingerprints cannot encode geometric informa-
tion, and we aim at developing a model that does not rely on such
information. To assess whether this choice influences the result we
also train models based on the eigenvalues of the Coulomb matrix
(Rupp et al. 2012).

2.4. Machine-learning Models

2.4.1. Neural Networks

NNs are one of the most powerful families of ML techniques
in use today (Bishop 1996), and also one of the most
widespread, partly because of the existence of high-
performance implementations for both CPUs and GPUs. An
NN is a graph consisting of layers of nodes, or neurons. In the
cases of interest for this discussion, each node produces an
output based on a linear combination of the nodes from the
previous layer plus a constant. Specifically, the output from a
neuron is computed as

å= +
=

Y f w X b , 2
i

N

i i
1

⎛
⎝⎜

⎞
⎠⎟ ( )

where Xi is the output of the ith neuron in the previous layer, wi is
the connection weight to the current neuron, b is the bias and f is
the activation function, responsible for the nonlinearity in the
network. During training, all the weights and biases of the neural
network are fitted so as to minimize a target penalty, which in the
present case is the EMD, described by Equation (1).

Due to their many and diverse applications, different NN
architectures have been devised, such as convolutional NNs
(where all neurons in a layer share their weights, but their
sparse connections to the previous layer are displaced in a
systematic way) or recurrent neural networks (where the output
of the NN is fed to it again as an input). However, in our case
we do not need to capture the type of features those
architectures were designed for, so we opt for an archetypal
fully connected multilayer NN, where each neuron is connected

Figure 1. Top: EMD between the DFT-calculated IR spectra obtained using
different functionals and basis sets for perylene. The database contains the
spectrum from a B3LYP, 4-31g calculation. Bottom: direct comparison of the
most dissimilar IR spectra predicted by DFT calculations with different
functionals and basis sets in the case of perylene.

3 http://www.rdkit.org
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to every node of the previous and the next layers. Aside from
the input and the output layers, our network has four hidden
layers with 1500, 1000, 850, and 600 neurons, respectively. As
activation functions we use rectified linear units (Lecun et al.
2015) with an extra linear layer and absolute value function
before the output.

The input data set is randomly split in training, test, and
validation subsets containing 70%, 15%, and 15% of the data,
respectively. The inputs to the NN are the descriptors defined
above, after removing all elements that did not appear in the
training set. The feature vectors so constructed contain
9231 ± 15 elements. The weights of the NN are initialized
using the Glorot algorithm (Glorot & Bengio 2010) and all the
biases are initialized to zero. The training is then carried out
with an Adam optimizer (Kingma & Ba 2015) with the EMD as
the target, until the validation error fails to decrease for 50
consecutive epochs. The model is implemented, trained and
evaluated using TensorFlow (Abadi et al. 2015). The results
presented are calculated with an ensemble of 40 individual NNs
for whose training the training/validation/test split was
performed in 40 different ways, always according to the
proportions quoted above.

2.4.2. Random Forests

The second ML technique that we use is RFs (Breiman
2001). Each RF regressor (or classifier, as the case might be)
consists in an ensemble of classification trees, each of them
trained on a random subset of the observations (a technique
known as “bagging”) and performing splits at each level of the
tree based on a random subset of the variables. The result of the
RF regression for a new structure is obtained by running the set
of descriptors down each tree, obtaining the corresponding
individual predictions, and averaging them. Since the predic-
tion of each tree so built is always a value from the training set,
a RF regressor of this type has a strong centralizing tendency
(Carrete et al. 2014).

We use the implementation of RF in scikit-learn (Pedregosa
et al. 2011). Our forests contain 1000 trees each. A tree stops
growing when leaf nodes contain just one element or when the
depth (i.e., the number of splits) equals 15. A maximum of four
features are considered when looking for an optimal split. The
splitting criterion is the minimization of the mean square error
instead of the EMD. The RFs are mainly used as an
interpretative tool and an EMD splitting criterion resulted in
training times that were too long.

3. Results and Discussion

In the following we present the results of our NN and RF
models.

3.1. NN Performance Metrics

As described in the previous section, we train the NN
architecture separately for the low- and high-frequency parts of
the spectrum. Figures 3 and 4 provide, respectively, a
quantitative and a qualitative window into the performance of
the NN for the low-frequency part. This is often labeled the
fingerprint region (Smith 2011), is used to identify the
molecule, and comprises most of the mass of the histograms.
More specifically, Figure 3 (top panel) shows how the model
for the low-frequency part performs, by way of the distribution
of the EMD between each database record of the test set and
the corresponding prediction. Most of the EMD values are
found well below the 2.8 reference value extracted from DFT
calculations on perylene with different parameters (Figure 1).

A reasonable criterion for what values of the EMD can be
considered as good is the discriminatory power, i.e., to
be useful, a predicted spectrum for a molecule A should be
significantly closer to the “real” spectrum of A than the
spectrum of some other molecule B. Therefore, Figure 3 also
shows, in the bottom panel, the distribution of EMDs between
pairs of structures in the database. The distribution is color
coded according to the 25%, 50%, and 75% percentiles. Most

Figure 2. Illustration of how the topological descriptors are built based on the presence of different molecular fragments. Example molecules are shown on top, with
marks showing the positions of the specific fragments depicted below. The middle line shows the corresponding region of the generated counting fingerprints. The red
and blue fragments are generated by the first iteration of the fingerprint generation, so they only contain information about their base atom. In the current case, the red
items represent carbon atoms with three nonhydrogen neighbors and no hydrogens connected to them, while the blue items represent carbon atoms with two
nonhydrogen bonds and, likewise, with no hydrogen neighbors. The green and yellow circles show fragments generated by the second and third iterations,
respectively. During training we use more than 9200 unique fragments generated by up to 11 iterations of the algorithm.
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of the NN-predicted spectra yield EMDs well below those
marks, with 73%, 92%, and 95.7% below the first, second, and
third quartiles, respectively, indicating a good predictive skill
of the model. Another baseline is the average EMD of 5.79
between random samples of the database, which could indicate
if the model has any predictive power at all.

An interesting feature of the baseline histogram in Figure 3
 (bottom) is its bimodal structure, with a clear divisory line around
an EMD of 4.5. Both of the peaks are well populated, with ∼20%
of the compound pairs in the central region of each. One possible
explanation of this behavior could be that the database contains
groups of molecules with relatively small intragroup EMDs, thus
creating the first peak in Figure 3 (bottom), and significantly
larger intergroup EMDs, forming the second peak and the long
tail that contains a further ∼25% of the compound pairs. We put
this hypothesis to the test using a clustering algorithm, specifically
k-medoids (Hastie et al. 2001) because it allows us to use a
custom metric for clustering, which we set to the low-frequency
EMD depicted in the histogram. We select the optimum number
of clusters as that maximizing the average silhouette score
(Rousseeuw 1987), i.e., the average over all structures of

-b a a bmax ,( ) ( ), where a is the mean intracluster distance
for that particular structure and b is the distance from the structure
to the nearest cluster other than its own. This optimum number
turns out to be two; the clusters contain 67% and 33% of the
structures, and their median intracluster EMDs are 2.2 and 7.3,
respectively. Therefore, the initial hypothesis is false: as a matter
of fact, the database consists of a core of closely related
compounds (the first cluster) and a second cluster of more loosely
similar ones. Each of the peaks in the baseline histogram contains
the intracluster distances of one of these two clusters, and the tail
of the distribution comes mostly from intercluster distances.

An additional indicator of the good performance of the NN
model is the fact that this bimodal structure is absent from the
top panel of Figure 3. This goes to show that the model does
not act as a mere nearest-neighbor interpolant, looking for
similar molecules whose spectrum to copy, but is actually able
to pick up different structural features from each molecule and
build an accurate prediction based on them.

As a more qualitative illustration, Figure 4 shows four
example spectra to provide the reader with an idea of what can
be considered a good or a poor prediction in the context of our
model. The four structures are chosen at random from each of
the quartiles of the NN EMD distribution. The quartiles for the
NN results are 0.49, 0.82, 2.54, and 23. This means that 75% of
the predicted spectra have an EMD < 2.54, which is
comparable to the EMD between DFT predictions obtained
with different DFT parameterizations (Figure 1). Figure 4 also
illustrates how even relatively large EMDs are qualitatively
informative, which underlines the suitability of the EMDs as a
tailored distance metric and the modified Morgan fingerprints
as a molecular descriptor.

The NN for the high frequencies yields a median EMD of 0.15.
While this value is remarkably small in the context of Figure 3,
the median EMD between the high-frequency parts of two
random histograms is only 0.33. In fact, as will be seen in more
detail below, the high-frequency parts of the spectra have a narrow
unimodal distribution and contain far less detail that can or needs
to be predicted. We trained a binary classifier to try and predict
which molecular structures have a high-frequency part in their
histograms at all. After trying both NNs and RFs for this task, we
find that it is easy to build a classifier with perfect precision and
almost perfect recall, that is, free of false positives and with a
single false negative. The reason for this unusually high level of

Figure 3. Distribution of EMD values between each individual NN (top) and RF (middle) predictions and the database spectra. The green bars give the results for
models trained using only the topological fingerprints and the empty bars the results for models trained also using the 10 largest eigenvalues of the Coulomb matrix.
The bottom panel shows the EMDs between random pairs of structures from the database. As a reference, the 25%, 50%, and 75% percentiles of the EMDs between
random pairs are shown as changes in color in the bottom panel. The gray vertical line shows the reference 2.8 EMD from Figure 1. All EMDs shown here correspond
to the low-frequency parts of the spectra.
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skill can be analyzed by looking at the importance of each feature
in the RF model or by systematically pruning the input features in
the case of the NN. Interestingly, in both cases it is revealed that
nearly perfect classification can be obtained by using just a single
feature, specifically the fingerprint bit shown as blue in Figure 2,
representing an unsaturated carbon atom on the edge of an
aromatic ring. In our data set, the molecules containing multiple
instances of the mentioned fragment have no hydrogen atoms.
This points to C–H bonds as responsible for the localized, high-
frequency vibrations, in agreement with physicochemical intui-
tion. The finding provides an example of how ML techniques can
replicate domain knowledge and, in particular, well known “rules
of thumb”, without any specific guidance from specialists.

3.2. Feature Importance

Our next step consists in training an RF model based on the
same data set as the NN. As expected from the discussion in the
previous section, the predictive power of the RFs is lower,
partly because of the flexibility of the model and partly because
the RF was trained to minimize the mean square error and not
the EMD. This can be seen in the center panel of Figure 3,
which shows the distribution of EMD in the test set. On the
other hand, an advantage of RFs is the intrinsic feature
importance metric they provide. In the left panel of Figure 5 we
show the 10 most important features of the low-frequency RF
models trained on the topological fingerprints. The values in
each list have been renormalized to assign an importance of one
to the most important feature.

A remarkable result is that four features are important for
both low- and high-frequency predictions (not shown): 1088
and 1089, 1200, and 1358. The substructures that those features

represent are depicted in Figure 6. Their complexity reveals
that ML models of vibrational behavior must consider
sequences of many bonds to achieve good predictive skill.
For the low frequencies this is intuitively obvious, since those
normal modes arise from the hybridization of many individual
vibrations and involve many atoms.

