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Kurzfassung

Entscheidbare Logiken spielen eine wichtige Rolle bei der Wissensrepräsentation, der
automatisierten Verifikation und der Datenbankverwaltung. Eine Gemeinsamkeit, die viele
dieser Logiken verbindet, ist das Zwei-Variablen-Fragment der Prädikatenlogik erster Stufe
(FO2), das sich gut für den Umgang mit graph-strukturierten Daten eignet. Insbesondere
umfasst FO2 viele so genannte Description Logics (DLs), einer weit verbreiteten Familie
von Formalismen für den Ausdruck von Hintergrundwissen, das genutzt werden kann, um
implizite Verbindungen oder Inkonsistenzen in großen Informationsmengen zu finden. FO2

ist auch als Grundlage von Verifikationslogiken zur Spezifizierung von Systemen nützlich,
um ihr gewünschtes Verhalten und ihre gewünschten Eigenschaften sicherzustellen. Für
Anwendungen in der realen Welt ist es jedoch fast immer erforderlich, so genannte konkrete
Werte wie Messungen, Strings und Zeit adäquat zu modellieren. Eine solche Modellierung
wird weder von DLs aufgrund ihrer abstrakten Natur noch von FO2 unterstützt, da FO2

zur Modellierung notwendige Eigenschaften wie Transitivität nicht ausdrücken kann.
Daher wurden Anstrengungen unternommen, Datenwerte in DLs zu integrieren und FO2

um Möglichkeiten zur Datenmodellierung unter Beibehaltung der Entscheidbarkeit zu
erweitern.

Das übergreifende Ziel dieser Arbeit ist die Entwicklung von auf Automaten basierenden
Techniken zur Schlussfolgerung in ausdrucksstarken entscheidbaren Logiken, die es er-
lauben, Datenwerte zu modellieren. Automatentheoretische Schlussfolgerungstechniken
spielen in der Logik und Informatik eine zentrale Rolle und sind aus vielen Gründen attrak-
tiv. Sie sind intuitiv und erlauben es, technische Details zu abstrahieren, die es erschweren
können, die Ausdruckskraft einer Logik zu verstehen. Sie sind oft modular aufgebaut und
können auf andere Formalismen übertragen werden und bieten so eine Grundlage für den
Vergleich von Logiken. Darüber hinaus geben die Änderungen am Automatenmodell, die
zur Erfüllbarkeitsprüfung ausdruckstärkerer Logiken vorgenommen werden, oft Aufschluss
über deren Komplexität, da automaten-theoretische Lösungen für logische Schlussfolge-
rungsprobleme in der Regel eine optimale Worst-Case-Berechnungskomplexität aufweisen.
In dieser Arbeit konzentrieren wir uns auf zwei verschiedene ausdrucksstarke Logiken
mit Datenwerten und setzen Automaten zur Lösung der folgenden offenen Probleme ein.

• Zunächst betrachten wir eine DL mit dem Namen ALCFP(Zc), die Einschränkungen
unterstützt, die als Vergleiche von ganzen Zahlen angegeben werden. Die Entscheid-
barkeit dieser Logik wurde über ein mächtiges Meta-Theorem gezeigt, das schwache
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monadische Logik zweiter Stufe verwendet. Dieses Ergebnis bietet jedoch keine obe-
re Komplexitätsschranke für das Problem. Indem wir einen Rabin-Baumautomaten
für ALCFP(Zc) konstruieren, erhalten wir eine enge ExpTime-Obergrenze für die
Entscheidbarkeit des s.g. concept satisfiability problem in Bezug auf allgemeine
TBoxen. Dies ist unseres Wissens nach die erste obere Komplexitätsschranke für
die Schlussfolgerung mit allgemeinen TBoxen und diskreten konkreten Domänen.
Unsere Ergebnisse liefern auch einige obere Schranken für Entscheidbarkeit und
Komplexität verwandter Probleme in DLs mit numerischen Werten, einschließlich
lang gesuchter konkreter Domänen über den reellen Zahlen, die mit Prädikaten
ausgestattet sind, die erzwingen, dass einige Werte ganzzahlig oder natürlich sind.

• Zweitens betrachten wir die Logik FO2(≤1,�2, S2), deren endliches Erfüllbarkeits-
problem als ExpSpace-vollständig bekannt ist. Bei dieser Logik handelt es sich um
ein Zwei-Variablen-Fragment der Prädikatenlogik erster Stufe, dessen Signatur eine
lineare Ordnung, eine Quasiordung und deren Nachfolgerrelation, sowie eine belie-
bige endliche Anzahl von unären Prädikaten enthält. Die Quasiordnung modelliert
auf natürliche Weise Datenwerte, die aus einer unendlichen Domäne stammen, und
die lineare Ordnung ist für die Modellierung von program traces geeignet, so dass
diese Logik ein guter Kandidat für Anwendungen in der Programmverifizierung ist.
Um die Verbindung zwischen Logik und Automaten für diese Logik zu untersuchen,
führen wir ein neuartiges Automatenmodell namens Pebble-Intervals Automata
(PIA) ein, das FO2(≤1,�2, S2) umfasst. Wir untersuchen die Leistungsfähigkeit
von PIAs im Gegensatz zu anderen Automatenmodellen, und untersuchen das Leer-
heitsproblem und die Abschlusseigenschaften von PIAs. Wir erhalten auch einen
automaten-theoretischen Beweis einer oberen Komplexitätsschranke für das endliche
Erfüllbarkeitsproblem der Logik durch Reduktion auf einen PIA-Leerheitstest.



Abstract

Decidable logics play a major role in knowledge representation, automated verification,
and database management. A common ground relating many of these logics is the
two-variable fragment of First Order logic (FO2), which is well-suited for handling graph-
structured data. In particular, FO2 encompasses many Description Logics (DLs) which
are popular formalisms for expressing background knowledge that can be leveraged to
find implicit connections or inconsistencies in large amounts of information. FO2 is also
useful as the basis of verification logics for specifying systems to ensure their desired
behavior and properties. However, real-world applications nearly always require us to
adequately model so-called concrete values such as measurements, strings, and time.
Such modeling abilities are not supported by DLs due to their abstract nature, nor by
FO2 as it cannot express necessary properties such as transitivity. As a result, efforts
have been made to incorporate data values into DLs, and to extend FO2 with means for
modeling data while maintaining decidability.

The overarching goal of this thesis is to develop techniques based on automata for
reasoning in rich decidable logics that allow to model data values. Automata-theoretic
reasoning techniques play a central role in logic and computer science, and are attractive
for many reasons. They are intuitive and allow one to abstract away technical details that
may muddy the waters when trying to understand the expressiveness of a logic. They
are often modular and can be transferred across settings, offering a basis for comparison
between logics. Furthermore, the adjustments made to accommodate new capabilities
often provide insight into their computational cost, since automata-theoretic solutions to
logical reasoning problems typically display optimal worst-case computational complexity.
In this thesis, we concentrate on two different expressive logics with data values, and
employ automata for solving the following open problems.

• First, we consider a DL called ALCFP(Zc) that supports constraints given as
comparisons of integer numbers. Decidability of this logic has been established via
a powerful meta-theorem that relies on Weak Monadic Second Order logic, however,
this result provides no upper complexity bounds for the problem. By constructing
a Rabin tree automaton for ALCFP(Zc), we obtain a tight ExpTime upper bound
for deciding concept satisfiability w.r.t. general TBoxes. This is, to our knowledge,
the first complexity upper bound for reasoning with general TBoxes and discrete

xi



concrete domains. Our results also yield some decidability and complexity upper
bounds for related problems in DLs with numeric values, including long sought-after
concrete domains over the real numbers equipped with predicates that enforce some
values to be integer or natural.

• Second, we consider FO2(≤1,�2, S2), whose finite satisfiability problem is known
to be ExpSpace-complete. This logic is the two variable-fragment of First Order
logic equipped with a linear order, a preorder and its successor relation, and any
finite number of unary predicates. The preorder nicely models data values that
may range over an infinite domain, and the linear order is appropriate for modeling
program traces, making this logic a good candidate for applications involving
program verification. To study the logic-automata connection for this logic, we
introduce a novel automata model called Pebble-Intervals automata (PIA) that is
designed to encompass FO2(≤1,�2, S2). We study the power of PIAs in contrast
to other automata models, and investigate its emptiness problem and its closure
properties. We also obtain an automata-theoretic proof of the upper bound for the
finite satisfiability problem of the logic by reducing it to a PIA emptiness test.
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CHAPTER 1
Introduction

The idea of using logical formulas for representing facts, rules, and knowledge about
the world, and mechanizing logical deduction in order to draw correct inferences from
such knowledge, has always been at the very core of computer science. In fact, it can
be traced much further than modern computation; Frege attempted to provide a formal
logical foundation to mathematics, which followed Boole’s separation of the symbols
representing concepts from their manipulation and validity in the 1800’s. Earlier still,
in the late 17th century Leibniz extensively studied the idea of representing complex
thoughts as the result of manipulating symbols representing atomic ideas. This common
thread of thoughts as symbols goes all the way back to 350 BC, we have Aristotle’s
writings on sound deduction in Prior Analytics.
Thus it does not come as a surprise that this dream played a particularly influential role
in the birth of Artificial Intelligence (AI), whose fundamental goals include the creation
of so-called commonsense knowledge and reasoning. The Dartmouth Summer Research
Project on Artificial Intelligence, often quoted as the founding event of AI as a field, was
proposed by John McCarthy [1] based on the conjecture that “every aspect of learning or
any other feature of intelligence can in principle be so precisely described that a machine
can be made to simulate it”. As mentioned, early attempts to achieve this goal were
based on logic, and logical inference remains a fundamental tool for inference in AI.
However, deploying this approach successfully in practice calls for logical formalisms with
a decidable satisfiability problem, that is, where it is decidable whether a given formula
in the logic has a satisfying assignment – a model.
As mathematicians were studying the idea of deriving logical proofs in a mechanical
manner in the early 20th century, particular attention was given to First Order logic
(FO). FO is capable of axiomatizing various branches of mathematics using finitely many
axioms, which together with a formal proof system allows us to rephrase mathematical
claims as logical formulas, and to rephrase the question of whether the claim holds given
some assumptions as the question of whether a logical formula is valid in our proof system.
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1. Introduction

If we were careful enough to select a sound (meaning we can only infer true things) and
complete (meaning we can infer everything that is true) system, this is equivalent to
asking whether the formula is derivable from the axioms in our system. That is, whether
there is a sequence of applicable operations that take us from our axioms to the claim.

Naturally, such proof systems for FO would be very desirable, and in 1928 Hilbert and
Ackerman published a sound system [2] which Gödel proved complete [3]. However, the
ability to derive every true FO sentence is quite different from answering whether a given
FO sentence is true, and Hilbert established this problem - the decision problem (“das
Entscheidungsproblem”) - of FO as a central problem in mathematics. Unfortunately, this
questions has been answered negatively by Church [4], Turing [5], and Trakhtenbrot [6],
but their answers did spur immense research efforts aimed at obtaining decidability by
imposing restrictions on the formulas. Among these are restrictions on the prenex form
of formulas, which have a wealth of negative and positive results. For example, the
Gurevich-Maslov-Orevkov class, which consists of FO formulas with the prefix ∃1∀∃1 and
without equality, is decidable in exponential time [7]. On the other hand, satisfiability
of FO formulas with the prefix ∀∃∀ without equality is undecidable [8]. See e.g. [9] for
many more results on prenex classes of FO.

The Guarded Fragment (GF) of FO [10] is another decidable fragment of FO, where
quantifiers are relativized (guarded) by atomic formulas. Roughly, the guarded fragment
is inductively defined by saying atomic formulas are guarded, boolean combinations of
guarded formulas are guarded, and formulas of the form ∃v̄(ϕ ∧ ψ) and ∀v̄(ϕ → ψ) are
guarded if ϕ is atomic and all the free variables in ψ appear in ϕ. There is no restriction
on the variables v̄. The GF enjoys a 2ExpTime-complete satisfiability problem [11] in
the general case, and is ExpTime-complete when the arity of relations is bounded [11].

Another restriction is on the number of different variables in the formula. Here there is far
less room to maneuver on syntax alone, since already the three-variable fragment of FO is
undecidable as it subsumes another undecidable fragment [8]. However, the two-variable
fragment FO2 is decidable as it enjoys a finite bounded-size model property, meaning
any satisfiable sentence in FO2 has a model of some known bounded size. Mortimer was
the first to prove this property with a double-exponential bound on the model [12], and
Grädel et al. to improved it to obtain NExpTime-completeness [13] for the problem.

FO2 has since emerged as a common ground for many logics employed for AI tasks. Like
the GF, FO2 has many extensions where new relations whose interpretations are assumed
are added, such as linear orders or equivalence relations. For example, FO2 with one
equivalence relation and one linear order is decidable [14], but a similar setting with an
equivalence relation and a transitive relation is undecidable [15]. Another important
fragment is C2, which is FO2 with quantifiers such as ∃<k, ∃=k, etc. Extensions that are
based on FO2 are often well suited for modeling (labeled) graphs, trees, and strings, and
so they are particularly useful in Computer Science applications.

In particular, FO2 encompasses many Description Logics (DLs), which are a family of
logics for representing knowledge and reasoning about application domains in a precise
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way. DLs can be used to formalize ontologies for medicine (SNOMED CT1), finance
(FIBO2), and the Semantic Web (OWL3), where by ‘ontology’ we mean an explicit
specification of concepts, properties, and relationships in our domain of interest. DLs
have been a rapidly developing area of research that evolved from semantic networks
and frame systems, with the aim of providing high-level and precise descriptions of the
interest domain while delivering reasoning services. Thus the choice of DL depends on the
reasoning task we wish to perform, and typically strikes a balance between expressiveness
and computational tractability. Knowledge representation is achieved using concepts,
which are classes of elements sharing common properties, and roles, which are binary
relations connecting these elements. Through concepts and roles, one can define axioms
describing the domain (in what is called a TBox), and extract new insights using the
reasoning services offered by the DL. For example, it would not be surprising to find
something along the lines of:

∃nativeTo.Australia % ∃eats.EucalyptusLeaves

in a description of koalas (Figure 1.1). Here, we have nativeTo and eats as role names,
and Australia and EucalyptusLeaves as concept names. A TBox may contain axioms such
as:

Koala 6 ∃nativeTo.Australia % ∃eats.EucalyptusLeaves
Koala 6 Herbivore

Herbivore % ∃eats.Meat ≡ ⊥
Where the last axiom states that herbivores do not eat meat. The first axiom can be
expressed in the 2-variable fragment as:

∀x.koala(x) →
�

∃y. (nativeTo(x, y) ∧ Australia(y))

∧∃y. (eats(x, y) ∧ EucalyptusLeaves(y))
�

We say that the concepts appearing on the right hand side of an axiom are used by
the concept appearing on the left hand side. Concept satisfiability w.r.t a TBox is
the problem of determining whether there can be a member of a certain concept while
respecting the axioms in the TBox. For example, can there be a koala that eats meat?
I.e., is the concept Koala % ∃eats.Meat satisfiable w.r.t to our TBox?

In addition to description logics, FO2 is also related to logics used in automated verifi-
cation; besides the well-known subsumption of Modal logic by FO2, FO2 also serves as

1http://www.snomed.org/
2https://spec.edmcouncil.org/fibo/
3https://www.w3.org/OWL/

� creativecommons.org/licenses/by-sa/3.0/
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1. Introduction

Figure 1.1: A koala eating eucalyptus leaves. Photo by John ‘Sheba Also’. CC-BY-SA-3.01

a basis for logics used in the automated verification of various properties of programs,
including safety (e.g. in a traffic light, the red and green light are never simultaneously
on), liveness (every red light is eventually followed by a green light), and temporal
properties (the light is green infinitely often). There has also been work in combining
FO2 based approaches with DLs for the automated verification of programs with dynamic
data structures [16], as well as the verification of integrity constraint preservation [17],
and reasoning about dynamically allocated memory [18].

In the context of real-world applications, it is nearly always the case that the domain
elements have measurements of length, time, weight, or dates associated with them. Thus
it is imperative for the logical formalism to properly model numeric data. However, such
modeling capabilities are not natively supported by DLs nor by FO2. DLs speak of the
world using abstract concepts and roles, so it is not clear how to model the fact that
koalas tend to weigh between 4 to 15 kg [19]. One possibility is a statement such as

Koala 6 ∃weighs.MoreThan4 % ∃weighs.LessThan15

but it does not truly reflect the between-ness we wish to capture, as we can easily satisfy
nonsensical concepts such as LessThan4 % MoreThan15. As another example, the usual
linear order of the integer or natural numbers is not reflected by DL concepts or roles,
and FO2 inherently lacks the ability to express transitivity, as it would contradict its
finite model property. The need to support reasoning in the presence of numeric values
has been recognized in both these arenas.
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1.1. Motivation and goals

Since the early days of DLs, substantial effort was directed to enriching DLs with
modeling capabilities for numeric domains while maintaining decidability. Such DLs
are usually dubbed DLs with concrete domains, with a typical concrete domain being
comprised of the domain elements (for example, the real numbers R) and predicates
over those elements (for example, the binary ‘smaller than’ relation <). The first DLs
with concrete domains were introduced by Baader and Hanschke [20], where concrete
values are connected via feature paths, meaning each connection between two elements
is functional (for example, ’date of birth’ can relate persons with dates in a functional
way). They showed that satisfiability of concepts in such DLs, that is, whether there
can be an element in the universe that is described by that concept is decidable for
concrete domains D that are admissible. Admissible concrete domains are those where
satisfiability of conjunctions of predicates from D is decidable, and its predicates are
closed under negation. Generalizations of this result and tight complexity bounds for
specific settings were obtained in the following years. For example, concept satisfiability
is PSpace-complete under certain assumptions [21], and introducing stronger modeling
capabilities increases the complexity to NExpTime or even results in undecidability [22].
A summary of key results can be found in the survey paper [23].

In automated verification, one commonly faces the need to model the presence of data
from infinite domains. For example, numbers in program variables, databases, and timing
in memory access of concurrent processes. These and similar settings can be represented
using data words, which are strings where each position carries a data value from some
infinite domain, in addition to carrying a letter from a finite alphabet, as is familiar.
This motivated the exploration of extensions of FO2 which can express properties of data
words using built-in relations that are not axiomatizable in FO2. Namely, linear orders,
preorders, and equivalence relations have received substantial attention as candidates for
modeling data in general and for reasoning about data words [24, 25, 26, 27, 28, 29].

1.1 Motivation and goals
In this thesis, we explore automata for these kinds of decidable logics with data mod-
eling capabilities. The automata-logic connection is fundamental in Computer Science.
Classical results by Schützenberger [30], McNaughton and Papert [31] relate first order
logic and star-free languages, which are those recognized by counter-free automata. The
Büchi-Elgot-Trakhtenbrot Theorem [32, 33, 34] relates definability in Monadic Second
Order logic with regularity, and similar results have been discovered for graphs, see
e.g. [35]. Automata-theoretic techniques have been applied to the verification of safety,
liveness, and temporal properties of programs, which naturally translate to automata
problems. In addition, automata can be used to verify relationships between systems,
such as equivalence or refinement which are important for query optimization, as these
naturally translate to language inclusion problems, see [36].

Finally, automata have played an important role in solving DL reasoning tasks, especially
in transferring techniques between settings [37]. Tree automata in particular are often
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used to answer consistency questions; i.e. whether a concept is satisfiable given a certain
TBox, and subsumption questions, but automata have also been used for query answering
over knowledge bases which include, in addition to a TBox, a set of assertions dubbed an
ABox (these can state facts about particular koalas).

Beyond their historical importance, automata-theoretic techniques are especially attrac-
tive for exploring the expressiveness of new logical formalisms, as they offer a more
intuitive ‘behavioral’ understanding of the logic without the burden of technical syntactic
details which can get hairy quickly once more involved concepts are considered. Another
aspect which encourages the use of automata for logic is that they are modular and can
be transferred from setting to setting with relative ease. This fits well with the fact
that DLs are often tailored to the problem at hand by tuning their constructors toward
some sweet-spot that balances expressiveness and complexity. Finally, both for DLs and
in automated verification, reductions to automata problems typically preserve optimal
worst-case complexity, which allows one to gain insight into the computational cost of
adding new features to the logic.

As mentioned, the main goal of the thesis is to use automata for reasoning in expressive
decidable logics that model data values, and to explore whether they offer the usual
advantages described above. As we must naturally limit our scope, we chose two different
expressive decidable logics and two different problems to solve using automata.

1.1.1 Integer constraints in the logic ALCF
Motivated by the importance of incorporating numeric data to knowledge representation,
we continue the vast line of research involving DLs and concrete domains and consider
the description logic ALCFP(Zc), which was introduced by Carapelle and Turhan [38].
This logic allows one to levy constraints on registers associated with logical elements
along paths. Oftentimes, the incorporation of concrete domains into a DL quickly results
in undecidability, which is then regained by imposing limitations either on the logic or
on the concrete domain. The choice of ALCFP(Zc) is motivated by the fact that it does
not experience any of the three limitations usually encountered in the classical setting,
which can be roughly classified like so:

• TBox prohibition or acyclicity

• Functionality of paths to the concrete domain

• Denseness of the concrete domain

We expand on each of these next.

TBox prohibition or acyclicity It is very well-known that general concept inclusions
easily lead to undecidability in the classical setting, as witnessed by the progressively
weaker extensions of ALC with concrete domains that are undecidable [39, 40, 41]. Often,
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only acyclic TBoxes are allowed, which are TBoxes whose axioms do not have a concept
which ultimately uses itself (either directly or via intermediate concepts). This is a major
hindrance, since this type of self-reference is fairly common in real-world settings where
elements of a class have relationships with other elements in the class. The desire to
reflect such relationships motivates the choice of ALCFP(Zc), as there is no need to
restrict the TBox in order to maintain decidability. That is not to say that general
TBoxes are not ever supported in the classical setting, see for example [42] and [41], but
in those instances one still encounters restrictions on the mechanisms that grant access
to the concrete domain, which we discuss next.

Functionality of paths to the concrete domain As we mentioned, access to the
concrete domain is given by paths to the elements on which we wish to place constraints.
For paths of arbitrary length, only functional roles are allowed in the classical setting.
This is an impactful restriction, since many useful real-world relationships are not
functional, such as management or authorization roles, or sibling-type relationships. Non-
functional roles are sometimes supported in the classical setting, usually by limiting their
appearances to paths containing at most a single role [40, 41], which is a rather degenerate
case. In contrast, ALCFP supports paths of arbitrary length composed of arbitrary
roles, which significantly improve the modeling capabilities of the logic. We mention
two notable exceptions in the classical landscape. The first one is ALCFP(D), which
supports arbitrary paths of non-functional roles but disallows TBoxes [22]. The second is
Q-SHIQ [43], which supports pairing a single non-functional role and immediate access
(an empty path) to the concrete domain, but does admit general TBoxes. However, the
latter again involves an assumption – this time on the concrete domain – which ALCFP

does not require, and this leads us to the final and perhaps most exciting reason to
investigate ALCFP .

Denseness of the concrete domain Concrete domains based on the integer or
natural numbers have been singled out in the literature as very desirable extensions,
since they allow apt modeling of various attributes, for example, the number of children a
person has. A related feature which has been long sought-after is the ability to restrict the
values an attribute takes to be integer or natural while generally operating over a dense
domain such as the reals. However, despite their recognized importance, decidability
results on extensions of ALC with non-dense domains remained elusive until recently,
with the most general criterion for a concrete domain to preserve decidability being
ω-admissibility, which inherently requires the domain to be dense. To our knowledge,
there are but two works from which mere decidability results on ALC with integer domains
can be inferred; the first being a result on CTL1 with comparisons of integers [44], and
the second being the work by Carapelle and Turhan on ALCFP [45].

The proofs in [44] and [45] do not suggest an elementary complexity bound, so the
question of complexity is intriguing regardless of the technique used to answer it. We are
interested in employing automata to answer this question in order to understand the cost
of supporting non-dense domains, and whether we can leverage an automata-theoretic
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answer to obtain results on related settings. In addition, considering that this has been a
longstanding challenge, we hope to gain insight on what makes integer domains difficult
to reason about in the context of DLs with concrete domains.

1.1.2 The logic FO2(≤1,�2, S2)

The second logic we investigate fits into the line of research on extensions of FO2 with
built-in relations, which are assumed to be interpreted in the desired way without
axiomatizing their properties. The aforementioned motivation of modeling data values
from infinite (often numeric) domains guides the choice of a linear order and a preorder
as the extending relations. A linear order would nicely model the sequential and one-
dimensional nature of program traces, and a preorder in particular would be a good
candidate for modeling data, as it is essentially an equivalence relation whose equivalence
classes are linearly ordered. This allows the same data value to be assigned to multiple
elements (as opposed to a linear order), while also allowing testing for both equality
and comparisons (as opposed to an equivalence relation which only allows data value
equality testing). In addition, we will include the successor relation of the preorder, and
denote the logic FO2(≤1,�2, S2). The successor relation S2 supports testing whether
two data values are consecutive. As is typical, the addition of preorders can easily lead to
undecidability, however, this logic has an ExpSpace-complete finite satisfiability problem.
This was proved by Schwentick and Zeume [46] using a satisfiability-preserving reduction
to a problem with a two-dimensional geometric flavor.

In this case, constructing automata for the logic would not answer a complexity question,
but an automata model that maintains a parsimonious relationship between the logical
models and the accepted inputs would allow one to employ the automaton not only for
tasks which reduce to an emptiness test, but possibly also for tasks that reduce to a
membership problem. In addition, there might be something to learn from exploring
closure properties of such automata, especially negative ones.

1.2 Results
As we mentioned, decidability is already established for ALCFP(Zc), but no elementary
complexity bounds are known. For this logic, we make the following contributions:

1. We provide an automata-theoretic upper bound for the satisfiability of concepts
w.r.t. a general TBox in ALCFP(Zc) which matches the lower complexity bound
of ordinary ALC and is thus optimal.

2. As part of the treatment, we needed to construct the product of Rabin tree
automata, which has not been previously spelled out in the literature. We provide
this construction, which is an easy adaptation of an unpublished proof by Yoad
Lustig and Nir Piterman.
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3. Our automata construction from the first item is altered to support dense concrete
domains with predicates that ensure certain values are integer or natural, which
have also been mentioned in the literature as a desired feature.

4. We translate related DLs with concrete domains into ALCFP and obtain new
decidability and complexity results for the former, which are tight in some cases.

The first item is rather surprising, since it means that we can add integers to ALCF for
free. Considering how decidability for similar DLs with concrete domains comes at a
price, be it reflected in the concrete domain, in restrictions on the TBox, or in restrictions
on the paths used, and considering how long this problem has been open despite being
singled out as a very desirable extension – one would think that at the very least we
would pay with higher computational complexity.

For the aforementioned FO2(≤1,�2, S2), there is already a tight complexity result but
no corresponding automata model, which would provide a more intuitive understanding
of the expressive power of the logic and allow us to reason about data words without
explicit logical formulas. We make the following contributions:

1. We introduce the novel automata model Pebble-Intervals Automata (PIA), and
show that we do not need the full data words in order to reason about them. Our
PIA will operate on ordinary strings, which will be viewed as data words whose data
values have been projected away. Furthermore, the PIA will only need to consider
those elements of the data word that carry, in a sense, meaningful information.

2. We prove that the emptiness test for PIAs is PSpace in general, and NL-complete
under some restrictions.

3. We show that PIAs subsume NFAs, accept some context-free and non context-free
languages. If our suspicion that PIAs do not subsume CF languages is correct,
this implies that they have a somewhat unusual relationship with the standard
automata classes.

4. We show that PIAs are effectively closed under union, concatenation, Kleene-@,
shuffle and iterated shuffle, and are not effectively closed under intersection nor
complement. As a consequence of the constructions in the non-closure proof, we
will also have that their universality and inclusion problems are undecidable.

5. We provide an automata-theoretic proof of the upper complexity bound for the
finite satisfiability problem of FO2(≤1,�2, S2) by constructing an automaton for
a given FO2(≤1,�2, S2) sentence which maintains a parsimonious relationship
between models and accepting computations.

6. Along the way, we also prove a normal form for FO2(≤1,�2, S2) reminiscent of the
Scott Normal Form.
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Publications The content of the thesis is based on the following peer-reviewed publi-
cations:

• N. Labai, M. Homola, M. Ortiz, “Constructive Satisfiability Procedure for ALCP (Z)
(Preliminary Report),” DL 2017.

• N. Labai, M. Ortiz, M. Šimkus, “An ExpTime Upper Bound for ALC with Integers,”
KR 2020.

• N. Labai, T. Kotek, M. Ortiz, H. Veith, “Pebble-Intervals Automata and FO2 with
Two Orders,” LATA 2020.

There have been two additional publications during the author’s studies that are unrelated
to the thesis:

• N. Labai, J.A. Makowsky, “On the Exact Learnability of Graph Parameters: The
Case of Partition Functions,” MFCS 2016.

• N. Labai, J.A. Makowsky, “Hankel Matrices for Weighted Visibly Pushdown Au-
tomata,” LATA 2016.

1.3 Structure of the thesis
In Chapter 2 we provide basic definitions and notation which are used throughout the
thesis, such as our handling of strings and trees, and complexity classes. Then, the thesis
is divided into two parts.

In the first part, we investigate the incorporation of integer domains into DLs. We
begin by providing preliminaries on DLs in Chapter 3, which include, in addition to the
usual syntax and semantics, background on and construction of Rabin tree automata.
Chapter 4 gives a comprehensive introduction to the DL ALCFP(Zc) as well as a normal
form result. In the following Chapter 5 we do the heavy lifting of Part I by setting
up theoretical groundwork and then constructing Rabin tree automata for ALCFP(Zc).
We then adapt our theoretical groundwork and construction to a real numbers setting
in Chapter 6, and allow the presence of a predicate for enforcing integer values while
maintaining complexity bounds. Chapter 7 rounds out this part, where we compare
ALCFP(Zc) to other DLs with concrete domains, and in some cases, provide translations
from them into ALCFP which deliver new complexity results.

In the second part, we study the automata-logic connection for FO2(≤1,�2, S2). In
Chapter 8, we introduce the novel Pebble-Intervals Automata (PIA) model, and conduct
their usual investigation; we demonstrate their computational power, show they have a
decidable emptiness test, study their closure properties, and present some non-closure
properties. We pivot in Chapter 9 to discuss the two-variable fragment of First Order logic
and extensions thereof that facilitate data modeling. We present the logic FO2(≤1,�2, S2)
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and the notion of data words, and finish the chapter by proving a normal form for
FO2(≤1,�2, S2). In Chapter 10 we tie the two previous chapters together and present
the main result of this part, which is that PIAs encompass string projection languages
of FO2(≤1,�2, S2) sentences. For this, we develop several notions to overcome the
inherent gap between PIA having finite-memory and data words having no bound on
their data values. Culminating this development is our construction of a PIA for a given
FO2(≤1,�2, S2) sentence, which provides an automata-theoretic proof for the upper
bound of the finite satisfiability problem of FO2(≤1,�2, S2).

Finally, in Chapter 11 we discuss our results and provide outlook for further research.
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CHAPTER 2
Basic Definitions and Notation

In this chapter, we provide some general definitions and notation which will be used
throughout the thesis.

We denote the set of integers by Z, the set of natural numbers by N and by N+ the set of
strictly positive natural numbers, the set of reals by R, and the set of rational numbers
by Q.

For n ∈ N, we denote by [n] the set {1, . . . , n}. Note that [0] = ∅.

All alphabets in the thesis are assumed to be finite unless stated otherwise.

Strings A (finite) string of length n ∈ N over alphabet Σ is a mapping w : [n] → Σ,
written also w = w(1) · · · w(n), where for all . ∈ [n], w(.) = σ for σ ∈ Σ. Note that
w : [0] → Σ is the empty string ε. We denote the length of w by |w|. An infinite string is
a mapping w : N+ → Σ, and will be printed in boldface.

Trees We introduce some notation for our treatment of trees. Recall that a graph G
consists of its vertex set V (G) and its edge set E(G), and a tree is a connected acyclic
graph. We will normally treat trees in the following way, which is reminiscent of the Trie
data structure (see e.g. [47]):

Definition 2.1 (n-tree). For n ∈ N+, an n-tree T is given by a set dom(T ) ⊆ [n]1 of
nodes, which may be infinite, that is closed under prefixes. That is, if u ∈ dom(T ) then
also every prefix of u is a node of T .

For i ∈ [n] and u ∈ [n]1 where ui ∈ dom(T ), we say that u is the parent of ui, and for
uv ∈ dom(T ) where |v| = j we say that u is the j-ancestor of uv. When dom(T ) = [n]1
we say that T is a full n-tree.
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We assume all trees are full unless stated otherwise, and we continue our presentation
under this assumption. All definitions can be easily adapted.

Trees will often carry a letter from some alphabet Σ on their nodes. In this case we treat
T as a mapping [n]1 → Σ and refer to T as a tree over Σ. We denote by T (v) the letter
on the node v.

In the first part of the thesis, we will also sometimes restrict our attention to subtrees.
Following [48]:

Definition 2.2 (Subtree). For an n-tree T over Σ, the subtree rooted at w ∈ [n]1 is the
tree T |w (v) = T (wv) for all v ∈ [n]1.

Definition 2.3 (Regular trees). We say that an n-tree T over Σ is regular if the set
{T |u | u ∈ [n]1} of subtrees of T is finite.

Finally, we discuss the concept of tree decompositions. Loosely speaking, the tree
decomposition of a graph G is a division of G into bags which, when connected according
to the edges in G, induce a tree-like structure.

Definition 2.4 (Tree decomposition). Let G be a graph, let T be a tree, and let V =
(Vt)t∈T be a family of vertex sets Vt ⊆ V (G) we call bags, indexed by the vertices of T .
We say that (T, V) is a tree decomposition of G if

1. V (G) = �
t∈T Vt, that is, every vertex of G belongs to at least one bag,

2. for every edge e of G, there exists some t ∈ T such that both endpoint of e are in
Vt, that is, all edges of G are recoverable from (T, V), and finally,

3. for t1, t2, t3 ∈ T , if t3 is on the (unique) path between t1 and t2, then t1 ∩ t2 ⊆ t3. In
other words, the bags in which a vertex of G appears form a connected component.

There may be several tree decompositions for a given graph, and typically one is interested
in the tree decompositions which minimize the size of the bags used. In our encounters
with tree decompositions, we will also be interested in keeping the size of the bags small,
but it will not be the most important thing. Figure 2.1 presents a graph whose structure
closely resembles a tree already (and is typical of the graphs we will see in later chapters)
and a tree decomposition for it. For more details on tree decompositions, we refer to [49].

Complexity classes We assume the reader is familiar with basic computability and
complexity theory, and refer to [50, 51] for a comprehensive treatment. We briefly recall
some complexity classes encountered in the thesis.

• NL – the set of problems that can be decided with a non-deterministic Turing
machine using logarithmic space.

14



Figure 2.1: On the left, a graph that is already tree-like, and on the right, its tree
decomposition. The vertices are only colored to clarify which bag contains which vertices.

• PSpace – the set of problems that can be decided with a deterministic Turing
machine using polynomial space. Keep in mind that by Savitch’s Theorem [52],
we have PSpace = NPSpace where NPSpace is the non-deterministic version of
PSpace.

• ExpSpace – the set of problems that can be decided with a deterministic Turing
machine using exponential space. Again by Savitch’s Theorem we have ExpSpace =
NExpSpace.

• ExpTime – the set of problems that can be decided with a deterministic Turing
machine using exponential time.
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Part I

Data Values in Description Logics
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CHAPTER 3
Preliminaries on Description

Logics

As mentioned before, Description Logics use concepts and roles to model domain knowl-
edge. The syntax of a description logic is typically defined inductively, with some set
of atomic concept names and a set of role names, and constructors for building more
complex concepts and roles. In this chapter, we present the syntax and semantics of the
‘basic’ description logic ALC, which does not actually allow the construction of complex
roles. Its concepts are constructed in a way that is similar to how formulas in First Order
logic are constructed, with boolean combinations and ALC’s versions of existential and
universal quantification. We also present its extension with functional roles, denoted
ALCF . We review well-known results on the reasoning task of our interest, namely
concept satisfiability w.r.t. TBoxes. We refer to [53] for more on Description Logics.

Decidable logics often have the tree model property, which basically means that any
satisfiable formula has some tree-shaped model. Many description logics have this property,
which is one of the reasons tree automata are so commonly used for proving decidability
and complexity bounds. We will also be using tree automata in this thesis, namely,
Rabin tree automata [54]. We discuss their properties and spell out a polynomial-time
construction of their product (Lemma 3.13).

3.1 ALC
Many consider the DL ALC, introduced by Schmidt-Schauß and Smolka [55], to be the
baseline DL to which other DLs are compared. The set of ALC concepts is defined
inductively.

19



3. Preliminaries on Description Logics

Definition 3.1 (ALC concepts). Let NC be a countable infinite set of concept names
and let NR be a countable infinite set of role names. The set of ALC concepts is the
smallest set where

• every concept name A ∈ NC is a concept

• if C and D are concepts and r ∈ NR is a role name, then the following are ALC
concepts:

¬C, C % D, C 8 D, ∃r.C, ∀r.C

We use & as shorthand for A 8 ¬A and ⊥ as shorthand for ¬&.

Example 3.2. With Koala, Australia, and Eucalyptus as concept names, and eats and
nativeTo as role names, we can build the ALC concept

Koala 8 ¬∃nativeTo.Australia

Next we define TBoxes, which contain the axioms about the world.

Definition 3.3 (TBox axiom, general TBox). A TBox axiom has the form C 6 D, where
C and D are concepts. Axioms are also sometimes called General Concept Inclusions
(GCI). A (general) TBox T is a finite set of TBox axioms.

We use C ≡ D as shorthand for the two axioms C 6 D and D 6 C.

Example 3.4. We can assert that koalas are herbivores and only eat eucalyptus leaves,
and that herbivores do not eat meat, as follows:

Koala 6 Herbivore
Koala 6 ∀eats.EucalyptusLeaves

Herbivore % ∃eats.Meat ≡ ⊥

In order to define the semantics of ALC, we first need to define interpretations.

Definition 3.5 (ALC-Interpretation). An ALC-interpretation is a pair I = (ΔI , ·I)
where ΔI is a non-empty set called the domain and ·I is the interpretation function that
maps every concept name A ∈ NC to a set AI ⊆ ΔI and every role name r ∈ NR to a
binary relation rI ⊆ ΔI × ΔI .
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Definition 3.6 (Semantics of ALC). The semantics of ALC are given by inductively
extending the interpretation function ·I of an ALC-interpretation I as follows:

(¬C)I = ΔI \ CI

(C1 % C2)I = CI
1 ∩ CI

2

(C1 8 C2)I = CI
1 ∪ CI

2

(∃r.C)I = {u | ∃v ∈ CI such that (u, v) ∈ rI}
(∀r.C)I = {u | ∀v ∈ ΔI , if (u, v) ∈ rI then v ∈ CI}

Given a concept and/or a TBox the natural question is whether they are satisfiable.

Definition 3.7 (Concept satisfiability w.r.t. a TBox and pure concept satisfiability). An
interpretation I is a model of a TBox T , if CI ⊆ DI for all C 6 D ∈ T .
Given a concept C and TBox T , we say that C is satisfiable w.r.t. T if there is a model
I of T with CI .= ∅. In this case we may denote I |=T C.
Pure concept satisfiability is the problem of determining whether C is satisfiable w.r.t.
an empty TBox, i.e. if there is an interpretation I for which CI .= ∅.

Theorem 3.8 ([56] and [57], and an alternative proof in [58]). Pure concept satisfiability
for ALC is PSpace-complete, and concept satisfiability w.r.t. a general TBox is ExpTime-
complete.

There are numerous extensions of ALC with constructors that allow one to express that
e.g. certain roles are functional, use inverses of roles, compose roles, etc. The newly
added capability is conventionally reflected by appending a letter to ALC, for example,
ALCI for inverses.
In this thesis, we are interested in ALCF , which is obtained from ALC by supporting
functional roles. We discuss ALCF next.

3.2 ALCF
ALCF is the extension of ALC with functionality, meaning that some roles are required
to be functional. Precisely speaking, we let NF ⊆ NR be a countable infinite set of
functional role names such that NR \ NF is also infinite, and we require that for an
ALCF-interpretation I, in addition to the conditions in Definition 3.5, I satisfies that
if r ∈ NF then rI is functional, i.e. if both (u, v) ∈ rI and (v, u) ∈ rI then u = v. An
example of a naturally functional role would be the place of birth.
As with ALC, pure concept satisfiability in ALCF is PSpace-complete [59]. ExpTime-
completeness of concept satisfiability w.r.t. general TBoxes can be inferred from [60, 61],
since ALCF is a special case. We will provide an explicit automata theoretic proof later
in the chapter, as well.
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3.3 Rabin tree automata
A popular way to solve satisfiability for DLs is to reduce it to the (non-)emptiness
of automata. Typically, one shows that if there is a model of a concept C w.r.t. a
TBox T , then there is an automaton with a non-empty language. Of course, there are
some restrictions – we need to be able to effectively construct said automaton, and the
automata model needs to have a decidable emptiness problem. In order to achieve this,
one often exploits a tree model property of the DL, which essentially states that if there
is a model, then there is a tree model, i.e. if we ignore the role names connecting the
logical elements, the underlying graph is a tree. A logic having the tree model property
has been identified as an encouraging sign for it having a decidable satisfiability problem,
also outside the scope of DLs [62].

There is a variety of tree automata with decidable emptiness problems, and the choice of
variant depends on the expressive properties of the DL at hand. We refer to [48] for a
survey on automata on infinite trees, and to [53] for demonstrations of this technique.

In this thesis, we will be constructing Rabin tree automata for DLs that will run on
infinite trees.

Definition 3.9 (Rabin tree automaton). A Rabin tree automaton over the alphabet Σ
has the form A = (Q, q0, δ, Ω) with

1. a finite state set Q,

2. initial state q0,

3. transition relation δ ⊆ Q × Σ × Qn, and

4. Ω = {(L1, U1), . . . , (Lm, Um)} is a collection of state sets Li, Ui ⊆ Q which we refer
to as accepting pairs.

We also denote (q, σ) 0 (q1, . . . , qn) for (q, σ, q1, . . . , qn) ∈ δ.

