
Extracting Retrievable
Information from Archival

Documents

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Josef Weber, BSc
Matrikelnummer 01363254

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Allan Hanbury
Mitwirkung: Dipl.-Ing. Sebastian Hofstätter

Wien, 16. August 2021
Josef Weber Allan Hanbury

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Extracting Retrievable
Information from Archival

Documents

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Josef Weber, BSc
Registration Number 01363254

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Allan Hanbury
Assistance: Dipl.-Ing. Sebastian Hofstätter

Vienna, 16th August, 2021
Josef Weber Allan Hanbury

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Josef Weber, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 16. August 2021
Josef Weber

v





Acknowledgements

I would like to thank my advisors Sebastian Hofstätter and Prof. Allan Hanbury for their
valuable assistance and expertise. Sebastian encouraged my interest in a variety of other
research fields and he has always supported me in my research activities. I would like to
acknowledge Benedikt Fuchs for providing innovative contributions and ideas that have
been applied to my work.

Finally, I would also like to thank my girlfriend Veronika for the patience and encourage-
ment she has always shown me throughout this work. Her support kept me motivated
and focused.

This research was undertaken in the course of the project “Visual History of the Holocaust:
Rethinking Curation in the Digital Age” (www.vhh-project.eu). This project has received
funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 822670.

vii

www.vhh-project.eu




Kurzfassung

Die Digitalisierung großer Mengen von Bilddaten im Hinblick auf die Textextraktion
wird im Bereich der Archivforschung zunehmend gefordert, um die Dokumente digital
aufzubewahren und computergetrieben verarbeiten zu können. Bei der Digitalisierung
großer Dokumentenmengen stellt die automatisierte Verarbeitung aufgrund der Vielzahl
von Schwierigkeiten, die Archivdokumente mit sich bringen, eine Herausforderung dar.
Während sich einige Studien darauf fokussieren, dokumentenspezifische Schwierigkeiten
wie die Auflösung oder Ausrichtung der Dokumente zu korrigieren, um die Dokumen-
te zunächst extrahierbar zu machen, fokussieren sich andere Studien auf Methoden
zur Verbesserung und Optimierung des Textextraktionsprozesses. Andere Digitalisie-
rungsprojekte haben gezeigt, dass das Zusammenspiel von Dokumentenkorrektur- und
Dokumentverbesserungsmaßnahmen essentiell ist um ein gutes Digitalisierungsergebnis
zu erzielen.

Wir haben Anforderungen von Historikern, die im Forschungsprojekt „Visual History
of the Holocaust“ arbeiten, an ein Digitalisierungssystem extrahiert und analysiert, um
diese mittels technischer Lösungen umzusetzen. Um der Forderung nach einem minimalen
Interaktionsdesign und dem daraus resultierenden Automatisierungsgrad gerecht zu
werden, setzten wir unüberwachte Metriken auf der Basis von Textextraktionsmetadaten
ein, die es dem System ermöglichen, Entscheidungen über Dokumententransformationen
zwischen und innerhalb von Verarbeitungsschritten zu treffen. Wir evaluieren unser
Digitalisierungssystem, die OCR-Pipeline, an einem von Historikern definierten und
transkribierten Datensatz im Vergleich zu einem im Projekt verwendeten kommerziellen
Digitalisierungswerkzeug und messen die Überlegenheit unseres Systems anhand einer
Wortfehlermetrik.

Wir erweitern die extrahierten Klartextdaten, indem wir Maßnahmen zur Korrektur von
Rechtschreibfehlern sowie Maßnahmen zur Extraktion von Zeitkontexten anwenden, um
die Anwendbarkeit der extrahierten Daten zu erweitern. Im Hinblick auf die Korrektur
von Rechtschreibfehlern evaluieren wir unsere Methode anhand eines aufgabenspezifischen
Datensatzes und messen die Auswirkungen der auf den extrahierten Text angewandten
Korrekturvorschläge. Im Hinblick auf die Erkennung von Zeiteinheiten stellen wir die
Auswirkungen auf die Erkennungsraten von Zeiteinheiten zwischen der Textausgabe
der OCR-Pipeline und der extrahierten Ausgabe ohne Korrekturmaßnahmen auf der
Grundlage eines weiteren aufgabenspezifisch annotierten Datensatzes dar.
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Abstract

The digitisation of large volumes of image data with regard to text extraction is increas-
ingly demanded in the field of archival research in order to preserve the documents and
process them in a computer-driven manner. With regard to digitizing large volumes of
documents, automated processing presents a challenge due to the multitude of difficulties
that archival documents entail. While some studies focus on correcting document-specific
difficulties such as document resolution or document orientation to make them extractable
initially, other studies focus on methods to improve and optimise the text extraction
process. Other digitisation projects have shown that the interaction of both document
correction and document improvement measures is essential and can lead to a good
digitisation result.

We extracted and analysed requirements of historians working in the research project
“Visual History of the Holocaust” for a digitisation system in order to translate and
implement requirements into technical solutions. To meet the requirement for a minimal
interaction design and the resulting level of required automation, we employed unsu-
pervised metrics based on text extraction metadata that enables the system to make
decisions about document transformations between and within processing steps. We
evaluate our digitisation system, the OCR pipeline, on a dataset defined and transcribed
by historians, against a commercial digitisation tool used in the project, and measure the
superiority of our system using a word error metric.

We further augment the plain text data extracted by applying spelling error detection
and correction measures as well as time context extraction measures to expand the
applicability of the extracted data. With regard to the spelling error correction workflow,
we evaluate our method on the basis of a task-specific dataset and measure the effects of
the correction suggestions applied to the extracted text. In terms of time entity detection,
we present the impact on time entity recognition rates between the text output of the
OCR pipeline and the extracted output without pre-processing and correction measures
applied based on another task specifically annotated dataset.
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CHAPTER 1
Introduction

Due to the increasing demand for digitization of documents, both in the interest of
document preservation and subsequent analytical processing, the need for reliable and
accurate systems for this digitization process is greater than ever. Especially for documents
with a historical context, the digitization of documents is important for advancing research
and preserving our cultural heritage. Today, computer systems enable the implementation
of such processes without the need for human interaction. Being able to process and
analyze archival data efficiently and effortlessly on a computer is an attractive option
to consider as it saves time and human resources. The application of computer-driven
solutions enables automated transcription of documents from entire archives, providing
historians with more capacity to research the digitized contents.
Optical character recognition (OCR) is a field of research that enables the translation of
different types of documents or images into machine-encoded text to be used for further
analysis or digital preservation. Since the 1980s, OCR has been a highly researched topic
and in recent years it has again made great strides through the use of artificial intelligence
and self-learning systems which enables the possibility of generating domain-specific
recognition models. Modern OCR engines are able to recognize different fonts and
languages and are therefore well suited for the digitization of archive data.
However, with historical documents the precision of these engines can vary considerably
and therefore measures to improve the recognition of the text must be applied in advance.
With regard to the text extraction process, historical texts present numerous challenges
that are reflected in the typeface used, the text arrangement on the document, and
various contaminants such as grime or faded letters. In order to address these challenges
a series of image preprocessing steps for quality enhancement is required. Furthermore, in
the digitisation process in the field of archival research, it is often indispensable to comply
with the preservation of the digital facsimile files. A digital facsimile is a photocopy
replica of a printed document that represents the original as accurately as possible
and is available in the form of a digital image file. Considering the preservation of the
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1. Introduction

digital facsimile files, the documents can be enriched with additional information and
annotations. With respect to the text extraction process and the objective of recognising
the text content on the image as accurately as possible, facsimile preservation presents
an additional challenge, since document transformations must be designed in such a way
that there must be no visual alteration on the facsimile document.

The concern to expand and sustain cultural heritage through digitization is being promoted
by various stakeholders, from libraries to private and government organizations. Projects
such as Improving Access to Text (IMPACT 1) focus on large scale digitization of historical
documents and address important aspects of the archival research domain such as
knowledge sharing, cost factor and quality of results. The impact of a digitization system,
intended to process historical documents, is far-reaching, affecting and supporting the
research of historians and offers potential for automating processes along the digitization
procedure.

1.1 Motivation and Problem Statement
The project ”Visual History of the Holocaust (VHH): Rethinking Curation in the Digital
Age” [1] aims to preserve historical material and to reconstitute its original context in a
way that it can be presented to specific target audiences but also to help professionals
to dig deeper into history. The demand for a comprehensive solution to automate the
digitization of archived facsimile documents derives from the requirements associated
with supporting historians’ workflows. In order to effectively map requirements to
domain-independent technical solutions, an iterative development and evaluation process
and the process of gaining insight into the historian’s workflow is essential. The main
requirement components include the automation factor of the digitization procedure and
the design for a non-technical user audience, the capability of spelling error correction
and the output of digital facsimile documents with embedded text. Existing solutions are
often designed domain- or project-specific, which limits their general usability. Further,
existing solutions may require user interaction during the digitisation process or expertise
to use the respective tool. The open-source tool OCR4all developed by Reul [21] adopts
a semi-automatic approach in which the user can make task-specific input efforts to
improve the resulting accuracy. Due to the currently exclusive local installation of the
docker containerized software and the optional effort required from the user during the
OCR workflow, intuitiveness and ease of use of the tool are only partially given. The
Origami OCR Pipeline [15] specializes in transforming historical newspaper documents
into machine-readable data and supports large scale data processing. The classification
of different region types detected by layout and contour detection models is an important
aspect which is responsible for the subsequent quality of the dewarp and extraction steps.
A strong focus is given to the extraction of column based table data and to the read flow
determination.

1Improving Access to Text (IMPACT) http://www.impact-project.eu/ (accessed 16th August,
2021)
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1.2. Contributions of the Work

Archival documents that have never been reviewed or corrected after the initial capture
present challenges, such as incorrect document orientation or suboptimal document
resolution, both of which must be addressed through corrective measures to perform a
successful OCR process. As mentioned by Liebl and Burghardt [15], further document
transformations to enhance the basic OCR text quality are necessary in order to be able
to carry out post-processing measures such as spelling error correction successfully. In
recent years, several studies [4, 11] have shown which techniques can be used to improve
OCR results, also in the area of archival research. Many studies refer to document
thresholding techniques known as document binarization that aim, in the context of
OCR, to separate document regions into text and background to enhance the text
recognition. The thresholding approaches that are being researched involve traditional
[19, 24], hybrid and, in recent years, machine learning-based [11] techniques and models.
The determination of the binarization method as well as the corresponding algorithm
parameters represents a document-specific challenge which can be assessed, for example,
on the basis of document-specific decision criteria such as the respective document
exposure. The presented preprocessing framework [4] employs a hybrid binarization
approach that uses local average contrast to decide for a binarization method. The
framework has proven that it is able to binarize heavily degraded documents efficiently,
but due to the model complexity there is a high number of algorithm parameters to be
evaluated which strongly increases the runtime of the preprocessing measure.

1.2 Contributions of the Work
The contributions in this thesis are:

• Analysis of the requirements of historians for research tasks on archival
documents. For us as computer scientists, gaining an understanding of the
requirements of the historians and insight into their working environment creates
the basis for our planning and implementation process. Therefore it is important
to understand each process including input and output components and to enable
reproducibility in order to be able to map the technical solution to the process
and the corresponding requirement. In addition to the outlined requirements
and concerns of the historians, the archival research domain and its regulations
constitute additional requirements that must be taken into account.

We have recorded and analyzed project-specific as well as project-independent re-
quirements for the archival text research domain in order to subsequently implement
the required measures. Through close collaboration and continuous evaluation with
historians, we have developed methods that can be applied project-independently
in the archival research domain.

• Optical Character Recognition (OCR) pipeline. In this thesis we develop a
comprehensive multi-modal Optical Character Recognition (OCR) pipeline that

3



1. Introduction

connects the domain-specific transformations and corrections for facsimile docu-
ments, digital photocopy replica documents from historical archives. The analysis
of the requirements of historians for research tasks on archival documents, as stated
in our first contribution, as well as policies and frameworks of the archival research
domain constitute the basis for the development of the pipeline. The pipeline
is capable of processing thousands of documents and therefore is designed to be
robust against a large landscape of varying document features such as different
lighting conditions, image resolution and document rotation. By addressing these
difficulties in individual processing-steps in the OCR pipeline, researchers have the
ability to digitize documents without the requirement to make manual corrections
to the data. The resulting automated optical character recognition (OCR) pipeline
requires no technical knowledge on the part of the user to use the tool for document
digitization.

Figure 1.1 illustrates the difference in text recognition shown by the red rectangles
between the unprocessed original document on the left and the output of the
OCR pipeline shown on the right. As can be observed visually from the difference
between the two images, our pipeline recognizes 30% more text for this particular
document in relation to the length of the total text by applying our automated
image preprocessing methods. We set up the mean line confidence (mlc) as an
unsupervised evaluation metric which represents the average value of all text
recognition confidence values of an OCR extraction result. By applying the mean
line confidence and further document specific metrics such as the text line height
or the retrieved text length, decision making for algorithm parameter selection and
document transformation applications are determined along the OCR pipeline. As
can be seen in Fig 1.1 on the original unprocessed document, the unequal exposure
ratios are responsible for the poor text recognition as the text areas are exclusively
recognized on the brighter left document regions. On the processed document
on the right side, thresholding transformations were applied based on document
specific attributes which led to a bypass of the uneven lighting conditions and thus
further text regions to be recognized. Due to automated and reliable pre-processing
steps, no human interactions or correction procedures are required to be performed
manually before data can be processed by the OCR pipeline.

• Recognition and Normalisation of Dates - Building Searchable Data. To
achieve best results in the text extraction process, computer vision and image
processing methods followed by Optical Character Recognition (OCR) techniques
are applied. In order to extend the applicability of the raw basic OCR text, we
apply natural language processing (NLP) techniques to add additional task specific
context to the data. The term searchable refers to the extended applicability of
data through the addition of information and annotations. We apply post OCR
spelling error detection and correction methods which creates the prerequisite text
to detect and extract time expression entities that enable us to build enhanced
data that matches the original document content as closely as possible. After

4



1.2. Contributions of the Work

Figure 1.1: Unprocessed and processed documents and their impact on OCR recognition.

recognition of time expressions, date normalization is applied in order to retrieve
a standardized date format. A uniform data format of the time entities provides
searchable data, which is characterised by its applicability to data-driven analysis,
filtering and search processes.
The contribution of our post OCR text enhancement methods includes our spelling
error correction workflow and the time entity recognition which operate together
and are responsible for enriching the base OCR text with extracted time units and
error correction input information. In order to measure the performance of our
time entity detection and normalization, we have annotated a task-specific dataset
of documents, which on average contains three time entities to be detected per
document. Based on the evaluation test dataset, the average hit rate of correctly
identified and normalized entities per document was 70%.

• Evaluation. To measure the extent to which our optical character recognition,
post OCR error correction and entity recognition solutions meet the requirements
of the historians, we perform evaluations on the basis of task specific datasets and
datasets selected by the historians.
In terms of quality of the digitised output text, a benchmark comparison is carried
out between the text output of the OCR pipeline and the output of the ABBYY fine

5



1. Introduction

reader2, a commercial text extraction engine. The performance of the spelling error
correction workflow is evaluated for the base OCR text, the corrected OCR text,
and also for the ABBYY Fine Reader output using a recall metric to determine
the similarity to the respective manual transcribed ground truth text.
To enable intuitive user interaction with the implemented solutions, a prototype
web-based application called Bulk OCR Webservice (BOW) was developed. Within
this application, users can upload data to be digitized as well as inspect and
retrieve the results. Through usability evaluations of the prototype as well as direct
communication with the target audience, further requirements for a comprehensive
interaction interface were evaluated and identified.

1.3 Structure of the Thesis
In Chapter 2 we analyze the requirements of the historians which represent the challenges
we address with our research. In Chapter 3 we discuss the background and related work
we researched on computer vision methods, spelling error correction strategies and named
entity recognition approaches.

The OCR pipeline is presented in Chapter 4, where the text extraction process including
the image pre-processing steps are explained in detail. This chapter also includes
experiments, the evaluation against another OCR tool and the metrics we used for
evaluation. Chapter 5 covers our spelling error detection and correction model and
model evaluation. Chapter 6 then describes how date recognition and normalization is
performed on the extracted data resulting from the OCR pipeline. In Chapter A the
Bulk OCR Webservice together with its use cases is introduced. Technical details on the
implementation of the OCR pipeline are provided in Appendix B.

Chapter 7 concludes the thesis ideas for future work are pointed out.

2ABBYY FineReader https://www.abbyy.com/ocr-sdk/ (accessed 16.08.2021)
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CHAPTER 2
Analysis of the Requirements of

Historians

In order to support the working environment of historians with technical solutions, it is
particularly important to first become familiar with the work processes of researchers,
the challenges and the data archives in the field of archival research. Therefore the close
cooperation between computer scientists and the historians is essential to work out these
requirements and to build a final application that meets the needs of the historians. In
Table 2.1, the requirements are presented with a short description and then described
and analyzed in detail in the following sub-sections.

Initially, the concept of the digitisation tool to be developed was presented to the
stakeholders involved in the project at a meeting held in Vienna. The historians’
requirements listed in Table 2.1 emerged from the first conversation that took place in a
virtual conference between the historians and the computer scientists to develop a tool
for digitising archival text documents. After the presentation of the elaborated concept
and after the first test iteration, additional requirements and refinements arose which
were elicited in the course of further feedback and evaluation meetings, which were each
held virtually.

2.1 Language Support
Since several countries and thus several data archives are involved in the archival re-
search project, it was necessary to support several languages in the text extraction and
correction procedures. While the majority of the documents to be digitized are in English
and Russian, there are still some archives with German and French documents. The
participation of Russian historians in the project led to the demand for the possibility of
digitising Russian documents. Language selection is the only user-supplied parameter

7



2. Analysis of the Requirements of Historians

Requirement Description
Language Support Language Independence and expandability.
Input and Output For-
mats

Support for a variety of input formats and output of
multiple file formats

Searchable Data Provision of high-quality, machine-readable data from
analogue archive data.

Graphical User Interface Providing easy interaction to the OCR pipeline.
Facsimile Digital and true-to-original replication of original

archival document.
Transparent Extraction
History

Traceability and documentation of the progress of the
final data output.

Minimal Interaction No human pre-processing interaction required before
data can be extracted.

Large Scale Processing Capable of scalable processing of large amounts of data.
Archival Documents Addressing digitisation challenges that arise with his-

torical archival documents.
Raw Image Format Conversion of raw image input files.

Table 2.1: Table of requirements of the historians.

that ensures that the OCR process and the subsequent language specific spelling error
correction workflow are carried out correctly.

For extracting text from archival documents we utilize Tesseract, an out-of-the-box
Optical Character Recognition (OCR) engine that is developed and supported by Google.
Tesseract offers language support for over 150 languages and script types, four different
OCR engine modes that vary in accuracy and speed, and features such as blacklisting of
characters to be ignored during the extraction process. The selection of the language
can be done in a graphical user interface such as the Bulk OCR Web Service (BOW),
presented in Appendix A, by selecting a language option from a drop-down menu or via
the command line interface by specifying the language in the configuration text file which
is described in detail in Appendix B.2.

New archives can introduce new languages and therefore the ability to adapt to new lan-
guages is an important requirement for the application. Consequently, the application has
been designed so that additional languages can be added in the form of language-specific
trained text recognition models to be obtained from the tesseract model repository1.
Regarding the post-OCR spelling correction workflow, as described in Section 5.1, we
offer support for English, German, Russian and French text. Analogous to the expansion
of the language scope of the OCR process, additional languages are made possible in the

1tesseract tessdata repository https://github.com/tesseract-ocr/tessdata (accessed
16.08.2021)
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2.2. Input and Output Formats

spelling error correction workflow by installing language-specific dictionaries provided by
the MySpell spell checker2.

2.2 Input and Output Formats
The various archives from the different countries usually do not have uniform strategies
for archiving or preserving their documents. This wide spectrum of different archiving
types is reflected, among other aspects, in the different data storage format types and in
the way the data is being managed. Therefore, being able to process a wide range of
different types of data was also a requirement to make the tool more independent against
file formats in its application. Besides the different types of raw formats, common image
file formats are also supported. More information about the supported formats can be
found in the file transformation processing step of the OCR pipeline described in Section
4.4.