3.3. Coulomb Matrix

We then test whether the predictive power can be improved by
adding information to the input that the topological fingerprints
cannot encode, namely descriptors of the molecular geometry.
A priori there are situations where IR spectra depend on their
stereochemistry, for instance if the effect of nonbonded interac-
tions between atoms far away in the molecular graph causes large
changes in the vibrational frequencies of the structure. It is clear
that nothing in the topological descriptors can directly address
those situations. However, the real question is whether the
connection between topology and geometry is strong enough for
PAHs in interstellar space that the former can be used as a proxy
for the latter.

To answer this question, the histograms in the top and center
panels of Figure 3 show the results of NN and RF regression
models based on topological information only (filled) and
models obtained when the topological descriptors are supple-
mented with the 10 largest eigenvalues of the Coulomb matrix
(unfilled contours). Comparing each pair of histograms reveals
very little improvement in model performance coming from the
addition of geometry, especially in comparison with the large
differences introduced by switching the underlying model or
the loss function. The lower importance of the Coulomb matrix
eigenvalues compared to the fingerprints might be due to the

Figure 4. Comparisons between the database result (blue lines) and the NN prediction (orange lines) for four compounds in the test set drawn at random from the
regions between (a) 0% and 25%, (b) 25% and 50%, (c) 50% and 75%, and (d) 75% and 100% of the distribution of EMDs. In other words, the four panels provide
examples of what a prediction looks like for different levels of quality, from good to poor. All histograms shown here correspond to the low-frequency parts of the
spectra.
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loss of information inherent in using a few eigenvalues of a
matrix with -n4 6 independent elements that encode all
structural information of an n-atomic molecule, but also point
to part of the geometric structure being predictable from the
topology itself, as expected.

The inclusion of the Coulomb matrix eigenvalues does have a
discernible effect on the structure of the RFs. This is evidenced
by a comparison between the left- and right-hand-side panels of
Figure 5, which list the 10 most important features in the models
built without and with that information, respectively. However,
the four features discussed above remain among the most 10
most important and only one eigenvalue enters this group. It
does thus not seem probable that including more structural
information would improve the predictive power, and, at least
for the PAHs, the skeletal structure is a sufficient descriptor.

3.4. Application to Specific PAHs

Finally, we test the predictive power of the NNs in detail for
three PAHs which have recently been discussed in terms of
their presence in the interstellar medium (McGuire et al. 2018;
Bouwman et al. 2019). Two of these, perylene and peropyrene
(Bouwman et al. 2019), are present in the NASA spectroscopic
database, while one, benzonitrile (McGuire et al. 2018), is not.
Benzonitrile is furthermore very different from the other
molecules in the data set from a structural point of view: first of
all, it contains a C≡N triple bond which is not present in any
molecule in the data set and, second, the database is focused on
PAHs so there is only another single aromatic ring in the data
set (phenol). To show how our method performs for those
compounds, we trained 20 additional NNs where perylene and
peropyrene were explicitly included in the test set and thus
excluded from the training material. Furthermore, we calcu-
lated the vibrational spectrum of benzonitrile with DFT using
the same prescription employed for the compounds in the
database and described in the methodological section.

The EMDs for perylene and peropyrene are 1.44 and 2.29
respectively, both in the same range as the EMD caused by
using a different basis set for perylene, Figure 1. The good
quality of these predictions is illustrated in Figure 7(a) where it
can be seen that the main peaks are found at the right
frequencies. As expected, a much larger EMD of 9.56 is found
for benzonitrile. This would indicate a poor agreement between
the calculated spectra and the model spectra, also illustrated in
Figure 7(b). As a regression model, the trained NN regression
is inadequate for use on materials that differ substantially from
the training set.

3.5. Error Estimation

It is important that the model also be able to identify such
cases. As a measure of uncertainty we have defined the cross-
NN EMD as the average EMD between every prediction
provided by an ensemble of NNs for a given molecule

å
- ¹N N

2

1
EMD NN , NN ,

i j
i j( ) ( )

where NNi is the spectrum predicted by the ith neural
network in the ensemble for the molecule and N is the number
of NNs in the ensemble.

The poor predictive power for benzonitrile is clearly
reflected in these cross-validation EMD. The average and

Figure 5. Most important features according to the RF models for the low-frequency part, when only the topological fingerprints are included in the input (left-hand-
side panel) and when those are supplemented with the eigenvalues of the Coulomb matrix (right-hand-side panel). Green bars denote topological features, orange bars
represent eigenvalues of the Coulomb matrix. Importances have been renormalized so that the first feature in each list has an importance of unity.

Figure 6. Most important molecular fragments and their unique identifiers for
the low-frequency prediction according to the RF model.
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largest cross-NN EMD are 2.54 and 9.30, respectively. In
contrast, for perylene and peropyrene the average/largest
cross-NN EMDs are 0.66/1.53 and 0.76/1.60, respectively. In
general, this tendency can also be shown for the test set of the
original database. In Figure 8 a clear correlation between
the average cross EMD and the error compared to the true
value can be appreciated. Roughly speaking, we can identify
three areas: an average cross EMD below 1 points to a large
probability that the predicted spectrum is reliable, an average
cross EMD between 1 and 2.5 indicates that the model
prediction might still be correct, and an average cross EMD
larger than 2.5 is correlated with a model prediction that is
probably incorrect.

4. Conclusions

We extract the set of molecular structures from the NASA
Ames PAH IR repository and translate them into topological
fingerprints identifying the abundance of different chemical
fragments in their molecular graph. We also extract the infrared
spectra from the database, codify them into histograms, and
split them into a low- and a high-frequency part. Using the
EMD as a metric we design and train a multilayer NN model to
predict each of those parts of the spectrum based on the
fingerprints. The resulting models show excellent predictive
power for out-of-sample IR spectra, making them suitable for
predicting the spectra of larger libraries of PAHs that better

support more accurate interpretations of astronomical IR
observations. Moreover, NNs are able to recover identifiable
pieces of knowledge, like the role of hydrogen in high-
frequency vibrations. This will be helpful for answering the
puzzling questions raised by astronomical observations on the
chemical composition of the ISM (Li 2020).

We compare the NN predictions with DFT calculations for
three different compounds and show that the average error of
the NN predictions falls in the range of errors caused by
choosing different basis sets for the DFT calculation. We also
find that the NN is only applicable to compounds similar to the
training set and use multiple NNs to give an approximation of
the expected error of the predictions.

We complement this analysis using RF regression. While the
accuracy of RFs is lower than what can be achieved with NNs,
they allow us to explore which molecular features are most
relevant for determining the molecular spectra. We identify
four substructures of high importance for both the low- and
high-frequency parts of the spectrum. At the same time,
however, the results point to a high degree of fungibility among
descriptors, whereby similar levels of performance can be
achieved using different combinations of those. We also check
whether any important information about the molecule is left
out by the topological descriptors by supplementing them with
geometric information in the form of the largest eigenvalues of
the Coulomb matrix. The models do not improve to any
significant degree, showing that the topology of the molecular
graph alone is enough to satisfactorily characterize the
vibrational dynamics of these structures.

This study shows that NNs can be efficiently trained to
bypass expensive first-principles calculations, offering useful
levels of accuracy and incomparably lower computational cost
even for demanding properties like the vibrational spectra.
Moreover, it points to the possibility of extracting simple,
intuitive rules from trained models that replicate or supplement
existing specialist knowledge.

5. Data Access

An example model, data set, and training code are available
on Zenodo at doi:10.5281/zenodo.3979217.
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Figure 7. Worst, average, and best neural network predictions for perylene and benzonitrile compared to the database spectra.

Figure 8. Average EMD from the NN predictions to the database spectrum vs.
the average cross EMD between the ensemble of NN predictions.
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A recent study of Mejia-Rodriguez and Trickey [Phys. Rev. A 96, 052512 (2017)] showed that the
deorbitalization procedure (replacing the exact Kohn-Sham kinetic-energy density by an approximate
orbital-free expression) applied to exchange-correlation functionals of the meta-generalized gradi-
ent approximation (MGGA) can lead to important changes in the results for molecular properties.
For the present work, the deorbitalization of MGGA functionals is further investigated by consid-
ering various properties of solids. It is shown that depending on the MGGA, common orbital-free
approximations to the kinetic-energy density can be sufficiently accurate for the lattice constant,
bulk modulus, and cohesive energy. For the bandgap, calculated with the modified Becke-Johnson
MGGA potential, the deorbitalization has a larger impact on the results. Published by AIP Publishing.
https://doi.org/10.1063/1.5048907

I. INTRODUCTION

Kohn-Sham density functional theory1,2 (KS-DFT) is a
computationally efficient quantum method, which allows the
treatment of molecules, surfaces, and solids containing up to
several thousands of atoms. KS-DFT is particularly fast when
the exchange and correlation (xc) effects are treated at the
semilocal level of approximation. The drawback is, however,
that there can be some degree of uncertainty in the results
with semilocal methods.3,4 The most simple semilocal func-
tional Exc is the local density approximation (LDA),2,5,6 which
is purely a functional of the electron density ρ =

�N
i=1 |ψi |2.

Higher accuracy can be obtained by using functionals of the
generalized gradient approximation (GGA)7–10 which depend
additionally on the first derivative of ρ (∇ρ). Nowadays, the
most advanced and accurate semilocal functionals are the so-
called meta-GGA (MGGA),11 which, in addition of ρ and ∇ρ,
depend also on the positive-definite KS kinetic-energy density
(KED)

tKS(r) =
1
2

N�
i=1

∇ψ∗i (r) · ∇ψi(r) (1)

and/or the second derivative of ρ (∇2ρ),

EMGGA
xc =

�
εxc

�
ρ(r),∇ρ(r),∇2ρ(r), tKS(r)

�
d3r. (2)

Considering how constructing a functional using more ingredi-
ents brings more flexibility to it, MGGA functionals should be
universally more accurate than LDA and GGA functionals.
As with GGA functionals, a plethora of MGGA function-
als have been proposed (see Ref. 11 for an exhaustive list)
and among the recent ones, SCAN12 and TM13 for instance,
have shown to be accurate for many types of systems and
properties.14–22

As discussed in detail in Ref. 11, most MGGA function-
als depend only on the KED tKS, while only very few use

also (or only) ∇2ρ. One of the main reasons for not using
∇2ρ in Exc are the difficulties encountered when calculating
the potential (i.e., the functional derivative of Exc) for self-
consistent calculations. Indeed, the presence of ∇2ρ in Exc

means that the potential contains a term, ∇2
�
∂εxc/∂

�
∇2ρ
��

,
that involves the third and fourth derivatives of ρ (see Ref. 23)
which may lead to numerical problems like a greater sensi-
tivity to the integration grid.23–26 (To our knowledge, only
Ref. 27 reports an implementation of ∇2ρ-MGGA with inte-
gration by part of the relevant Hamiltonian matrix elements28

to avoid the third and fourth derivatives of ρ.) As a comparison,
a GGA potential involves only the first and second derivatives
of ρ (or only the first if integration by part in the Hamil-
tonain matrix29 is done), and a tKS-dependency in a MGGA
functional leads to an additional (non-multiplicative) term
in the potential, −(1/2)∇ ·

