

INSTITUT FÜR ENERGIETECHNIK UND THERMODYNAMIK Institute of Energy Systems and Thermodynamics

Diplomarbeit

Aufbau eines Gleichdruck-Turbinengitters aus Profilen 85B45 und Messung der Abströmung

unter der Leitung von

Ao. Univ.Prof. Dipl.-Ing. Dr. techn. Reinhard Willinger Univ.Ass. Dipl.-Ing. BSc Christoph Öttl

E302 - Institut für Energietechnik und Thermodynamik

Eingereicht an der Fakultät für Maschinenwesen und Betriebswissenschaften

der Technischen Universität Wien

zum Zwecke der Erlangung des akademischen Grades

Diplom-Ingenieur (Dipl.-Ing.)

von

Richard Korthals, MSc, B.Eng Matr.Nr. 01528056 Wien, September 2021

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich meine Diplomarbeit nach den anerkannten Grundsätzen für wissenschaftliche Abhandlungen selbstständig ausgeführt habe und alle verwendeten Hilfsmittel, insbesondere die zugrunde gelegte Literatur genannt habe.

Weiters erkläre ich, dass ich diese Diplomarbeit bisher weder im In- noch im Ausland (einer Beurteilerin / einem Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungsarbeit vorgelegt habe und dass diese Arbeit mit der vom Begutachter beurteilten Arbeit übereinstimmt.

Wien, September 2021

.....

Richard Korthals, MSc, B.Eng

Danksagung

In erster Linie möchte ich mich bei meinem Diplomarbeitsbetreuer Ao. Univ.Prof. Dipl.-Ing. Dr. techn. Reinhard Willinger für die großartige Unterstützung, der vielen Geduld und der Koordination der in dieser Arbeit durchgeführten Messungen herzlich bedanken.

Ebenso danke ich *Univ.Ass. Dipl.-Ing. BSc Christoph Öttl* für die erste Einführung in der Verwendung des Strömungswindkanals.

Ganz besonderen Dank gebührt meinen Freunden und Verwandten, die mich in jeder Lebenslage der Diplomarbeit und im Studium motiviert und mental unterstützt haben.

Kurzfassung

Um bei Turbomaschinen axialer Bauart eine Untersuchung von deren Strömungsproblemen zu gewährleisten, werden im vereinfachten Fall sogenannte Schaufelgitter verwendet. Diese entstehen durch die Abwicklung eines koaxialen Zylinderschnitts durch das Leit- und Laufrad. Am Institut für Energietechnik und Thermodynamik der TU Wien stehen zylindrischer Profile 85B45 eines Gleichdruck-Turbinengitters mit einer Sehnenlänge von 85 mm zur Verfügung.

Im Rahmen dieser Diplomarbeit wird ein Schaufelgitter, bestehend aus 13x85B45 Turbinenschaufeln und zwei Seitenwänden aus Plexiglas konstruiert und gefertigt. Bei Schaufelgitters der Konstruktion des werden strömungstechnische Rahmenbedingungen _ wie das Einhalten eines möglichst geringen Profilverlustbeiwerts - und konstruktive Rahmenbedingungen des verwendeten Schaufelgitterwindkanals berücksichtigt. Das Schaufelgitter wird anschließend an der Messwiege des Windkanals montiert und einschließlich der Messtechnik in Betrieb genommen. Nach der Inbetriebsetzung wird die Abströmung des Schaufelgitters mittels einer pneumatischen Dreilochsonde und einer 1D-Hitzdrahtsonde vermessen und die Auswertungsergebnisse der Abströmung verschiedener Schaufelpositionen miteinander verglichen.

Mithilfe der pneumatischen Dreilochsonde wurde in der Messebene der jeweiligen Schaufelgitterteilungen der lokale statische Druck, Totaldruck, die Abströmungsgeschwindigkeit und der Abströmungswinkel bestimmt. Mit der 1D-Hitzdrahtsonde konnte ebenfalls die lokale Abströmungsgeschwindigkeit und zusätzlich der Turbulenzgrad der Abströmung bestimmt werden.

Zusätzlich wurde die Profilreynoldszahl, die Sondenreynoldszahl der Dreilochsonde, der Profilverlustbeiwert sowie das Axialstromdichteverhältnis (AVDR) des Schaufelgitters bestimmt.

Abstract

In the simplest case, so-called linear cascades are used to investigate flow problems in turbomachinery of the axial type. These arise from the development of a coaxial cylinder section through the guide and impeller. At the Institute for Energy Technology and Thermodynamics at the Vienna University of Technology, cylindrical profiles 85B45 of an impulse turbine with a chord length of 85 mm are available.

As part of this diploma thesis, a cascade consisting of 13x85B45 turbine blades and two side walls made of Plexiglas is designed and manufactured. When designing the cascade, the flow-related framework conditions - such as maintaining the lowest possible profile loss coefficient - and the structural framework conditions of the cascade wind tunnel used are considered. The cascade is then mounted on the measuring cradle of the wind tunnel and put into operation, including the measurement technology. After commissioning, the outflow from the cascade is measured by means of a pneumatic three-hole probe and a 1D hot wire probe, and the results of the outflow evaluation from various vane positions are compared with one another.

With the help of the pneumatic three-hole probe, the local static pressure, total pressure, the outflow velocity and the outflow angle were determined in the measuring plane of the respective cascade divisions. With the 1D hot wire probe, the local outflow velocity and the turbulence intensity of outflow could be determined.

In addition, the profile Reynolds number, the probe Reynolds number of the three-hole probe, the profile loss coefficient and the axial velocity density ratio (AVDR) of the cascade were determined.

Inhaltsverzeichnis

1	Ein	leitu	ing und Aufgabenstellung	1
	1.1	Мо	tivation	2
	1.2	Ab	lauf Diplomarbeit	3
2	Me	thoc	Jik	4
	2.1	En	twicklung Schaufelgitter	4
	2.1	.1	Strömungstechnische Rahmenbedingungen	4
	2.1	.2	Konstruktive Rahmenbedingungen	6
	2.2	Me	essung	7
	2.2	.1	Dreilochsonden-Messung	8
	2.2	.2	Hitzdrahtsonden-Messung	11
	2.3	Au	swertung	12
	2.3	.1	Physikalische Grundlagen und Strömungsgrößen	12
	2.3	.2	Messauswertung Dreilochsonden-Messung	15
	2.3	.3	Messauswertung Hitzdrahtsonden-Messung	18
	2.3	.4	Mittelungsverfahren und AVDR	18
	2.3	.5	Gauß'sche Fehlerfortpflanzung	21
3	Ent	wicl	klung Messaufbau	22
	3.1	Be	schreibung der Versuchseinrichtung	22
	3.1	.1	Beschreibung des Gitterwindkanals	22
	3.1.2		Beschreibung Messystem	23
	3.1.3		Pneumatisches Messsystem	24
	3.1	.4	Hitzdrahtsonden-Messsystem	26
	3.2	Ko	nstruktion des Schaufelgitters	28
	3.2	.1	Schaufelgitterteilung	29
	3.2	.2	Hauptabmessungen Plexiglasrahmen	29
4	Me	ssui	ngen	32
	4.1	Ka	librierung	32
	4.1	.1	Kalibrierung Dreilochsonde	32
	4.1	.2	Kalibrierung Hitzdrahtanemometer	35
	4.2	Du	rchführung der Messungen	36

4.3	I	Messergebnisse	38
5 A	usv	wertung & Diskussion4	1
5.1	I	Dreilochsonden-Messung4	1
5	.1.1	1 Bestimmung lokaler Abströmungsgrößen 4	1
5	.1.2	2 Kenngrößen 4	-5
5	.1.3	3 Gemittelte Größen und AVDR 4	6
5	.1.4	4 Gradientenkorrektur 5	50
5	.1.5	5 Auswertungsergebnisse5	53
5.2	I	Hitzdrahtsonden-Messung5	54
5	.2.1	1 Bestimmung lokaler Abströmungsgrößen 5	54
5	.2.2	2 Gemittelte Abströmungsgeschwindigkeit 5	6
5	.2.3	3 Auswertungsergebnisse5	57
5.3	١	Vergleich Geschwindigkeitsmessung Dreilochsonde und Hitzdrahtsonde 5	58
6 Z	lusa	ammenfassung und Ausblick6	30
Literaturverzeichnis			
A Zeichnungen64			
B Messwerte			

Nomenklatur

а	Kanalbreite der Schaufeln	[m]
а	Abstand zwischen den zwei seitlichen Dreiloch-Sondenbohrungen	[m]
α_1	Metallwinkel der Zuströmung	[°]
α_2	Metallwinkel der Abströmung	[°]
AVĎR	Axialstromdichteverhältnis (Axial Velocity Density Ratio)	[-]
В	Plexiglasbreite	[m]
b	Axiale Breite der Turbinenschaufel	[m]
B1	Zuströmwinkel	[°]
B ₂	Abströmwinkel	[°]
ΔB	Anströmwinkel (Gierwinkel) auf die Messsonde	ſ°]
β_2^+	Tatsächlicher Abströmungswinkel	ſ°Ì
$\frac{r}{\beta_{2}^{+}}$	Gemittelter Abströmungswinkel	[°]
β_2^+	Referenz-Abströmungswinkel	[°]
P 2,rej D	Außendurchmesser Axialgehläse	[m]
d	Charakteristische Abmessung des Dreiloch-Sondenkonfes	[m]
а S	Elankenwinkel der Dreilochsonde	[°]
F	Brückenspannung der Hitzdrahtsonde	L J [\/]
L Ac	Strömungswinkelfehler	[v] [°]
<u>л</u>	Frdbeschleunigung	[] [m/s²]
у Н	Plexialashöhe	[m]
h	Schaufelaustrittslänge	[m]
K	Dimensionsloser Geschwindigkeitsgradient	[_]
k.	Bohrungskoeffzient der Bohrung <i>i</i> (1, 2, 3) der Dreilochsonde	[-]
k_{0}	Richtungskoeffizient der Dreilochsonde	[_]
λ_{β}	Statischer Druck Koeffizient der Dreilochsonde	[]
κ_s	Totaldruck Koeffizient der Dreilochsonde	[-]
$\frac{\kappa_t}{L}$	Durchschnittlicher Bohrungskoeffizient der Dreilochsonde	[-]
ĸ	Meterdrobzahl	[⁻] [1/min]
n n	Motorurenzani Anzahl dar Masspunkta pro Schaufolgittartailung	[]///////]
n _t	Anzahl der Messpunkte	[-]
nges	Meterleistung	
P	Motorielstung Composener Druck der Behrung i (1, 2, 2) der Dreilesbeende	
p_i	Gemessener Druck der Bonrung <i>l</i> (1, 2, 3) der Dreilochsonde	[Pa]
p	Statiasher Druck Koemzient der Dreilochsonde	[Pa]
p_s	Statischer Druck	[Pa]
p_s		[Pa]
p_t	l olaidiuck Comittelter Teteldruck	[Pa]
p_t		[Pa]
p_u	Omgebungsdruck	[Pa]
Δp	Druckernonung	[Pa]
r_m	Krummungsradius	[[11]
Re _d	Sondenreyholdszahl	
кер		
R_s		[J/(Kg K)]
ρ		[kg/m³]
T_{w}		[-]
t	Schauteiteilung	[m]
t _{opt}	Optimale Schautelteilung	լՠյ

t_1	Zuströmungstemperatur	[°C]
t_2	Abströmungstemperatur	[°C]
t_u	Umgebungstemperatur	[°C]
V	Volumenstrom	[m³/s]
v_u	Kinematische Viskosität	[m²/s]
W	Strömungsgeschwindigkeit	[m/s]
W_1	Zuströmungsgeschwindigkeit	[m/s]
<i>W</i> ₂	Abströmungsgeschwindigkeit	[m/s]
$\overline{W_2}$	Gemittelte Abströmungsgeschwindigkeit	[m/s]
W_{χ}	Strömungsgeschwindigkeitskomponente in x-Richtung	[m/s]
W_y	Strömungsgeschwindigkeitskomponente in y-Richtung	[m/s]
x	Abstand Kante links bis Schaufel	[m]
Δx	Abstand Kante rechts bis Messebene	[m]
у	Koordinate der Messebene	[m]
Y_p	Profilverlustbeiwert	[-]
Z	Geodätische Höhe	[m]
ζ_p	Totaldruckverlustbeiwert	[-]

1 Einleitung und Aufgabenstellung

Im Turbinenbau werden die Bauarten in Reaktionsturbinen (Überdruck) und Gleichdruckturbinen (Aktionsturbinen) unterteilt. Diese verfügen je nach Anwendung über verschiedene Eigenschaften. Ein wesentlicher Unterschied der beiden Bauarten Wie ist der Druckverlauf bei den Laufschaufeln. der Name des Gleichdruckturbinengitter bereits vermuten lässt, erfährt das Fluid in den Laufschaufeln nahezu keinen Druckunterschied. Bei der Reaktionsturbine hingegen erfährt das Fluid eine Druckreduktion, was zu einer Beschleunigung führt. Abbildung 1 verdeutlicht den qualitativen Druckverlauf von diesen zwei Bauformen. [7]

Abbildung 1 Leit- und Laufschaufel einer Gleichdruckturbine (links) und Überdruckturbine (rechts) mit qualitativen Druckverlauf [7]

In Tabelle 1 sind die wesentlichen Unterschiede dieser zwei Turbinenbauformen gegenübergestellt.

