
Privacy-Preserving Remote
Attestation Protocol

MASTER’S THESIS

submitted in partial ful®llment of the requirements for the degree of

Master of Science

in

IT-Sicherheit

by

Dominik Roy George, BSc
Registration Number 2841746

to the Department of Computer Science

at the TU Darmstadt

Advisor: Prof. Dr. Michael Waidner
Assistance: Prof. Dr. Christoph Krauû

Michael Eckel, M. Sc.

at the TU Wien

Advisor: Univ.-Prof. Dipl.-Ing. Mag. Dr. techn. Edgar Weippl
Assistance: Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc

Vienna, 24th June, 2021
Dominik Roy George Michael Waidner

Double Degree IT Security between Technische Universität Darmstadt and Technische Universität Wien
www.tu-darmstadt.de www.tuwien.at





Privacy-Preserving Remote
Attestation Protocol

DIPLOMA THESIS

submitted in partial ful®llment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Dominik Roy George, BSc
Registration Number 01525091

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.-Prof. Dipl.-Ing. Mag. Dr. techn. Edgar Weippl
Assistance: Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc

at the TU Darmstadt

Advisor: Prof. Dr. Michael Waidner
Assistance: Prof. Dr. Christoph Krauû

Michael Eckel, M. Sc.

Vienna, 24th June, 2021
Dominik Roy George Edgar Weippl

Double Degree IT Security between Technische Universität Darmstadt and Technische Universität Wien
www.tu-darmstadt.de www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Dominik Roy George, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit Ű einschlieSSlich Tabellen, Karten und Abbildungen Ű, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24. Juni 2021
Dominik Roy George

v





Acknowledgements

I would like to thank my supervisor at TU Darmstadt Prof. Dr. Michael Waidner and
my co-supervisors at Fraunhofer Institute for Secure Information Technology (SIT)
Prof. Dr. Christoph KrauSS and Michael Eckel, M. Sc.. Further, I would like to thank
my supervisor at TU Wien Univ.-Prof. Dipl.-Ing. Mag. Dr. techn. Edgar Weippl and
my co-supervisor Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik. Due to all of my
supervisors and co-supervisors of both Institutions, I could Ąnish this double degree
master program. Moreover, special thanks for giving helpful advice while writing my
thesis goes to Dr. Björn Grohmann.

I would like to express my deepest gratitude to my parents and my family and my friends
for supporting me in all the years of my studies as well as listing to my thoughts and
also while writing this thesis.

vii





Abstract

Binary Attestation (BA) is a security mechanism which has existed for decades. The
goal of BA is to guarantee that the correct software is loaded on a computer system.
This is accomplished by applying concepts of Trusted Computing technology. Trusted
Computing technologies are: Trusted Platform Module (TPM), measured/trusted boot,
and the Linux Integrity Measurement Architecture (IMA), to ensure that a system has
booted correctly and authentic software is running. Further, to provide evidence that the
systemŠs operational state is trustworthy, a log is generated which contains Ąle names
and hash sums of software components. The trustworthiness of the evidence is tied to
a TPM. Later on, a remote party is able to verify the evidence if the operational state
of the target system is trustworthy, in a process known as Remote Attestation (RA).
Cyber-physical systems (such as power grids or nuclear power plants), and vehicular
systems (such as railway- or automotive-transportation) are running multiple applications
from various vendors. In the case of binary remote attestation, all log entries (such as Ąle
names and hash sums of software components) of all running software from all vendors
are exposed to the remote party. Thus, the problem of binary remote attestation is that
privacy is not preserved.

This thesis resolves the privacy deĄciency by designing a privacy-preserving remote
attestation approach. The core idea of the approach is to combine the Trusted Computing
technology sector with the privacy-enhancing technology area. The approach preserves
privacy by blinding all log entries. Hence, the approach reveals the associated (blinded)
log entries to the veriĄer by applying the Schnorr Non-Interactive Zero-Knowledge (NIZK)
proof over an elliptic curve (Schnorr Signature). This allows the attester to convince the
veriĄer that the blinded entry is the actual running software on the attesterŠs system
without exposing the other entries.

To demonstrate feasibility and practicability of the approach, this thesis implemented a
Proof-of-Concept (PoC). This work evaluated the performance and privacy of the PoC.
The results show that privacy against the remote party is guaranteed while ensuring
integrity and authenticity of the operational state of the attesterŠs system (target system).
However, the resource utilization increased during remote attestation while preserving
privacy.
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Kurzfassung

Binary Attestation (BA) ist ein Sicherheitsmechanismus, der schon lange zur Sicherstel-
lung der Integrität der auszuführenden Software auf einem Computerssystem verwendet
wird. Dies wird durch die Anwendung der Konzepte von Trusted Computing Technologie
erreicht. Die Konzepte der Trusted Computing Technologie sind: Trusted Platform Modu-
le (TPM), measured/trusted boot und Linux Integrity Measurement Architecture (IMA).
Damit die Vertrauenswürdigkeit des Betriebszustandes des Systems überprüft werden
kann, wird eine Logdatei erstellt. Diese enthält den Dateinamen und die Hash-Summe
der Softwarekomponenten, welche an das TPM gebunden wird. Zu einem späteren Zeit-
punkt kann eine entfernte Partei (VeriĄer) die Evidenz veriĄzieren, um zu sehen, ob der
Betriebszustand des Systems vertrauenswürdig ist. Dies wird als Remote Attestation
(RA) bezeichnet.
Auf den Systemen im Bereich der Cyber-physische Systeme (z. B.: Energie Netze und
Kernkraftwerke) und im Bereich der Verkehrsmittel (z. B.: Züge und Automobil Fahrzeu-
ge) laufen mehrere Anwendungen von verschiedenen Herstellern. Bei bisherigen Ansätzen
der BA, werden alle Einträge der Logdatei von allen laufenden Anwendungen aller Her-
steller während der RA an die entfernte Partei preisgegeben. Daher gewährleistet die
Binary Remote Attestation keine Privatheit.
Diese Masterarbeit adressiert die genannte Schwäche von der Binary Remote Attestation
indem es eine Privacy-Preserving Remote Attestation Ansatz erstellt. Im Kern der Arbeit
steht die Konzeptionierung eines Ansatzes, welches den Trusted Computing Sektor mit
Privacy-Enhancing Technologie verknüpft. Der Ansatz bewahrt die Privatheit, indem alle
Logeinträge verschleiert werden. Dabei werden dem VeriĄer nur die jeweilig zugehörigen
Einträge offengelegt. Dadurch kann der Attester dem VeriĄer durch die Anwendung des
Schnorr Non-Interactive Zero-Knowledge Proofs über eine elliptische Kurve (Schnorr-
Signatur) beweisen, dass es sich bei den ausgeblendeten Einträgen um die tatsächlich
laufende Anwendung auf dem System des Attesters handelt, ohne die anderen Einträge
preiszugeben. Dieser Ansatz wird in dieser Arbeit als Proof-of-Concept umgesetzt. Die
Leistung und die Privatheit des Proof-of-Concepts wurden in dieser Arbeit analysiert.
Hierdruch wird gezeigt, dass die Privatheit gegenüber der entfernten Partei gewährleistet
wird, während die Integrität und Authentizität des Betriebszustands des Systems vom
Attester sichergestellt wird. Die Gewährleistung der Privatheit geht allerdings mit einem
Anstieg der benötigten Ressourcen einher.
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CHAPTER 1
Introduction

The Ąrst chapter of this thesis motivates the work, explains the problem statement and
the aim of the work and Ąnally outlines the following chapters.

1.1 Motivation & Problem Statement
The Internet of Things (IoT) as well as E-Vehicles and power grids are using a hardware
security module called Trusted Platform Module (TPM) to enhance the security state of
the devices or platforms. The TPM is capable of securely generating and storing keys.
These private keys never leave the TPM, due to its resistance against attacks. One of the
major purposes of the TPM is to check the software integrity of the executed components
starting from the bootloader to the operating system, during the boot process of a
platform by using the generated private keys.

Software integrity is an integral part of the system security domain. Remote Attestation
(RA) is a process which enables a third party to assess the operational state of a
platform. The operational state is deĄned as all executed software on a platform. The
TPM is used to measure the executed software. It uses the Platform ConĄguration
Registers (PCRs) and stores the measurements into logs, called Stored Measurement
Log (SML). Furthermore, the TPM has the responsibility to provide the integrity of the
SML. The executed software on a platform is measured using the TPM, which stores the
measurements into the SML.

During remote attestation the target system, the attester, sends to the third party the
SML and a signature from the TPM, constituting the operational state of a platform.
The veriĄer checks the logs against a whitelist. The veriĄer receives the entire SML thus,
disclosing information to the veriĄer about all running software on the attester since the
last boot. In many use cases, privacy plays an important role. Thus, it may be desirable
not to reveal the entire SML to the third-party veriĄer.
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1. Introduction

The concept of privacy-preserving remote attestation prevents a malicious veriĄer from
knowing what other programs are running on a platform. The adversary is incapable
of observing whether unpatched software is running on the platform. A naïve solution
presents itself: instead of receiving the entire SML, the veriĄer only requests the SML
entries, that are associated with the veriĄer. However, this solution breaks the ability of
the veriĄer to verify the TPM anchored integrity and authenticity of the SML.

Solutions to this problem have been presented in the past based on property-based
attestation from Sadeghi et al. ⟦55⟧ and Chen et al. ⟦19⟧. However, these approaches
have the following disadvantages. First, Sadeghi et al. ⟦55⟧ use a similar approach,
which this work will present, but in their concept, a Trusted Third Party (TTP) is
necessary to map the system state (binary conĄguration) to a property and the TTP
needs to publish the properties. Secondly, Chen et al. ⟦19⟧ designed a protocol, which
uses a signature and commitment scheme, but the protocol needs more computational
operations as well as it relies on how many properties are mapped. Otherwise, the veriĄer
can guess which property is mapped to conĄgurations (system state) and compromise
privacy. Nonetheless, this thesis intends to improve these approaches by applying Schnorr
signatures, which reduce the computational overhead. Additionally, this new scheme will
not require a trusted mapping/transformation service for properties. Hence, this thesis
solves the privacy deĄciency based on binary attestation. Furthermore, a proof-of-concept
implementation will be developed and evaluated. Therefore, this work focuses on how to
limit the exposure of the SML to a deĄned subset without losing the chain of trust.

1.2 Aim of the Work
The aim of the work is to develop a RA concept while preserving privacy. In order to
develop a Privacy-Preserving Remote Attestation (PPRA) protocol, it is necessary not
to reveal the entire SML. This work seeks to use zero-knowledge proofs for proving the
integrity of the received subset, to ensure the chain of trust remains intact. Therefore,
this thesis tries to answer the following research questions about developing a PPRA
protocol:

Ţ How can the TPM-based log integrity be preserved, while revealing only parts of
the SML?

Ţ Can the privacy-preserving property be realized with a zero-knowledge proof? How
can a solution be designed?

Ţ How could such an approach be used in a scenario with multiple veriĄers in order
to prove to an interested third party that all entries of the SML are veriĄed?

Currently, RA approaches reveal everything about the system state of the platform.

First, it is necessary to deĄne what kind of information should be sent to the veriĄer. In
the currently existing approaches, the attester signs the aggregated hash of the SML and
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1.3. Outline

sends the signed accumulated hash with the entire SML to the veriĄer. As mentioned in
the previous section the attester sends a subset of the SML, which breaks the integrity of
the chain of trust. To remedy the chain of trust, we could additionally send hashes of the
non-revealed programs. However, this allows an attack in which the adversary creates
a reverse lookup table from the hashes to programs. Therefore, a malicious veriĄer is
capable of observing what kind of software is running on the system. Our approach
randomizes the hash, eliminating the attack. The idea is to ŞhideŤ the hash and send
only the column of the SML containing the scrambled hash and the accumulated hash
which is signed by the TPM. During the veriĄcation process, the veriĄer is re-aggregating
the hashes and checks if the output is the same as the signed accumulated hash from the
attester.

Secondly, the randomization of the hash is designed in a way, which allows us to prove, in
zero-knowledge, that the randomized hash corresponds to a revealed program hash. In our
case, we use non-interactive zero-knowledge proofs to implement the privacy-preserving
RA scheme.

To conclude, we design a concept, which addresses the privacy deĄciency of binary
attestation.

1.3 Outline
This thesis is organized in coherent structure. Chapter 2 presents the prerequisites
and fundamentals, which are used during this work. Further, it elaborates on the RA
process and the non-interactive zero-knowledge proof. The fundamentals are explained
to understand how these two research sectors are combined in this work. In Chapter 3,
an overview is given of related work about property-based attestation, and it delimits
between binary attestation and property-based attestation. Moreover, it presents similar
methods to preserve privacy in the remote attestation process. Chapter 4 provides
real-world use cases, where privacy is an integral part. Four use cases are presented in
the chapter and explained how privacy is a necessity. Chapter 5 does a requirement
analysis for establishing the PPRA approach. Afterward, Chapter 6 presents in detail the
theoretical design approach of the PPRA protocol. The theory of the previous chapter is
realized into a proof-of-concept, which dispenses the implementation and the algorithms
in Chapter 7. Next, the proof-of-concept and the PPRA approach are evaluated in
Chapter 8. Further, Chapter 8 discusses the achieved security and privacy aspects of the
PPRA approach. In the end, Chapter 9 concludes the work of this thesis and gives an
outlook for future work.
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CHAPTER 2
Background

Remote Attestation (RA) protocols are used to provide authenticity and integrity of the
running software on the attester side. The attester sends the attestation of the system
state of the attesterŠs platform to the veriĄer, where the veriĄer validates the attestation.
Therefore, this chapter will elaborate the peculiarities to understand the approach of
designing a Privacy-Preserving Remote Attestation (PPRA) protocol.

2.1 Trusted Platform Module
Trusted Platform Module (TPM) is a hardware chip, which is directly or indirectly
integrated into a computer system. The concept and architecture of the TPM is speciĄed
by the Trusted Computing Group (TCG). The TCG states, to establish trust in a
platform, it is necessary to identify the expected behavior of the platformŠs hardware
and software ⟦64⟧. Hence, the TPM provides functions for collecting and reporting these
behaviors. Therefore, the TPM is used in a computer system to determine the expected
behavior to establish trust.

Furthermore, the TPM provides cryptographic primitives, credential protection, secure
storage and remote attestation ⟦64⟧. In other words, the TPM is a small crypto engine.
Additionally, the TPM is protected against physical attacks, so it is infeasible for an
adversary to extract any secrets. In the case of this thesis, the TPM in version 2.0
is used. As mentioned, the TPM provides cryptographic primitives. Therefore, after
manufacturing the TPM 2.0, it is shipped with unique cryptographic seeds. These
cryptographic seeds are used to derive key pairs. The TPM 2.0 provide three major key
hierarchies, each has a primary key or root key, which is derived from its own primary
seed ⟦41, 64⟧:

Ţ Endorsement Key: The Endorsment Key (EK), which is derived from endorse-
ment primary seed (EPS). The EK is controlled by the privacy administrator. The

5



2. Background

EK is used to prove legitimacy to the user.

Ţ Platform Key: The Platform Key (PK), which is derived from platform primary
seed (PPS). The PK is managed by the platform Ąrmware.

Ţ Storage Key: The Storage Key (SK), which is derived from storage primary seed
(SPS) and controlled by the platform owner. The SK is used to protect user data.

All the introduced keys provide a private and a public part, where the private part never
leaves the TPM. Hence, the user can derive new keys under the hierarchy. For instance,
a new key can be derived from the EK.

2.1.1 Attestation Key
The Attestation Key (AK) is an essential part during the remote attestation process.
The TPM can accommodate multiple attestation keys. The major purpose of these keys
are to sign the internal state of the TPM. To receive the internal state of the TPM a
speciĄc operation called TPM Quote needs to be executed. Moreover, the EK can be
used for signing the internal state of the TPM as well, if the TPM Quote operation is
explicitly speciĄed in the reſtricted attribute of the EK. Furthermore, the key pair of the
AK leaves the TPM, but the private part of the key pair is encrypted by the parent key
(e. g. EK or SK).

2.1.2 Platform ConĄguration Registers
The Platform ConĄguration Register (PCR) is another integral part of the remote
attestation process. The TPM provides PCRs which are part of its volatile secure storage
facilities. The PCRs are used to generate a chain of trust, which will be explained in
the next section. The task of the PCR is to generate folding hashes which are saved in
the TPM. The TPM does not allow saving data directly, thus the TPM allows for an
operation called PCR exte♪d. PCR exte♪d is an operation, which modiĄes the value of a
speciĄc PCR and anchors in the TPM to maintain the chain of trust. The PCR exte♪d
operation is deĄned as ⟦64, 56, 72⟧:

extend(i↪ d) :− H(PCRi∥d) (2.1)

Where i deĄnes the PCR number or PCR index, H is a cryptographic hash function and
d is the data which needs to be extended into a speciĄc PCR value. PCRi represents
the current value of the PCR number i. After, applying the PCR exte♪d operation the
PCRi′ contains the newly extended value. The PCRi′ is computed as :

PCRi′ :− extend(i↪ d) (2.2)

Furthermore, the PCR banks in TPM 2.0 allow for each PCR number to have multiple
values. These values are folding hashes applied with different hashing algorithms which
are anchored in PCRs within the TPM.
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2.2. Trusted Boot

In every boot sequence, the TPM sets all PCR values to zero which are the initial values,
except for some special PCRs, the initial values are set to one. Moreover, the PCRs are
useful for keeping the folding hash of log entries. During the remote attestation, the
folding hash can be recomputed by verifying the integrity of the whole log.

2.2 Trusted Boot
The TCG deĄned the trusted boot process otherwise known as ŞMeasured BootŤ, which
takes the integrity measurement during the system boot sequence. This thesis uses the
term meaſureme♪tſ throughout the work. This term is referred to the computed hashes
over software applications/binaries/software components.

The difference between secure boot and trusted boot is that secure boot measures
components and veriĄes them, if the veriĄcation fails the boot sequence is aborted ⟦41⟧.
However, trusted boot only measures the components without verifying them in place.
After measuring each software component, the trusted boot extends the PCRs inside the
TPM. Further, it keeps a log of all measured components, the log is called Boot Log.

In addition, a chain of trust is an essential part of the whole trust establishment process
deĄned by the TCG. The root of the chain is an immutable Core Root of Trust for
Measurement (CRTM). The CRTM is the Ąrst entity in the trusted boot, which becomes
active after the system is powered on. The CRTM measures itself and extends a PCR
by storing the measurement into the TPM. Next, the next entity will be measured and
the measurement will be stored, and the entity is executed. The measurement steps for
maintaining the chain of trust are ⟦56, 72⟧:

1. measure next entity in the chain,

2. store the measurement in the TPM by extending a PCR and

3. pass control to the next entity in the chain.

After, measuring all components in the trusted boot (see Figure 2.1), the chain of
trust reaches the operating system. In Linux-based operating systems the Integrity
Measurement Architecture (IMA) takes over with the same procedure of the trusted
boot, where it continuously measures all executed software applications. Therefore, it
brings the same conduct of the trusted boot in the operating system.

2.3 Integrity Measurement Architecture
The IMA is a part of the Linux kernel and is a trusted computing component ⟦38, 56,
72⟧. After the trusted boot process reached the operating system, the IMA is invoked to
continue the measurement of all software loaded into the memory. The IMA establishes
a log Ąle, the Stored Measurement Log (SML) and supports various log formats known

7



2. Background

Figure 2.1: Chain of Trust ⟦25⟧.

as IMA templates. The measuring process takes place before the software component is
loaded into memory. This process is atomic, which executes in the following three steps
with no interruption ⟦38, 56, 72⟧:

1. Measurement of software applications: The hash value from the software
application Ąle is computed and then the software application is loaded into memory.
The hash algorithm varies due to the used IMA template.

2. Insert entry into the SML: After the measurement, the hash, and information
will be added into the SML. Before, it adds the entry to the SML it checks if it
already exists. If the entry exists, it checks if the Ąle content (the measurement)
changed, if not, it will not be added. The SML is used to ensure the integrity of an
SML entry. The computed template haſh is a part of the SML entry.

3. Anchor entry into the TPM: After measuring and adding the measurement
into the SML a PCR inside the TPM will be extended with the template haſh. The
PCR extend operation is done by the TPM to anchor an accumulative haſh over all
SML entries. An example is given for PCR extend operation over all SML entries
(n is the number of SML entries, e represents the template haſh of an SML entry)
⟦56, 72⟧:

PCR0
i :− extend(i↪ e0)

PCR1
i :− extend(i↪ e1)
...

PCRn
i :− extend(i↪ en)

PCRn
i :− extend(extend(extend(extend(i↪ e0)↪ e1)↪ ▷ ▷ ▷ )↪ en)

The last line shows how the folding hash is generated with the extend operation.
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PCR Index Template Hash IMA Template File Hash File Path
10 c4456▷ ▷ ▷331 ima 65727▷ ▷ ▷12b booṫaggregate
10 73c9b▷ ▷ ▷eff ima 153f3▷ ▷ ▷c95 /lib64/ld-linux-x86-64.so.2
10 9b0ed▷ ▷ ▷c09 ima 4ebaf▷ ▷ ▷c9a /lib/x86̇64-linux-gnu/libc.so.6
10 fef56▷ ▷ ▷71b ima 64743▷ ▷ ▷f69 /bin/dash
...

...
...

...
...

10 ee599▷ ▷ ▷667 ima fc66b▷ ▷ ▷cef /bin/mkdir
10 089c4▷ ▷ ▷4bf ima 2f43e▷ ▷ ▷699 /bin/ln
10 78bd2▷ ▷ ▷14c ima e46fd▷ ▷ ▷b48 /bin/mount
...

...
...

...
...

Table 2.1: Traditional SMLima ⟦26⟧.

Moreover, IMA provides an IMA policy, which deĄnes the set of software and binaries/Ąles
that needs to be measured. This policy is conĄgurable by hard-coding it into the Linux
kernel or over an character device in the OS in ⁄ſyſ⁄ker♪el⁄ſecurity⁄ima⁄policy.

2.4 Stored Measurement Log
The SML is generated by the IMA and has the format of a speciĄed IMA template. The
existing IMA templates are ima, ima-♪g, ima-ſig, ima-modſig and ima-buf ⟦38⟧. The
default IMA template is hard-coded into the Linux kernel, however, it can be conĄgured.
The Table 2.1 illustrates the log format of the IMA template ima. The column PCR
I♪dex deĄnes the number of the PCR, in which the template haſh of an entry has to be
extended into the TPM. The IMA uses by default the PCR Index 10 for all entries. The
Ąrst entry in the SML is different from the others, since it is the concatenation of all PCRs
from the trusted boot process(0-7): booṫaggregate :− H(PCRi∥PCRi+1∥ ▷ ▷ ▷ ∥PCRn).

Template Hash The template haſh is the concatenation of an entry (column) File
Haſh with the (column) File Path. H(File Hash∥File Path), where H is the default hash
algorithm used in the IMA. The IMA supports as default SHA-1 for generating the
template hash. The IMA template column deĄnes, which log format is used.

2.5 Reference Integrity Measurements
The Reference Integrity Measurements (RIMs) represent the intended operational platform
conĄguration state. Moreover, RIMs serve as a whitelist for the veriĄer to compare it
against the SML. The structure of the RIMs may be the same as the SML. Furthermore,
RIMs are used during the measurement veriĄcation process to Ąnd the matching entry of
the SML. If and only if all the entries of the SML are found in the RIMs, the veriĄcation
result will be valid.
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Traditional Remote Attestation Process

VeriĄer Attester TPM
requestAttestation

(v,pcrSelection)

tpmQuote(v,pcrSelection)

tpmQuote

readSML()
SMLima

tpmQuote, SMLima

Figure 2.2: Remote Attestation process between veriĄer and attester.

2.6 Remote Attestation
RA is the process for reporting TPM-produced cryptographically signed attestation
evidence about the attesterŠs platform operational state ⟦26⟧. This state will be trans-
ferred to the requested remote party, the veriĄer, which will verify the received state.
The AK is a necessity for the RA. The TPM has full access to the AK, which is re-
quired to cryptographically sign the attesterŠs platform operational state known as TPM
Quote. The veriĄer has access to the public key of the AK in order to verify the signed
data/state. Figure 2.2 embellishes the whole traditional RA process. Further, the v in
the Ągure represents a nonce, which is used to prevent replay attacks and to provide
freshness/recentness.