��
∂εxc/∂tKS

�
∇ψi

�
, that involves

the derivatives of ψi up to the second order (or only the
first if integration by part in the Hamiltonian matrix28 is
done). Therefore, MGGA calculations have been done using
mostly tKS-MGGAs and are becoming increasingly popular
(see Refs. 30–33 for recent studies reporting self-consistent
implementations for periodic solids). Furthermore, from the
theoretical point of view, a benefit of using tKS is that regions
of space dominated by a single orbital can be detected (see,
e.g., Ref. 34), which may be necessary to satisfy known exact
constraints.12

On the other hand, ∇2ρ-MGGAs have the advantage to
be explicit functionals of ρ such that the functional deriva-
tive leads to a true KS (i.e., multiplicative) potential, which
is not the case with tKS-MGGAs. Also, except for the prob-
lems with the high derivatives of ρ mentioned above, a new
self-consistent implementation of MGGAs should be easier
for ∇2ρ-MGGAs. Furthermore, according to Refs. 35 and
36, ∇2ρ-MGGAs lead to faster calculations compared to tKS-
MGGAs, which may be of importance for large systems.
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Thus, from the fundamental and practical point of views,∇2ρ-
MGGAs are still of interest and worth to be further considered
as done in recent studies.25,26,35,36

In particular, Mejia-Rodriguez and Trickey26 investigated
the effect of replacing the exact orbital-dependent tKS in
existing tKS-MGGA functionals by some orbital-free (OF)
approximations tOF. They called this procedure deorbitaliza-
tion, meaning that a tKS-MGGA is transformed into an explicit
density functional ∇2ρ-MGGA. The properties that they con-
sidered are the heat of formation, bond lengths, and vibration
frequencies of molecules. This study showed that the replace-
ment tKS→ tOF can have some impact on the results depending
on the xc-MGGA or the OF KED. For instance, the average
error for the heat of formation is in some cases only slightly
modified, while in some other cases it is increased by one order
of magnitude. Also, it seems that none of the OF KED they
considered, including the three new ones proposed by Mejia-
Rodriguez and Trickey, lead to reasonably small changes in all
cases.

For the present study, we pursue the investigations on
the deorbitalization procedure by considering properties of
solids. Several tKS-MGGA energy functionals will be deor-
bitalized and tested on the lattice constant, bulk modulus,
and cohesive energy, while the deorbitalization of the mod-
ified Becke-Johnson potential37 will be considered for the
electronic structure. We note that, in a subsequent work of
Mejia-Rodriguez and Trickey,36 that was made available just
after completion of our work, solids were also considered and
basically the same properties were calculated.

The structure of the paper is the following. Section II pro-
vides a brief description of the theory and the computational
details. In Sec. III, the results obtained with the deorbitalized
MGGAs are presented and discussed, while Sec. IV pro-
vides some analysis, and Sec. V gives the summary of this
work.

II. THEORY AND COMPUTATIONAL DETAILS
A. Orbital-free kinetic energy densities

In the KS-DFT method,2 the noninteracting kinetic energy
component of the total energy is given by TKS

s = ∫ tKSd3r,
where tKS is given by Eq. (1). Note that another com-
mon expression for the integrand in TKS

s is tKS
 = −(1/2)�N
i=1 ψ

∗
i ∇2ψi which is related to tKS by tKS
 = tKS − (1/4)∇2ρ

and leads to the same value of TKS
s since the integral of ∇2ρ is

zero. For the development of fully OF DFT methods38–40 or in
the framework of embedding schemes,41–44 expressions for T s

which are explicit functionals of ρ have been proposed, and as
for xc-functionals, the majority of them are of semilocal type.
The most simple is the LDA of Thomas and Fermi45,46 (TF)
which is the exact expression for the homogeneous electron
gas and reads

TTF
s = CTF

�
ρ5/3(r)d3r, (3)

where CTF = (3/10)
�
3π2
�2/3

. With respect to the exact values

(TKS
s ), the TF functional leads to underestimations for atoms47

and molecules48–51 of about 10%. Since the kinetic energy is

a major component of the total energy Etot (from the virial
theorem T s ≈ −Etot), such errors are extremely large. Much
better values for T s can be obtained with gradient-corrected
type (GGA) functionals (errors below 0.5% for the best
ones48–53),

TGGA
s = CTF

�
ρ5/3(r)Fs(s(r))d3r, (4)

where s = |∇ρ|/
�
2
�
3π2
�1/3
ρ4/3
�

is the reduced density gra-

dient and Fs is the kinetic enhancement factor for which
many forms have been proposed in the literature (see Refs. 51
and 53–55 for compilations) like, for instance, those that
were obtained using the conjointness conjecture between the
exchange and kinetic energy functionals.52,56,57 While GGAs
can lead to rather accurate (albeit far from enough for an use-
ful OF DFT method) values of T s, the GGA KEDs defined
as the integrand of Eq. (4) show absolutely no resemblance
to Eq. (1).58–61 This can be understood by considering the
density-gradient expansion approximation (GEA) of Eq. (1)
which, at the second order, is given by62,63 (L in GEA2L
indicates the presence of ∇2ρ)

tGEA2L(r) = tTF(r) +
1
9

tW(r) +
1
6
∇2ρ(r), (5)

where tTF = CTFρ
5/3 [the integrand of Eq. (3)] and tW = |∇ρ|2/

(8ρ) is the von Weizsäcker64 KED. It is only by considering
∇2ρ in an OF KED tOF that the shape of tOF can be made
reasonably close to tKS (see Refs. 58, 59, 65, and 66), and
despite some attempts,60 it is most likely hopeless to construct
a GGA KED that looks similar to tKS.

Thus, one has to consider ∇2ρ-dependent OF KED tOF

for a replacement of tKS in a tKS-MGGA xc-functional with
the hope of not changing much the results. As mentioned
above, a term c∇2ρ (c is a constant) in the KED [like in
Eq. (5)] integrates to zero, but would also not contribute to
the kinetic potential δT s/δρ in a OF or embedding scheme
since the contribution is ∇2

�
∂
�
c∇2ρ

�
/∂
�
∇2ρ
��
= ∇2c = 0.

However, MGGA xc-functionals depend on the KED
in a more complicated way such that c∇2ρ cannot be
discarded.

The ∇2ρ-dependent KED tOF that we will consider for
a replacement of tKS in xc-MGGAs are now listed (more
detail can be found in the respective references). GEA2L62,63

as given by Eq. (5). TW02L, which consists of the GGA
TW02 proposed in Ref. 52 (a reparametrization of the GGA
exchange of Perdew, Burke, and Ernzerhof (PBE)9 with κ
= 0.8438 and µ = 0.2319) augmented with (1/6)∇2ρ. PC
from Perdew and Constantin,65 which was constructed to
recover the fourth-order GEA in the slowly varying den-
sity limit and tW in the rapidly varying limit, as well as to
satisfy tW ≤ tPC. CR from Cancio and Redd67 [Eqs. (20)
and (21) in Ref. 67 with α = 4], which was constructed
in a rather similar way as PC. GEAloc from Cancio and
Redd67 [Eq. (37) in Ref. 67], which has the same form as
Eq. (5) but with different (optimized) parameters in front of
tW and ∇2ρ. PCopt and CRopt from Mejia-Rodriguez and
Trickey26 that are reoptimized versions of PC and CR, respec-
tively. Many other expressions for tOF could also be consid-
ered, e.g., any of the integrand (augmented by c∇2ρ) of the
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numerous proposed TGGA
s or those proposed recently in

Refs. 68–71. Nevertheless, our selection of seven different
OF KED should be good enough to give us a general idea
of the change in the performance of a xc-MGGA when it is
deorbitalized.

It is important to mention that, as done, e.g., in Ref. 43, for
all considered OF KED, we chose to enforce the lower bound
tW ≤ t.72,73 Thus, it is in fact

tOF
(r) = max
�
tOF(r), tW(r)

�
(6)

that replaces tKS in the MGGA xc-functionals, which is also a
way to locally reduce the error in tOF. Note that depending on
the MGGA xc-functional, Eq. (6) may be anyway necessary
to apply if negative values of tOF − tW or tOF lead to problems
like, for instance, under a square root. Note that Eq. (6) may
introduce a kink in the KED, and therefore also in εxc, which
may translate into a discontinuity in the potential.

We also mention that the generalization of the OF KED
formulas for spin-polarized systems is trivially given by74 t[ρ↑,
ρ↓] = t↑[ρ↑] + t↓[ρ↓], where tσ[ρσ] = (1/2)t[2ρσ] with
t[2ρσ] being the non-spin-polarized formula in which ρ is
replaced by 2ρσ .

B. MGGA exchange-correlation functionals

The MGGA xc-energy functionals that we will consider
to test the accuracy of OF KED are MVS75 and SCAN,12 that
were used by Mejia-Rodriguez and Trickey26 for their molec-
ular tests, as well as TM that was proposed by Tao and Mo.13

The recent SCAN and TM functionals have been shown to
be accurate in many circumstances (see, e.g., Refs. 14–22).
Additionally, the modified Becke-Johnson MGGA potential37

(mBJLDA, combined with LDA correlation6) will also be used
to test the accuracy of OF KED by considering the bandgap.
The mBJLDA potential, which is based on the BJ poten-
tial,76,77 was shown to be much more reliable than the standard
LDA and GGA methods for bandgap calculations and to lead
to values that are in very good agreement with experiment in
most cases.37,78–82

With an energy functional (MVS, SCAN, or TM), the
closeness between OF KEDs and the exact KS KED is quanti-
fied by considering properties that depend on the total energy
(lattice constant, bulk modulus, and cohesive energy). With the
mBJLDA potential, properties like band structure or electron
density are more interesting to look at.

C. Computational details

The calculations were done with WIEN2k,83 which is an
all-electron code based on the linearized augmented plane-
wave method.84,85 Very good parameters were chosen such that
the results are well converged. As in our previous work,14 the
lattice constant, bulk modulus, and cohesive energy obtained
with MGGAs were calculated using the GGA PBE9 orbitals
and density since in WIEN2k there is no implementation of
the potential for MGGAs (neither of the non-multiplicative
type for tKS-MGGAs nor of the multiplicative type for
∇2ρ-MGGAs). As discussed in Ref. 14, the effect of self-
consistency on the results should be very small for strongly

bound (i.e., covalent, ionic, metallic) solids. However, self-
consistency is expected to affect more the results for weakly
bound van der Waals solids. Therefore, this is only via the
energy functional that the replacement tKS→ tOF will produce
changes in the lattice constant, bulk modulus, and cohesive
energy. The calculations of the bandgap with the multiplicative
mBJLDA potential were done self-consistently.

III. RESULTS
A. Lattice constant, bulk modulus, and binding energy

We start with the results for the equilibrium lattice con-
stant a0, bulk modulus B0, and cohesive energy Ecoh of 44
strongly bound solids (listed in Table S1 of the supplementary
material). Table I shows the mean error (ME), mean absolute
error (MAE), mean relative error (MRE), and mean absolute
relative error (MARE) with respect to the experiment. The
values of a0, B0, and Ecoh can be found in Tables S1–S9
and Figs. S1–S24 of the supplementary material. The errors
obtained with the parent tKS-MGGA, namely, MVS, SCAN,
or TM, are considered as the reference that should be repro-
duced at best by an OF tOF-MGGA [denoted MGGA(X),
where X is one of the OF approximations tOF mentioned in
Sec. II A]. Since the amount of results shown in Table I
is rather substantial and would make a detailed discussion
rather lengthy and tedious, a concise discussion, only in terms
of MAE and ME, of the most interesting observations is
provided.