For a Rabin tree automaton A , we sometimes denote its state set by Q(A), its set of
accepting pairs by Ω(A) and its language by L (A). For technical reasons that are
irrelevant to our treatment, we assume there is indeed a single initial state, which is only
visited at the root of the input tree.

Let T be an (infinite) n-tree over Σ. That is, its set of nodes is [n]1 and T is essentially
a mapping from [n]1 to Σ. A run of a Rabin tree automaton A can be thought of as
annotating T with the state A is in when it visits each node and reads the letter at the
node. More precisely:

Definition 3.10 (Semantics of Rabin tree automata). A run of A on an infinite tree
T is a mapping ρ : [n]1 → Q of the nodes of T into states which respects the transition
relation. That is, with
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• ρ(ε) = q0 and

• (ρ(w), T (w), ρ(w1), . . . , ρ(wn)) ∈ δ for w ∈ [n]1.

For a path π in T and a run ρ denote by In(ρ | π) the set of states that appear infinitely
often in the restriction of ρ to π. A run ρ of A is successful if

for all paths π there exists an i ∈ [m] with
In(ρ | π) ∩ Li = ∅ and In(ρ | π) ∩ Ui .= ∅.

A tree T is accepted by the Rabin tree automaton if some run of A on T is successful.

That is, there only needs to be one successful run on T to accept it, but in order for a
run to be successful, every path in T has to satisfy the acceptance condition. We state
some properties of Rabin tree automata which will be useful later.

Theorem 3.11 (Emptiness [63]). Emptiness of a Rabin tree automaton A is decidable
in time polynomial in |Q(A)| and exponential in |Ω(A)|.

By inspecting the treatment of Muller and Schupp of alternating tree automata in [64],
we can state:

Theorem 3.12 (Complement of Rabin tree automaton with a constant number of
accepting pairs). Given a Rabin tree automaton A with a constant number of accepting
pairs, one can construct a Rabin tree automaton Ac such that L (Ac) is the complement
of L (A), where |Q(Ac)| is exponential in |Q(A)| and |Ω(Ac)| is polynomial in |Q(A)|.

We provide a construction of the product of two Rabin tree automata, which is an easy
adaptation of a privately communicated proof by Yoad Lustig and Nir Piterman for
Streett automata.

Lemma 3.13 (Product). Given Rabin tree automata A and A �, one can construct a Rabin
tree automaton A∩ such that L (A∩) = L (A)∩L (A �), where |Q(A∩)| = |Q(A)| · |Q(A �)|
and |Ω(A∩)| = |Ω(A)| · |Ω(A �)|.

Proof. The product of two Rabin tree automata is obtained by simply taking the product
of the state sets, transition relation, and accepting pairs as follows. Let

A = (Q, q0, δ, {(L1, U1), . . . , (Lm, Um)}), A � = (Q�, q�
0, δ�, {(L�

1, U �
1), . . . , (L�

m� , U �
m�)})

be two Rabin tree automata over some alphabet Γ which run on n-trees. The automaton
A∩ = (Q∩, q∩

0 , δ∩, Ω∩) is given by

• Q∩ = Q × Q�
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• q∩
0 = (q0, q�

0)

•
((q, q�), γ, (q1, q�

1), . . . , (qn, q�
n)) ∈ δ∩

if and only if

(q, γ, q1, . . . , qn) ∈ δ and (q�, γ, q�
1, . . . , q�

n) ∈ δ�

• Ω∩ = {((Li, L�
j), (Ui, U �

j)) | i ∈ [m], j ∈ [m�]}

That is, A∩ runs A and A � simultaneously. For a run on some input, we have acceptance
by both A and A � if and only if we have that every path has some i such that its
restriction to Q is successful due to (Li, Ui), and some j such that its restriction to Q� is
successful due to (L�

j , U �
j). Therefore, a given input is accepted by both A and A � if and

only if there is a run where every path has some (i, j) witnessing its success, i.e. there is
an accepting run of A∩.

Finally, we mention the following celebrated theorem by Rabin, which can be found in
various phrasing in the literature:

Theorem 3.14 (Rabin’s Theorem ([65])). Any non-empty Rabin recognizable set of trees
contains a regular tree.

3.4 Rabin tree automata for ALCF
Here we construct a Rabin tree automaton for checking the satisfiability of ALCF
concepts w.r.t. general TBoxes. Our construction is an easy adaptation of a well known
construction of a looping automaton which accepts exactly the tree models of an ALC
concept w.r.t. a TBox, see e.g. [66]. Our adaptation merely ensures functionality of the
roles in NF.

Given an ALCF concept C and TBox T , this automaton runs on trees over an alphabet
Ξ which consists of sets of the concept names in C and T and a single role name from
C, T . Following the notation in [66], let SC,T be the set of subexpressions of C and T ,
and let RC,T be the set of role names used in C and T . The role name in each letter
indicates the role with which a logical element is connected to its parent. The states of
this automaton are maximal consistent sets of the subexpressions in C, T , also known as
Hintikka sets:

Definition 3.15 (Hintikka set). The Hintikka sets for C, T are the subsets q ⊆ SC,T ∪
RC,T such that either q = ∅, or q satisfies all the following:

• q contains exactly one role name,
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• if & 6 D ∈ T then D ∈ q,

• if C1 % C2 ∈ q then {C1, C2} ⊆ q,

• if C1 8 C2 ∈ q then {C1, C2} ∩ q .= ∅,

• {A, ¬A} .⊆ q for every concept name A.

The construction is very nearly identical to the one in [66], therefore we only describe the
parts needed to understand our adaptation. Note that given the number of existential
restrictions occurring in C and T , we can determine some n such that if C is satisfiable
w.r.t. T , then it has a (full) tree model of degree n.

The state set of Aalcf contains the Hintikka sets for C, T , i.e. q ⊆ SC,T ∪RC,T where either
q = ∅ or q is a maximally consistent set which contains, in addition to subexpressions
from SC,T , exactly one role name.

Our automaton Aalcf = (Q, q0, δalcf , (∅, Q)) has its transition relation only differ from the
one in [66] in order to properly handle functional roles. Specifically, our (q, ξ) 0 (q1, . . . , qn)
additionally satisfies that

• Q = {q | q is a Hintikka set of C, T }
• We have (q, ξ) 0 (q1, . . . , qn) satisfying

– q and ξ have the same concept and role names contained in them;
– if q = ∅ then qi = ∅ for every i ∈ [n];
– if ∃r.D ∈ q, then there is an i such that {D, r} ⊆ qi, furthermore, if r ∈ NF,

then there is exactly one such i;
– if ∀r.D ∈ q and r ∈ qi, then D ∈ qi, furthermore, if r ∈ NF, then there is at

most one i ∈ [n] such that r ∈ qi.

Proposition 3.16. Aalcf accepts exactly the tree models of C w.r.t. T .

Observation 3.17. The alphabet Ξ and the number of states of Aalcf are exponential in
the size of C and T , and the Ω of Aalcf has one pair.
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CHAPTER 4
The Description Logic ALCFP(Zc)

Here we enrich ALCF with the ability to apply constraints on integer values, following
the treatment of Carapelle and Turhan [38]. There, the logic ALCFP(D) was defined for
arbitrary domains D, however, we restrict our attention to Zc and adapt the definitions
to that setting. The most general results on DLs with concrete domains are for extensions
of ALC(C) with ω-admissible domains. There, concept satisfiability w.r.t. general TBoxes
remains decidable [42], but there are two key restrictions on that setting which are
relaxed here: first is that the concrete domain is dense, and the second is that only
functional roles occur in the paths connecting to the concrete domain. Already in the
seminal work of Baader and Hanschke [20] they point out the potential usefulness of
allowing referral to the concrete domains also along paths of regular roles, but this easily
results in undecidability. For example, such an extension of ALC known as ALCFP(D)
is undecidable for any so-called arithmetic domain D [22]. However, Zc and its analogue
over the real numbers Rc are not arithmetic, and the corresponding DLs ALCFP(Zc)
and ALCFP(Rc) do not seem to have been studied before. We will later encode these
logics into ALCFP(Zc) and ALCFP(Rc) and prove that their satisfiability problem is
decidable and obtain upper complexity bounds (which are tight under some restrictions).

But before that, in this chapter we present the syntax and semantics of ALCFP(Zc)
and demonstrate its expressive power with several examples. Despite the difference in
notation, we will sometimes want to make the distinction between ALCF and ALCFP

abundantly clear. In these cases, we will refer to ALCF concepts as plain concepts, and
similarly for TBoxes and interpretations. We finish the chapter by proving the existence
of a normal form (Lemma 4.12) which will facilitate the aforementioned developments in
the next chapter.
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4.1 Syntax and semantics of ALCFP(Zc)
The domain Zc is comprised of the integers Z, the binary relations < and =, and unary
predicates = c for equality with integer constants c ∈ Z.

Here we provide syntax and semantics for the case Zc = �Z, <, =, {= c | c ∈ Z}�. First,
we define the constraints over Zc allowed in ALCFP (Zc).

Let Reg be a countably infinite set of register names.

Definition 4.1 (Register term). A register term is an expression of the form Skx, where
x ∈ Reg and k ≥ 0 is an integer.

Definition 4.2 (Constraint). An atomic constraint is an expression of the form

t = t�, t < t�, or t = c

where t, t� are register terms, and c ∈ Z. A (complex) constraint Θ is an expression built
from atomic constraints using the Boolean connectives ¬, ∧ and ∨. The depth of Θ (in
symbols, depth(Θ)) is the maximal d such that some register term Sdx appears in Θ.

Example 4.3. Some simple examples of constraints would be

runningRecord < previousRunningRecord
carDrivingAge = 18
¬(airPressure < seaLevelAirPressure) ∨ (waterBoilingTmp < standardWaterBoilingTmp)

Definition 4.4 (Path constraint). A role path P is any finite sequence r1 · · · rn of role
names, with n ≥ 0. We denote the length of P by |P |, i.e. |P | = n. The empty sequence
is also a role path, which we denote with ε. Expressions of the form D = ∃P.�Θ� and
D = ∀P.�Θ� where Θ is a constraint of depth at most n are called path constraints. The
depth of a path constraint is the length of the path, i.e. depth(D) = |P |.
Definition 4.5 (ALCFP(Zc) concepts). The set of ALCFP(Zc) concepts is the minimal
augmentation of ALCF concepts such that every path constraint is an ALCFP(Zc)
concept.

Definition 4.6 (Zc-interpretation). A Zc-interpretation is a tuple I = (ΔI , ·I , β),
consisting of a non-empty set ΔI (called domain), a register function β : ΔI × Reg → Z,
and a (plain) interpretation function ·I that maps every concept name A ∈ NC to a set
AI ⊆ ΔI and every role name r ∈ NR to a binary relation rI ⊆ ΔI × ΔI . Furthermore,
if r ∈ NF then rI is functional, i.e. if both (u, v) ∈ rI and (v, u) ∈ rI then u = v.

Definition 4.7 (Semantics of ALCFP(Zc)). Let I be a Zc-interpretation. For a tuple
Fv = (v0, . . . , vn) of elements of ΔI , and constraints Θ1, Θ2 we define the following:

• I, Fv |= (Six = Sjy) if and only if β(vi, x) = β(vj , y),
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• I, Fv |= (Six < Sjy) if and only if β(vi, x) < β(vj , y),

• I, Fv |= (Six = c) if and only if β(vi, x) = c;

• I, Fv |= Θ1 ∧ Θ2 if and only if I, Fv |= Θ1 and I, Fv |= Θ2;

• I, Fv |= Θ1 ∨ Θ2 if and only if I, Fv |= Θ1 or I, Fv |= Θ2;

• I, Fv |= ¬Θ1 if and only if I, Fv .|= Θ1.

For a role path P = r1 · · · rn, we define

P I = {(v0, . . . , vn) ∈ Δn+1 | (v0, v1) ∈ rI
1 , . . . , (vn−1, vn) ∈ rI

n}
The function ·I is extended to path constraints as follows:

(∃P.�Θ�)I = {u | (u,Fv) ∈ P I and I, (u,Fv) |= Θ}
(∀P.�Θ�)I = {u | for every u ∈ ΔI , if (u,Fv) ∈ P I then I, (u,Fv) |= Θ}

The function ·I of I extends to other complex concepts as in Definition 3.6. A Zc-
interpretation I is a model of a TBox T , if CI ⊆ DI for all C 6 D ∈ T .

Example 4.8. The next axiom identifies active departments whose employees lead
projects started in the last two years:

∃employs leadsProject�S2year > 2018� 6 ActiveDept

In general, the roles ‘employs’ and ‘leadsProject’ need not be functional.

This simple examples demonstrates that ALCFP(Zc) does not enjoy the finite model
property:

Example 4.9 (No finite model property). The TBox with the axiom

& 6 ∃r.�S0x < S1x�
enforces an infinite chain of objects whose x registers store increasing integer values.

Just as with Definition 3.7, given a concept C and a Tbox T in ALCFP(Zc), we say that
C is satisfiable w.r.t. T if there is a model I of T such that CI .= ∅.

ALCFP(Zc) enjoys a special case of the tree model property [45], where the tree models
are the full tress described in the next definition:

Definition 4.10 (Tree-shaped interpretation). We say I = (ΔI , ·I) is tree-shaped if
ΔI = Γ1 for a finite alphabet Γ, and for every u, v ∈ ΔI , we have that (u, v) ∈ rI for
some r ∈ NR if and only if v = ud for some d ∈ Γ. Let d1, . . . dk ∈ Γ. If udk ∈ ΔI , we
call u the parent of udk, and if v = ud1 · · · dk ∈ ΔI , we call u the k-th ancestor of v. We
say I is an n-tree interpretation if Γ has size n.
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4.1.1 Previous Decidability Results of ALCFP(D)
Already in [45], Carapelle and Turhan showed that ALCFP(D) concept satisfiability w.r.t.
general TBoxes is decidable for any negation-closed domain D with the so-called EHD
property, which stands for “Existence of Homomorphism is Definable”. This property
holds when one can express the existence of a homomorphism from a structure to D in
the logic BMWB, see [67, 68]. By using the tree model property of ALCFP(D), they
replace path constraints with new concepts marking nodes in the tree model which satisfy
the constraint. Then, they add relations that group nodes which – together – satisfy
a path-constraint. This results in two structures; one is a (plain) tree-shaped ALCF
interpretation and a corresponding tree-like structure with some additional information,
that is not unlike the graph in the left hand side of Figure 2.1. This tree-like structure
is called a constraint graph, and what remains is to map the constraint graph into the
concrete domain. If such a mapping exists, then there are values we can assign to the
registers that would satisfy the original constraints.

All of the above can be translated into BMWB, which is decidable over trees [68]. However,
this proof of decidability uses several reductions to bespoke automata models, which
unfortunately loses the ability to infer elementary complexity bounds on ALCFP(D).

What we will be doing in the remainder of our treatment is providing a straightforward
way of checking whether constraint graphs obtained from ALCFP(Zc) concept and TBox
pairs are embeddable into Z. Thanks to the mathematical justifications given in [45] and
the references therein, we can focus on the structural properties of constraint graphs that
ensure such embeddings exist. This is as opposed to providing a full argument, so to
speak, that embeddability indeed implies satisfiability by e.g. constructing a satisfying
interpretation from an embeddable constraint graph. Such arguments are conveniently
provided in the aforementioned works.

4.2 Atomic Normal Form
Although we will not need to provide explicit constructions of satisfying interpretations
in the later portions of our treatment, here we still need to do some technical work by
providing a normal form for ALCFP(Zc) concepts, which will nonetheless require us to
explicitly describe interpretations. This normal form will allow us to only consider path
constraints of length 1 containing only atomic constraints, which will be much easier to
construct automata for later on.

Definition 4.11 (Atomic normal form). An ALCFP(Zc)-concept is in atomic normal
form (ANF) if for every ∃P.�Θ� and ∀P.�Θ� that appears in it, Θ is an atomic constraint
and |P | ≤ 1. A TBox T is in ANF if the TBox-concept

�
C�D∈T (¬C 8 D) is in ANF.

Lemma 4.12. Let C� and T � be a concept and a TBox in ALCFP(Zc). Then C� and T �

can be transformed in polynomial time into C and T in ANF such that C is satisfiable
w.r.t. T if and only if C� is satisfiable w.r.t. T �.
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Proof. First we describe how negation may be removed from atomic constraints. Let x, y
be register names, i, j be natural numbers, and c some integer constant.

• ¬(Six = Sjy) can be rewritten as (Six < Sjy) ∨ (Sjy < Six)

• ¬(Six = c) can be rewritten using a fresh register name z as

(S0z = c) ∧ ((Six < S0z) ∨ (S0z < Six))

Let C� and T � be a concept and a TBox in ALCFP(Zc). Let Wroles, Wreg, and Wpaths
be the sets of role names, register names, and role paths that appear in C� and T �,
respectively. Let d be the maximal depth of path constraints used in C� and T �.

The proof is split into three parts; in the first part, we propagate the original register
values into copy-registers which will make them available locally. In the second part, we
use fresh “test” concept names to indicate how the atomic values relate to one another,
essentially acting as the logical connectives. Finally, we put it together by rewriting the
original concept and TBox into atomic normal form.

Part I In the first step, by relying on the tree model property, we copy in each node u
the registers of the ancestors that may occur in the constraints that have the registers of
u. For this, we propagate the values in the registers of the ancestors to their children one
step at a time. Assume that Wreg = {x0

1, . . . , x0
m}. For every i where 1 ≤ i ≤ m, every

k where 1 ≤ k ≤ d and every P ∈ Wpaths, we take a fresh register name xk
i,P which will

serve as a copy-register. We create a TBox Tprop,d as follows:

Tprop,d =
�& 6 ∀r.�S1x0

i = S0x1
i,P � | r ∈ Wroles, 1 ≤ i ≤ m, P ∈ Wpaths

�
∪�& 6 ∀r.�S1xk

i,P = S0xk−1
i,P � | r ∈ Wroles, 1 ≤ i ≤ m, 2 ≤ k ≤ d, P ∈ Wpaths

�
Note that along every path P , the TBox Tprop,d propagates values into copy-registers
associated with all the paths in Wpaths, not just into the copy-registers associated with
P . We will later restrict our attention to the appropriate copy-registers depending on
context. The next claim follows with a straightforward inductive construction:

Claim 4.13. Every tree model of C� w.r.t. T � ∪ Tprop,d contains a tree model of C� w.r.t.
T �, and every tree model of C� w.r.t. T � can be expanded to a tree model of C� w.r.t.
T � ∪ Tprop,d.

Proof. We inductively describe an expansion of a tree model I of C� w.r.t. T � such that
the final expansion is a tree model of C� w.r.t. T � ∪ Tprop. We will simply copy the values
in the original registers into their corresponding copy-registers. For copy-registers of
elements that are at a smaller depth than the associated path P , we will assign an
arbitrary value (namely 0).
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4. The Description Logic ALCFP(Zc)

1. We first describe an expansion J1 of I that will model C� w.r.t. T � ∪ Tprop,1. For
the root element, which is the empty string ε, for every i where 1 ≤ i ≤ m, and for
every P ∈ Wpaths, set

(ε, x1
i,P )J1 = 0.

For elements u, v ∈ Δ where u is the parent of v, for every i where 1 ≤ i ≤ m, and
for every P ∈ Wpaths, set

(v, x1
i,P )J1 = (u, x0

i )I .

We have that the copy-registers {x1
i,P | 1 ≤ i ≤ m, P ∈ Wpaths} are defined for all

elements, and the newly assigned register values J1 satisfy the axioms in Tprop,1.

2. We now describe an expansion Jd� given a tree model Jd�−1 of C� w.r.t. T �∪Tprop,d�−1,
where the copy-registers

{xk
i,P | 1 ≤ i ≤ m, P ∈ Wpaths, 1 ≤ k ≤ d� − 1}

are defined for all elements. For the root element ε, for every i where 1 ≤ i ≤ m,
and for every P ∈ Wpaths, set

(ε, xd�
i,P )Jd� = 0.

For elements u, v ∈ Δ where u is the parent of v, and for every i where 1 ≤ i ≤ m,
and for every P ∈ Wpaths, set

(v, xd�
i,P )Jd� = (u, xd�−1

i,P )Jd�−1 .

We show that Jd� is a tree model of C� w.r.t. T � ∪ Tprop,d� . The newly assigned
register values satisfy the axioms in Tprop,d� \ Tprop,d�−1, and Jd�−1 satisfies C� w.r.t.
T � ∪ Tprop,d�−1. Since the expansion does not alter previously defined values, and
since the register names xd�

1,P , . . . , xd�
m,P for P ∈ Wpaths do not appear in C� nor in

T � ∪ Tprop,d�−1, we have that Jd� is a tree model of C� w.r.t. T � ∪ Tprop,d� .

Hence Jd is a tree shaped expansion of I which satisfies C� w.r.t. T � ∪ Tprop,d.

We write Tprop for Tprop,d from now on.

Part II In this step, we create some “test” concept names and axioms that will allow
to check whether a given constraint is satisfied in a certain path in a tree model. For
P ∈ Wpaths and an atomic constraint Θ, let loc(Θ, P ) denote the constraint obtained
from Θ by replacing each occurrence of Sjx0

i with S0x
|P |−j
i,P . I.e. a reference to an original

register at a large depth is replaced with a local reference to its copy-register.

Denote by Wcnstr the set of (sub)constraints that appears in C� or T �. For each P ∈ Wpaths
and each Θ ∈ Wcnstr, take a fresh concept name TP,Θ. For each such P and Θ we add to
a TBox Tloc the following axioms
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(A1) TP,Θ ≡ TP,Θ1 % TP,Θ2 if Θ = Θ1 ∧ Θ2

(A2) TP,Θ ≡ TP,Θ1 8 TP,Θ1 if Θ = Θ1 ∨ Θ2

(A3) TP,Θ ≡ ∃ε�loc(Θ, P )� if Θ is an atomic constraint.

We first show that the tree models we are interested in can be expanded along with these
axioms:

Claim 4.14. Every tree model of C� w.r.t. T � ∪ Tprop can be expanded to a tree model
of C� w.r.t. T � ∪ Tprop ∪ Tloc, and every tree model of C� w.r.t. T � ∪ Tprop ∪ Tloc is a tree
model of C� w.r.t T � ∪ Tprop.

Proof. Let I be a tree model of C� w.r.t. T � ∪ Tprop. Let h be the largest circuit-depth of
a constraint Θ appearing in T � or T � ∪ Tprop. We inductively define J h as an expansion
of I by interpreting the fresh concept names of the form TP,Θ.

1. We first describe J 0 by interpreting TP,Θ for atomic Θ and P ∈ Wpaths.

For e ∈ Δ, we have e ∈ T J 0

P,Θ if and only if I, (e) |= loc(Θ, P ). That is, if and only
if the copy-registers of e satisfy the localized version of Θ. Recall that loc simply
swaps out register names, therefore in J 0 elements may be labeled with TP,Θ even
if they are not the endpoint of a P -path (or even if they are not on a P -path at
all), since no information about the path they are on is taken into account in our
definition. But we will take care of this later.
We have that the axioms of the form in item (A3), which are the only ones relevant
in this case, are satisfied by the construction.

2. Let Θ1, Θ2 be such that TΘ1,P and TΘ2,P were interpreted in J h�−1.

• If Θ = Θ1 ∧ Θ2 then e ∈ T J h�

Θ,P if and only if e ∈ T J h�−1

Θ1,P ∩ T J h�−1

Θ2,P

• If Θ = Θ1 ∨ Θ2 then e ∈ T J h�

Θ,P if and only if e ∈ T J h�−1

Θ1,P ∪ T J h�−1

Θ2,P

The axioms of Tloc of the forms in items (A1) and (A2), which are the only ones
relevant in this case, are satisfied by the semantics of the connectives ∧ and ∨.

Therefore we have that J h is a tree-shaped expansion of I that models C� w.r.t. T � ∪
Tprop ∪ Tloc.

Next, we show that Tprop ∪ Tloc indeed relates the satisfaction of constraints along paths
to the test concept names.
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Claim 4.15. Let J be a tree model of Tprop ∪ Tloc, and let P be a role path and Θ a
constraint appearing in C� or T �. Then it holds that

1. if e ∈ T J
P,Θ and J contains a P -path e0, . . . , e|P | that ends at e (e = e|P |), then the

path e0, . . . , e|P | satisfies the constraint Θ in J ;

2. if J has a P -path e0, . . . , e|P | that satisfies Θ, then e|P | ∈ T J
P,Θ.

Notice the qualification in item 1., as a P -path might not exist closer to the root in a
tree model.

Proof. First item: let e0, . . . , e|P | be a P -path and let e|P | ∈ T J
P,Θ. Note that from the

axioms in Tprop we have that (ej , x0
i,P )J = (ej , x

|P |−j
i )J (this is actually true for every

P � ∈ Wpaths). We proceed by induction on the structure of Θ.

• If Θ is atomic, then by the axioms from item (A3) we have J , (e|P |) |= loc(Θ, P ).
From the fact that (ej , x0

i )J = (ej , x
|P |−j
i,P )J , together with the definition of loc we

get that J , (e0, . . . , e|P |) |= Θ.

• Let Θ1 and Θ2 be constraints for which the claim holds. If Θ = Θ1 ∧ Θ2, then from
the axioms in item (A1) we have that e|P | ∈ (TP,Θ1 % TP,Θ2)J . From the IH we
have that J , (e0, . . . , e|P |) |= Θ1 and J , (e0, . . . , e|P |) |= Θ2 and the claim follows.

• The ∨ case follows similarly.

Second item: let a P -path e0, . . . , e|P | in J satisfy Θ. Note that from the axioms in Tprop

we have that (ej , x0
i )J = (ej , x

|P |−j
i,P )J . We proceed by induction on Θ.

• If Θ is atomic, then from the fact that (ej , x0
i )J = (ej , x

|P |−j
i,P )J , together with the

definition of loc we get that J , (e|P |) |= loc(Θ, P ) hence e|P | ∈ (∃ε.�loc(Θ, P )�)J

and from the axioms in item (A3) we get that e|P | ∈ T J
P,Θ.

• Let the claim hold for Θ1 and Θ2. If Θ = Θ1 ∧ Θ2, then by the IH we have
that e|P | is in T J

P,Θ1
and T J

P,Θ2
, hence by semantics of ALCFP(Zc) we have that

e|P | ∈ T J
P,Θ1

% T J
P,Θ2

and by the axioms in item (A1) we have that e|P | ∈ T J
P,Θ.

• The ∨ case follows similarly.
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Part III In this final step, we use the locally available copy-registers and test concept
names to rewrite C� and T � into C and T in atomic normal form, and use the previously
proved claims to show equisatisfiability.

Given a concept D and a (possibly empty) role path P = r1 · · · rn, we write ∃P.D meaning

1. the concept ∃r1(∃r2(· · · (∃rn.D) · · · )) when n > 0, and

2. the concept D when n = 0.

The same notion is defined for ∀P.D in the obvious way.

Let C and T ∗ be obtained from C� and T �, respectively, by replacing every concept ∃P.�Θ�
by ∃P.TP,Θ and every ∀P.�Θ� by ∀P.TP,Θ. Our desired normalization is the concept C
equipped with the TBox T = T ∗ ∪ Tprop ∪ Tloc.

Let I be a tree model of C� and T �. By composing Claim 4.13 and Claim 4.14, we get a
tree model J of C� w.r.t. T � ∪ Tprop ∪ Tloc, to which Claim 4.15 applies. We show that
J is also a tree model of C w.r.t. T by showing that (∃P.�Θ�)J = (∃P.TP,Θ)J (showing
that (∀P.�Θ�)J = (∀P.TP,Θ)J is similar).

• Let e0 ∈ (∃P.�Θ�)J . Then there is a P -path Fe = (e0, . . . , e|P |) in J such that
J , Fe |= Θ, therefore by item 2 in Claim 4.15 we have that e|P | ∈ T J

Θ,P , implying
that e0 ∈ (∃P.TΘ,P )J .

• Let e0 ∈ (∃P.TΘ,P )J . Then there exists a P -path Fe = (e0, . . . , e|P |) in J such
that e|P | ∈ T J

Θ,P . By item 1 of Claim 4.15, we have that J , Fe |= Θ and therefore
e0 ∈ (∃P.�Θ�)J .

Therefore a tree model I of C� w.r.t. T � can be expanded to a tree model of C w.r.t. T .

Now we show that every tree model Ĵ of C w.r.t. T is also a tree model of C� w.r.t.
T �. Since T ⊆ Tprop ∪ Tloc, Claim 4.15 again applies to Ĵ . Like before, we have that
(∃P.�Θ�)Ĵ = (∃P.TP,Θ)Ĵ and (∀P.�Θ�)Ĵ = (∀P.TP,Θ)Ĵ , therefore Ĵ is a tree model of C�

w.r.t. T � ∪ Tprop ∪ Tloc (and in particular w.r.t. T �).

4.2.1 Demonstration of the ANF transformation
Here we provide an ANF transformation of a ALCFP(Zc) concept and TBox as an
illustration of the proof above. First, let us name the concepts and constraints:

• C1 denotes ∃ε.�Θ1� where Θ1 is S0x < S0y

• C2 denotes ∃r.�Θ2� where Θ2 is S1x < S0y
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• C3 denotes ∃r.�Θ3� where Θ3 is Θ31 ∧ Θ32, and Θ31 is S0x < S1x and Θ32 is
S0y = S1y

• C4 denotes ∃r.�Θ4� where Θ4 is Θ41 ∧ Θ42, and Θ41 is S0x < S1x and Θ42 is
S0y < S1x

Then consider the concept

C2 % ∃r.(C2 % C4) % C3 % ∃r.C3

and the TBox T = {& 6 C1}.

Note that the only path appearing in C or T is r, and that C1 is already in ANF. We
skip the construction of Tprop, and assume that copies of parent register are available in
x1

r and y1
r .

Next, by introducing test concept name of the form Tr,Θ we construct Tloc, which contains:

Tr,Θ2 ≡ ∃ε.�S0x1
r < S0y�

Tr,Θ3 ≡ Tr,Θ31 % Tr,Θ32

Tr,Θ31 ≡ ∃ε.�S0x < S0x1
r�

Tr,Θ32 ≡ ∃ε.�S0y = S0y1
r�

Tr,Θ4 ≡ Tr,Θ41 % Tr,Θ42

Tr,Θ41 ≡ ∃ε.�S0x < S0x1
r�

Tr,Θ42 ≡ ∃ε.�S0y < S0x1
r�

Finally, by replacing the original C2, C3, C4 with their test concept counterparts, we
obtain the concept

∃r.Tr,Θ2 % ∃r.(∃r.Tr,Θ2 % (∃r.Tr,Θ4)) % ∃r.Tr,Θ3 % ∃r.(∃r.Tr,Θ3)

and the new TBox T ∪ Tloc ∪ Tprop. Note that since C1 was already in ANF, the original
TBox T does not change before being added to the final TBox.

Now we are at a point where we can restrict our attention to formulas of this form.
Later on, we will need to encode the relationships between the registers as we construct
automata for this logic. This would have been technically possible without this normal
form, but representing relationships between elements that are a finite-but-unbounded
number of hops away from each other would have been extremely cumbersome. But
since we can now assume all the path constraints are of length at most 1, the automata
construction for this logic will be much more manageable.
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CHAPTER 5
Satisfiability Procedure for

ALCFP(Zc)

Here we provide a constructive procedure for deciding satisfiability of ALCFP(Zc)
concepts w.r.t. a general TBox by reducing the satisfiability test to the emptiness of a
Rabin tree automaton. We follow the approach of Carapelle and Turhan [38] and split the
task into two checks. First we perform an embeddability check for a so-called constraint
graph, which is the main difficulty in deciding satisfiability. Loosely speaking, we will
need to decide whether a directed tree-like graph, which may also have constant integer
labels, can be embedded into Z in a way that agrees with the linear order induced by its
edges and with its constant integer labels. The second check is an ordinary satisfiability
check of abstractions of the concept and TBox into plain ALCF , which will be handled
in a straightforward way.
The key challenge in the first task is that unsatisfiability can arise from requiring an
infinite number of integers to be larger than some integer and smaller than another. For
example, if two infinite paths in the graph meet at ever increasing distances. This kind of
very non-local behavior is difficult to articulate in a way that is verifiable by automata, as
these tend to imply some sort of regularity. So instead of articulating an embeddability
condition that is both verifiable by automata and characterizes embeddability of all
graphs, we draw great inspiration from Demri and D’Souza [69] and the strategy they
used for showing PSpace decidability of constraint LTL. We articulate a Rabin-verifiable
embeddability condition, which we prove is necessary in general (Lemma 5.15) and
sufficient (Lemma 5.16) for regular constraint graphs but not in general. Rabin’s Theorem
(Theorem 3.14) neatly brings it together as it implies that if some graph is embeddable,
then also some regular graph is embeddable and thus recognized by our automaton. We
show that our condition is indeed verifiable by a Rabin tree automaton by spelling out
its construction in Section 5.3. This automaton will have a state set of exponential
size and a polynomial number of accepting pairs, which will imply an ExpTime upper
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5. Satisfiability Procedure for ALCFP(Zc)

bound for concept satisfiability w.r.t. general TBoxes for ALCFP(Zc) (Theorem 5.40).
Our embeddability condition very much resembles the one in [69], however, lifting the
approach from the linear structures of LTL to our tree structures involves non-trivial
combinatorial graph-theoretic considerations.

5.1 Abstractions and constraint graphs
In order to split the satisfiability check into two tasks, we introduce the notion of
abstraction from [38], whose adaptation to our setting results in a very simplified
substitution of constraints with concept names. From now on we assume some fixed
C and T that are in Atomic Normal Form. In particular, this means that the path
constraints are of length 1.

Definition 5.1 (Abstraction). Consider a path constraint E = ∃r.�Θ�, where Θ is an
atomic constraint. Let B ∈ B be a fresh concept name, which we call the placeholder of
Θ. The abstraction of E is defined as

Ea = ∃r.B

The abstraction of a universal path constraint is analogous. If r = ε, then the abstraction
is simply B.

The abstractions of concepts and TBoxes are the plain ALCF concepts and TBoxes
obtained by replacing all path constraints with their abstracted versions.

Example 5.2. The abstraction of

∃r.�S0x < y� % ∃s.�z = 3�
is ∃r.B1 % ∃s.B2 where B1 is a placeholder for S0x < y and B2 is a placeholder for z = 3.

Constraint graphs are defined w.r.t. an interpretation of an abstraction, and they indicate
the relationships between the register values (smaller/larger than or equal) without using
concrete values, as well as equalities of register values with constants. These relationships
are expressed via the labels of the vertices where e.g. we may have a placeholder for
equality with a constant, and via the edges of the graph where e.g. the origin of a so-called
strict edge has a smaller value than its target.

Let Ca, Ta be the abstractions of C and T , respectively, and let RegC,T be the set of
register names used in C and T .

Definition 5.3 (Constraint graph). Let Ia = (ΔIa , ·Ia) be a plain tree-shaped in-
terpretation of Ca, Ta, that is, an ALC interpretation as described in Definition 3.5
that is tree-shaped. The constraint graph has the following components. A vertex set
V = ΔIa × RegC,T consisting of pairs of a logical element with each named register,
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5.1. Abstractions and constraint graphs

a partial labeling λ : V → 2B of the vertices with placeholders, and an edge relation
E = E< ∪ E= composed of strict edges and equality edges.

The constraint graph of Ia is the directed partially labeled graph GIa = (V, E, λ) where
the edge relation is such that, for every (v, y), (u, x) ∈ V ,

1. ((v, y), (u, x)) ∈ E< if and only if either

• u = v, that is, the registers belong to the same logical element, v ∈ BIa and B
is a placeholder for S0y < S0x,

• u is the parent of v ∈ BIa and B is a placeholder for S1y < S0x, or
• v is the parent of u ∈ BIa and B is a placeholder for S0y < S1x.

2. ((v, y), (u, x)) ∈ E= if and only if

• u = v, v ∈ BIa and B is a placeholder for S0y = S0x,
• u is the parent of v ∈ BIa and B is a placeholder for S1y = S0x, or
• v is the parent of u ∈ BIa and B is a placeholder for S0y = S1x.

In addition, for a placeholder B for S0x = c, we have that B ∈ λ(u, x) if and only if
u ∈ BIa.

When the interpretation is clear from context, we write G.

Definition 5.4 (Embeddability into Zc). We say a constraint graph G is embeddable
into Zc if there is an integer assignment κ : Δ × RegC,T → Z to the vertices of G such
that for every (u, x), (v, y) ∈ Δ × RegC,T

• if ((v, y), (u, x)) ∈ E< then κ(u, x) < κ(v, y),

• if ((v, y), (u, x)) ∈ E= then κ(u, x) = κ(v, y), and

• if B ∈ λ(u, x) is a placeholder for S0x = c, then κ(u, x) = c.

Obviously, any constraint graph that has a cycle in it with a strict edge (a strict cycle) is
not embeddable into Z. But it is not always clear from a local view whether a constraint
graph is embeddable or not. In Figure 5.1 we see an example of a graph where, loosely
speaking, any finite consideration does not indicate whether it is embeddable or not.
Note the irregularity of the example; the ‘branches’ have increasing strict length.

Our reduction of ALCFP(Zc) satisfiability to two separate checks follows that of Carapelle
and Turhan, and is supported by the following theorem:

Theorem 5.5 (Carapelle and Turhan [38]). C is satisfiable w.r.t. T if and only if there
is a tree-shaped Ia |=Ta Ca such that GIa is embeddable into Zc.
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...
...

w x y z

Figure 5.1: An illustration of what a constraint graph might look like. The register names
are w, x, y, z, laid out column-wise, and each row holds the registers of a single logical
element. Here, non-labeled edges indicate equality between the vertices they connect, and
edges with an arrowhead indicate that the origin vertex takes a smaller value than the
target vertex. Note that any finite subgraph of this graph is embeddable. However, the
whole graph is not; for any difference k between the values assigned to the root element’s
y and z registers, we will have that the subgraph induced by the elements in the next
k + 1 rows enforces there be more than k different integers between them. The portion of
the graph displayed here, for instance, enforces that there are at least 3 integers between
the root element’s y and z registers.

Since the plain ALCF satisfiability is not very challenging, the bulk of what follows will
focus on the embeddability check, i.e. on how to determine whether a constraint graph
that is embeddable into Zc exists.

5.1.1 Tree representations of constraint graphs

Our main aim is to devise an embeddability test using tree automata. However, con-
straint graphs are not exactly trees, so in order to overcome this technical point, we
represent constraint graphs using tree decompositions (see Definition 2.4), where each
bag holds the subgraph induced by the vertices associated with a logical element and the
vertices associated with its parent. We then convert these tree decompositions into tree
representations using an alphabet where each letter contains the information stored in
the tree decomposition bag, without preserving information about the logical element.
Note that thanks to our constraints having depth 1, it is enough to consider parent-child
pairs. Each letter stores the registers of a parent at the top (top) and the registers of a
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child at the bottom (bot), along with the edges and labels from the constraint graph.
More precisely, we use two copies xtop and xbot of each register x ∈ RegC,T , and call the
respective sets Regtop

C,T and Regbot
C,T .

As we mentioned, the relevant information about equalities with constants is stored as a
partial labeling, which we define next. Let c0 be the smallest integer used in either C or
T and let cα be the largest. If no integers were used, set c0 = cα = 0. Denote by [c0, cα]
the range of integers between c0 and cα, inclusive.

Let
U = {U<c0 , Ucα<} ∪ {Uc | c ∈ [c0, cα]}

be fresh labels. Let Σ be the set of partially U-labeled graphs where the vertex set is
either exactly

V = Regtop
C,T ∪ Regbot

C,T or V = Regbot
C,T

with edge set E = E< ∪ E=. We will sometimes write e.g. e=(x, y) as shorthand for
(x, y) ∈ E= and likewise for E<.

Definition 5.6 (Tree representation of constraint graph). Let G be the constraint graph
of some plain interpretation Ia. For u ∈ ΔIa with the parent v, define X(u) as the
subgraph of G induced by the registers of u and v, i.e. by:

{(u, x) | x ∈ RegC,T } ∪ {(v, x) | x ∈ RegC,T }

For the root u = ε, define X(u) as the subgraph of G induced by {(u, x) | x ∈ RegC,T }.

We now remove references to the logical elements. Let Y (u) be the following partially
U-labeled graph:

• The vertices of Y (u) are obtained from X(u) by renaming (u, x) +→ xbot and
(v, x) +→ xtop for every x ∈ RegC,T . Note that if u = ε, we simply rename
(u, x) +→ xbot for every x ∈ RegC,T .

• The edges of Y (u) are exactly those of X(u) (under the renaming).

• We have Uc(xbot) if and only if (u, x) is labeled with a placeholder for equality with
the constant c, and similarly for xtop.

The tree representation Tr(G) of G is the full Σ-tree where Tr(G)(u) = Y (u).

Rather than considering tree representations where nodes are labeled with arbitrary
graphs from Σ, it will be convenient to consider trees over a restricted alphabet that
contains only graphs that have been enriched with implicit information in a maximal
consistent way.

Definition 5.7 (Frame). A frame is a graph in Σ such that:
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1. there is an edge between every pair of vertices

2. there are no strict cycles, i.e. no cycles that include an edge from E<

3. equality edges are symmetric, i.e. if e=(x, y) then also e=(y, x)

4. every vertex must have exactly one of the labels in U

5. if e=(x, y) then x and y have the same label from U, and if x and y have the same
label from U \ {U<c0 , Ucα<} then e=(x, y)

6. if e<(x, y) then either

a) U<c0(x), or
b) Ucα<(y), or
c) Uci(x) and Ucj (y) with ci, cj ∈ [c0, cα] and ci < cj.

We denote the alphabet of frames by Σfr.

We will assume that the constraint graphs we are dealing with have been enriched with
information such that their tree representations are over Σfr:

Definition 5.8 (Framified constraint graph). We say that an augmentation Gfr of a
constraint graph G is a framified constraint graph if its tree representation is over Σfr.

Note that a constraint graph may have multiple framifications; for example, if not all
registers are compared to a constant there can be many ways to augment its constraint
graph. A constraint graph also may have no framifications; for example, if it contains a
strict cycle between the registers of a child and its parent, the corresponding letter in the
tree representation will also contain a cycle and thus cannot be augmented so that it is
a frame. In fact, there cannot be strict cycles spanning the registers of any number of
logical elements in a framification.

Lemma 5.9. Let Gfr be a framified constraint graph. Then there are no strict cycles in
Gfr.