2.6.1 TPM Quote

A TPM Quote represents the current platform operational state. The TPM Quote
contains the following data, which will be veriĄed by the veriĄer ⟦38, 56, 72⟧:

Ţ The selected PCRs (s0↪ ▷ ▷ ▷ ↪ sn).

Ţ External Data, which is normally a nonce provided by the veriĄer.

Ţ A signature signed by the TPMŠs AK over the PCR selection and external data:
sig(H(¶extDat↪ PCRs0∥PCRs1∥ ▷ ▷ ▷ ∥PCRsn♢))AK

′
priv, where H is a cryptographic

hash algorithm.
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Additionally, the TPM 2.0 includes the information about the internal clock of the TPM.
The attestation process is triggered remotely by the veriĄer. Therefore, the veriĄer sends
a nonce, for protection against replay attacks, as external data and a selection of PCRs,
which are then included in the TPM Quote.

2.6.2 VeriĄcation
The veriĄcation process of the operational state of the attesterŠs platform is a crucial part
in the RA process. Since it has multiple veriĄcation parts. The whole process of verifying
the operational state is split into i♪tegrity veriˇcatio♪ and meaſureme♪t veriˇcatio♪.

Integrity VeriĄcation Integrity veriĄcation ensures authenticity and integrity of the
received data. Further, integrity veriĄcation is a prerequisite for measurement veriĄcation.
The integrity veriĄcation is split into the followings steps ⟦26⟧:

1. VeriĄcation of the TPM signature by using the public key (AKpub) of the AK.

2. Verifying whether the external data (nonce) matches with the previously sent nonce
to the attester, in order to trigger a remote attestation.

3. The integrity of the SML is veriĄed. The veriĄcation is divided into:

3.1. Verifying the whole SML by recomputing the accumulative hash PCRn
i ′

over all entries in the SML (see previous Section 2.3 and Section 2.4). The
accumulated value will be compared to the actual PCR value from the TPM
Quote.

3.2. VeriĄcation of each entry in the SML by recomputing the template haſh. The
recomputed values for each entry will be checked whether it matches the actual
values from the received SML.

Each of the sub integrity veriĄcation steps needs to return a positive value, otherwise,
the whole integrity veriĄcation will fail.

Measurement VeriĄcation Measurement veriĄcation is a process which takes the
received SML from the attester and checks against the RIMs. If the comparison yields a
positive value, then the measurement veriĄcation is valid.
The operational state of an attesterŠs platform is only valid, if and only if all subparts of
the veriĄcation process yield positive values, otherwise the operational state is corrupted
and the attesterŠs platform is not trustworthy.

2.7 Abstract Algebra
The fundamental basis of public-key cryptography is based on the theory of abstract
algebra and algebraic structures. Hence, this work recalls some basics of algebraic
structures. First, the deĄnition of the groups and Ąelds will be elaborated.

11



2. Background

2.7.1 Groups

Groups are algebraic structures. Let G be a non-empty set, which is associated with a
binary operation ◦. G is mapped as G × G → G, which means that each element a↪ b ∈ G
results to an element a ◦ b. Therefore, the pair of the set G and binary operation ◦ is
known as a binary algebraic structure (G↪ ◦). (G↪ ◦) will be deĄned as a group if the
following axioms hold for the binary operation ⟦61, 54⟧:

Ţ The binary operation ◦ takes two elements a↪ b ∈ G from the group as input and
returns as output an element a ◦ b ∈ G. If the resulting element is in the group
then the group is closed under the binary operation ◦.

Ţ For the elements a↪ b↪ c ∈ G the associativity should hold for the group, if (a◦b)◦c −
a ◦ (b ◦ c) applies.

Ţ There exists an identity element e ∈ G, if e ◦ a − a ◦ e − a for all a ∈ G applies.

Ţ For all elements in the group a ∈ G exists an inverse element a′ ∈ G, if a ◦ a′ −
a′ ◦ a − e holds. The element e is the identity element of the previous axiom.

If all these axioms hold, then the set G with a binary operation is a group. Further, a
group is an abelia♪ group, if commutativity axiom holds, which deĄnes if all the elements
in a group a↪ b ∈ G applies to a ◦ b − b ◦ a ⟦61⟧. A group is a Ąnite group if it contains
a Ąnite number of elements ⟦61⟧. The group has an order, which deĄnes the number of
elements the group contains. If no order is deĄned the group has an inĄnite number of
elements.

The cyclic group is an integral part of the design of the PPRA. A group is a cyclic group
if a single element generates the group. Let · be a multiplicative binary operation and
the group is deĄned as (G↪ ·). With the binary operation · exponentiation can be deĄned
as a repeated operator of ·. For instance, g is an element of G and g3 − g · g · g ⟦61⟧.
Moreover, the identity element is deĄned as g0 − e and the inverse element is g⩾n − (g′)n.
Therefore, if all the elements in G can be generated by gr, where r ∈ Z and g is a Ąxed
element in G, then the group is cyclic ⟦61⟧. g becomes the generator of the group (G↪ ·),
since gr generates all the elements in the group.

2.7.2 Fields

Fields are deĄned with two binary operations such as (F↪ +↪ ·), where F is the Ąeld.
However, in cryptography, the Ąeld is slightly different deĄned such as Fp, where p is a
prime number. F ∗

p means a Ąnite Ąeld without the element 0. Further, this deĄnition
includes integer modulo p ⟦54⟧. Moreover, the Ąeld is a Ąnite Ąeld, which has Ąnite
elements.
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2.8 Elliptic Curve Cryptography
The Elliptic Curve Cryptrography (ECC) was introduced by N. Koblitz and S.V.Miller in
the 19th century ⟦39⟧. The ECC is more preferred than the RSA cryptosystem due to the
smaller key size, and it provides the same security. The computation in the cryptosystem
plays as well as a major role. The ECC is more efficient than the RSA cryptosystem.
Therefore, ECC is preferred in the embedded system domain.
An elliptic curve is characterized by an equation with two variables (x, y) and coefficients.
Further, the two variables are the coordinates, which satisfy the equation. For this work
an elliptic curve MA↪B over Ąnite Ąeld Fp in Montgomery form is used, which is deĄned
by the following equation ⟦54⟧:

MA↪B : By2 − x3 + Ax2 + x (2.3)

The parameters A↪ B in Equation (2.3) are constants for deĄning speciĄc curves (see
Chapter 7) ⟦54⟧. Moreover, to satisfy the equation, following conditions for parameters
A↪ B should be met ⟦54⟧:

Ţ A↪ BϵFp

Ţ B(A2 ⩾ 4) ̸− 0 −⇒ B ̸− 0↪ A ̸− ⩾2↪ A ̸− 2

Further the elliptic curve MA↪B(Fp) deĄnes the set of points, which satisfy the Equa-
tion (2.3).
Elliptic curves are deĄned over a Ąnite Ąeld, which has a group structure of an abelian
group ⟦47⟧. The group structure of the elliptic curve is used to build cryptosystems ⟦39⟧.
Besides, two major operations on the elliptic curve will be used in the cryptosystem and
these are point addition and point multiplication.

2.8.1 Point Addition
As above stated, let MA↪B be an elliptic curve over Fp. Let P and Q be points on MA↪B .
A point on the elliptic curve is deĄned as P (x↪ y), where x and y are coordinates. Next,
this work deĄnes the point addition, negation, and doubling. The negation of point P
is deĄned as ⩾P (x↪ ⩾y). If two points are selected such as P and Q, then the point
addition is R(x3↪ y3) − P (x1↪ y1) + Q(x2↪ y2) where ⟦48, 20⟧:

x3 − (Bλ2 ⩾ A ⩾ x1 ⩾ x2) (2.4)
y3 − (2x1 + x2 + A)λ ⩾ Bλ3 ⩾ y1 − λ(x1 ⩾ x3) ⩾ y1

with

λ −
∮︂

(y2 ⩾ y1)◁(x2 ⩾ x1) if P ̸− Q or ⩾Q,
(3x2

1 + 2Ax1 + 1)◁(2By1) if P − Q;
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The case deĄnes which condition is taken for λ. If point P is equal to point Q on the
curve MA↪B, then it is point doubling P + P − 2P (x↪ y). Therefore, the point doubling
needs a different case in the point addition.

2.8.2 Point Multiplication
The point multiplication is deĄned as ⟦39, 54⟧:

Q − k · P (2.5)

P is a point on the elliptic curve and k is an integer value. The point multiplication is
not the same as the integer multiplication. Because the scalar multiplication takes P
and add itself k times ⟦20⟧:

Q − k · P − P + P + ▷▷▷ + P⏞ ⏟⏟ ⏞
k times

(2.6)

Q is a point which is on the elliptic curve. The interesting part of this operation is the
inverse operation, which retrieves the integer k, when the points P and Q are given.
To retrieve k is a Şhard problemŤ known as the Elliptic Curve Discrete Logarithm
Problem (ECDLP) ⟦39⟧. To solve the ECDL problem for a properly chosen elliptic
curve group, with an algorithm in sub-exponential time is not possible, since it is assumed
such an algorithm does not exist (it is not known/not proven that such kind of algorithms
exists). The ECDLP is the fundamental basement for using the Elliptic Curve (EC) as a
public-key cryptosystem.
Furthermore, both group operations (point addition and point multiplication) are used
for designing the concept of privacy-preserving remote attestation, in Chapter 6.

2.9 Zero-Knowledge Proof
The zero-knowledge proof system was introduced by Goldwasser, Micali, and Rackoff
⟦11⟧. Zero-knowledge proofs are applied for constructing cryptographic secure protocols
⟦69⟧. Furthermore, the method of zero-knowledge proofs are practiced in the domain of
cryptocurrencies such as Ethereum and Zerocash, to provide anonymity in transactions
⟦1, 68⟧. The zero-knowledge proof is an interactive proof system with two parties (prover,
veriĄer). The prover wants to prove an information without revealing the information to
the veriĄer. In other words, the prover sends the veriĄer a proof of knowledge, which
proves to the veriĄer that the prover has the knowledge of the veriĄerŠs seeking information
without revealing it. In this case, this work is focused on non-interactive zero-knowledge
proofs.

Non-Interactive Zero-Knowledge Proof

The prover sends only one message to the veriĄer, which is deĄned as a non-interactive
zero-knowledge proof system. Meanwhile, the Non-Interactive Zero-Knowledge (NIZK)
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and Zero-Knowledge (ZK) proof need to hold the following properties to be accepted as
a proof system ⟦69, 11⟧:

Ţ Completeness: The prover is capable of convincing the veriĄer that the statement
is correct.

Ţ Soundness: The prover is capable of convincing the veriĄer that the statement is
incorrect.

Ţ Zero-Knowledge: The prover does not reveal any extra information, except the
correctness of the statement.

An interactive ZK proof system can be transformed into a NIZK proof system by applying
the Fiat Shamir technique. The Fiat Shamir technique is used to transform the three-
phase Schnorr identiĄcation scheme to a non-interactive variant ⟦33⟧. This work builds
on top of the Schnorr non-interactive zero-knowledge proof. Nevertheless, this work will
explain the applied cryptography of the Schnorr non-interactive zero-knowledge proof
over an elliptic curve.

Schnorr NIZK proof The Schnorr NIZK proof is used as a sub-protocol for the
design of the privacy-preserving protocol. The Fiat Shamir technique is using a random
oracle in the theory of cryptography. In the case of the thesis and applied cryptography
the random oracle is replaced by a cryptographic hash function. Hash functions are
deterministic. Further, it is not possible to draw any relation from the output of a
cryptographic hash function, since it appears to be random. Now this work explains
the Schnorr NIZK proof over an elliptic curve. Let MA↪B(Fp) be an elliptic curve over a
Ąnite Ąeld Fp (see Section 2.7 and Section 2.8). The NIZK computation steps are based
on the RFC standard 8235 ⟦33⟧.

The Ąrst phase is the setup phase, the prover generates the private key r where r is
chosen uniformly random from prime order group L of the elliptic curve MA↪B(Fp). Next,
the prover generates the public key R − gr, where g is the generator of the subgroup of
the curve MA↪B(Fp) with the prime group L (note: gr is another notation for the point
multiplication r · g).

After generating the private and public key, the public key will be published to the veriĄer.
Next, the prover chooses uniformly random v from the range between 0 and L ⩾ 1. The
prover computes V − gv. The next computation step is to compute the challenge c by
applying the Fiat Shamir technique : c − H(g∥V ∥R), where H is a cryptographic hash
function. Further, the prover computes s − v ⩾ r · c mod L. The prover sends the pair
(c↪ s) to the veriĄer. The pair (c↪ s) is necessary for the veriĄer to validate the proof of
knowledge.

The veriĄer veriĄes if the public key R is a valid point on the elliptic curve. Afterward,
the veriĄer validates if the proof of knowledge is valid by computing: V ′ − gs · Rc. The
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Prover VeriĄer

r ←$ ¶0↪ L ⩾ 1♢
R ← gr

v ←$ ¶0↪ L ⩾ 1♢
V ← gv

c ← H(g∥V ∥R)
s ← v ⩾ r · c mod L

(c↪ s)↪ R

V ′ ← gs · Rc

− gv⩾r·c · Rc

c′ ← H(g∥V ′∥R)
if c −− c′

return 1

Figure 2.3: Schnorr non-interactive zero-knowledge proof over elliptic curve ⟦33, 11⟧.

computing step of V ′ is a point addition since gs and Rc are points on the elliptic curve.
The veriĄer computes c′ − H(g∥V ′∥R). Last the validity check is, if and only if c′ −− c,
then the proof of knowledge is valid.

Figure 2.3 illustrates the computation steps described above in mathematical notation
(note: v↪ r↪ c are scalars therefore the scalar arithmetic is applied. For gs↪ Rc are points
on the elliptic curve. Therefore, point operations are applied).
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CHAPTER 3
Related Work

Research on remote attestation has existed for decades, this chapter references some
related work. Moreover, the chapter introduces another technology branch of remote
attestation, the property-based attestation. Further, it delineates the delimitation of the
research between property-based attestation and binary attestation. In addition, this
chapter provides different related approaches to achieve privacy.

3.1 Property-based Attestation
Sadeghi et al. ⟦55⟧ address the privacy deĄciency of binary attestation and design a new
attestation scheme called Property-based Attestation (PBA). The idea of PBA is to
determine in the attestation process if the conĄguration of a platform or the application
has a desired property ⟦18⟧. A property describes the behavior of a certain conĄguration
or application. A conĄguration or a set of conĄgurations is mapped to a property. The
property will be revealed by the attester, but the conĄgurations or applications will
not. Further, Sadeghi et al. ⟦55⟧ suggest a PBA protocol with a similar idea as the one
pursued in this thesis. They construct a PBA protocol to prove membership, where the
attester proves that the blinded conĄguration is in the set of conĄgurations (the sets are
platform conĄgurations related to a desired property), which is published by a trusted
third party, and proves that the Trusted Platform Module (TPM)Šs attestation signature
is valid. The blinding strategy is an encryption operation on a platform conĄguration.
In other words, the whole state (or platform conĄgurations) of the system is one of the
published states, which fulĄlls the property, but the veriĄer does not know which of them,
while the attester only proves that the valid state is among the published set.

This thesis uses a blinding strategy as well, but it does not use an encryption operation.
In this work, the veriĄer deĄnes a set of binary conĄgurations for which it is responsible
and informs the attester. Next, the TPM will attest the blinded conĄgurations and sign
them. Further, the veriĄer aggregates the blinded values and validates them. Afterwards,
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the attester reveals only the agreed conĄgurations or applications to the veriĄer and
proves that the revealed conĄgurations are among the blinded set. The thesis resolves
the privacy deĄciency of binary attestation without mapping the conĄgurations into
properties.

Chen et al. ⟦19⟧ extend the protocol by Sadeghi et al.⟦55⟧ with a detailed design in
theory. They apply ring signatures and commitments. The computations of the ring
signature are not as efficient as the one used in this work. The reason is that the Schnorr
signatures use fewer computation steps to generate a signature and do not depend on a
commitment scheme. Furthermore, if the size of the conĄguration set is too small, then
the veriĄer can guess the conĄguration and thereby compromise privacy ⟦19, 70⟧. Next,
the veriĄer can run the protocol multiple times with a different set of conĄgurations to
Ąnd an intersection, which leads to compromising privacy as well ⟦19, 70⟧. In the case of
this thesis once the veriĄer deĄnes the responsibility of the conĄguration it cannot be
changed.

Sadeghi et al. and Chen et al. only suggested designs on how such an approach could
be deĄned, but they did not implement a proof-of-concept. This thesis will illustrate a
practical approach by implementing a privacy-preserving attestation mechanism based
on binary attestation.

3.2 Privacy-Preserving Methods
The following works explain how to preserve privacy without applying zero-knowledge
proofs and signature schemes. Luo et al. ⟦42⟧ discuss a concept about preserving privacy
and reducing attestation overhead by implementing a partial attestation scheme. This
approach is applied to virtualized platforms. In the paper the authors state that instead
of sending every information to the veriĄer, they will enable the veriĄer only to attest to
speciĄc requirements of the remote platform. The privacy is preserved by using the ſeal
function of the TPM, by sealing secret information which identiĄes the chain of trust.
The veriĄer has to check only if the secret is accessible instead of receiving the whole
conĄguration of the chain of trust.

Zhang et al. ⟦71⟧ focus on the existing problem of binary attestation, which is privacy.
Therefore, the authors introduced an extended hash algorithm based on Merkle Hash Tree.
This concept should provide the privacy-preserving property to the remote attestation
scheme. The integrity of the program is preserved in the nodes of the Merkle Hash Tree.
The veriĄer has to obtain the encrypted hash value while obtaining the node from Merkle
Hash Tree. The privacy of the approach is given due to the nodes of the Merkle Hash
Tree, which resembles a Ąle of a program. At last, the encryption is introduced as xor
and cycleshift(bit shift) operations.

Next, Luo et al. ⟦43⟧ designed an architecture for privacy-preserving integrity measurement
for containers. For each container, they measure all the processes and generate a secret
for each measurement (PCR.ſecret). These secret values are saved into individual event
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logs for each container. Next, each entry of the event log of a container is ŞXORŠedŤ
with the corresponding PCR.ſecret. This is done for each entry. Afterwards, all the
ŞXORŠedŤ values will be folded to a folding hash. The folded hash is extended into a
speciĄc Platform ConĄguration Register (PCR) of the TPM. This process is done for each
container. When the veriĄer triggers the remote attestation, it receives the PCR.ſecretſ
for the affiliated container and the accumulated hash of a speciĄc PCR bank signed by
the TPM. The veriĄer applies the same procedure as described above and compares the
actual value with the received one. The state of the other containers and the host system
is in the accumulated hash signed by the TPM. However, the veriĄer can only check the
value of the affiliated container. By applying the XOR operation, they preserve privacy.

The concepts of these papers illustrate one way for solving the privacy problems of binary
remote attestation for virtualized platforms. As the majority of these papers rely on
the XOR operation, we will be using in this work another approach to focus on privacy,
based on non-interactive zero-knowledge proofs. Further our approach tries to focus to
be applicable in the cyber-physical and automotive domain.

In conclusion, this chapter presents a related work, where it uses a non-interactive zero-
knowledge proof. Hamadeh et al. ⟦31⟧ introduce an implementation of privacy-preserving
data provenance based on Physical Unclonable Function (PUF) and non-interactive
zero-knowledge proof. This work establishes a protocol, which provides more security
in the Internet of Things (IoT) ecosystem. The PUF in case of this work has similar
tasks as the TPM and the non-interactive zero-knowledge proof is used in the protocol
for the authentication stage, where the IoT device proves to the server (veriĄer) without
revealing any identity of the IoT device, which ensures privacy. After, the successful
veriĄcation the next stage is to establish an encrypted channel. The last stage of the
protocol is to transmit the data and veriĄcation of the IoT data provenance. The work
demonstrated the technique of non-interactive zero-knowledge proof provides beneĄts to
ensure privacy.
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CHAPTER 4
Use Cases

Remote Attestation (RA) is a resourceful security procedure, which can be applied in
different areas. Therefore, this chapter introduces four use cases. Each use case describes
an overview on how remote attestation can be applied and why privacy property is
necessary.

Private User Domain The private user domain addresses the domain of devices such
as smartphones and laptops. These devices contain application information which the
user uses daily. The manufacturer of one of the installed applications on the smartphone
wants to attest the integrity and authenticity. The traditional RA would reveal all
the running applications on the device to the manufacturer. However, if the Privacy-
Preserving Remote Attestation (PPRA) is applied, the manufacturer only knows the
affiliated application and the other applications are not revealed. This provides the
integrity and authenticity of the operational state of the device.

The banking sector can be taken as a concrete example. The bank wants to attest the
banking application on the customerŠs smartphone. The customer does not wish to
expose the other applications (which could contain other banking apps) to the bank,
except the one necessary banking app. Hence, the privacy of the customer will be
contained. Consequently, this thesis introduces a design concept and proof-of-concept
implementation which addresses the privacy problem.

Health Care The integrity and authenticity need to be ensured of the Electronic
Medical Devices (EMD) and the software applications in a hospital ⟦62⟧. The hospital
has various departments for different patient cases. Hence, each department uses various
software applications from different software distributors. For instance, the software
distributor of the cardiology department wants to attest integrity and authenticity of
the software and the operational state of the hospital. However, the software distributor
of the cardiology does not need to know about the other running applications in the
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other departments. Therefore, a design for PPRA is necessary, which divulges only the
affiliated software of the software distributor.

Cyber Physical Systems Power-grid has multiple resource facilities, where the elec-
tricity is generated by windmills, hydro-power plants, nuclear power plants or solar grids.
Each of the plants have various software applications running on the system. The facilities
are checked by different authorities to see if plants maintain the standards and regulations.
A concrete example would be the International Atomic Energy Agency (IAEA), which
conducts safeguard inspections at nuclear power plants ⟦34⟧. One of their standards is
to collect the recording of the safeguard surveillance videos ⟦34⟧. The software for the
surveillance system is a part of the nuclear power plant. If the IAEA wants to attest the
reactor facility, it does not need to learn about other running software at the nuclear
power plant. Therefore, the information of the surveillance system will be revealed, while
the rest of the system is blinded, and the integrity and authenticity are assured.

Automotive In the automotive context the privacy plays an important role since a
car has multiple manufacturers for different components, such as breaks, sensors, etc..
Therefore, the manufacturer for the breaks wants to attest the car. In the case of the
traditional RA all the other running software applications from other manufacturers
are visible. The manufacturer for the breaks will know what kind of Ąrmware/software
is used for the tire sensor or what kind of applications are installed on the onboard
computer. To prevent this knowledge a design for the PPRA is introduced in this work.

In conclusion, the presented four use cases underline the importance of the PPRA.
In the following chapter requirements analysis is done to deĄne requirements for the
privacy-preserving remote attestation scheme.
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CHAPTER 5
Requirements Analysis

Requirements analysis deĄnes requirements for designing the Privacy-Preserving Remote
Attestation (PPRA) approach. Further, this chapter lists the functional, security and
privacy requirements. These requirements were derived based on the use cases of the
previous chapter and the threat model (see Section 6.1).

5.1 Functional Requirements
Functional requirements are the fundamentals to design the PPRA protocol. The
requirements are derived from the previously explained use cases. The design of the
PPRA approach has multiple components and process stages to provide security as well
as privacy. Therefore, requirements are necessary to realize the concept.

The Ąrst step to realize the approach is to use or simulate the operations of the Integrity
Measurement Architecture (IMA) (Linux IMA), which computes the measurements
(template haſh) of applications/software components before they are loaded into the
memory (F1). Next, these measurements need to be blinded to promise privacy of the
attesterŠs system (F2). In the following, the blinded measurements need to be persisted
in a log Ąle (i. e. Stored Measurement Log (SML)) (F3). The logging of the blinded
measurements keeps trace of all loaded software components into the memory of the
attesterŠs system.

Moreover, to anchor the blinded measurements into the Trusted Platform Module (TPM)
and to retrieve the operational state of the attesterŠs system, a communication interface
has to be established. This interface provides access to the functionalities/operations of
the TPM (F4).