To meet the requirement to be able to import and use the extracted data in any research
application, a variety of output formats must be supported to ensure compatibility.
The output formats include standardized and structured formats like JSON as well as
unstructured plain text files and additionally annotated PDF facsimile files. This provides
historians with more opportunities to take advantage of third party research tools that
require specific input data types.

2.3 Searchable Data
The text content of the archival data to be extracted is initially available stored as image
data in the various file types as described in Section 2.2. The primary objective and
requirement is to convert the text content, which is available in the form of image data,
into machine-encoded and processable text as error-free as possible. Obtaining a high
quality OCR text that is reflected by the fidelity of the text on the original image is
the basis for further improvement measures and influences their respective performance.
By applying image processing methods, document-specific problems such as incorrect
document orientation or unequal exposure ratios within the image are resolved in order
to be able to carry out a subsequent successful text extraction process. In addition,
the plain OCR text is then enriched with suggested corrections for spelling errors and
enhanced through an annotation process that extracts temporal contexts.

Providing correction suggestions based on a post-OCR spelling error detection and
correction workflow supports for the creation of an absolute accuracy through human
post-correction. Correction suggestions can also be used to expand the context in addition
to the plain OCR text to provide better results for a text search scenario. We employ
several tools that work independently of each other for spelling error classification and

2MySpell Spell Checking and Dictionarieshttps://www.openoffice.org/lingucomponent/
dictionary.html (accessed 16.08.2021)
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2. Analysis of the Requirements of Historians

subsequent correction. A detailed description of our workflow for spelling error correction
can be found in Chapter 5.

After text spelling corrections have been retrieved, temporal contexts are marked as
so-called time entities on the basis of the corrected text. These time entities include dates
as well as partial dates, year-only dates and timestamps. To find and assign time entities
in documents, we employ tools for recognizing and normalizing time entity data to form
a uniform notation and to facilitate searching and filtering. This allows the researchers to
leverage a more complex criterion to filter documents or to establish temporal relations
among documents. The time annotation process is described in Chapter 6.

2.4 Graphical User Interface
The demand for a graphical user interface emerged before the first test iteration to
enable the interaction with the OCR pipeline as interactive and user-friendly as possible.
Platform independence and constant availability led to the decision to opt for a web
browser-based service.

The web service offers two main functions which are described in Appendix A. The
interaction with the OCR pipeline includes the upload of files to be processed, the state
management of the OCR pipeline and the reception of the results. The document preview
functionality comprises the presentation of the extracted text embedded on the original
image file, suggested spelling error corrections and annotated time entities.

With respect to the target group with little or no technical knowledge, we have continued
the minimal interaction requirements as for the OCR pipeline in order to enable user
acceptance and intuitive handling. To start the digitisation process, the user selects the
document language from the drop-down menu and then loads the data to be digitised
onto the application using the drag-and-drop functionality. When the digitisation process
is complete, the user can either retrieve the results or interactively examine them in
preview mode while the time entity detection and spelling error correction functionalities
are presented along descriptive guidance.

2.5 Facsimile
The output of digital facsimile, exact copies of the original document represents the
requirement that relates to the preservation of the historical value of the documents. The
creation of the digital facsimile is one of the most relevant concerns since it is supposed
to give the researcher the feeling of being in the archives directly in front of the physical
original, however combined with the convenience of the extracted and embedded OCR
text as an additional layer on top of the original image.

For us, this is one of the most challenging tasks because no visible deviations or mod-
ifications are allowed on the original document. This includes the preservation of the
original document resolution and the background on which the embedded OCR-text is
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placed must remain unchanged and also correspond to the original. Still, we are capable
of applying corrective measures and document transformations in a way that we do not
violate any facsimile guidelines and are thus able to provide facsimile documents with
embedded text. The creation and export procedure for facsimile documents is explained
in the data extraction processing step of the OCR pipeline described in Section 4.4.

The output facsimile documents are created as PDF files and contain an upright image
which may have been corrected by the rotation correction and the embedded OCR text.
The background image is not affected by any transformation such as exposure correction
and therefore represents the original image. In the case of a multi-page input document,
the facsimile also contains the equivalent number of pages.

2.6 Transparent Extraction History

For historians, it is necessary to keep track of applied transformations along the OCR
pipeline processing steps to make the final result transparent and traceable and to capture
the digitisation history of the respective document.

In order to realize a transparent extraction history solution, meta data is stored along the
individual processing steps, explaining the action or change that was made to the data. In
addition to the metadata, layout information and extended information such as correction
suggestions resulting from the spelling error correction workflow and time entities are
extracted for the representation of text recognition results or for other purposes such as
manual correction of spelling mistakes.

In order not to destroy the catalogued archive data context, the metadata capture also
ensures that file names retain their designation for all associated output files. The
preservation of the file names ensures simple accessibility and identification of the data
for further applications within the project.

2.7 Minimal Interaction

The requirement for minimal interaction refers both to the interaction with the graphical
user interface that communicates with the OCR pipeline as well as the OCR pipeline
used as standalone application and to the fact that documents must not require human
pre-processing or correction. Corrections such as rotation correction for initial text recog-
nition, determining the optimal document resolution or adjusting various transformation
parameters are carried out automatically. Therefore, the OCR pipeline is designed for
the scenario where an archival document that has never been corrected is read and
then processed by the pipeline. Automated decision making procedures on the basis of
document specific evaluation metrics, described in Section 4.2 along the OCR pipeline
are employed to perform autonomous actions and keep human interaction low. The
minimum resulting interaction with the OCR pipeline is to be reduced to uploading data
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and providing the associated document language via a web service, such as the Bulk
OCR Webservice, and retrieving the results.

2.8 Large Scale Processing
The processing of large volumes of data is a requirement that is related to the minimal
human interaction requirement, described in Section 2.7. A semi-automatic, non-minimal
interaction digitisation process would require a considerable amount of interaction from
the user in the case of thousands of documents to be digitised, whereby the machine
processing the data would have to wait for the user input and process it in parallel.
Thus, a minimal human interaction design based on process automation enables the basis
for large-scale data processing, so that data can initially be processed without human
interaction. Therefore the automatic decision-making processes in the OCR pipeline must
function efficiently and reliably as due to the different archiving strategies mentioned in
Section 2.2, a variety of challenges emerges, such as the existence of several file formats,
that need to be addressed. The objective is that the target user group can rely on a
robust system in which documents can be digitised and retrieved without restrictions on
the amount of data and without the need to pre-process the data.

The processing of large volumes of data implies a high consumption of computing resources
and a high demand on computing time. Performance is a subset requirement which must
not be a tradeoff with the output quality of the OCR pipeline. The data and results
should be returned within a minimum time according to the quality requirements. The
objective is to maximize quality while minimizing computation time and the consumption
of resources. Among the performance-critical measures are the use of different text
recognition models, the capability running multiple processes at the same time known
as multiprocessing, and the avoidance of repetitive calculations through the caching of
metadata. Detailed and technical descriptions of the performance optimizing measures
mentioned can be found in Appendix B.

To enable distribution of workloads we employ a container-based design with the intention
to enable horizontal scaling of the OCR pipeline and thus higher processing capacity
with little effort. Containers offer a possibility to package an application or code within
an isolated and minimal requirement environment. They perform consistently and show
predictable behavior, regardless of the underlying hardware they are deployed on. This
enables us to provide the application with high availability and scalability to meet growing
requirements or high data volume. In addition, the Docker container technology enables
us to efficiently package the OCR pipeline, including dependencies and operating system
to seamlessly integrate it into third party services such as the Bulk OCR Webservice.
Another reason for the Docker Technology is that containers are suitable for Continuous
Integration and Continuous Deployment (CI/CD). This allows developers to integrate
their code into one common repository at an early stage and in frequent iterations and
then deploy the code quickly and efficiently. This aspect turned out to be especially
useful in the test and evaluation phase when we needed to quickly implement and publish
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new requirements.

2.9 Archival Documents
The fact that archival research involves working with historical documents implies special
document characteristics which must be recognized and addressed as a requirement. Our
task is to deal with digital document copies as they come out of the archives after they
were originally recorded. Often these digital document copies have never been opened,
reviewed or corrected in any way before.

In the archive research domain, all documents to be archived must initially be recorded
by either a scan or a photograph. Even if no information seems to be visible, valuable or
detectable on the original physical document or it is heavily contaminated it must be
kept in the archive. For this reason, documents such as blank back pages, which do not
contain any text to be extracted or pages containing mirrored text that shines through
from the back side of the document are kept in the archive.

Another problem that clashes with modern OCR practices is that the original recording
was made by cameras instead of scanners. Even though these cameras provide sufficient
resolution for the purpose, more human error is introduced such as an incorrect document
orientation that is not set upright and therefore often cannot be processed by the OCR
engine. Uneven lighting conditions on documents caused by regional shadows also
complicate the text extraction process and require corrective measures.

Further challenges with archive documents arise from various contaminations such as:
handwriting over the text to be recognized, dirt and stains, typos, the use of historical
typeface, document layout structuring and poorly printed letters. The awareness of
challenges including the handling of special archival documents such as blank pages,
problems initiated by humans in the recording process and document-specific difficulties
with historical documents are taken into account in order to be compliant with the
guidelines of the archival research domain and to achieve a successful digitisation.

2.10 Raw Image Format
Archival documents are often available as a raw file format when they are initially
captured in order to store as much information as possible in addition to the image. This
additional information includes unprocessed sensor data and other parameters that are
helpful for post-processing the documents. The disadvantage of raw files is the file size,
which results from the additional information and the very high image resolution, and
the fact that these documents are not yet ready for processing or previewing.

In order to make the documents accessible and portable for historians, currently different
copies are created manually for various applications. For example, an access copy is
created which is designed for fast opening and viewing of the document. For a historian,
this manual work is inefficient and very time-consuming when a large number of raw
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documents have to be transformed. It is therefore obvious to replace this task of manual
raw file transformation, which is indispensable for historians, by a machine.

For a given raw file input document, multiple copies are created and additionally returned
to the user with different document properties including file format type, level of image
compression and applied document transformations such as white balance correction.
Detailed descriptions of the raw output variant specifications can be found in the first
processing step, raw file conversion of the OCR pipeline described in Section 4.4.
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CHAPTER 3
Background and Related Work

In this chapter, we discuss methods and software solutions that form the foundation of
the knowledge we have built on to develop the OCR pipeline. Since the OCR pipeline
requires knowledge from several areas of computer science, this chapter is divided into
three sections. The order in which the sections are presented corresponds to the order in
which the OCR pipeline is arranged and constructed.

In Section 3.1 we explain image processing methods consisting of geometric image
transformations and document separation transformations that have corrective and
enhancing effects on the text extraction process. The relevance of post OCR correction is
outlined in Section 3.2 along methods for detecting and correcting spelling errors. Lastly,
we describe the named entity recognition and normalisation process in Section 3.3 with a
dedicated focus on temporal contexts to be extracted and refer to the effects of erroneous
OCR text.

3.1 Image Processing

The performance of a text recognition system can be influenced and improved by applying
document transformations to the input images. The application of document enhancement
measures for subsequent text extraction is therefore a heavily researched topic and spans
the fields of computer vision and, in recent years, machine learning. Image transformations
employed in this thesis include affine or geometric transformations to perform image
scaling and rotation as well as thresholding techniques to enable image segmentation.
The following subsections explain concepts for affine transformations and thresholding
techniques related to document enhancement for the OCR process.
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3.1.1 Orientation Detection and Correction
The determination and correction of the document rotation is a crucial geometric trans-
formation procedure that initially can enable successful text extraction. We exclusively
reference the two page orientations landscape and portrait as well as their 180 degree
flipped transformations for document rotation determination and the subsequent cor-
rection. The multiples of 90 degrees thus represent 0 (upside up), 90 (upside right),
180 (upside down) or 270 (upside left). Except for the upside up document orientation,
OCR tools have limited ability to extract text efficiently in any of these rotations and
therefore the identification of the rotation and the subsequent correction is indispensable.
On the basis of a correct page orientation and in further consideration of the orienta-
tion correction, the skewness detection deals with the estimation of the fine-grained
rotation in relation to the text that is located on the document. In the following, re-
searched techniques and approaches for document orientation detection and correction
are explained.

Lu et al. [28] propose a technique for automatic script and orientation detection of
printed text documents by utilizing the character stroke density and distribution to map
each document image to a document vector. For this, reference vectors are formed for
each orientation and script configuration to be evaluated. Finally the font and orientation
of a document is determined calculating the similarity between the document vector and
the pre-constructed reference document vectors using the K-nearest neighbor algorithm.
The proposed identification method is capable of determining page orientation and script
while being robust against document skew.

Van Beusekom et al. [29] present a brief overview of skew and orientation detection
methods and propose a one-step approach for combined skew and orientation detection
using the geometric text-line model by Breuel [5]. The text-line model employed extracts
Latin script text lines by optimizing parameter triplets according to a target function
using a branch-and-bound search algorithm. To measure and evaluate the parameter
configurations, a quality function determines the line-specific matching criteria of the text
line model to a given set of reference points. The determination of each text line found
in the document is carried out as a parameter optimization problem in a robust least
square sense. The number of bounding boxes matching the model are to be maximized
while the distance of the reference points to the text baseline are to be minimized. The
baseline represents the imaginary line that defines the lower limit for uppercase letters
and descenders are letters that may contain information below that baseline in Latin
scripts. The line model is applied to all four orientations (0, 90, 180, 270) of the image
and among the two best performing orientations according to the quality function, the
correct orientation is determined based on the lower number of descenders. The presented
method has outperformed techniques of the two open source software tools Leptonica1

and Tesseract2 based on a publicly available dataset.
1Leptonica http://leptonica.org/ (accessed 16.08.2021)
2Google Tesseract OCR https://opensource.google/projects/tesseract (accessed

16.08.2021)
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The determination of the correct document orientation and the subsequent corrective
measures based on a quality metric also serves as a decision criterion for our approach.
However, this metric must not be dependent on the script type or the language.

3.1.2 Scaling

In the scaling process of raster graphical image data, pixels are reconstructed onto a new
raster and therefore made smaller or larger. The image scaling transformation modifies
the image resolution and, analogously, the text characteristics of the text present on
the image document. A relevant text specific attribute is the text height also known as
font size. The scaling process thus influences the performance and the runtime of the
OCR process. OCR models trained on certain annotated data also perform very well on
similar data. The scaling factor of the training documents related to document specific
properties such as text height thus influence the training process and the resulting OCR
model. Confronting the OCR model with documents that contain properties the model
has not encountered in the training process, the OCR output will likely not be good.
Conversely, if we want to achieve good results with the selected OCR model, we need to
adjust the document scaling accordingly. Determining the text height as a crucial factor
for OCR quality first and then using it for document scaling is an important processing
step to achieve the highest text extraction performance from the OCR model.

Javed et al. [12] present a novel approach for training and detecting font size recognition
directly from run-length compressed text documents exploiting simple line height features.
The relevance of text height information for the intelligent OCR process as well as in
image analysis is presented as a pre-knowledge extraction stage. The two-stage model
first learns to segment each line of text to classify each compressed line of data on the
basis of the resulting regression model. Due to the focus on determining the line height of
compressed documents, only binary documents were considered for the research in order
to save the decompressing process and the additional computing resources it requires.
Using two datasets of 35 and 15 noise-free and skew-free documents with different font
size properties, the proposed method was tested. The test was carried out on the basis of
defined ground truth information for the data sets on which also the models to be tested
for predicting the font size of text lines were trained. Two experiments were conducted
using different model features to demonstrate the aim of this research work, the idea of
font size recognition directly in compressed documents. Comparisons with other methods
were not carried out.

3.1.3 Binarization

Document binarization, also known as image thresholding, is an indispensable pre-
processing step and contributes to a major extent in improving the character recognition
process. In the context of OCR, binarization classifies a document into two sets, text
and background. Research on document binarization has been ongoing since the late
1970s, and new methods have also been explored in recent years due to the availability of
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machine learning. Since the binarization process has a key function in our approach to
document enhancement, we provide a brief background on the various image thresholding
techniques, which can be categorized as follows:

• Global Thresholding Methods

• Adaptive Thresholding Methods

• Hybrid Thresholding Methods

• Machine Learning based Methods

Global Thresholding Methods

Global thresholding methods are based on a single threshold input parameter responsible
for dividing an assumed bimodal histogram of a grayscale input document, which contains
two peaks, using comparison operations. Given an input grayscale image g(x, y) the
thresholded output image b(x, y) is defined as follows:

b(x, y) =
I

1, if g(x, y) > T

0, if g(x, y) Æ T
(3.1)

Each pixel value of the input image is compared at location (x, y) to a threshold value
T . The global binarization classifies each pixel on the document as text if the value is
greater than the threshold and otherwise as background if the value is less than or equal
to the threshold. In the following, global thresholding approaches are presented which
are capable of determining an automatic threshold value.

A method that uses the global threshold is the Otsu thresholding technique [19], one of
the most popular and best performing global thresholding methods. The Otsu method
iteratively determines for all available grayscale values of the grayscale the so-called inter-
class variance between the two binarization categories and finally selects the maximum
value. The maximum inter-class variance value subsequently defines the biggest spread
of foreground and background and the threshold which is then applied to the image
according to equation 3.1. This approach performs well on images with constant lighting
conditions, recognizable by a corresponding bimodal histogram. However, Otsu’s as well
as the regular global thresholding method perform poorly on documents with inconsistent
exposure.

To compensate for the uneven light conditions on the document, the Otsu thresholding
method is often combined with exposure corrections such as contrast limited adaptive
histogram equalization (CLAHE) which is applied before binarization. Harraj et al.
[10] present an approach for a pre-processing workflow that includes lighting correction
measures, the luminosity grayscaling method, text details sharpening and the use of Otsu’s
binarization method targeting to improve OCR accuracy. Based on a standard data set, an
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improvement in OCR results of 2% up to 6.8% was evaluated. In our approach, exposure
compensation became redundant due to the application of an adaptive thresholding
technique.

Local Thresholding Methods

Local thresholding methods, unlike global thresholding methods, are capable of dealing
with varying and inconsistent lighting conditions on documents. The local thresholding
algorithm determines a so-called local threshold for each individual pixel based on a
surrounding neighbourhood region whose size can be defined. Based on the histogram
data of the pixel specific surrounding neighborhood region, different lighting conditions
located on the document are thus bypassed. Furthermore, it is important to point out
that local thresholding methods, in contrast to global thresholding methods, have more
than one parameter to be defined which implies an additional effort of determining these
additional parameter values. The selection of method parameters impacts the binarization
result as well as further processing steps with the thresholded output image. In Figure
1.1, the binarization effect of the adaptive thresholding technique is demonstrated on the
basis of a document that shows unequal light conditions due to a sharp-edged shadow on
the right side. In the following, different approaches to determine the local thresholds
based on a neighborhood context are presented.

J. Bernsen’s method [4] uses the mean value of the maximum and minimum intensitiy
data points within the respective sliding window values to determine the pixel specific
local threshold. This method proves to work well particularly with high contrast images.

Niblack’s local thresholding technique is a widely adopted and referenced algorithm and is
discussed in [27] and [13]. Niblack’s algorithm calculates an individual threshold TNiblack

for each pixel which is defined as follows:

TNiblack = m + k ·
ı̂ıÙ 1

NP

NPÿ
i=1

(pi ≠ m)2 (3.2)

Based on the local mean of the pixel values m, the addition of a constant value k, and
the multiplication with the standard deviation of the current sliding window of size NP ,
the local threshold TNiblack is defined.

Based on Niblack’s technique, Sauvola and Pietikainen [24] present an improved method
in which rapid image surface analysis is applied before binarization, classifying regions
into text and background. Based on the assigned regional content type, a corresponding
algorithm for threshold determination is selected. This method addresses and overcomes
the problem of noise generation, unwanted document details that exceed the respective
threshold value and are thus classified as foreground text elements. Additionally, the
method of Sauvola and Pietikainen features a fast option in which the threshold is
calculated only for every nth pixel and the intervening pixels are classified by interpolation.
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For more local thresholding techniques, detailed background and benchmark evaluations
we refer to [4, 27].