Aufgrund der hohen Baulänge der Stufe und der geringen Beschleunigung des Fluids, lässt sich daraus schließen, dass Gleichdruckturbinen ihren Einsatz in Anwendungen finden, in denen bei geringen Drehzahlen hohe Drehmomente erforderlich sind. [7]

Eigenschaften	Gleichdruckturbine	Überdruckturbine
Stufenwirkungsgrad	Schlechter, wegen starker	Besser, da das
	Umlenkung in der	Stufengefälle in der Leit-
	Laufschaufel	und Laufschaufel
		verarbeitet wird
Baulänge der Stufe	Größer, wegen	Kleiner, wegen
	Kammerbauweise	Trommelbauweise
Baulänge der Turbine	Geringere Stufenanzahl,	Geringere Baulänge der
	aber größere Baulänge der	Stufe, aber große
	Stufe	Stufenanzahl
Axialschub	Klein, wegen kleinem	Groß, wegen der
	Druckgefälle am Laufrad	größeren Druckdifferenz
		am Laufrad
Teilbeaufschlagung	Möglich, Verwendung als	Nicht möglich
	Regelstufe oder	
	Kleindampfturbine	

Tabelle 1 Gegenüberstellung der Eigenschaften von Gleich- und Überdruckturbinen nach [3]

1.1 Motivation

Ein aus Bakelit bestehendes Gleichdruckturbinenprofil 85B45 wurde für das Turbomaschinenlabor der TU Wien in den 1960er Jahren erworben (13 Stück). Die Abströmungen von sogenannte Schwachreaktionsprofile wurden in letzter Zeit nicht mehr vermessen.

Abbildung 2 Schaufelprofil 85B45 Geometrie

Wie in Abbildung 2 ersichtlich ist, kann das Schaufelprofil durch eine Kombination aus einfachen Kreisen und Geraden in CAD nachgebildet werden, was für die Studierenden einen hohen Vorteil in der geometrischen Aufbereitung einer Strömungssimulation mit sich bringt.

Das Ergebnis dieser Diplomarbeit wird in der späteren Labor-Übung der Thermischen Turbomaschinen der TU Wien verwendet, um in Kombination mit der parallel stattfindenden CFD-Übung eine Vergleichsmöglichkeit zwischen Ergebnissen aus Strömungssimulationen und Ergebnisse aus realen Messungen am Labor zu schaffen. Dadurch lernen die Studierenden, den Umgang mit der Komplexität der Materie der Strömungssimulation und gewinnen durch eine praktische Anwendung des Simulierten ein höheres Erfahrungsspektrum.

1.2 Ablauf Diplomarbeit

Um die erforderlichen Messergebnisse durchzuführen, werden in dieser Arbeit folgende Arbeitsschritte herangezogen

Abbildung 3 Ablauf Diplomarbeit

Zu Beginn erfolgt eine **Entwicklung** eines spezifischen Schaufelgitters für die Bakelitschaufeln 85B45 in CAD unter der Berücksichtigung von strömungstechnischen Rahmenbedingungen des Schaufelprofils und konstruktiven Rahmenbedingungen des Windkanals. Das entwickelte Schaufelgitter wird dann von der Fertigungstechnik der TU Wien gefertigt und anschließend im strömungstechnischen Labor montiert.

Danach erfolgt eine **Messung** des Strömungsfeldes an der Abströmung des Schaufelgitters mittels einer Dreilochsonde und einem Hitzdrahtanemometer, was einen direkten Vergleich der beiden Messmethoden ermöglicht.

Da die beiden Messinstrumente auf Basis unterschiedlicher physikalischer Prinzipien basieren erfolgt für die jeweilige Methode eine individuelle **Auswertung** der Messergebnisse.

2 Methodik

Innerhalb dieses Kapitels wird auf die in der Arbeit genutzte Methodik eingegangen. In den Unterkapiteln wird auf die Arbeitsschritte der Entwicklung des Schaufelgitters, der Messung und der Auswertung eingegangen.

2.1 Entwicklung Schaufelgitter

Die Konstruktion des Schaufelgitters wird mittels dem von PTC entwickelten CAD Tool **Creo Parametric** erstellt.

Da die Anwendung des entwickelten Schaufelgitters in einem Windkanal Verwendung findet, sind sowohl strömungstechnische Rahmenbedingungen des Schaufelprofils 85B45 als auch geometrische Rahmenbedingungen des Windkanals zu berücksichtigen.

2.1.1 Strömungstechnische Rahmenbedingungen

Zu Beginn der Auslegung des Schaufelgitters wird von einer idealisierten Gittergeometrie ausgegangen. Dies setzt voraus, dass der Reaktionsgrad R = 0 ist, was bedeutet, dass der Betrag die Metallwinkel α_1 und α_2^+ gleich sein müssen. Diese idealisierte Gittergeometrie (siehe Abbildung 4) hat die Eigenschaft, dass es sich um einen rein umlenkenden Strömungskanal mit der Kanalbreite a handelt. [7]

Da jedoch in diesem Fall das verwendete Profil 85B45 über verschiedene Metallwinkel verfügt, muss eine Adaption der idealisierten Gittergeometrie verwendet werden. Zur Berechnung der Schaufelgitterteilung t wird demnach das Zweifelkriterium herangezogen.

Abbildung 4 Geometrie des idealisierten Gleichdruckgitters [7]

Eine der wichtigsten Anforderungen zur Auslegung eines Turbinengitters ist das Einhalten eines möglichst geringen Profilverlustes Y_P. Der Profilverlust setzt sich aus der Strömungsablösung und der Reibung zusammen. Diese beiden Einflussgrößen sind ebenso von der axialen Breite b und der Schaufelteilung t abhängig. Beim Betrachten der beiden Extremfälle des Verhältnisses b/t lassen sich die entstehenden Anteile des Profilsverlustes veranschaulichen. [11]

Bei einem sehr kleinen Verhältnis von b/t ergibt sich eine große Schaufelteilung t, was zu einer Ablösung der Strömung an der Schaufelsaugseite führt und somit die Strömung nicht mehr umgelenkt werden kann. Hierbei entsteht ein hoher Verlust durch Ablösung, jedoch ein geringer Verlust durch Reibung. [11]

Bei einem sehr großen Verhältnis von b/t ergibt sich eine kleine Schaufelteilung t, was zu einer großen benetzten Oberfläche in der Strömung führt und somit Reibung entsteht. Hierbei entsteht ein hoher Verlust durch Reibung, jedoch ein geringer Verlust durch Ablösung, da das Fluid eine deutliche Umlenkung erfährt. [11]

Abbildung 5 Profilverlustbeiwert Y_P in Abhängigkeit vom Verhältnis der axialen Breite b und der Schaufelteilung t [11]

In Abbildung 5 ist der Profilverlust bestehend aus Ablösung und Reibung über das Verhältnis b/t dargestellt. Es ist zu sehen, dass sich hierbei ein optimales Verhältnis (b/t)_{opt} ergibt, bei dem der Profilverlust sein Minimum erreicht.

Da für die Profile 85B45 die axiale Breite b vorgegeben ist, gilt es die optimale Teilung t_{opt} zu bestimmen. Mittels dem Zweifelkriterium lässt sich für dieses Schwachreaktionsprofil das optimale Verhältnis (b/t)_{opt} unter der Verwendung der

Briling'schen Bedingung mit dem Zweifel-Koeffizienten für Gleichdruckgitter von $\psi_T = 0.8$ wie folgt bestimmen:

$$\left(\frac{b}{t}\right)_{opt} = \frac{2}{\psi_T} \cdot \sin^2(\alpha_2^+) \cdot \left(\cot(\alpha_1) + \cot(\alpha_2^+)\right)$$

Die optimale Schaufelgitterteilung t_{opt} lässt sich somit wie folgt bestimmen:

$$t_{opt} = \frac{b \cdot \psi_T}{2 \cdot \sin^2(\alpha_2^+) \cdot (\cot(\alpha_1) + \cot(\alpha_2^+))}$$

Die bestimmte optimale Schaufelteilung t_{opt}, dient als Grundlage für die Auslegung des Schaufelgitters unter der Berücksichtigung von strömungstechnischen Rahmenbedingungen für Turbomaschinen.

Da das Schaufelprofil 85b45 einen Metallwinkel < 30° (siehe Abbildung 2) besitzt, kann in der Praxis laut [12] die Sinusregel für die Auslegung der Schaufelgitterteilung herangezogen werden. Diese Sinusregel beschreibt das Verhältnis zwischen der optimalen Schaufelteilung t_{opt} und der Kanalbreite a zum Metallwinkel α_2^+ :

$$\sin(\alpha_2^+) = \frac{a}{t_{opt}}$$

2.1.2 Konstruktive Rahmenbedingungen

Das auszulegende Schaufelgitter findet wie bereits erwähnt seine Verwendung für Strömungsmessungen im Windkanal der TU Wien des Turbomaschinenlabors. Diese spezielle Anwendung hat demnach sowohl messtechnische als auch ästhetische Anforderungen, die die Breite der Schaufelgitterplatten beeinflussen

Messtechnische Anforderungen

Die messtechnischen Anforderungen liegen darin, dass die Messebene sich in einem geeigneten Abstand zur Abströmkante der Turbinenschaufel befindet. Je weiter weg die Messebene von der Abströmkante ist, desto mehr verwischt das gemessene Strömungsfeld. Ist die Messebene jedoch zu nah an der Abströmkante treten hohe Einflüsse von Potentialwechselwirkungen zwischen Schaufel und Sonde auf. Dies ist während der Messung zu vermeiden.

Ästhetische Anforderungen

Die ästhetischen Anforderungen beziehen sich hierbei auf die Sichtbarkeit der Profilgeometrie. Aufgrund der notwendigen Sichtbarkeit werden durchsichtige Plexiglasplatten verwendet.

Da aufgrund der Montagebedingungen Löcher zur Montage eines Winkels an die Messwiege vorgesehen sind, ist ein definierter Abstand, abhängig von der Geometrie des Winkels, zur äußeren Kante der Plexiglasplatten an der Seite der Zuströmung vorgesehen. Nach der Montage des Winkels muss die vollständige Sichtbarkeit der Profilgeometrie gewährleistet werden.

Maximaler Neigungswinkel der Messwiege

Zudem ist der maximale Neigungswinkel der Messwiege ein ausschlaggebender Punkt zur Auslegung des Staffelungswinkels des Schaufelgitters, da für die durchgeführte Messung eine nahezu Parallelströmung zur Eintrittskante der Turbinenschaufel vorgesehen ist, um eine Zuströmung ähnlich wie von einer Leitschaufel (siehe Abbildung 1) nachbilden zu können.