The remote party wants to attest the operational state of the target system. Therefore, it is
necessary to provide or implement a component which provides the essential functionalities
to trigger a remote attestation and to verify the response (F5). Due to the remote
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ID Functional Requirements
F1 Simulation/Usage of the integrity measurement architecture
F2 Blinding the measurements
F3 Logging the measurements of the software components/applications
F4 Communication interface for utilizing the functionalities of the TPM
F5 Provide functions for establishing a remote attestation
F6 Standardize communication structure between attester and veriĄer
F7 One communication round between veriĄer and attester
F8 The attester reveals only the measurement entries associated to the veriĄer
F9 The veriĄer validates the trustworthiness of the target system (attester)
F10 Resource-restricted devices needs efficient operations

F10▷1 Applying cryptographic operation on various measurements, which utilizes the
same amount of resources

F10▷2 Suitable resource consumption should be met to preserve privacy

Table 5.1: Lists all functional requirements.

attestation, a communication between the attester and the veriĄer is established. Hence,
it is necessary to have a standardized communication structure, which the veriĄer and
the attester understand (F6).

The traditional Remote Attestation (RA) has only one round of the attestation request-
response scheme. In other words, the veriĄer sends an attestation request and the
attester in return sends an attestation response. Hence, the whole process is stateless,
due to the one-round request-response scheme. Therefore, the PPRA must provide one
communication round (F7).

Furthermore, to preserve privacy during the remote attestation, the attester discloses
only the associated information to the veriĄer (F8). However, these information needs to
be veriĄed by the veriĄer. Whether the veriĄcation results in a positive outcome, then
the trustworthiness of the attesterŠs system is given (F9).

The four use cases are introduced for different domains and each domain has various
resource-restricted devices. Therefore, it is necessary to observe and analyze the per-
formance of the PPRA approach (F10). Besides, various measurements are blinded by
applying cryptographic operation. However, the outcome of the cryptographic operation
for different measurements should utilize the same amount of resources (F10▷1). The
traditional RA has less resource consumption. Nevertheless, by achieving privacy, a
suitable trade-off between privacy and resource consumption should be met (F10▷2).

5.2 Security Requirements
This thesis introduces a privacy-preserving RA approach. Therefore, the security require-
ments need to be fulĄlled to be resistant against adversarial attacks. The integrity of the
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ID Security Requirements
S1 Integrity of the operational state of the target system
S2 Authenticity of the operational state of the target system
S3 Communication between attester and veriĄer has to be encrypted
S4 Mutual authentication between attester and veriĄer
S5 Trustworthiness of the attestation information
S6 Selection of a secure and efficient elliptic curve

Table 5.2: Lists all security requirements.

operational state of the target system has to be assured. Therefore, the measurements
need to be anchored into secure volatile storage of a TPM (S1). Further, the authenticity
is guaranteed if the trusted platform module or trusted hardware security module signs
the operational state (S2).

During the remote attestation, a securely encrypted communication between the attester
and the veriĄer has to be established to prevent paſſive ma♪-i♪-the-middle attack (S3).
Nevertheless, an encrypted channel prevents the adversary from listing. However, the
veriĄer needs to authenticate to the attester and the attester to the veriĄer. Hence,
mutual authentication has to be established to guarantee the identity of each party (S4).

Besides, the target system provides trustworthiness, while providing attestation informa-
tion to the veriĄer. The veriĄer validates the attestation information if and only if all
the attestation information is valid, then the target system is trustworthy (S5).

To preserve privacy, it is necessary to select a suitable elliptic curve for the PPRA protocol.
Thus, the selection of an elliptic curve guarantees that it does not leak any information
to an adversary. Further, it needs to be efficient and provides security properties, which
are advantageous for integrating it into the PPRA approach (S6).

5.3 Privacy Requirements
This section continues with privacy requirements, which need to be fulĄlled to preserve
privacy. First, a suitable privacy-enhancing technology must be selected. Further, the
privacy-enhancing technology needs to be adapted for designing a PPRA approach (P1).

ID Privacy Requirements
P1 Applying a tailored privacy-enhancing technology
P2 ŞCo♪ſtrai♪ed diſcloſure‽ ⟦30⟧
P3 VeriĄers do not communicate with each other

Table 5.3: Lists all privacy requirements.
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During the remote attestation, the attester only discloses information, which is affiliated to
the veriĄer. Nonetheless, the attester does not reveal any further conĄgurations/running
programs, while providing the integrity and authenticity of its systemŠs operational state
(P2).

Multiple veriĄers (e. g. vendors) can request the operational state of the same target
system. Therefore, the veriĄers do not communicate with each other, nor do they know
each other (P3). Otherwise, if the veriĄers communicate with each other, privacy cannot
be preserved. If the adversary compromises more than one veriĄer, it has the power to
unite the constrained disclosures, which expose the privacy of the attesterŠs system.

26



CHAPTER 6
Privacy-Preserving Remote

Attestation

This chapter explains, Ąrst the threat model of the traditional remote attestation.
Secondly, it gives a broad overview of the privacy-preserving remote attestation concept,
which resolves one of the open challenges of binary remote attestation. Further, it
elaborates in-depth, how to limit exposure of the Stored Measurement Log (SML) to
a deĄned subset while preserving the ability of a remote party to verify integrity and
authenticity of the SML (the operational state of the target platform). The original
idea for the privacy-preserving remote attestation stems from an unpublished work ⟦26⟧
by M. Eckel and B. Grohmann. They provided the main idea and this thesis extends
this theoretical foundation on how to integrate it in the measurement process, remote
attestation process, and designs a threat model.

6.1 Threat Model

In Chapter 1 this work identiĄed the problem with the traditional Remote Attestation
(RA) scheme. The existing method of binary attestation provides the veriĄer the entire
entries of the SML from the target platform (attester). Therefore, the veriĄer knows all
software running on the attesterŠs system.

The Ąrst attack vector is, an adversary listens to the communication channel between
attester and veriĄer. Hence, the adversary is capable of recording the transferred SML.
This attack is identiĄed as the paſſive ma♪-i♪-the-middle attack. However, this attack can
be prevented by using an encrypted channel between attester and veriĄer. Nonetheless,
the encrypted connection does not prevent further attacks. In the following attack vector
a securely encrypted channel is used.
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Moreover, the next attack vector is that the veriĄer is compromised by the adversary.
Therefore, the adversary has the power to execute a remote attestation process and to gain
the knowledge of all software running on the target system as well as the content of the
SML. Even though, if only the template haſheſ are sent to the veriĄer, privacy is still not
guaranteed (see deĄnition of template haſheſ in Section 2.3). Hence, the adversary creates
a reverse lookup table to match up the template haſh to the corresponding binary/software
component. Due to the reverse lookup table, the adversary has the advantage of knowing
if the attester runs versions of software with unpatched vulnerabilities. Consequently,
the adversary can deploy tailored attacks against the attesterŠs platform and exploiting
these vulnerabilities.

Another scenario is if the vendor who runs software on a target platform does not want
to reveal their software components to another veriĄer. Thus, the veriĄer in the case of
the traditional RA would gain the knowledge of all running programs. Here, the veriĄer
can be an adversary to take advantage of knowing all the software running on the target
platform (attester).

Therefore, this thesis designs a concept for a privacy-preserving remote attestation
protocol by applying the method of non-interactive zero-knowledge proof (Schnorr
signature). This concept addresses the privacy deĄciency of the traditional remote
attestation scheme.

6.2 General Idea
This section presents the Privacy-Preserving Remote Attestation (PPRA) concept against
the previous explained threat model. Here this work gives a general context about
the PPRA approach. Figure 6.1 presents the fundamental overview of the PPRA
concept. The PPRA approach docks after the trusted boot sequence (see Section 2.2).
From here on the traditional Integrity Measurement Architecture (IMA) measurement
process will be adapted (see Section 2.3). The task of the IMA is to measure each
application/software component (APP0↪ ▷ ▷ ▷ ↪ APPN , see Figure 6.1) which will be loaded
from the operating system into memory. Therefore, the Ąrst mechanism is to compute
measurements of each application (step 1 in Figure 6.1). As already mentioned in
Chapter 2, the term meaſureme♪t is referred to the computed hashes over software
applications/binaries/software components. After computing the measurements, the
measurements need to be blinded by applying a privacy-enhancing technology (in case
of this work non-interactive zero-knowledge is used as privacy-enhancing technology)
(step 2 in Figure 6.1).The component bli♪d meaſureme♪t in Figure 6.1 adapts the
standardized Linux IMA (see Section 2.3). Hence, this component is necessary to
guarantee privacy. Moreover, the output (blinded measurement) of the component does
not reveal any information about the computed measurement (step 1). The computed
blinded measurement will be saved into a log Ąle (privacy-preserving-SML). The log does
not only contain the blinded measurement as well as it stores the associated measurement
(i. e. Ąle hash) and extra data for the blinded measurement (step 3 in Figure 6.1). The
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Figure 6.1: This graphic illustrates a general overview of the PPRA concept.

next process step is to anchor the blinded measurement into a trusted Hardware Security
Module (HSM) to achieve the chain of trust and to preserve the integrity, and authenticity
of the operational state of the attesterŠs system (step 4 in Figure 6.1). Therefore, the
HSM needs to provide operations to fulĄll the previous mentioned requirements and
an interface to trigger the operations. In Figure 6.1 the steps 1-4 demonstrated the
meaſureme♪t proceſſ of the PPRA approach.

After the meaſureme♪t proceſſ is Ąnished, the approach initiates the second process,
the remote atteſtatio♪ proceſſ. This process is triggered if the veriĄer requests for
the operational state of the target system (attester) (step 5 in Figure 6.1). Next, the
attester checks the constraints against the veriĄerŠs request information and discloses
only the associated subset of the entries in the PP-SML (step 6 Figure 6.1). Further, the
attester requests from the trusted HSM to provide a quote, which represents integrity
and authenticity of the operational state of its system (step 7 in Figure 6.1). The next
process step is the HSM returns a quote of the systems operational state (step 8 in
Figure 6.1). The attester sends the quote and the associated entries of PP-SML and all
blinded measurements to veriĄer (step 9 in Figure 6.1). Finally, the veriĄer validates
the received data. Whether the validation yields to a positive value without revealing
all running software on the attesterŠs system, then the attesterŠs system is trustworthy
while preserving privacy. During the veriĄcation the veriĄer applies operations of the
privacy-enhancing technology to validate the associated blinded measurement, while
validating the whole integrity of the operational state of the target system.
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Figure 6.2: This graphic illustrates a detailed overview of the PPRA concept.

Later on in the upcoming sections, this work will explain in-depth each step and compo-
nents of the PPRA approach (see Figure 6.2). In the upcoming sections the trusted HSM
in Figure 6.1 will be replaced by a Trusted Platform Module (TPM), which provides the
operations to realize the PPRA concept.

This chapter continues by describing the two adapted processes, meaſureme♪t proceſſ
and remote atteſtatio♪ proceſſ in detail. Further, it shows on how to maintain privacy,
integrity and authenticity of the operational state of the attesterŠs system.

6.3 Measurement Process
The PPRA approach initiates with the measurement process, where the chain of trust
starts with an immutable Core Root of Trust for Measurement (CRTM). The CRTM
measures itself and stores the measurement in the TPM by extending the Platform
ConĄguration Register (PCR). The next steps are the same as described in Chapter 2,
where it explains how trusted boot works. After the trusted boot procedure, the IMA
measures every software loaded into memory of the Linux operating system and stores
the measurement into a log Ąle called SML. The privacy-preserving approach adapts the
measurement process at the IMA measurement. The measurement step is the same as
described above (each software will be measured and a template haſh will be generated
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(step 1 in Figure 6.2)). However, instead of extending the PCR with the template haſh
(see Chapter 2), an eve♪t haſh will be created (step 2 in Figure 6.2) and the PCR will be
extended with the eve♪t haſh (step 4 in Figure 6.2).

6.3.1 Event Hash
The template haſh reveals more information about the SML than desired. Therefore, a
non-deterministic hash is established called eve♪t haſh. The eve♪t haſh is the blinded
template haſh by applying the non-interactive zero-knowledge signing process, otherwise
known as Schnorr signature. First, the template haſh function is deĄned as hT : X → Y
⟦26⟧. The X deĄnes the set of the template haſheſ and transforms them into the range
Y with the function hT . In order to generate the eve♪t haſh a generator g of a (cyclic)
group G needs to be selected (the generator g is in the case of this work the base point of
an appropriate elliptic curve over a Ąnite Ąeld). Second, the function for the eve♪t haſh
is deĄned as heventhash : Z × X → G. The eve♪t haſh function deĄnes that Z is denoted
as the ring of integers, which is multiplied into the domain X and mapped to an element
of the group G, which is computed as ⟦26⟧:

heventhash(r↪ x) :− gr·φ(hT (x)) (6.1)

The Ąrst step of the computation is to blind the template haſh by generating a random
integer r ∈ Z. Next, the x is an element of the template haſh domain x ∈ X . The
injective function φ : Y → Z maps Y into the integer domain Z. After establishing the
eve♪t haſh for each measured application/software component, the eve♪t haſh will be
extended into the TPM and saved into the SML instead of the template haſh column
(step 4 and 5 in Figure 6.2) (note: The scalar r is not saved in the SML).

6.3.2 Non-Interactive Zero-Knowledge Proof Generation
After generating the eve♪t haſh, the attester (i. e. IMA) needs to generate a (non-
interactive) Şproof of knowledgeŤ based on the well-known Schnorr signature and the
Fiat-Shamir heuristic, which is then provided to the veriĄer during the remote attestation
process (step 3 in Figure 6.2). The non-interactive zero-knowledge proof needs to be
generated for each measured binary or software component in the SML. Using the
notation from the previous section (Section 6.3.1), the attester (in IMA) computes
for every measured entry (each measured binary or software component) i a generator
gi :− gφ(hT (xi)) ⟦26⟧. Next, it chooses a random integer vi ∈ Z and computes the value
ti :− gvi

i . Afterwards, the challenge ci :− H(gi↪ ti↪ heventhash(ri↪ xi)) is generated, where
H is deĄned as a cryptographic hash function ⟦26⟧. Finally, the attester computes the
scalar si :− vi ⩾ ciri mod ♣L♣. The pair (ci↪ si) is the Şextra dataŤ for each entry in the
newly designed privacy-preserving SML. Hence, after computing the Şextra dataŤ it will
be stored with the associated eve♪t haſh (step 5 in Figure 6.2). The Şextra dataŤ is
necessary for the veriĄer to verify the eve♪t haſh since the veriĄer has zero knowledge of
the key ri. The computation steps are based on the standard Schnorr Non-Interactive
Zero-Knowledge (NIZK) proof over an elliptic curve (see Section 2.9).
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PCR Index Event Hash IMA Template File Hash File Path c s

10 c4456▷ ▷ ▷331 ima-pp 65727▷ ▷ ▷12b booṫaggregate b4612▷ ▷ ▷1ac 3cbd2▷ ▷ ▷a47
10 73c9b▷ ▷ ▷eff ima-pp 153f3▷ ▷ ▷c95 /lib64/ld-linux-x86-64.so.2 9ce45▷ ▷ ▷2bf feb14▷ ▷ ▷476
10 9b0ed▷ ▷ ▷c09 ima-pp 4ebaf▷ ▷ ▷c9a /lib/x86̇64-linux-gnu/libc.so.6 2bb78▷ ▷ ▷100 2199e▷ ▷ ▷fd5
10 fef56▷ ▷ ▷71b ima-pp 64743▷ ▷ ▷f69 /bin/dash 5234d▷ ▷ ▷edd 06069▷ ▷ ▷e68
...

...
...

...
...

...
...

10 ee599▷ ▷ ▷667 ima-pp fc66b▷ ▷ ▷cef /bin/mkdir de567▷ ▷ ▷4bd 7fc90▷ ▷ ▷a2b
10 089c4▷ ▷ ▷4bf ima-pp 2f43e▷ ▷ ▷699 /bin/ln 7d400▷ ▷ ▷031 6b1a7▷ ▷ ▷e90
10 78bd2▷ ▷ ▷14c ima-pp e46fd▷ ▷ ▷b48 /bin/mount 067d▷ ▷ ▷93d d7fc6▷ ▷ ▷70c
...

...
...

...
...

...
...

Table 6.1: Privacy-Preserving SML (SMLima⩾pp) ⟦26⟧.

6.3.3 Privacy-Preserving Stored Measurement Log
The newly designed SML for privacy introduces a new column eve♪t haſh, replacing
the template haſh (see Table 6.1). Further, the privacy-preserving SML is presented in
Figure 6.2 as PP-SML. The column IMA template presents the new IMA template ima-pp.
As mentioned in the previous subsections, an element ri ∈ Z is randomly chosen for each
entry i in the SML, which will be used to compute the eve♪t haſh value heventhash(ri↪ xi).
xi is an element of the domain X of template hashes. The element xi (template haſh, see
Section 2.4) is a concatenation of File Haſh and File Path of each entry i in the SML
(the integer i can be considered as the index of a log entry). Besides, the columns c and
s are known as the extra data as shown in Table 6.1. The pair (c,s) is necessary for the
veriĄer to verify the Schnorr signature or the Şproof of knowledgeŤ.

6.4 Remote Attestation Process
The second process of the PPRA is the remote atteſtatio♪ proceſſ. It has the same
challenge-response procedure as the traditional RA. Except, the veriĄer needs to send
more information than the traditional binary attestation. In the case of the PPRA, the
veriĄer triggers the RA process and sends in addition to a nonce and a PCR selection, a
selection of software, introduced as ſwSelectio♪ (step 6 in Figure 6.2). The ſwSelectio♪ is
a subset of entries of the SML and the subset is affiliated to the particular veriĄer. After
receiving the attestation request from the veriĄer, the attester checks the ſwSelectio♪
with a policy, if the selected software is affiliated to the veriĄer (step 7 in Figure 6.2).
This policy contains all affiliated software/binaries for each veriĄer. If the crosscheck
between the policy and ſwSelectio♪ is valid, then the attester requests the TPM to
generate a TPM Quote (i. e. signed PCRs from the TPM) (step 8 in Figure 6.2). Next,
the TPM sends the generated TPM Quote (signed by the TPM) to the attester (step 9
in Figure 6.2). Subsequently, the TPM Quote, the values of the complete column Eve♪t
Haſh of the SML and the entries of the SML that correspond to the selected binaries
(S ⊂ SMLima⩾pp) are sent to the veriĄer by the attester (step 10 and 11 in Figure 6.2).
The veriĄer receives the message from the attester. Further, the veriĄer does the same
veriĄcation steps as described in Section 2.6. Therefore, this work recalls the steps again
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in the veriĄcation process. First, the veriĄer veriĄes the TPM signature by using the
public key (AKpub) of the Attestation Key (AK) (step 12 in Figure 6.2). Second, the
veriĄer veriĄes, whether the external data (nonce) matches with the previously sent nonce
to the attester, in order to trigger a remote attestation (step 13 in Figure 6.2). The major
difference appears when the veriĄer reaches the step to verify the integrity of the SML.

The veriĄcation process of the SML is divided into:

Ţ Verifying the whole SML by accumulating all entries of the eve♪t haſheſ and
recomputing the PCR value. The veriĄer compares accumulative haſh against the
actual hash from the TPM Quote (step 14 in Figure 6.2).

Ţ Verifying each entry in the SML is not possible anymore, since only the affiliated
entries to the veriĄer will be validated by verifying the Schnorr signature. In
order to verify, the veriĄer computes for each of the affiliated entries the generator
gi which is the same as in the meaſureme♪t proceſſ. Further, the scalar t′

i :−
gsi

i · heventhash(ri↪ xi)ci is computed, which will be used in the cryptographic hash
function H to compute c′

i :− H(gi↪ t′
i↪ heventhash(ri↪ xi)) (note: the corresponding

eve♪t haſh, ci, si can be directly read from the column eve♪thaſh, c, s of the privacy-
preserving SML) ⟦26⟧. Finally, the veriĄer accepts the proof of k♪owledge, if and
only if ci −− c′

i (step 15 in Figure 6.2). This veriĄcation process allows the attester
to prove to the veriĄer, that the eve♪t haſh is the bli♪ded template haſh without
revealing the key. By applying this procedure the veriĄer has Şzero-k♪owledgeŤ over
the integer ri.

In the end, the measurement veriĄcation is a procedure which takes the received SML from
the attester and checks against the Reference Integrity Measurements (RIMs). However,
in case of this approach, the RIMs contains only the veriĄers associated measurements
(step 16 in Figure 6.2).

Figure 6.3 visualizes the remote attestation process as described above, separated from
Figure 6.2. Figure 6.3 exists to give an understanding that meaſureme♪t proceſſ and
remote atteſtatio♪ proceſſ are separate procedures. However, the remote atteſtatio♪
proceſſ depends on the meaſureme♪t proceſſ. The E ⊂ extraData deĄnes the subset of
the corresponding pairs (ci↪ si) of the veriĄerŠs software selection (see Figure 6.3). Here,
this work illustrates in Figure 6.4 with mathematical notation the adapted version of the
non-interactive zero-knowledge proof from Section 2.9. This embellishes the adaption to
show that the non-interactive zero-knowledge proof is used as sub-protocol of the PPRA
approach. Further, Figure 6.4 visualizes the mathematical steps on the attester side for
the meaſureme♪t proceſſ (to generate the Schnorr signature). Next, the Ągure presents
on the veriĄer side the mathematical steps for the remote atteſtatio♪ proceſſ (to validate
the Schnorr signature/Şproof of knowledgeŤ). The Ągure demonstrates the core of the
PPRA protocol, since the concept relies on the mathematical operations to preserve
privacy.
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Privacy-Preserving Remote Attestation Process

VeriĄer Attester TPM
requestAttestation

(v,pcrSelection,swSelection)

isAllowedToRequest(swSelection)

tpmQuote(v,pcrSelection)

tpmQuote

readSML()
SMLima⩾pp↪ extraData

tpmQuote, Event Hashes
S ⊂ SMLima⩾pp↪ E ⊂ extraData

.

Figure 6.3: Privacy-Preserving Remote Attestation process between veriĄer and attester.

Attester VeriĄer

heventhash(ri↪ xi) − gri·φ(hT (xi))

vi ←$Z
ti ← gvi

i

ci ← H(gi↪ ti↪ heventhash(ri↪ xi))
si ← vi ⩾ ci · ri mod ♣L♣

(ci↪ si)↪ heventhash(ri↪ xi)

t′
i ← gsi

i · heventhash(ri↪ xi)ci

− gvi⩾ci·ri
i · heventhash(ri↪ xi)ci

c′
i ← H(gi↪ t′

i↪ heventhash(ri↪ xi))
if ci −− c′

i

return 1

Figure 6.4: Adapted Non-Interactive Zero-Knowledge Proof.
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CHAPTER 7
Proof of Concept

This chapter elaborates on how the theory of the previous Chapter 6 can be implemented
as a Proof-of-Concept (PoC). Therefore, this work analyzes which elliptic curve is
suitable for the implementation of the privacy-preserving remote attestation protocol
in C. Followed, by presenting the libraries used for the implementation. Further, this
chapter gives an in-depth explanation of the architectural implementation design. In the
end it embellishes the major algorithms of this work.