Challenges associated with local thresholding methods involve the determination of
function parameter values for a specific input document. Parameter selection strongly
influences the binarization result and may even make it worse with regard to OCR
output quality. Furthermore, the choice of parameters can have a significant impact on
the processing time of the entire thresholding procedure, considering that an individual
threshold is calculated for each pixel. The OCR pipeline makes use of the adaptive
threshold technique and we address its drawbacks accordingly to enable an automated,
reliable and computationally resource efficient application of this method. We have
decided to employ the adaptive threshold technique as it is able to cope with uneven
lighting conditions and further document characteristics and degradations of archival
documents as described in Section 2.9 if the parameters are selected appropriately.
Therefore, we present an approach to parameter selection that makes use of document-
specific properties.

Hybrid Thresholding Methods

Hybrid thresholding methods imply the combination of local and global thresholding
methods. This allows to combine the best of both worlds, namely the short runtime
of global thresholding and the robustness against inconsistencies such as non-uniform
illuminated image regions of local thresholding methods.

Boudraa et al. [4] present a hybrid thresholding method consisting of Otsu’s global
thresholding method, NICK method, a multi-level Otsu as well as a document pre- and
post-processing step. With regard to the NICK method, the sliding window based local
thresholding technique [13] is a derivative of the local thresholding technique of Niblack
that makes the k value adjustable to control binarization noise and the thickness of
the characters. Preprocessing includes grayscale transformation and CLAHE for low
contrast images. The post-processing step comprises connected component analysis
and morphological operations to eliminate noise elements generated during binarization.
A contrast based metric was determined as the decision criterion for the respective
thresholding algorithms to be applied as well as for the application of CLAHE in pre-
processing.

Lund et al. [17] present an approach that uses multiple independent binarizations on the
same input image to complement the final text from the thresholded output images. This
kind of ensemble technique is used to extract the initial text and perform a simultaneous
post OCR correction. The threshold values to be applied for the binary transformation
are predefined and lead to parallel OCR outputs which are subsequently merged by an
alignment process to a final hypothesis text. A word error rate metric and an annotated
dataset were used to evaluate the extent to which the information content of ground
truth texts is distributed across different binarization configurations and how combined
transformations lead to the best output.

20



3.1. Image Processing

Farrahi Moghaddam et al. [8] present an unsupervised ensemble of experts (EoE) frame-
work which is capable of combining the output of multiple thresholding methods. Each
of the 23 thresholding methods from the H-DIBCO’12 competition is designated as
an expert and is capable of performing feature extraction and subsequent pixel class
voting. The ensemble of experts framework first defines an endorsement graph to map
the confidentiality of the experts among themselves. Subsequently saturated opinions
are consolidated and schools of experts are identified and selected by thresholding the
endorsement graph. From each cluster of experts only those are consolidated that have a
certain level of endorsement as determined by a threshold parameter. The EoE framework
applies the principles of saturated opinion consolidation and expert school selection,
and has been successfully evaluated against the individual performing methods that
participated in the H-DIBCO’12 competition on the same dataset.

Machine Learning based Methods

In contrast to the traditional thresholding methods discussed previously, approaches that
use machine learning to support the image thresholding process are trained to solve a
defined task related to binarization. A wide variety of tasks can be trained and learned,
such as the decision of a local or global threshold value, algorithm-specific parameters or
document degradations and irrelevant document features to be eliminated. Using data
augmentation and ground truth information, training data for the respective model to
be trained and created is provided.

He and Schomaker [11] propose an iterative deep learning approach for document en-
hancement for subsequent document binarization, built on the U-Net neural network.
Using Recurrent Refinement (RR) and Stacked Refinement (SR), the correction model
or a variation of it is applied iteratively to the document to be corrected and restored.
The iterative approach thereby allows to capture degradations that occurred infrequently
during model training and are therefore difficult to process. The proposed method showed
good results evaluated against three public benchmark data sets and also provides an
enhanced version of the degraded documents for visualization purposes and binarization
applications.

Thresholding Evaluation

To measure the extent to which a binarization transformation meets the expectation of
document separation with respect to a given task, it is critical to make configurations
measurable to determine performance and method differences. In general, a distinction
is made between supervised and unsupervised methods, which differ in the information
on the basis of which the evaluation is performed.

Supervised evaluation metrics are based on a ground truth which represents the optimum
result to be achieved. Regarding the evaluation of thresholding, the correctness value is
determined for each binarized pixel on the basis of the corresponding ground truth pixel
and finally summarized into a metric. The often used F-measure as described in [11] is a
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composite metric consisting of precision and recall to measure the accuracy for a given
task. Precision is defined from the ratio of correctly positively classified pixels and all
positively classified pixels. The recall metric is defined by the ratio of correctly positively
classified pixels and all misclassified pixels that should have been classified as correctly
positive. In relation to the evaluation of the OCR process, the ground truth refers to the
transcribed text on the document. The binarized document is intended to support the
OCR process and the resulting extracted text should correspond as closely as possible
to the ground truth text. Word distance based metrics such as the Word Error Rate
(WER) are used in [17] to determine the performance of an OCR system by comparing
hypothesis texts resulting from different binarization settings to a ground truth text.

The advantage of unsupervised over supervised methods is that they are able to assess the
quality of the respective binarization configuration and its impact on the subsequent OCR
process without the requirement of external input information such as a ground truth.
With regard to the thresholding parameter selection process, unsupervised methods allow
decisions to be taken on the basis of document-specific metrics in order to achieve a
binarization result that is optimised for the OCR process. In [20], a mechanism for
benchmarking unsupervised metrics for parameter selection of thresholding methods is
presented. The experiment conducted shows the relationship between an unsupervised
evaluation metric in terms of its respective best binarization configuration. The resulting
binarizations are then evaluated according to a ground truth based OCR accuracy metric
to determine the strengths of the unsupervised metrics.

3.2 Post OCR Correction
Due to the still imperfect OCR results, the field of automatic spelling error correction,
including post-OCR error correction, is a very active research area, just like optical
character recognition itself. Post OCR Correction is an indispensable processing step that
not only improves the extracted final result of the OCR process but also facilitates and
reinforces subsequent analysis activities and information extensions. A comprehensive
description of the history and all methods would exceed the scope of this thesis. Therefore,
we give a brief background on the methods that contributed to our approach to post
OCR error correction.

In [22], the results of the ICDAR 2019 post OCR text correction competition are presented,
in which 34 teams registered and 5 methods were submitted. The competition comprised
first the error detection task and subsequently the error correction task, which was
conducted independently of the first task.

Given only the raw OCR text data without the input image, the error detection task
was performed and the index positions of the erroneous words were evaluated using
the F-measure. For the second task, based on the given index positions of the wrong
words, the correction of the OCR errors was performed which includes a list of suggested
corrections for each wrong word. The highest ranked proposals were evaluated using the
Levensthein distance similarity metric, which was calculated against the ground truth.

22



3.2. Post OCR Correction

For both outputs, the Clova AI team performed best using their presented context-based
character correction (CCC) method. By employing the pretrained language model BERT
[7] and its context awareness property, the error detection classification was performed.
The subsequent error correction of each erroneous token is conducted by an LSTM model
which uses the erroneous token and text context from BERT to perform a character-level
correction. To select the most promising candidate, beam search is finally applied.

In contrast to supervised OCR error correction models that have learned to detect and
correct errors based on ground truth data, unsupervised methods offer a further possibility
to perform corrections without the requirement of annotated data.

Hämäläinen and Hengchen [9] present an unsupervised method for OCR error correc-
tion that exploits the advantages of Neural Machine Translation (NMT) models. The
unsupervised use of NMT is enabled by extracting the required parallel data employing
natural language processing (NLP) methods. The extraction of the parallel corpus for
the OCR errors is done by utilizing text-similarity measurements in a given text corpus
to find possible candidates for corrections. Similarity refers to the semantic meaning of
the erroneous word as well as to the similarity of the individual characters of the word
to be corrected. The automatic retrieval of the parallel data as a preprocessing step
is performed with the help of NLP methods including text lemmatization and the use
of word embeddings to standardize the process of correction candidates. For a OCR
token marked as erroneous, ten corrections are suggested by the model and then the
first candidate that is perceived as valid in the respective language is returned as the
correct word. The proposed method is language independent and with an optional input
of error-free corpus the results can be improved further. Word segmentation detection
and correction is not supported with the presented approach.

The multi-modular domain-tailored OCR post-correction system was developed by Schulz
and Kuhn [25]. To cover the variety of different error types that can occur in OCR
text with regard to detection and correction, the combined use of several unsupervised
methods including statistical machine translation (SMT) and spell checking mechanisms
is presented. The system consists of two stages, the suggestion modules which are
separated into word and sentence level suggestions, and the decision modules which are
responsible for the final decision of the correction suggestion. The word level suggestion
modules use spell checkers, word splitters, compounders that merge two tokens into one
word, and text internal vocabulary to preserve named entities. In the sentence level
suggestion modules, statistical machine translation (SMT) models are trained on parallel
corpus data. At token and character (unigram) level, four models are trained on domain
specific data and general data respectively. The decision modules are responsible for
choosing the best fit suggestion candidate for each word. Therefore a ranking mechanism
evaluates correct suggestion to be proposed as the final correction. To solve the decision
problem of determining the appropriate candidate for a word, the Moses toolkit [14] is
used which makes use of a language model and a phrase table that is formed from all
input words and corresponding suggestion words. In addition, weighting of the different
modules is taken into account as the reliability of the respective suggestions varies.
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To continue the digitization process after the OCR process and automatic post OCR
correction for further improvement, manual post-correction is enabled by exporting a
standardized format as described in [25]. The application of manually corrected data for
the reinforcement of machine learning models also enables an improvement of supervised
post OCR correction models.

3.3 Entity Recognition and Normalisation
Named Entity Recognition (NER) is an information extraction subtask that identifies
mentions of real world entities in unstructured text and classifies them into predefined
categories such as people, places, organizations, or temporal context.

Strien et al. [26] assess the impact of spelling errors introduced by the OCR process on
subsequent analytical tasks in the natural language processing domain. The NLP tasks
used to evaluate the effects of OCR quality include sentence segmentation, dependency
parsing and named entity recognition which is particularly relevant for us. For each
linguistic processing task spacy3 was used, a software tool for performing NLP tasks. To
quantify the impact, each task is performed on a human transcribed text used as ground
truth and on the OCR text output. The information extracted from the ground truth of
the task determines the highest performance that can be achieved with the OCR text.
To evaluate the OCR quality, the Levenshtein similarity is calculated between the ground
truth and the OCR text for a document. The test results were visualized in scatterplots
using the Levenshtein distance in relation to the respective NLP task accuracy metric.
While sentence segmentation shows a high impact due to low segmentation accuracy, the
impact on named entity recognition tasks is relatively low, with the geopolitical entity
category showing the highest impact. Strien et al. [26] have conducted a large-scale
analysis of OCR errors in terms of their impact on NLP tasks and indicate their impact
levels. Among the future work areas mentioned, the relevance of post OCR correction
was highlighted in order to exploit the full potential of all NLP tools.

Rodriguez et al. [23] have conducted and analyzed an experiment in which they evaluate
the performance of four different Named Entity Recognition tools using the output of
the open-source OCR tool tesseract 34. The historical documents to be extracted were
obtained from the Wiener library consisting of 17 files and King’s College London’s
Serving Soldier archive consisting of 33 files and provide the basis for the experiment.
To evaluate the impact of erroneous words in the NER process an evaluation ground
truth was created on the basis of manually annotated named entities. With regard to the
NER process, uncorrected OCR text and manually corrected OCR text was compared
against the ground truth annotated entities by performing precision, recall, and F1 score
comparison. It is important to note that named entity types in this work refer only to
people, places, and organizations. From the Wiener library’s dataset, one of the four

3spaCy https://spacy.io/ (accessed 16.08.2021)
4Google Tesseract OCR https://opensource.google/projects/tesseract (accessed

16.08.2021)
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NER libraries showed a significant difference between the corrected and uncorrected
data, and from King’s College London’s dataset, two libraries had a significant difference.
The overall results show that manual correction of OCR results does not significantly
improve the performance of the evaluated entity types in the NER process. According
to Rodriguez et al, the low performance difference is due to the NER models being
trained on non-historical data, which often resulted in misclassification. Also mentioned
by Rodriguez et al. [23] is the importance of post OCR correction in terms of the text
quality required by other information retrieval tasks.

The detection and normalization of temporal expressions in OCR texts has been evaluated
very little to date as most common NER tools do not provide time as entity type
category. However several approaches exist to recognize the wide variety of different
notations of temporal contexts. Machine learning-based approaches incorporate data-
driven techniques, semantic features [16] or dictionary based features [2] to build a time
expression recognition model. Normalization of the temporal expression is the second step
in which a standardised value according ISO 8601 is assigned to a recognized temporal
context. Commonly, rule-based approaches are used for normalization, which interpret
individual text segments by means of syntactic rules.

SUTime [6] offers a monolithic approach in which both tasks of temporal context extraction
are combined. It employs a deterministic rule-based system which is built on the basis
of regular expressions (regex) and applies multiple types of rules that can be extended.
Additionally, the system is able to extract a reference date from the document to allow
expressions like last friday to be resolved as a date. In order not to treat words from a
non-temporal context as temporal expressions, they are detected and removed by filtering
rules which make use of part of speech tagging. Performance was evaluated on the tasks
of identifying and providing the correct standardised TIMEX3 type tag using precision,
recall, and F1 scores. A performance comparison of SUTime was performed against three
other tools and showed that SUTime outperforms its competitors in terms of the highest
overall F1 score and the highest overall recall score for temporal expression recognition.
The highest precision was achieved by HeidelTime5, which is also a rule-based system.

3.4 Summary
In this chapter we have presented theoretical foundations along several studies that form
the basis of the techniques we use in this work. We discuss methods and indispensable
measures to potentially determine and correct the document orientation as well as the
document resolution to enable a successful OCR process initially. We point out different
document thresholding methods and their strengths and make a firm decision to employ
the local thresholding method to support the subsequent OCR process. To overcome the
disadvantage of the adaptive thresholding method, the large number of parameters to be

5Heideltime temporal tagger https://dbs.ifi.uni-heidelberg.de/resources/
temporal-tagging (accessed 16.08.2021)
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defined, we use unsupervised methods to determine an optimal binarization configuration
in order to enhance the subsequent OCR process and resulting output text.

To further improve the extracted OCR text in terms of text quality and integrity to the
original document, we discuss approaches for post OCR spelling error correction. We
present supervised as well as unsupervised methods for error detection and correction and
emphasise the importance of post OCR correction in relation to subsequent information
retrieval tasks. Cited studies referring to the impact of post-OCR corrections on the
information retrieval task, the named-entity recognition extraction process show that
corrected OCR results do not significantly improve the NER extraction process with
regard to the entity types person, location and organization. In our work, we refer
to the extraction of temporal expressions which, to our knowledge, have been little
evaluated with respect to corrected and uncorrected OCR data. We point to methods
that incorporate machine learning for extraction, rule-based approaches, as well as a
monolithic solution that combines recognition and normalisation of the recognised entities.
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CHAPTER 4
Multimodal OCR Pipeline for

Facsimile Documents

The OCR pipeline prepares archival data to support the subsequent text extraction
process in order to retrieve output that satisfies the requirements of historians. The
OCR pipeline does not aim to replace expertise but to reduce manual and repetitive
work. Beyond the pre-processing of the document and the subsequent text extraction, the
generation of an annotated facsimile document, the application of a post OCR spelling
error correction workflow as well as a time entity recognition procedure are part of the
solution.

This chapter is structured as follows. In Section 4.1, we explain the chosen order of the
individual processing steps of the OCR pipeline and why this order was designed in this
way. Section 4.2 presents metrics that are utilised between and within each processing
step to make automated decisions for document transformations and corrections. Next,
in Section 4.3 we explain what types of metadata are being processed and stored along
the OCR pipeline steps. A detailed description of the seven individual processing steps
can be found in Section 4.4, which provides a full insight into the functionality of the
OCR pipeline through additional illustrations and descriptions. Finally, an OCR quality
benchmark evaluation is presented in Section 4.5 and a summary of the chapter is given
subsequently.

The workflow responsible for handling spelling errors after the OCR process is described
and evaluated in detail in Chapter 5. The time entity recognition procedure that takes
place at the end of the OCR pipeline to extend document searchability is described
in Chapter 6. Implementation details can be found in the appendix where details of
performance measures, a description of the container architecture and configuration
options of the OCR pipeline are provided.
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Figure 4.1: OCR pipeline illustrated showing the seven processing steps and the two
additional text enhancement steps.

4.1 Processing Order
In this Section we explain how and why the chosen sequence of the individual processing
steps was selected and decided upon in this way. The full description of the individual
steps of the OCR pipeline can be found in Section 4.4. In the following, the OCR
pipeline steps and their functions are summarized briefly. Subsequently, design decisions
and considerations are discussed. A visual representation of the processing order of the
individual processing steps of the OCR pipeline as well as corresponding brief descriptions
are shown in Figure 4.1.

• The first processing step converts input files into a file format that the OCR pipeline
can operate with in the subsequent steps. This enables predictable behavior of the
software tools and methods we apply along the OCR pipeline.

• Next, the correct rotation of the documents is determined using the mean line
confidence metric and corrected if necessary. This is the most crucial and essential
step in the pipeline which, in case of an incorrect document rotation, can initially
enable text recognition for all further processing steps.

• The document resize step determines the optimal image resolution leveraging the
extracted document mean text line height, mean line confidence and the word
length. Resulting metadata including the determined document width and height
dimensions as well as the the mean text line height is captured to be utilized
for subsequent processing steps. The data necessary for evaluating the optimal
document resolution is collected through several document resize transformations
and text extractions.

• In the subsequent binarization step, the best parameter configuration for the local
thresholding algorithm is evaluated by means of the two metrics mean line confidence
and text length. Three parameter value series to be evaluated are determined on
the basis of the previously extracted mean line height metric as well as static values.
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The best configuration of the evaluated parameter values is determined and the
transformation is subsequently applied to the document.

• The penultimate step makes use of the previously collected information to apply
document specific transformations prior to the final text extraction. The obtained
OCR text results are exported to several output formats including the creation of
annotated facsimile documents as well as the standardized JSON data format.

• Further enrichment of the raw OCR data with additional information takes place
in the ultimate processing step. A post OCR spelling error correction workflow is
applied and a time entity recognition is performed. The spelling error correction
enables the export of an automatically corrected OCR text and reinforces the
quality of the entity recognition performed afterwards.

Sequence Analogy – When we designed the OCR pipeline and the sequence of the
processing steps, the analogy to the human behaviour of a manual document correction
process was simulated.

The first document transformation, the rotation correction, is analogous to making a
document initially readable for humans or respectively for the OCR engine. Then the
human will set the optimal distance between her/his eyes and the document to make
the document sharp and readable. This process is equivalent to the document resize
transformation in the OCR pipeline. Uneven lighting conditions on the document caused
by shadows can be avoided by making adjustments according to the present lighting
conditions, e.g. by changing the position of the document to the interfering light source.
Document transformations to improve readability are applied in the final processing steps
to the already readable and resized document and is analogous to the binarization step
which can, among other things, compensate for unequal light conditions.

Equally, the evaluation metrics we used contributed to the arrangement of the processing
sequence since transformations are often based on them. For instance, the binarization
process depends on the mean line height, which in turn is determined in the document
resize process and optimized based on the evaluation metrics. The effect of the metrics
on the order is nevertheless consistent with the order of the manual correction analogy.
Therefore the resize transformation takes place before the binarization step.

4.2 Evaluation Metrics
This section explains the metrics we use to evaluate within the individual processing
steps in the OCR pipeline. We distinguish between supervised and unsupervised metrics.
Supervised metrics are used exclusively for performance evaluations and require a manually
created text transcription, a ground truth. Unsupervised metrics, in contrast, are used
at runtime of the OCR pipeline and are derived on the basis of the data of an OCR
text extraction process. They enable automated decision making by turning document
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Figure 4.2: Visually explained OCR output metadata showing text box and line boxes
with associated attributes.

transformations along the OCR pipeline into measurable and evaluable information in
the document pre-processing steps.