Montageanforderungen

Da das angeführte Schaufelprofil nur über eine Bohrung zur Montage der Plexiglasplatten verfügt, ist ein Drehhalt zu berücksichtigen. Dieser Drehhalt wird durch Verstiften gewährleistet, weshalb eine kleine zusätzliche Bohrung in der Plexiglasplatte und dem Schaufelprofil vorgesehen ist.

2.2 Messung

Nachdem das Schaufelgitter gefertigt und vollständig an der Messwiege montiert ist, wird das Strömungsfeld der Abströmung am Schaufelgitter in definierten Abständen mittels zwei verschiedenen Messmethoden gemessen.

Hierbei wird zum einen eine Dreilochsonden-Messung und zum anderen eine 1-Draht Hitzdrahtsonden-Messung durchgeführt. Die charakteristischen Eigenschaften dieser beiden Messmethoden werden in Tabelle 2 gegenübergestellt [12] [13].

Wie in Tabelle 2 ersichtlich ist, verfügen beide Messmethoden über verschiedene Charakteristika, die sich sowohl im Messprinzip, den Messergebnissen, der Handhabung und den Anschaffungskosten unterscheiden. Deshalb ist es besonders in der Messtechnik wichtig, sich stets über die messtechnischen Anforderungen im Klaren zu sein, um die geeignete Messmethode für den jeweiligen Anwendungsfall auszuwählen.

Diese beiden Messmethoden werden in den nächsten Abschnitten näher beschrieben.

Kategorie Eigenschaft		Dreilochsonde	1-Draht Hitz- drahtsonde
	Physikalisches Prinzip	Pneumatik	Konvektiver Wärmeübergang
Mess-	Gemessene Physikalische Größe	Druck	Spannung
prinzip	Zeitliche Abhängigkeit	Stationär	Instationär
	Aufwand Postprocessing	hoch	gering
Mess-	Strömungsgeschwindigkeit	ja	ja
ergebnisse	Strömungsrichtung	ja	nein
	Turbulenzgrad	nein	ja
	Trägheit der Messung	hoch	gering
Hond	Stoßempfindlichkeit	gering	hoch
habung	Schmutzempfindlichkeit	gering	hoch
nasung	Strömungsstörung durch Messintrument	hoch	mittel
Anschaffungskosten		gering	hoch

Tabelle 2 Vergleich Dreilochsonde und 1-Draht Hitzdrahtanemometer [12] [13].

2.2.1 Dreilochsonden-Messung

Die pneumatische Dreilochsonden-Messung dient zur Ermittlung der Strömungsgrößen, wie dem Druck und der Geschwindigkeit, sowie die Strömungsrichtung [9]. Die Dreilochsonden verfügen über verschiedene Ausführung der Messkopfgeometrien, wobei die am häufigst verwendete Formen der Kobrakopf, der Trapezkopf und der zylindrische Kopf sind. [6]

Die in dieser Arbeit verwendet Dreilochsonde ist die SVUSS/3 Kobra-Sonde. In Abbildung 6 ist der prinzipielle Aufbau einer trapezförmigen Messkopfgeometrie dargestellt. Dessen Geometrie wird durch den Flankenwinkel δ und den Abmessungen a und d charakterisiert. Wobei die Abmessung a den Abstand zwischen den zwei seitlichen Sondenbohrungen und die Abmessung d die charakteristische Abmessung des Sondenkopfes widerspiegelt. [6]

Abbildung 6 Charakteristische Geometrie eines Dreilochsondenkopfes [6]

Die sehr häufig genutzte Nomenklatur der Nummerierung der Bohrungen der Dreilochsonde ist in Abbildung 7 ersichtlich.

Abbildung 7 Geometrische Nomenklatur einer Dreilochsonde [6]

Mithilfe des Verhältnisses zwischen dem gemessenen Druck bei den Messbohrungen 2 und 3 lässt sich der Anströmwinkel (Gierwinkel) $\Delta\beta$ der Messsonde bestimmen. Der Anströmwinkel $\Delta\beta$, ist der Winkel zwischen dem Geschwindigkeitsvektor w und der Achse durch die Messbohrung 1. Der geometrische Zusammenhang zwischen den Geschwindigkeitskomponenten w_x und w_y und dem Geschwindigkeitsvektor lässt sich mittels dem Anströmwinkel $\Delta\beta$ beschreiben. [6]

Bei der Dreilochsonden-Messung gibt es zwei Möglichkeiten, die Strömungsrichtung zu messen. Hierbei wird zwischen dem Abgleichverfahren und dem Ausschlagsverfahren unterschieden. [6]

Beim Abgleichverfahren wird die Sonde in die Strömung positioniert, sodass die Bohrungen an der Seite einen gleichen Druck messen. Der Anströmwinkel entspricht dann der notwendigen Verdrehung der Sonde, um diesen Zustand zu erreichen.

Hierbei muss bei jedem einzelnen Messpunkt in einem Strömungsfeld die Sonde neu verdreht werden, falls Strömungsrichtungsunterschiede in der Messebene auftreten. Dieses Verfahren ist durch die notwendige Verdrehung der Sonde bei jedem neuen Messpunkt zeitlich sehr aufwändig. [6]

Beim Ausschlagverfahren wird die Sonde mit einem beliebigen Winkel in die Strömung ausgerichtet, wodurch sich ein unterschiedlicher Druck an den seitlichen Bohrungen ergeben. Anhand einer Kalibrierkurve kann mithilfe des unterschiedlichen Drucks der Anströmwinkel bestimmt werden. Das Ausschlagverfahren ist im Vergleich zum Abgleichverfahren schneller in der Messdurchführung. Jedoch benötigt das Ausschlagverfahren eine Kalibrierkurve, wobei hierdurch eine Messungenauigkeit entsteht, da Unterschiede in der Machzahl, Reynoldszahl und dem Turbulenzgrad zwischen der durchgeführten Kalibrierung und Messung vorhanden sind. [6]

Das in dieser Arbeit verwendet Verfahren für die Dreilochsonden-Messung ist das Ausschlagverfahren. Dieses Verfahren zieht eine Ausführliche Auswertung der Messergebnisse nach sich, welches im Kapitel 2.3 näher erläutert wird.

Kalibrierkoeffizienten

Für die Messauswertung wird das Stromlinienprojektionsverfahren eingesetzt. Dieses Verfahren basiert auf der Annahme, dass die freie Strömungsgeschwindigkeit auf jedes der drei Sondenlöcher projiziert wird. Hierbei führt die normal auf die Oberfläche des Messkopfes wirkende Geschwindigkeitskomponente zu einem Staudruck, welcher dann dem statischen Druck der freien Strömung dazu addiert wird. [14]

Die Kalibrierungskoeffizienten beschreiben den Zusammenhang zwischen dem gemessenen Druck und dem Anströmwinkel [1].

Diese Kalibrierungskoeffizienten lassen sich in Bohrungskoeffizienten, Richtungskoeffizienten, Totaldruckkoeffizienten und statische Druck Koeffizienten unterteilen.

Die Bohrungskoeffizienten k_i beschreiben das Verhältnis aus der Differenz des gemessenen Drucks p_i der jeweiligen Bohrung i = [1,2,3] dem statischen Druck p_s und dem dynamischen Druck und lässt sich wie folgt beschreiben:

$$k_i = \frac{p_i - p_s}{\frac{\rho}{2} \cdot w^2}$$

wobei i der Index der jeweiligen Bohrung der Dreilochsonde repräsentiert.

Die für die Dreilochsonde verwendeten Kalibrierungskoeffizienten sind die folgenden [1]:

• Richtungskoeffizient k_{β}

$$k_{\beta} = \frac{p_2 - p_3}{p_1 - \bar{p}} = \frac{k_2 - k_3}{k_1 - \bar{k}}$$

• Totaldruck Koeffizient k_t

$$k_t = \frac{p_1 - p_t}{p_1 - \bar{p}} = \frac{k_1 - 1}{k_1 - \bar{k}}$$

Statischer Druck Koeffizient k_s

$$k_s = \frac{\bar{p} - p_s}{p_1 - \bar{p}} = \frac{k}{k_1 - \bar{k}}$$

Die Größen

$$\bar{p} = \frac{p_2 + p_3}{2}$$
$$\bar{k} = \frac{k_2 + k_3}{2}$$

beschreiben den durchschnittlichen Druck und durchschnittlichen Bohrungskoeffizienten.

Die Differenz der Drücke $p_1 - \bar{p}$ wird zur Darstellung des dynamischen Drucks herangezogen, der im Nenner der jeweiligen Kalibrierkoeffizienten verwendet wird, um diese dimensionslos zu machen.

2.2.2 Hitzdrahtsonden-Messung

Die Strömungsmessung der Hitzdrahtsonden-Messung beruht auf der Abkühlung eines Hitzdrahtes, welcher auf einer konstanten Temperatur gehalten wird. Aufgrund des konvektiven Wärmeübergangs bei einer Anströmung ändert sich die Temperatur. Zur Aufrechterhaltung der konstanten Temperatur ändert sich bei dieser Messmethode die Spannung, welche proportional zur Geschwindigkeitskomponente ist. Die gemessene Spannung ist die Brückenspannung E einer im Hitzdrahtanemometer dazuschaltenden Wheatston'schen Brückenschaltung. [12]

Abbildung 8 Hitzdrahtanemometer Single-Sonde [12]

Der auf einer konstanten Temperatur gehaltene Draht besitzt eine typische Abmessung von ca. Ø 5 μ m x 1,5 mm. Durch die Größe des Drahtes, weist dieser eine geringe thermische Trägheit auf, was eine Messung von hochfrequenten turbulenten Schwankungen der Geschwindigkeit ermöglicht. Die Ausführung der Hitzdrahtsonden-Messung orientiert sich überwiegend an der Anzahl der verwendeten Drähte, ebendiese ist proportional zu den gemessenen Geschwindigkeitskomponenten. Hierbei wird in eindimensionale Single-Sonden, zweidimensionale Dual-Sonden und dreidimensionale Triple-Sonden unterschieden. [12]

Zur Kalibrierung einer Hitzdrahtsonde wird, bei einem möglichst turbulenzarmen Freistrahl mit einer bekannten Geschwindigkeit und Referenztemperatur, die Brückenspannung E bei definierten Strömungsgeschwindigkeiten gemessen. Die dabei erstellte Kalibrierkurve ermöglicht es ein direktes Messergebnis der Strömungsgeschwindigkeit in Zusammenhang mit der gemessen Brückenspannung zu erhalten. [12]

Die in dieser Arbeit verwendete Hitzdrahtsonde für die Hitzdrahtsonden-Messung wird eine Single-Sonde sein. Bei der Verwendung dieser Sonde ist es notwendig, dass diese direkt in die Strömungsrichtung eingebracht wird, um Messungenauigkeiten zu vermeiden.

2.3 Auswertung

Die Auswertung der Messergebnisse erfolgt über ein mithilfe der Programmiersprache Python geschriebenes Skript. Ein programmiertes Skript ermöglicht eine automatisierte und ausführliche Messauswertung über mehrere Teilungen/Bereiche der Gesamtmessung. Dadurch werden auch mit wenig Aufwand einheitliche Plots zur Visualisierung des Strömungsfeldes realisiert.

Zu Beginn werden die physikalischen Grundlagen für die Messauswertung erläutert und im Anschluss speziell auf die Messauswertung der Dreilochsonden-Messung und der Hitzdrahtsonden-Messung eingegangen.

2.3.1 Physikalische Grundlagen und Strömungsgrößen

Für die Auswertung der Messung wird vorab auf die Stromfadentheorie und die verwendete Bernoulli-Gleichung eingegangen, welche die Grundlage der Messauswertung darstellt. Zusätzlich werden noch allgemeine Größen, wie Dichte von Luft, kinematischen Viskosität, Reynoldszahl und der Profilverlustbeiwert definiert.