In the case of the SCAN and TM xc-functionals, the deor-
bitalization procedure leads to changes in the MAE and ME
that are the smallest if tKS is replaced by tGEA2L, tTW02L, tPC,
or tCR. The change in the MAE is in most cases below 0.003
Å for a0, 2.5 GPa for B0, and 0.03 eV/atom for Ecoh, such
that it is reasonable to consider the overall (in)accuracy of
the xc-functional as unaffected by its deorbitalization. tPCopt

also belongs to the group of the accurate OF KED in the case
of SCAN, but not TM especially for the bulk modulus and
cohesive energy. If the deorbitalization of SCAN or TM is
done with tGEAloc or tCRopt, then larger changes in the MAE
and ME can sometimes, but not systematically, be observed.
This seems to be particularly the case with tCRopt, which, for
instance, leads for SCAN to changes of 0.023 Å and 3.8 GPa
in the MAE of a0 and B0, respectively. tCRopt also leads to
the largest change in the MAE of a0 and Ecoh for TM. Thus,
replacing tKS by tGEAloc or tCRopt, in particular, affects more
the accuracy of a functional and would probably change the
position of the xc-functional in some performance ranking
(see Ref. 14).

Compared to SCAN and TM, the deorbitalization proce-
dure of MVS leads to changes in the MAE that are in general
clearly larger. This is due to the analytical form of MVS that
depends more strongly on the KED. For instance, for B0 there
is a decrease in the MAE that is in the range 3.2-5.9 GPa, while
for Ecoh the MAE of the tOF-MVS can be decreased by 0.15
eV/atom [with MVS(GEAloc)] or increased by 0.07 eV/atom
[with MVS(CRopt)]. Concerning the ME of MVS, tGEA2L,
tTW02L, tPC, and tCR are more efficient than tGEAloc, tPCopt, and
tCRopt for reproducing the values of MVS. Note that, in terms
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TABLE I. The ME, MAE, MRE, and MARE of the parent tKS-MGGA functionals (MVS, SCAN, and TM) with
respect to experiment86,87 on the testing set of 44 strongly bound solids for the lattice constant a0, bulk modulus
B0, and cohesive energy Ecoh. The values for the tOF-MGGA functionals are also with respect to experiment, but
with the value of the parent functional subtracted, e.g., ME(tOF-MGGA)-ME(tKS-MGGA). The units of the ME
and MAE are Å, GPa, and eV/atom for a0, B0, and Ecoh, respectively, and % for the MRE and MARE. The large
differences with respect to the parent tKS-MGGA are italic. All results were obtained non-self-consistently using
PBE orbitals/density.

a0 B0 Ecoh

Functional ME MAE MRE MARE ME MAE MRE MARE ME MAE MRE MARE

MVS ☞0.008 0.043 ☞0.3 0.9 12.2 13.3 8.2 12.7 0.21 0.37 5.8 9.3

MVS(GEA2L) ☞0.016 ☞0.007 ☞0.3 ☞0.1 ☞4.0 ☞3.4 ☞1.1 ☞3.3 ☞0.03 ☞0.13 ☞1.2 ☞3.0

MVS(TW02L) ☞0.007 ☞0.009 ☞0.1 ☞0.2 ☞4.7 ☞3.6 ☞2.5 ☞4.0 ☞0.13 ☞0.13 ☞3.9 ☞2.6

MVS(PC) ☞0.014 ☞0.008 ☞0.2 ☞0.2 ☞4.6 ☞3.2 ☞1.5 ☞3.4 ☞0.08 ☞0.13 ☞2.3 ☞3.0

MVS(CR) ☞0.016 ☞0.007 ☞0.3 ☞0.1 ☞3.9 ☞3.4 ☞1.1 ☞3.3 ☞0.02 ☞0.12 ☞0.8 ☞2.9

MVS(GEAloc) 0.006 ☞0.007 0.2 ☞0.1 ☞9.3 ☞5.9 ☞4.6 ☞5.2 ☞0.29 ☞0.15 ☞6.9 ☞3.4

MVS(PCopt) ☞0.011 0.001 ☞0.2 0.0 ☞8.4 ☞3.8 ☞3.0 ☞3.2 ☞0.25 ☞0.08 ☞5.3 ☞2.6

MVS(CRopt) 0.045 0.007 1.0 0.1 ☞17.1 ☞3.2 ☞11.8 ☞3.7 ☞0.59 0.07 ☞14.1 1.4

SCAN 0.018 0.030 0.3 0.6 3.5 7.4 ☞0.5 6.5 ☞0.02 0.19 ☞0.7 4.9

SCAN(GEA2L) ☞0.012 ☞0.002 ☞0.2 0.0 ☞4.5 2.4 ☞0.7 1.3 0.05 ☞0.01 1.0 ☞0.3

SCAN(TW02L) ☞0.007 ☞0.001 ☞0.1 0.0 ☞5.2 2.5 ☞1.6 1.5 ☞0.00 0.00 ☞0.5 0.1

SCAN(PC) ☞0.010 ☞0.001 ☞0.2 0.0 ☞5.0 2.7 ☞1.0 1.4 0.02 0.00 0.3 0.0

SCAN(CR) ☞0.012 ☞0.003 ☞0.2 0.0 ☞4.5 2.3 ☞0.7 1.3 0.06 ☞0.01 1.1 ☞0.3

SCAN(GEAloc) 0.016 0.010 0.4 0.2 ☞10.4 3.4 ☞3.8 2.4 ☞0.20 0.06 ☞4.5 1.3

SCAN(PCopt) ☞0.004 ☞0.002 0.0 0.0 ☞6.4 0.3 ☞1.8 0.2 ☞0.07 ☞0.02 ☞1.6 ☞0.1

SCAN(CRopt) 0.034 0.023 0.8 0.5 ☞11.7 3.8 ☞6.2 3.4 ☞0.28 0.12 ☞6.6 3.0

TM ☞0.006 0.023 ☞0.2 0.5 2.4 6.6 2.1 6.2 0.24 0.27 6.4 7.0

TM(GEA2L) ☞0.005 0.002 ☞0.1 0.0 ☞0.9 0.9 ☞0.5 0.4 ☞0.01 0.01 ☞0.3 0.2

TM(TW02L) ☞0.003 0.001 ☞0.1 0.0 ☞0.9 0.9 ☞0.8 0.3 ☞0.02 0.01 ☞0.7 0.0

TM(PC) ☞0.006 0.003 ☞0.1 0.1 ☞0.7 1.0 ☞0.1 0.6 ☞0.02 0.02 ☞0.5 0.4

TM(CR) ☞0.005 0.002 ☞0.1 0.0 ☞0.8 0.9 ☞0.5 0.4 ☞0.00 0.01 ☞0.1 0.2

TM(GEAloc) ☞0.010 0.003 ☞0.2 0.1 ☞0.4 1.6 0.9 1.2 ☞0.01 0.03 0.2 1.1

TM(PCopt) 0.004 0.004 0.1 0.1 ☞2.9 1.7 ☞1.5 0.9 ☞0.09 ☞0.03 ☞2.0 ☞0.6

TM(CRopt) 0.009 0.004 0.2 0.1 ☞3.6 1.0 ☞2.4 0.5 ☞0.13 ☞0.05 ☞2.8 ☞1.0

of MAE, MVS(CRopt) seems to be the closest to MVS, but
this is fortuitous since the ME are completely different and of
opposite sign.

Figure 1 shows for each solid the relative error in the
lattice constant and cohesive energy obtained with the par-
ent SCAN and four of its deorbitalized versions. We can
see that the results with SCAN(GEA2L) and SCAN(PC),
which are basically the same, are very or fairly close
to SCAN results in most cases. The most visible excep-
tions are the alkali and alkaline earth metals for which the
SCAN(CRopt) values follow very closely those obtained with
SCAN, in particular, for a0. We also note some large dif-
ferences in Ecoh between SCAN(GEA2L/PC) and SCAN
for some of the 3d and 4d transition metals and the ionic
compounds. Except for the aforementioned alkali and alka-
line earth metals, the lattice constants and cohesive energies
obtained with SCAN(CRopt) differ noticeably from SCAN.
SCAN(PCopt) leads to results that are intermediate between
SCAN(GEA2L/PC) and SCAN(CRopt).

Thus, in summary the performance of a xc-MGGA func-
tional for strongly bound solids is modified the least when

tKS is replaced by tGEA2L, tTW02L, tPC, tCR, or tPCopt. For
SCAN and TM, the performance is overall barely changed
by the deorbitalization using one of these OF KED, but more
for MVS.

Although the goal of replacing tKS by tOF in a xc-MGGA
was not to improve the agreement with experiment, we men-
tion that it is sometimes the case. By looking at the MA(R)E
in Table I, we can see that, for instance, the deorbitalizion of
MVS reduces the values for a0, B0, and Ecoh.

In their work, Mejia-Rodriguez and Trickey26 reported
changes (due to the deorbitalization) in the MAE for bond
lengths of molecules that are below 0.002 Å with MVS, which
is small. The change in the ME can be larger in some cases
since while the ME is −0.0016 Å with MVS, it increases to
0.0069 Å with MVS(PC), but is rather similar,−0.0025 Å, with
MVS(PCopt). The deorbitalisation of SCAN leads to larger
changes in the MAE of bond lengths (up to ∼0.01 Å), but not
for the ME since the largest change is ∼0.016 Å, which is
barely larger than for MVS. From these results on molecular
bond lengths, tPCopt seems to be a more accurate OF KED
than the others. This is in line with our observation that tPCopt
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FIG. 1. Relative error (in %) with
respect to experiment86,87 in the cal-
culated lattice constant (left panel) and
cohesive energy (right panel) for the 44
strongly bound solids.

is among the most accurate OF KED for the lattice constants
of solids. Concerning the heat of formation,26 the changes
in the MAE and ME seem to be in many cases the smallest
with tPCopt, as well. For instance, the deorbitalization of SCAN
leads to a change in the MAE of +15 and +0.5 kcal/mol with
tPC and tPCopt, respectively, and +21 and +6 kcal/mol for the
ME. We also mention that from the results of Mejia-Rodriguez
and Trickey, we cannot observe a change in the results due to
the deorbitalization that is larger in the case of MVS as we did.
We should also mention the work of Bienvenu and Knizia35

who observed that the deorbitalization of the MGGA of Tao
et al.90 (TPSS) with the KED PC induces rather large changes
in the reaction energy of molecules.

In their more recent work on a similar test set of solids,
Mejia-Rodriguez and Trickey36 also investigated the lattice
constant, bulk modulus, and cohesive energy, but only one
xc-functional (SCAN) and OF KED (PCopt) were consid-
ered. Their calculations were done self-consistently and within
the projected-augmented wave method. Without entering into
detail, their results are similar to ours and therefore also con-
cluded that PCopt is an accurate OF KED in the case of
SCAN.