The choice of the right set of evaluation metrics for a given task is crucial in decision
making and determines the final outcome of the respective process. Each metric has a
defined value range and a significance to a problem context to be assessed. Therefore,
each metric will yield unique results on a given problem that we would like to evaluate.
To obtain the best evaluation result for a given task, we choose evaluation metrics based
on the underlying problem context relative to the properties of the evaluation metric
itself. In the following subsections, we explain the selected evaluation metrics that are
capable of addressing task-specific evaluation problems and thus fulfil the requirements
of automated decision making within the OCR pipeline and OCR text quality.

In order to get a better understanding of the following evaluation metrics and their
calculation, the concepts of the text box and the line box in relation to OCR output data
are presented visually in Figure 4.2 with three example attribute value lists each. A text
box represents a recognised text and associated coordinate information that has been
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classified by the OCR engine at a specific region on the input document. A text line box
represents a single line in which several text boxes can be located and does not contain
any text information.

Mean Line Confidence (mlc)
The first unsupervised evaluation metric is based on confidence values that are assigned
to each classified text box resulting from the OCR extraction, as illustrated in Figure
4.2. This confidence in the context of optical character recognition defines the amount of
certainty about the respective region of the document to being equivalent to a certain
word or accumulation of characters. The confidence value range spans from zero to one
hundred, lower values indicating a less confident recognition and high values a more
confident recognition of the textual content. Values outside this value range, namely
-1, indicate line boxes or abstract boxes and specify a unique identifier value for these
identified entities. Depending on the task to be evaluated we would consider these
confidence values either individually in case of a post OCR spelling error correction or
all at the same time. To estimate the overall document text extracted confidence, we
consider the mean of all confidence values while excluding unique line box confidence
values and text boxes that only contain white space character text as such elements
distort the correctness of the metric.

Word Length
The word length represents the second unsupervised evaluation metric and indicates the
number of recognised text boxes from an OCR text extraction for a single document. As
with the mean line confidence calculation, line box confidence values and text boxes that
only contain white space character text are filtered in advance. The OCR models we
utilize have been trained to identify single words and generally a data row which we refer
to as a box contains a single word at a time. Due to line breaks, a box field may contain
a split word, and due to narrow spacing, multiple words may occur within a text box.

For documents featuring inconsistent lighting conditions, the word length metric is
especially supportive in estimating the correct parameter configuration for the binarization
step, as for this type of document this value may vary significantly. In such cases the word
length is thus an indicator for the completeness of a text extraction process. Nevertheless,
the word length metric is never used solely as a decision-making metric along the OCR
pipeline since in the case of binarization, for example, the certainty about the confidence
is additionally relevant. By incorporating the word length metric, exceptionally high
or low word lengths can be detected and, if required, the corresponding transformation
candidate can be excluded from the respective process.

Mean Line Height
The mean line height evaluation metric is calculated from the average value of the height
parameter of all line boxes and thus represents the average text line height for a document.
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Empty line boxes that do not contain text boxes or text information are excluded from
the calculation. The value is numeric and represents the average document text height of
the recognized text in pixels. In the document resize step, the mean line height metric is
captured on the basis of various document scalings. In the subsequent decision process of
determining the optimal document resolution, the mean line height is used in addition to
the mlc and the word length to exclude scaling candidates with mean line height values
lower than a defined threshold. Furthermore, the determined mean line height value is
used in the binarization step to support the parameter selection process for the adaptive
thresholding algorithm.

Word Error Rate
In addition to the unsupervised evaluation metrics, the word error rate (wer) is used
as a measure of similarity for the evaluation of two texts, the hypothesis and the
respective ground truth. The ground truth which was transcribed manually by human
hand represents the target result to be achieved. The hypothesis is obtained by an
OCR process and represents the text to be evaluated against the ground truth. In
our scenario, word error rate is calculated by the minimum edit distance between the
human-transcribed ground truth text and the machine-extracted hypothesis text. The
minimum edit distance is computed by the number of editing operations required to
transform the hypothesis into the ground truth. Under the condition that ground truth
data is available the word error rate can therefore only be utilized outside the OCR
pipeline for performance evaluations and benchmarking experiments.

4.3 Capturing Metadata
The metadata generated and captured along the OCR pipeline includes evaluated al-
gorithm parameters and document specific metrics that have been determined for each
processing step. Furthermore, binary records are kept of whether document transfor-
mations have been performed and applied successfully, to be used as logging feature,
for error handling and to ensure that document transformations such as the rotation
correction are only applied once. Stored metadata comprises the corrected rotation angle,
document height and width scaling values, binarization parameters as well as the final
OCR text, spelling error corrections, extracted temporal contexts and all output file
paths.

With respect to the runtime performance requirement as described in Section B.3,
computing-intensive processes must be performed in a time-efficient manner, respecting
the output quality to be maintained. This makes it all the more important to store
information that has already been obtained in such a way that it can be retrieved in
order to avoid redundant and additional computationally intensive calculations.

The continuation and maintenance of unique document identifiers is not only an important
requirement for the historians but also allows information from different processing steps
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Document
Label

Extension Bit
Depth

Processing &
Compression

Specific Attributes

Master
Copy

TIFF 16 unprocessed &
uncompressed

Adobe (1998), dpi: 300
px/inch

Production
Master

TIFF 16 processed &
uncompressed

Adobe (1998), dpi: 300
px/inch

Access
Copy

JPEG 8 processed &
compressed

created from Production
Master, Quality: 50,
ICC profiles: sRGB,
scaling: fixed 50%

Access
Copy

PDF 8 processed &
compressed

Facimile access copy ver-
sion annotated as in
OCR pipeline step 7

Table 4.1: Table of raw file conversion properties.

to be merged and reused along the OCR pipeline. Metadata is stored and passed as
dictionary object between the internal processing steps to avoid overhead by executing
read and write memory operations. With reference to the requirement from Section 2.6
for a transparent extraction history, the collected metadata is added to the output as
JSON format file and represents the solution to enable traceability of applied document
transformations for the historians.

4.4 Pipeline Steps
In this section we describe the functionality of each processing step in the OCR pipeline,
associated experiments, findings and outcomes. It includes explanations, evaluations
and considerations for design decisions we have implemented along the OCR pipeline
processing steps. A graphical overview of the processing steps and their sequence in the
OCR pipeline is illustrated in Figure 4.11.

1. Raw File Conversion
The first step in the OCR pipeline refers to the raw file conversion requirement
mentioned in Section 2.10 and deals with the conversion of raw type files, image
files that are uncompressed and have not been processed in any way, into project
specific image output formats. Since the manual process of file type conversion
and file re-naming requires a considerable amount of time and computing resources,
this optional step is integrated into the OCR pipeline, under consideration of the
requirements discussed in Section 2.2 and 2.6.
The defined image output formats contain specific file properties such as image

1icons taken from https://www.flaticon.com/ (accessed 16.08.2021)
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compression, color bit depth and file type. It is important to mention that this
step is optional, project-specific and therefore has no connection or dependency to
any other steps of the OCR pipeline. In order to extend usability and accessibility
of input raw files for further applications, they are converted to the specific file
types described in Table 4.1.
Excluded was the conversion to the raw file type Digital Negative (DNG) for
an archival copy due to the data loss of a raw to raw file type conversion. For
the file conversion we used the python library rawpy2 which allows to configure
the raw sensor data with more than 20 parameters to produce the expected
output files. The difficulty was to determine the parameter values in order to
achieve the above mentioned document properties while avoiding inconsistencies
in contrast, exposure ratios and others. Output documents resulting from various
parameter combinations were tested and evaluated together with the historians
who requested the raw file conversion feature, as the output document should have
similar properties to those obtained by transforming conventional raw file document
viewers. Different conversions resulting from different parameter settings were
presented to the historians and the configuration that satisfied the historians was
finally applied.

2. File Transformation

Due to different data archiving and preservation strategies, archived documents
often have different characteristics, such as file type intended for data preservation.
In this first and essential step of the OCR pipeline, we build an equal file format
foundation by creating a work copy of the documents in order be able to apply and
perform analysis activities and transformations. The target is to create a uniform
file format basis by transforming any input document into the PNG file format.
Due to uniformly created file type properties based on a common file type basis,
the converted documents have a more uniform behaviour with respect to document
transformations that are applied in the following processing steps. Valid input
file formats include PDF, JPG and PNG, as well as the two raw formats ARW
and DNG. We chose PNG as the base format for the pipeline because its lossless
properties and quality preservation are ideal for text extraction and long-term
image archiving. Additionally JPG can be configured as base format if required.
PDF files consisting of single or multiple pages are also extracted into single PNG
files and are merged3 back into a single document in the data export step.

3. Preparation

In the preparation step, a grayscale work copy and an original work copy are
defined and generated for each input document, which are used exclusively in the

2rawpy: https://github.com/letmaik/rawpy (accessed 16.08.2021)
3PyPDF2: https://github.com/mstamy2/PyPDF2 (accessed 16.08.2021)
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subsequent processing steps. The dot per inch (DPI) value can be configured and
is set to 300 by default whenever a document save-process is executed.
Original Work Copy – The PNG document resulting from the previous stage
represents the so-called original work copy and is used, among other things, as a
background image for the annotated PDF document produced at the final export
stage in the OCR pipeline. The generated original work copy PNG file is additionally
returned at the end of the OCR pipeline due to the transparent extraction history
requirement mentioned in Section 2.6.
Grayscale Work Copy – Also part of the file transformation step is the creation
of the work copy document as grayscale transformation which is generated from
the previously exported original work copy. Input documents may appear in
color, grayscale or in a binarized color scale consisting only of black and white
pixels. To transform a color image to a one channel grayscale image we apply
luma transformation which leverages a matrix of luma coefficients that specify the
color conversion for each respective color channel (RGB). The luma transformation
Y with the specified coefficients according to the standard BT.601 is defined as
follows:

Y = (R ◊ 0.299) + (G ◊ 0.587) + (B ◊ 0.114) (4.1)

The positive side-effect for the subsequent steps in the processing pipeline is the
reduced amount of data to be processed and the resulting shorter processing
time. The work copy is used to collect document-specific meta-information about
transformations and to perform text extraction.
The status after the preparation stage is a uniform file basis of all input documents
as well as the existence of an original work copy in color and a work copy as
grayscale document.

4. Rotation Correction
Tesseract 4 is able to handle two directions of rotation, the human readable format
(upside up) and the rotation flipped 90 degrees clockwise (upside right). Hence, we
need to perform rotation determination to verify if the actual document rotation
is either of those two valid options and subsequent rotation correction if required.
Based on a task specific dataset of documents to be corrected in their rotation, we
came up with a cooperation of the following rotation correction methods to minimize
the rate of rotation misclassification. Furthermore, we make the assumption that
the archival documents have been captured in one of the four multiples of 90 degree
rotations (0, 90, 180, 270) so we do not consider any fine grained rotation angles
for skewness-correction.
Tesseract OSD Detection – The first level of rotation correction was originally
done by the built-in orientation and script detection (OSD) feature. We discovered
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that this technique showed fluctuating results with regard to the accuracy of the
proposed correction. There were also problems with handling large files, in terms
of document resolution (length-width ratio), that could not be processed. We first
considered and verified only the high confidence values as being correctly identified
document rotations. At a later stage of the project we decided to discard this
method to be substituted with a more robust rotation correction solution.
2-Rotate Rotation Correction – We developed a rotation correction strategy
to determine and correct any input document rotation. Tesseract is able to process
an input image in any orientation, but only two orientations provide text results
that are human readable. Based on the fact that tesseract is able to extract two
orientations with regard to human readability, we have to extract the document
twice to determine its current orientation. We first extract the text content of the
document in its original rotation as well as in the form rotated by 180 degrees. The
2-rotate strategy returns two results to evaluate, which always includes one correct
rotation that can be successfully processed by tesseract and one incorrect rotation
that resolves in an unreadable text. If a text extraction fails because the input
document is too large, the resolution of the document is adjusted. The document
resolution is then resized by a percentage value and then the 2-rotate method is
applied again.
For the original document as well as the rotated document we perform a text
extraction and calculate the mean line confidence (mlc). Therefore, the result
consists of one mlc value for each rotation, usually one lower and one higher value
while the higher value indicates the valid rotation and the lower the invalid rotation.
To determine which value represents the correct rotation, the difference between
the two mlc values is calculated and evaluated. If this difference is greater than 20,
the result is considered significant and the corresponding rotation represents the
correct rotation.
If there is still no evaluable numerical or significant result, for example, in the
case that there is no extractable content on the document at all, the document is
transformed and evaluated by the further rotations 90 and 270. The two additional
rotation data entries complement the previously collected information and can
support to determine the correct rotation if the previously collected information
was insufficient. The significance threshold value, which determines a sufficient
difference between two mlc values is set to 20 on default because this determined
value represents a clear and sufficient difference for deciding the correct document
orientation. If no significant result is available, the highest measured mlc respectively
its corresponding rotation value is used for subsequent rotation correction.
Gathering initial Meta-Information – Another important aspect in this stage
are the initial mean line confidence and text length metrics which are necessary
for decision-making in the subsequent processing steps. In order to avoid wasting
compute resources and time we exclude the processing of files that do not contain
any extractable content, indicated by an undefined (not a number) mlc value.
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Determining upside up Document Rotation – After the successful detection
and correction of the rotation as a basis for the text extraction for Tesseract we
also need to determine the human readable upside up rotation to avoid manual
rotation correction for the end user. We use the fact that text words and lines
usually have a higher pixel value in their width than in their height. Therefore we
use the text-box data from the previously corrected rotation to obtain the sum
of text boxes that have more width than height and the sum of text boxes that
have more height than width. The higher value finally decides whether the image
is already aligned in an upside up position or needs to be rotated 90 degrees to
counter clock wise in order to be upside up.
Mean Line Height – Furthermore, the mean line height which can also be referred
to as the text size is determined on the basis of the text-box height data of the upside
up readable rotated document. The mean line height carries document specific
information and is a crucial decision parameter for the subsequent processing steps
to perform further document transformations accurately.
The status after the rotation correction step includes correctly rotated documents
that are machine and human readable and the extraction of document-specific meta
information to be used for further processing.

5. Document Resize
Input documents may differ in resolution and therefore the character size of the
printed text will be affected accordingly. For reasons of document preservation,
archival documents are usually recorded in high resolution in order to capture
as much information or detail as possible. Therefore, it is important to mention
that a higher image resolution does not imply that the expected OCR text quality
will be better. If the font-size of the characters, measured in pixels, is too large
or too small the OCR model might misclassify the word or not even detect the
text segment at all. This scenario occurs due to the fact that a OCR model is
trained on a specific annotated dataset that might not have included documents
with such font or character height properties. Therefore, we resize the image to
different resolutions and evaluate the best performing setting on the basis of the
metric data collected. For image resize operations4 we use the bicubic interpolation
algorithm which considers the closest 4 ◊ 4 neighbourhood of known pixels to
estimate an unknown pixel value. If an improvement or an equivalent result can be
determined with a shorter processing-time, the resize operation will be applied to
the document. The reduced processing time due to the equally reduced amount
of data is a positive side effect of the document resize process in regard to further
document transformations in the OCR pipeline.
Figure 4.3 consists of four independent graphs, each representing a relationship
between the document scaling, expressed in percentage of the original image size,

4pillow resize method: https://pillow.readthedocs.io/en/stable/reference/Image.
html?highlight=resize#PIL.Image.Image.resize (accessed 16.08.2021)
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Figure 4.3: Four individual plots that illustrate the effect of document resolution on OCR
text extraction with regard to the processing time, character height, mean line confidence
and word length. Each colour corresponds to a unique document which has been scaled
40 times between the values 0.1 and 2 of the respective original document size.

and an evaluation metric on the Y-axis. These graphs support the following text
on why and how the collected metrics contribute to the evaluation of the optimal
resolution. The linear relationship between the document resolution and the text
extraction runtime is shown in the upper left plot in Figure 4.3 and thus influences
any further text extraction and document transformation in the OCR pipeline.
Resolution Settings – The resolution settings to be evaluated are based on
percentages and calculated from the document specific height and width attributes.
By default the resolution settings consist of the values 0.2, 0.3, 0.4, 0.5 and 0.8 and
can be adjusted via the configuration object of the OCR pipeline. We only scale to
smaller resolution formats, based on the original document resolution, as otherwise
inconsistencies in the expected results may occur. Such an inconsistency can be
observed in Figure 4.3 in the lower right graph where one document unexpectedly
multiplies its word count at scales higher than the original document. Figure 4.4
illustrates the effect of the respective scaled up image, which shows that when
scaled too high, the OCR engine does not recognise the text content, but many
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Figure 4.4: Up-scaled resolution causing inconsistencies in a thresholded input image.

irrelevant and single letters, resulting in the exceptionally high word count. The
red rectangles visualise regions where text was recognised. It is important to note
that this particular image has been previously binarized resulting in some black
pixels which, at high document resolution, are recognised as text symbols by the
OCR engine. Subsequently in the shape determination, we have to deal with the
detection and exclusion of such cases.

Evaluation Metrics – In order to enable the subsequent document resolution
evaluation, the following metrics are required to be captured for each shape trans-
formation. The mean line confidence, together with the word length metric, provide
information to enable the identification of outlier shapes that deviate significantly
from the average results. The mean line height, which was already calculated
in the previous pipeline step on the basis of the original scaling, is an essential
decision factor for the shape evaluation process and will be decisive for the quality
in the following binarization step. In the upper right graph in Figure 4.3, the
mean line height metric illustrates its linearity and thus represents a robust and
reliable parameter that can be effectively used as a filter parameter to exclude
resolution settings below or above a certain threshold5. Some documents show a
lower linearity which is due to documents from which text is difficult to extract,
reflected in the mean line confidence of the respective scaled document.

Shape-Determination & Application – The collected metric data represents
the foundation for the determination of the optimal document specific resolution.
In the lower left plot of Figure 4.3 we see that document resizing operations below
0.2 percent of the original image size yields a low mean line confidence metric and
in the lower right plot we can observe the equivalent phenomena for the word length

5inspiration for document resize https://groups.google.com/g/tesseract-ocr/c/Wdh_
JJwnw94/m/24JHDYQbBQAJ
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metric. This knowledge gives us certainty to remove exactly these transformation
outliers in the first filter iteration. We want to remove transformations for which
the OCR engine was not confident in the text extraction process. Therefore,
candidates with a low mean line confidence value are removed by applying a lower
threshold that is derived from the average of the mlc distribution minus one single
standard deviation. Next, z-score is used to eliminate shapes that deviate from
the word length distribution. Finally, we use the mean line height to filter shape
candidates with too low character heights using a threshold that defaults to 18
pixels. From the remaining candidates, the transformation with the fastest runtime
or respectively the lowest resolution is selected and applied to the document. In
case a filter operation fails or there is insufficient or no data available, for example
if no candidates remain after the outlier removal process and the subsequent mean
line height threshold filter, the process decides for the default unscaled candidate
shape.
The status after the document resize step includes potentially resized documents
which have adequate or improved properties for text extraction. Under the condition
that the resize operation has been applied the runtime will be lower for further
extraction iterations in the subsequent OCR pipeline.