Proof. We prove the lemma by contradiction. Let p be a strict cycle in Gfr which spans
vertices of exactly k logical elements u1, . . . , uk, and assume w.l.o.g. that p starts and
ends at u1, and that ui is the parent of ui+1 for i ∈ [k − 1]. If k ≤ 2, then p is a strict
cycle which is contained in the frame Y (u2), and we reach a contradiction to Gfr being a
framified constraint graph.

Otherwise, consider the restriction p� of p to the vertices of the logical elements uk and
uk−1. Note that we consider two logical elements, as their induced subgraph will be
captured as Y (uk) in the tree representation of Gfr. Let (uk−1, x) be the first vertex on
p� and let (uk−1, y) be the last vertex on p�. We show that there exists some edge e from
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(uk−1, x) to (uk−1, y). Due to Gfr being a framified constraint graph, it is enough to show
that there is no strict edge from (uk−1, y) to (uk−1, x). Since p� connects (uk−1, x) to
(uk−1, y), if there were such a strict edge, there would be a strict cycle in Y (uk) and we
would reach a contradiction to Gfr being framified. For the same reason, if p� has a strict
edge, then e is strict.

By replacing the subpath p� with e in p, we obtain a strict cycle which spans vertices
of k − 1 logical elements. Observe that the strictness is preserved since the potential
removal of a strict edge in p� is recovered by e being strict.

Applying this claim inductively, we conclude that there is a strict cycle spanning two
logical elements, and reach a contradiction as above.

Importantly, an embeddable constraint graph can always be framified by using an
assignment κ that witnesses its embeddability, and augmenting the graph with the edges
and constant labels implied by it.

Observation 5.10. Let G be an embeddable constraint graph. Then there exists a
framification of G.

Also note that in the tree representation of (framified) constraint graphs, the bot part
of a vertex coincides with the top parts of its children. We use this fact to restrict our
attention from all trees over Σfr to trees which are, at least conceivably, representations
of constraint graphs.

Definition 5.11 (Consistent frame pairs). Let σ1, σ2 ∈ Σfr. We call the pair (σ1, σ2)
consistent if the following are equal:
• the subgraph induced by the Regbot

C,T vertices of σ1, and
• the result of renaming each xtop to xbot in the subgraph induced by the Regtop

C,T vertices
of σ2.

In Figure 5.2 we see three frames and whether the upper frame is consistent with either
of the two lower frames.

5.2 Embeddability condition
With the terminology in place, we can turn our attention to articulating an embeddability
condition on tree representations of constraint graphs, with the goal of having the
condition verifiable with a tree automaton. But first, we must introduce a few more
definitions.

In the proofs ahead, we will be talking about paths in trees and constraint graphs, and in
particular about paths that only move away from the root. Such paths can be described
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ztopytopxtop

xbot zbotybot
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xbot zbotybot
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Figure 5.2: The upper frame is consistent with the left hand side lower frame, and not
consistent with the right hand side lower frame. The edges which are relevant for whether
the pairs are consistent are in bold, and irrelevant edges are only sketched.

by specifying their first node u and which child is visited in each step, i.e. the letter
added to the current string representing the path so far.

Definition 5.12 (Path along a word). Let w = γ1γ2 · · · be a finite or infinite word
over [n] and let u ∈ [n]1. In a constraint graph, a path along w from (u, x) is a path
p where p(0) = (u, x) and p(i) = (uγ1, x1) . . . (uγ1 · · · γi, xi) for some choice of registers
x, x1, . . . , xi.

The specific registers along the path are immaterial for this definition, and all that is
important is the sequence of logical elements visited. The next two definitions are needed
for our embeddability condition.

Definition 5.13 (Forward and backward paths). Let Gfr be a framified constraint graph.
An infinite path p : N → Δ × RegC,T is a forward path if for every i ∈ N, there is an edge
from p(i) to p(i + 1) in Gfr. It is a backward path if for every i ∈ N, there is an edge
from p(i + 1) to p(i) in Gfr.

Definition 5.14 (Strict length). The strict length of a finite path p in a (possibly
framified) constraint graph is the number of strict edges in p. For an infinite path p, we
say that p is strict if it has infinitely many strict edges.

We can now present a condition on framified constraint graphs that will be crucial to
deciding embeddability:

(�) There are no (u, x), (u, y) ∈ Δ × RegC,T in Gfr for which we have that: there exists
an infinite w ∈ [n]ω, and

1. an infinite forward path f from (u, x) along w, and
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x

y

z

· · ·

ε 1 11 · · ·

Figure 5.3: A constraint graph satisfying (�) which is not embeddable into Z

2. an infinite backward path b from (u, y) along w

such that f or b is strict, and such that for every i ∈ N, there is a strict edge from
f(i) to b(i).

It is not difficult to show that (�) is a necessary condition for embeddability:

Lemma 5.15. If a constraint graph is embeddable, then it satisfies the condition (�).

Proof. Let (u, x), (v, y) ∈ Δ×RegC,T . From the definition of embeddability it immediately
follows that if there is a finite path from (u, x) to (v, y) of strict length m, then any
assignment κ : Δ × RegC,T → Z witnessing the embeddability of Gfr would satisfy
κ((v, y)) − κ((u, x)) ≥ m.

Let Gfr be a framified constraint graph which does not satisfy (�), and let (u, x) and
(u, y) be the violating pair. We show that for any natural number m, there is a path
from (u, x) to (u, y) of strict length at least m. This is enough, since it would imply there
cannot be a register function β which witnesses embeddability: for any determination of
the values of β(u, y) and β(u, x), we will have that there are more than β(u, y) − β(u, x)
integers between them, which of course is not satisfiable. Fix some m and assume w.l.o.g
that the forward path f is strict. Then there is a finite prefix pf of f containing at least
m strict edges. Denote the length of pf by l and let pb be the l-prefix of the backwards
path b. Then the concatenation of pf with pb is a path from (u, x) to (u, y), since there
is an edge from f(l) to b(l), and it is of strict length at least m.

But (�) is not sufficient in general for ensuring embeddability, even for the special case
where constraint graphs can be represented by a word over Σfr. This is demonstrated by
the example in Figure 5.3, which is taken from [69]. There is no infinite strict path in
the graph, hence (�) is satisfied. However, for any n there is a path from (ε, z) to (ε, x)
of strict length at least n, which implies that the constraint graph is not embeddable
into Z.

Nonetheless, the condition will allow us to effectively test embeddability, since it is
sufficient for regular framified constraint graphs, which are those with a regular tree
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representation (recall Definition 2.3 of regular trees). The next key lemma is the most
technical result in this part of the thesis.

Lemma 5.16. Let Gfr be a regular framified constraint graph. If Gfr satisfies (�), then
it is embeddable.

To prove this lemma, first, we show that if the regular constraint graph Gfr does not
satisfy (�), then there is a pair (u, x), (u, y) such that for every m ∈ N, there is a path
from (u, x) to (u, y) of strict length at least m which only involves vertices whose logical
element has the prefix u, that is, the path only involves vertices in the subtree rooted
at u. However, the path may move down and up this subtree arbitrarily. We then use
framification to extract from this arbitrary path another path p� of a specific shape,
which first goes down (away from u) along some w and then goes back up to u. The
path p� may have reduced strict length, as this extraction will prune off some subpaths
that contain strict edges, but we show a lower bound on the strict length of p� which
is a function of m. Then we use regularity to argue that for large enough m, the path
p� becomes long enough that it essentially starts repeating itself, thus allowing us to
extend it indefinitely (as well as the word it runs along) to obtain the desired forward
and backward paths; f is obtained by concatenating the downward portion of p� and b is
obtained by concatenating the upward portion. The strict edges between f and b are
given by the framification.

We need some definitions and lemmas before starting the proof.

Definition 5.17 (Distance between vertices). Let G be a constraint graph, and let
(u, x), (v, z) ∈ Δ × RegC,T such that there is a path from (u, x) to (v, z) in G. If there is
a finite bound on the strict length of paths from (u, x) to (v, z), let m be the maximal
strict length of such paths. Then we say the distance between (u, x) and (v, z) is m. If
there is no finite bound on such paths, we say the distance is unbounded.

Lemma 5.18. Let Gfr be a framified constraint graph which is not embeddable into Zc.
Then there exist (u, x), (v, z) ∈ Δ × RegC,T such that the distance between (u, x) and (v, z)
is unbounded.

Proof. This is a restatement of a proposition in [70] showing that Zc has the EHD-
property. The defining formulas (applied to our setting) essentially state that there are
no strict cycles (which in our case is given by the framification and Lemma 5.9), and
that there exists a bound on the strict length of paths from (u, x) to (v, z), for every
(u, x) and (v, z) such that (v, z) is reachable from (u, x). We emphasize that the bound
is not global but may vary from pair to pair.

In the sequel, we freely move from a constraint graph to its tree representation when
discussing paths and subtrees for ease of understanding. We also define the following
labeling to make later arguments easier to follow:
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Definition 5.19 (The labeling .). Let Gfr be a framified constraint graph. We define a
partial labeling . : Δ × RegC,T × RegC,T → N ∪ {∞} on pairs of registers belonging to the
same logical element, that is for (w, x), (w, y) ∈ Δ × RegC,T , where

1. if the largest strict length of a simple path from (w, x) to (w, y) which does not
leave the subtree rooted at w is d ∈ N, then .((w, x), (w, y)) = d,

2. if there is no bound on the strict length of a cycle-free path from (w, x) to (w, y) in
the subtree rooted at w, then .((w, x), (w, y)) = ∞, and

3. if there is no path from (w, x) to (w, y) fully contained in the subtree rooted at w,
then .((w, x), (w, y)) is not defined.

Note that in addition to being only defined on registers of the same logical element, the
labeling also only takes into account paths in the subtree rooted at that element. This
is in contrast to Definition 5.17, which takes into account all paths. We make some
observations about this labeling. In particular, when .((w, x), (w, y)) = 0, it implies that
there are paths from (w, x) to (w, y) in the subtree rooted at w, and they are entirely
composed of equality edges.

Lemma 5.20. Let Gfr be a framified constraint graph which is not embeddable. Then
there exist u ∈ Δ and x, y ∈ RegC,T with .((u, x), (u, y)) = ∞.

Proof. We first show we can restrict our attention to a single node u, then we show the
labeling part of the lemma. Gfr is not embeddable, therefore by Lemma 5.18 there exist
(u�, x�) and (w�, y�) with unbounded distance. As the tree representation Gfr has bounded
degree, by König’s Lemma we have that there is at least one a subtree in the graph
containing infinitely many subpaths of paths from (u�, x�) to (w�, y�) of infinitely many
strict lengths. Let u be the root of such a subtree such that |u| is minimal in the sense
that the previous statement holds for u and does not hold for its parent (if u is not ε).
Since we have a bounded number of registers, again by König’s Lemma we have that
there are registers x, y such that the distance between (u, x) and (u, y) is unbounded. By
the minimality of |u| we get that .((u, x), (u, y)) = ∞.

Next, we show that such a pair exists also deep enough in the regular tree such that they
are already in the repetitive part:

Definition 5.21. Let T be a regular tree over Σ. We say w ∈ Σ1 is in the repetitive
part of T if there is a strict prefix u of w such that T |w = T |u.

Clearly, a vertex who is farther from the root than there are different subtrees will have
a subtree which has been seen before on the path from the root.
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Observation 5.22. If T is a regular tree, then any w ∈ Σ1 of length |w| > |{T |u | u ∈ Σ1}|
is in the repetitive part of T .

It will be easier, technically, to construct our infinite f and b if our starting point is
already in the repetitive part of the tree, so we show it is sound to assume so:

Lemma 5.23. Let Gfr be a regular framified constraint graph which is not embed-
dable into Z. Then there are (w, x), (w, y) ∈ Δ × Reg in the repetitive part such that
.((w, x), (w, y)) = ∞.

Proof. We know from Lemma 5.20 that there are some (u, z1), (u, z2) ∈ Reg such that
.((u, z1), (u, z2)) = ∞. By the definition of . and the fact that we have finite degree, by
König’s Lemma we have that u has a child u� and there exist registers z�

1, z�
2 such that

.((u�, z�
1), (u�, z�

2)) = ∞. We apply this argument inductively until we reach the repetitive
part, which by Observation 5.22 is a finite number of times.

For our proof it will be enough to consider partial framifications of constraint graphs, since
we will not rely on every existing edge. Observe that due to the inability of framifications
to introduce strict cycles (Lemma 5.9), all the framifications of a constraint graph G
contain a common subgraph whose edges relate to . in the following way:

Observation 5.24. Let Gfr be a framification of G. Then for every u ∈ Δ and x, y ∈ Reg,
we have in Gfr:

1. An equality edge e=((u, x), (u, y)) if .((u, x), (u, y)) = 0

2. A strict edge e<((u, x), (u, y)) if .((u, x), (u, y)) ∈ N+ ∪ {∞}

Note that the maximal common subgraph may contain additional edges, as . only takes
into account paths in the subtree rooted at a vertex, but for our proofs, we will only use
these common edges and they will suffice.

We introduce one more definition before we begin the proof, in order to make speaking
about our paths easier:

Definition 5.25 (Downward and upward trend). We say a path p in a constraint graph
has a downward trend if the elements w ∈ Δ along p have (strictly) increasing depth.
Similarly, a path has an upward trend if the elements have decreasing depth.

Essentially, as long as a path is fully contained in a subtree, it goes down if it moves
farther from the root of the full tree and it goes up if it moves closer to the root. We will
be interested in constructing a path which changes its trend once, which is dubbed an
down-then-up path:
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replaceable with
the bold edge

Figure 5.4: All edges in the graph are equality edges. We can replace the equality path
with a single edge (in bold) without reducing the strict length of encompassing paths

Definition 5.26. Let (w, x), (w, y) ∈ Δ × Reg. We say a path from (w, x) to (w, y) in
a constraint graph goes down-then-up if it can be broken into two contiguous subpaths
where the first subpath has a downward trend and the second one has an upward trend.

Lemma 5.27. Let Gfr be a framified constraint graph. If (u, x), (u, y) ∈ Δ × Reg are
such that .((u, x), (u, y)) = ∞, then for every n ∈ N there is a down-then-up path p� from
(u, x) to (u, y) in Gfr of strict length at least n.

Proof of Lemma 5.27

There are two parts to the proof. First we describe, given a path p from (u, x) to (u, y),
another path p� from (u, x) to (u, y) which goes down-then-up. In the second part, we
give a lower bound on the strict length of the new path p� as a function of the strict
length of the original path p. Later, we will argue that a path with large enough strict
length will allow us to construct the desired f and b of (�).

Let u ∈ Δ and x, y ∈ Reg such that .((u, x), (u, y)) = ∞ and let p be a path in Gfr from
(u, x) to (u, y) of strict length ≥ N and assume p has no cycles. Denote by d the maximal
depth of p.

Constructing p� We begin with some simple observations:

Observation 5.28. We may assume that any subpath p�� of p which begins and ends
with vertices of the same logical element has strict length at least 1, otherwise due to
framification we have an equality edge e�� between the start and end of p��. Then we may
consider the path where p�� is replaced by e��, which has the same strict length as the
original path p.

See Figure 5.4 for an example where this observation applies.

Observation 5.29. The number of times we may see a certain w ∈ Δ along p is bounded
by the number of registers |RegC,T |, since we assume no cycles.
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Assume that the logical element u of the starting and ending points of p appears exactly
twice along p; at its beginning and its end. We inductively construct pre(i), mid(i), and
suf(i), where pre(i) has a downward trend, suf(i) has an upward trend, and mid(i) is a
subpath of the original p, which will be manipulated in later steps. For this construction,
we will use the edges promised by the framification, and the ultimate construction will
be a down-then-up path.

For a path q with endpoints a, b, we denote by q \ {a, b} the subpath of q obtained by
excluding a and b.

Set
pre(0) = (u, x), suf(0) = (u, y), mid(0) = p \ {(u, x), (u, y)}

Note that pre(0) and suf(0) indeed have a strict downward and upward trend, respectively,
and that mid(0) begins and ends with vertices associated with the same logical element.

Given pre(i), suf(i), and mid(i), we define pre(i+1), suf(i+1), and mid(i+1). Denote the
logical element appearing in the first and last vertices on mid(i) by ui. How we proceed
depends on how many times ui is visited in mid(i). If it is twice or less, how we proceed
is simple since there are no multiple trend changes touching ui. If it is more than twice,
we will use the edges promised by the framification to take shortcuts that eliminate the
trend changing parts of mid(i) that touch ui. More precisely:

1. If ui appears exactly twice on mid(i), denote its appearances by (ui, xi) and (ui, yi).
Then define

pre(i+1) = pre(i)(ui, xi),
suf(i+1) = (ui, yi)suf(i),

mid(i+1) = mid(i) \ {(ui, xi), (ui, yi)}.

2. If ui appears more than twice on mid(i), let (ui, xi) and (ui, yi) be the pair of
subsequent appearances of ui on mid(i) that enclose a subpath with the largest
strict length (if there are multiple such pairs, take the earliest one).

a) Define
pre(i+1) = pre(i)(ui, xi),
suf(i+1) = (ui, yi)suf(i).

Since there is a path from pre(i) to (ui, xi), due to framification, there is
an edge e from the end of pre(i) to (ui, xi), and similarly there is an edge
e� from (ui, yi) to the beginning of suf(i). Therefore, pre(i+1) and suf(i+1)

are well defined. Furthermore, since at least of one these edges acts as a
shortcut replacing a strict path (we may assume it is a strict path due to
Observation 5.28, as it begins and ends in the same logical element), at least
one of these edges is strict.
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5.2. Embeddability condition

pre(i) suf(i)

q(u
i ,x

i )

q
�
(ui,y

i)

mid(i+1)

e�e

(u, x) (u, y)

Figure 5.5: What the temporary path may look like during the inductive construction.
Here, mid(i) is the concatenation of the paths q(ui,xi), the subpath drawn in bold, and
q�

(ui,yi). In order to progress toward a down-then-up path, q(ui,xi) will be replaced by
the strict edge e, q�

(ui,yi) will be replaced by the strict edge e�, and mid(i+1) will be the
subpath drawn in bold. The new prefix pre(i+1) will be the concatenation of pre(i) with
e, and suf(i+1) will be the concatenation of suf(i) to e�.

b) We use the edges e and e� described above to shortcut the multiple paths
visiting the logical element ui, and connect pre(i+1) to mid(i+1), and mid(i+1)

to suf(i) as follows. Let q(ui,xi) be the subpath of mid(i) beginning at the first
vertex of mid(i) and ending at (ui, xi). Let q�

(ui,yi) be the subpath of mid(i)

beginning at (ui, yi) and ending at the last vertex of mid(i). Then define

mid(i+1) = mid(i) \ {q(ui,xi), q�
(ui,yi)}.

I.e. mid(i+1) is the result of removing the subpaths that were replaced by the
shortcuts e and e�. See Figure 5.5 for an illustration.

3. If mid(i) is empty, then define

pre(i+1) = pre(i),

suf(i+1) = suf(i),

mid(i+1) = mid(i).

The following observation will support there being a strict edge between every node on f
to every node on b:

Observation 5.30. If mid(i) has strict length > 1, then due to framification, there is a
strict edge from (ui, xi) to (ui, yi).
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5. Satisfiability Procedure for ALCFP(Zc)

Recall that the starting point is at depth d. Therefore after at most d steps of the above
construction, we will have mid(d) = ε. Take p� = pre(d)suf(d). We have that for every
depth, an element of that depth appears at most twice in p� (in fact, exactly twice except
for possibly the deepest element).

A lower bound on the strict length of p� As we used shortcut edges to transform
the constructed path to a down-then-up path, some strict edges may have been lost, and
so we need to argue about the strict length of p; Note that only applications of case 2
decrease the strict length of p�. Therefore the strict length of p� will be the smallest when
its construction involves the most applications of case 2. We want to bound the number
of times case 2 can be applied before we reach mid(i) = ε.

Recall that n is the degree of the tree representation of Gfr. For 0 ≤ i ≤ d, denote by
N

(i)
mid the strict length of mid(i). Denote by ρ the number of register names used, i.e.

|RegC,T |.
Assume that we apply case 2 in step i, meaning ui appears more than twice on mid(i). Due
to the degree being n, this implies that there is a pair (ui, xi) and (ui, yi) of subsequent
appearances whose subpath has strict length at least (N (i)

mid − ρ)/n. We subtract ρ in
order to account for possibly losing ρ strict edges within the same depth as we perform
Step 2b. In other words,

N
(i+1)
mid ≥ (N (i)

mid − ρ)/n

Let us define this bound of N
(i)
mid from below as a series.

a0 = N

a1 = 1
n

(a0 − ρ)

ai+1 = 1
n

(ai − ρ)

Claim 5.31. For m ≥ 1,

am = N − ρ

nm
− ρ

m−1�
h=1

n−h

Proof. By induction on m.

• We show the claim holds for m = 1: By definition, we have

a1 = 1
n

(a0 − ρ) = N − ρ

n

By substituting 1 for m, we have:

N − ρ

nm
− ρ

m−1�
h=1

n−h

�����
m=1

= N − ρ

n
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• We assume the claim holds for m = m�:

am� = N − ρ

nm� − ρ
m�−1�
h=1

n−h

• We show correctness for m = m� + 1:

am�+1 = am� − ρ

n

= N − ρ

nm�+1 − ρ
m�−1�
h=1

n−h−1 − ρ

n

= N − ρ

nm�+1 − ρ

(m�+1)−1�
h=2

n−h − ρ

n

= N − ρ

nm�+1 − ρ

(m�+1)−1�
h=1

n−h

Since this series bounds N
(m)
mid from below, we have that

N
(m)
mid ≥ N − ρ

nm
− ρ

m−1�
h=1

n−h

Furthermore, we have that

N − ρ

nm
− ρ

m−1�
h=1

n−h >
N − ρ

nm
− ρ

∞�
h=1

n−h = N − ρ

nm
− ρ

1
n − 1

We solve for m in order to bound the maximal number of times case 2 may be applied in
the construction of p�.

N − ρ

nm
− ρ

1
n − 1 = 0

After some algebra we get

m = logn((N − ρ)(n − 1)
ρ

)

To recap – the constructed path p� has the smallest strict length if case 2 was ap-
plied a maximal number of times, and we have showed that this may occur at most
logn( (N−ρ)(n−1)

ρ ) times. However, since each time we apply case 2 we have at least one
strict edge added to the path (in Step 2a), we also have at least logn( (N−ρ)(n−1)

ρ ) strict
edges in p�. Obviously,

lim
N→∞

�
logn

�(N − ρ)(n − 1)
ρ

��
= ∞,

and we have our proof of Lemma 5.27.
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5. Satisfiability Procedure for ALCFP(Zc)

Back to the proof of Lemma 5.16. Finally, we can prove the lemma which will
facilitate the construction of the paths violating (�). Let Nst be the number of different
subtrees in the tree representation of Gfr. Let Nrep = ρ4Nst + 1.

Lemma 5.32. Let u ∈ Δ be in the repetitive part of Gfr and let x, y ∈ Reg such that
.((u, x), (u, y)) = ∞. Let p be the path promised by Lemma 5.27 of strict length 2Nrep.
Then there is v ∈ Δ on p and registers z, z� such that (v, z), (v, z�) violate (�).

Proof. Since p is a down-then-up path of strict length 2Nrep, there are at least Nrep strict
edges in one of the directions on p. Assume w.l.o.g. that it is the downward direction.

Since the number of strict edges in the downward direction is larger than the number of
possible combinations of a subtree with a quadruple of registers, we have the following
on p (see Figure 5.6):

1. logical elements v and v� = vw for some w ∈ [n]+ such that v and v� have isomorphic
subtrees,

2. registers z, z� such that there is a path f1 from (v, z) to (v�, z) with strict length at
least 1, and a path b1 from (v�, z�) to (v, z�).

Since p is a path from (u, x) to (u, y) which goes through (v�, z) and then (v�, z�), and
since framifications may not introduce strict cycles (Lemma 5.9), we have an edge e� from
(v�, z) to (v�, z�). Since v and v� have isomorphic subtrees, this implies there is also an
(isomorphic) edge e from (v, z) to (v, z�). Finally, since f1 is strict, by Observation 5.24
we have that the edges e and e� are strict.

As v and v� have isomorphic subtrees, this implies that there is an infinite strict forward
path f from (v, z), since the strict forward path f1 can be concatenated indefinitely.
Similarly, there is an infinite backward path b into (v, z�), as the path b1 can also be
concatenated.

It remains to show that there is strict edge from f(i) to b(i) for every i ≥ 0. By our
construction, we have that for every i, there is a strict path from f(i) to b(i) – for example
one which uses a copy of the edge e above. Furthermore, by the construction in the proof
of Lemma 5.27, for every i, f(i) and b(i) are vertices associated with the same logical
element. Therefore by Observation 5.30 we have a strict edge from f(i) to b(i).

5.3 Automata for deciding satisfiability
Since condition (�) is necessary and sufficient for the embeddability of regular framified
constraint graphs, from Rabin’s Theorem (Theorem 3.14) we get:
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v z z�

v� = vw z z�

v�� = vww z z�

f1 b1

Figure 5.6: Subgraph of the constraint graph. v, v�, v�� have isomorphic subtrees along a
periodic word w, f1 is a forward path with at least one strict edge and b1 is a backward
path. Note that f1 goes from the z register of a vertex to the z register of an isomorphic
vertex (and b1 behaves similarly).

Lemma 5.33. Let Aemb be a Rabin tree automaton that accepts exactly the consistent
trees over Σfr satisfying (�). There is an embeddable constraint graph if and only if
L (Aemb) .= ∅.

Proof. If there is an embeddable constraint graph G, then it has some framification Gfr
(Observation 5.10), which satisfies the condition (�) (Lemma 5.15). Therefore the tree
representation of Gfr is accepted by Aemb and L (Aemb) .= ∅. For the other direction,
assume L (Aemb) .= ∅. Then by Rabin’s Theorem, there is a regular tree T ∈ L (Aemb),
which satisfies the condition (�). By Lemma 5.16, we have that the constraint graph
represented by T is embeddable.

Therefore it remains to show that the condition (�) is indeed verifiable by a Rabin tree
automaton (See Section 3.3 for a reminder). We do this next.

5.3.1 Checking consistency of trees.
In our constructions of automata, it is useful to assume that they run on trees over
Σfr that are consistent (in the sense of Definition 5.11), rather than complicating the
constructions by incorporating the consistency check. Therefore we first describe an
automaton Act which accepts exactly the consistent trees, which we later intersect with
the appropriate automata (using the product automaton construction in the proof of
Lemma 3.13). The automaton Act simply verifies the conditions of Definition 5.11 by
only having transitions between consistent pairs of frames, and making sure the root
vertex is labeled with a frame whose vertex set consists exactly of Regbot

C,T .

First we denote the pairs of consistent pairs of frames as in Definition 5.11:

CFr = {(σ1, σ2) ∈ Σfr × Σfr | (σ1, σ2) is consistent}
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Also denote the set of frames whose vertex set only has bot vertices:

Σbot
fr = {σ ∈ Σfr | V (σ) = Regbot

C,T }.

We define Act = (Q, q0, δct, (∅, Q)), where:

• Q = {q0} ∪ {qσ | σ ∈ Σfr}.

• For every σ ∈ Σbot
fr , we have (q0, σ) 0 (qσ, . . . , qσ).

• For every (σ1, σ2) ∈ CFr, we have (qσ1 , σ2) 0 (qσ2 , . . . , qσ2).

Proposition 5.34. The Rabin tree automaton Act accepts exactly the consistent trees
over Σfr.

Observation 5.35. The number of states of Act is exponential in the size of C and T ,
and its Ω has one pair.

5.3.2 A Rabin tree automaton for verifying (�)
It will be easier to first construct an automaton which finds a violating pair and then
complement it. Therefore we describe an automaton B which runs on consistent trees over
Σfr, and finds a pair of registers which violates (�). The desired Aemb is the intersection
of the complement of B with Act, the consistency checking automaton.

We define B while simultaneously describing its behavior.

We let B = (Q, q0, δ, (∅, U)) with

• Q = {q0, q1, q2} ∪ Qp where Qp is the set of path states

Qp = RegC,T × RegC,T × {f, b} × {0, 1}.

The flags in the path states will indicate whether it is the forward path f or the
backward path b which is strict, and the binary flag will indicate whether the
automaton just encountered a strict edge in the direction that was guessed to be
strict. We need to make note of these strict edges in order to verify that the path
is indeed strict (has infinitely many strict edges).

• We describe δ next. First, B travels down the tree until it reaches a node that it
guesses has the violating pair. Therefore we have that the initial state q0 and the
state q2 both represent that the violating pair is (a) in the current subtree, (b) but
not in the current node. The reason for there being two states which serve the
same function is the technicality with Rabin automata having a single initial state
which is only visited at the root of the input tree.
Therefore B needs to pick in which subtree to continue its search (which would
also imply that it discards the other choices). Thus from either of these states, B
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picks one child for which (a) is also true, and possibly also (b). In the latter case,
it moves to q2 for that child, while the other children go into q1. State q1 means
that the problematic pair is not in the subtree, and once B visits some node in q1,
it stays in q1 for all its descendants.
Precisely speaking, denote by qe

i the n-tuple containing q2 for entry i and q1 for
every other entry.

– For every i ∈ [n] and σ ∈ Σfr we have

(q0, σ) 0 qe
i and (q2, σ) 0 qe

i

– For every σ ∈ Σfr, we have (q1, σ) 0 (q1, . . . , q1)

At some point, B moves from a node where both (a) and (b) are true (that is, q0
or q2) to a node where (b) no longer holds, i.e., it guesses that the violating pair
is in that node u. Then, it guesses the registers x, y as the problematic pair and
whether it is the forward path f or the backward path b which will be strict. This
will be stored in the flag f or b, which once chosen cannot change during the run.
If the guessed pair x, y has a < relation (needed for the strict edge from f(0) to b(0)
required by (�)), B transitions accordingly to a path state (x, y, f, 0) or (x, y, b, 0).
To make this precise, we introduce more notation. For every i ∈ [n], h ∈ {f, b},
and − ∈ {0, 1}, denote by (x, y, h, −)i the n-tuple containing (x, y, h, −) for entry i
and q1 for every other entry.

– For every i ∈ [n] and h ∈ {f, b}, if e<(xbot, ybot) ∈ σ we have

(q0, σ) 0 (x, y, h, 0)i and (q2, σ) 0 (x, y, h, 0)i

Now, in every step, B attempts to expand f and b by guessing a child v and a
new pair z, w with a strict edge between z and w. It moves to a path state for the
child v indicating z and w, and when doing so, it also uses the other binary flag to
indicate whether B just witnessed a strict edge relevant to f or b (flag value 1), or
not (flag value 0). For the other children, it moves to state q1.
We describe the transitions for the case where the forward path is strict; there are
similar transitions for backward paths. If the guess correctly extends f and b, that
is,

e<(zbot, wbot) ∈ σ and e<(ytop, wbot) /∈ σ

then, for every i ∈ [n],

– if the current edge on the forward path is strict, that is, e<(xtop, zbot) ∈ σ,
we have

((x, y, f, −), σ) 0 (z, w, f, 1)i

– and if the current edge is not strict, that is, e=(xtop, zbot) ∈ σ, then we have

((x, y, f, −), σ) 0 (z, w, f, 0)i
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• Paths looping in q1 are successful, and to guarantee that the guessed path is strict,
it must contain infinitely many strict edges (marked with flag 1). Therefore we set

U = {q1} ∪ {(x, y, h, 1) | h ∈ {f, b}}

As mentioned before, the automaton Aemb is the complement automaton of B intersected
with Act. It has the same alphabet, but it may have exponentially many more states
(Theorem 3.12).

Proposition 5.36. The Rabin tree automaton Aemb accepts exactly the consistent trees
over Σfr that satisfy (�).

Observation 5.37. The number of states of B is polynomial in the size of C and T , its
Ω has one pair, and the alphabet is exponential. Therefore Aemb has a number of states
and alphabet exponential in the size of C and T , and its Ω has a constant number of
pairs.

5.3.3 Satisfiability of the abstracted ALCF part
We use the automata construction of Section 3.4 and reduce satisfiability of the abstract
Ca w.r.t. Ta to the emptiness of the Rabin tree automaton Aalcf that runs on trees over the
alphabet Ξ of Hintikka sets (Definition 3.15). Note that, for completeness, it is important
that the automaton accepts all tree models, as opposed to e.g. accepting some canonical
model which may not necessarily have an embeddable constraint graph. Furthermore,
we note that since Ca and Ta have size polynomial in C and T , the following still holds:

Observation 5.38. The alphabet Ξ and the number of states of Aalcf are exponential in
the size of C and T , and the Ω of Aalcf has one pair.

5.3.4 Matching the alphabets
The final automaton AT ,C should accept only representations of models of the abstraction
of C and T whose constraint graph is embeddable. The embeddability check is done by
AEmb over the alphabet Σfr, and the satisfiability check of the ALCF part is done by
Aalcf over the alphabet Ξ, therefore we modify both automata to use the same alphabet.
We let A�

Emb and A�
alcf be the modification of AEmb and Aalcf to trees over the product

alphabet Σfr × Ξ, while completely ignoring the irrelevant part of each letter. Obviously,
this is merely a syntactic change, and the state sets of A�

Emb and A�
alcf are not affected

and remain exponential in |C, T |, nor are their Ω sets, which still have a constant number
of pairs.

We still need one more ingredient. It is not enough to verify if a tree over Σfr × Ξ is
accepted by A �

emb, which ignores Ξ, and by A �
alcf , which ignores Σfr: such a tree could pair

a model of the abstraction with a totally unrelated constraint graph. In order to verify
that the constraint graph is the one induced by the interpretation of the abstraction, we
take an automaton Am that considers both parts of the product alphabet Σfr × Ξ, and
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5.3. Automata for deciding satisfiability

accepts the trees where the restriction of the input to Ξ, corresponding to the abstraction
to ALCF , induces the constraint graph corresponding to the restriction of the input to
Σfr.

Below, this is done by verifying the conditions described in Definition 5.3 while applying
the placeholders in the Ξ part of the letter to the bot vertices in the Σfr part of the letter.
Such a test is built into the transition relation, using a constant number of states. In
order to verify that the graph induced by the Ξ part of the letter is contained in the
framification of the Regbot

C,T vertices in the Σfr part, we introduce some notation. Recall
that B is the set of placeholders introduced during the abstraction of C and T . For ξ ∈ Ξ,
denote B(ξ) = ξ ∩ B, i.e. the set of placeholders appearing in ξ. For σ ∈ Σfr denote

Bbot(σ) = {B ∈ B | there is v ∈ Regbot
C,T in V (σ) s.t B ∈ λ(σ)}

I.e. the placeholders appearing on Regbot
C,T vertices in σ. Now we define Am to simply

ensure we always have B(ξ) ⊆ Bbot(σ). More precisely, we define Am = (Q, q0, δm, (∅, Q))
where

• Q = {q0}
• For every (σ, ξ) ∈ Σfr × Ξ where B(ξ) ⊆ Bbot(σ), we have (q0, (σ, ξ)) 0 (q0, . . . , q0)

• U = {(∅, q0)}

5.3.5 Putting the automata together
Finally, we build AT ,C as the intersection of A �

emb, A �
alcf , and Am. Each tree it accepts

represents a model of the abstraction of C w.r.t. T whose constraint graph can be
embedded into Z, yielding the desired reduction of satisfiability to automata emptiness.

Proposition 5.39. There is a Rabin tree automaton AT ,C whose state set is bounded by
a single exponential in the size of C and T and the number of pairs in its Ω is bounded by
a polynomial in the size of C and T , such that L (AT ,C) .= ∅ if and only if C is satisfiable
w.r.t. T .

Since emptiness of Rabin tree automata is decidable in time polynomial in Q and
exponential in the number of pairs in Ω (Theorem 3.11) we get the main result of this
part of the thesis:

Theorem 5.40. Concept satisfiability w.r.t. general TBoxes in ALCFP(Zc) is decidable
in ExpTime.

This bound is tight since satisfiability w.r.t. general TBoxes is ExpTime-hard already
for plain ALC (Theorem 3.8).

It is rather surprising that we can add integers to ALCF for free. Considering how
decidability for similar DLs with concrete domains comes at a price, be it reflected in the
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domain, in restrictions on the TBox, or restrictions on the paths used, and considering how
long this problem has been open despite being singled out as a very desirable extension –
one would think that at the very least we would pay with higher computational complexity.
The approach we took with this result is also atypical. Usually, the automata approach to
showing satisfiability is to express a precise condition for satisfaction of one’s formula and
then construct a tree automaton that accepts exactly the trees satisfying the condition.
Then that automaton accepts exactly the tree models of the formula. In contrast, we
expressed a looser condition which is necessary but not sufficient for ensuring satisfaction
in the general case, so on its surface, our automaton having a non-empty language would
not indicate satisfiability. Our challenge was in showing that our condition is sufficient
for regular trees and in ensuring that it is verifiable with a small-enough Rabin tree
automaton.
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CHAPTER 6
Adding int or nat Predicates to

Dense Domains

So far, we were only concerned with ALCFP(Zc) and the challenges of testing embeddabil-
ity of graphs into the integers. But as we mentioned before, ALCFP(D) was defined for
various concrete domains D [38], including dense numeric domains such as the rationals Q
or the reals R. In such settings, which offer their own advantages for modeling real-world
data, it can be useful to have a predicate which enforces that certain registers hold integer
or natural number values (for example, the number of children a parent has). The need
for these predicates has been previously expressed in the literature [43, 71], but despite
being a long sought-after feature, they have not been fully incorporated into existing
dense settings, as their introduction would obviously nullify the crucial assumption that
the domain is dense. In this chapter, we consider the real numbers counterpart of Zc as
a representative setting of a dense numeric domain, and show how to add the predicates
int and nat to it while maintaining our ExpTime complexity bounds. For this purpose,
in Section 6.2 we will adapt our previous notions of constraint graph and frames, and
rephrase our embeddability condition to incorporate a new measure of strict length. In
Section 6.3 we will adjust our automata constructions to incorporate these changes.

6.1 ALCFP(Rc,int)
We denote by Rc,int the real numbers R with the binary relations {<, =}, equalities with
constants = c for c ∈ R, and the predicate int, which will enforce that a register value
is an integer number. We will occasionally write e.g. x < 0, x ≤ y as shorthand for
(x < y) ∧ (y = 0) and (x < y) ∨ (x = y). Below, we adapt the definitions from Chapter 4
to this setting in a straightforward manner.
For the definition of constraints (Definition 4.2), we add the atomic constraint int(t) for
a register term t.
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6. Adding int or nat Predicates to Dense Domains

For an ALCFP(Rc,int) interpretation I (Definition 4.6), we note that the register func-
tion β obviously assigns values from R to the registers, and we add to the semantics
(Definition 4.7) of this setting the interpretation of the int predicate as follows. For a
tuple Fv = (v0, . . . , vn) of elements of the domain ΔI ,

• I, Fv |= int(Six) if and only if β(vi, x) ∈ Z.

Observation 6.1. Notice that a predicate nat for enforcing natural number values with
the semantics

I, Fv |= nat(Six) if and only if β(vi, x) ∈ N

is given to us for free, since the above holds if and only if

I, Fv |= int(Six) ∧ (Siy = 0) ∧ (Siy ≤ Six)

6.1.1 Atomic normal form for ALCFP(Rc,int)
Unlike the previous domain Zc that was closed under negation, there is no obvious way to
express a register having a non-integer value using the other relations. This is concerning,
since the ability to obtain negation-free equivalents of the given C and T is crucial for
performing the Atomic Normal Form transformation which both lowers the depth of
the constraints to 1 and externalizes the Boolean combinations of the constraints. This
is in turn crucial for defining our notions of constraint graphs, frames, and ultimately
our automata constructions. Therefore in order to maintain a transformation to an
ANF, instead of expressing ¬int via Boolean combinations of other constraints, we
argue that instances of ¬int in fact do not affect satisfiability and can be ignored, and
so ALCFP(Rc,int) enjoys the Atomic Normal Form nevertheless. The argument uses
notation defined in other contexts later in the chapter, so we postpone the precise proof
and only give a sketch here.

Roughly speaking, given C and T which use ¬int(x), we will define other C� and T � where
we enforce that x is not equal to:

• any register y for which int(y) appears in C or T
• any register z for which z = c where c ∈ Z appears in C or T

Then we argue that there is a model of C w.r.t. T if and only if there is a model of C�

w.r.t. T �. The idea is that a model of C� w.r.t. T � which assigns an integer value to x
could just as easily have assigned a slightly different value and remained a model.

6.2 Embeddability condition for ALCFP(Rc,int)
With the semantics of ALCFP(Rc,int) well defined, we move on to solving the satisfiability
problem of ALCFP(Rc,int) concepts w.r.t. a general TBox. This problem is still decoupled
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6.2. Embeddability condition for ALCFP(Rc,int)

into a satisfiability check of the abstracted ALCF part and an embeddability check for
the constraint graphs. The notion of abstraction (Definition 5.1) readily transfers to this
setting, as we simply have a new placeholder in B for the int predicate, therefore our
ALCF automaton from Subsection 3.4 still suffices. We will refer to constraint graphs of
the abstractions of ALCFP(Rc,int) concepts and TBoxes as Rc,int-constraint graphs in
order to be abundantly clear. We present their full definition here for ease of reading,
although it only slightly differs from Definition 5.3. Let C and T be an ALCFP(Rc,int)
concept and TBox which are in Atomic Normal Form, and denote by Ca and Ta their
respective abstractions.

Definition 6.2 (Rc,int-constraint graph). Let Ia = (ΔIa , ·Ia) be a plain tree-shaped
interpretation of Ca, Ta. The Rc,int-constraint graph of Ia is the directed partially labeled
graph GIa = (V, E, λ) where V = ΔIa × RegC,T and λ : V → 2B, and the edge relation
E = E< ∪ E= is such that, for every (v, y), (u, x) ∈ V ,

1. ((v, y), (u, x)) ∈ E< if and only if either

• u = v, v ∈ BIa and B is a placeholder for S0y < S0x,
• u is the parent of v ∈ BIa and B is a placeholder for S1y < S0x, or
• v is the parent of u ∈ BIa and B is a placeholder for S0y < S1x.

2. ((v, y), (u, x)) ∈ E= if and only if

• u = v, v ∈ BIa and B is a placeholder for S0y = S0x,
• u is the parent of v ∈ BIa and B is a placeholder for S1y = S0x, or
• v is the parent of u ∈ BIa and B is a placeholder for S0y = S1x.