Turning now to weakly bound van der Waals systems,
Tables II and III show the results for rare-gas (Ne, Ar, and Kr)

and layered hexagonal solids (graphite, h-BN, TiS2, MoTe2,
and WSe2), respectively.

The range of errors in the lattice constant obtained in typ-
ical performance tests of DFT functionals on van der Waals
systems (see, e.g., Refs. 14 and 91–94) is by far much larger
than for covalent or ionic solids. Hence, for our systems it
should be fair to consider that the performance of a tKS-MGGA
(with respect to other functionals) is not really modified by its
deorbitalization if the change in the lattice constant is, let us
say, below something like (this may be a matter of personal
taste)∼0.1–0.15 Å for the rare-gas (a0) and layered solids (c0).
With this criterion, the results show that the replacement tKS

→ tOF in SCAN and TM leads to acceptable changes in the
lattice constant in most cases except maybe Kr. With MVS,
however, the changes are two or three times larger and unac-
ceptable since they may affect the performance of MVS with
respect to other functionals.

By choosing, again arbitrarily, ∼20% of the reference
CCSD(T) (coupled-cluster singles, doubles, and perturbative
triples) or RPA (random-phase approximation) binding energy
as the largest change that can be accepted when a functional
is deorbitalized, then too large variations in Ecoh or Eb are
usually observed for MVS, especially for the rare gases. The
deorbitalization of SCAN or TM affects less the results, but
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TABLE II. Equilibrium lattice constant a0 (in Å) and cohesive energy Ecoh
(in meV/atom) of rare-gas solids. The values for the tOF-MGGA function-
als are the difference from those obtained with the parent tKS-MGGA, e.g.,
a0(tOF-MGGA) ☞a0(tKS-MGGA). The reference CCSD(T) results, which
agree closely with experiment,88 are also shown. The large differences
with respect to the parent tKS-MGGA are italic. All results were obtained
non-self-consistently using the PBE orbitals/density.

Ne Ar Kr

Method a0 Ecoh a0 Ecoh a0 Ecoh

MVS 4.02 59 5.41 56 5.79 69

MVS(GEA2L) ☞0.14 41 ☞0.34 70 ☞0.30 80

MVS(TW02L) ☞0.03 0 ☞0.21 29 ☞0.17 33

MVS(PC) ☞0.15 47 ☞0.34 75 ☞0.31 85

MVS(CR) ☞0.14 41 ☞0.34 70 ☞0.30 80

MVS(GEAloc) ☞0.11 31 ☞0.26 54 ☞0.19 55

MVS(PCopt) ☞0.13 38 ☞0.31 66 ☞0.23 63

MVS(CRopt) 0.85 ☞53 1.03 ☞48 0.75 ☞53

SCAN 4.03 54 5.31 61 5.74 72

SCAN(GEA2L) ☞0.02 11 ☞0.15 32 ☞0.20 50

SCAN(TW02L) 0.03 ☞6 ☞0.08 9 ☞0.15 23

SCAN(PC) ☞0.03 15 ☞0.15 36 ☞0.20 54

SCAN(CR) ☞0.02 12 ☞0.15 32 ☞0.20 50

SCAN(GEAloc) 0.02 5 ☞0.06 19 ☞0.11 33

SCAN(PCopt) ☞0.03 12 ☞0.11 28 ☞0.14 40

SCAN(CRopt) 0.63 ☞48 0.25 ☞37 0.26 ☞37

TM 4.05 47 5.23 62 5.60 82

TM(GEA2L) ☞0.00 7 ☞0.08 22 ☞0.08 27

TM(TW02L) 0.03 ☞5 ☞0.05 9 ☞0.05 13

TM(PC) ☞0.03 ☞8 ☞0.14 12 ☞0.14 22

TM(CR) ☞0.00 7 ☞0.08 22 ☞0.08 27

TM(GEAloc) ☞0.10 32 ☞0.17 56 ☞0.16 67

TM(PCopt) ☞0.01 ☞10 ☞0.11 7 ☞0.11 15

TM(CRopt) 0.05 ☞4 ☞0.01 7 ☞0.01 9

Reference 4.30 26 5.25 88 5.60 122

nevertheless the change for the rare gases is in most cases also
too large according to our criterion. Interestingly, note that
the deorbitalization of the SCAN and TM functionals leads
in many cases to a better agreement with CCSD(T) for the
binding energy.

For the rare gases, the OF KED that leads overall to
the smallest perturbations for the deorbitalization of the xc-
MGGAs seems to be tTW02L. Note that, tCRopt shows rather
strange results since it is the worst when used in MVS and
SCAN, while it is the best for TM. In the case of the lay-
ered solids, a good choice for tOF is tGEAloc for MVS and
SCAN, while with TM all tOF except tGEAloc are of similar
accuracy.

B. Bandgaps

Turning to the electronic structure, Table IV and Fig. 2
(for selected methods) show the results obtained for the funda-
mental bandgap Eg calculated with the mBJLDA potential and
its deorbitalized versions. The testing set, which was used in
our previous studies,80,82 consists of 76 solids (listed in Table

S10 of the supplementary material) of various types: ionic
insulators, sp-semiconductors, rare gases, and strongly cor-
related solids. As shown in Refs. 80 and 82, the mBJLDA
potential is on average more accurate for the bandgap than
all other semilocal potentials and hybrid functionals that were
considered for comparison (the PBE9 and HSE06105,106 results
are also shown in Table IV and Fig. 2).

From the statistics shown in Table IV, the first observa-
tion is that deorbitalizing the mBJLDA potential leads to an
increase of the MAE and MARE, no matter what OF KED is
used. The deterioration is the smallest when tKS is replaced by
tPCopt, and in this case the MAE increases from 0.47 to 0.67 eV
and the MARE from 15% to 16%. This increase in the MARE
is clearly negligible, but also quite acceptable for the MAE
considering that most other potentials lead to larger MAE for
this test set.80,82 With mBJLDA(CRopt), a small increase of
4% for the MARE is obtained, while the MAE increases to
0.75 eV, which is now on the verge of being acceptable since
other potentials, e.g., AK13,107 B3PW91,108 or HSE06105,106

lead to similar MAE.80,82 Substituting tKS by any of the other
OF KED leads to a clearly larger MAE (around 1 eV) and
MARE (above 30%, except with tGEAloc).

Looking into more detail at the results (see Table S11
and Figs. S25–S32 of the supplementary material and Fig. 2),
we can see that an inaccurate OF KED like tGEA2L leads to
bandgaps which are in most cases about halfway between the
mBJLDA and PBE values, such that a rather clear underesti-
mation is obtained on average (see ME and MRE in Table IV).
The mBJLDA bandgaps are in general reproduced more accu-
rately by mBJLDA(PCopt) and/or mBJLDA(CRopt) except
for the rare gases for which mBJLDA(GEA2L) is the closest
to mBJLDA.

We note that a reoptimization of the parameters α and β in
a OF mBJLDA potential [see Ref. 37 for details] may possibly
lead to a (partial) recovery of the performance of the original
mBJLDA potential. However, we have not made any attempts
since this is beyond the scope of this work.

Finally, we mention that Mejia-Rodriguez and Trickey36

compared the bandgaps obtained from self-consistent SCAN
and SCAN(PCopt) calculations. On a test set of 21 solids, they
observed that the deorbitalization of SCAN leads to an increase
in the MAE from 1.26 to 1.58 eV. This is rather similar to the
difference between mBJLDA (0.47 eV) and mBJLDA(PCopt)
(0.67 eV).

IV. FURTHER DISCUSSION

Thanks to their additional dependency on tKS, tKS-
MGGAs are more flexible than GGAs and, therefore, have
the possibility to be universally more accurate. As shown
above, a tKS-MGGA can be replaced rather efficiently (albeit
not systematically) by a corresponding ∇2ρ-MGGA, and in
order to shed some light on the relation between tKS and
∇2ρ, a principal component analysis109,110 (PCA) of tTF,
tW, ∇2ρ, and tKS has been carried out. From the PCA, an
approximation for tKS that consists of a linear combination
of tTF, tW, and ∇2ρ is obtained, and its accuracy reveals to
which extent tKS can be represented by ρ and its first two
derivatives.
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TABLE III. Equilibrium lattice constant c0 (in Å) and interlayer binding energy Eb (in meV/atom) of layered
solids. The values for the tOF-MGGA functionals are the difference from those obtained with the parent tKS-
MGGA, e.g., c0(tOF-MGGA) ☞ c0(tKS-MGGA). The intralayer constant a was not optimized, but kept fixed at the
experimental value.89 Reference results89 from the experiment for c0 and from RPA for Eb are also shown. The
large differences with respect to the parent tKS-MGGA are italic. All results were obtained non-self-consistently
using PBE orbitals/density.

Graphite h-BN TiS2 MoTe2 WSe2

Method c0 Eb c0 Eb c0 Eb c0 Eb c0 Eb

MVS 6.60 32 6.43 38 5.79 30 14.66 34 13.48 19

MVS(GEA2L) ☞0.24 13 ☞0.21 10 ☞0.19 18 ☞0.25 6 ☞0.22 12

MVS(TW02L) ☞0.22 11 ☞0.19 8 ☞0.12 9 ☞0.13 0 ☞0.09 5

MVS(PC) ☞0.24 13 ☞0.20 10 ☞0.14 17 ☞0.25 7 ☞0.22 12

MVS(CR) ☞0.24 13 ☞0.21 10 ☞0.19 18 ☞0.25 6 ☞0.22 12

MVS(GEAloc) ☞0.14 10 ☞0.13 7 0.02 7 0.12 ☞2 0.07 4

MVS(PCopt) ☞0.13 10 ☞0.12 7 ☞0.07 11 0.01 2 0.02 7

MVS(CRopt) 0.02 ☞1 0.14 ☞7 0.28 ☞11 0.37 ☞13 0.59 ☞8

SCAN 6.94 20 6.79 21 5.93 21 14.75 30 13.68 17

SCAN(GEA2L) ☞0.13 4 ☞0.10 5 ☞0.12 12 ☞0.33 8 ☞0.26 10

SCAN(TW02L) ☞0.10 2 ☞0.08 3 ☞0.09 8 ☞0.31 5 ☞0.23 7

SCAN(PC) ☞0.13 4 ☞0.10 5 ☞0.09 11 ☞0.33 8 ☞0.26 10

SCAN(CR) ☞0.13 4 ☞0.10 5 ☞0.12 12 ☞0.33 8 ☞0.26 10

SCAN(GEAloc) ☞0.09 3 ☞0.06 4 0.03 5 0.13 ☞1 0.05 3

SCAN(PCopt) ☞0.12 3 ☞0.08 4 ☞0.04 8 0.07 0 0.01 4

SCAN(CRopt) 0.03 ☞1 0.05 ☞2 0.16 ☞5 0.41 ☞9 0.36 ☞5

TM 6.63 29 6.49 32 5.73 44 14.17 50 13.21 35

TM(GEA2L) ☞0.08 4 ☞0.06 3 ☞0.08 7 ☞0.16 7 ☞0.11 6

TM(TW02L) ☞0.09 4 ☞0.07 3 ☞0.08 6 ☞0.16 7 ☞0.11 5

TM(PC) ☞0.15 4 ☞0.11 4 ☞0.07 6 ☞0.17 8 ☞0.14 6

TM(CR) ☞0.08 4 ☞0.06 3 ☞0.08 7 ☞0.16 7 ☞0.11 6

TM(GEAloc) ☞0.23 17 ☞0.21 15 ☞0.07 15 ☞0.14 14 ☞0.15 13

TM(PCopt) ☞0.12 3 ☞0.08 2 0.02 3 0.02 2 0.02 2

TM(CRopt) ☞0.10 7 ☞0.07 5 0.02 3 0.05 2 0.03 2

Reference 6.70 48 6.69 40 5.71 95 13.97 111 12.96 93

The 4 × 4 covariance matrix was calculated using uni-
formly sampled data from one representative of metallic (Cu),
layered (graphite), and covalently bound (Si) systems, and

TABLE IV. The ME, MAE, MRE, and MARE (with respect to experi-
ment86,95–104) on the testing set of 76 solids (listed in Table S10 of the supple-
mentary material) for the fundamental bandgap Eg obtained with mBJLDA
and its deorbitalized versions, as well as PBE and HSE06. The units are eV
for the ME and MAE and % for the MRE and MARE.