6. Binarization
Document-binarization narrows down the range of colors of a grayscale document to
two values, black and white, and therefore will provide support for the OCR model
to classify document-regions as text and background6. The effect of the binarization
document-transformation effect can be observed in Figure 1.1. The binarization
processing step is the main contributor in document improvement for the final
OCR extraction and is the most time and resource intensive due to the constant
quality requirement to be ensured. Document specific difficulties underlying the
historical archival documents, as explained in Section 2.9, require the selection of
a robust binarization method. The adoption of non-static and document specific
binarization parameters is essential to counteract diverse disturbing factors such as
changing background illumination or contents that shines through from the back
side of the document.
In order to justify the application of a binarization transformation, the document-
specific parameter values for the selected binarization method must be tested and
evaluated. For the estimation and evaluation of the binarization results, the mean
line confidence metric was applied, which is computed from the OCR-text resulting
from the binarized document.
Thresholding Methods – For document binarization, we exclusively use adaptive
thresholding methods which are robust against archival document specific contami-
nations. In contrast to global thresholding methods, where none or at least one

6opencv-python: https://docs.opencv.org/2.4/index.html (accessed 16.08.2021)
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parameter has to be set, the adaptive mean and adaptive Gaussian thresholding
methods7 we use require three parameters to be configured. The adaptive mean
thresholding method defines a local threshold Tmean(x, y) by calculating the mean of
its surrounding s ◊ s blocksize neighborhood pixel gray values pij minus a constant
C value and is defined as follows:

Tmean(x, y) = (
sÿ

i=1

sÿ
j=1

pij)/s2 ≠ c (4.2)

The adaptive Gaussian thresholding method defines a local threshold Tgaussian(x, y)
by calculating a weighted sum of its surrounding s ◊ s blocksize neighborhood pixel
gray values. Each weight for the corresponding neighbourhood pixel is obtained
from the Gaussion filter function based on the distance from the center pixel (x, y).
The adaptive Gaussian thresholding method is defined as follows:

Tgaussian(x, y) = (
sÿ

i=1

sÿ
j=1

wij · pij) ≠ c (4.3)

On the one hand our selected thresholding algorithms are advantageous because the
method can be set precisely to obtain an exact separation, but on the other hand
it is also time consuming and computationally intensive because it is necessary to
choose from a large number of possible values for each parameter in order to find
the best document-specific configuration.
The c-value c represents a constant value parameter that is subtracted from the
mean or weighted sum of the neighborhood pixels. The valid value range for the
c-value is -255 to 255. If the subtraction of the c value results in exceeding the
grayscale value limits, the threshold is set to zero (black) in case of a negative value
and if the value exceeds 255 it is set to 255 (white).
Parameter (Range) Tuning – In order to optimize the process runtime as well
as the quality of the resulting binarization, the value range for each input parameter
is selected document specific. In the following list, the approach for the parameter
value range determination is described for each of the three input parameters for
the adaptive thresholding binarization method.

• Blocksize – The blocksize parameter s determines the size of the local
neighborhood area centered around each pixel. The reference to local pixel
neighborhoods makes the blocksize parameter mainly responsible for the
robustness against different lighting conditions on the same document. If this
parameter is set too high or too low, there is too little or too much image
information for the classification, which leads to a poor overall binarization
result. Because the blocksize parameter is only limited by its document-specific

7adaptive mean thresholding & adaptive Gaussian thresholding: https://docs.opencv.org/4.
5.1/d7/d4d/tutorial_py_thresholding.html (accessed 16.08.2021)
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Figure 4.5: Center cropped binarization parameter selection.

resolution, its height and width attributes, a wide range of values is possible.
We have tested and evaluated the following two methods for selecting blocksize
value ranges and implemented the second variant due to the potential for a
precise selection of test values which lead to a lower duration while maintaining
the threshold output quality.

a) Static Parameter Range – The first method of selecting a parameter
range refers to a static subset of values. For testing and evaluating a
static blocksize parameter range, we used 6066 documents from an archive
provided by the historians. Approximately half of these documents were
not suitable for the test because they did not contain any text content
to be extracted. To define a static value range, we first defined 15
blocksize values between 3 and 153 to be evaluated. For each document,
subsequently all blocksize values were applied using the adaptive mean
thresholding method and the adaptive Gaussian thresholding method.
For each thresholded output document, a text extraction was carried
out and the mean line confidence and the word length was calculated.
Then, for each document and its resulting transformations, outliers with
respect to the word length metric were removed and, of the remaining
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transformations, the candidate with the highest mean line confidence was
chosen as the best blocksize value. Finally, it was possible to define a global
optimal blocksize parameter range leveraging extracted evaluation data,
but due to individual document properties such as document resolution,
this static range is unacceptable with regard to runtime performance
due to its size of values. Due to the inflexibility of a global blocksize
parameter value range, qualitative binarization results are achievable only
with respect to a high runtime, which is not suitable for our application
in the real scenario.

b) Dynamic Parameter Range – Due to the uniqueness and variety of
types of document contamination, statically determined values might not
work for all documents as they were only obtained from a selected set of
documents. Applying a one fits all solution works well on the data based
on which the globally determined blocksize value range was determined
but brings unpredictable results on documents with different features.
Our second approach aims at choosing the blocksize parameter range based
on document specific properties. Therefore, we minimize the number of
combinations to be tested and are still able to test under the best parameter
constellations. The dynamic blocksize range is determined on the basis of
the mean line height determined in the Document Resize processing step,
which expresses the average height of the printed letters in pixels. By
default, two additional values are derived from the document-specific mean
line height. The final range consists of three values, a negative offset from
the mean line height value, the mean line height value itself and a positive
offset from the mean line height value. The offset percentage range can
be configured if required, e.g. to have more or fewer binarization options
examined with respect to the parameter blocksize. The offset percentage
range list contains 0.5, 1 and 1.5 by default. We have chosen the document-
specific mean line height value as the decision parameter for the blocksize
parameter value selection in order to achieve good binarization results
regarding a text extraction process. In addition, the dynamic approach
allows the process runtime to be configured by making the blocksize offset
percentage range list configurable.

Figure 4.5 illustrates 20 different binarization parameter settings applied to
the original document which is shown in the first column of each row as
reference. Each applied binarization illustrated consists of a value combination
of the blocksize (on the x axis) and the c-value (on the y axis). The dynamic
blocksize range was determined from the mean line height, which for this
document amounts to 27 pixels, and calculated for the additional percentage
factors [0.2, 0.5, 1, 1.5, 3] to demonstrate the effect on the binarization result
of different combinations of blocksize and c-value from the initial reference
value of the mean line height. The images of Figure 4.5 have been center
cropped and zoomed in to illustrate the binarization differences in detail.
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We can observe that extreme values regarding the blocksize, which deviate too
much from the initial character height value (the factors 0.2 and 3), produce
faded or no longer recognizable results. When performing a text extraction
on the two binarized images with a blocksize of 0.2 and 3, the calculated
mean line confidence results accordingly in the lowest values of all other
percentage factors. In contrast, the blocksize parameters factors 0.5, 1 and
1.5 in combination with a c-value below 100 provide readable and clearly
separated binarization results. Identical observations were made on ten other
documents.

• C-value – The purpose of the c-value is to avoid noise elements in small
blocksize windows by shifting the threshold value by the constant defined value.
If, for example, a blocksize window contains only background information,
small noise elements would be classified as foreground, which is to be avoided
by the c value.
The c-value range was defined utilizing the mean line confidence metric in
order to exclude extreme values and to narrow down the range of parameter
candidates. Furthermore, the well performing value range of the c-values can
be determined empirically by observing the binarization results as in illustrated
in 4.5 where extreme values above 100 did not lead to an improvement but to
a deterioration of the binarization.

• Adaptive Method – The adaptive method parameter defines the algorithm
that determines the pixel specific binarization threshold T (x, y) to classify the
pixel white or black. The two types of adaptive thresholding ADAPTIVE
THRESH MEAN C and ADAPTIVE THRESH GAUSSIAN C of adaptive
methods are available. Both methods require the same parameters to be
defined. With the adaptive Gaussian thresholding method, no additional
parameters need to be defined for the calculation of the Gaussian filter, as the
defined blocksize is used as the kernel size.
Both thresholding methods proved to be important and complementary, es-
pecially with regard to the attribute of image sharpness, which refers to the
blurriness or clarity of the printed characters. The Gaussian window filter
operation of the ADAPTIVE THRESH GAUSSIAN C method softens the re-
sulting binarized image, benefiting especially images with sharp or thin printed
letters. In case of poor quality documents with blurred and fuzzy characters,
the ADAPTIVE THRESH MEAN C thresholding type is advantageous as no
additional filtering option is applied resulting in clear and sharp characters.

Configuration Evaluation – In order to determine the optimal document bina-
rization, an evaluation of all parameter combinations is carried out on the basis of
the determined parameter ranges.
With regard to determining the best binarization setting we investigated the relation
of the applied mean line confidence and word length metric to OCR accuracy based
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Figure 4.6: Showing the relation between the mean line confidence and the word length
to the word error rate to demonstrate the relation of the metrics to OCR accuracy. Each
data-point represents a text extraction based of a thresholded version of one document.

on ground truth data and the word error rate evaluation metric. Nine documents,
for each of which we had a ground truth text available, were binarized 240 times
with different parameter configurations and subsequently a text extraction was
carried out on the basis of the thresholded document. Based on the resulting
text, the word error rate to the ground truth, the mean line confidence and the
word length were calculated for each configuration. The relation of the calculated
evaluation values for one of the documents is shown in Fig 4.6. Finally, we observed
an average Pearson correlation coefficient of 0.84 between the word error rate and
the mean line confidence and 0.94 between the word error rate and the word length.

In the selection process, binarization candidates with a word length value lower
than the average value minus one standard deviation are excluded. From the
remaining configurations, the transformation setting with the highest mean line
confidence value is selected and applied to the document. In the case that no
binarization configuration leads to an improvement of the document with respect
to the mean line confidence and word length that we obtained from the resize step,
the transformation is not applied to the document.

7. Data Extraction

In the final stage of the OCR pipeline we apply the knowledge we have gained
about document transformations to retrieve the OCR text output. For the final
text extraction we use the so called tessdata_best8 models for the tesseract 4 engine
which provide the most accurate OCR result while having a longer runtime. The
data is extracted and exported to the following file types to serve different purposes
of application.

8traindata best: https://github.com/tesseract-ocr/tessdata_best
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• hOCR – hOCR is a form of representation of text data obtained from the
OCR process that additionally captures layout information, coordinates and
metrics such as the recognition confidence. This additional information about
text positions and confidence values extends the application possibilities of the
data and is the foundation for interactive applications. To mention one use
case, our Bulk OCR Web Service (BOW) A employs the processed hOCR data
and additional entity annotations as an interactive result preview. With simple
interactions, filter options based on the confidence values can be implemented.
In addition, the hOCR output provides the basis for the subsequent PDF
generation.

• Standard Output – The standardised output in JSON data format contains,
in addition to the obtained hOCR data, meta-information on the document
transformations that were acquired within the OCR pipeline and applied to the
document. This purely textual and structured output is particularly suitable
for machine-driven tasks or data preservation as the format is accessible and
standardised.

• PDF – The Facsimile PDF output is primarily intended to represent a true-to-
original document with embedded text annotations. For this reason, neither
the image resolution may be altered by enlarging or reducing it, nor the
background image, for example, by the binarization may differ from the
original document in the output document. The PDF file can be generated
directly by Tesseract with the required facsimile properties, but the document
transformations and knowledge previously gained in the OCR pipeline are not
utilized and incorporated.
To avoid further text extraction iterations and to ensure consistent quality
among the different output formats, the facsimile document is created from
the previously extracted hOCR text and the original document. The bounding
boxes given by the hOCR output, which are provided with coordinates, are
used to create text annotations on the PDF. The length and height of the
PDF document page to be created is determined by the properties of the
original document. For each text box, the text inside is stretched to fill the full
width of the box to make the positioning of the text as accurate as possible
to the word below it on the document, to enable for precise text selection.
The output of multi-page annotated PDFs is supported if the input document
consists of several pages.
An additional phantom-character-removal method removes text fields from
the hOCR data that have oversized box properties or contain only irrelevant
text content such as exclusively whitespace characters. This method is crucial
for the usability of the output PDF documents, as too large, non-information-
bearing fields can affect the precise text selection of the document. In summary,
the creation of annotated PDF documents from previously extracted hOCR
data enables the application of filter operations or the precise use of positional
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information and allows the creation of high quality and usable facsimile
documents.

File ID Ground Truth
Length

WER ABBYY WER BOW ABBYY-BOW
WER difference

a 694 57.22 15.98 41.24
b 1136 43.63 30.9 12.74
c 1837 3.0 3.26 -0.26
d 1217 36.66 33.4 3.26
e 673 52.93 31.79 21.14
f 659 93.89 71.48 22.41
g 1570 4.97 11.3 -6.32
h 2190 4.64 6.12 -1.48
i 1927 35.69 14.4 21.29

Table 4.2: BOW & ABBYY FineReader benchmark dataset showing word error rates
(WER) for each document.

mean ABBYY
Length Offset

mean BOW
Length Offset

mean-error
ABBYY

mean-error
BOW

ABBYY-BOW
difference

63.77 17.66 36.95 24.29 11.75

Table 4.3: BOW & ABBYY FineReader benchmark results presenting mean length offset
values as well as mean word error rates for BOW & ABBYY FineReader.

4.5 OCR Quality Benchmarking
Evaluating the text output quality of our BOW compared to a current in use tool
is a prerequisite to justify its application. In our scenario, the OCR text results are
evaluated against those of the ABBYY FineReader9. The evaluation dataset, consisting
of nine documents, was selected by historians to target the digitisation of critical or
difficult-to-extract documents. In Table 4.2, the evaluation dataset consisting of nine
documents is labelled with unique identifiable letters (from a to i) in the File ID column.
To access the full name resolution of the documents or to preview the documents, we
refer to the Appendix C.

To evaluate the output texts of the two OCR tools, we created a ground truth text for
each document which defines the text quality to be achieved for the two OCR engines.
Information such as handwritten annotations were not considered in the ground truth.

9ABBYY FineReader https://www.abbyy.com/ocr-sdk/ (accessed 16.08.2021)
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Preprocessing steps of the output text before comparison include transformation into
lowercase characters and removal of multiple white-space characters. The Word Error
Rate (WER) metric is then used to determine the text similarity of the texts from the
BOW and the ABBYY fine reader engine to the corresponding document ground truth.

(a) Document: NARA_RG-260_HMSMLR-A1-
260_Box-265_Documentary-Production-Unit-
NAID-7550505_029

DECLASSIFIED Authority
NND 775037
-/tz/jk
Berlin, Germany 17 June 1948
062.2 (Ftm)
SUBJECT : 16mm Prints of
Documentaries
TO : Chief, Film Section
Information Control Branch
Office of Military Goverment
for Berlin Sector
APO 742-A., U.S. Army
1. Reference letter, this
Division, same subject, dated
4 June 1948.
2. Request is made to have
1 Dupe Positive 35 mm
manufactured of all those of
the subject Documentaries for
which none exists.
3. Further request to have
1 Dupe Negative 16 mm
made on all Documentaries,
mentioned in above letter.
FOR THE DIRECTOR, INFORMATION
CONTROL DIVISION:
Telephone: 44352
ERIC T. CLARKE
Chief, FTM Control Branch
cc: Central
FTM
Mr. Pommer
MR. Nilson Scholtz

(b) Ground ground truth text

Figure 4.7: Document (File ID: a) with ground truth text next to it.

The evaluation results are presented in Table 4.3. The mean length offset value indicates
how close the number of recognised words is to the number of the words of the ground
truth text, regardless of their correctness to the ground truth value. The error refers
to the evaluated word error rate and the error difference is calculated by the document
specific difference between the BOW error and the ABBYY FineReader error. A high
positive difference indicates superior quality of the BOW, while negative values indicate
inferior quality compared to the ABBYY FineReader. In summary, the BOW has a
mean error rate of 24.29 and the ABBYY FineReader a mean error rate of 36.95 on the
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| DECLASSIFIED
Authority NAY 775037)
-/t3/ 3x
Barlin, Germany 17 June 19548
082.2 (Fem)
SURJAUT 18 mm Prints of
Documentaries
70 Chief, Film Section
Information Control Franch
Office of Hilisary Goverment
for Berlin
APQ T42-A., U.6. Aray
1. Reference letter, this
Divisicn, same subject, dated
4 Jume 1948.
2. Request is mede $0 have
1 Pupe Positive 25
papufactured of all those of
the subject Documentaries for
which none sxists.
3. FPuarther request to huve
1 Dupe Negative 16 um
msde on all Documentaries,
mentioned in adove letter.
POR THX IRFORMATION CORTROL
DIVISIONS
ERIC R�. CLARKE
Telephone: 44352
Chief, FT! Contrel Branch
cct Central
FIM
Mr. Pommer
Mr. Nilson Scholts

(a) BOW Text

DECLASSIFIED
Authority AIaJsS "77 7
/xn a
Bwrlia* Oaraauy XT <ftmo 1949
049.8 (UK)
fWS0l i 16 am Prlats of
SrnmilafiN
TO t Chi«ft Fils Steitta
Xmforvati«* Cntnl imd
Offic* of Kllll«rf mrn«at fw
Barita Sootor
APO 743-A., 0.8. Anqr
I. lifirtMi Uttir, this PMilia,
itai M>tj«ct, d*ti<
4 tat 1048.
8. 8t*ost 1« aal« I« heft
1 Jtop« fHlilT« 38 ms
aMOfftotarti if all tkaii if
ihm tafcjact ômiialirlM far
which aoaa «xltti.
3. further r#û»t le hvo
X Dttp« 1*|«IIti 16 m
«mit on all Do6ua«at*rl«a»
moattoaed in ikn latter.
Y08 TKB DIA80T08, XVVQIMATI09
008T80X DITISIOIl
8816 9* 6IA1X8
talaphaaai 44388
Ctlif, TfH Oaatrol Iraaak
cot C@at.ral
im /
Nr. PoEiMer
Nr. Vilaon Seholts

(b) ABBYY FineReader Text

Figure 4.8: BOW & ABBYY extracted text side by side comparison.

given dataset. The word error rate of the BOW is 40% lower than that of the ABBYY
Finereader. The results refer to the data-specific environment determined by historians
working in the archival research domain and may not be generalised to all data and
document types.

Figure 4.7 shows a document from the evaluation dataset and its corresponding ground-
truth as text. The three text passages marked in blue, red and yellow in the ground
truth text refer to the text content of the regions marked in the document image on the
left side.

In the Figure 4.8 the OCR output texts of the BOW and the ABBYY FineReader are
shown side by side to allow a direct comparison of the reading quality. The BOW minus
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ABBYY word error rate difference of the document with the file identification a as to be
observed in Table 4.3 amounts to 41.24 and the word error rate difference is also evident
when reading the two texts. To better illustrate the comparison with the Ground Truth
text shown in Figure 4.7, the same marked passages are also highlighted.

4.6 Summary
The multimodal OCR pipeline combines seven individual processing steps for correcting
archival documents to subsequently perform text extraction. By means of a defined
sequence of processing steps to be applied and several selected evaluation metrics, we
have designed a method to make automated decisions within and between the individual
processing steps. In detail, we present the seven processing steps and point out the
respective evaluation metrics used in relation to the problem context of each processing
step. In an OCR quality benchmark evaluation, we compare the text output of our OCR
pipeline against the text output of the commercial product, the ABBYY fine reader, and
perform superior on a dataset defined and transcribed by historians with a 40% lower
word error rate.
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CHAPTER 5
Spelling Error Correction

The post correction of spelling errors in OCR text is a crucial task that enhances
document searchability, to enable efficient annotation of entities and to support or reduce
the subsequent manual correction of errors. We have developed a four-stage spelling error
correction workflow that entails text-preprocessing, error detection, error correction and
result parsing processes.

In Figure 5.1 the architecture of the spelling error correction workflow with its four
processing steps is illustrated along a text input example to demonstrate the processing
state in each stage. In the upcoming section we describe the processing steps along
their functionalities, methods and software libraries included. Finally, the performance
evaluation in terms of document improvement is presented.

Figure 5.1: Spelling Error Correction Workflow illustrated showing the processing steps.
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5.1 Text Preprocessing
Before any corrective measures are applied to the text, preprocessing steps are performed
to enable detection of misspelled words, to avoid the masking of correct words and to be
able to write each corrected word back to its original position in the index based json
format.

• Punctuation – Punctuation marks are special characters which provide structure
in the sentence structure. Punctuation marks can cause misclassification during
error detection, causing correct words to be marked as incorrect due to the presence
of punctuation marks. Therefore, in the first preprocessing step, punctuation marks
are removed from each word using a regular expression (regex) which only allows
letters and numbers.

• Invalid Values – Invalid values are nan (not a number) numeric data type values
which occur in data records which are responsible for the structure of the document.
These data entries are not to be corrected and are excluded through a simple filter
operation.

• Extract & Remove Digits – Similar to punctuation marks, digits do not con-
tribute to the correction of words and can cause misclassification in the error
recognition process. However, the difference here is that characters are often inter-
preted as letters, and vice versa, as there are often similarities in the appearance of
the script. For instance, the capital letter "G" can be recognized as the number "6"
and vice versa. Text and numbers could also be written together as for example the
incorrect the potential time entity January1942. A correction of this word would
not lead to a successful recovery of the context. As a solution, all numbers are
removed to make the respective word initially classifiable as misspelled or correct.
In order not to eliminate the potentially correct numerical context, it is written in
a separate column.