2.3.1.1 Stromfadentheorie

Zuallererst ist zu erwähnen, dass in der strömungstechnischen Betrachtung des Windkanals die Stromfadentheorie herangezogen wird. Diese verfolgt den Ansatz, dass das betrachtete Fluid innerhalb eines undurchdringlichen Mantels einer

Stromröhre aus Streichlinien besteht, in dem der Massenstrom konstant ist (siehe Abbildung 9). [8]

Innerhalb der Stromröhre befindet sich ein Stromfaden, welcher eine verkleinerte Form der Stromröhre darstellt und aus mehreren Stromlinien besteht, in dem die Geschwindigkeit, der Druck, die Temperatur, die Dichte sowie die Viskosität als konstant angenommen wird. [8]

Abbildung 9 Stromfadentheorie [8]

Zudem zeigt die Richtung des Geschwindigkeitsvektors des Fluids stets tangential zur Stromlinie und bei stationären Strömungen fallen Streich- und Stromlinien stets zusammen. [8]

2.3.1.2 Bernoulli-Gleichung

Auf Basis der Euler'schen Bewegungsgleichung für das Kräftegleichgewicht innerhalb eines Stromfades in Strömungsrichtung *s* wird die vereinfachte Formel zur Berechnung der Strömungsgeschwindigkeit im stationären Fall hergeleitet. [8]

Die Euler'sche Bewegungsleichung, welche in diesem Fall wie folgt lautet

$$\frac{\partial w}{\partial t} + w \cdot \frac{\partial w}{\partial s} = -\frac{1}{\rho} \cdot \frac{\partial p}{\partial s} - g \cdot \frac{\partial z}{\partial s}$$

kann durch die Betrachtung einer stationären und inkompressiblen ($\rho = konst$) Strömung und der Integration über die Strömungsrichtung *s* die Bernoulli-Gleichung eines Stromfades bestimmt werden. [8]

$$p_s + \rho \cdot \frac{w^2}{2} + \rho \cdot g \cdot z = konst$$

Hier repräsentiert p_s den statischen Druck, $\rho \cdot \frac{w^2}{2}$ den dynamischen Druck und $\rho \cdot g \cdot z$ den Druckanteil der geodätischen Höhe *z*. Bei der Messung werden, aufgrund der

Maßstäbe und dem verwendeten Fluid Luft, der Druckanteil der geodätischen Höhe z vernachlässigt. Aus dieser Bedingung ergibt sich für den vorhandenen Totaldruck p_t folgende Gleichung

$$p_t = p_s + \rho \cdot \frac{w^2}{2}.$$

Durch Umformung der Gleichung auf die Komponente der Strömungsgeschwindigkeit w, lässt sich diese lediglich durch die Größen des Totaldrucks p_t , statischen Drucks p_s und der Dichte ρ beschreiben. [8]

$$w = \sqrt{\frac{2 \cdot (p_t - p_s)}{\rho}}$$

Diese Formel ist die Grundlage für die Bestimmung der Strömung durch eine pneumatische Messung und deren statischen Druck- und Totaldruck-Komponenten.

2.3.1.3 Dichte von Luft

Mithilfe der thermischen Zustandsgleichung für ideale Gase kann die Dichte ρ abhängig durch den statischen Umgebungsdruck p_u , der Umgebungstemperatur T_u und der spezifischen Gaskonstante der Luft R_s ausgedrückt werden. [8]

$$p_u \cdot v_L = R_s \cdot T_u \text{ mit } v_L = \frac{1}{\rho_L}$$

 $\rightarrow \rho_L = \frac{p_u}{R_s \cdot T_u}$

2.3.1.4 Kinematische Viskosität

Durch eine Näherungsgleichung lässt sich die kinematische Viskosität v_L durch die gemessene Lufttemperatur wie folgt berechnen. [8]

$$v_L = (0,092 \cdot t + 13,52) \cdot 10^{-6}, \qquad in \frac{m^2}{s}$$

Diese Gleichung findet Gültigkeit im Temperaturbereich von 0 bis 25 °C und einem Luftdruck von ca. 1 bar.

2.3.1.5 Sondenreynoldszahl

Mithilfe der Sondenreynoldszahl Re_d lässt sich das Verhältnis von Trägheits- und Zähigkeitskräften an der Messsonde über deren charakteristische Länge d, der Strömungsgeschwindigkeit w und der kinematischen Viskosität v_L beschreiben. [8]

$$Re_d = \frac{w \cdot d}{v_L}$$

TU Bibliotheks Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar WIEN Vourknowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

2.3.1.6 Profilreynoldszahl

Mithilfe der Profilreynlodszahl Re_p lässt sich das Verhältnis von Trägheits- und Zähigkeitskräften am angeströmten Turbinenprofil über die Sehnenlänge *s*, der Strömungsgeschwindigkeit *w* und der kinematischen Viskosität v_L bei inkompressiblen Strömungen beschreiben. [14]

$$Re_p = \frac{w \cdot s}{v_L}$$

2.3.1.7 Totaldruckverlustbeiwert

Der Totaldruckverlustbeiwert ζ_p ist ein Maß für die Strömungsverluste bei einem Turbinenprofil, welche überwiegend aus Reibungs- und Ablöseverlusten bestehen. Dieser lässt sich mithilfe dem Totaldruck der Zuströmung p_{t1} , dem Totaldruck der Abströmung p_{t2} und dem dynamischen Druckanteil der Abströmung $\frac{1}{2} \cdot \rho \cdot w_2^2$ beschreiben. [7]

$$\zeta_p = \frac{p_{t1} - p_{t2}}{\frac{1}{2} \cdot \rho \cdot w_2^2}$$

2.3.2 Messauswertung Dreilochsonden-Messung

Wie zuvor erwähnt, wird die Abströmungsgeschwindigkeit w_2 nicht direkt über die Dreilochsonden-Messung gemessen, sondern über definierte Berechnungsschritte und unter Verwendung einer Kalibrierkurve ermittelt. In Abbildung 10 sind diese Berechnungsschritte in einem Prozessbild dargestellt.

Die Ausgangsgrößen der Dreilochsonden-Messung sind die drei gemessenen Drücke der jeweiligen Messbohrungen. Mithilfe der seitlichen Druckmesswerte p_2 und p_3 kann der durchschnittliche Druckkoeffizient \bar{p} berechnet werden, dessen Formel wie folgt beschrieben wird. [6]

$$\bar{p} = \frac{p_2 + p_3}{2}$$

Der durchschnittliche Druckkoeffizient, sowie die drei gemessen Drücke p_1 , p_2 und p_3 werden daraufhin verwendet, um den Richtungskoeffizienten k_β zu berechnen.

$$k_{\beta} = \frac{p_2 - p_3}{p_1 - \bar{p}}$$

Mithilfe des Richtungskoeffizienten k_{β} lässt sich anhand der Ergebnisse der Kalibrierkurve über eine lineare Interpolation der Gierwinkel $\Delta\beta$, der Totaldruckkoeffizient k_t und der statische Druckkoeffizient k_s berechnen. [6]

Abbildung 10 Berechnungsschritte Auswertung Dreilochsonden-Messung)

2.3.2.1 Totaldruck und Statischer Druck

Anhand der Definition des Totaldruckkoeffizienten k_t und dem statischen Druckkoeffizient k_s lässt sich dann der vorhandene Totaldruck p_t

$$k_t = \frac{p_1 - p_t}{p_1 - \bar{p}}$$

$$\Rightarrow p_t = p_1 - k_t (p_1 - \bar{p})$$

und der vorhandene statische Druck p_s

$$k_s=\frac{\bar{p}-p_s}{p_1-\bar{p}}$$

$$\rightarrow p_s = \bar{p} - k_s(p_1 - \bar{p})$$

bestimmen. [6]

2.3.2.2 Abströmungsgeschwindigkeit

Die Abströmungsgeschwindigkeit w_2 lässt sich aus der Definition des Totaldrucks ableiten. Der Totaldruck ist die Summe aus dem statischen Druck und dem dynamischen Druck:

$$p_t = p_s + \frac{\rho}{2} \cdot w^2$$

Anhand des gemessenen Totaldrucks und statischen Drucks lässt sich durch Umformung die Abströmungsgeschwindigkeit w_2 als

$$w_2 = \sqrt{\frac{2}{\rho} (p_t - p_s)}$$

ausdrücken. [6]

2.3.2.3 Tatsächlicher Abströmungswinkel

Der tatsächliche Abströmungswinkel β_2^+ lässt sich aus der Differenz zwischen dem Referenz-Abströmungswinkel $\beta_{2,ref}^+$ und des Gierwinkels $\Delta\beta$ bestimmen [6]. Dieser ist wie folgt definiert:

$$\beta_2^+ = \beta_{2,ref}^+ - \Delta \beta$$

2.3.2.4 Gradientenkorrektur

Der in der Messebene möglich auftretende Geschwindigkeitsgradient Δw induziert einen Druckunterschied zwischen den Bohrungen "2" und "3", welcher bei der Sondenmessung als Strömungswinkelfehler $\Delta \varepsilon$ interpretiert wird. Mithilfe der Stromlinienprojektion lässt sich dieser Strömungswinkelfehler $\Delta \varepsilon$ beschreiben. [14]

Abbildung 11 Dreilochsonde mit einem Geschwindigkeitsgradienten [14]

Wie in Abbildung 11 zu sehen ist, ist die Strömungsrichtung parallel zur Sondenachse. Die Bohrungen "2" und "3" weisen hierbei den Abstand a auf. Da der Sondenkopf i.d.R. als sehr klein angenommen werden kann, wird das Geschwindigkeitsfeld näherungsweise über eine Linearverteilung beschrieben. Hieraus kann der dimensionslose Geschwindigkeitsgradient *K* wie folgt beschrieben werden:

$$K = \frac{dp_t}{dy} \cdot \frac{2a}{\rho \cdot w^2} = \frac{dw}{dy} \cdot \frac{2a}{w} = \frac{2\Delta w}{w}$$

Durch den Ansatz der Stromlinienprojektion lässt sich mittels dem dimensionslosen Geschwindigkeitsgradienten *K* und dem Flankenwinkel δ der Strömungswinkelfehler $\Delta \varepsilon$ beschreiben. [14]

$$\Delta \varepsilon = K \frac{45^{\circ}}{\pi} \tan\left(\delta\right)$$

Mittels der Stromlinienprojektion lässt sich ein linearer Zusammenhang zwischen dem Strömungswinkelfehler $\Delta \varepsilon$ und dem dimensionslosen Geschwindigkeitsgradienten *K* erkennen. Die Empfindlichkeit dieses Winkels hängt stark vom Sondenkeilwinkel δ ab. [14]

2.3.3 Messauswertung Hitzdrahtsonden-Messung

Da die Messergebnisse bei der Hitzdrahtsonde über das Messystem direkt die gemessene Abströmungsgeschwindigkeit und den berechneten Turbulenzgrad ausgibt, ergibt sich ein geringerer Aufwand der Aufbereitung der Messergebnisse als bei der Dreilochsonden-Messung. [12]

Da die Hitzdrahtsonden-Messung keine Druckmessung durchführt, wird für die Auswertung der statische Druck p_{s2} in der Abströmung gleich dem Umgebungsdruck p_u angenommen. [12]

$$p_{s2} = p_u$$

Zusätzlich wird hier nicht der Abströmungswinkel gemessen, wodurch für die Auswertung der Abströmungswinkel β_2^+ gleich dem Referenz-Abströmungswinkel $\beta_{2,ref}^+$ angenommen wird.

$$\beta_2^+ = \beta_{2,ref}^+$$

2.3.4 Mittelungsverfahren und AVDR

Um eine Vergleichbarkeit der Messungen zu gewährleisten, wird das Mittelungsverfahren und das Axialstromdichteverhältnis (AVDR) beschrieben.