ME MAE MRE MARE

mBJLDA ☞0.30 0.47 ☞5 15

mBJLDA(GEA2L) ☞0.95 0.97 ☞32 32

mBJLDA(TW02L) ☞1.03 1.03 ☞33 33

mBJLDA(PC) ☞1.17 1.18 ☞32 33

mBJLDA(CR) ☞0.94 0.96 ☞31 32

mBJLDA(GEAloc) 0.39 0.92 6 21

mBJLDA(PCopt) ☞0.54 0.67 ☞10 16

mBJLDA(CRopt) ☞0.08 0.75 ☞10 19

PBE ☞1.99 1.99 ☞53 53

HSE06 ☞0.68 0.82 ☞7 17

diagonalized in order to get the eigenvalues and correspond-
ing eigenvectors spanning the four-dimensional space of tTF,
tW, ∇2ρ, and tKS. In the next step, we neglect the eigen-
vector with the smallest eigenvalue, thereby obtaining the
three-dimensional representation which explains most of the
variance in the data. Now, assuming that all points are on this
three dimensional hyperplane, one can reconstruct an OF KED
from the values of ρ (i.e., tTF), ∇ρ (i.e., tW), and ∇2ρ, and the
resulting linear combination is given by

tPCA(r) = 1.069tTF(r) − 0.244tW(r) + 0.438∇2ρ(r). (7)

The coefficient in front of tTF is close to 1 as it should be in
order to recover the homogeneous electron gas limit, while
those in front of tW and ∇2ρ show big differences from
GEA2L [Eq. (5)]. However, it is worth mentioning that a
negative coefficient in front of tW is found also in GEAloc67

(−0.165) and in a KED expression derived for the Airy gas68

(−1/9 ≈ −0.111).
Figure 3 shows for the three selected solids the accu-

racy of the GEA2L and our PCA approximation with the
Weizsäcker lower bound enforced [Eq. (6)]. We can see that
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FIG. 2. Relative error (in %) with respect to the experi-
ment86,95–104 in the bandgap Eg.

the PCA approximation shows better agreement with the
KS KED than GEA2L, similarly obtained by Seino et al.51

for atoms and small organic molecules using a machine
learning algorithm. It is also important to note that for both

approximations, there are two regions where one can find
larger errors. These two lumps are from Si and graphite, where
GEA2L systematically overestimates the KED, while in the
PCA approximation these errors are still there but largely
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FIG. 3. Comparison between the KS KED and the GEA2L and PCA approx-
imations for different solids. For clarity (no overlap between the GEA2L
and PCA data), the tKS values for GEA2L are multiplied by 1000 (i.e., right
shifted). A perfect approximation should coincide with the diagonal solid
black line.

reduced. Actually, the errors for graphite can be found in the
same KED region as the errors for organic molecules.51

In Fig. 4, the erroneous points from these two regions are
shown in real space, where we can see that the bigger errors
occur in the middle of covalent bonds. If, for instance, for
graphite the same PCA method is applied using only the points
in the bonding regions, much better accuracy (in these bonding
regions) can be reached, and the resulting linear combination
is given by

tPCA
bond(r) = 0.389tTF(r) + 0.635tW(r) + 0.084∇2ρ(r). (8)

While this is obviously not useful as a general KED approxi-
mation, it is interesting to note that tW has now a small positive
coefficient, in agreement with the fact that the covalent σ-
bonding in graphite and silicon should be dominated by a
single molecular orbital. As shown by Seino et al.,51 consider-
ing also the third derivative of ρ further improves the accuracy
of OF KED. However, as discussed below, the bonding regions
highlighted in Fig. 4 are not necessarily those which are the
most relevant for explaining the differences observed in the
results for the lattice constant.

In order to provide some insight into the results pre-
sented in Sec. III, Fig. 5 compares the energy density of
SCAN(GEA2L) and SCAN(CRopt) in Si. For simplicity, only
the exchange component, which is much larger than correla-
tion, is considered. SCAN(GEA2L) and SCAN(CRopt) lead to
rather different equilibrium lattice constants a0 for Si, namely,
5.437 and 5.460 Å, respectively, and the following analysis
provides details about the regions of space that are involved to
explain these different values of a0. Figure 5(a) showsΔεF1-F2

x ,
which is defined as

ΔεF1-F2
x (r) = r2

� ��
ε

F1,alarge
x (r) − εF1,asmall

x (r)
�

−
�
ε

F2,alarge
x (r) − εF2,asmall

x (r)
��

dΩ, (9)

where εF,a
x is the exchange energy density [defined by Eq. (2)]

of functional F [F1 and F2 designate SCAN(CRopt) and

FIG. 4. Real space position of the lumps of Fig. 3. The atoms are represented
by red spheres, while the erroneous points for (a) graphite (isosurface corre-
sponding to tGEA2L/tKS = 2.25) and (b) silicon (isosurface corresponding to
tGEA2L/tKS = 1.9) are in turquoise and green, respectively.

SCAN(GEA2L), respectively] calculated at a given lattice con-
stant (asmall or alarge). The integration in Eq. (9) is over the
spherical angles and r is the distance from one Si atom. As
discussed in detail in Refs. 111 and 112, the equilibrium lat-
tice constant a0 is determined by the slope of the xc-energy
Exc, i.e., the variation of Exc with respect to a, and this is
basically what Fig. 5 shows since the difference between two
values of a (asmall and alarge) is considered. Figure 5(b) shows
the radial integration of ΔεF1-F2

x up to a given value of r. As
already discussed in Ref. 111 for Si but in the case of GGA
functionals, two different regions contribute significantly to
the variation of Exc with respect to a. The first one, located
around 0.5 Å [see the fast variations of the curves in Figs. 5(a)
and 5(b)] corresponds to the core-valence separation. The sec-
ond region extends from 1.2 to 1.7 Å and corresponds to the
valence/interstitial region which is rather large since Si has
an open structure. Additionally, Fig. 6 shows the isosurface
of ���FSCAN(CRopt)

x − FSCAN(GEA2L)
x

��� that delimits values larger

than 0.03 (where actually FSCAN(CRopt)
x > FSCAN(GEA2L)

x )
and highlights the two types of regions just mentioned
above.

The case of graphite was also discussed in Ref. 111, where
the electron density and reduced density gradient s in the region
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FIG. 5. Difference between the exchange components of SCAN(CRopt) (F1)
and SCAN(GEA2L) (F2) in Si plotted as a function of the distance r from
an Si atom. Panel (a) shows the angular average of ΔεF1-F2

x (see the text for
definition), while panel (b) shows the radial integration of ΔεF1-F2

x from the
atom until r.

between the layers were studied in detail. It was shown that
an increase of the interlayer distance leads to a rather large
increase of s overall, thus explaining the overestimation of

FIG. 6. Isosurface of the absolute value of FSCAN(CRopt)
x − FSCAN(GEA2L)

x
corresponding to 0.03.

the interlayer distance for GGA functionals with a too strong
enhancement factor. Figure 7 shows the ratio tGEA2L/tKS with
a ratio that is smaller than the one used in Fig. 4(a), such that
the isosurface encloses a larger region. We can see that aside
from the middle of the short covalent bonds within the layers
(not relevant for the interlayer distance), also a non-negligible
portion of the space between the layers has a ratio (tKS/tGEA2L)
bigger than 1.9.

In Sec. III, we also observed that an OF KED that is
among the most accurate for a property calculated with the total
energy, may be among the most inaccurate for the bandgap, or
vice versa. For instance, while tPCopt and tCRopt are not among
the best KEDs for total-energy related properties of strongly
bound solids, they are the most accurate for the bandgap.
Such contradictory results could seem quite puzzling at first
sight, however this should be rather simple to explain in most
cases.

Taking LiH as an example, Fig. 8 compares the xc-energy
calculated with SCAN and selected deorbitalized SCANs by
showing the difference EtOF-SCAN

xc − EtKS-SCAN
xc as a function

of the lattice constant a (this is the same kind of analysis
as the one used for Si in Fig. 5). Figures 8(a)–8(c) show
the contributions from the Li atom, H atom, and interstitial
region, respectively, while the sum of them (the total value in
the unit cell) is shown in Fig. 8(d). As expected, the SCAN
equilibrium lattice constants a0 of LiH (see Table S2 of the
supplementary material) show the same ordering as the curves
in Fig. 8(d) [the uppermost (lowest) curve correspond to the
smallest (largest) lattice constant]. Thus, in the present case
where the same functional is evaluated with different KED,
the change in a0 due to deorbitalization depends on the varia-
tion with a of the difference between tKS and tOF. From Fig. 8,
we can also see that for all functionals, EtOF-SCAN

xc − EtKS-SCAN
xc

decreases in the H atom, but increases in the Li atom and
interstitial region such that in total an increase is obtained.
We also note that with tGEA2L and tPC, there is a very large
cancellation of the errors coming from the H atom and
interstitial region.

FIG. 7. The regions of space in graphite where tGEA2L/tKS and tKS/tGEA2L

are larger than 1.9 are delimited by the isosurfaces in green and blue,
respectively.
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FIG. 8. Difference EtOF-SCAN
xc −EtKS-SCAN

xc (in mRy) between the xc-energies
of LiH obtained with SCAN and its deorbitalized versions plotted as a function
of the lattice constant a. Panels (a), (b), and (c) show the contributions from the
Li atom, H atom, and interstitial region, respectively, while panel (d) shows
the sum of all contributions (i.e., the whole unit cell). The atomic muffin-tin
spheres of the Li and H atoms are 1.7 Bohr. Each curve is vertically shifted
such that the zero is at the smallest volume.

As discussed in previous studies,77,113,114 the magnitude
of the bandgap is determined by the inhomogeneities in the
potential, such that, roughly speaking, large inhomogeneities
favor larger values of the bandgap. Actually, in most systems,
the valence band maximum and conduction band minimum are
located close to an atom and in the interstitial region, respec-
tively, which means that the difference in the magnitudes of a
potential between these two regions determines the bandgap.
Again for LiH, Fig. 9 compares vxc of mBJLDA and its OF vari-
ants. The LiH bandgap (see Table S11 of the supplementary
material) with mBJLDA is 5.06 eV and is reproduced at best
by mBJLDA(PCopt) (5.03 eV), while mBJLDA(GEAloc) with
6.69 eV leads to the worst agreement. This is in accordance
with Fig. 9, where we can see that the mBJLDA(PCopt) poten-
tial is the closest to mBJLDA, while the mBJLDA(GEAloc)
potential is much higher in the interstitial region (where

FIG. 9. mBJLDA xc-potential and a few selected of its deorbitalized versions
plotted in LiH from the Li atom at (0, 0, 0) to the H atom at ( 1

2 , 1
2 , 1

2 ).

the conduction band minimum is located) and lower close
to the H atom (where the valence band maximum is
located).