7.1 Elliptic Curve Analysis
This work Ąrst analyzed, which elliptic curve is suitable for the PoC. The requirements
are, it needs to be safe and the curve size is restricted to 32 bytes. The size is important
because the hardware Trusted Platform Module (TPM) 2.0 on the target platform
(attester) supports a data size of 32 bytes for the PCR Exte♪d operation. Therefore, this
thesis researched for curves which fulĄll the requirements and these are :

Ţ secp256k1 ⟦50, 9⟧

Ţ Curve25519 ⟦50, 9⟧

Ţ NIST P-256 ⟦9⟧

Curve NIST P-256, ſecp256k1 and Curve25519 provide suitable size for the TPM 2.0.
However, the curve size is not enough, the curve should be ſafe as well. Therefore,
Tanja Lange and Daniel J. Bernstein (D.J.B.) established a webpage called ŞSafeCurveſ:
chooſi♪g ſafe curveſ for elliptic-curve cryptographyŤ ⟦9⟧, where they list known elliptic
curves and arguments which one is safe to use, based on their security properties and
in-depth analysis. In the case of this work, the Curve25519 is safe to use, based on
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their analysis ⟦9⟧. However, curve ſecp256k1 and NIST P-256 are not safe. One of the
properties which they do not provide is indistinguishability from random strings. The
elliptic curve points are normally distinguishable from uniform random strings ⟦7⟧. The
problem is that the Elliptic Curve Cryptrography (ECC) protocols send the points of the
elliptic curve in clear text such as long-term public keys, challenges, and ciphertexts ⟦7⟧.
ŞHe♪ce, the poi♪tſ are diſti♪guiſhable from u♪iform ra♪dom ſtri♪gſ for the attackerŤ ⟦5⟧.
D.J.B. states that ECC-based protocols face the same issue ⟦5⟧. Therefore, it is necessary
to construct a mapping of the points, which is then indistinguishable from uniform random
strings. Since this work develops a PoC protocol, it is necessary to know if the selected
elliptic curve provides these properties. For further details, D.J.B. et al. ⟦6⟧ explain how
to map the elliptic curve points to b-bit strings, so the adversary cannot distinguish
between uniform random strings and the points. Next, the curve ſecp256k1 and NIST
P-256 does not support the ladder method, which is an important computation method
in ECC for single-scalar multiplication (see Section 2.8.2). The Curve25519 supports
the Montgomery ladder, where it needs only one input and it uses internally only two
coordinates to represent x ⟦8⟧. The ladder improves the efficiency of the singular-scalar
multiplication ⟦8⟧. For further details see ⟦8⟧. Further, the Montgomery ladder method is
resistant against side-channel attacks ⟦54⟧. After analyzing the properties of the curves
for the protocol, the elliptic curve which provides efficiency and security is Curve25519.
In the end, this work selected the Curve25519, which will be elaborated on in the next
subsection.

7.1.1 Curve25519
The curve25519 has a Montgomery form which was deĄned by D.J.B. over a prime Ąeld
⟦3⟧:

MA↪B : y2 − x3 + 48662x2 + x (7.1)

, where B− 1 and A − 486662 (see Chapter 2). The prime number 2255 ⩾ 19 for the
prime Ąeld is the Ąnite Ąeld size. D.J.B. elaborates in his paper that the Curve25519 is
secure and highly efficient ⟦3⟧. Therefore, computing the Curve25519 in high speed is a
great advantage in the embedded systems domain. The generated key size for the public
and private key are 32 bytes.

In the case of this work, the curve cannot be directly used. Due to the design of the
Privacy-Preserving Remote Attestation (PPRA), it uses the Schnorr signature scheme.
Therefore, the curve Ed25519 is necessary. Curve25519 is recommended for the Diffie-
Hellman key exchange method and for digital signature scheme twisted Edwards curve
(Ed25519 ) ⟦37, 3⟧. Bernstein et al. stated in ⟦4⟧ for signature scheme they chose Ed25519,
since it provides fast scalar arithmetic and the equivalent security as the Curve25519
⟦4⟧. The Curve25519 can be used for digital signature operations, however, Ed25519 is
more efficient ⟦37, 4⟧. T.Lange and D.J.B. states in their paper ⟦4⟧ that Curve25519 is
birationally equivalent to the twisted Edwards curve (birationally equivalent means that
a small set of points from the Curve25519 cannot be mapped to the twisted Edwards
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curve) (Ed25519 ). For a detailed understanding of the twisted Edwards curve Ed25519,
see following reference ⟦4⟧.

The curve Ed25519 and Curve25519 have the order 8L. L is the large prime number:
2252 + 27742317777372353535851937790883648493. However, the paper from Brendel et
al. ⟦14⟧ states that the Schnorr signature scheme needs to be established over primer
order groups. Hence, non-prime order groups make the process more complicated due to
its complex group structure (such as Curve25519 a♪d Ed25519). The cofactor 8 provides
four sub-groups, which can lead, that the computed element (the point on the curve)
does not lie in the prime order subgroup ⟦14⟧. Therefore, there exists a technique called
Ristretto, which resolves this complication.

7.1.2 Ristretto
The Ristretto technique was designed by Mike Hamburg, where he introduced a method
for constructing prime order elliptic curve groups. Mike Hamburg stated in his work
⟦32⟧ a decaf design, where he introduced a technique to create a group of prime order L
based on twisted Edwards curve with a cofactor 4. This technique is more efficient than
checking the membership of the element if it is in the correct subgroup and eliminates the
cofactor. This check is complex and inefficient. Ristretto is the extended technique for
curves with the cofactor 8 such as Curve25519/Ed25519. Furthermore, existing systems
with Ed25519 signatures can be extended with complex zero-knowledge proof protocols
by applying the Ristretto technique ⟦46⟧.

Moreover, the cofactor provides some pitfalls such as small-subgroup attack. The
sub-group attack is if the attacker retrieves information about the scalar, which is
arithmetically used for a private key ⟦32⟧. For instance, the attacker sends or replaces
the point P with T , where P is a point of order L and T is a point of order 8 or is a
point in a small subgroup ⟦32⟧. Following, the user generates a random scalar r, which is
the private key, and multiplies it with T , and it results in rT . Hence, if the point rT is
known to the adversary, s/he can retrieve the scalar r, since T is in a small group and
not in a large prime order ⟦32⟧. This attack can be prevented by using a prime order
group with an appropriate size.

The Ristretto method extends the existing Edward curve implementation for complex
protocols such as this work. Therefore, the existing Edwards curve needs functions,
which map Edwards point to Ristretto point, and a validation function that checks if the
canonical encoding of the Ristretto point is valid. In conclusion, the Ristretto technique
guarantees no further cryptographic assumptions are necessary and is safely extendable
for Ed25519 signature with zero-knowledge protocols ⟦46⟧.

7.2 Libraries
Here, the section explains which crypto library was chosen and other libraries to realize
the PPRA protocol. The crypto library selection was based on whether the library
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supports the Curve25519 implementation. First, the Nettle library ⟦49⟧ with GMP library
⟦29⟧ was considered, but the issue was the GMP library is not in constant time. Therefore,
this work researched further, to Ąnd a library that guarantees constant time and has
features such as group operations and scalar arithmetic pre-implemented. In the end,
the LibSodium library met all the conditions.

7.2.1 Libsodium
LibSodium ⟦21⟧is a well known crypto library. Normally, Libsodium provides the imple-
mentation for encryption, decryption, signatures, and password hashing. Regarding this
work, the API of LibSodium provides an advanced section ⟦22⟧, where implementors can
develop cryptographic protocols based on Ed25519 or within this work, the Ristretto
technique. Further, it provides group operations such as point addition and point multipli-
cation based on the Ristretto technique. Next, it supports functions for scalar arithmetic.
The Nettle library did not provide any further scalar arithmetic operations. Therefore,
the GMP library is a necessity for scalar arithmetic operations. Here, the Libsodium
library was chosen since it provided all the operations and no extra library is needed.

7.2.2 tpm2-tss
The tpm2-tſſ ⟦28⟧ is a library which provides the API for hardware TPM 2.0 as well as
software TPM. The TSS stands for TPM 2.0 software stack. Further, the software stack
is layered in the following structure ⟦28⟧:

Ţ Feature API (FAPI)

Ţ Enhanced System API (ESAPI)

Ţ System API (SAPI)

Ţ Marshaling/Unmarshaling (MU)

Ţ TPM Command Transmission Interface (TCTI)

This work will be working with Enhanced System API. The feature API makes it for
developer easier work with TPM 2.0 since this API exposes high-level functions. The
Enhanced System API maps one to one of the TPM 2.0 commands to functions. These
functions are used in this work to interact with the hardware TPM 2.0.

7.2.3 CHARRA
CHARRA (CHAllenge-Response based Remote Attestation with TPM 2.0) ⟦45⟧ is a
project, which was brought to life by Michael Eckel. The project is a proof-of-concept
implementation for challenge-response remote attestation model. From this project,
this work used few implementation components to realize the PPRA protocol. Further,
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the CHARRA project is used to compare the performance measurements between the
functions of CHARRA and the PPRA protocol.

7.2.4 QCBOR
QCBOR ⟦12⟧ is the C implementation of the RFC 8949 ⟦13⟧ standard. CBOR stands for
Concise Binary Object Representation, which uses the same concept of JSON. CBOR is
a data format, which does not need a schema. Further, it is fast to decode and encode
for deĄned CBOR formats. In this project, the library is used to map the C structs into
binary with a given format as Concise Data DeĄnition Language (CDDL). After encoding
the C struct into a binary format it can be sent as bulk through the communication
channel and afterwards it can be easily decoded if the CDDL is known. QCBOR can be
seen as a library, which supports the developer in C to serialize and deserialize the C
structs (such as DTOs).

7.2.5 mbedTLS
mbedTLS ⟦60⟧ is a C library customized for embedded systems. It implements crypto
primitives. Further, it provides an API for SSL/TLS and DTLS protocol. Moreover,
this library is used in this work for encrypted communication between attester and
veriĄer. However, this is not the only feature this work uses, the library provides mutual
authentication between attester and veriĄer with certiĄcates. Explained later in the
impleme♪tatio♪ section.
Figure 7.1 illustrates how the previously described libraries are used in the project. The
tpm2-tſſ is used to communicate with hardware TPM 2.0. Next, the QCBOR library is
used for encoding and decoding binaries into C structs. As already mentioned, mbedTLS
is used for encrypted communication and mutual authentication.

TPM 2.0 Attester Enc/Dec Enc/Dec VeriĄer
tpm2-tss QCBOR mbedTLS QCBOR

Figure 7.1: Library usage.

7.3 Implementation
This section elaborates how the theory of Chapter 6 will be realized as a proof-of-concept.
As already mentioned the PoC will be implemented in C.

7.3.1 Overview
The PoC will be implemented in the user space. In the future, it should be mapped into
the kernel space. Therefore, it is written in C, which could be Şeaſily mappedŤ from user
space into the kernel space. However, this is not only the reason for implementing the
approach in C, the API for the TPM is provided in C as well.
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The reason for the conversion from user space into kernel space is, because of the Integrity
Measurement Architecture (IMA), which is a part of the Linux kernel. Even though
the IMA is in kernel space, the PoC is in user space, where the IMA is simulated as a
function (see subsections below). Nevertheless, this work focuses on how to implement
the core concept of PPRA protocol, which proves the partial integrity of the (veriĄerŠs
affiliated) Stored Measurement Log (SML) entries with non-interactive zero-knowledge
proof, while maintaining the integrity of the entire systemŠs operational state and
authenticity. Therefore, the IMA process is simulated as a function and as future work
the PPRA protocol should be integrated into the IMA. To understand the IMA process
of the Linux kernel, Figure 7.2a visualizes how the measurement process is executed in
IMA. First, the IMA generates from the Ąle hash and Ąle path a template haſh with
SHA-1. The original Linux IMA supports only SHA-1 for generating the template haſh.
Second, the template haſh will be extended and anchored into the TPM, and stored into
the SML. However, the approach of this work upgrades the simulated IMA by supporting
the hashing algorithm SHA-256 (see Figure 7.2b) (note: this work implemented the
approach based on the assumption of the Şupgraded IMAŤ using a collision-resistant
hashing algorithm). Next, Figure 7.2b visualizes after generating the template haſh that
Non-Interactive Zero-Knowledge (NIZK) proof is applied to compute the eve♪t haſh.
Afterwards, the scalars c↪ s are computed and stored with the eve♪t haſh into the SML.
Further, the eve♪t haſh is extended into the TPM. Here, this work recaptured the IMA
measurement process to illustrate the scope of this work and what will be implemented,
and which process will be simulated. The detailed implementation of the simulated
measurement process will be elaborated on in the upcoming subsection. Furthermore,
the Remote Attestation (RA) process as described in Chapter 6, will not simulate any
functions, since it is the major focus of this work, and it will be tested on real hardware.

7.3.2 Design
Here, this work demonstrates the implementation design to understand how the PPRA
protocol was realized. The PoC implementation consists of eight C header Ąles and for
each header Ąle an implementation. Figure 7.3 illustrates the dependency between the
header Ąles. Besides, it shows the implementation design of the PoC.

attestphase.h is the core of the implementation since it includes most of the surround-
ing header Ąles. The atteſtphaſe.h consists the implementation for the meaſureme♪t
proceſſ a♪d remote atteſtatio♪ proceſſ. Further, it implements encoder and decoder of
the QCBOR library functions for the C structs, which is used to convert them into binary
and save them into Ąles (such as SML).

nizk.h implements the NIZK signing and veriĄcation functions, where the NIZK signing
function is used in the meaſureme♪t proceſſ and the NIZK veriĄcation function in the
remote atteſtatio♪ proceſſ. These functions will be explained in the upcoming subsection,
how they were designed.
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(a)

(b)

Figure 7.2: (a) illustrates the original Linux IMA measurement process. (b) illustrates
the simulated IMA measurement process in the PoC (implementation).

pprȧdtȯmessagėencdec.h implements the encoder and decoder with the QC-
BOR library for the data transfer objects (dto), which will be encoded into binary format
and then decoded.

pprȧdto.h deĄnes the C structs, what kind of information should be transferred
between the functions as well as between attester and veriĄer.

tpm2̇util.h contains the invocation of the tpm2 commands from the tpm2-tſſ library
ESAPI. The header does not contain all the tpm2 commands, only the functions, which
are necessary for realizing the PoC.

hasḣsiġverify.h contains the implementation of functions for hashing and verifying
the signature of the TPM↓QUOTE with the mbedTLS library.

tpm2̇charra is the package, which contains three header Ąles, these provide func-
tions from the CHARRA project, such as how to manage the attestation key from the
TPM and how to convert the Platform ConĄguration Register (PCR) selection into an
understandable format for the TPM.
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attester.c invokes the functions from atteſtphaſe.h for generating all the eve♪t haſheſ
for the measured binaries (which is a simulated data set). Next, eve♪t haſheſ will be
extended into the TPM. The next step is to check if the attestation key exists in the
NVRAM of the TPM. If not, a new key is generated and stored in the NVRAM. After
all these steps, the attester publishes its socket information and waits for a connection.
The atteſter.c implements the mbedTLS connection and certiĄcation veriĄcation.

veriĄer.c establishes a socket as well to connect to the attester, where they use the
feature of mbedTLS to establish encrypted communication. Afterward, the veriĄer sends
an attestation request and veriĄes the response from the attester, where it checks if the
nonce, signature, TPM QUOTE, and NIZKs are valid.

nizk.h ppra_dto_message_encdec.h

hash_sig_verify.h tpm2_util.h

attestphase.h

tpm2_charra

attester.c verifier.c

ppra_dto.h

Figure 7.3: Implementation design.

7.3.3 Non-Interactive Zero-Knowledge Proof
Here, this work explains the core feature on which the whole concept relies on. This
work provides two algorithms as pseudocode for the NIZK and provides the equivalent
implementation of both algorithms in C in Chapter A (the implementation is in ♪izk.h).
The Algorithm 7.1 illustrates the pseudocode how to implement the Schnorr signature
(NIZK signing or NIZK proof generation). The Algorithm 7.1 takes as input an eve♪t,
which contains a measured software/binary with the Ąle path, Ąle name, and the Ąle hash.
Next, on line 2 it generates the template haſh. On line 4 it rehashes the template haſh.
The extension rehashes the template haſh as SHA-512. The reason for the extension
is that the implementors of Ristretto, mentioned in ⟦66, 67⟧ that the scalars needs to
be in the range of 0 and L (L − 2252 + 27742317777372353535851937790883648493, the
primer order group of curve25519). Nevertheless, Ristretto scalars are designed to be in
the range of 0 and L for each arithmetic operation. Therefore, in this work, the length
of the template haſh is extended by rehashing or by concatenating the template haſh
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twice and then reducing it with the modulo operation. Hence, the template haſh is a
SHA-256 hash, which has a size of 32 bytes, but the sampled bits are larger than L
(2256 > 2252 + 27742317777372353535851937790883648493). Another option is to check
if the value of the template haſh is in the range, which could lead to extra resource costs.
Further, the Libsodium implementation of the modulo operation only accepts 64 bytes
as input and outputs a uniformly distributed value between 0 and L. Therefore, these
extending approaches were used during the implementation to overcome the hurdle.

Next, the Algorithm 7.1 has validation checks, which checks after point multiplication
(scalar multiplication) if the value is still a valid point on the elliptic curve. The calculation
steps of the algorithm resemble the mathematical steps in Figure 6.4. Moreover, line
9 generates a new generator, if it is a valid point on the curve it will be accepted as a
generator. Normally, the basepoint of the elliptic curve is known as the generator, but if
the base is used in the scalar multiplication and the output is a valid point on the curve
it can be used as a generator as well (see Section 8.1). Further, the lines 5, 6, 15, 16, 17
in the Algorithm 7.1 uses the modulo operation, so that the scalars in the arithmetic
operations are in the range. At the end, the algorithm returns the eve♪t haſh and the
scalars c↪ s.

Algorithm 7.1: NIZK Signing
Input: event
Output: eventhash↪ c↪ s

1 Function nizksign(event):
2 templatehash ←⩾ hT (event);
3 r ←⩾ random();
4 templatehashextended ←⩾ h512(templatehash);
5 reduceddigest ←⩾ templatehashextended mod L;
6 rh ←⩾ r · reduceddigest( mod L);
7 eventhash ←⩾ grh ;
8 if eventhash iſ ♪ot a valid poi♪t then return error;
9 gi ←⩾ greduceddigest ;

10 if gi iſ ♪ot a valid poi♪t then return error;
11 v ←⩾ random();
12 ti ←⩾ gv

i ;
13 if ti iſ ♪ot a valid poi♪t then return error;
14 c ←⩾ H(gi∥ti∥eventhash);
15 reducedc ←⩾ c mod L;
16 rc ←⩾ r · reducedc( mod L);
17 s ←⩾ v ⩾ rc( mod L);
18 return eventhash↪ c↪ s;
19 End Function

The next Algorithm 7.2 is the NIZK veriĄcation, which has as input an eve♪trecord.
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The input eve♪trecord contains the eve♪t haſh, c, ſ a♪d eve♪t. The algorithm returns
true, if the validation was successful, otherwise false. The lines 3-7 are the same as in
the previous Algorithm 7.1, where the template haſh is generated and extended, and
the same generator is generated if the eve♪trecord contains the same eve♪t used in the
Algorithm 7.1. The interesting part is on line 13 in Algorithm 7.2, where the two valid
points on the curve are added together which results in ti′. If and only if the c′ is
equivalent to eventrecord▷c then the proof of knowledge is successful. In the veriĄcation
algorithm, the modulo operation was used as well. Therefore, the next subsection analyzes
the modulo operation with the method of the statistical distance.

Algorithm 7.2: NIZK VeriĄcation
Input: eventrecord
Output: verify

1 Function nizkverify(eventrecord):
2 verify ←⩾false;
3 templatehash ←⩾ hT (eventrecord▷event);
4 templatehashextended ←⩾ h512(templatehash);
5 reduceddigest ←⩾ templatehashextended mod L;
6 gi ←⩾ greduceddigest ;
7 if gi iſ ♪ot a valid poi♪t then return error;
8 gis ←⩾ geventrecord▷s

i ;
9 if gis iſ ♪ot a valid poi♪t then return error;

10 reducedc ←⩾ eventrecord▷c mod L;
11 eventhashc ←⩾ eventrecord▷eventreducedc

hash ;
12 if eventhashc iſ ♪ot a valid poi♪t then return error;
13 ti′ ←⩾ gis · eventhashc

14 c′ ←⩾ H(gi∥ti′∥eventhash);
15 if c′ −− eventrecord▷c then verify ←⩾true;
16 return verify;
17 End Function

Modulo operation

The proof-of-concept uses the modulo operation in the mathematical computation steps
for creating a signature and verifying it, as described in the previous section. The reason
for applying the modulo operation is to create uniformly distributed values in the range of
the group order of the Ed25519 (same as in Curve25519). Each mathematical operation
of the NIZK signature generation, as well as the veriĄcation, needs to be uniform values.
Since the template hash and challenge c are not uniform values. Thus, it is necessary to
apply the modulo operation with the modulus of the prime group order of the Ed25519.
Therefore, it is necessary to show, the statistical distance between the modulo operation
and the input of a speciĄc bit string. The statistical distance tells the distance between
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Figure 7.4: Example distribution of the modulo operation.

two probability distributions. In cryptography, the statistical distance is used to see
whether the distance is negligible between two distributions. In other words, if the
distance is negligible, a powerful and unbounded adversary cannot distinguish them ⟦27⟧.
Hence, the probability distribution over modulo operation will be here generalized. Let
X be a uniform distribution over X, where set X − ¶0↪ ▷▷▷↪ n ⩾ 1♢ and Y is an uniform
distribution over Y , where set Y − ¶0↪ ▷▷▷↪ m ⩾ 1♢. Let W : X → Y be a transformation
or function W(x) − x mod m ∈ ¶0↪ ▷▷▷↪ m ⩾ 1♢, where X > Y . The question is, what is
the statistical distance between Y and W(X )?

The Ąrst step to answer the question is to Ąnd out the distribution of W(X ). Therefore,
it is necessary to analyze how the samples are distributed in the transformation W(X ).
For this purpose, this section provides an example where n − 15 and m − 10 and the
Figure 7.4 illustrates the distribution of the modulo operation of n and m. Further,
Figure 7.4 shows that the Ąrst four values appear twice than the rest. This indicates that
the distribution of W(X ) of a sample has two cases. The two cases are representing the
probability of a sample of the transformation Pr⟦W(X ) − x⟧, stated in Equation (7.2).
If x ∈ ¶0↪ ▷▷↪ n mod m♢ then the probability for the sample x is Pr⟦W(X ) − x⟧ − ⌊ n

m
⌋+1
n .

However, if x ∈ ¶n mod m↪ ▷▷↪ m ⩾ 1♢ then the probability is Pr⟦W(X ) − x⟧ − ⌊ n
m

⌋
n .

Pr⟦W(X ) − x⟧ −

∏︂⨄︂⋃︂
⌊ n

m
⌋+1
n 0 ≤ x < (n mod m)

⌊ n
m

⌋
n m > x ≥ (n mod m)

(7.2)

After deĄning the cases for Pr⟦W(X ) − x⟧, the next step is to answer the question. Before
answering the question it is necessary to understand what the statistical distance states.
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The statistical distance in cryptography deĄnes the distance between two distributions.
The outcome of the statistical distance tells if it is negligible. This means if the adversary
is capable of creating an algorithm in Probabilistic Polynomial Time (PPT) to distinguish
between two distributions. Further, the statistical distance is an upper bound over the
probability that the computationally bounded adversaries cannot distinguish between two
distributions ⟦27⟧. Therefore, the Equation (7.3) shows how to calculate the statistical
distance between the distributions Pr⟦Y − x⟧ and Pr⟦W(X ) − x⟧. Further, with the
statement of the statistical distance, it is possible to determine how negligible the outcome
is.

A − ¶0↪ ▷▷▷↪ n mod m♢
B − ¶n mod m↪ ▷▷▷↪ m ⩾ 1♢

SD(Y↪ W(X )) − 1
2

∑︂
x∈[0↪m)

♣Pr⟦Y − x⟧ ⩾ Pr⟦W(X ) − x⟧♣ (7.3)

− 1
2

⎠∑︂
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\︄\︄\︄\︄\︄ 1
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⩾ ⌊ n
m⌋ + 1

n

\︄\︄\︄\︄\︄ +
∑︂
x∈B

\︄\︄\︄\︄\︄ 1
m

⩾ ⌊ n
m⌋
n

\︄\︄\︄\︄\︄
⎜

Since, the cases of Pr⟦W(X ) − x⟧ and the SD(Y↪ W(X )) are generalized, it is possible
to Ąll n and m with accurate values. In the case of this work, it is necessary to
know the statistical distance between the prime group order and 2256, which illustrates
256 bits. The Equation (7.3) was used in SageMath to calculate the SD between the
distribution over 2256 bits, which represents SHA-256 and over the prime group order
2252 + 27742317777372353535851937790883648493 of the Curve25519. The equation 7.3
was applied in SageMath to calculate the concrete values. The Listing 7.1 represents the
calculation process. Further, the result shows, that it is near to negligible.
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1 sage: m = 2^252+27742317777372353535851937790883648493
2 sage: n = 2^256
3 sage: add0 =((abs((1/m)-((floor(n/m)+1)/n)))*(n%m)).n()
4 sage: add0
5 3.83339731895009e-39
6 sage: add1 = ((abs((1/m)-((floor(n/m))/n)))*(m-(n%m))).n()
7 sage: add1
8 3.83339731895009e-39
9 sage: SD = ((add0+add1)/2).n()

10 sage: SD
11 3.83339731895009e-39

Listing 7.1: Calculation of SD for 256 Bits.