2.3.4.1 Mittelungsverfahren

Es werden die Berechnungsergebnisse Abströmungswinkel, statischer Druck, Totaldruck sowie die Abströmungsgeschwindigkeit in mit der Massenstromdichte gewogene Werte zusammengefasst, um eine geeignete Vergleichsbasis der gemessenen Werte zu schaffen. [15]

Abbildung 12 Mittelungsverfahren in der Messebene pro Teilung

Die Massenstromdichte lässt sich anhand des Integrals und dem Produkt aus der Dichte $\rho(y')$ und dem auf der Messebene senkrechte Anteil der Geschwindigkeitskomponente $w_{2x}(y') = w_2(y') \cdot \sin(\beta_2^+(y'))$ über die Teilung *t* beschreiben. [15]

$$q_m = \int_0^t w_2(y') \cdot \rho(y') \cdot \sin(\beta_2^+(y')) \, dy'$$

Hierbei ergeben sich für die mit der Massenstromdichte gewogene teilungsgemittelten Größen folgende Gleichungen:

Gemittelter Abströmwinkel

$$\bar{\beta}_{2}^{+} = \frac{\int_{0}^{t} \beta_{2}^{+}(y') \cdot w_{2}(y') \cdot \rho(y') \cdot \sin(\beta_{2}^{+}(y')) dy'}{\int_{0}^{t} w_{2}(y') \cdot \rho(y') \cdot \sin(\beta_{2}^{+}(y')) dy'}$$

Gemittelter Totaldruck

$$\overline{p}_{t} = \frac{\int_{0}^{t} p_{t}(y') \cdot w_{2}(y') \cdot \rho(y') \cdot \sin(\beta_{2}^{+}(y')) \, dy'}{\int_{0}^{t} w_{2}(y') \cdot \rho(y') \cdot \sin(\beta_{2}^{+}(y')) \, dy'}$$

Gemittelter statischer Druck

$$\overline{p_s} = \frac{\int_0^t p_s(y') \cdot w_2(y') \cdot \rho(y') \cdot \sin(\beta_2^+(y')) \, dy'}{\int_0^t w_2(y') \cdot \rho(y') \cdot \sin(\beta_2^+(y')) \, dy'}$$

Gemittelte Abströmungsgeschwindigkeit

$$\overline{w_2} = \frac{\int_0^t w_2(y') \cdot w_2(y') \cdot \rho(y') \cdot \sin(\beta_2^+(y')) dy'}{\int_0^t w_2(y') \cdot \rho(y') \cdot \sin(\beta_2^+(y')) dy'}$$

Es wird in dieser Auswertung von einer inkompressiblen Strömung ausgegangen, wodurch die Dichte $\rho(y')$ über die Messebene als konstant angenommen wird. [15]

$$\rho(y') = konst = \rho$$

2.3.4.2 Axialstromdichteverhältnis

Das Axialstromdichteverhältnis (englisch: Axial Velocity Density Ratio – AVDR) beschreibt das Verhältnis der Massenströme am Eintritt (1) und Austritt (2) der Strömungsoberflächen eines Schaufelgitters. [5]

Abbildung 13 AVDR im Schaufelgitter

Das AVDR ist hierbei ein Maß für die axiale Beschleunigung oder axiale Verzögerung der Strömung und lässt sich für ein Schaufelgitter im Allgemeinen wie folgt beschreiben. [5]

$$AVDR = \frac{\int_0^t w_2(y') \cdot \rho(y') \cdot \sin(\beta_2^+(y')) dy'}{\int_0^t w_1(y') \cdot \rho(y') \cdot \sin(\beta_1(y')) dy'}$$

Im inkompressiblen Fall und unter der Annahme, dass am Eintritt sich ein homogenes Strömungsbild ergibt, was über die Teilung *t* einen konstanten Anströmwinkel β_1 und eine konstante Anströmgeschwindigkeit w_1 voraussetzt, lässt sich das AVDR für diese Arbeit wie folgt beschreiben. [5]

$$AVDR = \frac{\int_0^t w_2(y') \cdot \sin(\beta_2^+(y')) \, dy'}{w_1 \sin(\beta_1) \cdot t}$$

Eine zweidimensionale Strömung liegt vor, wenn über die gesamte Schaufelhöhe unter der Berücksichtigung der Zu- und Abströmungsgrößen und der Profildruckverteilung eine identische Strömung vorhanden ist.

Jedoch tritt bei allen angeströmten Körpern eine Grenzschicht auf, was zu Stromlinienverdichtungen führen kann.

Wenn bei einem Schaufelgitter der AVDR = 1 ist, handelt es sich hierbei um eine ideale zweidimensionale Anströmung. Ist der $AVDR \neq 1$ und $0.8 \leq AVDR \leq 1.2$ wird von einer quasizweidimensionalen Strömung ausgegangen. Was bedeutet, dass Kontraktionen der Grenzschichten vorhanden sind. [10]

Mithilfe des AVDRs lässt sich somit eine Aussage über das Strömungsfeld der Anströmung treffen, ohne dieses direkt gemessen zu haben.

2.3.5 Gauß'sche Fehlerfortpflanzung

Im Umgang mit der Messtechnik treten abhängig von der jeweiligen Messgröße und dem Messinstrument unterschiedliche Fehler auf. Besonders bei der Dreilochsonden-Messung wird die Abströmungsgeschwindigkeit über mehrere Berechnungsschritte (siehe Abbildung 10) bestimmt, was in einer umfangreichen Rechnung des Gesamtfehlers Δy resultiert. [2]

Der Gesamtfehler Δy lässt sich mithilfe dem Gauß'schen Fehlerfortpflanzungsgesetz bestimmen.

$$\Delta y = \sqrt{\left(\frac{\delta f}{\delta x_1}\right)^2 \cdot \Delta x_1^2 + \dots + \left(\frac{\delta f}{\delta x_n}\right)^2 \Delta x_n^2}$$

Die Funktion f beschreibt hierbei die Funktion der zu berechnenden Größe y, welche von den Größen $x_1, ..., x_n$ abhängt, die den jeweiligen gemessenen Fehler $\Delta x_1, ..., \Delta x_n$ aufweisen.

3 Entwicklung Messaufbau

Zuallererst wird die im Labor vorhandene Versuchseinrichtung beschrieben. Hierbei wird besonders auf den Gitterwindkanal und das Messsystem eingegangen. Anschließend wird die Konstruktion des Schaufelgitters beschrieben.

3.1 Beschreibung der Versuchseinrichtung

Der für die Messversuche verwendete Windkanal ist ein im Druckbetrieb arbeitender Niedergeschwindigkeitswindkanal. Dieser weist eine maximale Machzahl von ca. 0,2 auf. Die Luftzufuhr erfolgt über eine Filterkammer außerhalb des Gebäudes und wird in einen geschlossenen Zuströmkanal angesaugt. Das Schema des Schaufelgitterwindkanals ist aus Abbildung 14 zu entnehmen.

3.1.1 Beschreibung des Gitterwindkanals

Ein Axialgebläse mit einer verstellbaren Vorleitreihe dient hierbei zur Luftförderung und wird von einem Drehstrommotor angetrieben. Die technischen Daten des Axialgebläses und des Drehstrommotors sind aus Tabelle 3 und Tabelle 4 zu entnehmen. [12]

Tabelle 3 Technische Daten Axialgebläse

Außendurchmesser	$D_a = 630 mm$
Schaufelaustrittslänge	h = 60 mm
Volumenstrom	$\dot{V} = 2,7 \frac{m^3}{s}$
Druckerhöhung	$\Delta p = 15 mbar$

Tabelle 4 Technische Daten Drehstrommotor

Motorleistung	P = 30 kW
Motordrehzahl	$n = 3000 \ min^{-1}$

Ein Diffusor, an dessen Ende die durchgeströmte Luft durch einen Strömungsgleichrichter und einem Turbulenzsieb in eine Beruhigungsstrecke mit 1200 m Durchmesser strömt, ist an dem Gebläse direkt angeschlossen. Danach folgt ein Übergangsstück, das den Strömungsquerschnitt vom Runden in das Rechteckige ändert. Hierbei beträgt die Fläche des rechteckigen Querschnitts 150 x 324,3 mm. [12]

Aufgrund der Querschnittsverringerung erfolgt eine Beschleunigung der Strömung mit einem Querschnittsverhältnis von ca. 1:23. Durch die Beschleunigung der Strömung wird zudem der Turbulenzgrad verringert. Hierbei ist das Ziel eine gleichmäßige Anströmung des nachgeschalteten Schaufelgitters mit dünnen Zuströmungsgrenzschichten zu gewährleisten. [12]

Zur Veranschaulichung der Schaufelgittergeometrie und der Teilung, wird das Schaufelgitter in eine schwenkbare Messwiege aus Plexiglas eingebaut. Die Messwiege ist auf Rollen gelagert, um eine Variation des Zuströmwinkels β_1 zu gewährleisten. Eine verstellbare Zunge aus Plexiglas dient zur Änderung der oberen und unteren Begrenzung des rechteckigen Kanals, wenn die Neigung der schwenkbaren Messwiege angepasst wird. Der maximale Neigungwinkel der Messwiege beträgt zur Kanalachse ca. 32°.

Abbildung 14 Schema des Schaufelgitterwindkanals (a Axialgebläse mit Diffusor, b Gleichrichter und Turbulenzsieb, c Wiege mit Schaufelgitter) [12]

3.1.2 Beschreibung Messystem

Das im Windkanal verwendete Messystem lässt sich in einen pneumatischen Teil und der Hitzdrahtsonden-Messung unterteilen. Der Strömungsnachlauf des Schaufelgitters wird, wie eingangs erwähnt, mittels einer pneumatischen Dreilochsonden-Messung (siehe 2a in Abbildung 15) und einer 1D-Hitzdrahtsonden-Messung (siehe 2b in Abbildung 15) vermessen.

Abbildung 15 Schema der Messeinrichtung (1 Schaufelgitter, 2a) Dreilochsonde, 2b) Hitzdrahtanemometer, 3 Pitotrohr, 4 Thermometer) nach [13]

Bei der Strömungsnachlaufmessung werden zwei verschiedene Sonden verwendet. Hierbei wird in festgelegten Abständen Δy das Strömungsfeld gemessen. Die Sonden werden in einen Sondenhalter drehbar montiert, welcher mittels einer Traversierung der Firma DANTEC eine präzise Positionierung (siehe Abbildung 20) ermöglicht.

3.1.3 Pneumatisches Messsystem

Der Teil des Messystems der pneumatischen Sondenmessung umfasst sowohl die Strömungsmessung in der Zuströmung als auch die Dreilochsonden-Messung in der Abströmung.

Beim Teil der Zuströmungsmessung ist ein Pitotrohr (siehe 3 in Abbildung 15) mit einem Durchmesser von 3 mm, welches ca. in der Mitte des Kanals vor dem Schaufelgitter angebracht ist. Der Totaldruck der Zuströmung wird mithilfe eines Pitotrohrs gemessen. Durch eine Wandbohrung mit einem Durchmesser von 2 mm wird der statische Druck der Zuströmung gemessen. [8]

Beim Teil der Abströmungsmessung ist eine SVUSS/3 Kobrasonde vorgesehen. Die Kobrasonde hat den Vorteil, dass die gebogene Form des Kopfes eine Messung der Strömung an nahen Wandbereichen ermöglicht, ohne dass dieser in die Strömung eingreift. [8]

Abbildung 16 SVUSS/3 Kobrasonde [6]

Abbildung 17 Detailansicht SVUSS/3 Kobrasondenkopf [6]

Die für die Sonde charakteristischen Abmessungen sind aus Tabelle 5 zu entnehmen.