Thus, from this detailed discussion about LiH, it is rather
clear that different mechanisms have to be invoked in order
to explain the trends observed for the lattice constant (a
total-energy related property) and bandgap, such that oppo-
site conclusions for these two types of properties can be
obtained.

V. SUMMARY

In this work, the deorbitalization of several xc-MGGA
methods, three energy functionals and one potential, has
been investigated by considering properties of solids. The
replacement tKS → tOF in xc-MGGAs affects the results
to some degree which depends on both the xc-MGGA
under investigation and the used approximation for the OF
KED tOF.

Concerning the energy functionals for the calculation of
the lattice constant, bulk modulus, and binding energy, we have
shown that the results are in general more sensitive with MVS
than with SCAN and TM, which should just be the direct con-
sequence of the analytical form of the functionals that depends
more strongly on the KED in the case of MVS. With SCAN
and TM, the replacement tKS → tOF with most OF KED does
not change much the results for strongly bound solids, such
that the performance of a xc-MGGA remains pretty much
the same. For the weakly bound rare gases, the change in the
cohesive energy is usually rather large, while for the layered
solids large changes in the interlayer distance are obtained with
MVS.

The deorbitalization of the mBJLDA xc-potential leads
to appreciable changes in the bandgap and only the OF KED
tPCopt can be considered as a somehow reasonable replacement
of tKS.

Similarly to Mejia-Rodriguez and Trickey,26 we were not
able to identify a OF KED that leads to reasonably small
change in the results in most circumstances.
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SUPPLEMENTARY MATERIAL

See supplementary material for the detailed results for the
lattice constant, bulk modulus, cohesive energy, and bandgap.
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Abstract

Benchmarking DFT functionals is complicated since the results highly depend on

which properties and materials were used in the process. Unwanted biases can be

introduced if a dataset contains too many examples of very similar materials. We show

that a clustering based on the distribution of density gradient and kinetic energy density

is able to identify groups of chemically distinct solids. We then propose a method to

create smaller datasets or rebalance existing datasets in a way that no region of the

meta-GGA descriptor space is overrepresented, yet the new dataset reproduces average

errors of the original set as closely as possible. We apply the method to an existing

set of 44 solids and suggest a representative set of seven solids. The representative sets

generated with this method can be used to make more general benchmarks or to train

new functionals.
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1 Introduction

Currently the most widely used theoretical method to predict the different properties of ma-

terials is Kohn-Sham density functional theory (KS-DFT).1 The accuracy of this approach

mainly depends on the underlying functional for the exchange-correlation energy, Exc. To

compare and rank these functionals various benchmarks were done on different datasets and

properties. Notable datasets for molecules are the G2/972 and G3/993 containing 302 and

376 energies (atomization- and ionization energies, proton- and electron affinities and reac-

tion barrier heights) respectively. Similar databases are used to benchmark functionals for

solids as well, like a set4 of 18 solids of different types (main group metals, ionic solids,

semiconductors and transition metals), an extension of this set containing 44 strongly bound

solids5 or a set of more than 300 materials used to benchmark the SCAN functional.6 Yet

these benchmark datasets are often based on ”what is available”. This can potentially intro-

duce biases for types of materials which are either over- or underrepresented. Unbalanced

datasets are problematic and test results can depend on the chosen set in a way that is

not transparent. Furthermore, compounds which are very similar and provide little new

information lead to unnecessary computational effort.

To avoid or make bias more transparent and for computational efficiency, it would be

appealing to create smaller representative benchmark datasets. Still, the literature on this is

surprisingly scarce. One approach created two datasets for molecules containing six represen-

tative atomization energies and barrier heights respectively.7 The results are quite appealing.

Obviously from the point of view of computational effort, but also because the representa-

tive molecules are both diverse and make sense as representatives of the much larger original

datasets. As such, finding representative molecules is also interesting as a data-driven ap-

proach to developing a chemical intuition. On the other hand, the representative molecules

were chosen to best possible reproduce the average errors obtained for the complete datasets.7

Thereby bias in the original dataset will tend to be reflected in the representative set. A

group of compounds that are strongly represented in the original dataset, will also tend to

2



be in the representative set. Even worse, small, but unique, groups of compounds could be

left out, thereby potentially covering up problems of a given functional. In this respect, we

recently analyzed how the SCAN functional, that generally performs well for lattice parame-

ter calculations, fails for alkali metals8. As there are only a limited number of alkali metals,

large errors for this small group is not punished in the benchmarks.

In the present study we aim to find materials which are both representative in terms

of the electron density distributions sampled and in terms of the errors. Our approach is

based on clustering materials according to their density distribution. The idea being that

the materials are clustered according to what part of parameter space, in this case density

gradients and kinetic energy densities, they occupy. Then representative materials are chosen

according to their errors.

2 Methodology

2.1 Density representation and metric

To achieve the clustering we need a descriptor for the materials on which we can define a

similarity function. Since the differences between the functionals arise from the different

functional forms for Exc energy it seems natural to base our descriptors on the quantities

which enter these. The most common functionals for solids are semilocal, where Exc is given

as a functional of the density, n, the magnitude of density gradient, |∇n| and sometimes the

Laplacian of the density and the kinetic energy density (KED) τ defined as

τ(r) =
1

2

�
i

∇ψ∗
i (r) · ∇ψi(r) (1)

The different level of approximations use different arguments. The local density approxi-

mation (LDA) uses only the density, the generalized gradient approximations (GGAs) use

the gradients as well and meta-GGAs (mGGAs) can use all four parameters. In the present
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study we focus on functionals and descriptors based on n, |∇n| and τ . We also tested in-

cluding the Laplacian in our descriptors, but in agreement with our earlier findings9, we did

not find important differences in the results and it is left out in the following discussion.

Semilocal functions are typically written in terms of the LDA and an enhancement factor

which depends on normalized dimensionless, or reduced, values of the mentioned quantities.

It is in this enhancement factor that the functionals typically differ. We use the reduced

quantities

p =
|∇n|2

4(3π2)2/3n8/3
(2)

t =
τ

τTF
(3)

as the descriptors. Here τTF = (3/10)(3π2)2/3n5/3 is the Thomas-Fermi KED.

We consider the 44 solids in a previously published dataset.5 We use the all-electron

KS-DFT code WIEN2k10,11 to calculate the density values at every point of the unit cells

of these solids. Based on these data, p − t maps for each material are created by binning

the densities in a mesh of p − t combinations with a bin width of 0.02 in both directions.

The core regions of the atoms contain a large number of points with large values of electron

density and low values of the reduced quantities, Eqs. (2) and (3). To avoid that these

chemically inactive regions dominate the descriptors, the mesh was subsequently turned into

an indicator function being 1 if there was at least one point at the given p, t value and 0

otherwise. After this a Gaussian smearing was applied to the map with a standard deviation

of 0.06.

The choice of the similarity/distance metric is essential to achieve a good clustering.

Since our goal is to find materials which cover the same region of the p − t space, if two

materials cover overlapping regions their distance should be close to zero. The more specific

requirement when defining the distance is that it should have a maximum of one, when the

materials have no overlap, and should not diverge based on the exact shapes of occupied
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regions. Therefore simple Euclidean distances between the matrices are not usable in this

case. A choice for similarity which obeys the mentioned requirements is the normalized dot

product of the maps, defined the following way:

S(A,B) =

�
i,j A[i, j]B[i, j]

N(A)N(B)
(4)

where A and B represent the p− t maps of two given materials and i, j index bins of p and

t. The N normalization function is

N(A) =

��
i,j

A[i, j]2 (5)

The values of S are always between 0 and 1, being 0 when there is no overlap in the density

maps, and 1 when the maps match exactly. Using this, we can define a distance function

simply as 1− S(A,B).

2.2 Clustering method

The clustering is done using k-means clustering, more specifically Lloyd’s algorithm12. Given

N samples, every sample being a d dimensional vector, and the desired number of clusters,

C, the algorithm chooses C samples randomly as cluster centers. Then two steps are iter-

ated until convergence. First, every sample is assigned to the cluster which has the closest

centroid. Secondly, the positions of the centroids are updated to the mean of the samples

of the given cluster. With this setup the algorithm is guaranteed to converge to a minimum

sum of squared distances between the samples and their cluster centers.

Since the basic k-means algorithm works in Euclidean spaces, our distance matrix has

to be embedded in a d-dimensional Euclidean space. For this the multidimensional scaling

(MDS)13 technique is used, which places the materials in a d-dimensional space based on

the distance matrix in a way, that the Euclidean distances between their locations fit the
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distance matrix as well as possible. The dimensionality of the embedding space limits the

achievable accuracy of the MDS, so we opted to use 43 dimensions to represent our data.

This embedding method resulted in 0.02 average absolute error between the distance matrix

based on the similarity defined in Eq. (4) and the Euclidean distance matrix of the embedded

materials.

Because both the MDS and the k-means algorithm involves some randomness we evalu-

ated multiple different embedding and ran the k-means algorithm 10000 times with random

starting centroids for every embedding. We will later focus on seven clusters (C = 7). These

clusters and especially the representative sets based on these were very stable across multiple

runs. The small differences in the loosely connected clusters are discussed later. These clus-

ters were also compared to results from affinity propagation or k-means clusterings on the

L1 distances of normalized density maps and the resulting clusters are not only consistent

with respect to the random seeds, but also across different clustering methods.

2.3 Error based representative sets

We also apply the method that was used to generate the AE6 and BH6 sets.7 The method

aims to choose a smaller subset of the original data, which reproduces the mean signed

error (MSE), mean unsigned error (MUE) and root mean squared error (RMSE) as well as

possible. If we denote the difference between e.g. the MSE of the entire database and the

representative set when using functional i as ΔMSE(i), then the aim is the minimalization

of the root mean squared deviation (RMSD), defined as:

RMSD =

��
i ΔMSE(i)2 +ΔMUE(i)2 +ΔRMSE(i)2

3M
(6)
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where M represents the number of different functionals. To evaluate how good a represen-

tative set is, the percent error in representation (PEIR) was used:

PEIR = 100%
RMSD

ME
(7)

where ME is the mean error:

ME =

�
i |ΔMSE(i)|+ |ΔMUE(i)|+ |ΔRMSE(i)|

3M
(8)

with the errors calculated on the whole dataset. When the whole database is used as repre-

sentative set, then the PEIR value is zero.