In addition, for a placeholder B for S0x = c or for int(S0x), we have that B ∈ λ(u, x) if
and only if u ∈ BIa.

We also adapt the notion of embeddability (Definition 5.4) to this setting in the obvious
way:

Definition 6.3 (Embeddability into Rc,int). We say an Rc,int-constraint graph G is
embeddable into Rc,int if there is a real number assignment κ : Δ × RegC,T → R to the
vertices of G such that for every (u, x), (v, y) ∈ Δ × RegC,T

• if ((v, y), (u, x)) ∈ E< then κ(u, x) < κ(v, y),

• if ((v, y), (u, x)) ∈ E= then κ(u, x) = κ(v, y),

• if B ∈ λ(u, x) is a placeholder for S0x = c, then κ(u, x) = c, and

• if B ∈ λ(u, x) is a placeholder for int(S0x), then κ(u, x) ∈ Z.
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...
(a) A graph embeddable
into R despite having
a pair with unbounded
strict distance

int

int

int

int

int

int

int

int

int

int

...
(b) A similar graph that
is embeddable into R
despite having infinitely
many int-labeled nodes

Figure 6.1: Examples motivating the change in definition of strict length

The embeddability check still boils down to making sure there is no pair of registers with
infinitely many int registers between them that must have different values. However,
this is no longer tied to the notion of strict length we used so far, as the following
examples show. A constraint graph of the form in Figure 6.1(a) with no integer registers
is embeddable despite having a pair which violates (�), as it has no strict cycles and R is
dense. Figure 6.1(b) shows that not only can two registers have paths with an unbounded
number of strict edges, but they can even have an unbounded number of int registers
between them, if we are careful about where the strict edges occur.

The arguments in the proofs of Lemmas 5.15 and 5.16 rely on the notion of strict length
corresponding to the number of different integer values between two numbers. Therefore
in order to utilize those same arguments, we present the more nuanced strict int length
which correctly captures this notion.

Definition 6.4 (Strict int length). Let p be a finite simple path in an Rc,int-constraint
graph. Let x1, . . . , xn be the registers in p which are labeled int, in order of appearance in
p, i.e. xi appears before xj for every i < j.

1. If n = 0, i.e. there are no int-labeled registers on p, the strict int length of p is 0.

2. If n = 1, then the strict int length of p is 1.

3. If n > 1, then the strict int length of p is 1 + �n−1
i=1 strict(i) where strict(i) is 1 if

there is a strict edge on the path between xi to xi+1, and 0 otherwise.

For an infinite path p, we say that p is int strict if its strict int length tends to infinity
with the length of its prefixes.
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6.2. Embeddability condition for ALCFP(Rc,int)

Going back to the examples in Figure 6.1, we have that the graph on the left has strict
int length 0, and the graph on the right has strict int length 2.

Observe that for infinite paths, int strictness can be phrased more simply:

Observation 6.5. An infinite path is int strict if and only if it is both strict in the sense
of Definition 5.14 and has infinitely many int labels.

The motivation behind the inductive Definition 6.4 is the inductive structure of the proof
of Lemma 5.16, which we will transfer to this setting. But first, we still need to adapt
the definitions of tree representations of Rc,int-constraint graphs and of frames. The
adaptations capture the same notions conceptually and are not surprising, but some
technicalities do need to be handled with regard to the int predicate.

In the Zc setting, we had a finite number of choices for the value of a register that lied
between two constants, so we only needed to consider the integers between the largest
and the smallest integers used in C and T , as well as two ranges for the values larger than
the largest constant and smaller than the smallest constant. However, in this setting,
we can no longer simply list all possible values that non-int registers take, even when
we explicitly have the constants they are smaller and larger than. Therefore we must
make do with bounding intervals, in which we assume register values lie. We will use the
notation (−∞, c) for {c� | c� ∈ R, c� < c} and similarly for (c, ∞).

For example, if C and T only use the constants 0 and 0.5, we would have that every
register takes a value which either relates to 0 and 0.5 by equality, or relates to the
intervals (−∞, 0), (0, 0.5), and (0.5, ∞) by membership. We make this notion precise
and define the U labels in a way that takes into account possible values when it is an int
register and possible interval memberships for non-int registers.

Let c0 be the smallest constant used in either C or T and let cα be the largest. If no
constants were used, set c0 = cα = 0. Denote by int[c0, cα] the range of integers between
c0 and cα, including c0 if it is an integer, and likewise for cα. We will use these labels in
the same fashion that we did in the Zc setting, in order to assign a concrete integer to
the int registers. Additionally, denote by non-int(C, T ) the set of non-integer constants
used in either C or T . In order to use these to relate the value of non-int registers as
accurately as we can to the constants used in either C or T , we also define the partition
of R into intervals induced by C = int[c0, cα] ∪ non-int(C, T ). Let c0, . . . , cα the elements
of C, listed in the usual linear order over R. Obviously, R excluding the elements of
C can be partitioned into the intervals (−∞, c0), (c0, c1), . . . , (cα−1, cα), (cα, ∞). Notice
that there is indeed no overlap between any of the intervals.

We again define a set of fresh labels U, using the components set up above:

U ={U<c0 , Ucα<} ∪ {U(ci,ci+1) | i = 0, . . . , α − 1} ∪
{Uc | c ∈ int[c0, cα]} ∪ {Uc | c ∈ non-int(C, T )} ∪ {Uint}
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Observe there is an obvious linear order on U, which we will denote <U. We will utilize
it to somewhat simplify our later definitions. We redefine the alphabet Σ to be the set of
partially U-labeled graphs where the vertex set is either exactly

V = Regtop
C,T ∪ Regbot

C,T or V = Regbot
C,T

with edge set E = E< ∪ E=. Then the tree representations of Rc,int-constraint graphs are
defined as in Section 5.2. Notice that only the labels indicating equality with a constant
are present in these representations; the labels indicating membership in an interval will
come into play in the definition of frames below. This definition is long and verbose,
but it simply spells out that the way vertices are labeled and connected is maximal and
respects the linear order on R.

Definition 6.6 (Rc,int-Frame). An Rc,int-frame is a graph in Σ such that:

1. there is an edge between every pair of vertices

2. there are no strict cycles, i.e. no cycles that include an edge from E<

3. equality edges are symmetric, i.e. if e=(x, y) then also e=(y, x)

4. every vertex must have exactly one of the labels in U \ {Uint}, and

• if a vertex is labeled with a label from {Uc | c ∈ int[c0, cα]} then it is also
labeled with Uint

• if a vertex is labeled with a label from

{U(ci,ci+1) | i = 0, . . . , α − 1} ∪ {Uc | c ∈ non-int(C, T )}

then it is not labeled with Uint

5. if e=(x, y) then x and y have the same label from U, and if x and y have the same
label from {Uc | c ∈ int[c0, cα]} ∪ {Uc | c ∈ non-int(C, T )}, i.e. are labeled with the
same constant, then e=(x, y). Notice that this does not include cases where x and
y are labeled with labels that are considered equal in <U (for example the same
interval label), as it does not imply equality between their actual value assignments

6. if e<(x, y) then the label of x is smaller than the label of y in <U

We denote the alphabet of Rc,int-frames by Σfr.

The notion of consistent frames (Definition 5.11) readily transfers to this setting.

Finally, we are ready to present the embeddability condition for regular Rc,int-constraint
graphs:
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(�int) There are no (u, x), (u, y) ∈ Δ × RegC,T in Gfr for which we have that: there exists
an infinite w ∈ [n]ω and

1. an infinite forward path f from (u, x) along w
2. an infinite backward path b from (u, y) along w

such that f or b is int strict, and such that for every i ∈ N, there is a strict edge
from f(i) to b(i).

The condition (�int) being necessary for the embeddability of Rc,int-constraint graphs
follows immediately by Observation 6.5 and the special case where all registers are labeled
int.
To see that (�int) is sufficient for regular Rc,int-constraint graphs, we will show that the
notion of strict int length does capture the minimal number of different integer values
along a path, and apply the arguments in the proof of Lemma 5.16.

Lemma 6.7. Let p be an Rc,int-embeddable finite simple path with strict int length n,
and let κ be a register value assignment which witnesses its embeddability. Then there
are at least n different integer values assigned to the vertices of p.

Proof. We prove the claim by induction on the strict int length of p. Let x1, . . . , xm be
the registers in p which are labeled int, in order of appearance in p, i.e. xi appears before
xj for every i < j.

1. If n = 0 then m = 0 and the claim follows.

2. If n = 1, then there is at least one register labeled int and by Definition 6.3, κ must
assign an integer value to it. Therefore the claim follows.

3. Now assume the claim holds for n. Let p have strict int length n + 1 and let p� be
the maximal prefix of p that has strict int length exactly n. We specify that p� is
maximal since there can be multiple prefixes with this strict int length, even ones
that differ in the number of int labeled registers in case they are connected with
equality edges.
Since κ is an embedding of p into Rc,int, so is its restriction to p�. Denote the int
registers in p� by x1, . . . , xm� and note that by the IH, κ assigns n different integer
values to x1, . . . , xm� .
Now we show that since p� is maximal and of strict int length n, there must be a
strict edge and then an int labeled register in the remainder of p. Denote by p��

the suffix of p which excludes p�. In order for p to be of strict int length n + 1,
by Definition 6.4 it follows that p�� contains a strict edge which (not necessarily
immediately) precedes an int labeled register which we denote x. Therefore we
have that κ(xm�) < κ(x) and that κ(x) ∈ Z, in other words, κ assigns at least one
integer value that differs from the n values assigned to x1, . . . , xm� .
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Corollary 6.8. If a regular framified Rc,int-constraint graph satisfies (�int), then it is
embeddable into Rc,int.

Proof. We have from Lemma 5.9 that there are no strict cycles in the graph. Then the
result is given with a straightforward application of the proof of Lemma 5.16 using strict
int length.

6.3 Adapting the automata constructions
Here we adapt our automata constructions to the Rc,int setting. In fact, the only
automaton whose adaptation is interesting is the one for checking (�int); the automaton
for checking satisfiability of the ALCF part readily transfers, and the automata for
checking consistency and matching the alphabets require merely syntactic changes which
do not change their asymptotic size either.

In order to adapt the automaton B to its (�int) counterpart Bint, we use Observation 6.5
and define Bint so that it guesses whether f or b is strict (in the usual sense of Defini-
tion 5.14) and has infinitely many int registers. Since the appearances of the int labels
and the strict edges are unrelated, we cannot only have states where both are witnessed
at the same time in the U sets. On the other hand, due to the semantics of Rabin tree
automata, if we include in the U sets every state where we encounter either a strict
edge or an int label, we may accept e.g. infinite paths that are simply strict with no int
labels. Therefore we have Bint remember that it encountered a relevant strict edge until
it encounters a vertex labeled with int, and vice versa. This is in contrast to B , whose
strictness flag only depended on the current letter.

The acceptance condition for Bint will include those states where an int label was
encountered after a strict edge was encountered, and vice versa. This condition is lossy
in a way, as potentially many ‘good’ states are ignored until the complementing flag is
raised, however, it is enough since we require there be both infinitely many strict edges
and infinitely many int labels on the guessed path.

We give a partial description of Bint, and omit the parts that are similar to B .

• The path states in the state set of Bint have an additional binary flag for indicating
whether the automaton just visited a vertex labeled int:

Qp = RegC,T × RegC,T × {f, b} × {0, 1} × {0, 1}.

• As mentioned, Bint remembers whether it passed a strict edge and whether it
extended the path with a vertex labeled int as long as the complementing event has
not been seen. For every i ∈ [n], h ∈ {f, b}, − ∈ {0, 1}, and ∼ ∈ {0, 1}, we denote
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by (x, y, h, −, ∼)i the n-tuple containing (x, y, h, −, ∼) for entry i and q1 for every
other entry.
We describe the transition relation for the scenario where Bint guessed it is f which
is strict and has infinitely many int labels, and that the current violating pair of
registers is x and y. Exactly as before with B , the automaton Bint guesses a new
pair z and w with which the paths f and b are extended. The conditions of the
transition relation of B apply here too, i.e. we require there be a strict edge from x
to y and from z to w, and there not be a strict edge from y to w. The divergence
from B is in the way the flags behave:

– if the current letter σ has zbot labeled with int, then in the next state, the int
flag is raised:

((x, y, f, 0, 0), σ) 0 (z, w, f, 0, 1)i ((x, y, f, 1, 0), σ) 0 (z, w, f, 1, 1)i

((x, y, f, 0, 1), σ) 0 (z, w, f, 0, 1)i ((x, y, f, 1, 1), σ) 0 (z, w, f, 0, 1)i

The only transition of note here is the last one, where we lower the strictness
flag and keep the int flag raised, as we are now looking for a strict edge.

– if the current letter σ has zbot not labeled with int, then the only case where
the flags change is if both flags were raised:

((x, y, f, 0, 0), σ) 0 (z, w, f, 0, 0)i ((x, y, f, 1, 0), σ) 0 (z, w, f, 1, 0)i

((x, y, f, 0, 1), σ) 0 (z, w, f, 0, 1)i ((x, y, f, 1, 1), σ) 0 (z, w, f, 0, 0)i

– if the current letter has e<(xtop, zbot) ∈ σ, then in the next state, the strictness
flag is raised:

((x, y, f, 0, 0), σ) 0 (z, w, f, 1, 0)i ((x, y, f, 1, 0), σ) 0 (z, w, f, 1, 0)i

((x, y, f, 0, 1), σ) 0 (z, w, f, 1, 1)i ((x, y, f, 1, 1), σ) 0 (z, w, f, 1, 0)i

again the only transition of note here is the last one, where we lower the int
flag and keep the strictness flag raised as we look for an int labeled vertex.

– if the current letter has e=(xtop, zbot) ∈ σ, then the only time the flags change
is if they were both raised:

((x, y, f, 0, 0), σ) 0 (z, w, f, 0, 0)i ((x, y, f, 1, 0), σ) 0 (z, w, f, 1, 0)i

((x, y, f, 0, 1), σ) 0 (z, w, f, 0, 1)i ((x, y, f, 1, 1), σ) 0 (z, w, f, 0, 0)i

• Ω has just one pair, where

L = ∅ and U = {q1} ∪ {(x, y, h, 1, 1) | x, y ∈ RegC,T , h ∈ {f, b}}

In order to obtain the automaton Aemb-int that checks whether (�int) is satisfied, we
complement Bint and intersect it with the tree consistency automaton.
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Proposition 6.9. The Rabin tree automaton Aemb-int accepts exactly the consistent trees
over the alphabet of Rc,int-frames that satisfy (�int).

Observation 6.10. The number of states of Bint is polynomial in the size of C and T ,
its Ω has one pair, and the alphabet is exponential. Therefore Aemb-int has a number of
states and alphabet exponential in the size of C and T , and its Ω has a constant number
of pairs.

We can combine all constructions as we did in Chapter 5, and yield the main result of
this chapter:

Theorem 6.11. Concept satisfiability w.r.t. general TBoxes in ALCFP(Rc,int) is decid-
able in ExpTime.

And from Observation 6.1 we have:

Corollary 6.12. Concept satisfiability w.r.t. general TBoxes in ALCFP(Rc,int,nat) is
decidable in ExpTime.

Again, these bounds are tight since satisfiability w.r.t. general TBoxes is ExpTime-hard
already for plain ALC (Theorem 3.8).

6.4 Revisiting the atomic normal form for ALCFP(Rc,int)

As we mentioned, the atomic normal form for ALCFP(Rc,int) will not be obtained by
eliminating negation from ¬int, but rather by ignoring them as they will not affect
satisfiability. Instead of showing exactly this, we will replace negations of int with other
constraints which will make our proof simpler. The idea being that instead of explicitly
requiring a register to not be an integer, it is enough require it to be different than all
the ‘mentioned’ integers.

Given a concept C� and a TBox T � in ALCFP(Rc,int), we can convert them and their
constraints to NNF in linear time, so we assume they are already in NNF. Recall the
set int[c0, cα] containing the range of integers between (possibly including) the smallest
constant used, c0, and the largest constant used, cα. We describe a procedure for removing
the instances of ¬int from C� and T �. Let a constraint Θ appear as ∃P.�Θ� or as ∀P.�Θ�
for P of depth d, such that Θ includes ¬int(Six) as a sub-constraint. We define the
sets of registers which will be required to be different than Six. Denote by Θint the set
of register terms in Θ (positively) constrained to be integers, that is all Sjy such that
int(Sjy) is a sub-constraint of Θ. Let {Sizc | c ∈ int[c0, cα]} be such that zc are fresh
register names.
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In place of ¬int(Six) in Θ, we write�
Sjy∈Θint

�
(Six < Sjy) ∨ (Sjy < Six)

�
∧ (6.1)

�
c∈int[c0,cα]

(Sizc = c) ∧
�
(Six < Sizc) ∨ (Sizc < Six)

�
(6.2)

and obtain a constraint with one fewer instance of ¬int. We repeat for all other sub-
constraints and path constraints until all ¬int constraints are removed.

Now we have some C̃ and T̃ which only use int positively and are in NNF, so we proceed
with the ANF transformation of Section 4.2, which does not introduce negation. Denote
the transformed concept and TBox by C and T .

It remains to show equisatisfiability:

Lemma 6.13. C� is satisfiable w.r.t. T � if and only if C is satisfiable w.r.t. T .

Proof. One direction is easy. Let I = (ΔI , ·I , β) be a model of C� w.r.t. T � and let
(u, x) ∈ ΔI × Reg be constrained with ¬int. Then β assigns a non-integer value to (u, x),
and therefore constraints of the form in Equation (6.1) are satisfied by I. Furthermore,
β can be expanded to assign c to any register appearing in Equation (6.2). Therefore (an
expansion of) I is a model of C w.r.t. T .

For the other direction, let I = (ΔI , ·I , β) be a model of C w.r.t. T . We make an
inductive argument. Let (u, x) ∈ ΔI × Reg be the only register constrained with ¬int
in the original C�, T �. We will show there is I � |=T C such that β�(u, x) /∈ Z. Assume
that β(u, x) ∈ Z. Then due to the constraints of the form in Equation (6.2), we have
that β(u, x) /∈ int[c0, cα], therefore it is either larger than the largest or smaller than the
smallest integer in int[c0, cα]. Without loss of generality, assume that it is the former.
Recall that C� and T � are in ANF, so the maximal depth is 1. We will now find a range in
R in which the value of (u, x) may reside, by comparing it to the registers of the logical
elements directly related to u. Let X be the set of the registers of the children of u and
the registers of its parent. Let c� be the smallest value assigned by β to a register in X
which is larger than β(u, x), and denote η = c�−β(u,x)

2 .

Claim 6.14. Define the register value assignment β� which only differs from β by
β�(u, x) = β(u, x) + η. Then I � = (ΔI , ·I , β�) satisfies C� w.r.t. T �.

Proof. Notice that the number of registers which are directly compared to (u, x) is
bounded due to C and T having depth 1, and they are all in X. Since β�(u, x) maintains
the same equality and comparison relationship with every element of X that β(u, x) did,
all constraints previously satisfied by I are still satisfied by I �.

Now we apply this argument inductively and have our proof.
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CHAPTER 7
Other Description Logics with

Numeric Values

The description logic ALCFP is somewhat non-standard when it comes to DLs with
concrete domains, and so in this chapter, we review the typical features and expressive
abilities of classical DLs with concrete domains and compare them to the ones offered by
ALCFP . We will see that by using the registers, we can often (but not always) simulate
these features in ALCFP . In addition, we will obtain complexity results (Theorem 7.1)
for a closely-related logic by encoding it into ALCFP(Zc).

7.1 Classical concrete domains
We review some typical features of description logics with concrete domains in the classical
sense, whose main difference from ALCFP is that they compare values on different paths,
and that they require these paths of be comprised of functional roles. As there is extensive
work on DLs with concrete domains, not all definitions will be given here in full, rather,
we will restrict ourselves to a sufficient level of detail in order to maintain focus. We refer
to [23] and references therein for full treatments.

For our presentation, we will assume a concrete domain D in the background, which we
will treat as a numeric set ΔD with binary or unary relations θ. There are other choices
for D, for example concrete domains for temporal [71] and spacial [42] constraints.

In the classical setting, concrete domains are accessible through concrete paths, which
are a series of functional roles (dubbed abstract features) followed by a concrete feature
which is a (partial) function from logical elements into the concrete domain. The access
of the concrete domain is given in a singular way, that is, each concrete path grants
access to one element of the concrete domain. More precisely, Let NaF ⊆ NR be an infinite
set of abstract features such that also NR \ NaF is infinite. Let NcF be an infinite set
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of concrete features, such that it is disjoint from NC and NR. These are similar to the
registers of ALCFP . A concrete path is a sequence u = f1 . . . fkg, where f1, . . . , fk ∈ NaF
and g ∈ NcF.

We require that that every concrete feature g ∈ NcF is mapped (by some interpretation I)
to a partial function from the logical elements ΔI to the set ΔD of the concrete domain.
Then, we have that concrete paths u = f1 . . . fkg are interpreted as the composition of
their components. That is, for a logical element e ∈ ΔI ,

uI(e) = gI(fI
k (· · · (fI

1 (e))))

Now we can augment ALC with a concept constructor

∃u1, u2.θ

where θ is a binary relation, which is interpreted as the elements from which there is a
u1-path and a u2-path, whose endpoints satisfy θ:

(∃u1, u2.θ)I = {e ∈ ΔI | There exist c1, c2 ∈ ΔD such that
uI

1 (e) = c1, uI
2 (e) = c2 and θ(c1, c2)}

A similar constructor for unary θ is given in the obvious manner.

It is also common to support the expression of a concrete feature g being undefined, using
the syntax g ↑ and the semantics

(g ↑)I = {e ∈ ΔI | gI(e) is undefined}

Let us discuss some differences between the classical setting and ALCFP . In the classical
setting, we can compare values that may appear along different paths, whereas ALCFP(D)
compares values along a single path. Furthermore, ALCFP does not support undefined-
ness in its syntax. However, we will see below that both of these can be overcome; through
the use of additional registers, ALCFP can still relate register values on different paths,
and undefined-ness can be simulated using a special element of the concrete domain and
an additional unary predicate.

One stark difference between ALCFP and the classical setting is that in the latter,
only functional roles may appear in paths that access the concrete domain. This is an
unnatural limitation, as many real-world relations are not functional by default. For
example, when modeling organizations one sees non-functional roles both in flat structures
(teammates) and hierarchical structures (managers of several teams). Generally, any
domain comprised from multiple instances of the same unit, be it persons, processes, or
physical objects, will suffer from the inability to aptly model how its pieces relate to each
other.

There have been efforts to mitigate this issue, with some success, by accepting higher
computational cost and applying other restrictions. In [22] the DL ALCFP(D) is
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introduced (using the notation ALCP(D)), which allows arbitrary roles in its concrete
domain concept constructor, and for which pure concept satisfiability is NExpTime-
complete. However, satisfiability in the presence of general TBoxes is undecidable for any
arithmetic domain, where a concrete domain is said to be arithmetic if it contains the
natural numbers, supports equality and equality with 0 and 1, and supports addition and
multiplication. The logic Q-SHIQ, introduced by Lutz in [43], maintains decidability
in the presence of general TBoxes and allows the usual access to the concrete domain
as well as non-functional access, but in the latter case, the access is restricted to paths
of length 1. In contrast, ALCFP allows arbitrary roles to appear on its paths without
restriction.

As we mentioned, ALCFP(D) becomes undecidable in the presence of general TBoxes for
any arithmetic domain. Notably, the concrete domain Zc is not arithmetic as it does not
support addition or multiplication, which raises the question whether there is something
to be said about concept satisfiability w.r.t. a general TBox in ALCFP(Zc). Indeed, we
will see in Section 7.2 that ALCFP(Zc) can be translated into ALCFP(Zc) to obtain
novel upper complexity bounds on this problem.

Another point worth discussing is how the ability to express Boolean combinations of
constraints is affected by whether the roles leading to the concrete features are functional
or not. The syntax of the classical setting of DLs with concrete domains typically does
not allow one to explicitly express Boolean combinations of the predicates, but when only
functional roles appear in the concrete paths, Boolean combinations of the constraints
can be expressed ‘outside’ the paths, using the logical connectives between the concepts.

Say we want to express that an element can reach another element with several concrete
features (or registers, as we call them), and we would like to express a Boolean constraint
on those registers. For example, an r role leading to an element with registers x, y, z,
which satisfy (x < y) ∧ (x = z), depicted in Figure 7.1. This is not supported by the
syntax of the classical setting, since it only requires these paths to grant access to one
register, and it only allows constraints in the form of a single predicate of the concrete
domain. It is not an issue if r is functional, since we can express the above constraints as

∃r, r(x < y) % ∃r, r(x = z)

as r will lead to the same logical element.

However, if r is not required to be functional, the fact that syntactically the Boolean
combinations are of concepts and not of constraints changes the semantics. In our example,
instead of comparing the concrete features of one logical element, it is possible we would
be comparing the concrete features of 4 different logical elements. In contrast, ALCFP

supports Boolean combinations of the constraints inside the role-path concept constructor,
and the roles grant access to all the registers of a logical element simultaneously, so to
speak.

Finally, we mention a feature of some DLs with concrete domains that cannot be simulated
by ALCFP , namely feature (dis)agreements. This is the ability to express whether
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Figure 7.1: Possible interpretations of ∃r, r(x < y) % ∃r, r(x = z) when r is functional
(left) and when r is non-functional (right).

sequences p1 = f1 . . . fk of abstract features (called abstract paths) lead to the same logical
element or not. More precisely, for abstract paths p1 and p2, we have feature agreement
with syntax p1 ↓ p2 and semantics {e | ∃e� s.t. pI

1 (e) = pI
2 (e) = e�}. Feature disagreement

has the syntax p1 ↑ p2 and semantics {e | ∃e1, e2 s.t. pI
1 (e) = e1, pI

2 (e) = e2 and e1 .= e2}.
Concept satisfiability w.r.t. general TBoxes for ALC with feature agreements (also
denoted ALCF in the literature) is undecidable [72], although decidability can be
regained by disallowing TBoxes [59] or by only allowing acyclic TBoxes [73]. Thanks to
the simultaneous access ALCFP grants to all the registers, feature disagreement can be
simulated by enforcing auxiliary registers to be different and some additional work to
overcome the discrepancy between the two-paths-constraints of the classical setting and
the single-path-constraints of ALCFP . We will return to this in the next section.

7.1.1 Supporting undefined register values in ALCFP

As mentioned above, although ALCFP does not offer an “undefined” constructor in its
syntax, we can still support expressing that some register values are undefined in our
setting. For this, we expand Zc to Zc,und by adding a fresh element to the integers to
obtain Z ∪ {u}, and adding a unary predicate und to the predicates of Zc. Our approach
is adapted by redefining frames as follows. The set U of labels also includes Uund, and
the first condition in Definition 5.7 is rephrased to be:

1. There is an edge between every pair of vertices which are not labeled Uund.

Note that due to condition 5, also every pair of vertices labeled Uund is connected (with
an equality edge). Clearly, this treatment of undefined register values does not exactly
mirror ↑ g, whose semantics would not allow comparisons of undefined register values,
whereas our treatment only partially prohibits this; comparisons between registers where
one holds a value and the other does not are nonsensical, however, strictly speaking, all
registers whose values are undefined are equal to each other. Therefore care must be
taken when using Uund, and additional restrictions may need to be applied depending on
the use case, either in the allowed syntax or using additional TBox axioms. We refer
to [45] for more details.
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7.2 Simulating the logic ALCFP(Zc) with ALCFP(Zc)
The DL ALCFP(D) was introduced for a general domain D in [22] using the notation
ALCP(D), and a related DL was studied already in [39]. Here we consider ALCFP(Zc)
and show that ALCFP(Zc) can simulate it. As previously mentioned, ALCFP(Zc)
allows arbitrary roles to participate in paths referring to the concrete domain, similarly
to ALCFP(Zc). The bigger hurdle will be that ALCFP(Zc) can compare values on
different paths, while ALCFP(Zc) can only compare values on the same path.

We briefly recall the definition of ALCFP(Zc), and refer to [40] for details. Since the
syntax of ALCFP does not allow Boolean combinations of constraints, we enrich Zc to a
richer signature, and explicitly include .=, ≤, and ≥. This provides a closer comparison
between the logics, and in the case of ALCFP , it is equivalent to the simpler Zc considered
so far, since ALCFP allows Boolean combinations of constraints. In what follows, we do
not repeat the explicit treatment of x ↑ as it was already previously discussed.

ALCFP(Zc) is the augmentation of ALCF with:

• ∃Px. = c and ∀Px. = c where c ∈ Z and P is a sequence of role names and x a
register name, and similarly for .= c. The formulas apply the constraint to the x
register of the last element on a P path.

• ∃P1x1, P2x2.θ and ∀P1x1, P2x2.θ where θ ∈ {≤, <, =, .=, >, ≥} and each Pixi is
a sequence of role names followed by a register name. The formulas apply the
constraint to the x1 register of the last element on a P1 path and the x2 register of
the last element on a P2 path, where both paths start at a common element.

An example which illustrates the difference between ALCFP(Zc) and ALCFP(Zc) would
be having a friend who is older than a colleague. This concept is expressed naturally in
ALCFP(Zc):

∃friend age, colleague age. >

It is not immediately clear how to express this ALCFP(Zc), since the friend and the
colleague are not necessarily reachable from the member element via the same path. We
will see how to overcome this using additional registers, as we translate ALCFP(Zc) to
ALCFP(Zc). The main idea is that the values of interest at the end of the paths can be
propagated up to the shared origin, and compared locally.

• For unary predicates, the translation is straightforward: ∃Px. = c translates to
∃P.�S|P |x = c� and ∀Px. = c translates to ∀P.�S|P |x = c�.

• For existential concepts ∃P1x1, P2x2.θ, an easy translation is possible by using two
fresh register names copy-g1 and copy-g2, which intuitively store at the origin the
values at the end of P1 and P2. Then the constraint θ can be applied locally to
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copy-g1 and copy-g2. For example, ∃P1x1, P2x2. < translates to

C := ∃P1.�S0copy-x1 = S|P1|x1� (7.1)
% ∃P2.�S0copy-x2 = S|P2|x2�
% ∃ε.�S0copy-x1 < S0copy-x2�

The translations for θ ∈ {≤, =, ≥, >} are similar.

• In the cases of ∀P1x1, P2x2.θ, we treat the paths of only functional roles differently
from the case where arbitrary roles may occur.

– If all roles occurring in P1 and P2 are functional, then an encoding similar to
∃P1x1, P2x2.θ can be used, since we are guaranteed to only need to compare
numbers at the ends of at most two paths. For example, ∀P1x1, P2x2.<
translates to

¬∃P1.& 8 ¬∃P2.& 8 C

where C is as in Equation (7.1).
– If non-functional roles occur in P1 and P2, then we may need to compare

numbers on several paths, and we may need more sophisticated tricks. For
θ ∈ {≤, =, ≥, >}, this is still possible using just a few registers thanks to these
relations being transitive. For example, we can translate ∀P1x1, P2x2. < as

¬∃P1.&8∃P1.�S|P1|x1 = S0copy-x1�
% ∀P1.�S|P1|x1 ≤ S0copy-x1�
% ∀P2.�S|P2|x2 > S0copy-x1��

We are essentially ensuring, via copy-x1, that the largest value of x1 seen with
a P1 path is smaller than every value of x2 seen with a P2 path.
If θ is .=, our translation cannot avoid explicitly comparing all pairs of values
which may be seen with these paths, which requires exponentially many new
register names: given C, T we can ascertain a degree k of some tree model (if
any model exists). In this model there would be at most |P1|k different values
to consider for the satisfaction of the constraint. Slightly abusing notation,
we express that the x1 registers at the end of P1 paths contain values from a
finite set which appears in the fresh register names of the common ancestor,
and that this set does not intersect with the set of values of the x2 registers
at the end of P2 paths:

∃ε.�S0x1 .= · · · .= S0x|P1|k�
% ∀P1.�S|P1|x1 = x1 ∨ · · · ∨ S|P1|x1 = x|P1|k�
% ∀P2.�S|P2|x2 = x1 ∨ · · · ∨ S|P2|x2 .= x|P1|k�
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This translation allows us to give an upper bound on the complexity of reasoning w.r.t.
general TBoxes in the DL ALCFP(Zc), which to the best of our knowledge, has never
been provided before. Our upper bounds also apply if we replace the integers by the real
numbers, with or without int and nat predicates in the concrete domain.

Theorem 7.1. Satisfiability w.r.t. general TBoxes in ALCFP(Zc) is decidable in 2Exp-
Time, and it is ExpTime-complete if there is a constant bound on the length of any path
P1 that contains non-functional roles and occurs in a concept of the form ∀P1x1, P2x2. .=.

Feature disagreement in ALCFP Now that we have seen how additional registers
can be used to compare register values along different paths, it is easy to see that
feature disagreement can be simulated in ALCFP by using a dummy register is-different
and enforcing its copies at the origin to not be equal, similarly to the definition in
Equation (7.1).

This concludes the first part of the thesis, where we established complexity bounds
for ALCFP(Zc) and related settings. Next, we shift our attention to the two-variable
fragment FO2(≤1,�2, S2) and how it relates to our novel Pebble Intervals Automata.
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CHAPTER 8
Pebble-intervals Automata

Now we move on to the second part of the thesis, where we consider a rich decidable
fragment of First Order logic with data values and develop an automata model for it.

We start by introducing pebble-intervals automata (PIA) in this chapter. Similarly
to classical finite-state automata, PIAs are read-once automata for strings. However,
they read the input in varying order. Using a fixed set of pebbles [m] = {1, . . . , m}, a
PIA reads a position by choosing three pebbles i, j, k ∈ [m] and non-deterministically
placing k on a position p between the positions on which the pebbles i and j were
previously places. After demonstrating the computational power of PIAs, we show
that their emptiness problem is in PSpace in general, and NL-complete under some
restrictions (Theorem 8.15). We finish the chapter by studying some closure properties
of the languages they accept (Theorem 8.21), as well as some non-closure properties
(Theorem 8.24).

In Chapters 9 and 10 we will introduce FO2(≤1,�2, S2), and show that this it is captured
by PIAs in the following sense: for each sentence ψ, there is a PIA whose language
coincides with the string projection language of ψ, up to a substitution of the letters.
As a corollary, we get an automata-theoretic proof for ExpSpace membership of finite
satisfiability for FO2(≤1,�2, S2) that was established in [46].

8.1 Pebble-intervals automata
We begin by giving a high-level description of pebble-intervals automata (PIA), which
are read-once string automata with finite memory. A PIA has a finite number m of
pebbles, which it uses to read positions of its input w that are contained in some interval
between previously placed pebbles. More precisely, the automaton begins its computation
with no pebbles on w, and uses move transitions to place and replace pebbles on w.
In a k-movei,j transition where i, j, k ∈ [m], the pebble k (which may or may not have
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been previously placed on w) is non-deterministically placed on an unread position in
the interval between pebbles i and j (note that we cannot place the pebbles on i or
on j, as their placement on w indicates that those positions have already been read).
The boundaries of the input can also be used as interval boundaries. For example, a
k-movei,� transition places pebble k to the right of pebble i. In addition, the moving
pebble can be the same as one of the bounding pebbles, for example in a k-movek,j

transition, pebble k will be placed somewhere to the right of its current position but still
to the left of the position of pebble j.

For convenience, we also define silent transitions that move to a new state without moving
any pebbles, although these can be removed. An accepting run is one that ends in an
accepting state, after having read the entire input string.

We now give the precise definition of PIAs.

Definition 8.1 (Pebble-intervals automata). A PIA A is a tuple (Σ, m, Q, qinit, F, δ),
where

1. Σ is the (finite) alphabet,

2. m ∈ N,

3. Q is the (finite) set of states,

4. qinit ∈ Q is the initial state,

5. F ⊆ Q are the accepting states, and

6. δ ⊆ (Q × Q) ∪ (Q × movem × Σ × Q) is the transition relation, with

movem = {k-movei,j | i ∈ [m] ∪ {�}, j ∈ [m] ∪ {�}, k ∈ [m], i .= j}

We sometimes omit m when it is clear from the context. Transitions in Q×move×Σ×Q
are move transitions, and transitions in Q × Q are silent transitions. The size of A is
|A | = |δ| + |Σ| + |Q|.

We will often want to describe the positions of m pebbles on a string of length n during
a run of a PIA, which we do using (m, n)-pebble assignments:

Definition 8.2 (Pebble assignment). An (m, n)-pebble assignment, where m, n ∈ N, is
a function τ : [m] → [n] ∪ {⊥} such that for each 1 ≤ i < j ≤ m, either τ(i) .= τ(j) or
τ(i) = τ(j) = ⊥. That is, different pebbles cannot be placed on the same position of the
input, and the fact that a pebble j is not on the input is reflected by τ(j) = ⊥.

By τ̂ : [m] ∪ {�,�} → {0} ∪ [n + 1] we denote the extension of a (m, n)-pebble assignment
τ to � and �, by additionally setting τ̂(�) = 0 and τ̂(�) = n + 1.
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We write τ [k +→ .] to denote the assignment obtained from τ by redefining τ(k) to ., as
will happen when a PIA either places a pebble on the input for the first time or moves a
previously placed pebble. Note that PIA cannot remove pebbles from the input once
they are placed, only move them to another position.

8.1.1 Semantics of PIAs
Let A = (Σ, m, Q, qinit, F, δ) be a PIA and let u ∈ Σ1 be a string of length |u|.
Definition 8.3 (Configurations). A configuration of A on a string u ∈ Σ1 is a triple
(q, ρ, N) where

1. q ∈ Q is the current state,

2. ρ : [m] → [|u|] ∪ {⊥} is an (m, |u|)-pebble assignment which is the current pebble
assignment of positions to each pebble, and

3. N ⊆ [|u|] is the set of already-read positions of u.

The initial configuration πinit is (qinit, ρ⊥, ∅), where ρ⊥ is the initial pebble assignment
defined as ρ⊥(k) = ⊥ for every k ∈ [m], i.e. without any pebbles on the input. A
configuration (q, ρ, N) is accepting if q ∈ F and all the positions were read, i.e. N = [|u|].
Next we describe how the automaton moves from one configuration to the other. Let
π = (q, ρ, N) and π� = (q�, ρ�, N �) be configurations of A on u. We call them consecutive
and write π

t� π� if there exists a transition t in δ such that either

1. t is a silent transition of the form (q, q�), N = N �, and ρ = ρ�; or

2. t is a move transition of the form (q, k-movei,j , u(.), q�), which places pebble k
on an unread position . in the open interval between i and j, and reads the letter
u(.) ∈ Σ. More precisely, we have that

• ρ̂(i) < . < ρ̂(j)
• . ∈ [|u|] − N

• ρ� = ρ[k +→ .]
• N � = N ∪ {.}

As we mentioned before, the automaton accepts if it is in an accepting state having read
all the input. The following definition makes this precise.

Definition 8.4 (Computation and acceptance). Let u ∈ Σ1, t̄ = (t1, . . . , tr) be a sequence
of transitions and π̄ = (π0, . . . , πr) a sequence of configurations on u. We call (t̄, π̄) a
computation of A on u if π0 = πinit and πi−1

ti� πi for every i ∈ [r]. Then we denote
π0

t̄� πr. For two configurations π and π�, we write π
1� π� if π

t̄� π� for some t̄.
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A computation ending in an accepting configuration is accepting, and A accepts input u
if an accepting computation of A on u exists. We denote by L (A) the language accepted
by A . A PI language is a language accepted by a PIA.

8.2 Computational power of pebble-intervals automata
Here we explore the languages that PIA can accept. The first easy observation is that
PIA accept all regular languages by using one pebble in a unidirectional way, meaning
the pebble is always placed to the right or is always placed to the left of its current
location. More precisely:

Definition 8.5 (Single-pebble unidirectional PIA). A = (Σ, 1, Q, qinit, F, δ) is unidirec-
tional if qinit has no incoming transitions, and the move transitions starting at any other
state all use 1-move1,� only.

Proposition 8.6. A string language L is accepted by a classical non-deterministic finite-
state automaton if and only if L is accepted by a unidirectional PIA with the same number
of states.

Proof. Notice that for a unidirectional pebble-intervals automaton with one pebble, every
accepting computation must read the letters of the input w in order (i.e. first it reads
w(1), then w(2), then w(3), . . .), since it can only accept when all position have been
read.

Let AFSA = (Σ, Q, qinit, F, Δ) be a non-deterministic finite-state automaton where Δ :
Q × (Σ ∪ {ε}) → 2Q is the transition function. We define the transition relation

δ = {(q, q�) | q� ∈ Δ(q, ε)} ∪ {(q, 1-move1,�, σ, q�) | q� ∈ Δ(q, σ), σ ∈ Σ}

and let API = (Σ, 1, Q, qinit, F, δ) be the pebble-intervals automaton. We have L (AFSA) =
L (API ). Conversely, we define Δ from δ as follows: for every q ∈ Q and σ ∈ Σ, let

Δ(q, ε) = {q� | (q, q�) ∈ δ} ∪ {q� | (q, 1-move1,�, σ, q�) ∈ δ}

Examples of PIA languages

Next we describe PIA constructions for some non-regular, and not even context-free
languages.

Example 8.7. First we consider the Dyck language LDyck of well-nested brackets over
the alphabet containing the two letters [ and ]. The strings in LDyck satisfy that the
number of opening brackets is equal to the number of closing brackets, and that in every
prefix, the number of closing brackets is at most the number of opening brackets. It is
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well known that LDyck is context-free but not regular (see e.g. [74]). We will fully describe
a PIA ADyck = (Σ, 1, Q, qinit, F, δ) that accepts LDyck, as some following examples are
straightforward adaptations of it.

Essentially, ADyck will move the pebble to some opening bracket on its input, and attempt
to match it to a closing bracket to its right. Note that it will not necessarily match the
closing bracket to the bracket that opened it.

For ease of understanding, the construction is not minimal. We have that

• Σ consists of [ and ]

• m = 1

• Q = {qinit, q[, q]}

• the initial state is qinit

• the only state in F is q]

• the transition relation δ contains (qinit, 1-move�,�, [, q[), (q[, 1-move1,�, ], q]), and
(q], 1-move�,�, [, q[).