Listing 7.2 represents the result for 317 Bits. The statistical distance of prime group
order and 317 bits was calculated because Libsodium ⟦22⟧ stated that if the input of their
modulo function is at least 317 bits, then the output will be at least uniform. Therefore,
the calculation was done to see if there are some remarkable differences between the SD
of 256 bits and 317 bits.

1 sage: m = 2^252+27742317777372353535851937790883648493
2 sage: n = 2^317
3
4 sage: SD
5 3.83339731895009e-39

Listing 7.2: Calculation of SD for 317 Bits.

As the outcome of Listing 7.2 presents, the result is equal to the result of 256 bits. This
means there does not exist much difference and is still negligible. If this work uses a
512-bit string in the modulo operation, it is more negligible than the previous calculation.
Negligible means if it is appearing close to zero. In other words, the result deĄnes how
near it is to be uniform.

1 sage: m = 2^252+27742317777372353535851937790883648493
2 sage: n = 2^512
3 sage: SD
4 9.40956857410997e-80

Listing 7.3: Calculation of SD for 512 Bits.

After applying the statistical distance of different lengths of bit strings, the statement tells
it is better to use 512 bits since it is more negligible/near to uniform than the other two bit
strings. To conclude a powerful and unbounded adversary is not capable of distinguishing
the two distributions and therefore, the extension methods in the Algorithm 7.1 and
Algorithm 7.2 are applied.
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7.3.4 Measurement Process

Here, this work continues with the implementation of the meaſureme♪t proceſſ. As
already mentioned in this work, the measurement process of the IMA will be simulated
by the function called ſimulated↓meaſured↓boot(). The function will be illustrated in
this work as pseudocode which resembles the C implementation of the work.

Algorithm 7.3: Simulation of the IMA process.
Input: filepath

1 Function simulated_measured_boot(filepath):
2 buffer↪ buffersize ←⩾ loadDataSet(filepath);
3 eventlist ←⩾ eventṡdecode(buffer↪ buffersize);
4 eventrecords ←⩾ ⟦eventlist▷size⟧;
5 pcr ←⩾ 10;
6 for i ← 0; i < eventlist▷size; i ← i + 1 do
7 evenrecords⟦i⟧▷event ←⩾ eventlist⟦i⟧▷event;
8 eventhash↪ c↪ s ←⩾ nizksign(eventlist⟦i⟧▷event);
9 eventrecords⟦i⟧▷eventhash ←⩾ eventhash;

10 eventrecords⟦i⟧▷c ←⩾ c;
11 eventrecords⟦i⟧▷s ←⩾ s;
12 tpm2̇pcṙextend(pcr↪ eventhash);
13 end
14 eventrecordsencoded ←⩾ eventrecordṡencode(eventrecords)
15 saveSML(eventrecordsencoded);
16 End Function

The Algorithm 7.3 represents the simulation of the IMA process. As input, it takes a ˇle
path, which is the path of the data set used to simulate the process. The data set contains
250 entries of software binaries of the system bi♪ folder of a Linux OS with their Ąle
path, Ąle name, and Ąle hash. The data set will be loaded as a byte string and afterward
decoded to a C struct Ąlled with the data and saved into eventlist (Algorithm 7.3 line
2-4). Next, each eve♪t will be taken from the list and the eve♪t haſh and the scalars
c↪ s are generated, which will be saved into eve♪trecordſ. To generate these values,
the Algorithm 7.1 is invoked on line 8. After saving the values into eve♪trecordſ, the
tpm2↓pcr↓exte♪d ⟦65⟧ function will be invoked. This function/tpm2 command extends
the PCR bank of the given PCR number as a parameter. With this approach, the eve♪t
haſh will be extended into the Core Root of Trust for Measurement (CRTM) and expands
the chain of trust (the Chapter 2 describes the theory behind the PCR extend operation).
At the end of the Algorithm 7.3, the eve♪trecordſ will be encoded as a byte string and
saved as the privacy-preserving SML.

After the attester extended the generated eve♪t haſheſ into the TPM, it checks if the TPM
stored the primary key (Attestation Key (AK)) in the non-volatile RAM (NVRAM)⟦64⟧.
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If not, a new key will be generated and stored in the NVRAM. The reason, this check
exists is to reduce the resource overhead on the TPM. Otherwise, for every remote
attestation, it generates a new private and public key, and each generation needs around
one minute on the hardware TPM. Therefore, this work implemented the function
ppra↓create↓ſtore↓tpm2↓key(), which does the check. Otherwise, if the function does
not exist, it would falsify the measurements in the evaluation Chapter 8.

Despite all the description of the meaſureme♪t proceſſ, this work illustrates a sequence
diagram Figure 7.5 on how each of the algorithms presented above will be invoked from
the attester. After invoking all these functions, it establishes a socket and waits until a
veriĄer connects for remote attestation. The remote atteſtatio♪ proceſſ will be explained
in the next subsection.

Figure 7.5: Illustration of the function invocations for the measurement process.

7.3.5 Remote Attestation Process
This work continues with the remote atteſtatio♪ proceſſ and introduces the implementation
approach.

Communication

The communication between attester and veriĄer needs to be secured. Therefore, the
mbedTLS library is used. Before the remote attestation request is sent to the attester, the
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veriĄer establishes a handshake. During the handshake, they do a mutual authentication,
where both have a certiĄcate issued by the CertiĄcation Authority (CA). Consequently,
the project uses a self-signed CA certiĄcate and certiĄcates for the attester and the
veriĄer are derived from the self-signed CA certiĄcate. Hence, this work did not set up a
public key infrastructure since it was not the scope of the work. Furthermore, mbedTLS
provides functions to load the certiĄcates into the attester and veriĄer. Moreover, each of
them loads the self-signed CA certiĄcate and each of theirs. Next, Figure 7.6 illustrates
that during the handshake both of them sends each otherŠs certiĄcates and validates
the certiĄcate against the CA certiĄcate, which veriĄes if the attesterŠs and veriĄerŠs
certiĄcate are valid. In the matter of the project, the certiĄcate authority is internal. In
the practical use case, the certiĄcate authority should be an external trusted party in
the public key infrastructure. After authenticating each other, they establish a secured
end-to-end communication.

Figure 7.6: Mutual Authentication ⟦58⟧.

Attestation Request

Shortly after establishing a secured connection the veriĄer creates an attest request, which
contains a nonce, PCR selection, and the software selection. The created request will be
encoded to a byte string based on a Concise Data DeĄnition Language (CDDL) with
the QCBOR library. Next, the veriĄer sends the encoded byte string over the secured
line to the attester, where it decodes with the known CDDL, the byte string. CDDL is
a representation form for Concise Binary Object Representation (CBOR) ⟦10⟧. As an
exemplary structure, Listing 7.4 shows how a CDDL for this project was deĄned.
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1 eventrecord = [
2 pcr: (0..23) .default 10 ,
3 event_hash: bstr,
4 c: bstr,
5 s: bstr,
6 events: [+ event]
7 ]
8
9

10 event = [
11 file_hash: bstr,
12 file_name: string,
13 file_path: string,
14 ]

Listing 7.4: CDDL example of eventrecords.

However, Listing 7.4 does not only show the structure, but it also deĄnes the data type of
each element. Thereby, the data types deĄne how to implement the decoder and encoder
by using the QCBOR library. Nonetheless, the listing symbolizes similarities to JSON
structure.

After the detour in CDDL, this subsection continues with the next steps at the attester
side after receiving the attestation request. First, the attester checks the received software
selection against a policy. In the case of the work, the policy is represented for simplicity
as a Ąle. The name of the Ąle is the extracted certiĄcate ID from the veriĄerŠs certiĄcate
and loads the Ąle and checks the software selection against the veriĄerŠs policy (see
Figure 7.7). As the Figure 7.7 illustrates the sequence of the remote attestation process,
the function iſ↓authe♪ticated does the check. Then the attester reads from the privacy-
preserving SML only the entries of the software selection and the whole eve♪t haſh column
and stores them into eve♪trecordſ. Thereafter, the attester loads from the NVRAM the
public key of the TPM. Next, the attester requests the TPM QUOTE from the TPM,
with the nonce, PCR selection and the public key. The TPM selects the PCR bank of the
received PCR selection, then rehashes the PCR bank and signs it with the attestation
key and returns the tpmQuote (see Figure 7.7). In the end, the attester encodes all the
information as a byte string sends it over the secured channel to the veriĄer. The veriĄer
initiates the veriĄcation procedure after receiving the response from the attester.

VeriĄcation

The veriĄcation process has the same procedure as described in Section 2.6. Except,
there exists an extra step in the veriĄcation, which is to validate the proof of knowledge
for each associated entry. Therefore, the Algorithm 7.4 represents the core part of the
veriĄcation procedure how the veriĄer veriĄes each entry. The Ąrst step is to decode
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the response and then to load the Reference Integrity Measurement (RIM). Afterwards,
each entryŠs proof of knowledge will be validated, if one entry is not valid then the whole
attestation fails. After each successfully validated proof, the entry will be cross-checked
with the entries in the RIM. The measurement veriĄcation is partial since the affiliated
software components of the veriĄer are compared against the RIMs (The RIMs only
contain the list of the veriĄerŠs responsible software components.).

Then the same procedure of the PCR↓exte♪d function is implemented on the veriĄer
side, where it extends each eve♪t haſh of the received column of the SML from the
attester. After generating the folding hash from all the eve♪t haſheſ the veriĄer checks
if all the proofs are valid and if all the cross-checks with RIM was valid as well. Next,
the veriĄer validates the signature from the TPM. Subsequently, the veriĄer checks the
nonce if the received one is still the same as the one which was sent to the attester.
Finally, the veriĄer rehashes the foldi♪g haſh and compares it with the actual value of
the received TPM Quote. If and only if all the validation succeeds, then the algorithm
Algorithm 7.4 returns ſucceſſ. Otherwise, the remote attestation failed and the integrity
and authenticity of the operational state of the attester side are jeopardized.

Figure 7.7: Illustration of the function invocations for the remote attestation process.
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Algorithm 7.4: VeriĄcation of the attestation response.
Input: nonce↪ rimpath↪ response
Output: success ∨ failed

1 Function verify_attestresponse(nonce↪ rimpath↪ response):
2 partialintegrity ←false
3 rimmatch ←false
4 counter ← 0
5 rimmatchcounter ← 0
6 eventrecords ←⩾ eventṡdecode(response▷eventrecords)
7 rim ← loadRIM(rimpath)
8 pcr ← 10
9 for i ← 0; i < eventrecords▷size; i ← i + 1 do

10 if eventrecords⟦i⟧▷ciſ ♪ot empty then
11 if nizkverify(eventrecords⟦i⟧) then
12 break
13 end
14 for j ← 0; j < eventrecords▷size; j ← j + 1 do
15 if rim⟦j⟧▷fname −− evenrecords⟦i⟧▷event▷fname then
16 rimmatchcounter ← rimmatchcounter + 1
17 break

18 end
19 end
20 counter ← counter + 1;
21 end
22 pcṙfoldeḋdigest ←

extenḋfoldinġdigest(pcr↪ eventrecords⟦i⟧▷eventhash);
23 end
24 if (counter −− rim▷size) ∧ (rimmatchcounter −− rim▷size) then

partialintegrity ←true
25 rimmatch ←true
26

...
/* The checks for the tpmquote, the signature and the

nonce are not stated, since they are the same checks
as in the original remote attestation verification
procedure. */

...
27 if all checkſ are valid then
28 return success;
29 else
30 return failed;
31 end
32 End Function 53
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7.3.6 Implementation Versions

This work revealed how to realize a proof-of-concept from the elaborated theory in
Chapter 6. Henceforth, the implementation is not enough, the interesting part is to
evaluate the implemented concept as well. Therefore, this work implemented four versions
to compare the measured performance results. Here, this thesis will introduce the four
versions and their implementation differences.

SHA-256 Version The SHA-256 verſio♪ is the version which this thesis introduced
in the previous subsection, where it rehashes the template haſh with the hash algorithm
SHA-512. Afterwards, the rehashed hash will be reduced by the modulo operation (see
Algorithms 7.1 and 7.2).

SHA-256 memcpy Version The SHA-256 memcpy verſio♪ is nearly the same im-
plementation as SHA-256 Verſio♪. However, the difference lies on line 4 in both Algo-
rithms 7.1 and 7.2. Instead of rehashing the template haſh with SHA-512, the template
haſh will be concatenated with itself. The line 4 will be replaced by:
templatehashconcatenated ← (templatehash∥templatehash). The concatenation produces
a 512-bit string which will be reduced by the modulo operation. This version exists to
analyze the performance, whether the C implementation with the concatenation (in C
the concatenation is represented as memcpy operations ) or the SHA-512 function is
resource-efficient.

SHA-256̇SHA-512 Version Next, the SHA-256↓SHA-512 verſio♪ mixes both
SHA-256 and SHA-512 algorithms in the protocol. SHA-256 is used in the PCR↓exte♪d
operation and the SHA-512 is used for the Ąle hash and template haſh. Figure 7.2b
illustrated the simulated IMA measurement process, where it uses SHA-256 for the
template haſh instead in this version SHA-512 is applied. Therefore, the work generated
the version to see whether it is resource-efficient without rehashing or concatenating the
template haſh, if the template haſh is sampled as SHA-512. However, the hardware TPM
supports the hashing algorithms from SHA-1 to SHA-256. Thus, the template haſh was
reduced in Algorithm 7.1 to 32 bytes and the outcome was extended into the TPM.

SHA-512 Version Last, the SHA-512 verſio♪ was implemented for the Docker setup
environment (see Chapter 8), since the hardware TPM 2.0 does not support SHA-512
algorithm. In the whole project, where a hash algorithm is applied, it was replaced by
SHA-512 algorithm. Furthermore, this version does not need any extra instructions for
rehashing/concatenating the template haſh, since it is computed in SHA-512. The only
hurdle which has to overcome was that the PCR↓exte♪d accepts only data with the
size of 64 bytes. So, the eve♪t haſh has the size of 32 bytes, and it was necessary to
concatenate the eve♪t haſh for the PCR↓exte♪d operation (eventhash∥eventhash).
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In the end, this section provided, how the theory was successfully mapped into a practical
proof-of-concept. Still, this work had to overcome some hurdles. Moreover, it provided
different variants of the protocol implementation to compare them each other in Chapter 8.
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CHAPTER 8
Evaluation

This chapter presents the evaluation of the Privacy-Preſervi♪g Remote Atteſtatio♪
(PPRA) protocol and its Proof-of-Concept (PoC). Moreover, it analyzes based on the
deĄned requirements in Chapter 5 whether the PPRA approach fulĄlls the security, privacy
and functional requirements. Therefore, the chapter is separated into two sections. First,
it evaluates and discusses the security and privacy requirements. Following, the functional
requirements will be analyzed based on the approach. Afterwards, the performance results
of the implemented PoC will be discussed in correlation with the functional requirements.
Further, the results will be analyzed to Ąnd out if the PoC provides some limitations and
beneĄts.

8.1 Security and Privacy Requirements
In Chapter 5 this work deĄned security and privacy requirements to establish the PPRA
approach in Chapter 6. Further these requirements were derived from the four use cases
in Chapter 4 and the threat model in Section 6.1. This section explains whether the
requirements from Tables 5.2 and 5.3 were met. Besides, it analyzes the achieved security
and privacy requirements in the PPRA approach.

Chapter 3 elaborated the related concepts on how to preserve privacy in remote attestation.
Luo et al. ⟦43⟧ realized the privacy property while relaying on the XOR operation.
However, the PCR.ſecret needs to be sent over the channel, where the veriĄer can
recompute the hash with the secret (see Chapter 3). Further, Jie et al. ⟦36⟧ has a similar
approach: instead of XOR₤i♪g they are concatenating the template haſh with a random
factor otherwise known as ſhielded factor. The ſhielded factor must be sent through the
channel to the veriĄer. In both methods, the veriĄer needs to know the ſecret⁄ra♪dom
value⁄ſalt⁄ſhielded factor for the affiliated binaries of the veriĄer. However, these values
are not unique anymore if one binary or software component is needed for the integrity
check by multiple veriĄers. Therefore, all the veriĄers know the secret value of one
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particular software component, which is used by multiple veriĄers. These approaches
can be improved by adding extra communication overhead by using the Diffie-Hellman
key exchange protocol between attester and veriĄer. Though the Diffie-Hellman key
exchange protocol has too much communication overhead and the entry of one binary
exists multiple times for each veriĄer with different shared keys. By applying the Diffie-
Hellman key exchange protocol, it breaks the original design of the remote attestation
since it is necessary to have multiple request-response communication instead of one.
In addition, all the shared secret keys have to be saved in the embedded system device.
This consumes too much space and is resource-inefficient. The symmetric primitives
show limitations in remote attestation. Therefore, this work introduced a new variant of
the privacy-preserving concept (see Chapter 6). This new variant applied asymmetric
primitives of the signature scheme, which was introduced in this work as the PPRA
protocol. Hence, this thesis took advantage of the privacy-enhancing technology, the zero-
knowledge proofs (P1). To preserve privacy the Schnorr Non-Interactive Zero-Knowledge
(NIZK) proof over an elliptic curve was used in PPRA protocol. However, the NIZK
cannot be directly applied in the PPRA approach. The reason is that this work made
adaptions on the NIZK proof. The NIZK proof over an elliptic curve in ⟦33⟧ uses the
basepoint of an elliptic curve as a generator g (see Section 2.7). The PPRA approach
deĄnes a Şnew generatorŤ gi by computing: gi :− gφ(hT (xi)) (the scalars and function in
the computation are explained in detail in Section 6.3). As described in Section 2.7 a
cyclic group has a generator, which generates all the elements in the group. Therefore,
the generator gi is an element generated by g. Thus, gi is a generator as well due to the
deĄnition of a cyclic group, because gy

i (where y is an exemplary value) dissolved is:

gφ(hT (xi))y − g(φ(hT (xi)))·y (8.1)

The resolution in Equation (8.1) shows that using gi produces outcomes which are still
elements indirectly computed by g (where g is the basepoint in an elliptic curve). The
reason for applying the function hT (xi) (which represents the template haſh) for gi as
the Şnew generatorŤ is that the Şproof of knowledgeŤ can be validated over the affiliated
template haſh (see Figure 6.4) (P2). Next, the eve♪t haſh is the blinded template haſh.
The computation of eve♪t haſh shows that the template haſh is multiplied by a randomly
computed scalar r, where r is the private key. Afterwards, the group operation (scalar
multiplication) is applied by using the generator (for detailed explanation see Section 6.3).
Then the eve♪t haſh is used as the public key, because the affiliated eve♪t haſheſ will
be sent to the veriĄer to validate the Şproof of knowledgeŤ (detailed explanation of the
validation in Section 6.3). Based on the eve♪t haſh, privacy is assured, because from the
eve♪t haſh it is not possible to infer the template haſh. The reason is, the representation
of the generator gx is the point multiplication (scalar multiplication), where the point
is the basepoint of the elliptic curve and x is a scalar. Therefore, the computation of
the eve♪t haſh shows that r cannot be retrieved, because the inverse function of the
point multiplication cannot be applied. Hence, the point multiplication provides the
security based on Elliptic Curve Discrete Logarithm Problem (ECDLP) (see Section 2.8).
Further, all the adaptions of the NIZK proof are illustrated step by step in Figure 6.4.
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Hence, to get a clear understanding of the changes: compare Figures 2.3 and 6.4, to see
the adaptions based on the properties of the NIZK. This work shows the correctness of
the NIZK proof is still valid while applying the changes (P1):

t′
i − gsi

i · heventhash(ri↪ xi)ci

− gφ(hT (xi))·(vi⩾ci·ri) · gri·φ(hT (xi))·ci

− gφ(hT (xi))·vi⩾φ(hT (xi))·ci·ri · gri·φ(hT (xi))·ci

− gφ(hT (xi))·vi⩾φ(hT (xi))·ci·ri+ri·φ(hT (xi))·ci

− gφ(hT (xi))·vi

− gvi
i

− ti

Besides, the NIZK proof is generated over an elliptic curve. Therefore, this thesis did an
elliptic curve analysis to Ąnd a suitable curve for the PPRA approach (see Section 7.1).
Based on the elliptic curve analysis in Section 7.1, this work uses the Ed25519 which is
birationally equivalent to Curve25519 ⟦4⟧. However, the curve Ed25519 is not directly
used, due to the complication of the cofactor. Hence, this work applies the Ristretto
technique based on the Ed25519 (Ristretto eliminates the cofactor without sacriĄcing
security and performance, see Section 7.1) (S6). While applying the Ristretto technique
during the implementation of Algorithms 7.1 and 7.2, the modulo operatio♪ was used
to compute uniform values in the range of the prime order group. Therefore, this work
showed with statistical distance in Section 7.3.3, if an unbounded and powerful adversary
can distinguish between the input and the computed output of the modulo operatio♪
(see Section 7.3.3). This outcome was achieved if a 512-bit string was used as an input,
then the statistical distance is negligible (close to zero). This was done to provide an
argument for using the modulo operatio♪ in NIZK implementation and showed that an
adversary is not capable of distinguishing between the input and the outcome of the
modulo operation.

After the detour in elliptic curve analysis, this section continues to explain how the NIZK
is used to preserve privacy by enforcing the veriĄer constraints. By using the constraints,
the attester only reveals the associated entries of the Stored Measurement Log (SML) to
the veriĄer (P2). From there on the veriĄer receives all eve♪t haſheſ and the associated
subset of the scalars c, s (extra data) of the NIZK proof generation (see Section 6.3).
Next, the veriĄer applies the mathematical operation to validate the eve♪t haſh with
Şproof of knowledgeŤ, if the eve♪t haſh is the corresponding template haſh (note: The
validation only works with scalars c and s to assure the zero-knowledge property. Further,
the veriĄer receives to the associated software components c and s.). Hence, the veriĄer
cannot use the scalars c and s for non affiliated eve♪t haſheſ. Due to the NIZK property
of ſou♪d♪eſſ, which deĄnes that the attester is able to convince the veriĄer that the
statement (Şproof of knowledgeŤ) is incorrect. Hence, if the statement is incorrect for the
associated information of the veriĄer, then the software component on attesterŠs system
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is corrupted or jeopardized. The correct♪eſſ of NIZK is given, if the attester is able
to convince the veriĄer that the statement is correct without revealing r (private key).
Hence, the properties of NIZK embellishes, why this work used NIZK for the PPRA
approach. Further, if multiple veriĄers validate the same software component, neither of
them knows the private key. However, if validation is successful, then they are convinced
that the template haſh is the correct eve♪t haſh (bli♪ded template haſh) and this implies
that the software componentŠs integrity is intact.

As mentioned above, between attester and veriĄer a communication channel is established,
to transfer the attestation information (i. e. eve♪t haſheſ, c, s, TPM Quote). Therefore,
the communication channel needs to be encrypted (S3). This is realized by using TLS
and the PoC utilizes the library mbedTLS for it (see Chapter 7). The TLS connection is
used to prevent paſſive ma♪-i♪-the-middle attack (see Section 6.1). Further, both parties
need to authenticate each other. This was realized by using functions of the mbedTLS,
which authenticates both parties certiĄcates. This was already stated in Section 7.3.5
how the mutual authentication was done in PoC (S4). In the PoC the certiĄcates were
self-signed and self-issued. In the case, if the PPRA approach is integrated into a system,
a Public Key Infrastructure (PKI) is necessary to issue and revoke certiĄcates. The PKI
is not a mandatory component in the PPRA approach, because the concept focuses on
preserving the privacy of the operational state of the attesterŠs system.