• Lowercase – The lowercase transformation of the text to be corrected ensures that
exclusively capitalized or single uppercase letters that occur not at the beginning
of a word are transformed to lowercase words. The lowercase transformation can
misspell the beginning of an entity such as a name, but it primarily avoids the
misclassification of spelling errors.

• Whitespace – Blank characters or multiple blank characters which are either
caused by previous preprocessing steps or by the OCR process are cleaned up in
the last step of the text preprocessing. We replace plain white-space and plain
punctuation words with a special token that will be ignored in the subsequent
correction process to be able to preserve the original document length and structure.

• Word length – Words consisting of less than two letters are excluded from
the correction because these words are often stop words, thus contributing little
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relevance to the document content and there are many correction measures which
would all have a similar high similarity to the wrong word. Like empty words, they
are marked as such with a token to be ignored and not corrected.

5.2 Spelling Error Detection & Correction
Our solution for spelling correction combines the collaboration of multiple strategies and
libraries for error-detection and the subsequent correction.

• Term Frequency – To avoid the correction of potential named entities, words
that express the names of people, locations and others, we build a list of words to
be ignored in the subsequent error detection and correction procedure. We build
the list of words to be ignored leveraging the term frequency (TF) to determine
how many times each word from the extracted text occurs in it. Words counted
more than three times in the text corpus are added to the ignore words list and are
protected from a potential error correction.

• Detect & Mask Errors – We utilize the spell checker functionality of the enchant
library1 to iterate over the word tokens to detect and mark incorrect words. We
store the words classified as incorrect and the corresponding index positions of the
words in the given text corpus.

• Correction Suggestions – For the first part of the spelling error correction
process, we utilize two different dictionary based word similarity-based libraries
to retrieve the first correction suggestions for each word classified as incorrect. At
first, we apply the symspell library2,3 for spelling correction to retrieve suggested
corrections for each word previously marked as incorrect. The same procedure of
retrieving suggestions for each misspelled word is performed with the enchantment
library.

• Ranking & Thresholding – After both dictionary-based correction suggestions
have been collected, they are merged into one list, duplicates are removed and the
remaining candidates are ranked according to a similarity metric. The similarity
metric used for the ranking process is based on the Levenshtein distance4 metric
which measures the minimum number of characters to be edited (edit-distance)
necessary to form the misspelled word.
In order to further limit the correction suggestions that deviate too much from the
word to be corrected, half the word length is calculated for the respective incorrect
word, which represents the threshold that is used to filter correction suggestions

1pyenchant: https://pyenchant.github.io/pyenchant/ (accessed 24.06.2020)
2symspellpy: https://github.com/mammothb/symspellpy (accessed 24.06.2020)
3jiwer: https://github.com/jitsi/jiwer (accessed 24.06.2020)
4jellyfish Levenshtein distance: https://jellyfish.readthedocs.io/en/latest/ 16.08.2021
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5. Spelling Error Correction

based on their individual word length. Often archival documents contain additional
meta information for instance indexes such as page index, numerical text content
and domain specific abbreviations that lie outside of the core document content.
Another type of distortion which we do not want to correct and rather filter out
is noise text that results from interference sources on the respective image region
which were mistakenly interpreted as text during the extraction process.

As our method is not able to correct numerical data, abbreviations, index infor-
mation or similar, we aim to avoid applying a spelling error correction on this
kind of data. The majority of this type of data is excluded in advance in the text
preprocessing stage and, if exclusion was not possible, the proposed correction
candidates are restricted on the basis of a word length threshold.

• BERT Suggestions – Furthermore we leverage the pre-trained BERT5 [7] language
representation model to the correction process to perform context-based spelling
error correction. At this point, we use the index positions extracted at the beginning
of the error detection phase to access the respective text content before and after
the word to be corrected. To receive context-based correction suggestions from the
BERT model, we pass the contextual text phrases before and after the word that is
labelled as incorrect. Based on the two contexts, the model returns k suggestions
(k = 80 by default) to connect the two text phrases.

• Suggestion Decision – The BERT model will most likely suggest a word that
would fit the context but may not match the word from the original document.
To retrieve the most appropriate suggestions among the BERT suggestions, we
incorporate the incorrect word, for which we want to find the best correction, by
calculating the word similarity between each suggestion and the word to be corrected.
BERT suggestions are treated separately from the dictionary based and ranked
suggestions because in the case of a high word similarity to the incorrect word, the
BERT suggestion is given priority due to its context based expressiveness. For the
word similarity, Python’s built-in Sequence Matcher6 is used to determine a string
of letter sequence similarity ratio between 0 and 1. If all k suggestions proposed by
BERT show similarities below the threshold ratio of 0.75 to the incorrect word, we
discard the suggestions from the BERT model and select from the three highest
ranked dictionary based suggestions.

• Result Parsing – In order to make the correction suggestions available for each
word classified as incorrect, all those suggestions are integrated into the JSON
output data format in a separate column. Single and multiple correction suggestions
are saved as a list and must be parsed accordingly when retrieved.

5pytorch-pretrained-bert==0.6.2: https://github.com/huggingface/transformers (ac-
cessed 24.06.2020)

6difflib sequence-matcher: https://docs.python.org/3/library/difflib.html 16.08.2021
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5.3. Spelling Error Correction Evaluation

File ID Ground
Truth
Number
of Words

Recall
RAW

Recall
ABBYY

Recall
CORR

Recall
Difference
CORR-
RAW

Recall Differ-
ence CORR-
ABBYY

a 72 0.611 0.167 0.708 0.097 0.542
b 115 0.513 0.435 0.583 0.070 0.148
c 169 0.988 0.994 0.994 0.006 0.0
d 143 0.629 0.580 0.699 0.070 0.119
e 76 0.566 0.289 0.632 0.066 0.342
f 91 0.923 0.912 0.934 0.011 0.022
g 97 0.959 0.938 0.959 0.0 0.021
h 174 0.770 0.954 0.810 0.04 -0.144
i 192 0.786 0.693 0.849 0.062 0.156

Table 5.1: Spelling Error Correction evaluation dataset.

mean recall
ABBYY

mean recall
RAW

mean recall
CORR

mean recall difference
RAW-CORR

0.6624 0.749 0.796 0.046

Table 5.2: Spelling Error Correction evaluation results presenting mean recall values as
well as mean differences of two respective mean recalls.

5.3 Spelling Error Correction Evaluation

Setup

To measure the effect of our spelling error correction workflow, we employ a recall metric
that uses the bag-of-words vector representation of words. The bag-of-words model uses
key-value pairs to represent unique words and the number of occurrences in a given text.
First, the ground truth bag-of-words is created from the manually transcribed documents
and thus represents the vocabulary of words to be matched by the OCR text. Then, the
bag-of-words transformation is created from the plain OCR text and from the corrected
text to determine the performance of the post spelling-correction.

For our evaluation, only the word occurrence is taken into account, but not the number of
occurrences and therefore we classify binary whether a word occurs in the ground truth
vocabulary or not. For a text to be evaluated, all words are classified according to whether
they occur in the associated ground truth vocabulary. The result of the classification is
represented as a bag-of-words B̨n vector which describes which word occurs in the ground
truth bag-of-words vocabulary G̨n. The sum of all words occurring in the text to be
evaluated in relation to the sum of all words in the ground truth vocabulary determines
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the ratio of the two vocabularies. This ratio is defined as our recall metric r as follows:

r =
q

B̨nq
G̨n

(5.1)

Gn = Ground Truth Vocabulary vector of size n of values [1]
Bn = Bag of Words Evaluation vector of size n of values [0, 1]

r = Recall Metric

A 1:1 ratio or a recall of one is the best result to achieve, as the vocabulary of the text
to be evaluated contains all words from the ground truth.

Dataset
We used the same and already annotated documents from the OCR Quality Benchmarking
evaluation from Section 4.5 as dataset, as these also show diversity in the context of
spelling error correction.

In our evaluation we want to determine to what extent an automatic post-OCR spelling
error correction based on the proposed error corrections is able to improve an erroneous
OCR text. For this, we compare the plain OCR text and the OCR text that has been
corrected on the basis of the proposed corrections against the ground truth text. To create
the corrected text, we expand the plain OCR text with the first correction suggestion for
each word classified as incorrect. The ground truth text was transcribed by historians
and the plain OCR text was extracted by the OCR engine.

Findings
We developed the the spelling correction workflow with regard to minimizing the number
of corrections per document, but with the highest possible text improvement, expressed
by a high recall value. Through specific text preprocessing measures, words such as
named entities and numerical expressions can be prevented from being recognised as
errors and subsequently corrected, which ultimately keeps the number of false corrections
low and the recall high.

Table 5.1 shows aggregated data of the evaluation dataset and related summative metrics
are shown in Figure 5.1. The abbreviation RAW refers to the plain OCR text produced
by the OCR pipeline, ABBYY refers to the plain OCR text produced by the ABBYY
fine reader OCR engine and CORR refers to the text after applying spelling correction
on the RAW text. We included the ABBYY fine reader text output in the evaluation to
show that similar behavior to the RAW text produced by the OCR pipeline is observed
in the OCR quality benchmarking from Section 4.5 in terms of the recall metric.
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5.4. Summary

The number of unique words in each document is shown in the ground truth number of
words (Bag-of-Word) column. How many words from the ground truth occur in the RAW
text in the CORR text and in the ABBYY text is shown in the corresponding Recall
columns. Each recall column reflects the recall metric as defined in Equation 5.1 and
represents the ratio of the bag-of-word matches to the ground truth for the respective
document text. In the column Recall Difference CORR-RAW, the document-specific
recall differences show the improvement between the automatically corrected OCR text
due to the post-OCR text correction and the plain OCR text.

The mean recall difference RAW-CORR value given in Table 5.2 amounts to 0.046 and
represents the average percentage improvement of a RAW OCR text of the OCR pipeline.
Textual improvements are most evident in documents that have a low recall value, while
documents that are nearly identical to the ground truth show little or no improvement.

5.4 Summary
The Spelling Error Correction workflow provides potential correction suggestions to
the OCR text produced by the OCR pipeline. Preprocessing measures which include,
among others, the removal of punctuation marks and a lower-casing operation of the
text are first carried out on the plain OCR text to prepare the text for subsequent error
detection. After classifying the errors, the error correction procedure follows, which
makes dictionary-based and context-based correction suggestions and recommends a
ranking sequence of them. To test the impact of the applied correction suggestions, we
conducted an evaluation of corrected OCR text and uncorrected OCR text with regard
to a ground truth texts using a recall metric.
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CHAPTER 6
Time Entity Recognition and

Normalisation

Time expressions appear in almost every document, whether in the form of a full
date consisting of day, month and year, a mere year or as a time of day. Extracting
and annotating such temporal contexts in OCR texts enhances the searchability and
information content of the raw text data and expands data applicability. Therefore, we
focus on time as an entity and aim to recognise, normalise and classify it as such in the
respective document.

Further named entity types such as people, places or organisations are also relevant in
the archival research domain, but these have often been professionally catalogued and
can therefore easily be matched and classified with the OCR text. For this purpose,
dictionaries exist for each entity type, which are continuously expanded and maintained
by the researchers.

6.1 Time Entity Extraction Procedure
The classification of time entities requires the application of a robust mechanism that
is able to recognise, normalise and eventually parse time entities into a given data
format. In the following we explain how our Time Entity Recognition and Normalization
functionality is integrated into the OCR pipeline and applied to the extracted data
followed by a performance evaluation.

1. Time Entity Recognition – The recognition step is concerned with detecting
the temporal contexts in the OCR text. There are a variety of notations that time
entities entail and, in addition, OCR spelling errors can complicate the process of
recognition. The infinite spectrum of notations of dates and times requires an OCR
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6. Time Entity Recognition and Normalisation

Figure 6.1: BOW Showcaser illustrating a recognised time entity due to applied spelling
correction.

text that is as true to the original as possible, which is indeed a major objective of
the OCR pipeline.
The combination of a text extracted as error-free as possible and a post OCR error
correction pipeline is necessary to enable the recognition of the time entities. With
regard to the correction of words where a whitespace character was mistakenly
omitted during text extraction, there is the possibility that these words represent
a temporal expression which can be recognised as a time entity after successful
correction. Written out months or days of the week that are misspelled may also
be corrected by the spelling error correction workflow and thus support time entity
recognition.

2. Normalisation – In order to bring different time expression notations or in-
completely recorded time entities into a uniform notation, they are normalised.
Recognised dates consisting of year YYYY, month MM, day DD and times con-
sisting of hours hh, minutes mm and seconds ss are parsed in the following order:
YYYY-MM-DDThh:mm:ss. Time entities such as 12 November, which are only
partially complete without year information, are parsed as XXXX-11-12 replacing
the year context with a placeholder value. The time entity normalisation process
ensures that recognised entities are typed according to the standardised TIMEX3
standard.

3. Data Integration – The integration of the found and normalised entities into a
specific data structure or data format is another important step, for example to
visualise the entities. In Figure 6.1, the data showcaser functionality of the BOW
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6.2. Time Entity Detection Evaluation

demonstrates how OCR results as well as correction suggestions and extracted
time entities are displayed on the underlying original document. In addition to the
yellow standard OCR text boxes, annotated temporal contexts are highlighted in
turquoise. In the figure, a hover interaction is performed on the time entity with
the text NONDAT,, which results in the display of additional correction suggestion
information above the hovered box as a grey window. The grey window shows
that the suggested correction monday was provided by the spelling error correction
workflow which resulted in a fully extracted time annotation in the course of the
time entity recognition.

Used Software
The software library we use for the detection and normalisation of time entities is
the Stanford Temporal Tagger [6], for which there is also a Python wrapper1. It is a
deterministic rule-based system that can be configured with additional regular expression
rules.

BOW correct detected RAW correct detected Total Entities
51 38 61

BOW Text Word Count RAW Text Word Count Word Count Difference
4795 3708 1173

BOW Detection Ratio RAW Detection Ratio Difference Ratio
0.7050 0.4889 0.2161

Table 6.1: Time Entity Detection Evaluation results for BOW and unprocessed RAW
text output – showing number of detected entities in relation to the total entities, the
respective detection ratios and OCR text word counts.

6.2 Time Entity Detection Evaluation
The evaluation of our Time Entity Detection procedure is primarily intended to demon-
strate the effect of the BOW measures through improved recognition of the entities in
the extracted text corpus. Therefore, the Named Entity Recognition performance of the
BOW will be compared against the OCR results of the unprocessed documents, where
only the document orientation was corrected, which we refer to as the RAW OCR text
output in the following tables and figures.

1Stanford Temporal Tagger - SUTime: https://pypi.org/project/sutime/ (accessed
16.08.2021)
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6. Time Entity Recognition and Normalisation

Dataset
For the evaluation, we created another task-specific dataset of 18 documents with 60
entities to be recognised. The entities to be recognised and the resulting total number
of entities per document were annotated by ourselves as ground truth and validated
for reliability by a historian. The type of time entities relevant for annotation refers to
complete dates consisting of day month and year, fractions of complete dates, and excludes
purely verbal references to the present or the future such as ’today’ or ’tomorrow’. The
completeness of an entity refers to the information-carrying text part of the recognised
time entity. For instance, if the entity ’Tuesday, 7 March 1944’ is only partially recognised
as ’7 March 1944’, it is still recognised as complete because the day of the week can
be inferred. If, on the other hand, the year aspect is not captured, the time entity is
recognised as incomplete or incorrectly recognised.

Findings
The factor that accounts for the consistent performance of the BOW is reflected in the
fact that archival documents are often only partially or not at all extractable without the
application of image correction measures. By applying spelling correction, spelling errors
in the extracted text are additionally corrected and can contribute to the improvement of
the Named Entity Recognition result quality. In Section 6.1 we can observe how the post
OCR spelling error correction was able to expand the information content of a misspelled
entity by successfully correcting the day of the week NONDAT, to monday.

In the case of the document with the filename Entry6B-Box20323 presented in Table
6.2, the individual time entity to be determined could not be recognised from the BOW
output, but could be recognised from the RAW text. Examining the extracted text
output of the BOW of the associated file, we find that the year to be extracted, 1954,
consists only of the last three numbers and has therefore not been matched as time entity.
When applying document improvement measures, there is a risk that not all document
areas are improved, as the focus of the individual processing steps of the OCR pipeline
aims at a holistic improvement of the document for the respective task to be solved.
The document with the filename NARA-21.20.20190226 contains the most temporal
contexts per document in the dataset, with a total of 22 entities to be identified, which
are represented in a tabular form on the document.

The work of Rodriguez et. al. [23] demonstrates that manual correction of OCR text
does not lead to a significant improvement in NER performance with regard to the
named entity types person, location and organization. In our experiment we focus on the
temporal entity type. Considering all documents in our dataset, the BOW recognises
an average of 70% of all time entities, while only 48% are successfully recognised from
the unprocessed RAW text. Using the word count difference between the BOW and the
RAW outputs as shown in the corresponding column in Table 6.2, we determined three
documents in the dataset that feature word count difference values over 150 which is
related to incomplete text extraction on the part of the RAW text. The fact that the text
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File Name Total
Enti-
ties

BOW
word-
count

RAW
word-
count

word-
count
Differ-
ence

BOW
detection
ratio

RAW
detection
ratio

8-6-2013-02-13-
40-3-1

0 133 130 3 1ú 1ú

8-6-2013-10-24-
41-0...

5 278 306 28 5/5=1.0 2/5=0.4

Entry6B-
Box20323

1 136 138 2 0/1=0.0 1/1=1.0

Entry260-
Box2632404

9 325 322 3 7/9=0.78 6/9=0.67

NARA-
16.10.20191662

1 411 388 23 1/1=1.0 0/1=0.0

Entry260-
Box2632454

2 382 388 6 2/2=1.0 2/2=1.0

NARA-RG-260-
HMSMLR-...

1 188 134 54 0/1=0.0 0/1=0.0

Entry260-
Box2632416

3 279 266 13 3/3=1.0 3/3=1.0

8-6-2013-02-13-
40-1-1

3 425 422 3 3/3=1.0 3/3=1.0

NARA-RG-208-
HMSMLR-...

2 141 143 2 2/2=1.0 2/2=1.0

NARA-
21.20.20190226

22 228 202 26 20/22=
0.91

16/22=
0.73

8-6-2013-02-13-
40-2-1

1 13 13 0 0/1=0.0 0/1=0.0

Entry260-
Box2644678

2 476 4 472 2/2=1.0 0/2=0.0

Entry260-
Box2644176

2 337 168 169 2/2=1.0 0/2=0.0

NARA-RG-260-
HMSMLR-...

1 358 0 358 1/1=1.0 0/1=0.0

50-SKIRBALL-
SkebaFu...

3 673 672 1 3/3=1.0 3/3=1.0

Entry260-
Box2644657

2 6 1 5 0/2=0.0 0/2=0.0

8-6-2013-02-13-
40-4-1

1 6 11 5 0/1=0.0 0/1=0.0

Table 6.2: Time Entity Detection evaluation dataset.
ú The value amounts to 1 because none of the entities to be recognized on the
respective document was recognized. 63
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has only been partially extracted means that the recognition of time entities can only be
performed on the corresponding subset of the text, resulting in less or no recognition of
time entities. If we omit these three partially extracted documents, the mean recognition
rate would shift to 66% for the BOW and to 55% for the non-preprocessed RAW text.
Measures for the complete extraction of documents by using our OCR pipeline as well
as applied post-OCR spelling corrections support the time entity extraction process
according to our assessment.
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CHAPTER 7
Conclusion

In order to map the requirements of historians researching archival documents from World
War 2 to technical solutions we extracted and analysed the requirements accordingly. By
gaining knowledge and understanding of the workflows and procedures to be supported,
as well as the environment of archival research, ten requirements were elaborated and
specified in close cooperation with the historians. The resulting requirements of the
historians represent the demand for a comprehensive solution to automate the digitisation
of archived facsimile documents. With the aim of not replacing expertise but supporting
the historians’ workflows, the requirements were translated into technical solutions and
implemented through an iterative development and evaluation process in our digitisation
tool, which we refer to as the OCR pipeline. In the following, we summarise how we have
implemented the requirements of the historians and to what extent our solutions have
met the expectations of the historians.