Example 8.8. The PIA ADyck can be easily adapted to accept the language Ltwo, which
consists of all strings in which two types of parentheses may occur, such that each type of
parentheses is well-nested with respect to itself, but not necessarily with respect to the
other type. For example, the string ( [ ) ] is in Ltwo, but ( ] is not. Ltwo is not context-free.
The accepting PIA of Ltwo is obtained from ADyck by essentially duplicating its state set
so that it first consumes all the brackets of one kind and then consumes all brackets of
the second kind.

We suspect that the language Lwn-two of well-nested parentheses of two kinds is not a PI
language. As opposed to Ltwo, this language requires that the parentheses are well-nested
with respect to both kinds, so for example, we have ( [ ) ] ∈ Ltwo but ( [ ) ] /∈ Lwn-two.
Therefore it would seem that PI language are incomparable to context-free languages.

Example 8.9. The MIX language, which is the language over {a, b, c}+ where each letter
occurs the same number of times, is not context-free and is also PI. The accepting PIA
repeats a loop for a non-deterministic number of times, where in each iteration it reads
one a, one b, and one c that appear anywhere on the input, thus ensuring they occur an
equal number of times.

Example 8.10. The language {an$bn#cn | n ≥ 0}, which is not context-free, is accepted
by a PIA with 3 pebbles. Pebbles 1 and 2 read the $ and the #, and then the automaton
repeats the following a non-deterministic number of times: pebble 3 reads an ‘a’ to the
left of pebble 1, a ‘b’ between pebbles 1, 2, and a ‘c’ to the right of pebble 2.
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Example 8.11. The language {w$w | w ∈ Σ+} for Σ = {0, 1} is not context-free, and
is accepted by a PIA with 3 pebbles. Pebble 1 reads the $, and pebbles 2 and 3 are used to
read the same letters to the left and to the right of pebble 1, such that in an accepting run,
pebble 2 reads the positions of w that is to the left of pebble 1 in order, and so does pebble
3 to the w that is on the right of pebble 1. This is achieved by having the automaton
repeat the following a non-deterministic number of times once pebble 1 is placed on the $:
(i) a letter σ is non-deterministically chosen, (ii) pebble 2 reads σ between its current
position and pebble 1, and (iii) pebble 3 reads σ to the right of its current position.

8.3 Emptiness of pebble-intervals automata
Here we show that PIA have a decidable emptiness problem, and discuss its complexity.
This problem is solved with a usual search of a sequence of transitions that represent
an accepting computation. However, not every sequence of transitions that respects the
transition relation alone corresponds to a computation of the automaton. For example, a
PIA with 3 pebbles cannot make a 1-move2,3 in its first or second transitions, as the
pebbles 2 and 3 would not yet be on the input. We therefore define feasible sequences of
transitions, which take into account pebble placements.

We use the term arrangement of the pebbles [m] to refer to a linear order O = �O, R≤�
with O ⊆ [m]. Each (m, n)-pebble assignment ρ induces a unique arrangement o(ρ),
where O = [m] − ρ−1(⊥) and R≤(i, j) holds if and only if ρ(i) ≤ ρ(j).

Definition 8.12 (Feasible sequence of transitions). Let r ≥ 0 and let t̄ = (t1, . . . , tr) be
a sequence of transitions in δ. We say t̄ is feasible if there is a sequence Ō = (O0, . . . , Or)
of arrangements and a sequence q̄ = (q0, . . . , qr) of states with qinit = q0, such that O0 is
empty, and for every 1 ≤ . ≤ r:

1. if t% is a silent transition, then t% = (q%−1, q%) and O% = O%−1, and

2. if t% is a move transition, then there are k ∈ [m], i, j ∈ ([m] − {k}) ∪ {�,�}, and
σ ∈ Σ with t% = (q%−1, k-movei,j , σ, q%) and the arrangement O% = �O%, R≤,%� is
such that

• O% = O%−1 ∪ {k},
• R≤,%(i�, j�) if and only if R≤,%−1(i�, j�) for all for i�, j� ∈ [m] − {k},
• if i ∈ [m] then R≤,%(i, k), and
• if j ∈ [m] then R≤,%(k, j).

The following lemma shows that the feasible sequences of transitions are exactly the ones
corresponding to actual computations of the automaton.

Lemma 8.13. A sequence t̄ of transitions is feasible if and only if there is a string
u ∈ Σ1 and a sequence of configurations π̄ such that (t̄, π̄) is a computation of A on u.
Moreover, t̄ ends in an accepting state if and only if (t̄, π̄) is an accepting computation.
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Proof. Let (t̄, π̄) be a computation with t̄ = (t1, . . . , tr), π̄ = (π0, . . . , πr), and with
πh = (qh, ρh, Nh) for every h ∈ {0, . . . , r}. Let O0 be the empty structure and let
Oh = �Oh, R≤,h� where Oh = [m] − ρ−1

h (⊥) and R≤,h = {(i, j) ∈ O2
h | ρh(i) ≤ ρh(j)} for

every h ∈ [r]. The sequence Ō = (O0, . . . , Or) satisfies the requirements in Definition 8.12,
and hence t̄ is feasible.

Conversely, assume t̄ = (t1, . . . , tr) is feasible and let Ō and q̄ be as guaranteed in Defini-
tion 8.12. We prove by induction on r that there is a computation ((t1, . . . , tr), (π0, . . . , πr))
on some string ur of length at most r such that Or−1 = o(ρr−1) and Nr = [|ur|].
For r = 0, (t̄, (πinit)) is a computation on the empty string.

Assume the induction hypothesis holds for a string ur−1 of length at most r − 1 and
((t1, . . . , tr−1), (π0, . . . , πr−1)). Let πr−1 = (qr−1, ρr−1, Nr−1). If we have a silent tran-
sition tr = (qr−1, qr), then we have πr = (qr, ρr−1, Nr−1), and (t̄, (π0, . . . , πr)) is a
computation on ur−1, with Or = Or−1 = o(ρr−1) = o(ρr), and Nr = Nr−1 = |ur−1|.
Otherwise, we have a move transition th = (qh−1, kh-moveih,jh

, σ, qh). Let

b =
�

ρh−1(ih), ρh−1(ih) .= ⊥
0, otherwise

Let
ur = u(1) . . . u(b)σu(b + 1) . . . u(r − 1),

i.e. ur is obtained by inserting σ into ur−1 immediately after the pebble ih, or at the
start of ur−1 if the pebble ih has not been used in the computation so far. For every
h ∈ {0, . . . , r − 1}, let π�

h = (qr−1, ρ�
r−1, N �

r−1) where ρ�
h is obtained from ρh by setting

ρ�
r(i) = ρr−1(i) + 1 whenever ρr−1(i) ∈ {b + 1, . . . , r}, and let

Nh = [b] ∩ Nr−1 ∪ {. + 1 | . ∈ Nr−1, . > b}.

Notice that since ((t1, . . . , tr−1), (π0, . . . , πr−1)) is a computation on ur−1, we have that
((t1, . . . , tr−1), (π�

0, . . . , π�
r−1)) is a computation on ur. Let ρ�

r be obtained from ρ�
r−1

by setting ρr(kh) = b + 1. Let Nr = Nr−1 ∪ {b + 1}, and let π�
r = (qr, ρ�

r, N �
r). By

Definition 8.12 (and whether or not kr ∈ {ir, jr}), we have

1. R≤,r(ir, kr) and R≤,r(kr, jr), and hence R≤,r(ir, jr), and

2. R≤,r−1(ir, jr) if and only if R≤,r(ir, jr).

Hence, it holds that R≤,r−1(ir, jr). By the induction hypothesis, ρr−1(ir) < ρr−1(jr).
Therefore, π�

r−1 �tr
ur

π�
r and (t̄, (π�

0, . . . , π�
r)) is a computation on ur. By the definitions

of Ō, ρr, and o(ρr), we have o(ρr) = Or. Finally, since |Nr−1| = |ur−1| = |ur| − 1 and
Nr − Nr−1 = {b + 1}, we have Nr = [|ur|].
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Now emptiness of a PIA A amounts to the existence of a feasible sequence of transitions
that ends in an accepting state, and the following Lemma puts a bound on the length of
these sequences.

Lemma 8.14. There is a feasible sequence of transitions t̄ of length at most |A |·2O(m log m)

ending in an accepting state if and only if L (A) .= ∅.

Proof. By Lemma 8.13, if t̄ is feasible and ends in an accepting state, then there is a
sequence of configurations π̄ such that (t̄, π̄) is an accepting computation of A on some
string u. Hence u ∈ L(A).

Conversely, assume that L(A) .= ∅, and let (t̄, π̄) be an accepting computation of minimal
length on any string u. Denote (t̄, π̄) = ((t1, . . . , tr), (π0, . . . , πr)). By Lemma 8.13, t̄ is
feasible and ends in an accepting state. Let Ō be the sequence described in Definition 8.12
for t̄. Now assume for contradiction that there are two distinct h1, h2 ∈ [r] such that
th1 = th2 and Oh1 = Oh2 . Then (t1, . . . , th1 , th2+1, . . . , tr) is a feasible sequence of
transitions ending in an accepting state. Hence, there is a word u12 which is accepted
by a computation of length r − (h2 − h1), in contradiction to the minimality of (t̄, π̄).
Hence, the length of t̄ is at most |δ| · M , where M is the number of arrangements O
of m pebbles. We have that M ≤ 2m · m! since there are 2m ways of choosing a subset
O ⊆ [m] as the universe of O, and |O|! ≤ m! ways to linearly order the set O.

Finally, we are ready to solve the emptiness problem of PIAs.

Theorem 8.15 (Emptiness of PIA). If a PIA A has O(log |A |) pebbles, its emptiness
problem is NL-complete. In general, the emptiness problem for PIAs is in PSpace.

Proof. Let A = (Σ, m, Q, qinit, F, δ) . We non-deterministically attempt to guess a feasible
sequence of transitions t̄ which ends at an accepting state along with a sequence Ō as
guaranteed in Definition 8.12. From Lemma 8.14, we know that if such a sequence
exists, then there is one whose length is at most |A | · 2O(m log m). Note that in any
point of the algorithm, we only need to simultaneously keep in memory a counter of the
sequence length r, two transitions th, th+1 for h ∈ [r − 1] and two arrangements Oh, Oh+1.
The space used by the counter is logarithmic in |A |. The size of the representation of
a transition is |Q|2 + |Q|2 · |Σ| · |movem|, i.e. logarithmic in |A |, and the size of the
representation of an arrangement is O(m2). Therefore we have PSpace in general, and
membership in NL when m is logarithmic in |A |. Completeness for the NL case follows
from the NL-completeness of the emptiness problem of standard finite state automata
and Proposition 8.6.

We note the following fact, which will prove useful when we relate PIA to a two-variable
fragment of First Order logic with data values. It essentially states that we do not need
to construct a PIA in full in order to test its emptiness.
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Observation 8.16. Let A be a PIA with state set Q and for q ∈ Q, let δq ⊆ δ be
the set of transitions from q. We say δ is NSpace(r(|A |))-computable if there is a
non-deterministic Turing machine Mδ that runs in space r(|A |) whose set of possible
outputs on input q is δq for q ∈ Q. Observe that Theorem 8.15 holds even if A is not
given explicitly, as long as δ is NSpace(log(|A |))-computable.

8.4 Closure properties of pebble-intervals languages
We show some closure properties of PIA languages, which include closure under standard
operations like union and concatenation, and also closure under less known operations
such as shuffles, which we define next.

Definition 8.17 (Shuffle). Let u, v ∈ Σ1 for a finite alphabet Σ. Let g : [|u|] → [|u| + |v|]
be a strictly monotone function, and let ḡ : [|v|] → [|u| + |v|] be the unique strictly
monotone function whose image is disjoint from g. The g-shuffle of strings u, v is defined
as the following string

u g v = {w | u = w(g(1)) . . . w(g(|u|)), v = w(ḡ(1)) . . . w(ḡ(|v|))}.

The shuffle of u, v is defined as:

u v = {u g v | g : [|u|] → [|u| + |v|] is a strictly monotone function}.

The shuffle of two languages L, L� ⊆ Σ1 is defined as L L� = �
u∈L,v∈L� u v.

Example 8.18. Let u = abc and v = defg. Their shuffle u v includes all strings
containing each letter a, b, c, d, e, f exactly once such that their positions satisfy a < b < c
and d < e < f < g. This includes, for example, strings such as abcdefg, adebcfg, and
deafbgc.

Definition 8.19 (Iterated shuffle). The iterated shuffle of a language L is defined as
L = �

i≥0 Li where L0 = L and Li+1 = Li L.

Example 8.20. The language Ltwo from Example 8.8 is the iterated shuffle of the set
containing the strings ( ) and [ ].

Theorem 8.21 (Closure properties of PIA). The class of pebble-intervals languages is
effectively closed under union, concatenation, Kleene-@, shuffle, and iterated shuffle.

Proof. Let A1 = (Σ1, m1, Q1, q1,init, F1, δ1), and A2 = (Σ2, m2, Q2, q2,init, F2, δ2) be PIA
that accept the languages L (A1) and L (A2), respectively. For simplicity, we assume
that the pebble sets of A1 and A2 are disjoint. In the following, we describe an automaton
A = (Σ, m, Q, qinit, F, δ) which accepts L (A1) ∪ L (A2), L (A1)L (A2), etc. For ease
of reading, our construction of A will not necessarily be minimal. Furthermore, our
description is given by specifying an accepting run of A , including exact placements of
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the pebbles. For example, we may write that A places a pebble on the first position of
the input. Strictly speaking, such behavior cannot be guaranteed, but we write so in
order to clarify the desired behavior of the automaton. This is only assumed in cases
where the pebbles move in one direction, so whether there is an accepting run is not
affected by this assumption.

Union L (A1) ∪ L (A2) is accepted by a pebble-intervals automaton A which has:

1. Σ = Σ1 ∪ Σ2

2. m = max{m1, m2}
3. Q = Q1 ∪ Q2 ∪ {qinit}
4. F = F1 ∪ F2

5. δ = δ1 ∪ δ2 ∪ {(qinit, q1,init), (qinit, q2,init)}

On input w, the automaton A guesses whether w ∈ L (A1) or w ∈ L (A2) via the silent
transitions from the initial state, and then simulates the corresponding automaton on w.

Concatenation We show that L (A1)L (A2) is accepted by a pebble-intervals automa-
ton A . We describe the automaton simultaneously with an accepting run.

Essentially, A guesses where the partition of the input is and marks it with a special
pebble. Then it simulates the corresponding automaton on each segment of the input.
Therefore A has m = max{m1, m2} + 1 pebbles.

First we handle the case where one or both of the concatenated strings is the empty
string. Given input w, the automaton A guesses whether w is the empty string, therefore
we have (qinit, qε) ∈ δ, where qε is a fresh state. If ε ∈ L (A1) ∩ L (A2), then qε ∈ F .

If ε ∈ L (A1) \L (A2), the automaton guesses whether to simulate A2 on the entire input
or not. Therefore we have Q2 ⊆ Q, and (qinit, q2,init) ∈ δ. To accept, we take a fresh state
qA2 ∈ F and for every q2 ∈ F2 we have (q2, qA2) ∈ δ. The case where ε ∈ L (A2) \ L (A1)
is treated similarly.

If A interprets the input as a concatenation of two non-empty strings, it places the special
pebble m on an arbitrary position . in w, which is treated as the last position of the first
segment, i.e. the end of the string on which A1 will be simulated. Since A will not be
able to place a pebble on position . when simulating A1, it will need to remember the
letter that was read in this position in order to correctly simulate A1 placing a pebble on
it, and A also needs to remember whether A1 was already simulated to have read the
position or not. Therefore we have qσ1

1 ∈ Q for every q1 ∈ Q1 and every σ1 ∈ Σ1, which
are states that A will use to simulate A1 before the letter is read, and we have states
qr

1 ∈ Q for every q1 ∈ Q1 to simulate A1 after the last position was read (A does not
need to remember the letter at position . once it is read).
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The placement of the special pebble takes place with a transition of the form
(qinit, m-move�,�, σ1, qσ1

1 ) ∈ δ for σ1 ∈ Σ1.

We describe the simulation of A1 in two phases; up to and including the reading of the
last position, and after having read the last position. We focus on k-movei,� transitions
since other transitions are simulated by A in the obvious way.

Before position . is simulated to have been read, in every (q1, k-movei,�, σ, q�
1) transition

of A1, the automaton A will guess whether A1 will be simulated to read the last position .

or not. If A1 is guessed to not read the last position, A will make a (qσ1
1 , k-movei,m, σ, q

σ�
1

1 )
transition (note that A uses the special pebble m instead of �).

If A guesses that A1 does read the last position . of its input, then A makes a silent
transition (since position . has already been visited) of the form (qσ1

1 , q�
1,r). Since in the

run of A1, the pebble k is now supposed to be on position ., we need to do another
form of bookkeeping in order to ensure correct behavior of A when performing Move
transitions involving k. Until the pebble k is used by A1 to read a letter, any i-movej,k

transitions of A1 (where i .= k) are simulated using i-movej,m in A . The next time k is
used by A1 to read a letter, A makes a move transition with k as well, while taking care
of the boundaries; e.g. if it is a k-movei,k transition in A1, it will be simulated with a
k-movei,m in A . Once the pebble k has been used by A1 to read a position, there is no
danger of mismatching boundaries, and the only bookkeeping needed to simulate A1 is
continuing to replace � with m in move transitions.

In order for A to start simulating A2 on the second segment, we enforce that A1 accepts
the first segment of the input. We have silent transitions (q1,r, q2,init) ∈ δ for every
q1 ∈ F1.

The simulation of A2 on the rest of w is straightforward. We use another set of states
q�

2 ∈ Q for every q2 ∈ Q2 and note that the only difference between the behaviors is that
A simulates k-move�,i transitions of A2 with k-movem,i transitions. Note that during
the simulation of A2, no position up to and including . will be read, therefore if A1 does
not accept the first segment of the input, A will not accept w. We let q�

2 ∈ F for every
q2 ∈ F2 and have that A accepts w if and only if it is a concatenation of a string accepted
by A1 with a string accepted by A2.

Kleene-@ We show that L (A1)1 is accepted by a pebble-intervals automaton A . This
automaton works similarly to the concatenation case, except it uses two pebbles to enclose
the substring it simulates an automaton on, and it non-deterministically chooses when to
move on to the next segment of the word. We describe a successful run of A .

We have that ε ∈ L (A1)1, therefore there is a transition (qinit, qε) ∈ δ with qε ∈ F .

If A guesses that the input is not the empty string, it begins to simulate A1 on contiguous
substrings of w in rounds, using special pebbles p, p� to enclose the substrings.

In the first round, A places pebble p on the beginning of the input (since this is an
accepting run) and remembers the letter that was read. Then it places pebble p� somewhere
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to the right of pebble p and in addition remembers the letter that was read. Then A
simulates A1 on the substring between the pebbles, similarly to the concatenation case,
by replacing k-move�,i transitions with k-movep,i transitions, and k-movei,� transitions
with k-movei,p� transitions. Similarly to the concatenation case, when A guesses that
A1 is reading one of the positions of p or p� using a pebble k, it uses a silent transition to
simulate the placement of pebble k and adjusts boundaries of move transitions involving
pebble k until A1 moves it again.

The subsequent rounds are similar, except that they begin with A placing p to the right of
p�, and the simulation of A1 on that segment of the input does not involve simulating the
first position being read. In addition to replacing k-move�,i transitions with k-movep,i

or k-movep�,i transitions (depending on the parity of the round number), A needs to do
bookkeeping to ensure that move transitions of A1 with boundaries involving pebbles
that have not been used in the current round yet are not allowed.

Note that for a run to be successful, in addition to the placement of p in the first round
being on the first position of the input, in subsequent rounds the placement of p must be
immediately to the right of p�.

Every time A1 is simulated to be in an accepting state, A non-deterministically decides
whether to finish the simulation and to move to an accepting state, finish the current
round and start a new one, or continue the current round.

Shuffle The key observation here is that a string which is a shuffle between a string
accepted by A1 and a string accepted by A2 can be accepted by independently simulating
A1 and A2 on it, since there is no bookkeeping required to coordinate A1 and A2.
Therefore, the automaton A uses two disjoint sets of pebbles, one of size m1 for A1 and
one of size m2 for A2. Using the first set, A simulates A1 on some substring of w, which
is not necessarily contiguous, and using the second set, it simulates A2 on the substring
composed of the remaining positions. These simulations do not affect each other, and
they can be performed one after the other by adding a transition from the accepting
states of A1 to the initial state of A2. We have that A accepts if both simulations accept.

Iterated shuffle This is similar to the case of the shuffle, and each iteration will
correspond to a round in the run of A . In short, in each round A simulates A1 and reads
an arbitrary subset of the input positions, and chooses non-deterministically whether
to start a new round. As opposed to the previous case, now there is no bound on the
number of strings that were shuffled to produce the input, therefore A must be able to
reuse its pebbles, which requires some bookkeeping.

More precisely, in the first round, A1 is simulated in a straightforward fashion. Whenever
A1 is simulated to go into an accepting state, A non-deterministically chooses whether
to continue the simulation of A1, or whether one of the shuffled strings in the iterated
shuffle was accepted by A1 and this is the end of a round.
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At the end of a round, A non-deterministically chooses whether to begin another round
or end the simulation and accept. If A chooses to begin another round, it needs to
simulate a run of A1 which starts with all pebbles off the input. However, since there
are some pebbles on the input from previous rounds, care must be taken to ensure that
the simulation of A1 only involves feasible transitions. For example, we would like to
avoid a situation where pebbles 1 and 2 are already on the input when a new round
begins, and A places the pebble 3 between 1 and 2. Obviously, the semantics of PIA
allow this, however, it is not a proper simulation of A1 on fresh input since a 3-move1,2
is not feasible at that point.

Therefore, at the beginning of a new round, A enters a state (q1,init, {�,�}) where all m1
pebbles are considered to not be placed on the input. A keeps track of which pebbles are
placed on the input in the simulation by using states of the form (q1, S) where q1 ∈ Q1
and S ⊆ [m1] ∪ {�,�}. As the simulation of A1 progresses and A1 is simulated to place
pebbles on its input, A updates the list S; i.e. after a k-movei,j transition into a state
(q1, S), we will have that k ∈ S. We ensure the simulation does not include non-feasible
use of the pebbles by only including k-movei,j transitions from a state (q1, S) if i and
j are both in S. That is, ((q1, S1), k-movei,j , (q2, S2)) ∈ δ implies that i, j ∈ S1 and
{k} ∪ S1 ⊆ S2.

Combining the fact that PI are closed under iterated shuffle with the fact that all regular
languages are PI (Proposition 8.6), we immediately have:

Corollary 8.22. PIA accept the generalizations MIXk to alphabets {σ1, . . . , σk}, as they
are iterated shuffles of finite (and therefore regular) languages. Namely, MIXk is the
shuffle of the set of strings containing exactly one occurrence of each letter σi, i ∈ [k].

We will also mention multidimensional Dyck languages [75], which can be seen as MIX
languages with a prefix constraint. The k-dimensional Dyck language Dyckk is the set of
strings w in MIXk such that in every prefix of w, the number of times σi+1 occurs is at
most equal to the number of times σi occurs, for i ∈ [k − 1]. It is easy to see that Dyckk

is the iterated shuffle of {σ1 · · · σk}.

Corollary 8.23. PIA accept all multidimensional Dyck languages.

8.5 Non-closure properties of pebble-intervals languages
Unfortunately, PIA are not closed under some useful operations.

Theorem 8.24. The class of pebble-intervals languages is not effectively closed under:

1. Intersection, even with regular languages, and
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2. Complement

To prove this theorem, we will consider some languages related to Minsky machines [76]
and make supporting claims. In the first part, we will show that if PI were effectively
closed under intersection, then we could decide the Minsky halting problem, which is
undecidable. We will use the constructions in that part of the proof in order to show
that PI are also not effectively closed under complement.

Proof of Theorem 8.24 (Part 1.) We show that if pebble-intervals automata were
effectively closed under intersection with regular languages, we could decide the Minsky
halting problem, which is undecidable. A Minsky machine [76] is a sequence of labeled
commands

0 : comm0
1 : comm1
...

...
n-1 : commn−1
HALT : halt

where each of the first n commands is either an incc command of the form:

i: c:= c+1; goto i+1

or a conditional decc(j) command of the form:

i: if c=0 then goto j
else c:=c-1; goto i+1

and c is one of the registers of the machine.

A trace of a Minsky machine M is a sequence t1, . . . ,tm of labels where

• t1 = 0,

• tm = HALT, and

• for 0 < k < m,

– if tk−1 = i is an incc command, then tk = i+1, and
– if it is a decc(j) command, then either tk = i+1, or tk = j.

Note that the language of traces of a Minsky machine M is regular; since there are
finitely many commands 1, . . . ,n-1 which we can encode in finitely many states. The
last case does not constrain the possible next labels based on what the value of a register
would have been in an actual computation. Those are the traces we define next.
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A trace t1, . . . ,tm is feasible if the following holds. If tk−1 = i for a decc(j) command,
and j .= i+1, then tk = j if and only if c = 0 at step k − 1 during the run of M . Note
that c = 0 holds exactly at the steps where the number of incc commands is equal to
the number of decc commands.

The problem of deciding whether a given Minsky machine M with two registers c0,c1
halts when started with c0 = c1 = 0 is referred to here as the Minsky halting problem.
It is known that the Minsky halting problem is undecidable [77]. In other words, it is
undecidable whether there is a feasible trace of M .

Now fix a Minsky machine M and denote the language of its traces by T.

Let Σ = {halt,incc,decc,jmpc | c ∈ {c0,c1}}. We define a mapping h : T → Σ1

from traces to Σ1 which will also produce a regular language. Let t1, . . . ,tm be a trace.
We first define a mapping f from pairs of labels (tk−1,tk) to Σ. Well, strictly speaking,
f will map to subsets of Σ, but this will be only in one case and the subset will be of size
2. For tk−1 = i where 0 < k < m:

• If i is an incc command, then f(tk−1,tk) = incc.

• If i is a decc(j) command with j .= i+1, then

f(tk−1,tk) =
�
decc if tk = i+1,
jmpc if tk = j

• If i is a decc(i+1) command, then f(tk−1,tk) ∈ {decc,jmpc}.

Now define h(t1 . . .tm) as the (set of) strings f(t1,t2)f(t2,t3) . . . f(tm−1,tm)halt.

Denote the language resulting from applying h to all the traces, which is the list of
commands executed during a trace, by InstM = {h(t) | t ∈ T}, and note InstM is
regular. This language describes the operations performed during a run of a machine. In
order to decide whether there exists a feasible trace of M , we need to be able to test if
the appearances of the jmpc letter are in appropriate positions w.r.t the registers. For
this purpose, we next define a pebble-intervals language by shuffling two pebble-intervals
languages given by a context-free grammar, which can distinguish between appropriately-
placed and inappropriately-placed jmpc letters. The intersection of the languages will
consist of the feasible traces, meaning it will be non-empty if and only if the given Minsky
machine halts.

We now define a language Lc containing sequences of incc and decc which are well
matched, along with jmpc letters which are appropriately placed. This will be a PI
language which we will intersect later with the language of traces to obtain the language
of feasible traces of Minsky machines. We define this languages as follows. w ∈ Lc if and
only if all the following hold:
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1. for every position i of w, if w(i) = jmpc, then there is an equal number of incc
and decc in the prefix containing the first i positions

2. in every prefix of w we have that the number of decc appearances is not larger
than the number of incc appearances.

3. the last position of w carries the letter halt

Note that strings in this languages do not necessarily correspond to a trace at all.
For example, a Minsky machine which lists ten incc commands before the first decc
command will not have any traces starting with inccdecc, although there are strings
with this prefix that belong to Lc.

Claim 8.25. The language Lc is a pebble-intervals.

Proof. Essentially, the PIA simulates an altered version A � of ADyck on intervals of its
input, where incc plays the role of [ and decc plays the role of ]. We describe an
accepting run of the automaton for Lc.

1. First, it places a special pebble phalt on the last position, reading halt.

2. Next, it guesses whether there are any jmp commands in the input.

a) If it guesses there are not, it reads incc positions a non-deterministic number
of times, followed by performing the following a non-deterministic number of
times: reading an decc position and an incc positions to its left.

b) If it guesses there are jmp commands in the input, the automaton reads the
positions between subsequent jmp commands to ensure the dec commands
match the inc commands in the following way. The cases where the automaton
handles the first and second jmp commands are a bit different.

• For the first jmp position it reads, the PIA places pebble pjmp anywhere
on the input, and simulates ADyck on the part of the input to the left
of pjmp. Once A � is simulated to have accepted, our automaton non-
deterministically either moves to an accepting state, or starts a new
iteration where it will read the next jmp and its corresponding inc and
dec commands.

• For the second jmp position it reads, the PIA places pebble pjmp� to the
right of pjmp, and simulates A � on the interval between pjmp� and pjmp,
similarly to the previous item.

• For any subsequent readings of jmp positions, depending on the parity of
the iteration number, our PIA places either pjmp� or pjmp to the right of
the other one, and simulates A � on the interval between them.

3. Once all positions of the input are read, our PIA moves to an accepting state.
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We resume the proof of Theorem 8.24. Consider the languages Lc0 and Lc1 , and define
L as the shuffle between Lc0 and Lc1 , and note that by Claim 8.25 and Theorem 8.21, it
is a pebble-intervals language.

Now observe that intersecting L with InstM would result in exactly the feasible traces,
and assume for contradiction that pebble-intervals languages are effectively closed under
intersection with regular languages. We describe a procedure for deciding the Minsky
halting problem. Given a Minsky machine M , generate the automaton Ainst for the
regular language InstM (Proposition 8.6). Using the assumed effective procedure for
intersection with regular languages, now generate an automaton AM for

LM = L ∩ InstM .

To decide the Minsky halting problem for M , test AM for emptiness.

Since emptiness of pebble-intervals automata is decidable, we contradict undecidability
of the Minsky halting problem, so we conclude that pebble-intervals languages are not
effectively closed under intersection, even with regular languages.

(Part 2.) We show we can build an automaton for (LM )c and conclude that if we could
effectively build a complement automaton for any pebble-intervals language, then in
particular we could build one for ((LM )c)c = LM , which we could test for emptiness and
again solve the Minsky halting problem.

Since LM = L ∩ InstM , we have that (LM )c = Lc ∪ (InstM )c. Note that if Lc and
(InstM )c are PI languages, then by Theorem 8.21, their union (LM )c is a pebble-
intervals language, so we separately show that Lc is a pebble-intervals languages and
that so is (InstM )c. Since (InstM )c is regular, it is also a pebble-intervals language by
Proposition 8.6, so all that remains is to show that Lc is accepted by a pebble-intervals
automaton, and we will have our proof. Recall that L is the shuffle between Lc0 and Lc1 .

Claim 8.26. Lc is a pebble-intervals language.

Proof. Note that for every w ∈ Lc, it holds that there is a register c and a prefix of w
ending with jmpc such that the number of incc and decc commands is not equal. The
PIA will operate as follows:

1. It will guess the register c, and place a pebble p on the end of the prefix for which
this holds, where the jmpc command is.

2. Next it will read all other jmp positions to the left of pebble p. This is done since
PIAs need to read all of their input in order to accept.

3. Next the PIA will guess whether it is the number of incc commands or the number
of decc commands that is larger, and verify this by doing the following:
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a) It will first read positions with the more frequent letter which are to the left
of pebble p some non-deterministic number of times.

b) Then switch to a loop that reads decc followed by a incc to its left, all to the
left of pebble p. This loop is repeated a non-deterministic number of times.

4. now all that remains is to read the rest of the input, so the automaton arbitrarily
read positions to the right of pebble p and moves to an accepting state.

The automaton accepts a string if and only if it has a violating prefix as described
above.

Corollary 8.27. The universality and inclusion problems for pebble-intervals automata
are undecidable.

Proof. We have seen in the proof above that we can effectively build an automaton A
for (LM )c. We have that A has a universal language if and only if LM = ∅. Thus if we
could test for universality, we could again solve the Minsky halting problem.

Since universality easily reduces to inclusion, undecidability of the inclusion problem
follows.

Finite jumping automata We will now briefly touch on the automata model that
is probably closest to our PIAs in terms of behavior, finite jumping automata [78]. A
jumping automaton is essentially a PIA with only one pebble that does not specify the
interval in which each transition places the pebble, but instead it puts it on an arbitrary
unvisited position. That is, only reads the input using 1-move�,� transitions. This
allows us to transfer some results on jumping finite automata to PIAs. For a language L,
we denote by perm(L) its permutation language, that is the set of permutations of u ∈ L.
In [79], it is showed that for every regular or context-free language L, the permutation
language perm(L) is accepted by a finite jumping automaton.

Corollary 8.28. Let L be either regular or context-free. Then its permutation language
perm(L) is a PI language.

Note however, that PIAs are a strict generalization of jumping finite automata, since
there are regular languages such as {a}1{b}1 that jumping automata do not accept.

Discussion We have introduced PIAs and seen several examples of languages they
accept. Notably, they accept families of inherently context-sensitive languages, but the
context-free language of well-nested parentheses of two kinds Lwn-two is suspected to not
be a PI language. Not surprisingly, PI languages are a proper subset of context-sensitive
languages; containment is given by the fact that any PIA can be simulated by a Turing
machine using linear space. Inequality is given by the fact that context-sensitive grammars
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have an undecidable emptiness problem, while PIAs have an emptiness problem that is
in PSpace in general.

Our investigation of their closure properties revealed that PI languages are closed
under some lesser known operations such as shuffles, and our proofs of their non-closure
properties contained constructions that also allowed us to show that PIA have undecidable
inclusion and universality problems.

The intuition gained in this chapter about PIAs will help us in Chapter 10, as we will
be making several transformations of structures to take us from the two-dimensional
objects FO2(≤1,�2, S2) is suited for to the strings PIAs operate on. In order to make
those transformations, we will use a normal form for FO2(≤1,�2, S2) that will break
down satisfaction of general formulas into satisfaction of smaller atomic formulas.
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CHAPTER 9
Two-variable First Order Logic

with Data

In this chapter we provide the necessary background on the two-variable fragment of
First Order Logic (FO2), and discuss extensions thereof that model data. We present
the variant FO2(≤1,�2, S2) along with the corresponding notion of data words, as well
as definable data languages and their projections to strings. We finish the chapter with a
normal form theorem (Theorem 9.13) that will be used in the next chapter to show how
pebble-intervals automata relate to FO2(≤1,�2, S2).

Structures All the structures and vocabularies are finite, and we typically denote a
structure with a calligraphic font A, its universe by A, and its size by |A|. We typically
denote vocabularies by voc with a subscript to indicate their relations.

9.1 Two-variable fragment of first order logic and the
satisfiability problem

Definition 9.1 (FO2). The two-variable fragment of First Order logic (FO), denoted
FO2, is the restriction of FO to formulas that use at most two variables x and y.

Example 9.2. Let R be a binary relation symbol. Obviously, the formula

∀x∀y (R(x, y) ∨ R(y, x))

is in FO2, as is only uses two variables. The formula

∀x (∃yR(x, y)) ∨ (∃zR(z, x))

uses three variables, but it is equivalent to ∀x∃y(R(x, y) ∨ R(y, x)) which only uses two.
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However, the formula

∀x∀y∀z (R(x, y) ∧ R(y, z)) → R(x, z)

which expresses that R is transitive, has no equivalent in FO2.

The (finite) satisfiability problem of a logic L is: given a sentence ϕ in L, does it have a
(finite) model? Mortimer first showed that FO2 has a decidable satisfiability problem [80],
by showing that any satisfiable FO2 sentence ϕ has a model of size at most double
exponential in |ϕ|, yielding a nondeterministic double exponential upper bound for the
problem. This bound was later improved by Grädel, Kolaitis, and Vardi [81], who showed
there exist exponential sized models, thus matching the NExpTime-hardness for FO2 by
Fürer [82].

An important ingredient in these decidability proofs for FO2 is the Scott Normal Form,
which allows one to check satisfaction of the formula using types. Types are essentially
maximal consistent sets of atomic and negated atomic formulas, and loosely speaking, all
information necessary for determining satisfaction of an FO2 formula in a structure can
be specified using the types of their elements.

Theorem 9.3 (Scott Normal Form [83]). Let ψ be a sentence in FO2 over a vocabulary
voc. There is a sentence ϕ of the form

ϕ = ∀x∀y χ(x, y) ∧
B�

b=1
∀x∃y χb(x, y)

with quantifier free χ and χb, such that ϕ is satisfiable if and only if ψ is satisfiable, and
every A |= ψ has a unique expansion B |= ϕ. Furthermore, ϕ is of length linear in that
of ψ, and is over voc ∪ vocSNF where vocSNF contains fresh unary relations.

9.2 FO2 with order relations
FO2 has the substantial drawback that it cannot express transitivity [84]. The argument
in [84] is that the sentence

∀x ¬R(x, x) ∧ ∀x∃yR(x, y)

where R is transitive becomes an infinity axiom, whereas FO2 has the finite model
property. By the same argument we conclude that FO2 cannot express that a relation
is a linear order, preorder, or an equivalence relation, which are natural candidates for
modeling (possibly ordered) data from infinite domains. For example, in a program
verification setting involving variables that hold integer values. Nonetheless, satisfiability
of FO2 with these relations can be investigated by only considering structures where
certain relations are interpreted in the desired way.
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For example, the formula

∃x∃y(x .= y) ∧ R(x, y) ∧ R(y, x)

is satisfiable in general, however, in models where R is interpreted as a linear order, it
becomes unsatisfiable.

There is extensive literature on the (finite) satisfiability of FO2 with special relations such
as orders, equivalence relations, and more generally, transitive relations. The classification
of the satisfiability problem of FO2 with transitive relations is nearly complete, as it is
established that satisfiability of FO2 with two transitive relations is undecidable both
in the general and the finite case [85], and decidability of FO2 extended with a single
transitive relation is decidable in both cases [86, 87]. For linear orders, both versions of
the satisfiability problem with a single linear order are decidable [24], as well as the finite
version with two linear orders [88]. Undecidability follows when three linear orders are
present [89].

9.2.1 Data words and their automata models
The efforts to develop logics applicable to property verification in a setting involving data
from infinite domains lead to the study of data words. These are (typically finite) strings
that in addition to holding letters from a finite alphabet in each position, also hold a
data value from an infinite alphabet. Intuitively, we can think of the data as a number
attached to each position, although generally the data values may range over any infinite
alphabet. There are several ways to model data words and one’s access to their data
values and positions, each with its own tradeoffs, as FO2 easily becomes undecidable once
order relations are in the mix. A linear order can be used to model strings, where a finite
number of unary predicates act as an alphabet. The additional data value that each
position carries can be modeled using a second special relation such as an equivalence
relation or a preorder. Next, we define data words using a linear order, denoted ≤1, for
the positions and a preorder, denoted �2, along with its induced successor relation S2 to
model the data, and motivate this choice.

Definition 9.4 (Preorder). A total preorder relation �2 is a transitive total relation
which can be seen as an equivalence relation whose equivalence classes are linearly ordered.
We write x ∼2 y as shorthand for (x �2 y) ∧ (y �2 x). The induced successor relation
S2 of a total preorder �2 is defined such that for u �2 v, we have S(u, v) if there is no
element w such that u �2 w �2 v

Preorders are an attractive option for modeling realistic numeric data, since they allow
comparisons in terms of which value is larger than which (as opposed to equivalence
relations, which only allow equality testing), and since they also allow multiple elements
to hold the same data value (as opposed to linear orders, which enforce every position to
carry a different data value).
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a

ξ1

b
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Figure 9.1: The data word D from Example 9.6.

We denote the extension of FO2 with a linear order and a preorder and its induced suc-
cessor relation by FO2(≤1,�2, S2), and for a finite alphabet Σ, we denote the vocabulary
of data words �≤1,�2, S2, σ : σ ∈ Σ� by vocDW(Σ).

Definition 9.5 (Data word, data value). A data word over Σ is a finite vocDW(Σ)-
structure D with universe D where σ for σ ∈ Σ are interpreted as unary relations that
partition D. I.e. each position carries one letter from Σ. The data value of an element
d ∈ D is the number valueD(d) of equivalence classes E of ∼2 whose elements d� ∈ E
satisfy d� �2 d. I.e. what position is its equivalence class in, in their linear order induced
by �2. We define maxvalD = maxd∈D valueD(d), the largest data value in D.

We often use D, D�, etc. to denote data words. We denote the empty word by ∅DW(Σ),
all data words over Σ by DW(Σ), and we call a class of data words a data language.

Example 9.6. Figure 9.1 displays a data word D over the alphabet {ξ1, ξ2} whose
universe is D = {a, b, c, d, e, f}, the order interpretations are

a <1 b <1 c <1 d <1 e <1 f and b ≺2 a ≺2 e ≺2 c ≺2 d ∼2 f,

the interpretation of ξ1 is {a, b, c, e}, and the interpretation of ξ2 is {d, f}. Note e.g. that
D |= S2(a, e) and D |= ¬S2(b, e) ∧ (b �2 e).

As we mentioned, there are various ways of strings over infinite alphabets, and using FO2

with a linear order and a preorder is but one of them. Such languages can also studied
using automata-theoretic means, and we step back to give a brief survey of the literature.
For the moment, we think of data words as strings with a data value attached to each
position, and not necessarily as defined in Definition 9.5. Most of the automata models
used in that context run on data words, as opposed to the Pebble-intervals automata from
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the previous chapter, which run on strings. Register automata, [90, 91, 92], are finite-
state machines on data words which use registers to compare whether data values are
equal, but do not compare their sizes. The projection languages of register automata are
regular, while pebble-interval languages are generally not regular. Pebble automata [91]
are automata on data words which use pebbles in a stack discipline to test for equality
of data values, and data automata [27, 26, 14] extend register automata. They were
introduced to prove the decidability of satisfiability of FO2 on words with a linear order
and a successor relation, with data values which can be compared in terms of equality or
inequality. Their projection languages are accepted by multicounter automata, which are
finite automata on strings extended with counters, that are equivalent to Vector Addition
Systems or Petri Nets [93]. Class Memory Automata [94] have the same expressive power
as data automata. Variable Finite Automata [95] extend finite state automata with
variables ranging over an infinite alphabet. Their expressive power is incomparable to
register automata. Many works have studied these automata models and their variations,
we refer to [96] and [97, Chapter 4] for surveys.