Sondenkopfbreite	d = 2,4 mm
Sondenkopfhöhe	0,8 mm
Gesamtlänge	l = 650 mm
Bohrungsdurchmesser	$d_{3LS} = 0,5 mm$
Sondenschaftdurchmesser	6 <i>mm</i>
Seitenbohrungsabstand	a = 1,6 mm
Flankenwinkel	$\delta = 30^{\circ}$

Tabelle 5 Charakteristische Abmessungen SVUSS/3 Krobrasonde nach [8]

Das Pitotrohr, die statische Wandbohrung und die drei Ausgänge der SVUSS/3 Kobrasonde der Dreilochsonde werden durch Gummischläuche mit piezoresistiven Druckaufnehmern der Firma HONEYWELL verbunden. Bei den Druckaufnehmern wird eine Spannung gemessen, welche zur Druckdifferenz proportional ist. Die direkte Abhängigkeit zwischen der Spannung und dem Differenzdruck wurde durch eine entsprechende Kalibrierung ermittelt. [8]

Die in der Zuströmung herrschende Temperatur wird durch ein Pt100-Widerstandsthermometer (siehe 4 in Abbildung 15) gemessen. In der Furness Controls Scanning Box werden die Druckkanäle nach der Reihe geschalten, um eine Druckmessung an verschiedenen Positionen mit nur einem Druckaufnehmer nacheinander durchzuführen.

In dem Hewlett-Packard HP3852A Messdatenerfassungs- und Steuerungssystem werden die gemessenen Spannungen des Pt100-Thermometers und des Druckaufnehmers in digitale Signale umgewandelt. Mittels eines GPIB-Busses ist das Messdatenerfassungs- und Steuerungssystem mit einem PC des Labors verbunden. Das HP 3852A wird an dem PC mittels der Software LabVIEW überwacht und gesteuert. [8] In Abbildung 18 ist das beschriebene Messsystem der pneumatischen Sondenmessung dargestellt.

Abbildung 18 Messsystem Pneumatische Sondenmessung nach [8]

3.1.4 Hitzdrahtsonden-Messsystem

Der Teil des Messystems der Hitzdrahtsonden-Messung umfasst die Messung in der Abströmung. Für die Hitzdrahtsonden-Messung wird eine Single-Sonde DANTEC 55P11 verwendet. Diese Sonde verfügt über einem Platin beschichteten Wolframdraht und weist einen Durchmesser von 5 µm bei einer Länge von 1,25 mm auf. [1]

Abbildung 19 DANTEC 55P11 Single-Sonde [1]

Die Sonde ist über eines der CTA-Module 90C10 mit dem DANTEC 90N10 Frame, welches das Kernelement der Datenerfassung darstellt, verbunden. Mittels einer zwischengeschalteten SCB-68 Anschlussbox und einer AT-MIO-16E-10 Analog/Digital Wandlerkarte erfolgt die Anbindung des DANTEC 90N10 Frame an den PC. [1]

Eine automatische präzise Positionierung der Sonde wird durch eine DANTEC Traversierung mittels einer ISEL C10C-E/A Schrittmotorsteuerung ermöglicht, welche

über den PC angesteuert wird. Die Anbindung der ISEL C10C-E/A Schrittmotorsteuerung und dem 90N10 Frame erfolgt über eine serielle Schnittstelle RS232. [1]

Als Steuerungssoftware für die Traversierung wird DANTEC STREAMWARE verwendet. In Abbildung 20 ist das beschriebene Messsystem der Hitzdrahtsonden-Messung dargestellt. [1]

Die 90H02 Flow Unit dient zur Kalbirierung der Hitzdrahtsonde. Hier werden konstante Zuströmungen bis zu 100 m/s gemessen. [1]

Abbildung 20 Messsystem Hitzdrahtsonden-Messung [1]

3.2 Konstruktion des Schaufelgitters

In diesem Abschnitt werden Schritt für Schritt die wichtigen Abmessungen des Schaufelgitters erarbeitet. Zunächst wird beim Schaufelgitter auf die strömungstechnischen Randbedingungen Bezug genommen und im Nachgang auf Basis dessen die Hauptabmessungen des Plexiglasrahmens erarbeitet.

Abbildung 21 Hauptabmessungen Schaufelgitter 85B45

Anhand der Zeichnung des 85B45 Profils (siehe Abbildung 2) lassen sich folgende Werte entnehmen, die für die gesamte Auslegung des Schaufelgitters relevant sind.

Tabelle	6 Schaut	felgitterau	slegung:	Relevante	Abmessungen

Abmessung	Werte
Metallwinkel Zuströmung	$\alpha_1 = 28,8^{\circ}$
Metallwinkel Abströmung	$\alpha_2^+ = 24,2^{\circ}$
Schaufelbreite	b = 85 mm

3.2.1 Schaufelgitterteilung

Wie in Abschnitt 2.1.1 beschrieben, ist ein wichtiges Maß des Schaufelgitters die Schaufelgitterteilung t. Diese wird mittels der Metallwinkel und der Schaufelbreite unter der Verwendung des Zweifel-Kriteriums berechnet.

$$t_{opt} = \frac{b \cdot \psi_T}{2 \cdot \sin^2(\alpha_2^+) \cdot (\cot(\alpha_1) + \cot(\alpha_2^+))}$$
$$t_{opt} = \frac{85 \ mm \cdot 0.8}{2 \cdot \sin^2(24, 2) \cdot (\cot(28, 8) + \cot(24, 2))}$$
$$t_{opt} = 50.03 \rightarrow t_{gew} = 51 \ mm$$

Unter der Berücksichtigung von der zur Verfügung stehenden Fertigungsgenauigkeit wurde für die Schaufelgitterteilung t = 51 mm gewählt. Bei insgesamt 13 zur Verfügung stehenden Schaufeln des Profils 85b45 ergibt sich hierbei eine minimale Höhe des Schaufelgitters von 612 mm.

3.2.2 Hauptabmessungen Plexiglasrahmen

Wie in Abschnitt 2.1.2 beschrieben, werden die Hauptabmessung durch die Abmessungen der Messwiege, Abmessungen des Montagewinkels, und den Abstand der Messebene bestimmt. Die Höhe H des Plexiglasrahmens wird mit 780 mm definiert, was den bereits vorhandenen Plexiglasrahmen anderer Schaufelgitter im Windkanal entspricht. Dieses Maß orientiert sich an den möglichen Platz auf der Montagefläche der Messwiege des Windkanals. Das Schaufelgitter wird hierbei mittig in den Plexiglasrahmen positioniert. Die Breite B der Plexiglasplatte wird hingegen anhand wichtiger Überlegungen in Bezug auf den Montagewinkel, Sichtbarkeit des Schaufelprofils und dem Abstand der Messebene definiert.

In Abbildung 21 sind die Hauptabmessungen für die Auslegung der Breite definiert. Diese Werte sind in Tabelle 7 ersichtlich.

Abmessung	Werte
Abstand Kante Links bis Schaufel	x = 40 mm
Schaufelbreite	b = 85 mm
Plexiglasbreite	B = 135 mm
Abstand Kante rechts bis Messebene	$\Delta x = 12 \ mm$
Plexiglashöhe	H = 780 mm

Tabelle 7 Hauptabmessungen Plexiglasrahmen

Der Abstand der linken Kante bis zur Schaufel wurde durch die Breite des Montagewinkels vorgegeben, welcher eine Breite von ca. 35 mm aufweist. Aus ästhetischen Gründen wurde dann ein Abstand von 40 mm gewählt. Für die

TU Bibliotheks Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar WIEN Vourknowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

29

Plexiglasbreite wurde ein Wert von 135 mm, unter der Berücksichtigung der Schaufelbreite sowie des Kantenabstands zur Schaufel (x + b = 125 mm) und eines frei gewählten Abstands zur rechten Kante von 10 mm, gewählt. Der Abstand der Messebene zur Kante Δx wurde aus dem Messsetup der bereits vorhandenen Schaufelgitter verwendet, um Änderungen des Messsetups beim Wechsel der Schaufelgitter möglichst zu vermeiden. Das Schaufelgitter und der dazugehörige Plexiglaskasten wurde nach der Auslegung der Hauptabmessungen im CAD-Tool PTC Creo Parametrics 3D modelliert. Nach Abschluss des 3D-Modells wurde eine 2D-Zeichnungsausleitung für die Fertigung erstellt, welche aus dem Anhang A zu entnehmen ist.

Abbildung 22 Messwiege (32°) mit montiertem Schaufelgitter – Zuströmkanal

Die maximale Verdrehung der Messwiege ermöglicht hierbei einen Anströmwinkel von 32°. Da der Metallwinkel der Zuströmung bei 28,8° liegt, wird das Schaufelgitter nicht direkt horizontal angeströmt. Wie in Abbildung 22 ersichtlich ist, werden die Schaufelprofile aufgrund der hohen Schiefstellung des Gitters ungleichmäßig angeströmt. Dies kann zu einer Asymmetrie der Messergebnisse bei den einzelnen Profilen führen. Zudem kommen unterschiedliche Randeffekte bei den äußeren Schaufeln zu tragen, weshalb lediglich die Schaufeln 3 bis 11 für die Abströmungsmessung verwendet werden, um eine valide Vergleichbarkeit der Messergebnisse zu gewährleisten. In Abbildung 23 ist das gefertigte und das am Windkanal montierte Schaufelgitter ersichtlich.

Abbildung 23 Eingebautes Schaufelgitter im Windkanal

4 Messungen

In diesem Kapitel wird zuerst die Kalibrierung der beiden Messsysteme beschrieben und die erstellten Kalibrierkurven dargestellt. Daraufhin wird auf die durchgeführten Messungen eingegangen und exemplarisch die Messergebnisse der Dreilochsonden-Messung und der Hitzdrahtsonden-Messung von Schaufel 3 dargestellt.

4.1 Kalibrierung

Um eine geeignete Auswertung der Messergebnisse zu erhalten, ist vor der Durchführung der Messungen eine Kalibrierung des Messsystems notwendig. Hierbei wurde für die Dreilochsonde eine Kalibrierung im Freistrahl Windkanal des Labors der TU Wien und für das Hitzdrahtanemometer eine Kalibrierung mit der vom Messystem DANTEC mitgelieferten Flow Unit.

4.1.1 Kalibrierung Dreilochsonde

Für die Kalibrierung der Dreilochsonde wird der Freistrahlwindkanal des Instituts herangezogen. Wie in Abbildung 24 ersichtlich, besteht das Herzstück des Freistrahlwindkanals aus einem 50 kW Gleichstrommotor, der einen SIROCCO Z 10 HD 86 Radialventilator mit einem Laufraddurchmesser von 884 mm antreibt. Der hierbei mögliche geförderte Volumenstrom beträgt 10800 $\frac{m^3}{h}$. Nach dem Radialventilator ist ein Diffusor mit einem Öffnungswinkel von 5,7° nachgeschaltet, welcher die Strömung abbremst und eine Querschnittswechsel von einem Rechteck in einen Kreis verursacht. Um eine über den Querschnitt möglichst homogene Turublenz zu ermöglichen ist nach dem Diffusor ein Turbulenzsieb geschaltet. Nach dem Turbulenzsieb befindet sich eine Beruhigungsstrecke von ca. 2 m und einem Durchmesser von 1 m, welche am Ende in eine Düse mit einem Durchmesser von 120 mm mündet.

Abbildung 24 Freistahlwindkanal [8]

Mithilfe einer im Gierwinkel $\Delta\beta$ und Nickwinkel Δy verstellbaren Haltevorrichtung wird die zu kalibrierende Dreilochsonde stromabwärts vor der Düse eingespannt (siehe Abbildung 25).

Abbildung 25 Einspannung der Dreilochsonde vor der Düse für die Kalibrierung [8]

Abbildung 26 Darstellung des Geschwindigkeitsvektors auf die Gier- und Nickebene für die Kalibrierung [8]

Bei einem vorgegebenen Nickwinkel von $\Delta \gamma = 0^{\circ}$ und einem Abstand zum Strömungsaustritt der Düse von x = 130 mm wird die Dreilochsonde mit einer

Verstellung des Gierwinkels $\Delta\beta$ von jeweils 5° zwischen - 30° und + 30° in die Strömung ausgerichtet. Anhand der Druckmessungen in den drei Bohrungen in der Dreilochsonde können mithilfe der vorgegebenen Gierwinkel und der eingestellten Strömungsgeschwindigkeit von ca. 61 $\frac{m}{s}$ ($Re_d = 9600$) die Kalibrierkoeffizienten Richtungskoeffizient k_β , Totaldruck Koeffizient k_t und Statischer Druck Koeffizient k_s in Abhängigkeit des Gierwinkels $\Delta\beta$ bestimmt werden.