• Archival Documents & Language Support – Awareness of document specific char-
acteristics that historical archival documents exhibit including contaminations,
human error and special document types, was essential for us to develop resilient
document correction and enhancement methods. To achieve language independence
within the OCR pipeline we approach language expandability by using Tesseract 4
as an OCR engine that supports different language and script types, and by using
myspell language dictionaries to recognise and correct spelling errors.

• Input and Output Formats & Facsimile & Raw Image Format – The support for
a variety of input formats is implemented in the first dedicated processing step
in the OCR pipeline, in which different input formats are first converted into
a uniform file format that is used for further processing. All requested output
formats were implemented and include plain text output as an unstructured text
file, the standardised and structured JSON output format, and the annotated
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digital facsimile PDF format. The digital facsimile output, which represents a true
replica of the original archival document, is created by mapping extracted text onto
the original document so that no previously applied document transformations are
visible. In a separate processing step, we implemented the requirement to convert
raw type files, image files that are uncompressed and have not been processed in
any way, into project-specific image output formats.

• Searchable Data – In addition to providing high-quality, machine-readable data from
analogue archive data, we extend the applicability of the extracted data through
additional information enrichment procedures. Using a task-specific dataset defined
and transcribed by the historians, we compared the quality of the output texts
of our solution with that of the commercial product ABBYY-finereader, showing
that the average word error rate of the OCR pipeline is 40% lower than that of
ABBYY-finereader compared to the ground truth transcription.
We developed a post OCR spelling error correction workflow that detects potential
spelling errors based on the extracted text and provides correction suggestions to
support the creation of an absolute transcription accuracy through human post-
correction. In an evaluation, we demonstrate to what extent our spelling error
correction workflow achieves improved transcription accuracy in an auto correct
scenario, where correction suggestions are applied to the extracted text.
Based on the text with the applied error correction suggestions, temporal contexts
are subsequently extracted and normalised, which enables a temporal classification
of documents or the establishment of temporal relationships between documents.
The time entity detection method was evaluated on a task-specific dataset with a
total of 60 annotated entities. The performance of the detected time entities was
70% for the text extracted by our OCR pipeline, and 40% for the extracted text
with no pre-processing measures being applied to the documents.

• Graphical User Interface – We developed a web-based interface prototype, the
Bulk OCR Webservice, to enable easy interaction with the OCR pipeline and the
input and output data. The graphical user interface allows OCR results, spelling
error correction workflow data and extracted time entities to be displayed and for
historians to interact with them. BOW continues and meets the minimal interaction
requirement of the OCR pipeline so that no technical expertise is required for use
either.

• Transparent Extraction History – The traceability and documentation of applied
document transformations that result in the extracted text is fulfilled by collecting
metadata along the OCR pipeline processing steps. Stored metadata is available
for each document processed by the OCR pipeline and includes information on
document transformations, such as document height and width scaling values or a
corrected rotation angle.

• Minimal Interaction – We implemented a minimal interaction design that enables
a target group with little or no technical knowledge to operate the digitisation
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tool. Furthermore archival documents must not require human pre-processing or
correction in order to be processable by the OCR pipeline. To realise the minimal
interaction design, automatic decision-making processes are necessary within the
OCR pipeline processing steps in order to be able to carry out document corrections
and document transformations without human supervision.

• Large Scale Processing – The requirement to process large amounts of data con-
tinuously to the minimal interaction requirement also demands a high degree of
automation throughout the digitisation process. Scalability and portability capaci-
ties of the application are demanded, which are realised by means of a container
architecture of the OCR pipeline. To enable automation along the OCR pipeline,
we have successfully applied unsupervised evaluation metrics as decision making
tools to perform document transformations and corrections. The proposed metrics
are calculated document-specifically from text extraction process metadata and are
able to support the determination of the optimal document resolution, decide on the
correct document orientation and support the determination of the best threshold
configuration. Furthermore, before determining the best threshold configuration,
the metrics are used to define the parameter values to be evaluated. With regard
to runtime performance optimization as part of the large scale data processing
requirement, the targeted selection of the parameter values to be evaluated enables
a reduced duration of the evaluation process and thus of the total runtime for each
document to be digitised.

7.1 Future Work
More interesting adaptations, methods and experiments have emerged during the work on
this thesis but are beyond the scope of this dissertation. In the following, we summarize
our future work concerns for deeper investigation for particular mechanisms and further
ideas categorised as future scientific work and future implementation work.

Future Scientific Work

• Improve output quality – We discovered potential for improvement of the digitised
output in the area of OCR text quality and in post OCR error correction. With
regard to the OCR process, in our document thresholding parameter search pro-
cedure several text extractions are performed and only the best evaluated text
is considered for the final result. Lund et al. [17] presented an ensemble method
which creates a composite text by applying several global thresholding methods
and text extractions. Following up on this idea we consider multiple output texts
and corresponding confidence values resulting from different adaptive thresholding
configurations to use them not only for aggregating a best text result but also to
support and reinforce the post OCR error correction workflow and named entity
recognition process. In terms of correcting spelling errors, additional texts provide
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another source of suggested corrections and can also be used to extend the word
occurrence dictionary to prevent named entities from being accidentally corrected.

• Improve runtime performance – As the project progressed, the historians increas-
ingly made additional demands on the output text quality and the integration of
further features which often extended the overall runtime of the application. To
counteract the increased runtime of the application, we have already implemented
and documented runtime optimisation measures in this work. Further potentials
for improving runtime are as follows:

– In our approach, most text extraction processes take place in the thresholding
step and therefore require the most time and computing resources. Apply-
ing a simple global thresholding method in combination with a previously
applied contrast correction such as CLAHE (Contrast Limited Adaptive His-
togram Equalization) instead of a parameter rich and more complex adaptive
thresholding method may also have potential in runtime improvement, while
maintaining output quality, but was not tested due to time constraints.

– Determining the average text-line height based on run-length compressed
documents as presented by Javed et al. [12] would result in several iterations of
text extractions being omitted in the search process for the optimal document
resolution, since the text-line height decision parameter is known in advance
and can be utilized.

– Furthermore, metrics that express information about the document exposure
could determine the choice of the thresholding method, so that in the case of
a uniformly distributed exposure, a much faster algorithm can be applied. For
instance, Boudraa et al. [4] uses Michelson’s contrast formula to decide on the
thresholding algorithm based on the local contrast value of a given document.

Future Implementation Work

• Increase automation aspect – By eliminating the only user-definable parameter
of our OCR pipeline, namely the language, absolute automation can be achieved.
These measures, in turn, require language recognition mechanisms which, related
to the OCR pipeline approach, must be applied individually prior to any document
transformation or correction in order to perform further preprocessing, OCR and
NLP tasks with the best transcription performance available using the appropriate
models. An incorrect classification of the languages present in the document
means that inappropriate language models would be used subsequently for text
extraction and post spelling error correction. Particularly documents which, due to
severe degradations, achieve a partially complete and error-free text during OCR
recognition, the initial language classification may be difficult. Barlas et al. [3]
present a multi-layered approach for language and script type recognition for printed
and handwritten documents, where language recognition is based on statistical
analysis of bi-grams of OCR text.
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• Expand data applicability – In addition to the method presented in this paper for
recognising and normalising time entities in OCR texts, other entity types from the
named entity recognition task, such as places, personalities or organisations, can
also be extracted in an automated manner. Identified entities can subsequently serve
as supporting components for further downstream NLP tasks such as relationship
extraction (RE) or event extraction to continue to build structured and contextual
information. Ma et al. [18] present a novel method for extracting named entities
and relations from unstructured text by improving existing table-filling approaches
to identify entities and relations and were able to outperform state-of-the-art
methods on two datasets. A comprehensive introduction to the various techniques
for extracting named entities and relations is additionally presented in [18].

• Implementation of a comprehensive user interface – The requirement to implement a
comprehensive and feature rich user interface to interact with the OCR pipeline and
its generated output is beyond the scope of this work and the presented webservice
prototype serves to illustrate the digitisation output potentials as a test environment.
The additional implementation requires the design and implementation of a manual
post correction opportunity that incorporates the suggested corrections provided
by the OCR pipeline. Furthermore, a search mechanism that can incorporate the
temporally normalised and recognised contexts, among other things, is desired and
remains for future work.

69





APPENDIX A
Bulk OCR Webservice (BOW)

We implemented the Bulk OCR Webservice (BOW) as a prototype test environment
graphical user interface to enable interaction with the OCR pipeline and its output data
for the historian target group. We implemented the GUI using the open source python
web framework django1 and the2 JavaScript library which is responsible for data-based
document transformations within the service. The web-based interface comprises two
usecases which are discussed and illustrated in the following.

A.1 OCR pipeline interaction
The handling of the OCR pipeline refers to the providing of the input data as well as the
receiving of the digitised output data. The OCR pipeline interaction and at the same
time landing page is divided into three sections or use cases, illustrated in Figure A.1,
and includes an upload drag and drop area, an area that provides information about the
current OCR pipeline status and a download section to obtain results.

1. Document Upload
We have designed a workflow for the document upload which gradually demands
information from the users without overwhelming them with many parameters to
be specified at once. First, the user loads files from his local computer into the
BOW either by using the drag and drop functionality or via file-select field. After
defining the set of files to be uploaded, the user can review the files, reset all or
start the file-upload procedure. Next, the language of the documents as the only
parameter to be defined by the user must be selected as shown in Figure A.2 via
drop-down menu and subsequently the user can lanuch the digitisation process.

1django: https://www.djangoproject.com/ (accessed 16.08.2021)
2D3.js: https://d3js.org/ (accessed 16.08.2021)
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Figure A.1: BOW data upload page including the upload, container state and download
section.

Within the upload section of BOW we integrated dropzone.js3, an open source
drag and drop javascript libary which offers drag and drop functionality, configura-
tion options, file preview functionality and upload state feedback. The following
configurations were made to the drag and drop window.

• autoProcessQueue: false - Set to false allows us to enable the user to review
the uploaded files. The upload is triggered on a button click event.

• addRemoveLinks: true - Append a remove option to each document thumbnail
preview.

• parallelUploads: int - Speed up the upload process by defining this parameter
machine and computing power specific (default value is 2)

• acceptedFiles: ".jpeg,.jpg,.dng,.arw,.pdf,.png" - Limit the upload exclusively to
file types which can subsequently be processed by the OCR pipeline to avoid
errors.

• on addedfile - Implement dynamic action that compares each newly added file
to avoid duplicate uploads.

3dropzonejs: https://www.dropzonejs.com/ (accessed 16.08.2021)
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Figure A.2: BOW data upload page demonstrating successfully uploaded documents,
showing the language configuration drop-down menu and the container launch submit
button.

• on complete - After successful completion of the upload process, container
settings and the container launch button are being displayed.

• on reset - Resets the latest uploaded files and removes all files from the server.

To provide additional parameters such as the user defined language to the OCR
pipeline which is wrapped as a docker container, a configuration file is created
and passed to the container. The configuration is defined as a dictionary object
and passed to the subsequent OCR pipeline task whenever the user launches the
digitisation process.

2. Container State & Logging
To enable the BOW application to track the status of the OCR pipeline docker
container the application console output of the container is written to logfiles.
These logfiles, which we refer to as tasks, are categorized into closed tasks and
open tasks. Based on whether an OCR pipeline run has been completed or not,
the logfiles either end up in the open tasks folder or, if completed successfully, are
moved to the closed tasks folder. Both open and closed tasks are displayed in the
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middle area as shown in Figure A.1 and provide the user with information about
the availability of the container.
One logfile corresponds to one OCR pipeline run and contains the complete appli-
cation console output, including errors and exceptions. As soon as a container run
is finished the last line of the latest logfile is used to determine the current state of
the OCR pipeline. The status is set to available whenever there is no open task
logfile and set to busy whenever an open task exists. The way an OCR pipeline
run was completed, with or without errors, is not relevant for the web server, it
only matters whether the container is available or whether it is currently occupied
by an open task. As soon as the last line of the latest in progress run output log
file corresponds to task finished the container state is interpreted as available and
therefore the container is able to process the next task. The corresponding logfile
is archived, moved to the closed tasks and the container status is set to available

3. Result Retrieval
In the download section at the bottom of the OCR pipeline interaction page, results
can be downloaded as compressed zip files after selecting them from a list in a
drop-down menu. Each zip file corresponds to an OCR pipeline run and contains
the complete extraction history as well as potential errors, the data in the formats
specified and exported by the OCR pipeline.

A.2 Data Showcaser
The data showcaser aims to demonstrate text extraction results, document transformations
and further annotation and enhancement of the raw text data generated by the OCR
pipeline. The user has the opportunity to interactively research and investigate the
data results leveraging extraction confidence values, recognised time entities or suggested
corrections for potential spelling errors. Alternatively, it can also be used as a file browser
and preview tool.

1. Data Selection
To present different processed documents and corresponding data results in the
showcaser we treat each OCR pipeline task separately and we refer to them as
independent datasets. A dropdown button enables the selection of a dataset which
is identified by an unique timestamp. The results relevant for the showcaser include
the hOCR data for representing the layout formatted OCR text, the original as well
as the binarized image documents and an index file containing meta information
about all documents in the dataset.
After selecting the dataset the user has the option to investigate a document from
the grid preview selection view. For the grid view shown in Figure A.2 we use
the data indexing file to list all image documents and corresponding result data
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Figure A.3: BOW showcaser illustrating the thumbnail preview document selection.

within the dataset and show a image preview thumbnail. After document selection,
the user can always select another document or change the dataset to investigate
another subset of documents.

2. Representation of text recognition results
Based on the underlying document image, the associated extracted text is displayed
on the region on which it was detected utilizing available coordinate information
as shown in Figure A.4. Available configuration options to filter and modify
the recognized text are defined in the header section of the detailed showcaser
document view. The header remains at the top of the page when navigating through
a document and is always accessible. The following options are available.

• Show/Hide Boxes – Enables to show and hide the text boxes in which the
respective recognized words or characters are displayed. When hovering the
text boxes, the content and, if available, language specific correction suggestions
are displayed. In addition to the normal yellow text boxes, showing OCR text
and potential correction candidates, there are blue boxes which indicate that
the content contains has been identified as a time context. This time context
is annotated as a separate column in the corresponding result files and allows
us to annotate the affected text boxes accordingly.
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Figure A.4: BOW showcaser document view illustrating a user line hover action to
investigate merged line contents.

• Show/Hide Text – Enables the OCR text display option to display the under-
lying background image or to show the text. To get a better differentiation of
the OCR results and the background in color rich images it is recommended
to hide the text and use the text box hover option to display the desired OCR
text content.

• Show/hide Lines – Enables the option to show and hide the text lines that
span horizontally containing multiple text boxes. The hover interaction over
line boxes displays the content of all summarized boxes which are located on
the respective line. Each box has a value which defines the association to a
line. The merged content created by hovering the line is visible in Figure A.4
as a gray field which is created above the cursor position.

• Confidence – Each text box and each line has an associated confidence value.
This allows us to provide this numeric value as a filter option. The confidence
value takes values between 0 and 100 and indicates the extent to what the
OCR engine considers the response text correct, whereas 100 corresponds to
correct and 0 incorrect. Because line boxes always have a confidence value
of -1 as a special value, they are excluded from the filter and can only be
turned off by the show/hide lines feature. This special confidence value allows
us to make line boxes filterable as such or to make them visible or hidden as

76



A.2. Data Showcaser

described above.
• Binarize/Original – This option allows to switch the background image be-

tween the original unprocessed document and the document affected by the
thresholding transformation namely the binarized document and vice versa.

• Confidence Histogram – All confidence values of a selected document are
displayed above the image in a histogram graph to present an indication of
the distribution of the value. The further the distribution is shifted to the
right towards the maximum value, the better the estimation of the total text
recognized. To configure a confidence threshold filter we implemented a range
slider also located in the header section. When the slider is moved to the far
right, all text boxes are displayed including their text contents. The further
the slider is moved to the left, the lower the confidence text values will be
displayed exclusively and values higher than the set threshold will be hidden.
The current filter threshold value is displayed above the slider and also visually
as a dividing line in the histogram.
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APPENDIX B
Implementation Details

This chapter is intended to provide additional insight into the implementation details of
the OCR pipeline. In Section B.1 the container technology and architecture components in
use are discussed. Subsequently in Section B.2 configurability options of the OCR pipeline
are explained. Details about performance measures, considerations and optimizations
can be found in Section B.3.

B.1 Container Technology
To make the OCR pipeline as software solution portable, accessible and configurable we
use the container technology provided by the docker platform1. While the docker platform
enables effortless creation and deployment of containers, the containers themselves provide
standalone images that include the application, all dependencies, the runtime and the
system specific settings such as environment variables. With the OCR pipeline application
packaged as a container, the processes run in isolation using the computing resources
allocated by the underlying IT infrastructure. With minimal effort, the OCR pipeline can
be migrated and deployed to new environments regardless of the underlying complexity
of the application components and dependencies.

In our Docker configuration we use python:3.7 as base image which already has the
correct python version and the package manager pre-installed. The main components
and dependencies include the OCR engine tesseract 4 including dependencies2, the
installation of various language dictionaries for the spelling correction workflow and the
OCR language models.

1Docker Container https://www.docker.com/ (accessed 16.08.2021)
2Google Tesseract OCR https://opensource.google/projects/tesseract (accessed

16.08.2021)
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B.2 Configuration

In order to extend the adaptability of the OCR pipeline to different infrastructure
environments and fields of application, we have implemented a configuration possibility.
The way the configurations are passed to the OCR pipeline is through a python dictionary
object which can either be passed as a string or optionally in a text file. For the
management and documentation of configurable parameters within the OCR pipeline
we use the everett3 library. As soon as the container is invoked, the OCR pipeline is
initialised with the additional configuration passed as input parameter.

Among the configurable parameters are adaptation options for refining the OCR pipeline
to the input data, such as the blacklist of characters to be ignored within the OCR
process or the language models to be used. The most common user-adapted parameter
is the language configuration, which is responsible for the OCR models to be used and,
in the post OCR spelling error correction workflow, for the selection of the correct
language dictionaries. Parameters relevant for the domain specific environment and IT
infrastructure settings include the number of CPU cores to be used for multiprocessing,
the paths where input and output data should be stored and the paths of the tesseract
models to be used.

B.3 Performance

Supplementary to the historians’ performance requirement which belongs to the large
scale data processing requirement 2.8, this subsection explains what measures were
investigated and subsequently applied to the OCR pipeline for performance regarding
runtime optimization. In the following aspects we were able to influence the runtime
performance while maintaining OCR output quality.

• Multiprocessing - By default, Tesseract works with multiprocessing and utilizes
up to four cores to in the OCR process which is the most performant setting with
only one input document. In order to be capable of processing several documents
in parallel, one computing core should be allocated for each text extraction. Thus,
with four available cores, four documents can be extracted side by side. We
disable the multiprocessing feature of tesseract and set the number of threads to
be utilized to one. This is done by configuring the system environment variable
OMP_THREAD_LIMIT. Deactivating the multiprocessing feature allows us to run
several instances of tesseract in parallel to process one OCR process per processor
core simultaneously. If multiprocessing is not disabled and multiple instances of
tesseract are started and used simultaneously, the processes will block each other,
causing the process to be slower than with traditional serial processing.

3everett: https://pypi.org/project/everett/ (accessed 16.08.2021)
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Figure B.1: Tesseract 4 tessdata model runtime performance measure for 11 documents.

• Tesseract Traindata - The tesseract traindata (tessdata)4 models contain the
language specific machine learning trained networks for text recognition and work
exclusively with the LSTM OCR engine of Tesseract 4. Tesseract 4 offers one
fast (tessdata-fast) and one best (tessdata-best) model option for each available
language. These differ in terms of file size of the model type, the accuracy of the
OCR results and internal complexity of the model resulting in a different processing
time required for the text extraction procedure. In Figure B.1, ten grouped bar
stacks, each representing a document and its respective three OCR extraction
runtimes resulting from the application of three different model types. As can be
observed the tessdata-best model takes significantly more time than tessdata-fast,
consuming up to more than twice as much processing time. It can also be seen
that the tessdata-default models used by default are equivalent to tessdata-best in
terms of quality and runtime performance. On average, tesseract fast models can
reduce the extraction time by up to 55%.
Without compromising between quality and runtime, the objective becomes to
increase runtime performance without sacrificing the quality of the results whenever
possible along the OCR pipeline steps. In order to determine the optimal traindata
applications along the OCR pipeline and to measure the effect of the selected

4Tesseract Traindata https://github.com/tesseract-ocr/tessdata (accessed 16.08.2021)
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models on the overall runtime, we have tested the following variants for the use of
traindata combinations.