Besides, the Schnorr NIZK proof assures privacy and the successful validation of Şproof
of knowledgeŤ implicates the entry integrity in the SML. However, it does not guarantee
the entire integrity of the operational state of the attesterŠs system. Therefore, the
PPRA concept utilizes the Trusted Platform Module (TPM) to use operations which
maintain the chain of trust and preserves the integrity of the entire operational state
of the attesterŠs system. Each computed eve♪t haſh of the corresponding software
component will be anchored in the secure volatile storage of TPM by using the Platform
Co♪ˇguratio♪ Regiſter (PCR) Exte♪d operation (see Sections 6.3 and 7.3.4). Furthermore,
the extend operation extends the chain of trust by accumulating each eve♪t haſh and
each eve♪t haſh is logged in the SML (S1). The SML represents the operational state
of the attesterŠs system. Hence, the integrity is veriĄed over the SML by matching the
actual value of the TPM Quote. Furthermore, the adversary cannot manipulate the
measurements after the measured boot sequence, because the TPM is hardened against
physical attacks. Therefore, the adversary cannot retrieve any secretes, nor manipulate
eve♪t haſheſ. Moreover, to provide the authenticity of the operational state, the operation
TPM Quote is used, where the TPM signs with the private part of the Attestation Key
(AK) the operational state of the attesterŠs system. Nonetheless, the veriĄer has the
public part of AK to verify the authenticity/signature of the signed operational state (S2).
To provide integrity and authenticity of the operational state of the attesterŠs system,
the PPRA approach is dependent on the security properties of the TPM.

Overall, in the paragraphs above, this work discussed and argued how security and
privacy are achieved. However, the trustworthiness of the attesterŠs system is assured if
all the steps in the veriĄcation process are successful (see Figure 6.2). If one of the steps
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fails, then the attesterŠs system is jeopardized and not trustworthy. The veriĄcation of
the trustworthiness of the attestation information is shown in the Chapter 6, where the
PPRA approach is introduced (S5).

In addition, it is assumed in a scenario where multiple veriĄers want to verify the
operational state of the attesterŠs system that the veriĄers do not communicate with each
other, nor they know each other. The PPRA approach does not provide a possibility for
the veriĄer to communicate with other veriĄers because the veriĄer can only establish a
connection to the attester (P3).

8.2 Functional Requirements
This section explains, based on the theoretical approach (PPRA approach) and the
implemented PoC, how all the functional requirements are met. Therefore, the explanation
is separated into four parts: First, the achievements of the functional requirements are
elaborated based on the PPRA approach. The second part embellishes the achieved
functional requirements based on the performance evaluation. Third, the communication
costs are evaluated. Last, a brief description is given of how the PPRA approach can be
integrated into the use cases from Chapter 4.

8.2.1 PPRA Approach
The PPRA approach uses the Linux Integrity Measurement Architecture (IMA), which is
a concept of the Trusted Computing technology. In the case of this work, the tasks of the
IMA are simulated since it was not the scope of this work to mitigate with the actual Linux
IMA (see Section 7.3.4). Hence, the PoC implemented the tasks of the Linux IMA (see
Algorithm 7.3). The IMA is a trusted service, which measures the software components
which are loaded into the memory of the attesterŠs system. The PPRA concept relies
during the measurement process on the IMA to compute the template haſheſ (F1) (see
Figure 6.1 (step 1)). Next, the core idea of the PPRA approach is to preserve privacy.
Therefore, the computed measurements (template haſh) of the IMA needs to be blinded.
To blind the measurements, the PPRA approach takes advantage of the properties of the
NIZK proof. Nonetheless, the PPRA approach integrates the method of the NIZK to fulĄll
the functional requirement F2 (detail explanation of the blinding operation in Section 6.3).
Moreover, the blinded measurements (eve♪t haſh) need to be logged to keep the trace
of all loaded software components. Hence, the blinded measurements are persisted in
a log Ąle (i. e. SML) (F3). Further, the PPRA approach in Chapter 6 described that
the computation outputs of the NIZK proof and the eve♪t haſh are stored in the SML
(F3) (see Figure 6.2 step 3, step 5). Further, to preserve the integrity of the operational
state of the attesterŠs system, the TPM is utilized. The eve♪t haſh is anchored in the
TPM by triggering the TPM operation PCR Exte♪d (F4). The eve♪t haſh needs to be
anchored to extend the chain of trust in the attesterŠs system and to keep the operational
state Şup to dateŤ. In the PoC the tpm2-tſſ library is used to access the functionalities
of the TPM (F4). The next functional requirement F5 was fulĄlled, by designing the
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PPRA approach, while considering the necessary functions for remote attestation (see
Section 6.4). Further, the PoC implemented functions for triggering a remote attestation,
preparing the attestation information (on attester side) and verifying the attestation
information (on veriĄer side) (see Section 7.3.5,Algorithm 7.4). Nonetheless, the veriĄer
and the attester establishes communication during the remote attestation. Therefore,
a communication structure needs to be deĄned so both parties can understand the
transferred data during the remote attestation. Hence, this work utilizes QCBOR library
to deĄne a Concise Data DeĄnition Language (CDDL), which both parties use to decode
or encode the information (see Section 7.3.5) (F6). Figure 6.2 illustrates that the PPRA
approach uses only one round of the request-response scheme (F7). Further, to preserve
privacy, the attester limits the exposure by sending the associated subset of measurements
to the veriĄer (F8). This was realized by the PoC by a policy check. The policy in the PoC
is a Ąle which contains the associated software components of the veriĄer. This functional
requirement F8 is fulĄlled at the time of the remote atteſtatio♪ proceſſ (Section 6.4).
During the remote attestation, the attester sends an attestation response. The response
has to be veriĄed. While verifying the attestation response, each step of the veriĄcation
process has to be successful (see Figure 6.2 (step 12-16)). Otherwise, if one of the steps
fails, then the trustworthiness is not given, and the attesterŠs system is either corrupted
or jeopardized (see Section 6.4 and Algorithm 7.4) (F9). Algorithm 7.4 in the PoC
illustrates the implementation of all veriĄcation steps. The stated description above for
each functional requirement shows that each of them was fulĄlled while designing the
PPRA concept. Moreover, the PoC is the implementation of the PPRA approach while
fulĄlling all the functional requirements.

8.2.2 Performance Evaluation
This subsection completes a performance analysis based on the functional requirements.
The performance analysis illustrates the resource utilization of the PoC based on the
functional requirements. The performance evaluation is separated into multiple parts.
First, it describes the experiment setup, where the PoC will be tested and evaluated. Next,
the implementation for the performance evaluation will be elaborated. The explanation of
the performance evaluation implementation exists to reproduce the performance measure-
ments. The following part evaluates the NIZK (Schnorr Signature) implementation. The
implementation provides two functions, where the Ąrst function computes the signature
and the second function veriĄes the computed signature (see Section 7.3.3). The CPU
cycles and execution time of both functions will be measured. However, the measurements
of NIZK will be compared against the different versions of the PoC implementation.
The differences between the versions were elaborated in detail in Chapter 7. Based
on the NIZK implementation the functional requirements F10 and F10▷1 are evaluated.
The last part of the performance evaluation focuses on the performance measurement
of the privacy-preſervi♪g remote atteſtatio♪ protocol. The performance is measured
in ms (execution time) (F10, F10▷2). The core concept of this work is to combine the
traditional binary attestation with the privacy-enhancing technology (non-interactive
zero-knowledge proofs) while preserving privacy and gain advantages. Therefore, the
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processing time/execution time of a whole attestation process will be measured. Next,
the processing time of the attester and the veriĄer will be individually assessed. Af-
terwards, the individually measured values will be added together and then the result
will be reduced from the execution time of the whole attestation process to calculate
the communication time. These measurements represent the resource consumption of
the PoC on restricted devices (F10). Therefore, this work uses two hardware devices
(presented in the upcoming subsections). Besides, each part of the evaluation process
will be executed on different test setups and different devices.

Experiment Setup

The experiment setup is known as the test environment for the PPRA protocol and the
NIZK functions. The experiment setup is used for measuring the CPU cycles and the
execution time. Subsequently, the results of the evaluation of the test environment are
recorded and compared with each other.

This work provides four versions of the PPRA protocol. The four versions were introduced
in Chapter 7. The reason for the existence of four versions is, because of the limitation of
the hardware TPM. The InĄneon Optiga™ SLB 9670 TPM 2.0 which is attached on the
Raspberry Pi 3 and does only support the hashing algorithm from SHA-1 to SHA-256
⟦59⟧. In Chapter 7 this work mentioned that due to the limitation of the hardware the
template haſh needs to be rehashed with SHA-512 or concatenated to generate a uniform
value in the range of the prime group order of the Ed25519 (prime group oder is the
same as in Curve25519). This version is called SHA-256 and where the concatenation
approach is used, is known as SHA-256 memcpy see Table 8.1.
Next, the version SHA-256̇SHA-512 uses the TPM 2.0 hardware attached on the
Raspberry Pi 3. In this version the PCR↓exte♪d function of the TPM uses SHA-256
algorithm and the rest of the hashes such as the Ąle hash and template haſh use SHA-512.
The last version is SHA-512, which uses SHA-512 algorithm everywhere, but it has a
limitation in PCR↓Exte♪d since the event hash does only provide the size of 32 bytes
due to the curve size of Ed25519. Hence, the PCR↓Exte♪d in the SHA-512 version needs
data with the size of 64 bytes. The option is to either concatenate the event hash twice to
Ąll the 512 bits or Ąll the last half of the bits with zeros. Otherwise, the PPRA protocol
will fail in the veriĄcation process, since if the rest of the bits are not sampled it will be
randomly Ąlled.

Besides, the four implementation versions exist to see how the resource consumption
affects different systems/architectures (F10). These four versions are listed in Table 8.1.
Moreover, Table 8.1 illustrates in each row the experiment setup. The column Co♪♪ectio♪
represents if the connection is established locally or remotely between attester and
veriĄer. Local connection means the device has both roles of the attester and the veriĄer.
Remote means the role of attester and veriĄer are on different devices (see Table 8.1).
Furthermore, the TPM columns illustrate if the test environment uses a hardware TPM
or a software TPM. ſwTPM2.0 is a software TPM, which emulates all the functions of a
real TPM and even provides more hashing algorithms such as SHA-512. The software
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Attester VeriĄer TPM Connection Version
Docker Docker swTPM2.0 Remote SHA-256
Docker Docker swTPM2.0 Remote SHA-256 memcpy
Docker Docker swTPM2.0 Remote SHA-512
Docker Docker swTPM2.0 Remote SHA-256̇SHA-512
RPI3 RPI3 InĄneon SLB9670 TPM2.0 Local SHA-256
RPI3 Lenovo W540 InĄneon SLB9670 TPM2.0 Remote SHA-256
RPI3 RPI3 InĄneon SLB9670 TPM2.0 Local SHA-256 memcpy
RPI3 Lenovo W540 InĄneon SLB9670 TPM2.0 Remote SHA-256 memcpy
RPI3 RPI3 InĄneon SLB9670 TPM2.0 Local SHA-256̇SHA-512
RPI3 Lenovo W540 InĄneon SLB9670 TPM2.0 Remote SHA-256̇SHA-512

Table 8.1: Evaluation environments.

Device Arch CPU RAM
Raspberry Pi 3 Model B V1.2 arm32 4 x ARM Cortex-A53 @1.2 GHz 1 GB

Lenovo W540 x86 4 x Intel i7-4700MQ CPU @ 2.40GHz 16 GB

Table 8.2: Devices used for the evaluation.

TPM provides the capability of integrating it into a virtualized environment such as
Docker ⟦2⟧. I♪ˇ♪eo♪ Optiga™ SLB 9670 TPM 2.0 is a hardware TPM, which supports
the hashing algorithms SHA-1 to SHA-256 ⟦59⟧. Next, the atteſter a♪d veriˇer columns
deĄne which device takes the role of the attester and veriĄer. The Docker container will
be two different instances, and the connection between them is established through a
Docker instanced network.

Devices The previous subsection explained the experiment setup and listed devices
that are used for having the role of the attester or veriĄer. This subsection lists all
the devices used in this work to evaluate each part of the performance evaluation (see
Section 8.2.2). For this work, a Raspberry Pi 3 Model B V1.2 (RPI3) is used to emulate
an embedded system. The major role of the RPI3 is to be the attester. The RPI3 needs
a hardware TPM, therefore this work uses the InĄneon Optiga™ SLB 9670 TPM 2.0
which is attached on the GPIO ports of the RPI3. Further, the RPI3 will be also playing
the veriĄer for the local test environment. Moreover, the Lenovo ThinkPad W540 has
the role of the veriĄer, for remote-based testing. The RPI3 is running a Raspberry Pi
OS Lite as operating system and the Lenovo ThinkPad W540 is running Arch Linux.
Further, on the Lenovo ThinkPad W540 the Docker environment is conĄgured for the
Docker-based test environment. Table 8.2 illustrates the detailed information about these
devices to retrace the experiments and their results.
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CPU Cycle & Execution Time Measurement Implementation

This subsection continues with the explicit implementation for measuring the CPU cycles
and execution time. Further, it will explain the code snippets which were used to retrieve
the measurements. The reason for the detailed explanation of the implementation is to
provide reproducibility of the performance measurement results.

CPU Cycle For the Intel processor, the rdtsc and rtscp instructions were used to get
the CPU cycles of a function. The rdtsc and rtcsp stand for read time stamp counter
and processor ⟦51⟧. The Listing 8.1 illustrates a few assembler instructions in the C
function for measuring the CPU cycle. The rdtſc instruction loads the high order bits
in to edx and the low order into eax ⟦51⟧. The assembler instructions will be executed
on a 64-bit Intel architecture. Therefore, the rdtſc will load the high order bits into rdx
and the low order bits into rax. The instruction is used to read the time stamp from
the register. Next, Listing 8.1 on line 4 shows an invocation of the CPUID instruction,
which is necessary as a protection against the out-of-order execution ⟦51⟧. Therefore, the
CPUID instruction will be invoked once before the rdtſc instruction ( Listing 8.1) and
once after the rdtſcp instruction ( Listing 8.2).

1 static inline uint64_t cpu_clock_ticks_start(){
2 uint32_t lo, hi;
3 __asm__ __volatile__("CPUID\n\t"
4 "RDTSC\n\t"
5 "mov %%edx, %0\n\t"
6 "mov %%eax, %1\n\t"
7 : "=r"(hi), "=r"(lo)::"%rax", "%rbx", "%rcx", "%rdx");
8 return (uint64_t)hi << 32 | lo;
9 }

Listing 8.1: CPU Cycle count start for Intel Arch ⟦15, 51⟧.

Listing 8.2 is nearly the same as Listing 8.1. The difference lies in the different instruction
invocation, rdtſcp. The rdtſcp reads the timestamp from the register for the second time.
Further, the rdtſc instruction guarantees that all the C code (instructions) which need to
be measured will be called, before the instruction itself will be executed ⟦51⟧.

1 static inline uint64_t cpu_clock_ticks_end(){
2 uint32_t lo, hi;
3 __asm__ __volatile__("RDTSCP\n\t"
4 "mov %%edx, %0\n\t"
5 "mov %%eax, %1\n\t"
6 "CPUID\n\t"
7 : "=r"(hi), "=r"(lo)::"%rax", "%rbx", "%rcx", "%rdx");
8 return (uint64_t)hi << 32 | lo;
9 }

Listing 8.2: CPU Cycle count end for Intel Arch ⟦15, 51⟧.
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Listing 8.1 and Listing 8.2 bit shifts and bitwise or the high order value, and then it
will be stored into a local variable. Listing 8.3 illustrates a deˇ♪e operation where the
differences between the values from Listing 8.1 and Listing 8.2 are calculated. Further,
the block i♪put is the C code block, which needs to be measured.

1 #define CYCLES_DURING(result, block)
2 do {
3 uint64_t __begin = cpu_clock_ticks_start();
4 do block while(0);
5 *result = cpu_clock_ticks_end() - __begin;
6 } while(0);

Listing 8.3: Calculating the CPU Cycle of a function/block ⟦15⟧.

On the one hand, the Intel processor needs the CPUID in the assembler code, due to the
reason of the out-of-order corruption. On the other hand, the ARM processor does not
need it, but it needs an extra kernel module to enable the CPU counter for the user space.
By default, the user space C code does not have access to the CPU Counter. Therefore,
a kernel module was written and loaded into the system to measure the CPU cycle of
the function on the RPI3. Listing 8.4 is an example code for enabling the cycle counter
of the ARM architecture on a RPI3 ⟦24, 44⟧. The function e♪able↓ccr enables the cycle
counter. Next, on each CPU, the function cycle counter register will be enabled. Then
the module will be compiled as a kernel module and loaded into the system.

1 #include <linux/module.h>
2 #include <linux/kernel.h>
3
4 void enable_ccr(void *info) {
5 // Set the User Enable register, bit 0
6 asm volatile ("mcr p15, 0, %0, c9, c14, 0" :: "r" (1));
7 // Enable all counter
8 asm volatile ("MCR p15, 0, %0, c9, c12, 1\t\n" :: "r"(0x80000000)

);
9 }

10
11 int init_module(void) {
12 // Each cpu has its own set of registers
13 on_each_cpu(enable_ccr,NULL,0);
14 printk (KERN_INFO "Userspace access to CCR enabled\n");
15 return 0;
16 }

Listing 8.4: ARM Kernel Module for CPU Counter enable ⟦24, 44⟧.

After loading the module into the system, the assembler code needs to be adapted since
it is a different CPU architecture than the Intel processor. The instruction mrc is used
to get the cycle counter. Next, in Listing 8.3 the methods were swapped out with the
ARM function (see Listing 8.5).
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1 static inline unsigned long cpu_clock_ticks_rasp(){
2 uint32_t val;
3 __asm__ __volatile__("mrc p15, 0, %0, c15, c13, 0" : "=r"(val))

;
4 return val;
5 }

Listing 8.5: ARM CPU Cycle Measurement ⟦24, 44⟧.

This approach was used to get the CPU cycle measurement results of both CPU archi-
tectures for the signing and veriĄcation process.

Execution Time The execution time was measured with time.h library, which is a
standard library in C. The measurement results of the execution time returns the time of
the wall clock. Since this work wants to know how long it takes for the whole attestation
process. This block of code can be used everywhere in the project from measuring speciĄc
functions up to measuring the whole attestation process. Listing 8.6 visualizes that a
start and end timer needs to be deĄned. After executing the code the difference between
the end and start timer is calculated to get elapsed time in milliseconds.

1 // Start measuring time
2 struct timespec begin, end;
3 clock_gettime(CLOCK_REALTIME, &begin);
4
5 /*Function or Code Block to be measured*/
6
7 // Stop measuring time and calculate the elapsed time
8 clock_gettime(CLOCK_REALTIME, &end);
9 long seconds = end.tv_sec - begin.tv_sec;

10 long nanoseconds = end.tv_nsec -begin.tv_nsec;
11 //returns time in ms
12 double elapsed = seconds*1000+nanoseconds/1e6;

Listing 8.6: Measuring Execution time ⟦15⟧.

Performance Measurements of NIZK Implementation

The following section illustrates the measurements for the signing and veriĄcation process
of the non-interactive zero-knowledge proof. Both processes were measured on two
different CPU architectures as described in Section 8.2.2. Next, each architecture
measurement will be described individually and then compared with each other. One
measurement unit is the CPU cycles and the other one is the execution time in ns
or ms. Here, the functional requirements F3 is measured how long it takes to blind
the measurement (NIZK signing operation) and how many CPU cycles it needs on
two different devices. Further, the NIZK signing and veriĄcation are considered as
cryptographic operation. Therefore, this subsection executes the operation on multiple
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Figure 8.1: CPU cycle measurement of the NIZK signing and verifying process (Intel).

measurements to see, whether resource consumption is nearly the same. Moreover,
the measurement is done on different CPU architectures, where the ARM architecture
represents resource constraint devices (F10). In the end of this subsection the outcome of
the results are discussed.

Measurements on Intel CPU First, the measurements were taken from the CPU
cycle on the Intel processor to see the impact of the NIZK signing and veriĄcation
process. Figure 8.1 visualizes the measurement of the CPU cycles, which deĄnes how
many instructions are necessary for the signing and veriĄcation process. Next, it is visible
for the Ąrst binary it needs more instruction, due to the reason of the initialization of the
Libsodium library. The initialization process increases the CPU cycles. As the developer
of the Libsodium library mentioned the init process of the library can lead to staging
on the Linux systems ⟦23⟧. Further, it is visible that the verifying process needs more
instructions than the signing process. This induces that the veriĄcation of a signature
needs more group operations on the elliptic curve than the signing process, despite the
signing operation needs more scalar arithmetic. For scalar arithmetic, there does not exist
extra cost for CPU cycles as illustrated in Figure 8.1. The bar chart tries to level off, but
for some binaries, it stands out, however not extremely as in the beginning. Following,
results of the execution time measurements are presented. Figure 8.2 represents for 100
different binaries how long each of them took for the signing and veriĄcation the process
of the NIZK. Moreover, Figure 8.2 shows, that only the signing process needs more
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Figure 8.2: Execution time measurement of the NIZK signing and verifying process
(Intel).

execution time at the beginning. Nonetheless, the veriĄcation process does have a peak
at the beginning. The peak at the beginning indicates the initialization process of the
Libsodium library. Afterward, the measurement results of the different binary executions
are nearly the same.

Measurements on ARM Next, this paragraph analyzes how long the NIZK takes for
the signing and veriĄcation on the ARM architecture. Further, measurements were taken
from the CPU cycle on the ARM processor to see the impact of the NIZK signing and
veriĄcation. Figure 8.3 illustrates the behavior of the NIZK implementation on the ARM
architecture. The ARM processor needs more instructions than the Intel processor and
has the same peak at the beginning, where it states to initialize the Libsodium library.
Next, the execution time of the NIZK signing and veriĄcation process are measured in
nanoseconds. It is clearly visible in Figure 8.4 it needs for the Ąrst seven binaries more
execution time, and then it evens out.

Comparisons of Architectures and Versions This paragraph continues with the
comparison between the architectures and versions of the NIZK implementation. Fig-
ure 8.5 plots a bar chart which illustrates the CPU cycle average measurement of 250
executions of each version and architecture. This chart should give a clear understanding,
how much difference exists between the different versions. The previous charts illustrated
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Figure 8.3: CPU cycle measurement of the NIZK signing and verifying process (ARM).

the differences based on CPU cycle measurements. Furthermore, the following Figure 8.6
visualizes the differences based on the execution time. Figure 8.6 visualizes the average
execution time of the different versions and architecture. The y-axis illustrates the time
of how long it took for each version. The x-axis represents the different versions of the
NIZK implementation.

In the previous paragraphs the performance of the NIZK signing and veriĄcation were
measured. The performance measurements illustrate the CPU cycles and execution
time for a speciĄc number of executions with different measurements (binaries) (F10▷1).
While measuring the performance on the Intel architecture, the E♪ha♪ced I♪tel Speed-
StepőTech♪ology a♪d Hyper-Threadi♪g Tech♪ology were disabled to give the ARM archi-
tecture a fair competition. By disabling these features of the Intel processor, it guarantees
it will not inĆuence the measurements. Figures A.1, A.5 and 8.1 represent the CPU
cycle measurement and each of them show in the Ąrst NIZK signing execution a peak
on the Intel processor. Figures A.3, A.7 and 8.3 of the ARM architecture mimic the
same peak from the Intel measurements for the Ąrst execution in the signing process.
However, on the Intel architecture it is clearly visible the resource consumption on various
measurement is different in the signing process. The variation between each execution is
not enormous, but on Intel architecture it is not constant. The ARM architecture showed
promising results on each implementation version with different binaries (template haſh).
Each of the operation on the template haſh presents each execution utilizes the same
amount of the CPU cycle (F10▷1). The Ąrst peak indicates that the Libsodium library is
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Figure 8.4: Execution time measurement of the NIZK signing and verifying process
(ARM).

Figure 8.5: CPU cycle average measurement of each architecture and version.
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Figure 8.6: Average execution time of each architecture and version.

initialized. Therefore, more instructions are necessary for the Ąrst execution. Although,
Figures A.1, A.3, A.5, A.7, 8.1 and 8.3 represent three different implementations of
the NIZK on Intel and on ARM. These representations were made to see if one of the
implementation versions could be used in a restricted device to reduce the resource
consumption. However, on the ARM architecture there does not exist much difference,
illustrated in Figures A.9 and 8.5. Based on these Ągures, the implementation differences
does not affect the CPU Cycle on both architectures (F10, F10▷1). Although, the version
SHA-256 and SHA-512 need more instructions than the version SHA-256 memcpy on
Intel (Figure 8.5). Due to the concatenation the version SHA-256 memcpy needs less
instructions. In C it is represented as two memcpy instructions. On the other hand, the
rehashing process in version SHA-256 needs more instructions. However, these changes
did not affect any of the measurements, because the results show no enormous differences.
Besides, all the Ągures stated above visualize that the veriĄcation process needs more
CPU cycles than the signing process. The reason is that the veriĄcation process needs
more group operations than signing and this indicates more C instructions. Overall, the
ARM architecture utilizes more CPU cycles than the Intel architecture. The reason is
the performance differences of the used hardware (see Table 8.2).