Die Betriebsgrößen für diese Kalibrierung sind in Tabelle 8 ersichtlich.

p_u	t _u	n _{motor}	Δγ	x	d	W	<i>Re</i> _d
983,2 mbar	20,9 ° <i>C</i>	$1250\frac{1}{min}$	0°	130 mm	2,4 mm	$61\frac{m}{s}$	9600

Tabelle 8 Betriebsgrößen Kalibrierung SVUSS Dreilochsonde

Die Kalibrierungsergebnisse sind grafisch in Abbildung 27 und tabellarisch in Tabelle 15 ersichtlich.

SVUSS Dreilochsonde, Re = 9600

Abbildung 27 Kalibrierkurve SVUSS Dreilochsonde, Re_d = 9600

4.1.2 Kalibrierung Hitzdrahtanemometer

Für die Kalibrierung der Hitzdrahtsonde wird die vom Messystem DANTEC mitgelieferte Flow Unit verwendet. Die Flow Unit hat den Vorteil, dass sie geringe Schwankungen in der Strömungstemperatur aufweist und bei einen großen Geschwindigkeitsbereich von wenigen cm/s bis zu 100 m/s eine hohe Genauigkeit der eingestellten Strömungsgeschwindigkeit besitzt. Die Freistrahlgeschwindigkeit der Flow Unit wird über den Druckabfall beim Düsenaustritt ermittelt. Dieser Freistrahl zeichnet sich durch einen geringen Turbulenzgrad (< 0,2 %) aus. Über ein 7 bar Druckluftnetz des Labors des Instituts und einem dazugeschalteten Feinstaubfilter wird die Flow Unit mit Luft versorgt. [1]

Abbildung 28 Kalibrierung Hitzdrahtanemometer DANTEC Flow Unit [1]

Bei der Kalibrierung ist besonders darauf zu achten, dass die Hitzdrahtsonde mittig positioniert ist, um einen Einfluss der Messung durch Turbulenzen in der Grenzschicht zu vermeiden. Zusätzlich ist zu beachten, dass die Sonde möglichst senkrecht zur Strömungsrichtung positioniert wird, da bei der 1-Drahtsonde die Richtungseinflüsse der Strömung bei der Messung nicht berücksichtigt werden.

Bei vorgegebenen Strömungsgeschwindigkeiten *U* mit verschiedenen Intervallen zwischen 0 und 100 $\frac{m}{s}$ wird dann die Brückenspannung *E* gemessen. Die Kalibrierergebnisse werden dann auf eine Funktion überlagert.

Die Kalibrierungsergebnisse der Hitzdrahtsonde sind grafisch in Abbildung 29 und tabellarisch in Tabelle 16 ersichtlich.

Kalibrierkurve Single-Sonde DANTEC 55P11

Abbildung 29 Kalibrierkurve Single-Sonde DANTEC 55P11 Hitzdrahtanemometer

4.2 Durchführung der Messungen

Nachdem das Schaufelgitter an der Messwiege erfolgreich montiert und die Kalibrierung der Messinstrumente abgeschlossen ist, erfolgt die Messung des Strömungsfeldes der Abströmung des Turbinengitters mit den zwei Messonden.

Der Abstand zwischen der Messebene und der Abströmungskante des Schaufelgitters x beträgt 22 mm. Die Messung des Strömungsfeldes wird an Schaufel 3 bis Schaufel 11 mit einer Schrittweite von 1,5 mm durchgeführt. In Abbildung 30 ist exemplarisch die Messung der Abströmung des Schaufelgitters dargestellt. Die Teilung t beträgt hierbei 51 mm.

Bei einer Schaufelgitterteilung t = 51 mm und einer Schrittweite von $\Delta y = 1,5 mm$ wird das Strömungsfeld einer Schaufelgitterteilung mit insgesamt 35 Messpunkten n_t vermessen.

$$n_t = \frac{t}{\Delta y} + 1 = \frac{51 \ mm}{1.5 \ mm} + 1 = 35$$

Bei der Anzahl der gemessenen Schaufeilteilungen $i_t = 9$ ergeben sich somit insgesamt 307 Messpunkte.

$$n_{ges} = i_t \cdot \frac{t}{\Delta y} + 1 = 9 \cdot \frac{51 \ mm}{1.5 \ mm} + 1 = 307$$

Bei der Vermessung einer Schaufelteilung fährt die jeweilige Messsonde in der Messebene von der Druckseite (oberes $\frac{t}{2}$) über die Abströmkante weiter zur Saugseite (unteren $\frac{t}{2}$). Das vermessene Strömungsfeld der jeweiligen Schaufeln ist in Abbildung 30 mit den jeweiligen Schaufelnummern (3, 4, ..., 11) gekennzeichnet.

Der Zuströmwinkel $\beta_1 = 32^{\circ}$ entspricht hier dem maximalen Neigungswinkel der Messwiege. Beide Sonden werden in der Messebene möglichst in Abströmungsrichtung ausgerichtet (siehe Abbildung 30). Diese Messung unterliegt der Annahme, dass die Richtung der erwarteten Abströmung gleich dem Metallwinkel entspricht. Hierbei wird bei einem Metallwinkel der Abströmung von $\alpha_2 = 24,2^{\circ}$ ein Sondenwinkel $\beta_{2,rel}^+$ von 25° verwendet.

Mithilfe der Dreilochsondenmessung kann in der Messauswertung dann der tatsächliche Abströmwinkel bestimmt werden. Da die Hitzdrahtsondenmessung nach der Dreilochsondenmessung erfolgt, kann der Sondenwinkel $\beta_{2,rel}^+$ für die Hitzdrahtsondenmessung dem gemessenen Abströmwinkel angepasst werden, insofern eine Abweichung zum Sondenwinkel $\beta_{2,rel}^+$ von 25° herrscht.

4.3 Messergebnisse

Für jede gemessene Teilung (Messreihe) wird jeweils eine dat-Datei von dem Messsystem erzeugt. Diese Datei enthält Messwerte aus der Messgeometrie, der Zuund Abströmung, welches einem vordefinierten Format entspricht.

Das	Dateiformat	der Dreiloch	hsonden-Mess	ung ist in	Tabelle 9	dargestellt.
				5		5

Messreihe	β_1 [°]	LEER	LEER	LEER	LEER
p_u [Pa]	t_u [°C]	$w_1[\frac{m}{s}]$	LEER	LEER	LEER
$p_{t1} - p_u [Pa]$	$p_{s1} - p_u [Pa]$	t_1	LEER	LEER	LEER
x	Ζ	$\beta_{2,rel}^+$	LEER	LEER	LEER
d	а	δ	LEER	LEER	LEER
$p_1 - p_{11} [Pa]$	$p_2 - p_{\mu} [Pa]$	$p_2 - p_{\mu} [Pa]$	RMS_{n1-nu} [Pa]	$RMS_{n^2-n^2}$ [Pa]	RMS_{n3-ny} [Pa]

Tabelle 9 Messreihe Dreilochsonde Dateiformat

Für jeden Messpunkt der Dreilochsonde werden zusätzlich automatisch die Root-Mean-Square Fehler (RMS_{pi-pu}) aufgezeichnet. Die Messfehler für den Totaldruck und statischen Druck der Zuströmung werden während der Messung per Hand aufgezeichnet.

Das Dateiformat der Hitzdrahtsonden-Messung ist in Tabelle 10 dargestellt.

Tabelle 10 Messreihe Hitzdrahtsonde Dateiformat

y [mm]	0	0	$W_2\left[\frac{m}{s}\right]$	$RMS_{w2}\left[\frac{m}{s}\right]$	$T_U[\%]$

Für jeden Messpunkt der Hitzdrahtsonde wird direkt für jede Messposition y die Abströmungsgeschwindigkeit w_2 direkt über die Kalibrierkurve ausgewertet, der dazugehörige Root-Mean-Square (RMS_{w2}) und der Turbulenzgrad T_U aufgezeichnet. Der Root-Mean-Square RMS_{w2} gibt hierbei über die turbulenten Schwankungen bei der Hitzdrahtsonde Auskunft.

Ein Beispiel der Messergebnisse für die Schaufel 3 ist in den Tabelle 11 und Tabelle 12 dargestellt. Alle Messergebnisse sind dem Anhang B zu entnehmen.

16062001	32				
989,8	23,0	41,36			
2386	1406	32,2			
22	75	25			
2,4	1,6	30			
2347,1	844,24	516,55	9,97	7,2	6,01
2324,85	835,26	518,07	9,35	5,36	5,96
2305,37	828,9	520,14	9,18	6,27	5,68
2267,36	818,67	522,49	7,25	5,22	6,44
2236,12	809,27	519,87	8,81	4,63	4,42
2188,86	798,91	521,66	8,09	6,28	4,73
2148,92	784,67	515,72	6,58	5,75	4,55
2090,87	778,31	506,32	6,61	5,34	4,95
2041,11	768,64	491,81	8,26	5,59	5,52
1986,66	762,01	476,33	5,67	4,75	5,6
1938,56	763,39	461,54	5,84	5,75	4,84
1914,38	767,53	440,54	5,08	4,45	5,85
1887,98	777,07	420,08	5,63	6,75	5,59
1889,36	786,19	403,22	5,8	5	5,65
1890,05	804,85	390,78	6,4	6,39	5,58
1908,57	816,18	381,11	6,9	5,92	4,99
1953,63	829,87	371,57	11,08	4,85	5,72
1990,94	846,17	366,46	6,4	7,95	5,27
2039,59	861,1	361,76	7,22	6,88	5,65
2103,17	867,87	363,83	11,54	6,67	5,59
2140,35	878,38	366,46	8,06	5,58	4,88
2203,51	882,52	373,37	10,7	6,7	4,88
2252,29	882,8	383,32	12,8	5,68	5,58
2294,17	869,25	391,33	6,28	7,39	5,34
2324,99	863,59	402,11	7,82	7,01	6,31
2330,93	857,37	411,51	10,81	6,27	5,92
2349,45	850,6	420,36	9,29	5,42	6
2355,81	845,34	430,86	7,12	6,65	4,91
2352,36	839,26	433,21	10,93	6,46	5,17
2359,82	839,26	440,67	6,16	7,7	6,52
2362,58	839,12	442,06	8,25	5,73	5,26
2349,73	835,95	454,22	7,15	4,46	4,69
2346,28	835,26	456,98	7,05	6,21	5,39
2341,16	834,15	463,48	8,15	4,63	6,11
2329	834,84	464,44	7,29	5,08	6,13

Tabelle TT Schauler S Messwerte Drenochsonue	Tabelle 11	Schaufel 3	Messwerte	Dreilochsonde
--	------------	------------	-----------	---------------

0	0	0	65 264	2 2 2	2 5 5 5
15	0	0	64.064	2,32	3,000
1,5	0	0	64,964	2,291	3,527
3	0	0	64,41	2,71	4,208
4,5	0	0	64,108	2,802	4,37
6	0	0	63,381	2,96	4,67
7,5	0	0	62,397	3,392	5,436
9	0	0	61,59	3,334	5,414
10,5	0	0	60,342	3,354	5,559
12	0	0	60,317	3,5	5,803
13,5	0	0	59,799	3,263	5,457
15	0	0	59,302	3,206	5,406
16,5	0	0	58,997	3,353	5,684
18	0	0	58,902	3,361	5,707
19,5	0	0	58,802	3,461	5,885
21	0	0	59,281	3,573	6,027
22,5	0	0	59,784	3,737	6,25
24	0	0	60,125	3,904	6,493
25,5	0	0	61,309	3,97	6,475
27	0	0	62,22	3,752	6,03
28.5	0	0	63,462	3,676	5,793
30	0	0	64,031	3,582	5,595
31.5	0	0	64,451	3,154	4,894
33	0	0	65,182	2.925	4.487
34.5	0	0	66,109	2.198	3.324
36	0	0	66.411	2.151	3.238
37.5	0	0	66.617	1.835	2.755
39	0	0	66.617	1.73	2.597
40.5	0	0	66.768	1.698	2.544
42	0	0	66.643	1.482	2.224
43.5	0	0	67.086	1.627	2.426
45	0	0	66.276	1.589	2.397
46.5	0	0	66.639	1,608	2,412
48	0	0	66 852	1,500	2 352
49.5	0	0	66,324	1.96	2,955
51	0	0	65.66	2 105	3 206
51	U	0	00,00	2,105	3,∠00

Tabelle 12 Schaufel 3 Messwerte Hitzdrahtsonde

5 Auswertung & Diskussion

In diesem Kapitel werden die Auswertungsergebnisse der Dreilochsonden-Messung, dann die der Hitzdrahtsonden-Messung präsentiert und abschließend beide Messungen miteinander verglichen.