1. fast+fast: utilize fast models for preprocessing tasks and fast models for final
data extraction and export

2. fast+best: utilize fast models for preprocessing tasks and best models for
final data extraction and export

3. fast+best(+bin): utilize fast models for preprocessing tasks and best models
for binarization stage and final data extraction and export

4. best+best: utilize best models for preprocessing tasks and best models for
final data extraction and export

5. best+fast: utilize best models for preprocessing tasks and fast models for
final data extraction and export, resulting in a poor runtime performance and
text quality

After evaluating the OCR text output quality with regard to the associated runtime
of each configuration, we decided to implement variant fast+best as it provided
constant text quality with a total runtime acceptable to the user target group.

• Document Resize - Referring to the processing step 5, the document resolution
is a crucial factor when it comes to the OCR quality but also to the runtime of the
extraction process. The resolution of a document determines through the height
and width parameters of the document the size of the file and thus the amount of
data to be processed by the OCR engine. Especially high resolution documents
contain more data, which results in more computing effort for text recognition and
binarization and thus increases the runtime. In addition to the primary objective of
the resizing step, which is to improve text recognition, the runtime of any further
computation on the document is also reduced.

• Relation finding - The discovery of relations between metadata of documents
and functional parameters to be used within the OCR pipeline allows us to set
these parameters precisely to save processing time, especially in an iterative process.
For example, with regard to the document-specific parameters to be determined
in the binarization step 6, a search and evaluation procedure determines the best
configuration from a series of parameter values.
However, if we have a prior knowledge of the relationships to the parameters we
are looking for, we can define parameter rows more efficiently by using narrower
ranges of values, and therefore save time by avoiding additional iterations. The key
document specific derived metric is the mean line height which is determined in the
resize stage. In the subsequent binarization step, the man line height is accessed to
generate a document-specific set of values for the block size binarization parameter.
Relation finding processes took place during the development of the OCR pipeline
to meet performance requirements for both text quality and runtime.
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• Avoiding Overhead - Since our OCR pipeline is built in python we utilized
several python wrappers for the tesseract engine written in C++. Besides the
overhead caused by the python wrapper, there is also overhead caused by loading the
tess-data language models and overhead caused by the handling of multiprocessing
along the OCR pipeline.
Why use a wrapper for C++ tesseract at all? - A python wrapper acts as a
binding for the tesseract OCR engine, which is originally written in C++, for python
and therefore adds a certain overhead due to programming language translation.
The wrapper, in contrast, allows us to integrate methods and functions from NLP
and computer vision in a unified language along the entire OCR pipeline. The
tesseract wrapper also enables reliable error handling and object-based handling of
the output data.
Choosing the right library for the task - Depending on the task in the
respective processing step in the OCR pipeline, two different wrappers are employed
for the tesseract OCR engine.
With respect to iterative search tasks like those found in the binarization or resizing
step in the OCR pipeline, the re-instantiation of the language models would create a
considerable amount of overhead that must be avoided. For this scenario, tesserocr5

is used, also a python wrapper that integrates directly with Tesseract’s C++ API
via cython. By instantiating and loading the tess-data models into memory once per
CPU, we are enabled to process multiple documents in a time efficient manner. The
tess-data loading overhead amounts to approximately 0.4 seconds per instantiation.
For tasks where single images are extracted as for instance in the final extraction
process the pytesseract6 wrapper is considered. Compared to the tesserocr wrap-
per the data extraction functionality is more extensive in terms of output detail
information and the runtime performance difference is marginal since the final
extraction process is not an iterative process.
Overhead Measurement - The tess-data loading overhead was determined as
follows. First we created a 10 by 10 pixel plain white background image without
textual content to decouple the language model loading time from the OCR
extraction time. Using the generated image we measured the time needed for
the two wrapper libraries, pytesseract and tesserocr, to complete ten OCR text
extraction processes each. Pytesseract takes on average 0.4 seconds and tesserocr
0.003 seconds which corresponds to the plain time needed for the text-extraction
process of an empty 10 by 10 image.

5tessract wrapper - tesserocr https://github.com/sirfz/tesserocr (accessed 16.08.2021)
6tessract wrapper - pytesseract https://github.com/madmaze/pytesseract (accessed

16.08.2021)
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APPENDIX C
Evaluation Documents from the

OCR Quality Benchmarking
Dataset

The digital images referenced in Table C.1 as electronic records were retrieved from the
“National Archives and Records Administration (NARA)”, College Park, MD (USA) to
conduct the OCR quality benchmark evaluation from Section 4.5 as well as the spelling
error correction evaluation from Section 5.3.

The Table C.1 is intended for referencing and resolving the individual name-space
components of the electronic records used in the evaluation. Therefore, the column File
ID in Table C.1 matches the identification values of the column File ID in Table 4.2.
The nine electronic records and their File ID labels in Figure C.1 also correspond to the
File ID columns of the two Tables C.1 and 4.2.

The NAID (National Archives Identifier) found in table C.1 allows for accurate iden-
tification of the documents in the National Archives Catalog online search https:
//catalog.archives.gov (accessed 16.08.2021)
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C. Evaluation Documents from the OCR Quality Benchmarking Dataset

File
ID

Archive
abbrevi-
ation

Record
Group
Number

Series En-
try ID

Box num-
ber within
series

Folder
number and
name

NAID Image
num-
ber

a NARA RG-260 HMSMLR-
A1-260

Box-265 Documentary-
Production-
Unit

7550505 029

b NARA RG-260 HMSMLR-
A1-260

Box-262 Atrocity-
Film

7550483 18

c NARA RG-208 HMSMLR-
NC148-6G

Box-03 German-
Operation

4726574 30

d NARA RG-260 HMSMLR-
A1-260

Box-264 Film-
meetings-
quadripartite

7550504 046

e NARA RG-260 HMSMLR-
A1-260

Box-265 Documentary-
Production-
Unit

7550505 019

f NARA RG-208 HMSMLR-
NC148-
355

Box-1711 Atrocities-
German-
General

4734014 02

g NARA RG-208 HMSMLR-
NC148-6G

Box-02 Information-
activities-
in-
Germany-
Oct-1944-
May-1945

4726567 058

h NARA RG-260 HMSMLR-
A1-260

Box-263 Daily-
Journal

7550484 62

i NARA RG-208 HMSMLR-
NC148-
404-NAID-
722024

Box-803 German-
Committee-
Minutes-
Oct-1944-
May-1945

218

Table C.1: Document reference table for referencing and resolving individual name-space
components of the electronic records used in the OCR quality benchmark evaluation.
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(e) (f)

(g) (h)
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Figure C.1: Document preview of the nine electronic records retrieved from the National
Archives and Records Administration (NARA) to conduct the OCR quality benchmark
evaluation. Photos: VHH Project, Ulrike Koppermann, 2019.

89





List of Figures

1.1 Unprocessed and processed documents and their impact on OCR recognition. 5

4.1 OCR pipeline illustrated showing the seven processing steps and the two
additional text enhancement steps. . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Visually explained OCR output metadata showing text box and line boxes
with associated attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Four individual plots that illustrate the effect of document resolution on OCR
text extraction with regard to the processing time, character height, mean line
confidence and word length. Each colour corresponds to a unique document
which has been scaled 40 times between the values 0.1 and 2 of the respective
original document size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Up-scaled resolution causing inconsistencies in a thresholded input image. 39
4.5 Center cropped binarization parameter selection. . . . . . . . . . . . . . . 42
4.6 Showing the relation between the mean line confidence and the word length

to the word error rate to demonstrate the relation of the metrics to OCR
accuracy. Each data-point represents a text extraction based of a thresholded
version of one document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Document (File ID: a) with ground truth text next to it. . . . . . . . . . 48
4.8 BOW & ABBYY extracted text side by side comparison. . . . . . . . . . 49

5.1 Spelling Error Correction Workflow illustrated showing the processing steps. 51

6.1 BOW Showcaser illustrating a recognised time entity due to applied spelling
correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.1 BOW data upload page including the upload, container state and download
section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.2 BOW data upload page demonstrating successfully uploaded documents,
showing the language configuration drop-down menu and the container launch
submit button. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.3 BOW showcaser illustrating the thumbnail preview document selection. . 75
A.4 BOW showcaser document view illustrating a user line hover action to inves-

tigate merged line contents. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.1 Tesseract 4 tessdata model runtime performance measure for 11 documents. 81

91



C.1 Document preview of the nine electronic records retrieved from the National
Archives and Records Administration (NARA) to conduct the OCR quality
benchmark evaluation. Photos: VHH Project, Ulrike Koppermann, 2019. 89

92



List of Tables

2.1 Table of requirements of the historians. . . . . . . . . . . . . . . . . . . . 8

4.1 Table of raw file conversion properties. . . . . . . . . . . . . . . . . . . . . 33
4.2 BOW & ABBYY FineReader benchmark dataset showing word error rates

(WER) for each document. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 BOW & ABBYY FineReader benchmark results presenting mean length offset

values as well as mean word error rates for BOW & ABBYY FineReader. 47

5.1 Spelling Error Correction evaluation dataset. . . . . . . . . . . . . . . . . 55
5.2 Spelling Error Correction evaluation results presenting mean recall values as

well as mean differences of two respective mean recalls. . . . . . . . . . . 55

6.1 Time Entity Detection Evaluation results for BOW and unprocessed RAW
text output – showing number of detected entities in relation to the total
entities, the respective detection ratios and OCR text word counts. . . . . . 61

6.2 Time Entity Detection evaluation dataset. ú

The value amounts to 1 because none of the entities to be recognized on the
respective document was recognized. . . . . . . . . . . . . . . . . . . . . . 63

C.1 Document reference table for referencing and resolving individual name-space
components of the electronic records used in the OCR quality benchmark
evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

93





Bibliography

[1] Visual history of the holocaust. https://www.vhh-project.eu/. Accessed:
16.08.2021.

[2] David Ahn, Sisay Fissaha Adafre, and Maarten de Rijke. Towards task-based
temporal extraction and recognition. In Graham Katz, James Pustejovsky, and
Frank Schilder, editors, Annotating, Extracting and Reasoning about Time and
Events, number 05151 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany. URL http://drops.dagstuhl.de/opus/volltexte/
2005/315.

[3] P Barlas, D Hebert, Clément Chatelain, Sébastien Adam, and Thierry Paquet.
Language Identification in Document Images. Journal of Imaging Science and
Technology, 60(1):010407, 2016. doi: 10.2352/J.ImagingSci.Technol.2016.60.1.010407.
URL https://hal.archives-ouvertes.fr/hal-01282930.

[4] Omar Boudraa, Walid-Khaled Hidouci, and Dominique Michelucci. Degraded
historical documents images binarization using a combination of enhanced techniques.
CoRR, abs/1901.09425, 2019. URL http://arxiv.org/abs/1901.09425.

[5] Thomas Breuel. Robust least square baseline finding using a branch and bound
algorithm. Proc SPIE, 4670, 12 2001. doi: 10.1117/12.450735.

[6] Angel X. Chang and Christopher D. Manning. Sutime: A library for recognizing
and normalizing time expressions. In LREC, 2012.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2018. URL http://arxiv.org/abs/1810.04805.

[8] Reza Farrahi Moghaddam, Fereydoun Moghaddam, and Mohamed Cheriet. Unsuper-
vised ensemble of experts (eoe) framework for automatic binarization of document
images. pages 703–707, 08 2013. doi: 10.1109/ICDAR.2013.144.

[9] Mika Hämäläinen and Simon Hengchen. From the paft to the fiiture: a fully
automatic NMT and word embeddings method for OCR post-correction. CoRR,
abs/1910.05535, 2019. URL http://arxiv.org/abs/1910.05535.

95

https://www.vhh-project.eu/
http://drops.dagstuhl.de/opus/volltexte/2005/315
http://drops.dagstuhl.de/opus/volltexte/2005/315
https://hal.archives-ouvertes.fr/hal-01282930
http://arxiv.org/abs/1901.09425
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1910.05535


[10] Abdeslam El Harraj and Naoufal Raissouni. OCR accuracy improvement on docu-
ment images through a novel pre-processing approach. CoRR, abs/1509.03456, 2015.
URL http://arxiv.org/abs/1509.03456.

[11] Sheng He and Lambert Schomaker. Deepotsu: Document enhancement and bi-
narization using iterative deep learning. CoRR, abs/1901.06081, 2019. URL
http://arxiv.org/abs/1901.06081.

[12] Mohammed Javed, P. Nagabhushan, and B. B. Chaudhuri. Automatic detection of
font size straight from run length compressed text documents. CoRR, abs/1402.4388,
2014. URL http://arxiv.org/abs/1402.4388.

[13] Khurram Khurshid, Imran Siddiqi, Claudie Faure, and Nicole Vincent. Comparison
of niblack inspired binarization methods for ancient documents. In Kathrin Berkner
and Laurence Likforman-Sulem, editors, Document Recognition and Retrieval XVI,
part of the IS&T-SPIE Electronic Imaging Symposium, San Jose, CA, USA, January
20-22, 2009. Proceedings, volume 7247 of SPIE Proceedings, page 72470U. SPIE,
2009. doi: 10.1117/12.805827. URL https://doi.org/10.1117/12.805827.

[14] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan Herbst. Moses:
Open source toolkit for statistical machine translation. In Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions, pages 177–180, Prague,
Czech Republic, June 2007. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/P07-2045.

[15] Bernhard Liebl and Manuel Burghardt. From historical newspapers to machine-
readable data: The origami OCR pipeline. In Folgert Karsdorp, Barbara McGillivray,
Adina Nerghes, and Melvin Wevers, editors, Proceedings of the Workshop on Compu-
tational Humanities Research (CHR 2020), Amsterdam, The Netherlands, November
18-20, 2020, volume 2723 of CEUR Workshop Proceedings, pages 351–373. CEUR-
WS.org, 2020. URL http://ceur-ws.org/Vol-2723/long20.pdf.

[16] Hector Llorens, Estela Saquete, and Borja Navarro-Colorado. Applying semantic
knowledge to the automatic processing of temporal expressions and events in nat-
ural language. Information Processing Management, 49(1):179–197, 2013. ISSN
0306-4573. doi: https://doi.org/10.1016/j.ipm.2012.05.005. URL https://www.
sciencedirect.com/science/article/pii/S0306457312000702.

[17] William B. Lund, Douglas J. Kennard, and Eric K. Ringger. Why multiple document
image binarizations improve ocr. In Proceedings of the 2nd International Workshop
on Historical Document Imaging and Processing, HIP ’13, page 86–93, New York, NY,
USA, 2013. Association for Computing Machinery. ISBN 9781450321150. doi: 10.
1145/2501115.2501126. URL https://doi.org/10.1145/2501115.2501126.

96

http://arxiv.org/abs/1509.03456
http://arxiv.org/abs/1901.06081
http://arxiv.org/abs/1402.4388
https://doi.org/10.1117/12.805827
https://www.aclweb.org/anthology/P07-2045
http://ceur-ws.org/Vol-2723/long20.pdf
https://www.sciencedirect.com/science/article/pii/S0306457312000702
https://www.sciencedirect.com/science/article/pii/S0306457312000702
https://doi.org/10.1145/2501115.2501126


[18] Youmi Ma, Tatsuya Hiraoka, and Naoaki Okazaki. Named entity recognition and
relation extraction using enhanced table filling by contextualized representations.
CoRR, abs/2010.07522, 2020. URL https://arxiv.org/abs/2010.07522.

[19] N. Otsu. A threshold selection method from gray level histograms. IEEE Transactions
on Systems, Man, and Cybernetics, 9:62–66, 1979.

[20] Marte Ramirez-Ortegon, Edgar Duenez-Guzman, Raul Rojas, and Erik Cuevas.
Unsupervised measures for parameter selection of binarization algorithms. Pattern
Recognition, 44:491–502, 03 2011. doi: 10.1016/j.patcog.2010.09.018.

[21] Christian Reul. An Intelligent Semi-Automatic Workflow for Optical Character
Recognition of Historical Printings. doctoralthesis, Universität Würzburg, 2020.

[22] Christophe Rigaud, Antoine Doucet, Mickaël Coustaty, and Jean-Philippe Moreux.
ICDAR 2019 Competition on Post-OCR Text Correction. In 15th International
Conference on Document Analysis and Recognition, pages 1588–1593, Sydney,
Australia, September 2019. URL https://hal.archives-ouvertes.fr/
hal-02304334.

[23] Kepa J. Rodriguez, Mike Bryant, Tobias Blanke, and Magdalena Luszczynska.
Comparison of named entity recognition tools for raw ocr text. 09 2012. doi:
10.13140/2.1.2850.3045.

[24] J. Sauvola and M. Pietikäinen. Adaptive document image binarization. Pattern
Recognit., 33:225–236, 2000.

[25] Sarah Schulz and Jonas Kuhn. Multi-modular domain-tailored OCR post-correction.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2716–2726, Copenhagen, Denmark, September 2017. As-
sociation for Computational Linguistics. doi: 10.18653/v1/D17-1288. URL
https://aclanthology.org/D17-1288.

[26] Daniel Van Strien., Kaspar Beelen., Mariona Coll Ardanuy., Kasra Hosseini., Barbara
McGillivray., and Giovanni Colavizza. Assessing the impact of ocr quality on
downstream nlp tasks. In Proceedings of the 12th International Conference on
Agents and Artificial Intelligence - Volume 1: ARTIDIGH,, pages 484–496. INSTICC,
SciTePress, 2020. ISBN 978-989-758-395-7. doi: 10.5220/0009169004840496.

[27] Romen Taiyenjam, Sudipta Roy, Oinam Imocha Singh, Tejmani Sinam, and Khu-
manthem Singh. A new local adaptive thresholding technique in binarization. CoRR,
abs/1201.5227, 01 2012.

[28] C. Tan and S. Lu. Automatic detection of document script and orientation. In
2007 9th International Conference on Document Analysis and Recognition, volume 2,
pages 237–241, Los Alamitos, CA, USA, sep 2007. IEEE Computer Society. doi:
10.1109/ICDAR.2007.67. URL https://doi.ieeecomputersociety.org/
10.1109/ICDAR.2007.67.

97

https://arxiv.org/abs/2010.07522
https://hal.archives-ouvertes.fr/hal-02304334
https://hal.archives-ouvertes.fr/hal-02304334
https://aclanthology.org/D17-1288
https://doi.ieeecomputersociety.org/10.1109/ICDAR.2007.67
https://doi.ieeecomputersociety.org/10.1109/ICDAR.2007.67


[29] Joost van Beusekom, Faisal Shafait, and Thomas M. Breuel. Combined orientation
and skew detection using geometric text-line modeling. Int. J. Document Anal.
Recognit., 13(2):79–92, 2010. doi: 10.1007/s10032-009-0109-5. URL https://doi.
org/10.1007/s10032-009-0109-5.

98

https://doi.org/10.1007/s10032-009-0109-5
https://doi.org/10.1007/s10032-009-0109-5

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Contributions of the Work
	Structure of the Thesis

	Analysis of the Requirements of Historians
	Language Support
	Input and Output Formats
	Searchable Data
	Graphical User Interface
	Facsimile
	Transparent Extraction History
	Minimal Interaction
	Large Scale Processing
	Archival Documents
	Raw Image Format

	Background and Related Work
	Image Processing
	Post OCR Correction
	Entity Recognition and Normalisation
	Summary

	Multimodal OCR Pipeline for Facsimile Documents
	Processing Order
	Evaluation Metrics
	Capturing Metadata
	Pipeline Steps
	OCR Quality Benchmarking
	Summary

	Spelling Error Correction
	Text Preprocessing
	Spelling Error Detection & Correction
	Spelling Error Correction Evaluation
	Summary

	Time Entity Recognition and Normalisation
	Time Entity Extraction Procedure
	Time Entity Detection Evaluation

	Conclusion
	Future Work

	Bulk OCR Webservice (BOW)
	OCR pipeline interaction
	Data Showcaser

	Implementation Details
	Container Technology
	Configuration
	Performance

	Evaluation Documents from the OCR Quality Benchmarking Dataset
	List of Figures
	List of Tables
	Bibliography