In the following, this work discusses the measurement results of the execution time of
the NIZK implementation. Figures A.2, A.6 and 8.2 represent similar outcome of the
execution time. On the Intel processor, every Ągure shows at the Ąrst execution a higher
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peak than the following executions. This can be an indication of the Libsodium library
initialization. However, the results of the ARM processor (Figures A.4, A.8 and 8.4)
show a different behavior. The Ąrst Ąve executions take more time. The reason is
that the staging of the Libsodium library took longer than expected. In the end, the
comparison between the architectures and versions of the execution time in Figures A.10
and 8.6 results as expected. The ARM architecture consumes more execution time
due to hardware performance difference. The comparison between the versions of both
architectures illustrate there does not exist an enormous difference. To conclude, the
execution time and CPU cycles give an overview of the NIZK implementation and how it
behaves on different architectures. Furthermore, the ARM architecture should represent
the embedded system domain to visualize how much time and resources the current NIZK
implementation consumes (F10).

Performance Measurements of PPRA in a Hardware Environment

This section represents the measurement results of the PPRA protocol executed on the
hardware-based setup environment (see Section 8.2.2). Further, measurements were
recorded from the CHARRA project. A few modiĄcations were made in the CHARRA
project for the performance measurements. For instance, the key loading process was
adapted as the same as in PPRA protocol. This subsection breaks down the measurement
of the PPRA protocol in various paragraphs. The Ąrst paragraph presents the comparison
between CHARRA and PPRA (F10▷2). The second paragraph presents the measurement
results of the whole attestation procedure (F5). The third paragraph will be providing
the measurement results of the attester side (F4, F8) and the veriĄcation process on
the veriĄer side (F9). The last paragraph will present the measurement results of the
communication process (F6, F7). All results are compared together to see the differences
and limitations which will be analyzed and discussed at the end of this subsection .

Attestation Process The following subsection expresses the execution time of the
request-response communication of the attestation process (F5,F7). The functional
requirement F5 is given, since the PoC implemented the functions for triggering the
remote attestation and verifying the attestation response (see Section 7.3.5). The
implementation of the PoC establishes only one round of communication. The both
parties establishes a socket and the veriĄer sends the request and after receiving the
response it closes the socket (F7). Figure 8.7 compares the attestation process between
CHARRA and PPRA. The difference between the two projects is clearly visible, because
to achieve privacy it consumes more execution time (F10▷2). Figure 8.8 visualizes on the
x-axis all different versions of the PPRA protocol implementation. Moreover, the x-axis
deĄnes four categories of the executions: 50, 100, Mixed, 200. The numbers represent
the amount of the software selection for the attestation process and the mixed category
deĄnes that the software selection is not in order, which should simulate more execution
time on the attester and the veriĄer side. The y-axis expresses the average execution
time. Further, the legend in Figure 8.8 is separated in two categories Ąrst local and
second remote. Local means the attester and veriĄer were on the same hardware device.
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Figure 8.7: Comparison between CHARRA and PPRA on the attestation process.

In this case, it was a RPI3. Remote means the attester and veriĄer were on two different
devices (see Table 8.1).

Attester This subsection speaks for the measurements of the attester side. Figure 8.9
shows the average execution time from the different implementation versions of the
PPRA protocol. The legend, the x-axis, and the y-axis have the same deĄnition as in
Figure 8.8. As expected, the attester side has the same measurement results for the
local and remote evaluation environment, because both uses the same attester device.
Moreover, the measurement result includes the policy check, retrieving the TPM QUOTE
and preparing the response data.

VeriĄer On the veriĄer side, the measurements were taken for generating the attestation
request and for verifying the attestation response, such as the signature, TPM Quote,
nonce, and the NIZK proof from the attester (F9). The functional F9 is fulĄlled, since
the PoC implements on the veriĄer side each veriĄcation step. Therefore, the execution
time measurements were taken. The legend represents two categories. The Ąrst category
local speaks for the local test environment and the second category remote for the remote
connection between two different devices (see Table 8.2). The x-axis of Figure 8.10 lists
all different versions with different amounts of software selections to see how it affects
the hardware setup. Further, the average time is calculated over 100 iterations of each
version. Figure 8.11 illustrates the average time for generating the attestation request.
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Figure 8.8: Comparison between the PPRA versions of the attestation process.

Figure 8.9: Comparing average execution time of different versions on attester side.
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Figure 8.10: Comparing average execution time of different versions on the veriĄcation
process.

The attestation request measurements show how long it takes to Ąll the C struct with
data and convert them into a byte sequence with CBOR (F6).

Communication The following paragraph presents the result for establishing the
connection between attester and veriĄer and for transferring the data between them (F6,
F7). The communication measurements were calculated with the following equation :

communication − attestation process⩾(attestor side+ attestrequest + veriĄcation process⏞ ⏟⏟ ⏞
veriĄer side

)

(8.2)
In the following each parameter used in the stated equation above will be elaborated. The
atteſtatio♪ proceſſ is the measurement of a whole attestation process between attester
and veriĄer, where the veriĄer triggers the attestation request and the attester sends in
return the attestation response which will be veriĄed by the veriĄer. Next, the atteſter
ſide is the measurement of loading the key from the NVRAM, creating the TPM Quote,
preselecting the affiliated entries of the veriĄer from the SML, and establishing the
response data for the veriĄer (F4, F8). The atteſtrequeſt a♪d veriˇcatio♪ proceſſ are
operations on the veriĄer side. These are the measurements for generating the attestation
request and verifying the response from the attester. The equation above shows how
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Figure 8.11: Comparing average execution time of different versions on attestation
creation.

this work calculated the communication execution time based on the previous presented
measurements.

Figure 8.12 is a bar plot which illustrates the different versions with the amount of
software selection on the x-axis. The y-axis represents the average execution time for
the communication of the PPRA protocol. The interesting part in Figure 8.12 is the
local communication establishment takes longer than the remote communication. The
communication measurement contains the socket establishment, TLS handshake (S3),
mutual authentication (S4), and data transfer from both parties (F6).

Figure 8.13 visualizes a stacked bar plot. The legend describes the average execution
time from the attester side (blue), the veriĄer side (attestation request and veriĄcation)
(green and orange), and the communication between both parties (red). The stacked
bar chart expresses which part of the PPRA protocol consumes the most execution time
during an attestation process. The stripes represent the remote communication between
two different devices (see Table 8.1).

Performance Measurements of PPRA in Docker The current subsection de-
scribes the measured results in the Docker test environment. The Docker setup provides
four different versions of the PPRA protocol, because the software TPM is capable of
emulating the hash algorithm SHA-512. Here, the whole remote attestation process in
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Figure 8.12: Comparing average execution time of the different implementation versions
on the communication duration.

Figure 8.13: Comparison between local and remote execution of the PPRA protocol.
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Figure 8.14: Comparing average execution time of attestation process with separation on
each operation.

Docker is presented by one stacked bar chart. Moreover, the bar plot does compare
between the versions. However, there does not exist the category remote or local. The
measurements were taken between two Docker instances, where each simulates a party.
Figure 8.14 visualizes a stacked bar plot. The legend describes the average execution time
from the attester side, veriĄer side (attestation request and veriĄcation), and communi-
cation between both parties. The stacked bar chart expresses which part of the PPRA
protocol consumes most of the execution time during an attestation process. The bar
highlights that the communication process devours most of the time during an attestation
process.

This work not only analyzed the NIZK implementation but also investigated the mea-
surement results of the remote attestation process. The comparison between the adapted
CHARRA project and PPRA protocol show the execution time for the remote atteſtatio♪
proceſſ. Figure 8.7 presents the difference between both projects. The Ągure illustrates
how much execution time must be considered while also providing encrypted commu-
nication, mutual authentication, and preserving privacy (S3, S4, F10▷2). The PPRA
protocol needs nearly 1200 ms longer than CHARRA, to meet all the assumptions of the
security and privacy requirements. Next, the results of the execution time of the whole
remote attestation process shows the expected results that the local environment needs
more time than the remote, because the veriĄer device in the remote test environment
provides better hardware performance than the local veriĄer (Figure 8.8). Further, the
software selection inĆuences the attestation response. It affects the result as expected
by increasing the execution time. The more software selection is made, the more time
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is required for the attestation process (F8). This differing implementation version does
not show extensive differences (F10). The same result pattern goes for the Docker test
environment in Figure A.19. The expected measurement for the average execution time
on the attesterŠs side should not differ in the local and remote environment. Figure 8.9
met the expectation. Because Figure 8.9 visualizes none extensive differences between the
different implementations. This implicates the implementation differences do not have
an enormous impact on the execution time (F10▷1). Further, the measurement results of
the veriĄcation process and attestation request generation on the veriĄer side are stated
in Figures A.25, A.26 and 8.10 (F9). The results visualize an increase in time if the
amount of the software selection increases. Otherwise, all the different implementations
do not show massive differences in the average execution time. This again leads to the
conclusion that the different implementation versions have no impact on the execution
time. The communication time was not measured, it was calculated from the measured
results above. Moreover, the description on how the execution time was calculated for
the communication is stated in Equation (8.2) . The interesting part of the execution
time of the communication is, that the amount of the software selection does not affect
the results ( Figures A.27 and 8.12). The software selection does not increase the average
execution time of the communication. Besides, the local communication consumes more
time than the remote. The reason is that the local communication is slower than remote
due to the communication establishment, handshake, and mutual authentication are
conducted on the RPI3. Due to the reason, the RPI3 takes both roles for the local test
environment which utilizes more resources.

In the end, all the separate measurements were illustrated on stacked bar charts to see
which area in the remote attestation process consumes most of the execution time (F10).
If the area is located, it can be addressed in the future for implementation optimization.
In both Figures 8.13 and 8.14 state that the communication devours most of the execution
time in all test environments and different implementation versions. Therefore, in the
future of this work, the communication needs to be optimized.

8.2.3 Communication Cost

This section explains how the communication costs altered when the classic remote
attestation was transformed to a privacy-preserving remote attestation (F7, F10, F10▷2).
The traditional binary attestation sends the entire SML Ąle over the communication
channel. However, in this work, the whole SML Ąle will not be sent, due to the reason
to preserve the privacy property. Moreover, this subsection proves that the functional
requirement F7 is fulĄlled. During the remote attestation one communication round
(request-response) is established between veriĄer and attester (see Section 6.4).
Within this subsection equations are deĄned, which calculates the communication costs
in each direction. These equations illustrate the trade-off between privacy and resource
consumption (F10▷2).
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Attestation Request

In the traditional remote attestation, the veriĄer sends only the ♪o♪ce and the PCR
ſelectio♪ to the attester. The nonce is used to prevent reply attacks. The size of the nonce
is 24 bytes and the size of the PCR selection depends on how many will be selected. In
the privacy-preserving remote attestation, the veriĄer sends the nonce, the PCR selection,
and in addition the software selection. The software selection contains the Ąlename and
Ąle path. The communication cost increases with each entry in the software selection for
the attestation request. The costs of the attestation request from the veriĄer to attester
can be deĄned by the following equation:

attestationrequest − nonce + pcrSelection + n ∗ (Ąlepath + Ąlename) (8.3)

The n in Equation (8.3) deĄnes the number of entries in the software selection. The Ąle
path and Ąlename are the lengths in bytes and 24 bytes nonce. In the stated PoC in
Chapter 7, the communication increased in the direction from the veriĄer to the attester.

Attestation Response

The traditional remote attestation sends as response from the attester to the veriĄer, the
whole SML, which reveals the entire entries to the veriĄer. Therefore, the PPRA protocol
reveals only the affiliated entries to the veriĄer. However, it increases the communication
overhead, it sends extra information to the veriĄer. This extra information is necessary
for the veriĄer to validate the proof of knowledge. This subsection explains how the
communication costs can be calculated. Further, it deĄnes a condition, if this condition
is met, then the communication costs should be less than the original communication
costs of the traditional remote attestation. Before the equations are explained, Table 8.3
lists the sizes of the parameters in the used equations.

Equation (8.4) shows how the communication costs of the traditional remote attestation
can be calculated. The n in the equation stands for the number of entries in the SML.

comcosts −
n∑︂

i=1
(Ąlehashi + Ąlepathi + pcr + hT (xi)) (8.4)

Equation (8.5) is a part of Equation (8.6). Equation (8.5) calculates the communication
costs of the software selection, which is associated to the veriĄer. The nsubset deĄnes the
amount of entries the veriĄer selected.

subset −
nsubset∑︂

i=1
(pcr + eventhashi + Ąlehashi + Ąlepathi + Ąlenamei + ci + si) (8.5)
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Attestation In-
formation

Size [Bytes]

File path depends on each
entry in SML

Filename depends on each
entry in privacy-
preserving SML

File hash (SHA-
256/SHA-512)

32/64 Bytes

PCR 1 Byte
hT (x) (SHA-
256/SHA-512)

32/64 Bytes

eventhash 32 Bytes
c 64 Bytes
s 32 Bytes

Table 8.3: Parameter sizes in bytes used in the equations.

Equation (8.6) represents the calculation of the communication costs of the privacy-
preserving solution.

comcostṡpp − (8▷5) +
n⩾nsubset∑︂

i=1
(pcr + eventhashi + 2) (8.6)

Next, the conditions in Equation (8.7) and Equation (8.8), deĄnes how large the commu-
nication costs should be for the PPRA protocol to be less than the communication costs
of the traditional remote attestation.

n∑︂
i=1

(Ąlehashi + Ąlepathi) >

nsubset∑︂
i=1

(Ąlehashi + Ąlepathi + Ąlenamei + ci + si) +
n⩾nsubset∑︂

i=1
2 (8.7)

(8▷4) > (8▷6)♣(8▷7) (8.8)

These equations stated above generalize the communication costs between veriĄer and
attester. The Equation (8.3) shows, due to ensuring the privacy property, the veriĄer has
to send a software selection, which increases the communication costs in one direction.
However, this work states a condition in Equation (8.7), which guarantees to reduce the
communication costs from attester to veriĄer. If the condition holds, the costs will be
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less than the traditional RA in one direction. To meet the condition the veriĄer needs to
select a minimal set of software, which will not be the case in the real-world scenario.
The condition will hold in the theory. The reason is that Equations (8.4) and (8.6) show
the difference that PPRA protocol includes more parameters to ensure privacy. The
extra two parameters are c and s . The pair (c↪ s) is necessary for the proof of knowledge.
In conclusion, the communication cost will be higher in the newly designed PPRA than
the traditional RA. These equations were deĄned to illustrate that in the security domain
to achieve optimal resource utilization, privacy is demanding. Hence, if privacy needs to
be ensured then the resource utilization suffers, in case of the work the communication
costs.

8.2.4 Use Cases
This work presented a fully functional proof-of-concept of the PPRA. Further, Chapter 4
listed four real-world use cases. To integrate the PPRA protocol in the private user
domain, the IMA and the TPM need to be integrated into the mobile device. Further,
the Trusted Computing Group (TCG) introduced a mobile architecture, to integrate
a TPM for security mechanisms such as Remote Attestation (RA) ⟦63⟧. Next, the
applications of the mobile devices receive updates or patches. Therefore, the IMA needs
to provide a service, which updates the measurements or the veriĄer has Reference
Integrity Measurements (RIMs) with the updated measurements and RA will fail. If all
the components are given, the PPRA protocol can be integrated and should run in an
environment with restricted access. The use cases health care and cyber-physical systems
need to integrate as stated, a TPM and the IMA service. However, the environment of
cyber-physical systems as well as health care systems, are heterogeneous. Therefore, each
facility needs to integrate a TPM and the Linux IMA and to attest each of the facilities.
Another option would be to extend the PPRA approach to a collective attestation. In
the automotive context, the vehicle should integrate at least Ąve TPMs ⟦41⟧. Each
TPM is assigned in order to preserve the integrity and authenticity of each speciĄc task.
For instance, one TPM is responsible for the autonomous driving task while another
is in charge of the onboard computer and entertainment system. Hence, for each task,
a measurement service needs to be integrated since each task could contain multiple
software components. In the end, if the PPRA protocol is integrated, the vendor for the
entertainment system attests the entire operational state of the vehicle without gaining
the information about the other running software on the vehicle. Further, if the Ąrmware
of multiple electronic control units needs to be attested, then a collective approach is
necessary. This collective approach aggregates all of electronic control unit measurements
and anchors them into the TPM. Thereby, the PPRA protocol can be integrated into the
vehicular environment. In conclusion, each of the use cases needs a TPM integrated into
their individual devices or infrastructure. Next, a trusted boot process and the IMA needs
to be ensured. This work showed that the privacy-preserving remote attestation protocol
is a generic approach that can be applied in varying sectors if all the requirements in
Chapter 5 are met.
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CHAPTER 9
Conclusion and Future Work

This thesis addressed the privacy deĄciency of binary attestation by designing a Privacy-
Preserving Remote Attestation (PPRA) protocol. In addition, this work realized proof-
of-concept based on the design and documented the development of thePPRA protocol.
Further, this work conducted a novel analysis based on the requirements analysis and
discussed security, privacy, and the performance results of PPRA protocol.

In Chapter 1 it was found that in binary attestation exists an open challenge of preserving
privacy. Hence, this work designed an approach, which resolves the open challenge.
Chapter 1 elaborated the motivation behind this thesis and the problem statement, why
this research is conducted. Moreover, this work aimed to contribute research results for
the Ąrst two research questions.

Chapter 2 deĄned the fundamentals, to understand the design approach of the PPRA.
The chapter explained the concept of the trusted boot and remote attestation process,
where these two components are an integral part of the remote attestation procedure.
Further, the basics of abstract algebra were elaborated to follow the explanation of the
elliptic curve cryptography and the Schnorr signature scheme.

Chapter 3 described the related work in terms of privacy-preserving remote attestation.
Further, it stated the difference between property-based attestation and binary attesta-
tion. Additionally, the chapter elaborated the drawbacks of the property-based remote
attestation and why binary attestation provides a better advantage in terms of remote
attestation.

However, the open challenge in binary attestation is privacy, which was resolved with this
thesis. To have a broad understanding on how and where the remote attestation procedure
could be applied in real-world, Chapter 4 introduced four use cases. The chapter was
introduced to give an overview while applying the traditional remote attestation, where
privacy is not given. Therefore, a design has to be conceptualized.
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To establish the PPRA approach, a requirements analysis was done. Hence, Chapter 5
listed and described the functional, security and privacy requirements to design the PPRA
protocol. These requirements were derived from the use cases in Chapter 4. Chapter 6
presented based on the requirments in Chapter 5 the PPRA approach. First, Chapter 6
illustrated the general idea of the PPRA protocol. Afterwards it elaborated in-depth
the adaptions of the traditional remote attestation to ensure privacy. Additionally, the
chapter explained how the Schnorr signature was adapted to be advantageous to the
design of the PPRA protocol.

This work provided a proof-of-concept of the design in Chapter 7. During the research on
how to realize the theory to an actual prototype, this work was confronted by problems.
These were explained and the solution was given as well. For instance, the elliptic curve
analysis found out that the Curve25519 cannot be directly applied for the non-interactive
zero-knowledge proof. Therefore, this work used the Ristretto technique, which resolved
the issue. Furthermore, the architecture design was introduced for the implementation
of the PPRA protocol. The algorithms of the Non-Interactive Zero-Knowledge (NIZK)
implementation were explained and statistical distance analysis were done in terms of the
modulo operation. In addition, the work listed different versions of the implementation
to analyze the performance differences.

After, the implementation of the Proof-of-Concept (PoC), Chapter 8 evaluated the PPRA
approach based on the functional, security and privacy requirements. Further, this chapter
evaluated if the requirements were fulĄlled and how. Following, the performance of the
PPRA approach was measured, based on the functional requirement. The performance
measurements were done to illustrate the resource consumption of the approach on
restricted devices (i. e. Raspberry Pi 3 Model B V1.2 (RPI3)). During the evaluation
of the privacy and security requirements, this work found out that the design of a
privacy-preserving remote attestation with symmetric cryptographic primitive would
lead to an over-engineered protocol. Therefore, this work introduced the design with
asymmetric cryptographic primitives by applying a non-interactive zero-knowledge proof
known as Schnorr signature. Besides, the outcome of the evaluation was that all the
requirements were fulĄlled based on the design of the PPRA protocol and the PoC.

Finally, Chapter 8 discussed the achieved privacy and security. The achievements were
argued, based on - the elliptic curve operations, the properties of NIZK and the Trusted
Platform Module (TPM). Moreover, the performance evaluation point out the most
resource consumption in the PoC is located during the communication between veriĄer
and attester. In the end, the chapter described how feasible the designed PPRA protocol
is to be integrated into the use cases from Chapter 4.

Overall, this thesis provided a solution that addresses one of the open challenges in
binary attestation, while merging the traditional Remote Attestation (RA) with a privacy-
enhancing technology. Further, this contribution should be a motivation to the research
society in the remote attestation.

86



Future Work

This thesis presented how to resolve the privacy problem in binary attestation. Further,
this work should be considered as a foundation for future works and follow-up projects.

Implementation Optimization As stated in Chapter 8 the communication between
attester and veriĄer consumes most of the execution time. Therefore, a future optimization
task is to reduce the execution time. The suggestion for improving the optimization
is by switching out the mbedTLS library with ♪oiſe-c library. The ♪oiſe-c library is
an implementation of the Noise protocol in C ⟦53⟧. The Noise protocol is a framework,
where the developers can implement cryptographic protocols based on Diffie-Hellman
key agreement. Further, it would be interesting to see if the ♪oiſe-c can be used in the
embedded systems domain. The authors of the Noise Protocol Framework compared
their concept with TLS 1.2. The Ąndings are ⟦52⟧:

Ţ Noise protocol does not reveal the identities during the handshake since the hand-
shake is encrypted except for the ephemeral public key.

Ţ Noise protocol does only need one round trip before the client sends data. However,
the TLS 1.2 deĄnes 2 rounds.

Ţ If the ephemeral ECDH is used in TLS 1.2, signatures are required. Nevertheless,
the Noise protocol does not require signatures, since it relies only on ECDH.

All these Ąndings illustrate the beneĄt of the Noise protocol. Further, it reduces the
bandwidth, and it is stated to be a robust protocol. Therefore, it is a follow-up project
to see the evaluation, based on the Noise protocol, if it will reduce the execution time.

Besides, the implementation optimization, the communication costs can be reduced as
well by removing the Ąlename from the Equations (8.3), (8.5) and (8.7). By removing
the Ąlename, the policy check needs to be changed. The change is to compare the Ąle
path instead of the Ąlenames since the Ąle path contains the basename. In this work, the
Ąlename was considered for simpliĄcation. Considering the scope of this work was if it
was possible to implement a non-interactive zero-knowledge proof while guaranteeing the
integrity, authenticity, and privacy of a systems operational state.

Another suggestion is to change the policy check, in Figure 7.7. It can be changed by
integrating the policy into the veriĄerŠs certiĄcate. For instance, if the certiĄcate is issued
for the veriĄer it integrates the affiliated binaries/software components. In the current
solution the mbedTLS does not provide such an option, but in OpenSSL. OpenSSL allows
to abuse the OID section in the certiĄcate to put customized information such as the
checklist for the affiliated binaries ⟦16, 35⟧. Therefore, the attester does not need to have
local policy Ąles to check, instead it extracts the information from the certiĄcate and
cross-checks with the received software selection ⟦35⟧.
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IMA An important future work is to integrate this work from the user space into
the kernel space . Moreover, if the project is integrated into the kernel space it needs
to be uniĄed with Integrity Measurement Architecture (IMA) as a new operation for
maintaining privacy. However, the IMA needs to be upgraded in the future as well from
SHA-1 to SHA-256/SHA-512 (collision resistant hash algorithms). Thus, the PPRA
protocol needs to be less adapted. The interesting parts will be the performance evaluation
in the kernel space as well as the upcoming hurdles of integrating the project into the
kernel space and merging it with IMA.