In our case the database consists of 44 materials and we have 24 different GGA and

mGGA functionals for three different properties (lattice parameter, bulk modulus and cohe-

sive energy). To find a representative set with N materials the PEIRs for the three properties

are calculated for all
�
44
N

�
combinations and the one with the lowest average PEIR is cho-

sen. A direct minimization of the PEIR by choosing seven compounds from the entire 44

compounds results in the group of:

[Rb, Nb, Sn, Rh, BP, AlP, GaN] (setPEIR)

with a PEIR of 15%. This set inherently carries the imbalances of the full set. Six of the

seven compounds belong to the transition metals and diamond-lattice semiconductors. It

only contains one representative of the alkali metals, and none of the ionic materials nor the

earth-alkali metals which are chemically distinct groups and should be present in a small set.

As will be discussed later, setPEIR fails to sample a variety of densities, and can, even if it

reproduces average errors well, somewhat misrepresent the error for a specific functional.
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3 Results and discussion
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Figure 1: p− t maps of seven representative solids. The clear difference between the different
colored regions show that chemically different materials sample distinct regions of the p− t
space.

Considering first the p− t maps as descriptors on which the clustering should be based,

they are shown for seven different compounds in Fig. 1. It can be seen that these chemically

distinct compounds also sample different regions of the p − t maps. Changing e.g. the

dependence of the Exc functional on the high p - high t region would mainly influence the

results obtained for Na, NaF and similar materials, whereas it would hardly influence the

results obtained for the close-packed metal Rh or the semiconductor GaAs. This difference

between alkali metals and d-metals or semiconductors falls in line with earlier studies. It has

previously been noticed for the atomic electron densities where the maximum value of p (not

counting the diverging tail far from the nuclei) decreases along the rows and also along the

columns of the periodic table.14 Furthermore, in case of solid Si and LiF, regions around the

outer shell of Li were found to have twice as large p values as in Si.15 The empty space of

the bottom right part of Fig. 1 illustrates the von Weizsäcker limit (t > 5p/3). The distance

on the y axis from this limit is called α = t− 5p/3 and has been shown to carry important

information about the bonding properties. In regions occupied by a single orbital α = 0,16

while in regions with slowly varying density α ≈ 1.17 α has been also shown to take low

values in the covalent bonds of graphite, while being much larger in the interlayer region.18

The similarity matrix, Eq. (4), of the 44 materials considered here is shown on Fig. 2.
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The materials are in an ad-hoc order based on intuition. However, we can still identify

multiple groups of similar compounds. These are the close-packed metals, top left, and the

semiconductors, bottom right. Some similarity can also be seen between some of the ionic

bound materials.
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Figure 2: Similarity matrix between materials, with the metal cluster on top left, the semi-
conductor cluster on bottom right and the less similar groups of ionic materials an alkali-
and alkaline earth metals in the middle.

To find the optimal number of clusters we ran the k-means clustering for up to ten

clusters. The derivative of the average squared intracluster distances are shown on Fig. 3. It

can be seen that making more than seven clusters does not improve the grouping by much.

The seven clusters formed this way are: [V, Ni, Cu, Nb, Mo, Rh, Pd, Ag, Ta, W, Ir, Pt, Au],

[C, Si, SiC, BN, BP, AlN, AlP], [Ge, Sn, AlAs, GaN, GaP, GaAs, InP, InAs, InSb], [LiH,

MgO, Al, Rb, Cs], [LiF, LiCl, NaF, NaCl], [Ca, Sr, Ba], [Li, Na, K]. The intuitive groups

that could be recognized by visual inspection of Fig. 2 can be found in this clustering as

well. It is pleasing that the transition metals form one large cluster. The diamond-lattice

semiconductors are split in two relatively large clusters. Fig. 3 shows how the semiconductors

would be grouped into one cluster if only five clusters should be made. The improvement in
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mean-square distance between five and seven clusters is however substantial and the splitting

is also systematic in the sense that one diamond-lattice cluster tends to contain the atoms

from the early periods of the periodic table and the other cluster the atoms from the later

periods. There are further smaller clusters of ionic, alkali- and alkaline earth metals. One

cluster contains a mixture of ionic compounds and metals, which is also the most unstable

cluster, splitting in [LiH, MgO, Al] and [Rb, Cs] groups when 8 instead of 7 clusters are

formed.
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Figure 3: Derivative of the average squared intracluster distances with respect to number of
clusters. The colors correspond to the cluster colors of Fig. 1 and 4.

The right panel of Fig.4 shows the 2D representation of the similarity matrix gener-

ated by the MDS algorithm. The materials are colored according to the clustering in the

43D space. Each cluster is labelled by one solid, which will later be identified as its first

representative. The illustration highlights the strong similarity inside the metal(pink) and

semiconductor(purple, brown) clusters and the lower similarity of the clusters containing

ionic compounds and alkali and alkaline earth metals. Using only the 2D representation

introduces some artifacts mostly around the Na and Rb clusters which results in some of

their elements to be seemingly assigned to the wrong cluster. This is only caused by the

mismatch of the 2D and 43D representations. The left part of Fig. 4 shows the p − t map

obtained by averaging over the solids in each of the seven groups thereby illustrating the

most significant regions of p − t values for every clusters. These ”average materials” high-

10



light different regions of mGGA functionals sampled by the materials. If one would use the

representative set predicted by the naive PEIR minimization method, setPEIR, the blue,

orange and red regions would be unsampled and six of the seven materials would come from

the pink, brown and purple areas. These three areas include only the semiconductor and

metal clusters and are constrained to the relatively low p− t regions.
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Figure 4: The 2D representation of the distance matrix colored according to the clusters
formed by the k-means clustering in the 43D space on the right and p−tmaps of the ”average
materials” of the seven clusters on the left. The labeled materials are the representatives of
each cluster and their p− t maps are shown on Fig. 1.

Having the seven clusters, we tested two approaches to find representative sets. The first

approach was to calculate the PEIR for every possible combination of seven materials where

each material must be from a separate cluster and choose the set with lowest PEIR. This

constrained optimization results in the set

[Rh, InP, BN, Al, NaCl, Ba, Li] (setA)

with a PEIR of 21%. While this PEIR value is obviously higher than the value of 15%

obtained for setPEIR, setA seems more representative. Not only in terms of the p− t maps

but also intuitively, in that it is much more diverse in terms of chemistry.

The second approach avoids optimizing the PEIR with respect to the entire dataset and

instead chooses from each cluster the material which represents its own cluster best, i.e. the

material from each cluster which gives the smallest PEIR with respect to its own cluster.
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The set formed this way is

[Rh, GaAs, SiC, Rb, Na, NaF, Sr] (set1)

Again this set is representative in terms of p − t and chemical intuition. This set has not

been chosen to minimize the PEIR, and the resulting PEIR of 38% is substantially higher

than for the sets setPEIR and setA formed by minimizing the total PEIR. However, our goal

is not to reproduce the average errors of the full set exactly, but to sample as vast regions

of the phase space as possible without unreasonably deviating from the average errors. In

the end set1 is preferred since the optimization minimizes the impact of the inbalances of

the original dataset. These seven materials are the ones used to label the clusters in Fig. 4

and they were used to exemplify p− t maps in Fig. 1. The strong similarity between Fig. 1

and Fig. 4 shows that the representatives indeed sample the same region as the ”average

materials” of the given clusters.

Even with representative sets optimized to best possible reproduce an error averaged

over functionals and properties according to Eq. (6), it is an open question how well the

error for a given property and for a given functional is represented. In Fig. 5 we have

chosen the three functionals SCAN19, TPSS,20 and mBEEF21 and show the specific RMSE

of setPEIR, setA, and set1, for the three properties. As expected none of the representative

sets exactly reproduces the average errors of the entire set. It is worth noting that setPEIR,

that was optimized to minimize PEIR without constraints, can result in errors which differ

substantially from the full set, e.g. for the cohesive energies obtained with mBEEF or SCAN.

It is also noticeable that both sets based on p−t clustering almost always give a lower RMSE

than the full set. This is partially caused by the balancing of the dataset. The cluster of

close packed metals has the highest RMSE for the lattice constants and cohesive energies of

all the clusters for all three of the evaluated functionals. This cluster is down-weighted, in

accordance with all these compounds sampling only a small part of p− t space, and therefore
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the overall error in the representative sets are reduced.

These results also illustrate that picking one representative material for each cluster may

not always be adequate. For both setA and set1 Rh was picked to represent the metal cluster.

However, Rh has an error in Ecoh of 0.3 eV/atom when using the SCAN functional, whereas

the RMSE for cohesive energies of the transition metal cluster is 0.54 eV/atom for SCAN. So

while Rh is the best material to represent the average error of multiple different functionals,

in the sense of Eq. (6), it is somewhat misleading for the Ecoh error of SCAN. Consequently

both set1 and setA give to some degree artificially low error for the SCAN cohesive energy,

see Fig. 5. The sets formed by choosing from the representative clustering can, however, be

systematically improved by extending the groups of representative materials with additional

elements of the clusters. If we choose one additional solid from each cluster by minimize the

RMSD with respect to that cluster we obtain

[Nb, Ge, BP, MgO, Li, LiCl, Ca] (set2)

Using set1 and set2 as representative materials a systematic improvement can be observed,

see Fig. 5. This can be continued by extending with a third set

[Cu, InAs, Si, LiH, K, NaCl, Ba] (set3)

The three clusters containing just three compounds, Fig. 3, are then fully present. If the

computational cost of the functional evaluation is not a concern, our approach can be still

useful to balance the dataset, simply by weighting the different materials based on their

cluster size. As an example, the error bar on Ecoh using TPSS seems to be overestimated

due to the strong weight of the transition metal cluster which only samples a rather small

part of p− t space.

Irrespective of the average errors of the original set and a representative set, the ranking

of the functionals in terms of accuracy is also of importance. Fig. 6 shows the RMSE of 24
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GGA and mGGA functionals for the lattice parameter and cohesive energy. The functionals

are ordered according to the RMSE of the original full set. The ranking of the functionals

with two other sets (setPEIR and the set including three materials from every cluster)

shows similarities with the original set. By splitting the functionals into three groups, the

most accurate, the least accurate, and the middle ones, the groups remain more or less

the same independently of the set. There can be inversions within a group of functionals

compared to the original database. As discussed above, the error on the cohesive energy

seems overestimated for mBEEF and SCAN when using the setPEIR. The respresentatative

sets on the other hand give a lower average error for the lattice constants with SCAN and

MS2 functionals, mainly due to the down weighting of the transition metals.

4 Summary and conclusions

In the current study we presented a way to group different compounds based on their electron

density, allowing us to identify solids which are sampling the same regions of p − t density

space. To achieve the grouping we defined a distance metric, which is bound between zero and

one, and represents the dissimilarities of the previously mentioned descriptors of different

materials. Using multi-dimensional scaling and k-means clustering we formed clusters of

similar materials. These are not a pure mathematical construction, but also reflect basic

chemical properties. Based on the clustering a small representative set of bulk solid materials

is constructed, which not only samples as big regions of the p− t space as possible, but also

aims to reproduce the average errors of the original dataset for multiple GGA and mGGA

functionals.

The smaller representative sets of the original database, allow for faster evaluation of

GGA and mGGA functionals. As the method is able to identify materials which occupy

similar regions of the p− t space, thus down weighting highly populated areas can lead to a

more general evaluation or functional training.
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More recently it has become possible to create test databases based on higher level ab-

initio methods.22 An important advantage of the clustering is that it allows for a screening

of compounds based just on the DFT descriptors, before computationally heavy calculations

are performed.
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