9.3 String projections of data words
Our ultimate goal in this part of the thesis is to show the connection between PIAs and
languages definable in FO2(≤1,�2, S2), for which a tight ExpSpace complexity bound
for the satisfiability problem was already provided by Schwentick and Zeume in [46, 98].
We start our discussion with string projections of data words, since PIAs run on strings.

In the sequel, we will make arguments regarding logical implications between formulas
that are interpreted over data words. For this, it is convenient to define some notation. Let
ϕ1, ϕ2 be FO2(vocDW(Σ)) formulas. We write ϕ1 |=DW(Σ) ϕ2 when D |= ϕ1 implies D |=
ϕ2 for every data word D ∈ DW(Σ). Logical equivalence ≡DW(Σ) is defined analogously.
When the alphabet is clear from context, we omit Σ and write e.g. ϕ1 |=DW ϕ2.

Definition 9.7 (String projection of a data word and the embedding Embstring,D). Let
D ∈ DW(Σ) be a data word of size |D| ≥ 0. The string projection of D, denoted string(D),
is the string w of length |w| = |D| where for every position . ∈ [|w|], w(.) = σ if and only
if D |= σ(d) where d is the unique element of D such that . = |{d� ∈ D | D |= d� ≤1 d}|.
The embedding induced by the string projection, Embstring,D, is an injective function
(indeed a bijection) from [|w|] to D which preserves the order ≤1 of D in terms of the
order of positions in the projection. That is, for any ., .� ∈ [|w|] such that . ≤ .�, we have
that Embstring,D(.) ≤1 Embstring,D(.�).

Note that the projection of the empty structure ∅vocDW(Σ) is the empty string ε, and
only ∅vocDW(Σ) has ε as its string projection. Despite their somewhat technical definition,
string projections of data words are what you would expect; the structure one would
obtain from removing the preorder relation from the data word.
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Example 9.8. The string projection of D from Example 9.6 is

string(D) = ξ1ξ1ξ1ξ2ξ1ξ2

and Embstring,D : [6] → D is given by:

Embstring,D(1) = a Embstring,D(4) = d
Embstring,D(2) = b Embstring,D(5) = e
Embstring,D(3) = c Embstring,D(6) = f

Next we can define projection languages:

Definition 9.9 (Projection language). Let Δ be a data language. The projection language
of Δ is the language containing the string projections of the data words in Δ:

Lstr(Δ) = {w | w = string(D) for some D ∈ Δ}.

We will be interested in (projections of) data languages definable in FO2(≤1,�2, S2), so
for a formula ψ which defines Δ, we write Lstr(ψ) for Lstr(Δ).

Example 9.10. We can define a data language whose projection language is the Dyck
LDyck of well-nested brackets over the alphabet containing σ[ and σ]. This is done by
enforcing the preorder to have exactly one opening bracket and one closing bracket in
each equivalence class, and by enforcing the linear order to be that an opening bracket is
always smaller than the closing bracket in its equivalence class. We describe the formulas
for each component.

• There is at most one opening bracket and at most one closing bracket in an
equivalence class:

∀x∀y
�
(σ[(x) ∧ σ[(y) ∧ x ∼2 y) → x = y

�
∧

�
(σ](x) ∧ σ](y) ∧ x ∼2 y) → x = y

�
• Every opening bracket has a closing bracket in its equivalence class, and vice versa:

∀x
�
σ[(x) → (∃y σ](y) ∧ (x ∼2 y))

�
∧

�
σ](x) → (∃y σ[(y) ∧ (x ∼2 y))

�
• The opening bracket in an equivalence class appears before the closing bracket in

the equivalence class:

∀x∀y(σ[(x) ∧ σ](y) ∧ (x ∼2 y)) → x <1 y

Note that models of the conjunction of these formulas will not necessarily have the
matching brackets in each equivalence class, as we do not express any stack-like relationship
between the linear order and the equivalence relation. However, the projection will result in
a string that has an equal number of opening and closing brackets, with every prefix having
at least as many opening brackets as there are closing ones, which ensures well-nestedness.
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9.4 Normal form for FO2(≤1,�2, S2)
Here we show a normal form for FO2(≤1,�2, S2) akin to the Scott Normal Form, which
will break down the satisfiability problem to smaller atomic parts called types. These
will be used to speak about universal and existential constraints on (pairs of) elements.

Definition 9.11 (1-type, 2-type). A 1-type ν(x) over voc is a maximal consistent
conjunction of atomic and negated atomic formulas over voc with the free variable x. A
2-type θ(x, y) is defined similarly.

Every element d of a data word D realizes a unique 1-type consisting of the atomic and
negated atomic formulas that it satisfies in D. That is, the letter of d appears positively
in its 1-type, and all other letters appear with negation. Similarly, every pair (d, d�) of
elements realizes a unique 2-type which specifies whether d ≤1 d�, etc. Note that when
this 2-type is restricted to its x and y components, it determines the 1-types realized by
d and d�.

Example 9.12. The 1-type realized by the element d of the data D from Example 9.6 in
Figure 9.1 is {ξ2(x), ¬ξ1(x)}. The 2-type realized by the pair (c, d) is given by the positive
atomic formulas (we omit the negated ones) {x <1 y, x ≺2 y, S2(x, y), ξ1(x), ξ2(y)}.

The following normal form theorem has many technical details, but it essentially states
that any formula in FO2(≤1,�2, S2) can be converted to an equivalent (in a sense)
formula which uses types.

Theorem 9.13 (Normal Form). Let ψ be a sentence in FO2(vocDW(Σ)). Then there
exist

• numbers A, B, C ∈ N,

• an alphabet Ξ = {ξa | 1 ≤ a ≤ A},

• a set of 2-types Θ = Θ∀ ∪ Θ∃ with Θ∃ = {θabc | a ∈ [A], b ∈ [B], c ∈ [C]},

• a formula ϕ ∈ FO2(vocDW(Ξ)) of the form ϕ = ϕ∀ ∧ ϕ∃

where

ϕ∀ = ∀x∀y χ(x, y) with χ(x, y) =



θ∈Θ∀

θ(x, y),

ϕ∃ = ϕε ∧ ∀x
A�

a=1
ξa(x) →

B�
b=1

∃y
C


c=1
θabc(x, y),

ϕε =

����
True, ∅vocDW(Σ) |=DW(Σ) ψ

∃x (True), ∅vocDW(Σ) .|=DW(Σ) ψ
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and a letter-to-letter substitution h : Ξ → Σ whose extension to languages is ĥ : 2Ξ� → 2Σ� ,
such that L(ψ) = ĥ(L(ϕ)). Moreover, given ψ, the formula ϕ is computable in ExpSpace
and is of length exponential in |ψ|.

Proof of Theorem 9.13 We denote the class of all finite structures over a vocabulary
voc by Str(voc). To define h, we first need to introduce two functions (called translations),
trans1 and trans2. For simplicity we assume that the empty word satisfies ψ, and therefore
ϕε = True. For the other case, we need to change the following by conjoining each of ϕ0,
ϕ1

∃, and ϕ2
∃ with ϕε = ∃x (True).

The translation trans1. Let

ϕ0 = ∀x∀y χ0(x, y) ∧
B�

b=1
∀x∃y χ0

b(x, y)

be the Scott Normal Form of ψ (Theorem 9.3). The formula ϕ0 is over the vocabulary
vocDW(Σ) ∪ vocSNF where vocSNF is a set of fresh unary relations. The formulas χ0, and
χ0

b are quantifier-free. The length of ϕ0 is linear in that of ψ.

For every model D ∈ DW(Σ) of ψ, there is a unique expansion of D which satisfies ϕ0.
Let

trans1 : Str(vocDW(Σ) ∪ vocSNF) → DW(Σ)

be the function which takes a Str(vocDW(Σ)∪vocSNF)-structure to its reduct to vocDW(Σ).
The following hold:

(i01) for every E ∈ Str(vocDW(Σ) ∪ vocSNF), if E |= ϕ0 then trans1(E) |=DW(Σ) ψ, and

(ii01) for every D ∈ DW(Σ), if D |=DW(Σ) ψ then there exists E ∈ Str(vocDW(Σ)∪vocSNF)
such that trans1(E) = D and E |= ϕ0.

Making the types explicit Next we define a formula ϕ1 which is equivalent to ϕ0.
Let A be a finite set such that {νa | a ∈ A} is the set of 1-types over vocDW(Σ) ∪ vocSNF.
Every quantifier-free formula is equivalent to a disjunction of 2-types. Hence, there is
a set C whose size is at most the number of 2-types over vocDW(Σ) ∪ vocSNF such that
every conjunct ∀x∃y χ0

b(x, y) is equivalent to

∀x
A�

a=1
νa(x) → ∃y

C

c=1

βabc(x, y)
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where βabc(x, y) is 2-type over vocDW(Σ) ∪ vocSNF for every a, b, and c. There is a set
Θβ

∀(x, y) of 2-types over vocDW(Σ) ∪ vocSNF such that

χ0(x, y) ≡



β∈Θβ
∀

β(x, y),

ϕ0 ≡ ∀x∀y



β∈Θβ
∀

β(x, y) ∧
B�

b=1
∀x

A�
a=1

νa(x) → ∃y
C


c=1
βabc(x, y).

Let ϕ1 = ϕ1
∀ ∧ ϕ1

∃, where

ϕ1
∀ = ∀x∀y

�
β∈Θβ

∀
β(x, y),

ϕ1
∃ = ∀x

	A
a=1 νa(x) → 	B

b=1 ∃y
�C

c=1 βabc(x, y).

We have ϕ1 ≡ ϕ0 and from (i01) and (ii01):

(i11) for every E ∈ Str(vocDW(Σ) ∪ vocSNF), if E |= ϕ1 then trans1(E) |= ψ, and

(ii11) for every D ∈ DW(Σ), if D |=DW(Σ) ψ then there exists E ∈ Str(vocDW(Σ)∪vocSNF)
such that trans1(E) = D and E |= ϕ1.

The translation trans2. Let Ξ = {ξa | a ∈ [A]}. For every 2-type β over vocDW(Σ) ∪
vocSNF, let βΞ be the 2-type over vocDW(Ξ) such that:

• For every α(x, y) which is one of R(x, y) or ¬R(y, x) for R ∈ {≤1,�2, S2}, β(x, y) |=
α(x, y) if and only if βΞ(x, y) |= α(x, y).

• For every a ∈ [A] and z ∈ {x, y}, β(x, y) |= νa(z) if and only if βΞ(x, y) |= ξa(z).

Let ϕ2 ∈ FO2(vocDW(Ξ)) be the formula obtained from ϕ1 by replacing the 1-types νa(x)
with ξa(x) and the 2-types β(x, y) and βabc(x, y) with βΞ(x, y) and βΞ

abc(x, y) respectively:

ϕ2 = ϕ2
∀ ∧ ϕ2

∃

where
ϕ2

∀ = ∀x∀y
�

βΞ∈ΘΞ
∀

βΞ(x, y),

ϕ2
∃ = ∀x

	A
a=1 ξa(x) → 	B

b=1 ∃y
�C

c=1 βΞ
abc(x, y).

and where ΘΞ
∀ = {βΞ | β ∈ Θβ

∀}.

Finally, we define the translation

trans2 : DW(Ξ) → Str(vocDW(Σ) ∪ vocSNF).

Let D ∈ DW(Ξ) with universe D. We define trans2(D) as follows:

111



9. Two-variable First Order Logic with Data

• The universe and order relations of trans2(D) are identical to those of D.

• For every ξa ∈ Ξ and d ∈ D, if D |= ξa(d) then d has 1-type νa(x) in trans2(D).

Observe that for a data word D ∈ DW(Ξ) with universe D, we have for all d, d� ∈ D
and every 2-type βΞ, D |= βΞ(d, d�) if and only if trans2(D) |= β(d, d�). Hence, from (i11)
and (i11):

(i2) for every E ∈ DW(Ξ), if E |=DW(Ξ) ϕ2 then trans2(E) |= ϕ1, and

(ii2) for every D ∈ Str(vocDW(Σ) ∪ vocSNF), if D |= ϕ1 then there exists E ∈ DW(Ξ)
such that trans2(E) = D and E |=DW(Ξ) ϕ2.

Let h be a letter-to-letter substitution given as follows: for every ξa ∈ Ξ, take h(ξa) = σa,
where σa is the unique letter in Σ such that νa(x) |= σa(x). Let h be the function
h : DW(Ξ) → DW(Σ) such that for every D ∈ DW(Ξ), h(D) = E , where E has the same
universe and order relations as D, and where the interpretation σE of σ ∈ Σ in E is�

ξ∈h
−1(σ) ξD. Note that h is the composition of trans2 and trans1. Using (i11), (i2), (ii11),

and (ii2), we have:

(ih) for every E ∈ DW(Ξ), E |=DW(Ξ) ϕ2 implies h(E) |=DW(Σ) ψ, and

(iih) for every D ∈ DW(Σ), D |=DW(Σ) ψ implies the existence of E ∈ DW(Ξ) such that
h(E) = D and E |=DW(Ξ) ϕ2.

Let ĥ be the function ĥ : 2Ξ� → 2Σ� which transforms every word u in the input language
by substituting the letters according to h. Now we can prove that L(ψ) = ĥ(L(ϕ2)).
Observe that for E ∈ DW(Ξ),

ĥ({string(E)}) = {string(h(E))}.

Let u ∈ ĥ(L(ϕ2)). There is some E ∈ DW(Ξ) such that E |= ϕ2 and {u} = ĥ({string(E)})
and hence u = string(h(E)). By (ih), h(E) |= ψ, and hence u ∈ ĥ(L(ϕ2)).

Conversely, let u ∈ L(ψ). There is some D ∈ DW(Σ) such that D |= ψ and u = string(D).
By (iih), there is E ∈ DW(Ξ) such that h(E) = D and E |=DW(Ξ) ϕ2. Hence, string(E) ∈
L(ϕ2). We have

ĥ({string(E)}) = {string(h(E))} = {string(D)} = {u},

and hence u ∈ ĥ(L(ϕ2)).

Given ψ, the formula ϕ0 can be computed in polynomial time in the length of ψ. The
size of vocSNF is linear in the length of ψ. W.l.o.g. we can assume that every symbol
in vocDW(Σ) ∪ vocSNF occurs in ψ. Then the number of 1-types and 2-types over
vocDW(Σ) ∪ vocSNF is at most exponential in the length of ψ, and the formulas ϕ1 and
ϕ2 can be computed in exponential space. The theorem follows with the notation slightly
simplified by replacing
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• βΞ with θ,

• βΞ
abc with θabc,

• ΘΞ
∀ with Θ∀,

• ϕ2
∃ with ϕε ∧ ∀x

	A
a=1 ξa(x) → 	B

b=1 ∃y
�C

c=1 θabc(x, y), and

• ϕ2
∀ with ∀x∀y

�
θ∈Θ∀ θ(x, y).

�

Before we finish the chapter, we present an example of the normal form.

Example 9.14. Consider the following formula given in normal form

ϕ = ∀x∀y χ(x, y)∧
∀x

�
(ξ1(x) → ∃y (θ1(x, y) ∨ θ3(x, y))) ∧

(ξ2(x) → ∃y (θ2(x, y) ∨ θ4(x, y)))
�

where θi, i ∈ [4] are given as the following 2-types (omitted clauses are negated):

θ1 = x <1 y ∧ S2(x, y) ∧ ξ1(x) ∧ ξ2(y)

θ2 = y <1 x ∧ S2(y, x) ∧ ξ2(x) ∧ ξ1(y)

θ3 = x <1 y ∧ ¬S2(x, y) ∧ x �2 y ∧ ξ1(x) ∧ ξ2(y)

θ4 = y <1 x ∧ ¬S2(y, x) ∧ y �2 x ∧ ξ2(x) ∧ ξ1(y)

and we define χ(x, y) as the disjunction of 2-types equivalent to (ξ2(x) ∧ ξ2(y)) → x ∼2 y.
A data word D satisfies ϕ if and only if D is the empty structure, or all the following
hold:

(i) the largest element of ≤1 has letter ξ2,

(ii) the smallest element of ≤1 has letter ξ1,

(iii) all elements with letter ξ2 have the maximal value, and

(iv) all elements with letter ξ1 have non-maximal values.

Note that D from Example 9.6 is a model of ϕ, and that the projection language Lstr(ϕ)
is the regular language with regular expression ξ1(ξ1 + ξ2)1ξ2 + ε.
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9. Two-variable First Order Logic with Data

We have shown that any FO2(≤1,�2, S2) formula ψ can be transformed into a formula
ϕ in a normal form that will allow us to check satisfaction by checking a universal
condition that holds for all elements, and existential conditions. Importantly, these
conditions are expressed via 1-types and 2-types, which makes it at least conceivable to
treat them as letters by an automaton. However, we are still dealing with data words,
which are incompatible with PIAs. Transforming data words into strings will require
several technical steps, which we will describe in the next chapter. These transformations
will inevitably lose information about the data values; they must in order to maintain
finiteness of the alphabet our PIA will run on. Nonetheless, this loss will not compromise
our ability to check satisfiability of the original formula. As we will see, it will be enough
for the PIA to categorize data values as: equal to the data value of current position,
smaller than it by 1, or smaller than it by more than 1.
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CHAPTER 10
PIA and FO2 with Two Orders

Here we put the two previous chapters together and show that PIAs capture the logic
FO2(≤1,�2, S2) in the following sense:

Theorem 10.1. Let ψ be an FO2(vocDW(Σ))-sentence. There is a PIA A with alphabet
Ξ and a letter-to-letter substitution h : Ξ → Σ with extension to languages ĥ : 2Ξ� → 2Σ�

such that Lstr(ψ) = ĥ(L (A)).

In simpler terms, every projection language of a definable data language has a PIA which
accepts it, after some substitution of the letters. An automata model for the projection
language provides a closer point of comparison with classical automata models, which
operate on strings, while maintaining the ability to reason about values from infinite
domains.

The result relates logical formulas that define data words to strings accepted by PIA,
a finite-memory automata model. This poses a challenge in navigating the transition
from the formula to the data words it defines, and from data words to string projections
while maintaining a parsimonious relationship between the satisfying data words and the
accepted inputs of the PIA. Beyond the technical difficulty of making these transitions,
for the latter part we also need to reconcile the facts that PIAs have finite memory
and that our data words have data values from an infinite domain. We will achieve
this by careful bookkeeping of which parts of the formula were already satisfied by the
input seen so far, and which remain to be satisfied, while taking advantage of the fact
that in FO2(≤1,�2, S2), data values that are smaller than the largest two are in a way
indistinguishable, and can therefore be simply considered ‘small’.

To show this result, we first rewrite ψ into a formula ϕ in the normal form of Theorem 9.13,
where the quantifier-free formulas are disjunctions of 2-types θ. Here is where the letter
substitution mentioned in Theorem 10.1 comes from. We then construct the PIA Aϕ

for which we will have Lstr(ϕ) = L (Aϕ). The main idea is that since a string is in
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the projection language if and only if it can be extended with a preorder in a way that
satisfies the formula, we will have the automaton Aϕ run on its input in iterations, and we
will associate a data value with each iteration. Conceptually, Aϕ expands its input into
a data word by assigning the data value corresponding to each iteration to the positions
read in that iteration. In order to argue that Aϕ accepts the projection language of ϕ,
we introduce some notions.

First, we define D-task words T which are data words with the same universe as D that
assign tasks to every element of D. A task represents an existential constraint of the form
∃y θ(x, y) on x, which is completed if it is satisfied and promised if not. The alphabet
letter of an element in T indicates a set of assigned tasks and remembers which of them
have been completed. We prove in Proposition 10.32 that D |= ϕ if and only if there
is a D-task word T with certain properties, namely, T is complete and perfect . T is
complete if D fulfills all the assigned tasks, and it is perfect if D fulfills the universal
constraints of ϕ.

In analogy to the iterations of Aϕ we define the trimming of a data word D, as the
substructure of D omitting the elements with the largest data values. We further define
trimmings of D-task words T as the task words of the trimming of D. Aϕ will essentially
try to determine whether a sequence of task word trimmings exists which is consistent
with its input, and which ultimately results in a perfect and completed task word.

In order to bridge the gap between PIAs having limited memory and task words not
being bounded in size, we will use extremal strings, that are bounded in length. Whether
T is complete and whether it is perfect will be expressible in terms of the extremal strings
of its trimmings.

Extremal strings are derived from task words T in two steps. First, the data values
are abstracted to obtain the string abst(T ), by omitting the preorder and partitioning
the elements of T into three layers depending on their data value: the maximal value,
the second to maximal value, and all other values. The alphabet of abst(T ) will consist
of pairs of sets of assigned tasks and layers. Second, we take the substring of abst(T )
corresponding to extremal (maximal or minimal) positions in each layer w.r.t. the tasks.

Then the goal is reduced to finding a sequence of consecutive extremal strings which end
in an extremal string which is perfect and completed. By definition, two extremal strings
will be consecutive if they are the extremal strings of a task word and its trimming, which
seemingly implies that we still need to keep an unbounded structure in the background.
However, we will show in Lemma 10.46 that checking whether two extremal strings
are consecutive can be done syntactically without a concrete task word, allowing us to
indeed reduce the problem of determining whether a data word satisfies ϕ to finding an
appropriate sequence of extremal strings (Lemma 10.33).
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10.1 Task words
In what follows, we let ϕ be given in normal form as in Theorem 9.13. Recall that
ϕ = ϕ∀ ∧ ϕ∃ where

ϕ∃ = ϕε ∧ ∀x
A�

a=1
ξa(x) →

B�
b=1

∃y
C


c=1
θabc(x, y)

As we mentioned, for finding an assignment of data values that satisfies ϕ∃, we use
task words, which are data words whose elements are additionally assigned tasks. A
task represents an existential constraint along with the information on whether it was
completed or not. As the structure of ϕ∃ indicates, every element must satisfy B
existential constraints, where each ∃y

�C
c=1 θabc(x, y) for b ∈ [B] may be satisfied due

to some 2-type θabc. The set of tasks assigned to an element will correspond to a set
of 2-types with which the satisfaction of ϕ∃ may be witnessed. Such sets will be called
set-types. We will now make these notions precise.

Set-types Recall our notation for the existential constraints

Θ∃ = {θabc | a ∈ [A], b ∈ [B], c ∈ [C]}.

Given a ∈ [A], an a-set-type is a choice of 2-types θabc for satisfying the right-hand side
of the implication for ξa. That is, a set of 2-types ω ⊆ Θ∃ that contains some θabc for
every b ∈ [B]. Set-types represent the existential constraints an element needs to fulfill,
and they will be used to define task words, which specify whether these constraints are
satisfied or not.

Denote by Ωa the set of a-set-types and let Ω = �
a∈[A] Ωa. For a set-type ω ∈ Ω, let

ω(x) = 	
θ∈ω ∃y θ(x, y) be the existential constraints implied by ω. Note that there is a

unique letter, denoted ξω ∈ Ξ, such that ω(x) |=DW(Ξ) ξω(x).

Example 10.2. For ϕ from Example 9.14, we have A = 2, B = 1, and C = 2. The
set-types of ϕ are

{θ111}, {θ112}, {θ211}, {θ212},

where
θ111 = θ1, θ112 = θ3, θ211 = θ2, θ212 = θ4.

Hence, we have
Ω = {{θ1}, {θ2}, {θ3}, {θ4}},

ξ{θ1} = ξ{θ3} = ξ1,

ξ{θ2} = ξ{θ4} = ξ2.
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Tasks Tasks carry with them the additional information on whether they were fulfilled
or not. As data values are added to a string, tasks can go from being promised to being
completed, i.e. go from storing the assumption they will be satisfied in some extension,
to having this satisfaction established. Denote

TasksC = {Cθ | θ ∈ Θ∃}, TasksP = {Pθ | θ ∈ Θ∃}, Tasks = TasksC ∪ TasksP.

We refer to Cθ as completed tasks and to Pθ as promised tasks. Let ts ⊆ Tasks and ω ∈ Ω.
We say a task ts realizes ω if for every θ ∈ ω, ts contains exactly one of Cθ and Pθ and
nothing else. That is, ts indicates a set of assigned tasks and remembers which of them
have been completed. Obviously, not all ts ⊆ Tasks realize a set-type, and we say ts is
an Ω-realization if there exists a set-type ω ∈ Ω such that ts realizes ω. We denote

2Tasks
Ω = {ts ⊆ Tasks | ts is a Ω-realization}.

If ts ∈ 2Tasks
Ω , we denote by ω(ts) the unique set-type that ts realizes. We denote

2TasksC
Ω = 2Tasks

Ω ∩ 2TasksC , 2TasksP
Ω = 2Tasks

Ω ∩ 2TasksP .

Example 10.3. The set-types Ω from Example 10.2 are singletons, thus each ts ∈ 2Tasks
Ω

is a singleton as well. Let tsC
i = {Cθi} and tsP

i = {Pθi} for i ∈ [4]. Then we have

2Tasks
Ω = {tsC

i | i ∈ [4]} ∪ {tsP
i | i ∈ [4]},

and {Cθi
} and {Pθi

} are {θi}-realizations for i ∈ [4].

We first define task words in the context of some data word D. A D-task word essentially
assigns tasks to the elements of D by assigning to each d ∈ D, instead of a letter ξa, a
task ts that realizes an a-set-type ω that contains Cθ for each θ ∈ ω that d satisfies, and
Pθ for the remaining θ ∈ ω.

Definition 10.4 (Task word). Let D be a data word over Ξ. A D-task word is a data
word T over 2Tasks

Ω which has the same universe and order relations as D, where for
every d ∈ D with T |= ts(d),

1. D |= ξω(ts)(d), and

2. for every θ ∈ ω(ts), Pθ ∈ ts if and only if D |= ¬∃y θ(d, y).

A task word T is a D-task word for some data word D, and a task word is completed if

T |= ϕε ∧ ∀x



ts∈2TasksC
Ω

ts(x).
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a

tsC
3

b

tsC
3

c

tsC
1

d

tsC
2

e

tsC
3

f

tsC
4

≤1

�2

Figure 10.1: The task word T from Example 10.5.

Example 10.5. We define a task word T for the data word D from Example 9.6,
presented in Figure 10.1. The unary relations in the vocabulary of T are 2Tasks

Ω from
Example 10.3. The universe of T is {a, b, c, d, e, f}, and the order relations ≤1, �2, and
S2 are the same as in D. The interpretation of the letter tsC

1 is {c}, that of tsC
2 is {d},

that of tsC
3 is {a, b, e}, and that of tsC

4 is {f}, and the interpretations of the remaining
letters are empty. Note that since D |= ϕ, all the existential constraints are satisfied, thus
we were able to construct a completed task word T .

Not surprisingly, the existence of a completed D-task word implies D satisfies the
existential constraints, and vice verse:

Lemma 10.6. Let D be a data word over Ξ. There exists a completed D-task word if
and only if D |= ϕ∃.

Proof. If D is the empty word ∅DW(Ξ), then the empty word ∅2Tasks
Ω

over the vocabulary
2Tasks

Ω is the only D-task word. It is easy to verify that ∅2Tasks
Ω

is a completed D-task word
if and only if D |= ϕ∃. From now on, we assume D is not the empty word. Note that
D |= ϕε.

Assume D |= ϕ∃. We describe a D-task word as follows. Let T have the same universe
and order relations as D. For every d ∈ D, we define the unique tsd ∈ 2TasksC

Ω for which
T |= tsd(d) as follows. Let a ∈ [A] be such that D |= ξa(d). Since D |= ϕ∃, we have

D |=
B�

b=1
∃y

C

c=1

θabc(d, y).

Therefore there exist db ∈ D where b ∈ B and cb ∈ [C] where b ∈ [B] such that
D |= θabcb

(d, db) for every b ∈ [B]. Let tsd = {Cθ | θ ∈ ωd}, and set T |= tsd(d).
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The set ωd = {θabcb
| b ∈ [B]} is a set-type and tsd realizes ωd. Therefore,

T |= ∀x



ts∈2TasksC
Ω

ts(x).

For every d ∈ D, D |= ξω(d), and for every θ ∈ ωd, we have Pθ /∈ tsd and D |= ∃y θ(d, y).
Hence, T is a completed D-task word.

For the other direction, let T be completed D-task word. Let d ∈ D and a ∈ [A] such
that D |= ξa(d). Since T is a completed task word, there exists tsd ∈ 2TasksC

Ω such that
T |= ts(d). Let ωd be the set-type such that ts realizes ωd. There exist cb ∈ [C] where
b ∈ [B] such that ωd = {θabcb

| b ∈ [B]} and tsd = {Cθabcb
| b ∈ [B]}. Since T is a task

word, D |= ∃y θ(d, y). Consequently,

D |=
B�

b=1
∃y

C

c=1

θabc(d, y)

for every d ∈ D and a ∈ [A], and hence D |= ϕ∃.

If a completed D-task word exists, i.e. D |= ϕ, we would want the string projection
string(D) to be accepted by our PIA. For this, we will want to be able to argue that
the automaton has a run on string(D) from which we could reconstruct D. Toward this,
we discuss the sequence of T1, . . . , Tn leading to a completed task word, where we keep
extending the current one with elements that are assigned a new larger data value, while
correctly updating promised into completed tasks. The elements of this sequence, which
themselves are task words, will be called trimmings as they are thought of as the result of
removing the elements with maximal data value from the next task word. So in a sense,
this sequence is reversed to how one would obtain it intuitively – which is by starting
with a completed task word and iteratively trimming it.

Definition 10.7 (Trimmings). The trimming of a data word D, denoted D\1, is the sub-
structure of D induced by removing the elements with the maximal data value. Generally,
the e-trimming of D is denoted by D\e, and it is the substructure of D induced by those
elements d for which valueD(d) ≤ maxvalD − e. That is, removing the elements with the
e largest data values. Note that D\0 = D, and if e ≥ maxvalD, then D\e = ∅Σ.

Note that this definition simply removes some elements and no more. But for task words,
we would like to update the status of each task; that is, if a constraint that is satisfied in
the larger structure no longer holds in the trimmed version, we would like to have its
task go from complete to promised. For this, we first show the following lemma which
states that there is one ‘correct’ way to update the tasks:

Lemma 10.8. Let T be a D-task word for some data word D over Ξ, and let D1 denote
the universe of D\1. There is a unique D\1-task word T1 such that ω(ts) = ω(ts1) for
every d ∈ D1 and ts, ts1 ∈ 2Tasks

Ω with T |= ts(d) and T1 |= ts1(d).
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Proof. First we show the existence of such T1. We denote the universe of T1 by T1. Let
T1 be the D\1-task word given as follows. For every d ∈ T1, let ts ∈ 2Tasks

Ω be such that
T1 |= ts(d), and let ts1 be:

ts1 = {Cθ | θ ∈ ω(ts), D\1 |= ∃y θ(d, y)} ∪ {Pθ | θ ∈ ω(ts), D\1 |= ¬∃y θ(d, y)}.

Then T1 |= ts1(d). Since ω(ts1) = ω(ts), Condition 2 in Definition 10.4 holds. Since
T is a D-task word, for every d ∈ T1 we have D |= ξω(ts)(d), implying Condition 1 in
Definition 10.4 holds.

It remains to show that T1 is unique. Assume for contradiction that there exists
another D\1-task word T̃ satisfying the statement of the lemma. Then there is some
d ∈ D1 and distinct ts1, t̃s ∈ 2Tasks

Ω such that T1 |= ts1(d) and T̃ |= t̃s(d). We have
ω(t̃s) = ω(ts) = ω(ts1), and hence there is θ ∈ ω(ts) such that either Pθ ∈ ts1 − t̃s or
Cθ ∈ ts1 − t̃s. In either case, since T1 satisfies Condition 2 in Definition 10.4, T̃ does not
satisfy Condition 2, in contradiction to the assumption that T̃ is a D\1-task word.

Now the following is well-defined:

Definition 10.9 (Trimmed task word). For a D-task word T , denote by T \\1 the unique
D\1-task word which satisfies Lemma 10.8. By extension, denote by T \\e the unique
D\e-task word obtained from T by applying trimming e times.

Note that Definition 10.7 also applies to task words, as they are themselves data words.
However, we will never use T \1 and trimmings of task words will always refer to T \\1.

The following definition is given in order to make our treatment less cumbersome.

Definition 10.10 (Consecutive task words). We say that two task words T �, T are
consecutive if T � is a trimming of T .

Example 10.11. D\1 is the substructure of D from Example 9.6, where the elements
with the largest data value, d and f , were removed. This results in the substructure with
universe {a, b, c, e}, presented in Figure 10.2. The D\1-task word T \\1 is given as follows.
The universe of T \\1 is {a, b, c, e}, and the order relations ≤1, �2, and S2 are the same
as in D\1. Note that the elements d, f , which are missing from D\1, contributed in D
to the satisfaction of ϕ∃. Thus, T \\1 has promised tasks and is no longer a completed
task word, with the interpretations: tsP

1 = {c}, tsP
3 = {a, b, e}, and the interpretations of

the remaining letters being empty. Figure 10.3 presents T \\1. Note that the tasks for the
elements present in both structures realize the same set-types.

The following proposition simply rephrases Lemma 10.6 to use our notion of consecutive-
ness.

Proposition 10.12. For every data word D over Ξ, D |= ϕ∃ if and only if there is a
sequence T1 . . . , Tn of consecutive task words, where Tn is a completed D-task word.
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a

ξ1

b

ξ1

c

ξ1

e

ξ1

≤1

�2

Figure 10.2: The trimming D\1 from Example 10.11.

a

tsP
3

b

tsP
3

c

tsP
1

e

tsP
3

≤1

�2

Figure 10.3: The trimmed task word T \\1 from Example 10.11.

10.2 From task words to extremal strings
To be able to decide the existence of the sequence from Proposition 10.12 with a PIA
that can only store a bounded amount of information, we define extremal strings, which
will contain all relevant information regarding promised and completed tasks.

Lemma 10.13. Let D be a data word and let d, d� be elements with the same 1-type such
that D |= d ≤1 d� ∧ d ∼2 d�. Let θ ∈ Θ∃.

1. If θ(x, y) |= x ≤1 y and D |= ∃y θ(d�, y), then D |= ∃y θ(d, y).

2. If θ(x, y) |= y ≤1 x and D |= ∃y θ(d, y), then D |= ∃y θ(d�, y).

Proof. 1. Since D |= d ≤1 d� ∧ d ∼2 d�, and d, d� have the same 1-type, for any element
d�� such that D |= d� ≤1 d��, the 2-type of (d�, d��) is the same as the 2-type of (d, d��).
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Since θ(x, y) |= x ≤1 y, if D |= ∃y θ(d�, y) there exists some d�� ≥1 d� such that
D |= θ(d�, d��). Therefore also D |= θ(d, d��) and D |= ∃y θ(d, y).

2. Analogous to the previous case.

First we define data abstractions of task words, that abstract the data values of elements
into three layers: the top layer for elements with maximal data value, the second to top
layer for elements with the second largest data value, and the layer consisting of the
remaining elements. The notion of data abstraction is inspired by the related notion of
interval abstraction [99] in program analysis.

Formally, data abstractions are defined as strings over the alphabet

Γ = Layers × 2Tasks
Ω where Layers = {1top, 2top, rest}.

The restrictions of Γ to completed and promised tasks are

ΓC = Layers × 2TasksC
Ω , ΓP = Layers × 2TasksP

Ω ,

while Γh = {h} × 2Tasks
Ω is its restriction to some h ∈ Layers. For a symbol γ = (h, ts) in

Γ, we denote ts(γ) = ts for its task component and ω(γ) = ω(ts) for the set-type realized
by its task component.

Definition 10.14 (Data abstraction). Let D be a data words over Ξ and let T be a
D-task word. Let A be the data word over Γ defined as follows. A has the same universe
and order relations as T . For every d ∈ D, let tsd be s.t. T |= tsd(d), and define
A |= γh(d), where γh = (h, tsd) if and only if

1. h = 1top and valueD(d) = maxvalD,

2. h = 2top and valueD(d) = maxvalD − 1, or

3. h = rest and valueD(d) ∈ [maxvalD − 2].

The data abstraction abst(T ) is the string projection string(A).

As in Definition 9.7, also here we have an embedding induced by the data abstraction,
which we denote Embabst,T .

Example 10.15. The structure A from Definition 10.14 for T from Example 10.5 is
presented in Figure 10.4, and we have

abst(T ) = (rest, tsC
3 )(rest, tsC

3 )(2top, tsC
1 )(1top, tsC

2 )(rest, tsC
3 )(1top, tsC

4 )

and for T \\1 from Example 10.11 we have

abst(T \\1) = (rest, tsP
3 )(rest, tsP

3 )(1top, tsP
1 )(2top, tsP

3 )
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a

b

c

d

e

f

(rest, tsC
3 )

(rest, tsC
3 )

(2top, tsC
1 )

(1top, tsC
2 )

(rest, tsC
3 )

(1top, tsC
4 )

≤1

�2

Figure 10.4: The structure A from Example 10.15.

The embeddings Embabst,T and Embabst,T \\1 are given by:

Embabst,T (1) = a Embabst,T \\1(1) = a

Embabst,T (2) = b Embabst,T \\1(2) = b

Embabst,T (3) = c Embabst,T \\1(3) = c

Embabst,T (4) = d Embabst,T \\1(4) = e

Embabst,T (5) = e

Embabst,T (6) = f

Extremal strings are derived from task words T by taking their data abstractions, and
then taking the substring of abst(T ) corresponding to extremal (maximal or minimal)
positions in each layer with respect to the tasks.

Definition 10.16 (ext, extremal strings). Let w ∈ Γ1. We define subsets of [|w|], for
every h ∈ Layers and θ ∈ Θ∃.

The positions with a specific constraint at a specific layer:

Posh,θ(w) = {. ∈ [|w|] | w(.) = (h, ts), θ ∈ ω(ts)}
The positions in the rest layer with a specific promised constraint:

Posrest,Pθ
(w) = {. ∈ [|w|] | w(.) = (rest, ts), Pθ ∈ ts}

Which are used to define the relevant positions of promised tasks; e.g. if θ requires there be
a larger witness, we would want to keep the largest position since if the task is completed
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10.2. From task words to extremal strings

for that position, then it also completed for the other positions.

ExtPosθ(w) =
�

{. | . = max(Posrest,Pθ
(w))} , θ |= x ≤1 y

{. | . = min(Posrest,Pθ
(w))} , θ |= y <1 x

We also take the extremal positions for a specific layer and constraint, regardless of its
status:

ExtPosh,θ(w) = {. | . = max(Posh,θ(w)) or . = min(Posh,θ(w))}
And finally, we put it all together:

ExtPos(w) =
�

θ∈Θ∃

� �
h∈Layers

ExtPosh,θ(w)
�

∪ ExtPosθ(w)

For w ∈ Γ1 with ExtPos(w) = {.1, . . . , .r} and .1 < · · · < .r, We define the function
ext : Γ1 → Γ1 by

ext(w) = w(.1) · · · w(.r)

i.e. ext(w) is the substring of w composed of the positions in ExtPos(w). Again, given
w, this operation induces an embedding from the extremal string to w, which we denote
Embext,w. Note that we have ext(ε) = ε, and that for all . ∈ [|s|], we have Embext,w(.) ∈
ExtPos(w).

At this point we also define the following sets, which will be useful later

Posh(w) = {. ∈ [|w|] | w(.) ∈ Γh}, Pos<1top(w) = {. ∈ [|w|] | w(.) ∈ Γ2top ∪ Γrest}

Note that for all w ∈ Γ1, s = ext(w) implies ext(s) = s.

Let EXT(Γ) = {ext(w) | w ∈ Γ1}. If s ∈ EXT(Γ), we say s is an extremal string.

Example 10.17. Let w denote the data abstraction of T from Example 10.15, and recall
it is given by:

w = (rest, tsC
3 )(rest, tsC

3 )(2top, tsC
1 )(1top, tsC

2 )(rest, tsC
3 )(1top, tsC

4 )

We have ExtPos(w) = {1, 3, 4, 5, 6}, since the letter at position 2 appears both to the left,
at position 1, and to the right, at position 5. Let s = ext(w), then s is the 5-letter string
over Γ given by:

s = (rest, tsC
3 )(2top, tsC

1 )(1top, tsC
2 )(rest, tsC

3 )(1top, tsC
4 )

and is the substring obtained from w by removing the non-extremal position 2. Let w�

denote the data abstraction of T \\1, recall that:

w� = (rest, tsP
3 )(rest, tsP

3 )(1top, tsP
1 )(2top, tsP

3 ).

We have ExtPos(w�) = [4]. Let s� = ext(w�), then s� = w�.
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The embedding Embext,w is given by:

Embext,w(1) = 1 Embext,w(3) = 4 Embext,w(5) = 6

Embext,w(2) = 3 Embext,w(4) = 5

The embedding Embext,w� is the identity function Embext,w�(i) = i.

In the sequel, we will abuse notation and write ext(T ) to mean ext(abst(T )).

We will also be interested in the positions of a string which are not extremal, as the
automaton will have to consume these in a way that is consistent with the sequence of
extremal strings it is trying to find.

Definition 10.18. Let s be an extremal string and let . ∈ [|s|]. Define

Γnot ext(s, .) = {γ ∈ Γ | ext(s) = ext(s(1) · · · s(. − 1)γs(.) · · · s(|s|))}
i.e. the set of letters that can augment s at position . without being extremal. For
h ∈ Layers, define

Γnot ext
h (s, .) = Γh ∩ Γnot ext(s, .)

Since we have a bounded number of constraint and a bounded number of times a constraint
can appear in extremal strings, we have the following crucial property:

Lemma 10.19. EXT(Γ) ⊆ Γ7·|Θ∃|.

Proof. Let s = ext(w) be an extremal string. For every θ ∈ Θ∃ and h ∈ Layers, we have
|ExtPosh,θ(w)| ≤ 2 and |ExtPosθ(w)| ≤ 1. Hence |ExtPos(w)| ≤ 7 · |Θ∃|.

Analogously as for task words, an extremal string is complete if all its tasks are completed.

Definition 10.20 (Completed extremal strings). For an extremal string s, if s ∈ Γ+
C,

i.e. if all the tasks appearing in s are completed, or if s = ε and ∅DW(Σ) |=DW(Σ) ψ, we
say s is a completed extremal string.

Consecutive extremal strings are the extremal strings of a task word and its trimming.
Note that the same pair of consecutive extremal strings may be obtained from different
task words and their trimmings, as they may contain different non extremal positions.

Definition 10.21 (Consecutive extremal strings). A pair (s�, s) of extremal strings is
consecutive if there is a task word T s.t. s� = ext(T \\1) and s = ext(T ).