Collective Attestation The collective attestation is an attestation method, in a
network, where it collects from every device (in the network) the attestation and sends
the collection to the veriĄer. The veriĄer veriĄes the received attestation from the whole
network. The traditional attestation scheme is one attester and one or multiple veriĄers.
The collective attestation is if the veriĄer needs to attest multiple devices in one network.
Therefore, in the traditional scheme, the veriĄer needs to do a request-response with
each device in the network. However, the collective attestation scheme collects all the
attestations and one device sends the aggregated attestation response to the veriĄer.
Here, it would be interesting as future work, if the current design of this work is capable
of being integrated into an existing work of the collective attestation or if it can be
extended to a collective approach ⟦40⟧. The future work should not only be preserving
the existing privacy property, it needs to provide conĄdentiality as well. If conĄdentiality
is given, then the veriĄer will be unable to see the blueprint of the network or the IT
infrastructure. The survey about remote attestation states ⟦57⟧, the open challenges in
remote attestation are privacy and conĄdentiality.

Property-based Attestation The property-based attestation was explained in Chap-
ter 3. If a concrete implementation of property-based attestation exists which implements
the proof of membership, it would be interesting to compare the performance differences
with this work.

Here, this work brieĆy answers the third research question in Chapter 1. The major two
research questions in Chapter 1 were answered by Chapters 6 and 7. The third research
question is future work because with the current PPRA approach the question cannot be
addressed. However, in the following paragraph, this work brieĆy argued the reason and
provided solutions on how the current approach can be extended.

RQ3: How could such an approach be used in a scenario with multiple ver-
iĄers in order to prove to an interested third party that all entries of the
Stored Measurement Log (SML) are veriĄed?

Answer The answer is, with the current design and implementation, not all veriĄers
may prove to the interested third party that all entries of the SML are valid. Due to
this reason, that each veriĄer needs to send the non-interactive zero-knowledge proof
with the template hash (see Chapter 6). Therefore, the interested third party will know
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all the running software on the attesterŠs system. Moreover, by knowing the template
hashes the interested third party has the power to execute the attack vector described in
Section 6.1 and the privacy property is not preserved anymore.

Another option to convince the interested third party is that each veriĄer sends only the
TPM signature, the column eve♪t haſh of the SML and the TPM Quote. The interested
third party veriĄes all the received data from each veriĄer and only if all of them are valid
then the whole SML is valid. Here, the beneĄt is that the interested third party does not
know what software is running on the attester side, but it is convinced that the integrity
and authenticity are intact. The drawback is that the interested third party needs to
verify every received data from multiple veriĄers, which could take some time. This
option forces the interested third party to trust the veriĄers, whether they are sending
accurate information.

Another approach is to extend the current work on the veriĄer side, where all veriĄer
initiates an interactive zero-knowledge proof of their veriĄcation result. The idea was taken
from Chatzigiannakis et al. ⟦17⟧, where they introduced an interactive zero-knowledge
proof for a single bit. The concept is to encode the veriĄcation result of the veriĄer as
a bit, zero for failed attestation and one for successful attestation. The beneĄt is the
third party knows if all the interactive zero-knowledge proofs are valid then the attester
is trustworthy. However, the drawbacks are the veriĄer side has extra communication
overhead and there is no guarantee if all the subsets of all veriĄers cover all entries of the
SML.

The last idea is to use a Public Key Infrastructure (PKI). The PKI which issues the
certiĄcate to the veriĄer and the attester should receive the validation result from all
veriĄer. The interested third-party requests from the PKI if all SML entries are valid.
The PKI will cross-check the results of all veriĄers and if and only if all the results are
true then the PKI gives the green light to the interested third party that the entries
of the SML are trustworthy. Here, the drawback is a interested third party (PKI) is
introduced and the concept is dependable on the PKI.

In conclusion, the author of this work thought about useful ideas and suggested them
for the research question. Moreover, for each idea, their drawbacks and beneĄts were
mentioned. Therefore, this question is considered to be a future work to extend the
current work with ideas and implementation to formulate a concrete answer.
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APPENDIX A
Appendix

The appendix provides further plots from the evaluation chapter and C implementation
listings. These plots are for interested readers to see the difference between remote and
local execution of the Privacy-Preserving Remote Attestation (PPRA) protocol. Some
of them are not listed in Chapter 8, although some of them were used to discuss the
evaluation outcome in Chapter 8.

A.1 C Implementation
The listings below demonstrate the accurate implementation with the Libſodium library.
The Listing A.1 illustrates in C the same computation steps of the Algorithm 7.1.

1 int nizksign_eventrecord(eventrecord *rec)
2 {
3 if (sodium_init() == -1)
4 {
5 printf("init is minus one");
6 return 1;
7 }
8
9 uint8_t digest[TPM2_SHA256_DIGEST_SIZE];

10 uint8_t *random = calloc(crypto_core_ristretto255_SCALARBYTES,
sizeof(uint8_t));

11 uint8_t *reduced_digest = calloc(
crypto_core_ristretto255_SCALARBYTES, sizeof(uint8_t));

12 uint8_t *r_h = calloc(crypto_core_ristretto255_SCALARBYTES,
sizeof(uint8_t));

13 uint8_t *event_hash = calloc(crypto_core_ristretto255_BYTES,
sizeof(uint8_t));

14 uint8_t *v = calloc(crypto_core_ristretto255_SCALARBYTES, sizeof(
uint8_t));
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15 uint8_t *g_i = calloc(crypto_core_ristretto255_BYTES, sizeof(
uint8_t));

16 uint8_t *t_i = calloc(crypto_core_ristretto255_BYTES, sizeof(
uint8_t));

17 uint8_t *reduced_c = calloc(crypto_core_ristretto255_SCALARBYTES,
sizeof(uint8_t));

18 uint8_t *r_c = calloc(crypto_core_ristretto255_SCALARBYTES,
sizeof(uint8_t));

19 uint8_t *s = calloc(crypto_core_ristretto255_SCALARBYTES, sizeof(
uint8_t));

20
21 /*Templatehash*/
22 //templatehash(rec->event.e[0].file_path, digest);
23 templatehashevent(&rec->event.e[0], digest);
24 /*random scalar r generating*/
25 crypto_core_ristretto255_scalar_random(random);
26
27
28 unsigned char c1[crypto_generichash_BYTES_MAX];
29 //memcpy(c1,digest,TPM2_SHA256_DIGEST_SIZE);
30 //memcpy(&c1[TPM2_SHA256_DIGEST_SIZE],digest,

TPM2_SHA256_DIGEST_SIZE);
31
32
33 crypto_hash_sha512_state sha512state;
34
35 crypto_hash_sha512_init(&sha512state);
36 crypto_hash_sha512_update(&sha512state, digest,

TPM2_SHA256_DIGEST_SIZE);
37 crypto_hash_sha512_final(&sha512state, c1);
38
39 crypto_core_ristretto255_scalar_reduce(reduced_digest, c1);
40
41
42 /*r * h_t(x)*/
43 crypto_core_ristretto255_scalar_mul(r_h, random, reduced_digest);
44
45 if (crypto_scalarmult_ristretto255_base(event_hash, r_h) != 0)
46 {
47 printf("base mult for nd not okay");
48 }
49
50 if (crypto_core_ristretto255_is_valid_point(event_hash) != 1)
51 {
52 printf("ND is not valid");
53 }
54
55
56 rec->event_hash = calloc(crypto_core_ristretto255_BYTES, sizeof(
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uint8_t));
57 memcpy(rec->event_hash, event_hash,

crypto_core_ristretto255_BYTES);
58
59
60 /*END OF ND-HASH*/
61
62 /*Generator */
63 crypto_scalarmult_ristretto255_base(g_i, reduced_digest);
64 if (crypto_core_ristretto255_is_valid_point(g_i) != 1)
65 {
66 printf("gi is not valid");
67 }
68
69
70 /*t_i*/
71 //randombytes_buf(v, sizeof v);
72 crypto_core_ristretto255_scalar_random(v);
73 if(crypto_scalarmult_ristretto255(t_i, v, g_i) == -1) printf("not

valid t_i");
74 if (crypto_core_ristretto255_is_valid_point(t_i) != 1)
75 {
76 printf("t_i is not valid");
77 }
78
79
80 /*c_i*/
81 uint8_t c[crypto_generichash_BYTES_MAX];
82 crypto_generichash_state state;
83
84 crypto_generichash_init(&state, NULL, 0, sizeof c);
85
86 crypto_generichash_update(&state, g_i,

crypto_core_ristretto255_BYTES);
87 crypto_generichash_update(&state, t_i,

crypto_core_ristretto255_BYTES);
88 crypto_generichash_update(&state, event_hash,

crypto_core_ristretto255_BYTES);
89 //crypto_generichash_update(&state, nonce, crypto_box_NONCEBYTES)

;
90
91 crypto_generichash_final(&state, c, sizeof c);
92 rec->c = calloc(crypto_generichash_BYTES_MAX, sizeof(uint8_t));
93 memcpy(rec->c, c, crypto_generichash_BYTES_MAX);
94
95 /*s = v -r*c */
96 crypto_core_ristretto255_scalar_reduce(reduced_c, c);
97 crypto_core_ristretto255_scalar_mul(r_c, random, reduced_c); // (

a*c)mod group order
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98
99 crypto_core_ristretto255_scalar_sub(s, v, r_c); // (v-z)mod group

order
100
101
102 rec->s = calloc(crypto_core_ristretto255_SCALARBYTES, sizeof(

uint8_t));
103 memcpy(rec->s, s, crypto_core_ristretto255_SCALARBYTES);
104
105 free(random);
106 free(reduced_digest);
107 free(r_h);
108 free(event_hash);
109 free(v);
110 free(g_i);
111 free(t_i);
112 free(reduced_c);
113 free(r_c);
114 free(s);
115
116 return 0;
117 }

Listing A.1: NIZK signing.

The Listing A.2 illustrates in C the same computation steps of the Algorithm 7.2.

1 bool nizkverify_eventrecord(eventrecord *rec)
2 {
3
4
5 if (sodium_init() == -1)
6 {
7 printf("init is minus one");
8 return 1;
9 }

10 bool verify = false;
11
12 uint8_t digest[TPM2_SHA256_DIGEST_SIZE];
13 uint8_t *reduced_digest = calloc(

crypto_core_ristretto255_SCALARBYTES, sizeof(uint8_t));
14 uint8_t *g_i = calloc(crypto_core_ristretto255_BYTES, sizeof(

uint8_t));
15 uint8_t *g_i_s = calloc(crypto_core_ristretto255_BYTES, sizeof(

uint8_t));
16 uint8_t *event_hash_c = calloc(crypto_core_ristretto255_BYTES,

sizeof(uint8_t));
17 uint8_t *t_i_prime = calloc(crypto_core_ristretto255_BYTES, sizeof(

uint8_t));
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18 uint8_t *reduced_c = calloc(crypto_core_ristretto255_SCALARBYTES,
sizeof(uint8_t));

19
20 /*Templatehash*/ /*Templatehash*/
21
22 templatehashevent(&rec->event.e[0], digest);
23
24
25
26 unsigned char c1[crypto_generichash_BYTES_MAX];
27 //memcpy(c1,digest,TPM2_SHA256_DIGEST_SIZE);
28 //memcpy(&c1[TPM2_SHA256_DIGEST_SIZE],digest,

TPM2_SHA256_DIGEST_SIZE);
29
30 crypto_hash_sha512_state sha512state;
31 crypto_hash_sha512_init(&sha512state);
32 crypto_hash_sha512_update(&sha512state, digest,

TPM2_SHA256_DIGEST_SIZE);
33 crypto_hash_sha512_final(&sha512state, c1);
34
35 crypto_core_ristretto255_scalar_reduce(reduced_digest, c1);
36
37
38 /*Generator */
39 crypto_scalarmult_ristretto255_base(g_i, reduced_digest);
40 if (crypto_core_ristretto255_is_valid_point(g_i) != 1)
41 {
42 printf("gi is not valid");
43 }
44
45 if(crypto_scalarmult_ristretto255(g_i_s, rec->s, g_i) == -1) printf

("not valid g_i_s!");
46 if (crypto_core_ristretto255_is_valid_point(g_i_s) != 1)
47 {
48 printf("gis is not valid");
49 }
50
51
52 crypto_core_ristretto255_scalar_reduce(reduced_c, rec->c);
53 if(crypto_scalarmult_ristretto255(event_hash_c, reduced_c, rec->

event_hash) == -1) printf("not valid event_hash_c");
54 if (crypto_core_ristretto255_is_valid_point(event_hash_c) != 1)
55 {
56 printf("ndc is not valid");
57 }
58
59 if (crypto_core_ristretto255_add(t_i_prime, g_i_s, event_hash_c) !=

0)
60 {
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61 printf("Point addition was not an success!!\n");
62 }
63
64 unsigned char c_prime[crypto_generichash_BYTES_MAX];
65 crypto_generichash_state state;
66
67 crypto_generichash_init(&state, NULL, 0, sizeof c_prime);
68 crypto_generichash_update(&state, g_i,

crypto_core_ristretto255_BYTES);
69 crypto_generichash_update(&state, t_i_prime,

crypto_core_ristretto255_BYTES);
70 crypto_generichash_update(&state, rec->event_hash,

crypto_core_ristretto255_BYTES);
71 crypto_generichash_final(&state, c_prime, sizeof c_prime);
72
73 if (memcmp(rec->c, c_prime, crypto_generichash_BYTES_MAX) == 0)
74 {
75 verify = true;
76
77 }
78
79 free(reduced_digest);
80 free(event_hash_c);
81 free(g_i_s);
82 free(g_i);
83 free(t_i_prime);
84 free(reduced_c);
85
86 return verify;
87 }

Listing A.2: NIZK veriĄcation.

A.2 Measurements of NIZK SHA-256 memcpy Version
The measurements of the NIZK SHA-256 memcpy version are not in Chapter 8, since it
showed the same behavior as the other versions.

A.2.1 Measurement on Intel
The measurements of the CPU cycles and execution time are measured on the Intel
architecture.

CPU Cycles

In Chapter 7 this work explained precisely why three versions of the non-interactive
zero-knowledge process exist. Therefore, the Figure A.1 illustrates how the second
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Figure A.1: CPU cycle measurement of the NIZK signing and verifying process SHA-256
memcpy version (Intel).

version of the Non-Interactive Zero-Knowledge (NIZK) performs on the Intel CPU. In
the beginning, it illustrates the same behavior as in Figure 8.1, which illustrates the
necessity for more instructions due to the library initialization. Further, the bar chart
tries to level off for the different binaries, however some standout but not extremely.
Next, the NIZK SHA-256 memcpy version does need fewer instructions than the other
version. The comparison between the version will be analyzed at the end of the section.

A.2.2 Execution Time
Figure A.2 shows the measurement of the SHA-256 memcpy version of the NIZK. The
comparison between Figure 8.2 and Figure A.2 visualizes that there does not exist much
difference, since the range of the execution time resembles the same range.

A.2.3 Measurement on ARM
This section continues with the NIZK SHA-256 memcpy version of the ARM architecture.

CPU Cycles

The next Figure A.3, shows how many instructions the SHA-256 memcpy version imple-
mentation need. Here it is visible that the measured values are in the same range as in
the previous Figure 8.3. Moreover, it indicates the same behavior at the beginning with
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Figure A.2: Execution time measurement of the NIZK signing and verifying process
sha256 memcpy version (Intel).

the Libsodium library initialization. After the peak, the signing and veriĄcation process
even out on the upcoming executions.

The range of the two versions (Figure 8.3,Figure A.3) on the ARM architecture are the
same, however a minimal difference is visible.

Execution Time

The next Figure A.4 illustrates the execution time of the SHA-256 memcpy version. The
same behavior pattern appears in Figure A.4 as well as in Figure 8.4. This pattern
illustrates the ARM architecture needs for the Ąrst seven binaries more time and after, it
level-offs for the rest of the binaries.

A.3 Measurements of NIZK SHA-512 Version
The measurements of the NIZK SHA-512 version are not in Chapter 8, since it showed
the same behavior as the other versions.

A.3.1 Measurement on Intel
The measurements of the CPU cycles and execution time are measured on the Intel
architecture.
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Figure A.3: CPU cycle measurement of the NIZK signing and verifying process sha256
memcpy version (ARM).

CPU Cycles

Figure A.5 shows at the beginning a peak, which indicates the Libsodium library initial-
ization. The x-axis represents the different execution on different binaries. The y-axis
provides the information on how many instructions are necessary to do the NIZK signing
and veriĄcation process.

Execution Time

Figure A.6 shows the execution time for each iteration with different measurements(binary
measurement) for the NIZK SHA-512 version. The y-axis provides the measurement in
nanoseconds.

A.3.2 Measurement on ARM

This section continues with the NIZK SHA-512 version of the ARM architecture.

CPU Cycles

Figure A.7 shows at the beginning a peek, which indicates the Libsodium library initial-
ization. The x-axis represents the different execution on different binaries. The y-axis
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Figure A.4: Execution time measurement of the NIZK sign and veriĄcation process
memcpy version (ARM).

provides the information on how many instructions are necessary to do the NIZK signing
and veriĄcation process.

Execution Time

Figure A.8 illustrates the execution time for 100 iterations for the signing and veriĄcation
process. It behaves the same as the other versions, the ARM architecture even off the
execution time after 15 iterations.

Comparisons of Architectures and Versions

Figure A.9 compares the three versions of the NIZK implementation. At the beginning
of the signing process, a peak is clearly visible in all three versions which are indicating
the Libsodium library initialization. The legend in Figure A.9 is based on the order of
the appearance of the line charts. Further, all three versions of the NIZK veriĄcation
process on the ARM architecture have some outliners, and after, it evens out.

Figure A.10 represents the behavior over 100 executions and each execution is done with
a different binary based on the execution time.
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Figure A.5: CPU cycle measurement of the NIZK signing and verifying process(Intel).

Figure A.6: Execution time measurement of the NIZK signing and verifying process
(Intel).
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Figure A.7: CPU cycle measurement of the NIZK signing and verifying process(ARM).

Figure A.8: Execution time measurement of the NIZK signing and verifying process
(ARM).
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Figure A.9: Comparison between architecture and versions (CPU cycles).

A.4 Performance Measurements of PPRA in a Hardware
Environment

This section points out the comparison between the CHARRA and PPRA. Further, it
will illustrate the outcomes of the measurement on the attester and veriĄer sides.

A.4.1 Comparison with CHARRA
Figure A.11 is a line chart which expresses the behavior of CHARRA and PPRA on
50 iterations. It concludes that the hardware Trusted Platform Module (TPM) is
inconsistent, while creating a quote it Ćuctuates often. The line charts in Ągure A.12 show
that CHARRA and PPRA have a difference of around 1 ms nearly in every iteration.

Figure A.13 illustrates how long both projects need for the operation TPM↓Quote. The
x-axis represents different executions of CHARRA and PPRA. The y-axis shows the
execution time in ms for each execution in PPRA protocol and CHARRA. Both projects
are in the range between 208 ms and 220 ms for establishing the TPM Quote, but the
measurement gap is not extensive.

The bar plot (Figure A.14) visualizes the comparison between CHARRA and PPRA
for the function loading the key from the NVRAM of the TPM. The x-axis represents
different executions of CHARRA and PPRA. The y-axis shows the execution time in ms
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Figure A.10: Comparison between architecture and version (Execution time).

Figure A.11: Comparsion between CHARRA and PPRA for the TPM Quote operation.

104



A.4. Performance Measurements of PPRA in a Hardware Environment

Figure A.12: Comparsion between CHARRA and PPRA for loading the key from the
TPM.

Figure A.13: Comparison between CHARRA and PPRA on TPM Quote.
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Figure A.14: Comparison between CHARRA and PPRA on loading the key from the
TPM.

for each in PPRA protocol. The measurement shows that PPRA takes less than one ms
than CHARRA for loading the key from the NVRAM.

A.4.2 Attestation Process
Figure A.15 compares all remote versions of the PPRA protocol implementation. This
chart illustrates for the reader how it behaves during 50 iterations. It is visible there
are some outliers. Further, all versions are nearly in the same range of 800 to 1200 ms
after the Ąrst three iterations. Figure A.16 compares the execution time of the SHA-256
memcpy version and SHA-256 version of the PPRA protocol implementation over 50
iterations. Further, it shows the results of the PPRA protocol on a local and remote
connection. The legend shows not only the version it is also indicating the amount of
software selection, which needed to be attested. Figure A.16 compares the execution time
of the mixed version with SHA-256 and SHA-512 of the PPRA protocol implementation
over 50 iterations. Further, it shows the results of the PPRA protocol a local and remote
connection. The legend shows not only the version it is also indicating the amount of
software selection, which needed to be attested. Moreover, the Figure A.16 expresses the
local execution on ARM Architecture needs more execution time than remote connection.
Next, the number of software selections indicates the higher the selection the execution
time will increase. Figure A.18 compares all various versions from PPRA protocol
implementation, which is executed on the Raspberry Pi 3 Model B V1.2 (RPI3), where
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Figure A.15: Comparing all remote versions.

Figure A.16: Comparing execution time between different versions with different software
selections.
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Figure A.17: Comparing all version of the mix version.

the RPI3 simulates both roles of the veriĄer and attester. The line chart visualizes the
linear increase in the execution time in all versions due to the increase in the software
selection. This should be the expected behavior.

A.5 Performance Measurements of PPRA in Docker
This section provides the reader with further evaluation results from the simulation
perspective. These charts were plotted from the measurement results of the docker test
environment.

A.5.1 Attestation Process

Figure A.19 visualizes on the x-axis all different versions of the PPRA protocol imple-
mentation same as in Figure 8.8 except the Docker setup provided the opportunity to
implement one more version. The y-axis illustrates the average execution time for the
whole attestation process between veriĄer and attester. Figure A.20 illustrates on the
x-axis each iteration of an execution. Each iteration represents each version with a
different amount of software selection. In total each execution presents 16 bars. Since
each execution shows 16 bars only the Ąrst ten iterations are shown. Figure A.20 shows
how each of the versions behaves on each execution.

Figure A.21 visualizes the 50 iterations of each execution from the different versions of the
PPRA protocol with a dissimilar amount of software selections. The idea of Figure A.21
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Figure A.18: Comparing all local versions.

Figure A.19: Comparing various versions of the attestation process (Docker).
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Figure A.20: Comparing different versions of the attestation process (Docker).

is to show that the amount of software selection has an impact on the execution time
during the attestation process.

A.5.2 Attester

Figure A.22 illustrates the average time from the attester side for loading the key from
the NVRAM, creating the TPM Quote, establishing the response struct, and convert
into a byte sequence. Figure A.23 provides the same characteristics as Figure A.20. The
only difference is the measurements are taken only on the attester side. The fascinating
part is for the Ąrst execution it takes a little more than other execution. After the second
execution on the x-axis, it is visible that each version is leveling off. Figure A.24 provides
the same characteristics as Ągure A.21. The only difference is the measurements are
taken only on the attester side. The fascinating part is for the Ąrst execution it takes a
little more than other execution. After the second execution on the x-axis, it is visible
that each version is leveling off. Further, the line chart with the 200 software selection
has one outliner, which has a small effect for calculating the average execution time.

A.5.3 VeriĄer

Figure A.25 expresses the measurement for the average execution for verifying the TPMŠs
signature, the nonce, the NIZK, and the TPM Quote. Figure A.26 shows how long on
average the veriĄer takes to create an attestation request.
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Figure A.21: Comparing different versions of the attestation process, illustrated as line
chart (Docker).

Figure A.22: Comparing average execution time of different versions on attester side
(Docker).
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Figure A.23: Comparing different versions on the attester side (Docker).

Figure A.24: Comparing different versions on the attester side, illustrated as line chart
(Docker).
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Figure A.25: Comparing average execution time of the different versions on the veriĄcation
process (Docker).

Figure A.26: Comparing average execution time of the different versions on attestation
creation (Docker).
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Figure A.27: Comparing average execution time of the different versions on communication
duration (Docker).

A.5.4 Communication
The bar plot Figure A.27 shows the average execution time for the communication process
between two parties during the attestation process. Further, the number of software
selections during the attestation process does not affect. The communication measurement
contains the socket establishment, TLS handshake, mutual authentication, and data
transfer from both parties. In the case of the communication time, the Figure A.28 shows
each execution time during 50 iterations between each version of the poof of concept
implementation for 50 and 200 software selection variants. Further, Figure A.28 has a
zigzag pattern, which does not level off. The zigzag pattern could be the reason if the
socket is also listing to other ports.
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Figure A.28: Comparing different versions of the communication duration (Docker).
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