The crucial property of consecutive extremal strings will be that they define a partial
embedding between their positions independently from the choice of the task word, but
it is technically challenging to show this, so we reserve the proof to a later section.
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Example 10.22. Note that the pair (s�, s) from Example 10.17 is consecutive, since
s� = ext(T \\1) and s = ext(T ).

Now we can rephrase Proposition 10.12 to use the terminology of extremal strings:

Proposition 10.23. There is D |= ϕ∃ if and only if there is a sequence of consecutive
extremal strings where the last one is completed.

10.2.1 Perfect extremal strings for ϕ∀

We now focus on the subformula ϕ∀. To ensure its satisfaction, we introduce perfect
extremal strings. Let α, β ∈ Γ where either α, β, or both, is in Γ1top. The formula
perfectα,β(x, y) has a very syntactic definition below, which extracts the 2-type of elements
in a data word according to the letters α and β assigned to them under the data
abstraction.

Definition 10.24 (The formula perfectα,β(x, y)). Let α, β ∈ Γ with either α or β, or
both, in Γ1top. Let α = (hα, tsα) and β = (hβ , tsβ). We define

1. perfectα(x) = ξω(tsα)(x);

2. perfectβ(y) = ξω(tsβ)(y);

3. perfectα,β,≤1(x, y) = x <1 y;

4. perfectα,β,�2(x, y) =

����
x �2 y, hα .= 1top
y �2 x, hβ .= 1top
x ∼2 y, Otherwise;

5. perfectα,β,S2(x, y) =

��������������

S2(x, y), hα = 2top
S2(y, x), hβ = 2top
¬S2(x, y), hα = rest
¬S2(y, x), hβ = rest
True, Otherwise

Define perfectα,β(x, y) in the vocabulary FO2(vocDW(Ξ)) as the formula:

perfectα(x) ∧ perfectβ(y) ∧
�

bin∈{≤1,�2,S2}
perfectα,β,bin(x, y).

It follows from the above definition that over data words, perfectα,β(x, y) implies for
every atomic formula either itself or its negation.
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Observation 10.25. Let α, β ∈ Γ such that either α, β, or both are in Γ1top. There
exists a 2-type θ(x, y) such that perfectα,β(x, y) ≡DW(Ξ) θ(x, y).

As a result, the 2-type of elements in a task word (where at least one of them has maximal
data value) can be described by the appropriate perfectα,β formula. We first show that
a data word satisfies each formula perfectw(%1),w(%2)(d1, d2) induced by a such a pair of
elements. Since it is essentially equivalent to their 2-type, this is not surprising:

Lemma 10.26. Let T be a D-task word with universe D and let w = abst(T ). Let
d1, d2 ∈ D be such that D |= d1 <1 d2 and at least one of them has the largest data
value, i.e. maxvalD ∈ {valueD(d1), valueD(d2)}. Let .1 and .2 be such that d1 is mapped
to position .1 in abst(T ) and d2 is mapped to position .2 in abst(T ). Then .1 < .2 and
D |= perfectw(%1),w(%2)(d1, d2).

Proof. It is given that D |= perfectw(%1),w(%2),≤1(d1, d2). Since Embabst,T is order-preserving
and D |= d1 <1 d2, we get .1 < .2. Since T is a task word, there exist ts1, ts2 ∈ 2Tasks

Ω

such that T |= ts1(d1) and T |= ts2(d2). By definition of a task word, we have that
D |= ξω(ts1)(d1) and D |= ξω(ts2)(d2), and therefore D |= perfectw(%1)(d1)∧perfectw(%2)(d2).

We consider one of the cases for perfectw(%1),w(%2),�2(x, y). The other cases can be treated
analogously. If perfectw(%1),w(%2),�2(x, y) = x �2 y then w(.1) /∈ Γ1top while w(.2) ∈ Γ1top.
By definition of w = abst(T ), we have that valueD(Embabst,T (.1)) < maxvalD and
valueD(Embabst,T (.2)) = maxvalD. Hence, D |= perfectw(%1),w(%2),�2(d1, d2).

We consider one of the cases for perfectw(%1),w(%2),S2(x, y). The other cases can be treated
analogously. If perfectw(%1),w(%2),S2(x, y) = ¬S2(y, x) then w(.1) ∈ Γ1top while w(.2) ∈
Γrest. By definition of w = abst(T ), we have that valueD(Embabst,T (.1)) = maxvalD and
valueD(Embabst,T (.2)) ≤ maxvalD−2. Therefore, we have D |= perfectw(%1),w(%2),S2(d1, d2).

This leads us to the definition of perfect strings and task words:

Definition 10.27 (Perfect string, perfect task word). Let w ∈ Γ1. We say w is a perfect
string if for every two positions .1 < .2 in w such that {.1, .2} ∩ Pos1top(w) .= ∅, it holds
that

perfectw(%1),w(%2)(x, y) |=DW(Ξ) χ(x, y) ∧ χ(y, x).

Note that the empty string ε is perfect. A task word T is perfect if it is either empty, or
if ext(T ) is perfect and its trimming is perfect.

Note the recursive nature of the definition.

Example 10.28. Let α = (2top, tsC
1 ) and β = (1top, tsC

2 ). Then perfectα,β(x, y) is
given by:

perfectα,β(x, y) = ξ1(x) ∧ ξ2(y) ∧ (x <1 y) ∧ (x �2 y) ∧ S2(x, y).
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The 2-type θ to which perfectα,β(x, y) is equivalent over DW(Ξ) is given by the

perfectα,β(x, y) ∧ ¬ξ2(x) ∧ ¬ξ1(y) ∧ (y .<1 x) ∧ (y .�2 x) ∧ ¬S2(y, x).

We have that w from Example 10.17 is a perfect string, and

perfectα,β(x, y) |=DW(Ξ) χ(x, y) ∧ χ(y, x).

Next we show that perfectα,β(x, y) implies that the universal constraints are satisfied:

Lemma 10.29. Let α, β ∈ Γ such that at least one of them is in Γ1top and such that

perfectα,β(x, y) .|=DW(Ξ) χ(x, y) ∧ χ(y, x).

Then it holds that
∃x ∃y perfectα,β(x, y) |=DW(Ξ) ¬ϕ∀.

Proof. Since perfectα,β(x, y) .|=DW(Ξ) χ(x, y)∧χ(y, x), there exists D and elements d1, d2 ∈
D such that D |= perfectα,β(d1, d2) and D .|= χ(d1, d2) ∧ χ(d2, d1). For every data word
D� and every two elements d�

1, d�
2 ∈ D� such that D� |= perfectα,β(d�

1, d�
2), the 2-type of

(d�
1, d�

2) is the same as the 2-type of (d1, d2) by Observation 10.25. Denote this 2-type by
θ(x, y). Since D .|= χ(d1, d2) ∧ χ(d2, d1), we have that either θ(x, y) /∈ Θ∀ or θ(y, x) /∈ Θ∀
and therefore also D� .|= χ(d�

1, d�
2) ∧ χ(d�

2, d�
1).

To guarantee that χ is satisfied, we will use formulas of the form perfectα,β(x, y) arising
from all the (abstractions and extremal strings of the) trimmings in the sequence consid-
ered. This will cover all pairs of elements d1, d2 of the data word, since for every pair
there is a (possibly iterated) trimming in which both d1 and d2 appear, and one of them
has the maximal data value. First we show the following:

Lemma 10.30. Let w ∈ Γ+. Then w is perfect if and only if ext(w) is perfect.

Proof. Let s = ext(w).

Assume that w is perfect. Let .1 < .2 be positions in s such that at least one of s(.1),
s(.2) is in Γ1top. For i = 1, 2, let .�

i = Embext,w(.i). We have w(.�
i) = s(.i) and .�

1 < .�
2.

Therefore
perfects(%1),s(%2)(x, y) = perfectw(%�

1),w(%�
2)(x, y).

Since w is perfect, by definition we have that

perfects(%1),s(%2)(x, y) |=DW(Ξ) χ(x, y) ∧ χ(y, x).

Now assume that s is perfect. Let .�
1 < .�

2 be positions in w such that at least one of w(.�
1)

and w(.�
2) is in Γ1top. Denote .��

1 = min{. | w(.) = w(.�
1)} and .��

2 = max{. | w(.) = w(.�
2)}
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and note that .��
1, .��

2 ∈ ExtPos(w). For i = 1, 2, let .i be such that .��
i = Embext,w(.i). We

have w(.�
i) = w(.��

i ) = s(.i) for i = 1, 2 and .1 < .2. Hence,

perfectw(%�
1),w(%�

2)(x, y) = perfects(%1),s(%2)(x, y),

and since s is perfect,

perfectw(%�
1),w(%�

2)(x, y) |=DW(Ξ) χ(x, y) ∧ χ(y, x).

Finally, we can characterize the satisfaction of the universal constraints in terms of task
words.

Lemma 10.31. Let T be a D-task word. T is perfect if and only if D |= ϕ∀.

Proof. Assume T is perfect. Let d1 and d2 be distinct elements of D. We show D |=
χ(d1, d2). Let

e = maxvalD − max{valueD(d1), valueD(d2)}.

Denote the universe of D\e by D�. Note that d1 and d2 are in D� and that one of them
has maximal data value for that substructure, i.e.

maxvalD\e ∈ {valueD\e(d1), valueD\e(d2)}.

Since T is a perfect task word, we have that ext(T \\e) is a perfect string, and by
Lemma 10.30, so is the string before taking the extremal substring we = abst(T \\e). By
Lemma 10.26, either D\e |= perfectwe(%1),we(%2)(d1, d2) or D\e |= perfectwe(%2),we(%1)(d2, d1).
In either case, since abst(T \\e) is perfect, we have that D\e |= χ(d1, d2). Since χ(x, y) is
quantifier-free and D\e is a substructure of D, we also have that D |= χ(d1, d2).

For the other direction, assume D |= ϕ∀. Assume for contradiction that there is an e such
that ext(T \\e) is not perfect. Then by Lemma 10.30, we = abst(T \\e) is also not perfect.
That is, there exist positions .1 < .2 in we such that at least one of we(.1), we(.2) is in
Γ1top, and such that

perfectwe(%1),we(%2)(x, y) .|=DW(Ξ) χ(x, y) ∧ χ(y, x).

For i = 1, 2, let di = Embabst,T \\e(.i) be the elements corresponding to these positions.
We have d1 < d2. By the definition of data abstraction, since one of the positions carries
a letter from Γ1top, we have that one of these elements has maximal data value, i.e.
maxvalD\e ∈ {valueD\e(d1), valueD\e(d2)}. By Lemma 10.26, we have

D\e |= perfectwe(%1),we(%2)(d1, d2)

and by applying Lemma 10.29 with α = we(.1) and β = we(.2), we have that D\e .|= ϕ∀.
Since D\e is a substructure of D and ϕ∀ is universal, we also have that D .|= ϕ∀ in
contradiction to our assumption.
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Putting together the universal and existential constraints, as a corollary of Lemma 10.31
and Lemma 10.6, we get the following characterization of satisfiability:

Proposition 10.32 (Characterization of satisfiability in terms of task words). For every
data word D ∈ DW(Ξ), D |= ϕ if and only if there exists a perfect completed D-task word.

And putting the above with Proposition 10.23 gives us the goal our automaton will try
to achieve:

Proposition 10.33. There is D |= ϕ if and only if there is a sequence of consecutive
perfect extremal strings where the last one is completed.

We still have a major hurdle. If we would like to have a PIA which stores extremal strings,
we need to find a way to check their consecutiveness without using a concrete task word.
In the next section, we lay the groundwork for a merely syntactic characterization of
consecutive extremal strings. This is probably the most technically challenging step, and
it involves closely inspecting embeddings induced by the abst and ext operations.

10.3 Characterizing consecutive extremal strings
As the automaton guesses a sequence of extremal strings as in Proposition 10.33, it will
place pebbles from an extremal string to a consecutive one. In addition to verifying
consecutiveness, this requires the automaton to know which positions in consecutive
extremal strings match, in the sense that they correspond to the same position in the
input w. When we (conceptually) add a new data value to the input positions, the
positions in the extremal string to which elements of the data word are mapped may shift
around or disappear completely. For example, a new Γ1top letter may pop up between
already-existing Γrest letters, causing their position in the current extremal string to have
shifted w.r.t. the previous extremal string. Of course, the positions still correspond to
the same elements as before, and we would like to keep track of this.

Verifying consecutiveness and keeping track of matching positions is easy if we have the
underlying task word as a sort of common ground. Indeed, for a given task word T and
an extremal string s� = ext(T ), there is a bijective mapping from the extremal elements
of T that s� stores, to their positions in s�. The same holds for T \\1 and s = ext(T \\1).
So to get a (partial) mapping from the positions of s to the positions of s� such that the
element of T that is referred to is preserved, we can inverse Embext ◦ abst,T \\1 and compose
it with Embext ◦ abst,T . This might be a partial mapping since some positions may no
longer be extremal once the abstracted data values are updated. This partial embedding
from s to s� via T which keeps track of the matching positions will be a stepping stone
towards eliminating T altogether.

To make this precise, we define the extremal elements of a task word:

131
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Definition 10.34 (ExtElem(T )). For a D-tasked word T , let

ExtElem(T ) = Embabst,T (ExtPos(abst(T ))).

That is, those elements of T who get projected in the data abstraction to a position which
is extremal. We denote ExtElemh,θ(T ) and ExtElemθ(T ) similarly.

Additionally, we describe the relationship between extremal elements of a task word to
the extremal elements of its trimming:

Lemma 10.35. Let T be a D-task word with universe T . For every θ ∈ Θ∃:

1. ExtElem2top,θ(T ) = ExtElem1top,θ(T \\1)

2. ExtElemθ(T ) ⊆ ExtElem2top,θ(T \\1) ∪ ExtElemθ(T \\1)

3. ExtElemrest,θ(T ) ⊆ ExtElem2top,θ(T \\1) ∪ ExtElemrest,θ(T \\1)

The proof of this lemma is straightforward, but is rather technical since we go back and
forth between data words, task words, and their trimmings and abstractions.

Proof. Let w = abst(T ) and w� = abst(T \\1).

1. Let d ∈ D. Since valueT (d) = valueT \\1(d) + 1, We have w(Emb−1
abst,T )(d) ∈ Γ2top

if and only if w�(Emb−1
abst,T \\1)(d)) ∈ Γ1top. Using Lemma 10.8, we have for every

θ ∈ Θ∃ that

Embabst,T (Pos2top,θ(w)) = Embabst,T \\1(Pos1top,θ(w�)).

Since Embabst,T and Embabst,T \\1 are order-preserving, for both functions opt = max
and opt = min we have that the positions

.opt = opt(Pos2top,θ(w)), .�
opt = opt(Pos1top,θ(w�))

are obtained under abst from the same T element

dopt = Embabst,T (.opt) = Embabst,T \\1(.�
opt).

2. Let . ∈ ExtPosθ(w), let d = Embabst,T (.) be its corresponding element, and let
w(.) = (rest, tsd). Recall that ExtPosθ only contains promised tasks, so we have
that Pθ ∈ tsd. Let .� the position to which d is mapped when abstracting T \\1, i.e.
d = Embabst,T \\1(.�), and let w�(.�) = (h, ts�

d) with h ∈ {2top, rest} since this is the
abstraction of a trimming.
By Lemma 10.8, we have θ ∈ ω(ts�

d). Let D� be the universe of D\1. Since D\1 is
a substructure of D and d ∈ D�, if D .|= ∃y θ(d, y) then also D\1 .|= ∃y θ(d, y) and
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therefore also Pθ ∈ ts�
d. Now to continue the proof, assume θ(x, y) |= x ≤1 y (the

case of θ(x, y) |= y ≤1 x is analogous).
Assume for contradiction that both .� /∈ ExtPos2top,θ(w�) and .� /∈ ExtPosθ(w�).
Since we already established that θ is promised, this implies .� does not correspond
to an extremal element and therefore there exists some other extremal element
d1 ∈ D�, who is mapped to position .�

1 ∈ [|D�|] in the abstraction of T \\1, and its
layer is h1 ∈ {2top, rest}. That is, d1 = Embabst,T \\1(.�

1), w�(.�
1) ∈ Γh1 , .� < .�

1,
D |= d <1 d1, and:

a) if w�(.�) ∈ Γ2top, then h1 = 2top, .�
1 ∈ ExtPos2top,θ(w�), and D |= d ∼2 d1;

b) if w�(.�) ∈ Γrest, then h1 = rest, .�
1 ∈ ExtPosθ(w�) and w�(.�

1) ∈ Γrest.

Now let us shift our attention to where this element d1 is mapped in the abstraction
of T . Let .1 be such that d1 = Embabst,T (.1). We have . < .1 and w(.1) ∈ Γrest,
since previously it was at most the second-largest data value. Let w(.1) = (rest, tsd1)
and w�(.�

1) = (h1, ts�
d1

). Since .�
1 ∈ ExtPos2top,θ(w�) ∪ ExtPosθ(w�), we have θ ∈

ω(ts�
d1

). By Lemma 10.8 we have θ ∈ ω(tsd1), and using that . ∈ ExtPosθ(w) we
have Cθ ∈ tsd1 and hence D |= ∃y θ(d1, y). Since θ ∈ ω(tsd) ∩ ω(tsd1), we have
ξω(tsd) = ξω(tsd1 ), implying that d and d1 have the same 1-type in D.
We split into the cases of the layer:

a) If w�(.�) ∈ Γ2top, we have that D |= d ≤1 d1 ∧ d ∼2 d1. Since they have the
same 1-type, we have that for any element d�� such that D |= d1 ≤1 d��, the
2-type of (d1, d��) is the same as the 2-type of (d, d��). Since θ(x, y) |= x ≤1 y
by our assumption, and since D |= ∃y θ(d1, y) there exists some d�� ≥1 d1
such that D |= θ(d1, d��). Therefore also D |= θ(d, d��) and D |= ∃y θ(d, y), in
contradiction to Pθ ∈ tsd.

b) If w�(.�) ∈ Γrest, since .�
1 ∈ ExtPosθ(w�) we have by definition that Pθ ∈ ts�

d1

and hence D\1 .|= ∃y θ(d1, y). But we also have D |= ∃y θ(d1, y), denote
by d�� the element such that D |= θ(d1, d��). Since D\1 .|= ∃y θ(d1, y), we
conclude that valueD(d��) = maxvalD. Since both and d and d1 have data
value at most maxvalD − 2, it holds that D |= d �2 d�� ∧ ¬S2(d, d��) and
D |= d1 �2 d�� ∧ ¬S2(d1, d��). Since D |= d ≤1 d1 and θ(x, y) |= x ≤1 y, also
D |= d ≤1 d��, and all in all, the 2-type of (d1, d��) is the same the 2-type of
(d, d��). Therefore, D |= θ(d, d��), implying D |= ∃y θ(d, y), in contradiction to
Pθ ∈ tsd.

3. For every d ∈ D, valueD(d) = valueD\1(d) − 1. Hence, using Lemma 10.8, we have
that for every θ ∈ Θ∃, the embedding Embabst,T (Posrest,θ(w))) is given by

Embabst,T \\1(Pos2top,θ(w�) ∪ Posrest,θ(w�)).

Since Embabst,T and Embabst,T \\1 are order-preserving, for both functions opt = max
and opt = min we have that the positions .�

opt = opt(Pos2top,θ(w�) ∪ Posrest,θ(w�))
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and .opt = opt(Posrest,θ(w))) are obtained under abst from the same T element
dopt = Embabst,T (.opt) = Embabst,T \\1(.�

opt).

All of this work was in order to ensure that the following is well-defined. Let (s�, s) be
a pair of consecutive extremal strings, and let T be a task word such that s = ext(T )
and s� = ext(T \\1). We denote by PEmbT

s�→s� the function from the set of positions . for
which s(.) /∈ Γ1top to [|s�|] defined as follows:

PEmbT
s�→s�(.) = Emb−1

ext ◦ abst,T \\1 (Embext ◦ abst,T (.)) .

PEmbT
s�→s� is well-defined: since s(.) /∈ Γ1top, we have from Lemma 10.35 that

Embext ◦ abst,T (.) ∈ Embext ◦ abst,T \\1([|s�|]).

We refer to PEmbT
s�→s� as a partial embedding via T since it is injective and order-

preserving.

Example 10.36. The domain of the partial embedding PEmbT
s�→s� for s, s�, and T from

Example 10.17 is {1, 2, 4}, and PEmbT
s�→s� is the composition:

Emb−1
ext,abst(T \\1) ◦ Emb−1

abst,T \\1 ◦ Embabst,T ◦ Embext,abst(T )

The embeddings Embabst,T \\1 and Embabst,T were given in Example 10.15, and the em-
beddings Embext,abst(T \\1) and Embext,abst(T ) were given in Example 10.17. The partial
embedding is given by:

PEmbT
s�→s�(1) = 1, PEmbT

s�→s�(2) = 3, PEmbT
s�→s�(4) = 4

To define partial embeddings independently of T , we show that the specific task word
witnessing the consecutiveness of extremal strings is immaterial:

Lemma 10.37. Let T1 and T2 be task words, and let

s = ext(abst(T1)) = ext(abst(T2))

s� = ext(abst(T1
\\1)) = ext(abst(T2

\\1))

Then PEmbT1
s�→s� = PEmbT2

s�→s�.

Proof. Since ext(T1) = ext(T2), the domains of PEmbT1
s�→s� and PEmbT2

s�→s� are equal.
Assume for contradiction that PEmbT1

s�→s� .= PEmbT2
s�→s� Let .s be the left-most (that is,

smallest in the linear order) position in s such that s(.s) /∈ Γ1top and PEmbT1
s�→s�(.s) .=
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Table 10.1

In each row there is one element d of Ti
\\1 with i ∈ {1, 2}. Each of the columns

u ∈ {w1, w2, s} indicates the position of d in the string u according to the embedding
EmbOp,Ti with the appropriate operation Op = abst for u ∈ {w1, w2} and Op = ext ◦ abst
for u = s. Each of the columns u� ∈ {s, w�

2} indicates the position of d in the string u�

according to the embedding EmbOp,Ti
\\1 with Op = abst for u� = w�

2 and Op = ext ◦ abst
for u� = s. Each of the elements and positions in row 1 (respectively row 3) are strictly
smaller than the elements and positions in the same column in row 2 (respectively row
4). (The comparison of elements is with respect to ≤1.)

T1
\\1 T2

\\1 w1 w2 s s� w�
2

smaller d1,2 .1,2 .s�,1 .w�
2,1

larger d2 .2 .s .s�,2
smaller d1 .1 .s .s�,1
larger d2,1 .2,1 .s�,2

PEmbT2
s�→s�(.s). For i = 1, 2, let wi = abst(Ti), ni = |wi|, and w�

i = abst(Ti
\\1). Let .i, di,

.s�,i be as follows:

.i = Embext,wi(.s)

di = Embabst,Ti(.i)

.s�,i = PEmbTi

s�→s�(.s)

and note di = Embext ◦ abst,Ti(.s) = Embext ◦ abst,Ti
\\1(.s�,i), and since s(.s) /∈ Γ1top, di

belongs to the universe of Ti
\\1. For distinct i, j ∈ {1, 2}, let di,j , .i,j , .w�

2,1 be as follows:

.w�
j ,i = Embext,w�

j
(.s�,i)

di,j = Embabst,Tj
\\1(.w�

j ,i)

.i,j =
�
Embabst,Tj

�−1
(di,j)

and note di,j = Embext ◦ abst,Tj
\\1(.s�,i), and that di,j belongs to the universe of Tj

\\1 and
hence to that of Tj . W.l.o.g. assume that .s�,1 < .s�,2, and therefore by the order-
preservation property of embeddings, we have T1 |= d1 <1 d2,1, .1 < .2,1, T2 |= d1,2 <1 d2,
and .1,2 < .2 (see Table 10.1).
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Let
ts(s(.s)) = tss

ts(wi(.i)) = tsi

ts(s�(.s�,i)) = tss�,i

ts(wj(.i,j)) = tsi,j

From the definition of ext, tss = ts1 = ts2. By the definitions ext and abst and from
Lemma 10.8, tss, tss�,1, tss�,2, ts1,2, and ts2,1 all realize the same set-type.

Before continuing the proof of Lemma 10.37, we prove several claims. They are all pretty
straightforward, but we phrase them as claims nonetheless in order to not obfuscate the
proof with their short justifications.

Claim 10.38. Let (s�, s) be a pair of consecutive extremal strings, and let T be a task
word such that s = ext(T ) and s� = ext(T \\1). Let . ∈ [|s|]. Then:

1. s(.) ∈ Γ2top if and only if s�(PEmbT
s�→s�(.)) ∈ Γ1top.

2. s(.) ∈ Γrest if and only if s�(PEmbT
s�→s�(.)) ∈ Γ2top ∪ Γrest.

Proof. The claim follows from the definitions of PEmbT
s�→s� , ext, and abst, and from

Lemma 10.35.

Claim 10.39. .1,2 /∈ ExtPos(w2).

Proof. Assume for contradiction that .1,2 ∈ ExtPos(w2). Then there exists .̃1,2 ∈
[|s|] such that .̃1,2 = Embext,w2(.1,2) and d1,2 = Embext ◦ abst,T2(.̃1,2) and we have that
PEmbT2

s�→s�(.̃1,2) = .s�,1. Since d1,2 <1 d2 we have s(.̃1,2) /∈ Γ1top and .̃1,2 < .s. Since
PEmbT1

s�→s� is injective and PEmbT1
s�→s�(.s) = .s�,1, we must have PEmbT1

s�→s�(.̃1,2) .= .s�,1, in
contradiction to the minimality of .s.

Claim 10.40. Let T be a D-task word and let d, d� be elements such that D |= d ≤1 d�,
valueD(d) ≤ maxvalD − 2, and valueD(d�) ≤ maxvalD − 2. Let T \\1 |= ts1(d) and
T \\1 |= ts�

1(d�) such that ω(ts1) = ω(ts�
1). Let θ ∈ Θ∃ such that Pθ ∈ ts1 ∩ ts�

1. Finally,
let T |= ts(d) and T |= ts�(d�).

1. If θ(x, y) |= x ≤1 y and Cθ ∈ ts�, then Cθ ∈ ts.

2. If θ(x, y) |= y ≤1 x and Cθ ∈ ts, then Cθ ∈ ts�.

Proof. Since ts1 and ts�
1 realize the same witness type set, d and d� have the same 1-type

in D. Since Pθ ∈ ts1 ∩ ts�
1, we have D\1 .|= ∃y θ(d, y) and D\1 .|= ∃y θ(d�, y). Then the

claim follows nearly identical arguments to the ones used in the proof of the second case
of Lemma 10.35 and the definition of task words.
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Claim 10.41. Let Pθ̄ ∈ tss, s(.s) ∈ Γrest, and .2 ∈ ExtPosθ̄(w2). Then θ̄(x, y) |= x ≤1 y
and Pθ̄ ∈ ts2,1.

Proof. Since s(.s) ∈ Γrest, by Claim 10.38 we have s�(.s�,1), s�(.s�,2) ∈ Γ2top ∪ Γrest. Hence

valueD(d1), valueD(d2), valueD(d2,1), valueD(d1,2) ≤ maxvalD − 2 = maxvalD\1 − 1

and s(.1,2), s(.2,1) ∈ Γrest. Since ω(tss) = ω(ts1,2) = ω(ts2,1), we have θ̄ ∈ ω(ts1,2) ∩
ω(ts2,1). Since D\1 is a substructure of D and Pθ̄ ∈ tss, we also have Pθ̄ ∈ tss�,1 ∩ tss�,2.

Assume for contradiction that θ̄(x, y) |= y <1 x. If Pθ̄ ∈ ts1,2, then since .1,2 < .2, we
have

.2 /∈ ExtPosθ̄(w2) = {. | . = min(Posrest,Pθ
(w))}

in contradiction. If Cθ̄ ∈ ts1,2, then since Pθ̄ ∈ tss�,1 ∩ tss�,2, and since θ̄(x, y) |= y <1 x,
from Claim 10.40 (with d = d1,2 and d� = d2) it follows that Cθ̄ ∈ tss, in contradiction to
Pθ̄ ∈ tss. Hence θ̄(x, y) |= x ≤1 y.

Since θ̄ ∈ ω(ts2,1), either Pθ̄ ∈ ts2,1 or Cθ̄ ∈ ts2,1. If Cθ̄ ∈ ts2,1, then from Claim 10.40
(with d = d1 and d� = d2,1) it follows that Cθ̄ ∈ tss, in contradiction to Pθ̄ ∈ tss. hence
Pθ̄ ∈ ts2,1.

We are now ready to resume the proof of Lemma 10.37. We divide into cases depending
on whether s(.s) ∈ Γ2top or s(.s) ∈ Γrest.

• First assume s(.s) ∈ Γ2top. Since .s�,1 = PEmbT1
s�→s�(.s), we have s�(.s�,1) ∈ Γ1top

by Claim 10.38. Since s� = ext(w�
2), we have that .w�

2,i ∈ ExtPos(w�
2), and

hence there is some θ ∈ ω(tss) such that .w�
2,i ∈ ExtPos1top,θ(w�

2) and d1,2 ∈
Embabst,T2\\1(ExtPos1top,θ(w�

2)). Hence by Lemma 10.35(1) we have that d1,2 ∈
Embabst,T2(ExtPos2top,θ(w2)), which implies that .1,2 ∈ ExtPos(w2), in contradiction
to Claim 10.39.

• Now assume s(.s) ∈ Γrest. We have s�(.s�,1), s�(.s�,2) ∈ Γ2top ∪ Γrest by Claim 10.38,
i.e.

d1,2, d2,1 ≤ maxvalD\1 − 1 = maxvalD − 2

Hence, s(.1,2), s(.2,1) ∈ Γrest. Since .2 = Embext,w2(.s) we have that .2 ∈ ExtPos(w2).
Let θ ∈ ω(tss) = ω(ts1,2). By Claim 10.39 and using that s(.1,2) ∈ Γrest,
there exists .̃1,2 < .1,2 such that .̃1,2 ∈ ExtPosrest,θ(w2), so let .0,θ be such
that .̃1,2 = Embext,w2(.0,θ). We have that .̃1,2 < .2, and hence .0,θ < .s. Let
s(.0,θ) = (h0,θ, ts0,θ). Since .̃1,2 ∈ ExtPosrest,θ(w2) we have θ ∈ ω(ts0,θ). Let .3,θ

be such that .2,1 = Embext,w1(.3,θ). Since .1 < .2,1 we have .s < .3,θ. We have
θ ∈ ω(.2,1) = ω(.3,θ). Hence, .2 /∈ ExtPosrest,θ(w2) for all θ ∈ ω(ts). Consequently,
there is θ̄ such that .2 ∈ ExtPosθ̄(w2) and Pθ̄ ∈ ts2 = tss.
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By Claim 10.41 we have θ̄(x, y) |= x ≤1 y and Pθ̄ ∈ ts2,1, and hence there is
.θ̄,w1

such that ExtPosθ̄(w1) = {.θ̄,w1
} and .θ̄,w1

= max(Posrest,Pθ̄
(w1)). We have

Pθ̄ ∈ ts(w1(.θ̄,w1
)) and .1 < .2,1 ≤ .θ̄,w1

. Let .θ̄,s ∈ [|s|] and .θ̄,w2
∈ [|w2|] be such

that
.θ̄,w1

= Embext,w1(.θ̄,s), .θ̄,w2
= Embext,w2(.θ̄,s)

Then

Pθ̄ ∈ ts(s(.θ̄,s)) = ts(w1(.θ̄,w1
)) = ts(w2(.θ̄,w2

)), .s < .θ̄,s, .2 < .θ̄,w2

Since w1(.θ̄,w1
) ∈ Γrest and w1(.θ̄,w1

) = s(.θ̄,s) = w2(.θ̄,w2
), we have .2 /∈ ExtPosθ̄(w2) =

{max(Posrest,Pθ̄
(w2))}, in contradiction.

At long last, we can define the partial embedding between the positions of consecutive
extremal strings independently of any specific task word that witnesses their consecutive-
ness:

Definition 10.42 (Partial embedding). Let (s�, s) be consecutive extremal strings. We
denote by PEmb

s�→s� the function from s−1(Γ−Γ1top) to [|s�|] defined as follows. Let T be
a task word, and s = ext(abst(T )) and s� = ext(abst(T \\1)). Then PEmb

s�→s� = PEmbT
s�→s� .

This is well-defined by Lemma 10.37.

But as we stand, we are still requiring some task word to witness consecutiveness. Next,
we get rid of the background task word altogether, by showing that if s, s� are consecutive,
then s� can be obtained by guessing a string r that will get new data values, interleaving
it into the proper positions g of s, which can also be guessed, and updating the abstracted
data values. We also show that the partial embedding that keeps track of matching the
positions can be obtained using r and g only. Since extremal strings have bounded length,
it will follow that these r also have bounded length.

Word of caution: the next section is technical by nature, and the definition of the
automaton Aϕ is perfectly understandable given the groundwork so far. The reason to
eliminate the task words is so we can later prove that Aϕ can be constructed without
concrete task words (and to bound the complexity of said construction), which is what
Lemma 10.46 will be used for.

10.3.1 A syntactic representation of consecutive extremal strings
The extremal string r ↓g s0 simulates the extension of a task word T 0 whose extremal
string is s0 by adding elements with a new maximal data value. The letters of these
elements are determined by r and their placement in the linear order of T 0 is determined
by g.
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Definition 10.43 (r ↓g s0). Let s ∈ Γ1 . We denote by ↓ s the string that is obtained
from s by substituting letters of the form (1top, ts) with (2top, ts) and letters of the
form (2top, ts) or (rest, ts) with (rest, ts). Let s0 ∈ EXT(Γ), r ∈ Γ1

1top ∩ Γ1
P, and let

g : [|r|] → [|r| + |s0|] be a strictly monotone function. Then let s1 = r g ↓s0, that is, s1

is the g-shuffle of r and ↓s0 (see Definition 8.17).

We now define the string r↓g s0, which is obtained from s1 substituting every letter (h, ts)
at position . ∈ [|s1|] with a letter (h, ts�). Essentially, this replacement updates the tasks
to take into account the new elements described by r (and whose position is given by g).
The letter (h, ts�) is such that it realizes the same set-type, i.e. ω(ts) = ω(ts�) and, for
every θ ∈ ω(ts), we have Cθ ∈ ts� if θ is completed, that is, if any of the following hold

1. θ was already completed: Cθ ∈ ts.

2. The necessary witness .2 for . was found to the right: θ |=DW(Ξ) x ≤1 y and
there is .2 ∈ [|s1|] such that . ≤ .2, either . ∈ Pos1top(s1) or .2 ∈ Pos1top(s1), and
perfects1(%),s1(%2)(x, y) ≡DW(Ξ) θ(x, y).

3. The necessary witness .2 for . was found to the left: θ |=DW(Ξ) y <1 x and there
is .1 ∈ [|s1|] such that .1 < ., either .1 ∈ Pos1top(s1) or . ∈ Pos1top(s1), and
perfects1(%1),s1(%)(y, x) ≡DW(Ξ) θ(x, y).

Otherwise, since θ was not completed, it remains as a promised task and we have Pθ ∈ ts�.

If we have the D-task word T at hand, then we can obtain the string r and the function
g for s and s0. In fact, obtaining r is quite easy: it suffices to look at the elements
with maximal data value, and substitute every letter (1top, ts) with (1top, tsP ) such that
tsP = {Pθ | θ ∈ ω(ts)}.

We now prove this lemma which will be useful later. It essentially states that in order to
check satisfaction of constraints, it is enough to consider the elements that correspond to
extremal positions.

Lemma 10.44 (Extremal witnesses). Let T be a D-task word. Let d, d0 be elements of
T and θ ∈ Θ∃. If D |= θ(d, d0) and maxvalD ∈ {valueD(d), valueD(d0)}, then there is an
element d� ∈ ExtElem(T ) such that D |= θ(d, d�).

Proof. Let w = abst(T ). Let w(Emb−1
abst,T (d)) = (h, ts), and let w(Emb−1

abst,T (d0)) =
(h0, ts0). Let θ ∈ ts0. There are d0,1 ≤1 d0 ≤1 d0,2 such that

1. d0,1, d0,2 ∈ ExtElemθ,h(T ),

2. D |= ξω(ts0)(d0,1) and D |= ξω(ts0)(d0,2),

3. valueD(d0) = valueD(d0,1) = valueD(d0,2) if valueD(d0) ≥ maxvalD − 1,
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4. both valueD(d0,1) ≤ maxvalD − 2 and valueD(d0,2) ≤ maxvalD − 2 if valueD(d0) ≤
maxvalD − 2, and

5. d0, d0,1, d0,2 have the same 1-type in D.

Since maxvalD ∈ {valueD(d), valueD(d0)}, the 2-types of (d, d0) and either (d, d0,1) or
(d, d0,2) are equal depending on whether θ(x, y) |= x ≤1 y; for the case that valueD(d0) ≥
maxvalD − 1 we use that D |= d0 ∼2 d0,1 and D |= d0 ∼2 d0,2. For the case that
valueD(d0) ≤ maxvalD − 2, the same argument holds using the fact that D |= d0 �2
d ∧ ¬S2(d0, d).

Lemma 10.45. Given a D-task word T and two extremal strings s and s0 such that
s = ext(T ) and s0 = ext(T \\1), we can effectively obtain an r ∈ Γ1

1top ∩Γ1
P and g : [|s0|] →

[|s0| + |s|] such that s = ext(r↓g s0).

Proof. We first need some additional notation. Let

w = abst(T )

X � = ExtElem(T \\1)

X1top = Embabst,T (Pos1top(w))

X = X1top ∪ X �

wX = abst(T |X)

wX1top = abst(T |X1top)

The string r ∈ Γ1
1top ∩ Γ1

P is obtained from wX1top by substituting every letter (1top, ts)
with (1top, tsP ) such that tsP = {Pθ | θ ∈ ω(ts)}. The function g is given by

g = Embabst,T |X1top
◦ Emb−1

abst,T |X

Finally, let w� = abst(T \\1), and wX� = abst(T |X�).

By Lemma 10.35, ExtElem(T ) ⊆ X. Hence, s = ext(wX). We will prove that wX = r↓g s0,
and the lemma will follow.

Notice that
wX = wX1top g wX� , |wX1top | = |r|, |wX� | = |s0|

and g is strictly monotone as the composition of two order-preserving functions. Hence,
s0, r, and g are as required in the definition of r↓g s0 (Definition 10.43). Let . ∈ [|wX |]
and d = Embabst,T |X (.). Let (r ↓g s0)(.) = (ha, tsa) and wX(.) = (hb, tsb). By the
construction of s and r ↓g s0, ha = hb and ω(tsa) = ω(tsb). We need to prove that
tsa = tsb. Let s1 be as in Definition 10.43, s1(.) = (ha1 , ts1

a), and θ ∈ ω(tsa).
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Assume Cθ ∈ tsa. If Cθ ∈ ts1
a, then . is not in the image of g, d is an element of D\1, and

there is an element d� of D\1 such that D\1 |= θ(d, d�), hence Cθ ∈ tsb. Otherwise, there are
.1 < .2 ∈ [|s1|] such that perfects1(%1),s1(%2)(x, y) ≡DW(Ξ) θ(x, y) and either s1(.1) ∈ Γ1top
or s1(.2) ∈ Γ1top, and either θ |=DW(Ξ) x ≤1 y and . = .1, or θ |=DW(Ξ) x >1 y and . = .2.
By Lemma 10.26, this implies that D |= ∃y θ(d, y), and hence Cθ ∈ tsb.

Conversely, assume Cθ ∈ tsb. There is d� in the universe of T such that D |= θ(d, d�). If
both d and d� are elements of D\1, then Cθ ∈ ts1

a and hence Cθ ∈ tsa. Otherwise, we
have maxvalD ∈ {valueD(d), valueD(d�)}. By Lemma 10.44, we may assume w.l.o.g. that
d� ∈ ExtElem(T ), and hence d� ∈ X. Let .� ∈ [|wX |] such that d� = Embabst,T |X (.�). Let
.1 < .2 ∈ [|s1|] be such that {., .�} = {.1, .2}. Let di = Embabst,T |X (.i). By Lemma 10.26,
D |= perfects1(%1),s1(%2)(d1, d2). By Observation 10.25, there is a 2-type θ�(x, y) such that
perfects1(%1),s1(%2)(x, y) ≡ θ�(x, y). The 2-type θ�(x, y) is the 2-type of (d1, d2). We have
θ |= x ≤1 y if and only if D |= d1 ≤1 d2. Hence θ(x, y) = θ�(x, y) if θ |= x ≤1 y, and
θ(x, y) = θ�(y, x) if θ |= x >1 y. Consequently, Cθ ∈ tsb, and overall we get tsa = tsb.

Finally, we are ready to prove that the generation of consecutive extremal strings can be
done without a concrete task word:

Lemma 10.46. Let T0 be a D0-task word, s0 = ext(T0), r ∈ Γ1
1top ∩Γ1

P, and let g : [|r|] →
[|r| + |s0|] be a strictly monotone function. Then s0 and ext(r↓g s0) are consecutive.

Proof. Let s = ext(r↓g s0). Without loss of generality, we may assume the universe D0
of D0 is disjoint from N. Let ḡ be as in the definition of r g s0. Let D be the data word
over Ξ with universe D0 ∪ [|r|] such that:

1. D0 is the substructure of D induced by D0.

2. For every . ∈ [|r|] and r(.) = (h, ts), D |= ξω(ts)(.).

3. For every .1, .2 ∈ [|r|], D |= .1 ∼2 .2.

4. For every d ∈ D0 and . ∈ [|r|], D |= d <2 ..

5. For every .1, .2 ∈ [|r|], D |= .1 ≤1 .2 if and only if .1 ≤ .2.

6. For every d ∈ D0, let d� ∈ D0 be the maximal element of ExtElem(T0) with respect
to ≤1 such that d� ≤1 d, and let .� ∈ [|s0|] be such that d� = Embext ◦ abst,T0(.�). For
every .1 ∈ [|r|], D |= d ≤1 .1 if and only if ḡ(.�) < g(.1); if no such d� exists for d
then D |= d ≤1 .1.

Let T be a D-task word such that, for every d ∈ D0, there are ts, ts0 ∈ 2Tasks
Ω such that

ω(ts) = ω(ts0), T |= ts(d), and T0 |= ts0(d). Clearly ext(abst(T \\1)) = s0. Let r, wX ,
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wX� , and wX1top be as in Lemma 10.45. By the construction of D,

g = Embabst,T |X1top
◦ Emb−1

abst,T |X .

By Lemma 10.45, ext(r ↓g s0) = ext(abst(T )), i.e., s0 and s are consecutive extremal
strings.

Example 10.47. Applying ↓ to s�, we have

↓s� = (rest, tsP
3 )(rest, tsP

3 )(2top, tsP
1 )(rest, tsP

3 )

Let r = (1top, tsP
2 )(1top, tsP

4 ), and let g : [2] → [2 + 4] be g(1) = 4 and g(2) = 6. Then

r↓g s� = (rest, tsC
3 )(rest, tsC

3 )(2top, tsC
1 )(1top, tsC

2 )(rest, tsC
3 )(1top, tsC

4 ).

Observe that ext(r↓g s�) = s, and recall that (s�, s) are consecutive.

10.4 Definition of the automaton Aϕ

We define an automaton Aϕ = (Ξ, m+1, Q, qinit, F, δ) where Q = Qe ∪Qp and m = 7·|Θ∃|.
Aϕ uses one pebble for each existential constraint in Θ∃ and each layer in Γ, plus an
additional pebble per constraint. It also uses the designated pebble m + 1 to read
non-extremal positions. We describe its states and transitions next, followed by an
example computation.

As we mentioned, Aϕ runs in iterations, where each iteration is associated with an
extremal string. The end of an iteration is noted with a so-called non-prefix state, and we
would like the automaton to transition from (s, τ) ∈ Qe representing the extremal string
s to (s�, τ �) ∈ Qe representing a consecutive extremal string s� as it finds the sequence
s1, . . . , sn that indicates the input should be accepted.

Non-prefix states. Qe is the set of states of the form (s, τ) with s a perfect extremal
string of length |s| and τ an (m + 1, |s|)-pebble assignment satisfying the following
conditions, which hold when s has just been read in the input:

(c1) the pebble m + 1 was not used to read s, i.e., we have τ(m + 1) = ⊥,
(c2) every position of s has a pebble on it, i.e., if s .= ε, then τ(.) .= ⊥ for all

. ∈ [|s|], and if s .= ε, then [|s|] ⊆ τ([m]), and
(c3) if s = ε, there are no pebbles on s, i.e., τ(.) = ⊥ for all . ∈ [|s|].

Since the automaton can only move one pebble at a time, and verifying that an extremal
string is present in the input requires many intermediate steps, we have another set of
prefix states Qp which are visited as the automaton processes the prefixes of the current

142



10.4. Definition of the automaton Aϕ

extremal string. Once the whole extremal string s has been verified to appear in the
input, the automaton has the pebbles placed according to τ and it moves to a non-prefix
state (s�, τ �) where τ � indicates how the pebbles are placed if we were looking at the
consecutive extremal string s�.

Prefix states. Qp is the set of states of the forms (s, s̃, τ, 0) and (s, s̃, τ, 1) for every
perfect extremal string s of length |s|, non-empty prefix s̃ of s of length |s̃|, and
(m + 1, |s|)-pebble assignment τ : [m + 1] → [|s|] ∪ {⊥} satisfying similar conditions
as before, but which now hold if only the prefix s̃ has been read:

(c4) τ(m + 1) = ⊥,
(c5) [|s̃| − 1] ⊆ τ([m]), and
(c6) pebbles to the right the current prefix had been placed previously, i.e., for

every |s̃| ≤ . ≤ |s|, . ∈ τ([m]) if and only if s(.) /∈ Γ1top.

The 0/1 flag in prefix states is used below for deciding where to place the m + 1
pebble.

Initial state. The initial state is qinit = (ε, ρ⊥) ∈ Qe.

Final states. The final states are F = {(s, τ) ∈ Qe | s is completed}.

For a state q ∈ Qp of the form (s, s̃, τ, 0) or (s, s̃, τ, 1), or q ∈ Qe of the form (s, τ), denote
τq = τ . For a state q ∈ Qp ∪ Qe, we say a pebble k ∈ [m + 1] is available in q if τq(k) = ⊥.
Note that the pebble m + 1 is available by (c4) and (c1). Let q = (s, s̃, τq, b) or q = (s, τq).
Since τq is an (m + 1, |s|)-pebble assignment, there are at most |s| non-available pebbles
in q. By the bound on the length of extremal strings, we have |s| ≤ 7 · |Θ∃| < m, therefore
there is at least one pebble k ∈ [m] which is available in q. All in all, we have:

Observation 10.48. For every q ∈ Qp ∪ Qe, there is a pebble k ∈ [m] such that both
pebble k and pebble m + 1 are available in q.

We define the transition relation δ ⊆ (Q × Q) ∪ (Q × movem+1 × Σ × Q).

Transitions from prefix states. Let q = (s, s̃, τq, b) ∈ Qp.

1. Non-extremal transitions: while reading a prefix of a task word, pebble m + 1
iterates over non-extremal positions. For every letter γ ∈ Γnotext

1top (s, |s̃|), we
have that (q, (m + 1)-movei,�, ξω(γ), q�) ∈ δ where q� = (s, s̃, τq, 1) and

i =
�

argmax0≤%<|s̃|{t | τ̂q(t) = .}, b = 0
m + 1, b = 1
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2. Extremal transitions: if we are at a new 1-top position, we read it with an
available pebble, and if the current position already has a pebble, a silent
transition moves on. The automaton will now be on either the next prefix, or
the next extremal state if s = s̃, that is, the whole s has been read. Let

τq� =
�

τq[k +→ |s̃|], s̃(|s̃|) ∈ Γ1top

τq, s̃(|s̃|) /∈ Γ1top

and let

q� =
�

(s, s̃s(|s̃| + 1), τq, 0) s̃ .= s

(s, τq) s̃ = s

Let i = argmax0≤%<|s̃|{t | τ̂q(t) = .} and j = argmin|s̃|≤%≤|s|+1{t | τ̂q(t) = .}.
We have (q, q�) ∈ δ if s̃(|s̃|) /∈ Γ1top, and (q, k-movei,j , ξω(s̃(|s̃|)), q�) ∈ δ if
s̃(|s̃|) ∈ Γ1top and the pebble k is available in q.

Transitions from non-prefix states. If (s0, s) are consecutive, we start reading s by
moving to q� = (s, s(1), τq� , 0) ∈ Qp, where τq� stores the pebble assignment induced
by PEmb

s�→s0
. For every consecutive pair (s0, s) of extremal strings and states

q = (s0, τq) ∈ Qe and q� = (s, s(1), τq� , 0) ∈ Qp, we have (q, q�) ∈ δ if PEmb
s�→s0

induces τq� as follows: for every pebble k ∈ [m], τq�(k) is (PEmb
s�→s0

)−1(τq(k)) if
τq(k) is in the image of PEmb

s�→s0
, and is ⊥ otherwise.

An accepting computation

Recall ϕ from Example 9.14:

ϕ = ∀x∀y χ(x, y)∧
∀x

�
(ξ1(x) → ∃y (θ1(x, y) ∨ θ3(x, y))) ∧

(ξ2(x) → ∃y (θ2(x, y) ∨ θ4(x, y)))
�

Let u = ξ1ξ1ξ1ξ2ξ1ξ2. There is an accepting computation of Aϕ on u, which in particular
induces the data word from Example 9.6. We show the sequence q1, . . . , q21 of states of
this accepting computation. Let m = 7 · |Θ∃| + 1. Let τI, . . . , τX be pebble-assignments:

τI : [m] → [1] ∪ {⊥} τVI : [m] → [4] ∪ {⊥}
τII : [m] → [2] ∪ {⊥} τVII : [m] → [4] ∪ {⊥}
τIII : [m] → [2] ∪ {⊥} τVIII : [m] → [5] ∪ {⊥}
τIV : [m] → [3] ∪ {⊥} τIX : [m] → [5] ∪ {⊥}
τV : [m] → [3] ∪ {⊥} τX : [m] → [5] ∪ {⊥}
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given by (whenever τj(k) is not defined below, we have τj(k) = ⊥):

τI(1) = 1

τII(1) = 2

τIII(1) = 2 τIII(2) = 1

τIV(1) = 2 τIV(2) = 1

τV(1) = 2 τV(2) = 1 τV(3) = 3

τVI(1) = 2 τVI(2) = 1 τVI(3) = 4

τVII(1) = 2 τVII(2) = 1 τVII(3) = 4 τVII(4) = 3

τVIII(2) = 1 τVIII(3) = 4 τVIII(4) = 2

τIX(1) = 3 τIX(2) = 1 τIX(3) = 4 τIX(4) = 2

τX(1) = 3 τX(2) = 1 τX(3) = 4 τX(4) = 2 τX(5) = 5

Let

s1 = (1top, tsP
3 )

s2 = (1top, tsP
3 )(2top, tsP

3 )

s3 = (2top, tsP
3 )(rest, tsP

3 )(1top, tsP
3 )

s4 = s�

s5 = s

where s and s� are from Example 10.17. In fact, all si are the extremal strings of
(trimmings of) T from Example 10.5.
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Let
q1 = (ε, ρ⊥)

q2 = (s1, s1, ρ⊥, 0)

q3 = (s1, τI)

q4 = (s2, s2(1), τII, 0)

q5 = (s2, s2, τIII, 0)

q6 = (s2, τIII)

q7 = (s3, s3(1), τIV, 0)

q8 = (s3, s3(1)s3(2), τIV, 0)

q9 = (s3, s3, τIV, 0)

q10 = (s3, τV)

q11 = (s�, s�(1), τVI, 0)

q12 = (s�, s�(1)s�(2), τVI, 0)

q13 = (s�, s�(1)s�(2)s�(3), τVI, 0)

q14 = (s�, s�, τVII, 0)

q15 = (s�, τVII)

q16 = (s, s(1), τVIII, 0)

q17 = (s, s(1)s(2), τVIII, 0)

q18 = (s, s(1)s(2)s(3), τVIII, 0)

q19 = (s, s(1)s(2)s(3)s(4), τIX, 0)

q20 = (s, s, τIX, 0)

q21 = (s, τX)

The sequence q1, . . . , q21 induces an accepting computation, since s is completed, and
therefore the state q21 is accepting.

10.5 Lstr(ϕ) ⊆ L (Aϕ)

With our automaton constructed, we are ready to start the proof of Theorem 10.1. We
show that the string projection of every D |= ϕ is accepted by the automaton by showing
an accepting computation based on the extremal strings induced by the D-task word
that describes which existential constraints are satisfied by the elements of D.
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Lemma 10.49. Let D be a data word with string(D) = u such that D |= ϕ. Then
u ∈ L (Aϕ).

The proof is structured as follows. Recall that the states of Aϕ contain a pebble assignment
τ . We define coherent configurations π = (q, ρ, N) in which the pebble assignment ρ,
which assigns pebbles to positions in the input, agrees with the pebble assignment τ of
q. We use an inductive argument; we show that if Aϕ runs on the projection of a data
word D with a perfect task word, and if Aϕ has read all the positions corresponding to
data values which are not maximal while ending in a coherent configuration, then Aϕ

can read the remaining positions. We later apply this inductively on all the trimmings
of a D-task word T where D |= ϕ to construct an accepting computation of Aϕ on the
string projection of D.

Coherent configurations Let D be a data word with string(D) = u. Let T be a
perfect D-task word, w = abst(T ), and s = ext(w). Let ρ be an (m + 1, |u|)-pebble
assignment, τ an (m + 1, |s|)-pebble assignment, q = (s, s̃, τ, b) or q = (s, τ) be a state
and π = (q, ρ, N) a configuration on u. π is w-coherent if for every k ∈ [m] such that
τ(k) .= ⊥, ρ(k) = Embext,w(τ(k)).

The next lemma essentially states that if Aϕ has read all non-maximal positions and
arrived in a coherent configuration, then there is some reachable coherent configuration
with all positions read.

Lemma 10.50. Let D be a data word with string(D) = u, let T be a perfect D-task word,
w = abst(T ), s = ext(w), and let π = ((s, s(1), τ, 0), ρ, Pos<1top(w)) be a w-coherent
configuration on u. There is a w-coherent configuration π� = ((s, τ �), ρ�, [|u|]) on u such
that π �1

u π� .

Proof. The proof revolves around establishing the relationship between the positions of
w, which originates from the input, and the positions of s, which is encoded in Aϕ. Let
C ∈ N and 1 ≤ .1 < · · · < .C ≤ |u| such that

{.1, . . . , .C} = ExtPos(w) ∪ Pos1top(w).

That is, C is the number of positions which are extremal or have maximal data value.
For every c ∈ {0} ∪ [C], let Nc = Pos<1top ∪ {.1, . . . , .c}. We have N0 = Pos<1top and
Nc+1 = Nc ∪ {.c} for c .= 0. Note that we may have .c ∈ Nc when .c is extremal. Let
a0 = 0. For every c ∈ {0} ∪ [C − 1], let:

ac+1 =
�

ac + 1, .c+1 ∈ ExtPos(w)
ac, .c+1 /∈ ExtPos(w)

That is, ac counts how many of {.1, . . . , .c} are extremal positions. Observe that .C is
necessarily in ExtPos(w), since by definition it is the rightmost position with maximal
data value. Similarly, .1 ∈ ExtPos(w). Consequently, s(1) · · · s(aC) = s.
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We give a construction of a computation (t̄, π̄) with transitions t̄ = (t1, . . . , tC) and
w-coherent configurations π̄ = (π0, . . . , πC) on u such that π0 = π, and πc �tc+1

u πc+1 for
all c ∈ {0} ∪ [C − 1]. We show this by describing how every position {.1, . . . , .C} was
either correctly consumed in a previous step, or is correctly consumed in the current step.
Let πc = (qc, ρc, Nc) where qc = (s, s(1) · · · s(ac + 1), τc, bc) for c < C and qC = (s, τC).
We construct tc+1 and πc+1 inductively for c ∈ {0} ∪ [C − 1] by dividing into cases as
follows.

• Assume .c+1 ∈ ExtPos(w). We have .c+1 = Embext,w(ac+1) and hence w(.c+1) =
s(ac+1). If c + 1 < C, let bc+1 = 0.

1. Assume s(ac+1) /∈ Γ1top. Then we assume it was correctly consumed in a
previous step, and let tc+1 = (qc, qc+1), ρc+1 = ρc, and τc+1 = τc. Then
tc+1 ∈ δ, πc �tc+1

u πc+1, and πc+1 is a w-coherent configuration on u.
2. Assume s(ac+1) ∈ Γ1top. By Observation 10.48, there is some available pebble

k ∈ [m] in qc. We will use it to read the base letter of s(ac+1), which in
our notation is given by ξω(s(ac+1)) (recall that we are reading positions of
the input u, whereas the letters of s are annotated with tasks and whether
they are completed or promised). Let τc+1 = τc[k +→ ac+1]. There exist
i, j ∈ [m] ∪ {�,�} and

tc+1 = (qc, k-movei,j , ξω(s(ac+1)), qc+1)

such that tc+1 ∈ δ. By the choice of i and j in the definition of an extremal
transition from a prefix state in Section 10.4, τ̂c(i) < ac+1 ≤ τ̂c(j). Since πc is
w-coherent and Embext,w is order-preserving, ρ̂c(i) < .c+1 ≤ ρ̂c(j). We have
.c+1 /∈ Nc, hence no pebble has been placed on .c+1. In particular we have
.c+1 .= ρc(j), implying that ρ̂c(i) < .c+1 < ρ̂c(j). Let ρc+1 = ρc[k +→ ac+1].
Since s(ac+1) = w(.c+1), ξω(s(ac+1)) = ξω(%c+1) = u(.c+1). Then πc �tc+1

u πc+1
and πc+1 is w-coherent.

• Now assume .c+1 /∈ ExtPos(w). Then .c+1 ∈ Pos1top(w), .c+1 /∈ Nc, ac+1 = ac, and
for every θ ∈ Θ∃ there are 1 ≤ cθ,l < c < cθ,r ≤ C such that

cθ,l = max({c̃ ∈ [C] | .c̃ ∈ ExtPos1top,θ(w))} ∩ [c − 1]),

cθ,r = min ({c̃ ∈ [C] | .c̃ ∈ ExtPos1top,θ(w))} ∩ {c + 1, . . . , C}).

Let spr and ssu be respectively the prefix and suffix of s given by spr = s(1) · · · s(ac+1)
and ssu = s(ac+1 +1) · · · s(|s|). We have s = sprssu and ext(s) = ext(sprw(.c+1)ssu),
and hence w(.c+1) ∈ Γnotext

1top (s, ac + 1). Let τc+1 = τc and bc+1 = 1. There exists i
such that

(qc, (m + 1)-movei,�, ξω(w(%c+1)), qc+1) ∈ δ.

If bc = 0, then by the choice of i in the definition of a non-extremal transition from a
prefix state in Section 10.4, τ̂c(i) ≤ ac. Since Embext,w is order-preserving, ρ̂c(i) ≤ .c
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and hence ρ̂c(i) < .c+1. If bc = 1, then the computation ((t1, . . . , tc), (π0, . . . , πc))
has at least one non-extremal transition. Hence the pebble m + 1 was moved
during this computation, i.e. ρc(m + 1) ∈ {.1, . . . , .c}. In either case, ρ̂c(i) <
.c+1 < ρ̂c(�) = |u| + 1. Let ρc+1 = ρc, and note that ξω(%c+1) = u(.c+1). Then
πc �tc+1

u πc+1, and since τc+1 = τc and ρc+1 agrees with ρc on all k ∈ [m], we have
that πc+1 is w-coherent.

The lemma follows with t� = tC and π� = πC .

Induced sequences of extremal strings Let D be a data word with h = maxvalD,
and T a D-task word. For every e ∈ {0} ∪ [h], let se = ext(abst(T \\h−e)). We say the
sequence s0, . . . , sh is induced by T .

Proof of Lemma 10.49 Let R = maxvalD. Since D |= ϕ, by Proposition 10.32, there
exists a perfect completed D-task word T . Notice that the sequence s0, . . . , sR of extremal
strings induced by T satisfies that s0 = ε, sR is completed, and (sr−1, sr) is consecutive
for r ∈ [R], by definition. For every r ∈ {0} ∪ [R], let ur be the string projection of
D\R−r and let wr = abst(T \\R−r). We have sr = ext(wr). Since T is perfect, so are its
iterated trimming T \\R−r and sr.

Let π0 = πinit. Observe that for every r ∈ {0} ∪ [R], π0 is a wr-coherent configuration on
ur. We construct a sequence of transitions (t1, . . . , tR) and a sequence of configurations
(π1, . . . , πR) such that, for every r ∈ [R], πr = ((sr, τr), ρr, [|r|]) is a wr-coherent configu-
ration on ur and π0 �1

ur
πr. We construct the transitions and configurations inductively

as follows. For every r ∈ [R], assume there are tr and πr as described above.

The universe of T \\R−r is a subset of the universe of T \\R−(r+1). We write Embwr�→wr+1

for the embedding obtained by the composition of Embabst,T \\R−r and Emb−1
abst,T \\R−(r+1) ,

that is, the embedding of positions of wr to positions in wr+1. The string ur is a substring
of ur+1 since T \\R−(r) is a substructure of T \\R−(r+1). We denote by posr,r+1 the mapping
of positions of ur to positions of ur+1. Since the universe of T \\R−e is equal to the
universe of D\R−e for e ∈ {r, r + 1}, Embwr�→wr+1 = posr,r+1.

Then we can talk about the configuration where the pebble assignment is updated using
this mapping: let π̃r = ((sr, τr), ρ̃r, Pos<1top(wr+1)) be a configuration on ur+1 with

ρ̃r(k) =
�

⊥, ρr(k) = ⊥
Embwr�→wr+1(ρr(k)), ρr(k) .= ⊥

The semantics of PIA allow us to lift a computation from a substring to a string, thus
π0 �1

ur+1 π̃r.

Let πpr
r+1 be the configuration on ur+1 given by

πpr
r+1 = ((sr+1, sr+1(1), τpr

r+1, 0), ρ̃r, Pos<1top(wr+1))
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where for every pebble k ∈ [m], τpr
r+1(k) is ⊥ if τr(k) is not in the image of PEmb

sr+1�→sr
,

and is (PEmb
sr+1�→sr

)−1(τr(k)) otherwise. Let tr+1 = ((sr, τr), (sr+1, sr+1(1), τpr
r+1, 0)).

Since the pair (sr, sr+1) is consecutive, we get that tr+1 ∈ δ and π̃r �tr+1
ur+1 πpr

r+1, implying
that π0 �1

ur+1 πpr
r+1. We prove that πpr

r+1(k) is wr+1-coherent. πr is wr-coherent by the
assumption, hence by definition ρr(k) = Embext,wr (τr(k)).

Let k ∈ [m] be such that τpr
r+1(k) .= ⊥. Then τr(k) is in the image of PEmb

sr+1�→sr
and

in particular τr(k) .= ⊥, and τpr
r+1(k) is given by:

Emb−1
ext ◦ abst,T \\R−(r+1)

�
Embext ◦ abst,T \\R−r (τr(k))

�
=

Emb−1
ext,wr+1


Embwr�→wr+1 (ρr(k))

�
.

We have
Embext,wr+1(τpr

r+1(k)) = Embwr�→wr+1 (ρr(k)) = ρ̃r(k)

Hence, πpr
r+1(k) is wr+1-coherent.

Now we apply Lemma 10.50 with the data word D\R−(r+1) of size nr+1, the string
projection ur+1, the perfect D\R−(r+1)-task word T \\R−(r+1), the abstraction wr+1, the
extremal string sr+1, and the configuration πpr

r+1(k); we get that there are τr+1 and
ρr+1 such that πr+1 is a wr+1-coherent configuration on ur+1 and πpr

r+1(k) �1
ur+1 πr+1,

and therefore π0 �1
ur+1 πr+1. The lemma follows for the computation π0 �1

uR
πR since

u = ur+1, nR = |u|, and (sR, τR) ∈ F .

10.6 L (Aϕ) ⊆ Lstr(ϕ)
We now prove the second direction of Theorem 10.1.

Lemma 10.51. Let w ∈ Ξ1 be accepted by Aϕ. Then w ∈ Lstr(ϕ).

Proof. Given w ∈ L (Aϕ), we build a data word D for it based on an accepting compu-
tation of Aϕ on w. To show that D |= ϕ, we prove the existence of a perfect completed
D-task word based on the syntactic representation of consecutive extremal strings.

Let (t̄, π̄) be an accepting computation. Let z be the number of transitions from a state
in {qinit} ∪ Qe to a state in Qp in t̄. This will be the number of different data values in
the constructed data word. The computation can be broken down into parts as follows:

π0 �t0
w π

(1)
1 �t̄1

w π
(2)
1 �t̄2

w · · · �t̄h−1
w π

(z)
1 �t̄z

w πf

where the target state of any transition is in Qe if and only if there is e ∈ [z] such that the
transition is the last one in t̄e. The sequence t̄ is equal to the concatenation of t0 and the
sequences t̄1, . . . , t̄z. For every e and a, let the state of π

(e)
a be (se, se(1) · · · se(ae), τe,ae , be).

For every transition t = t
(e)
a , let γt ∈ Γ1top ∪ {ε} be:
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1. if t ∈ Q × Q, γt = ε.

2. Otherwise, if t is a non-extremal transition, let γt ∈ Γnotext
1top (se, ae) such that

t ∈ Q × movem+1 × {ξγt} × Q. If t is an extremal transition, let γt = s(ae) (and
note that we again have that t ∈ Q × movem+1 × {ξγt} × Q).

Let γt̄e
= γ

t
(e)
1

· · · γ
t
(e)
len(e)

, where len(e) = |t̄e|. For every e ∈ [z], let ve, ue be the substrings

of w which the automaton reads during the transitions t̄e respectively (t0, t̄1, . . . , t̄e). Let
g�

e be such that ue is the shuffle ve g�
e

ue−1 relative to the positions in w.

We prove the following by induction on e (the proof is given in the next section): there is
a data word De and a De-task word Te such that for every p ≤ e we have:

(i) string(De
\p) = ue−p,

(ii) ext(abst(Te
\\p)) = se−p,

(iii) Te
\\p = Te−p and Te

\\p is a De
\p-task word,

(iv) the universe of De is contained in [e] × N.

Since for every e ∈ [z], se is an extremal string appearing in a state in Qp, se is perfect.
Therefore Tz is a perfect D-task word. Since the computation is accepting, the extremal
string sz is complete and therefore Tz is a completed D-task word. By Prop. 10.32, we
have D |= ϕ.

10.6.1 Inductive proof in Lemma 10.51
We assume the induction hypothesis for e − 1 and prove for e. Let re ∈ Γ1

1top ∩ Γ1
P be

obtained from γt̄e
by setting all tasks to P . Notice ve = ξγt̄e = ξγre . Let ge : [|re|] →

[|re| + |se−1|] be given by ge(.) = . + |ExtPos(abst(Te−1)) ∩ [g�
e(.) − .]|. Recall that

ḡe : [|se−1|] → [|re| + |se−1|]. Note:

∀. ∈ [|re|], ξ(re↓gese−1)(ge(%)) = (ve ↓g�
e
ue−1)(g�

e(.))
∀. ∈ [|se−1|], ξ(re↓gese−1)(ḡe(%)) = (ve ↓g�

e
ue−1)(ḡ�

e(.))

Claim 10.52. There is a data word De such that string(De) = ue and the universe of
De is contained in [e] × N, and there exists a De-task word Te such that ext(abst(Te)) =
ext(re ↓ge se−1) and for every p ≤ e, Te

\\p = Te−p.

Proof. Let De−1 be the universe of De−1. Let De be the data word over Ξ with universe
De−1 ∪ ({e} × [|re|]) such that:

1. De−1 is the substructure of De induced by De−1.

2. For every . ∈ [|re|] and re(.) = (h, ts), De |= ξω(ts)(e, .).
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3. For every .1, .2 ∈ [|re|], De |= (e, .1) ∼2 (e, .2).

4. For every d ∈ De−1 and . ∈ [|re|], De |= d <2 (e, .).

5. For every .1, .2 ∈ [|re|], De |= (e, .1) ≤1 (e, .2)
if and only if .1 ≤ .2.

6. For every d ∈ De−1 and . ∈ [|re|], D |= d ≤1 (e, .) if and only if g�
e(.) ≥ |{d� ∈

De−1 | De−1 |= d� ≤1 d}| + ..

Let Te be the De-task word such that

• for every d ∈ De−1, there are ts, ts� ∈ 2Tasks
Ω such that ω(ts) = ω(ts�), Te |= ts(d),

and Te−1 |= ts�(d), and

• for every (e, .) ∈ De, there are ts, ts� ∈ 2Tasks
Ω such that ω(ts) = ω(ts�), re(.) =

(1top, ts�), and Te |= ts(e, .).

By our construction, Te
\\p = Te−p for p = 1. For p > 1, this equality follows from the

induction hypothesis.

Clearly ext(abst(Te
\\1)) = ext(abst(Te−1)) = se−1, by the induction hypothesis. We apply

Lemma 10.45 with De for D, Te for T and re for r. Note that g in the lemma is ge, hence
we get ext(abst(Te)) = ext(re ↓ge se−1).

Let Dmax be the substructure of De which consists of the elements of De with maximal
data value. By the definition of De, we have string(Dmax) = ξre = ve. By induction,
string(De−1) = ue−1. By the definition g�

e, ue = ve g�
e

ue−1, and hence string(De) = ue.

From Lemma 10.35, it follows that there exists fe : [|re|] → [|re| + |se−1|] such that se is
a substring of re ↓fe se−1, hence se = ext(re ↓fe se−1).

Let r�
e = ext(re) and s�

e−1 = ext(↓ se−1). There exist Ge, Fe : [|r�
e|] → [|r�

e| + |s�
e−1|]

such that ext(re ↓fe se−1) = r�
e Fe s�

e−1 and ext(re ↓ge se−1) = r�
e Ge s�

e−1. Assume that
Fe .= Ge. Recall that F̄e, Ḡe : [|s�

e−1|] → [|r�
e| + |s�

e−1|]. Let .̃ ∈ [|r�
e| + |s�

e−1|] be the length
of the maximal common prefix of r�

e Fe s�
e−1 and r�

e Ge s�
e−1. We divide into two cases:

• Assume the letter at position .̃ + 1 in r�
e Ge s�

e−1 is in Γ1top. Then the letter at
position .̃ + 1 in r�

e Fe s�
e−1 is not in Γ1top. Let .1 ∈ [|r�

e|] and .2 ∈ [|s�
e−1|] be such

that Ge(.1) = F̄e(.2) = .̃ + 1. Then Fe(.1) > F̄e(.2) and Ḡe(.2) > Ge(.1).

• Assume the letter at position .̃ + 1 in r�
e Fe s�

e−1 is in Γ1top. Analogously to the
previous case, we have Ge(.1) > Ḡe(.2) and F̄e(.2) > Fe(.1).
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In both cases, Ge(.1) < Ḡe(.2) if and only if F̄e(.2) < Fe(.1).

Let t
(e)
c be the transition in which the automaton reads position Embext,re(.1) of ve.

Let .w
1 ∈ [|w|] be the position of w which t

(e)
c reads. Let k-movei,j be the move in

t
(e)
c . There is a pebble k� = τ−1

e,c (F̄e(.2)) on the position in se corresponding to .2 in
s�

e−1. Let .w
2 ∈ [|w|] be the position of k� in w. Ge and Ḡe have disjoint images, hence

Ge(.1) .= Ḡe(.2), and similarly for Fe, F̄e. We divide into cases:

1. If Ge(.1) < Ḡe(.2), then F̄e(.2) < Fe(.1). By the definition of the automa-
ton, the pebble i is located to the left of .w

1 , and i is either k� itself, or an-
other pebble located to the right of k�. Hence, .w

1 > .w
2 . But since Ge(.1) <

Ḡe(.2), we have ge(Embext,re(.1)) < ḡe(Embext, ↓se−1.2), we have g�
e(Embext,re(.1)) <

ḡ�
e(Embext, ↓se−1(.2)), and hence .w

1 < .w
2 , in contradiction.

2. The case of ge(.1) > ḡe(.2) is analogous.

Hence Fe = Ge and se = ext(re ↓ge se−1), and the induction hypothesis holds.

10.7 Complexity discussion
The previous two sections showed that Lstr(ϕ) = L (Aϕ). In this section, we show that
our construction provides an automata-theoretic proof to FO2(≤1,�2, S2) having an
ExpSpace satisfiability problem. First, we assert the size of Aϕ.

Lemma 10.53. Let n = |ψ| be the size of the original (not necessarily in normal form)
formula ψ. The size of Aϕ is at most double exponential in n, while the number of pebbles
m is at most exponential in n.

Proof. By Theorem 9.13, |Ξ| and |Θ| and hence m are exponential in n. The size of
Γ is therefore double exponential in n. By Lemma 10.19, EXT(Γ) ⊆ Γ7·|Θ∃|, which is
double exponential in n. Given an extremal string s, the number of (m + 1, |s|)-pebble
assignments is at most (|s|+1)m+1, which is double exponential in n. Hence |Q| is double
exponential. Since δ ⊆ (Q × Q) ∪ (Q × movem+1 × Σ × Q), |δ| is double exponential.

Next, we describe how to search for an accepting computation in Aϕ, which amounts
to searching for a sequence of consecutive extremal strings ending in a completed
extremal string. We build this sequence starting from the initial extremal string by non-
deterministically choosing the next extremal string based on the syntactic representation
of consecutive extremal strings. Given se and se+1, checking if (se, se+1) are consecutive
in ExpSpace is done as follows. We iterate over all r ∈ Γ1

1top ∩ Γ1
C such that |r| ≤ 7|Θ∃|

and over all strictly monotone functions g : [|r|] → [|r| + |se|]. We search for such r and
g for which se+1 = r↓g se and answer to whether such r and g are found. Lemmas 10.45
and 10.46 guarantee the correctness of a semi-decision procedure behaving as above
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without restricting the length of r. To guarantee we non-deterministically explore the
entire transition relation, we use the following lemma, which allows us to bound the
search space by limiting our attention to r which expand the current string with extremal
positions:

Lemma 10.54. Let T be a D-task word. Let d be an element of T not in ExtElem(T )
such that valueD(d) = maxvalD. Let D−d and T−d be the substructures of D respectively T
obtained by removing d. Then T−d is a D−d-task word and ext(abst(T )) = ext(abst(T−d)).

Proof. Assume that T−d is not a task word. There are d� ∈ D, ts ∈ 2Tasks
Ω , and θ ∈

ω(ts) such that d .= d�, T |= ts(d), and Cθ ∈ ts, but for every element d�� .= d of
D−d, D−d .|= θ(d�, d��). However, the non-existence of such d�� is in contradiction to
Lemma 10.44. Since d /∈ ExtElem(T ), ExtElem(T ) = ExtElem(T−d). The string abst(T−d)
is the substring of abst(T ) obtained by deleting the letter corresponding to d, and hence
ext(abst(T )) = ext(abst(T−d)).

Lemma 10.55. δ is ExpSpace(log(|A |))-computable.

Proof. Let n = |ψ|. Using Lemma 10.53, the sizes of the representation of a state q ∈ Q, a
string s in Γ7·|Θ∃|, a pebble k ∈ [m + 1], and a letter γ ∈ Γ1top are all at most exponential
in n.

We can verify that s is an extremal string in exponential space by computing ExtPos(s)
and verifying that |ExtPos(s)| = |s|. The set ExtPos(s) can be computed by going over
the string s and keeping track of the relevant minimum and maximum positions (of
which there are an exponential number). Similarly, for .̃ ∈ [|s|], one can verify that
γ ∈ Γnotext

1top (s, .̃).

Verifying that an extremal string s is perfect is as follows: for every two positions .1 < .2 of
s such that {.1, .2}∩Pos1top(s) .= ∅, it is straight-forward to compute perfects(%1),s(%2)(x, y)
in exponential space. Since perfects(%1),s(%2)(x, y) is a conjunction of atoms and negations
of atoms, it is also easy to complete it to its equivalent 2-type β(x, y). We can then check
that β(x, y), β(y, x) ∈ Θ∀.

We saw above that is it possible to non-deterministically compute the extremal strings
which are consecutive to s, and hence the set of transitions leaving q ∈ Q, in ExpSpace.

Thus, putting this together with Theorem 10.1 and Observation 8.16 we have:

Corollary 10.56. Finite satisfiability of FO2(≤1,�2, S2) is in ExpSpace.

Discussion This chapter brought together Chapters 8 and 9 by constructing a PIA
for an FO2(≤1,�2, S2) formula ψ. We had to bridge the gap between there being an
unbounded number of different data values in the models of ψ and PIAs having finite
memory. For this, we had our PIAs run on their input strings in rounds, with the idea
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being that positions read in the same round were assumed to have the same data value.
Furthermore, positions read in later rounds were assumed to have larger data value. That
way, we could abstract away the precise data values originally assigned to the elements,
and only consider the relationships between the data values: equality, smaller by 1, or
smaller by more than 1. Since each round can have an unbounded number of positions
read, we still needed to distill what was necessary for satisfaction of the formula into
a bounded form. This was achieved with extremal strings, which were essentially the
minimal substring the automaton must read during a round. Finally, those two ideas
were embodied in our construction of a PIA from a formula given in normal form.
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CHAPTER 11
Conclusion and Discussion

The main aim of this thesis was to tackle questions that arise when incorporating data
values into decidable logics using automata-theoretic methods. Incorporating data values
into such logics usually results in a nearly-undecidable formalism, so it is especially
challenging to manage the computational complexity of reasoning tasks. Furthermore,
the declarative nature of logical formulas offers little insight on how to approach such
problems. In contrast, automata approaches are more behavioral, and provide intuition
on how to process structures with data values.

In the first part, we considered a recently introduced description logic which allows one
to specify constraints on multiple integer values associated with logical elements along a
path in the model. This logic, ALCFP(Zc), has several desirable traits which are not
commonly found together in the literature. Namely, the fact that is enjoys a decidable
concept satisfiability problem even in the presence of general TBoxes, while supporting
access to the concrete domain via long paths of arbitrary roles, and despite the concrete
domain having the (non-dense) integers as the underlying numeric set. The presence
of any one of these alone usually has some consequences like higher complexity or even
undecidability. The question we solved for this logic was the complexity of reasoning, as
the proof of its decidability result [38] does not provide upper bounds for the problem.

We followed the approach in the decidability proof and split the task into a usual ALCF
satisfiability check and an embeddability check of a constraint graph. The most natural
way to go about performing the latter task with automata would have been to articulate
a characterizing condition for embeddability, such that the condition is verifiable with an
automata model that has a decidable emptiness test. Then, the automata model would
accept exactly the (tree) models of the formula.

However, we could not find an automata-verifiable condition which was both necessary
and sufficient for the embeddability of constraint graphs in general, as we would always
find some counterexample for the proposed condition being sufficient. Notably, these
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counterexamples would always be irregular in nature. Therefore, instead of going the
usual route of finding a characterizing embeddability condition for all graphs, we used the
same clever trick employed by Demri and D’Souza in [69] and relied on Rabin’s Theorem.
Rabin’s Theorem guarantees that any Rabin-recognizable set of trees contains a regular
tree, so we expressed a condition that was merely necessary for all trees and proved it was
sufficient for regular ones. Then, the Rabin tree automaton for this condition accepted a
superset of the tree models of the formula. But since the existence of any tree in this
set implied the existence of a regular tree in it, the non-emptiness of this automaton’s
language was exactly equivalent to the satisfiability of the formula.
The heavy lifting in the first part of the thesis was in proving that our condition is indeed
sufficient for regular trees. For this, we used combinatorial arguments to show that when
the condition is not satisfied by a regular tree, it contains strict paths of unbounded
lengths between two vertices, and is thus not embeddable. Showing that the condition
is verifiable by a Rabin tree automaton was comparatively easier though by no means
trivial, and was done by explicitly constructing the automata.
Our construction provided an ExpTime upper complexity bound, which is optimal
since concept satisfiability w.r.t. general TBoxes is ExpTime-complete already for ALC.
Therefore we feel justified in taking an automata-theoretic approach for this problem,
which allowed us to reveal that despite the fact that integer domains took quite long to be
fully incorporated into description logics, they did not impose additional computational
cost, which is surprising. Another aspect in which our automata-theoretic approach was
justified was its applicability to related settings. We were able to adapt our constructions
to a dense setting and facilitate a predicate for asserting that certain registers hold integer
or natural numbers. This modeling capability has also been long sought-after, and came
at no additional computational cost.
Finally, the first part was concluded with a more general discussion of description logics
with concrete domains. We addressed the somewhat unorthodox syntax of ALCFP

and compared it to the classical setting. We showed that some related logics can be
translated into ALCFP using additional registers, which allowed us to obtain new results
on DL-concrete domain combinations that were not previously considered in the literature.
The second part of the thesis was devoted to the conceptualization of a novel automata
model tailored to a specific decidable logic with data values, namely FO2(≤1,�2, S2).
As opposed to the logic in the first part, this logic already had tight complexity bounds,
established by Schwentick and Zeume in [98]. Our Pebble-Intervals Automata were shown
to capture this logic in the sense that for any definable class of data words, we could
construct a PIA which accepts its string projection language. For this result, we first had
to establish a normal form for the logic, reminiscent of the Scott Normal Form. We then
had to develop numerous technical notions to navigate the transition from generic logical
formulas, to the data words defined by them, to the constraints satisfied by these data
words. Then we had to bridge the gap between there being no bound on the number
of data values a data word can have, and there being a bound on the size of the state
set of the PIA. For this, we had to develop notions which convey what information is
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sufficient for determining the satisfaction of constraints, and then distill that information
as we projected away the preorder to obtain strings that can be encoded into our PIA.
These developments led to the second part of the thesis being heavy with technical detail,
which was unfortunately unavoidable due to our manipulation of structures over different
vocabularies.

We also provided some of the customary automata-model investigation by showing that
PIA have a decidable emptiness test, and that they are closed under some common and
not so common operators, such as shuffle. We showed that they are not effectively closed
under intersection and complement, and concluded that their universality and inclusion
problems are undecidable. In addition, we investigated which languages are accepted by
PIA and saw that PI languages include all the regular languages, at least some context
free and not context free languages, but certainly not all context sensitive languages.

In both parts, there was technical preprocessing in the form of normal forms and
transformations. But the conditions the automata were used to verify were phrased in
relatively natural terms. This allowed us to set aside the technical details for a moment
and illustrate what can be expected from each logic in terms of expressiveness.

Further research
Both lines of research in this thesis have natural next steps. For our work on ALCFP(Zc),
the main question is whether our technical developments can be transferred to other
logics, for example to fragments [44] of constraint CTL1, or to stronger description
logics such as SHIQP(Zc). On the practical side, tableau algorithms are the most
widely used tools for reasoning in expressive DLs, e.g. [100, 101, 102] and have enjoyed
optimization efforts (see [53] and references in [103]), so it could be beneficial to develop
a tableau algorithm for ALCFP(Zc). Nonetheless, some works have already developed
practical approaches to automata construction for ALCF using alternating looping tree
automata [104], and it would be interesting to extend these to the Rabin automata used
here. Another avenue of future practical research would be to support reasoning with
ABoxes and facilitating instance queries, as these are crucial for effective modeling and
interaction with knowledge-based systems.

Regarding our results on Pebble-Intervals Automata, the most natural question would
be whether PIA exactly capture FO2(≤1,�2, S2) or are they stronger? Notice that our
construction has the pebbles moving in one direction in each iteration, perhaps this
behavior can be precisely formulated and the arising special case of PIA would exactly
capture FO2(≤1,�2, S2) projection languages? Another natural question is whether
our results can be extended to ω-languages. It is possible to extend our automata by
a new type of transition which reads all positions with a specified letter between two
pebbles in a single step while retaining the complexity of the emptiness problem, so it
would be interesting to investigate the analog of Theorem 10.1 for infinite data words
and their projections into ω-languages. Another important direction of research is the
adaptation of the decidability results to trees, or to C2, which extends FO2 with counting
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11. Conclusion and Discussion

quantifiers [105]. Currently, the finite satisfiability problem is open for C2 in the presence
of a preorder, although it is known to be NExpTime-complete in the presence of a linear
order [106]. Another related result is C2 with an equivalence relation in forests [107],
which is also NExpTime-complete.

Finally, it would also be interesting to explore the computational power of our automata
model. We believe that the Dyck language of well-nested parentheses of two types may
not be PI – can this be shown using a pumping lemma generalizing the ones for regular
or context-free languages?
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