5.1 Dreilochsonden-Messung

Für die Dreilochsonden-Messung fällt eine große Menge an Auswertungsgrößen an. Nachfolgenden in Bestimmung Diese Größen lassen sich im die der Abströmungsgeschwindigkeit und -Winkel, den Kenngrößen und der Gradientenkorrektur unterteilen. In den nachstehenden Auswertungen werden die Ergebnisse von Schaufel 3, Schaufel 7 und Schaufel 11 verglichen.

5.1.1 Bestimmung lokaler Abströmungsgrößen

Abbildung 31 Statischer Druck Abströmung - Schaufel 3, 7 und 11

In Abbildung 31 ist der Verlauf des ermittelten statischen Drucks $(p_{s2} - p_u)$ über die Schaufelgitterteilung dargestellt. Der Betrag des gemessenen statischen Druckbereichs liegt bei Schaufel 3 zwischen 44 und 165 Pa, bei Schaufel 7 zwischen 3 und 89 Pa und Schaufel 11 zwischen -28 und 89 Pa.

Die Schwankungen des statischen Drucks über die Schaufelteilung entstehen zufolge den Schwankungen des Potentialfeldes. Hierbei fällt besonders auf, dass auf der Höhe der Ablösekante, diese Schwankungen am höchsten sind. Die Erhöhung des statischen Drucks in diesem Bereich führt zu einer Verringerung der Strömungsgeschwindigkeit.

Der qualitative Verlauf des statischen Drucks ist allen 3 Schaufeln ähnlich. Es ist ein signifikanter Anstieg des statischen Drucks, der sein Maximum ca. in der Mitte der Teilung findet zu verzeichnen. Nach dem Maximum fällt der Druck stetig und findet ca. auf 2/3 Länge der Saugseite (rechte Teilung) sein Minimum.

Es ist ersichtlich, dass Schaufel 7 und 11 einen ähnlichen Verlauf auf der Druckseite (linke Teilung) aufweisen. Am Grenzbereich der Druckseite (-t/2) ist besonders zu erwähnen, dass die Werte des statischen Drucks von Schaufel 7 und 11 nah zum Umgebungsdruck sind. Die Verteilung von Schaufel 3 hingegen unterscheidet sich zu Schaufel 7 und 11 und ist in dieser Betrachtung nicht repräsentativ.

Es ist auch anzumerken, dass an der äußeren Schaufel 11 auf der Saugseite (rechte Teilung) ein negativer statischer Druck entsteht, was einen Saugeffekt zwischen der Umgebung und der Abströmung herbeiführt. Dieser Saugeffekt kann zu einer höheren Geschwindigkeitskomponente bei der Schaufel 11 im Vergleich zu den anderen Schaufelpositionen führen.

Abbildung 32 Totaldruck Abströmung - Schaufel 3, 7 und 11

In Abbildung 32 ist der Verlauf des ermittelten Totaldruck $(p_{t2} - p_u)$ über die Schaufelgitterteilung dargestellt. Der Betrag des gemessenen Totaldruckbereichs liegt bei Schaufel 3 zwischen 1899 und 2366 Pa, bei Schaufel 7 zwischen 1832 und 2319 Pa und Schaufel 11 zwischen 1812 und 2350 Pa.

Der qualitative Verlauf des Totaldrucks ist allen drei Schaufeln ähnlich. An den Randbereichen ist der Totaldruck am höchsten. Es tritt ein Minimum des Totaldrucks ca. in der Mitte der Schaufelgitterteilung auf. Jedoch ist ein deutlicher Drift der Position des lokalen Minimums von der Druckseite (linke Teilung) Richtung Teilungsmitte bei den Schaufeln zu erkennen. Das lokale Minimum von Schaufel 3 ist am weitesten von

der Mitte der Teilung entfernt, wo hingegen das lokale Minimum von Schaufel 11 nahezu in der Teilungsmitte der Schaufel liegt.

An den Randbereichen der Druck- und Saugseite weist der Totaldruck von den äußeren Schaufeln (3 und 11) einen sehr ähnlichen Wert auf. Die mittlere Schaufel hingegen weicht hierbei von den äußeren Schaufeln an den Randbereichen unterschiedlich ab. Es ist zu sehen, dass die Differenz am Randbereich der Saugseite (ca. 90 Pa) um 3-mal höher als die Differenz am Randbereich der Druckseite (ca. 30 Pa) ist. Dies deutet darauf hin, dass die Geschwindigkeitskomponente am Randbereich der Saugseite von Schaufel 7 im Vergleich zu den anderen Schaufeln am geringsten sein wird.

Abbildung 33 Abströmungsgeschwindigkeit - Schaufel 3, 7 und 11

In Abbildung 33 ist der Verlauf der ermittelten Abströmungsgeschwindigkeit w_2 über die Schaufelgitterteilung dargestellt. Der Betrag der gemessenen Abströmungsgeschwindigkeit liegt bei Schaufel 3 zwischen 54,8 und 63,6 m/s, bei Schaufel 7 zwischen 55,1 und 63,4 m/s und Schaufel 11 zwischen 55,0 und 64,5 m/s.

Das betrachtete Geschwindigkeitsprofil weist Geschwindigkeitsgradienten auf.Der in der Schaufelteilungsmitte vorherrschende Nachlaufdelle lässt sich auf die Ablösekante des Profils zurückführen, da hier die Grenzschichten von der Druck- und Saugseite zusammenlaufen.

Der qualitative Verlauf der Abströmungsgeschwindigkeit ist allen drei Schaufeln ähnlich und gleicht dem des oben beschriebenen Totaldrucks. Was besonders auffällt ist, dass lokale Minimum bei allen drei Schaufeln einen ähnlichen Betrag von ca. 55 m/s entspricht. Wie bei der Totaldruckverteilung herrscht hier nach wie vor die beschriebene Drift auf der Druckseite in Richtung der Mitte der Schaufelteilung.

Am Randbereich auf der Druckseite (linke Teilung) ist zu erkennen, dass der Betrag der Geschwindigkeit von Schaufel 3 bis Schaufel 11 ansteigt. Die im Vergleich zu den anderen Schaufeln geringere Geschwindigkeitskomponente ist durch den großen statischen Druckanteil bei dieser Schaufelmessung zu erklären. Aus diesem Grund verzeichnet im Randbereich auf der Saugseite (rechte Teilung) die Schaufel 11 einen erhöhten Wert, da dort ein negativer statische Druck herrscht. Ebenso ist bei Schaufel 7 ein Knick aus der statischen Druckmessung zu sehen, was zu einer geringen Geschwindigkeitskomponente führt.

Unter der Berücksichtigung der Druckverläufe des statischen und Totaldruck-Anteils lässt sich erkennen, dass bei dieser Messung der Verlauf des Totaldrucks eine führende Rolle für das Geschwindigkeitsprofil hat und dass der statische Anteil in gewissen Nuancen dessen Betrag beeinflusst.

Abbildung 34 Abströmungswinkel - Schaufel 3, 7 und 11

In Abbildung 34 ist der Verlauf des ermittelten Abströmungswinkel β_2 über die Schaufelgitterteilung dargestellt. Der Betrag des gemessenen Abströmungswinkelbereichs liegt bei Schaufel 3 zwischen 21,3° und 24,4°, bei Schaufel 7 zwischen 21,8° und 24,5° und Schaufel 11 zwischen 21,8° und 24,8°.

Es ist zu erkennen, dass der Verlauf des lokalen Minimums des Abströmungswinkels einen ähnlichen Drift aufweist, wie bei der Auswertung der Abströmungsgeschwindigkeit. Jedoch ist hier der Drift von der Saugseite (rechte Teilung) und nicht – wie zuvor – bei der Druckseite (linke Teilung). Hierbei ist das lokale Minimum bei Schaufel drei am nächsten zur Mitte der Schaufelgitterteilung.

Ausgehend von der Druckseite steigt der Abströmungswinkel geringfügig an. In der Nähe der Nachlaufkante ist nahezu eine sprunghafte Änderung des Abströmungswinkel zu verzeichnen, welcher sich auf die Druckänderung zwischen Druck- und Saugseite zurückzuführen ist. Dies Abströmungswinkel-Schwankung lässt sich auf die dicke Hinterkante des Profils zurückführen.

5.1.2 Kenngrößen

Mithilfe der ermittelten Abströmungsgeschwindigkeit und dem Abströmungswinkel lassen sich noch weitere Kenngrößen bestimmen, die eine bessere Vergleichbarkeit von Messungen ermöglichen.

Abbildung 35 Sondenreynoldszahl - Schaufel 3, 7 und 11

In Abbildung 35 ist der Verlauf der ermittelten Sondenreynoldszahl Re_d über die Schaufelgitterteilung dargestellt. Der Betrag des ermittelten Sondenreynoldszahlbereichs liegt bei Schaufel 3 zwischen 8,1 10³ und 9,4 10³, bei Schaufel 7 zwischen 8,2 10³ und 9,4 10³ und Schaufel 11 zwischen 8,1 10³ und 9,5 10³.

Die tatsächliche Sondenreynoldszahl ist etwas geringer als bei der Kalibrierung der Dreilochsonde ($Re_{d,kalb} = 9600$). Dies kann zu Abweichungen der Auswertungsergebnisse führen. Bei einer weiteren Messung mit der Dreilochsonde ist eine Kalibrierung mit einer geringeren Reynoldszahl (ca. 9000) durchzuführen.

Beim Betrachten des Verlaufs der Sondenreynoldszahl fällt auf, dass dieser qualitativ dem der Abströmungsgeschwindigkeit w_2 in Abbildung 33 ähnelt. Dies liegt daran, dass neben dem Einfluss der Abströmungsgeschwindigkeit bei der Berechnung der

jeweiligen Reynoldszahl bei einer inkompressiblen Strömung lediglich die kinematische Viskosität - welche temperaturbedingt nur gering abweicht - und die charakteristische Länge d einfließen und diese Größen nahezu konstant sind.

Abbildung 36 Profilverlustbeiwert - Schaufel 3, 7 und 11

In Abbildung 36 ist der Verlauf des ermittelten Totaldruckverlustbeiwerts ζ_p über die Schaufelgitterteilung dargestellt. Der Betrag des ermittelten Totaldruckverlustbeiwert liegt bei Schaufel 3 zwischen 0,02 und 0,49, bei Schaufel 7 zwischen 0,04 und 0,52 und Schaufel 11 zwischen 0,01 und 0,55.

Beim Betrachten des Verlaufs des Totaldruckverlustbeiwerts ζ_p fällt auf, dass an den beiden Enden der Schaufelgitterteilung der Totaldruckverlustbeiwert nahezu Null entspricht. Hier ist die Strömung demnach ungestört, da hier keine benetzte Oberfläche auftritt und die Profiloberfläche weit genug entfernt ist, um einen Einfluss auf die Strömung zu haben. Der Totaldruckverlustbeiwert steigt in Richtung der Teilungsmitte stetig an und findet dort sein Maximum. Das liegt daran, weil das die Anströmung direkt am Profil ihre größten Umlenkungen erfährt und dadurch erhöhte Ablöse- und Reibungsverluste entstehen. Ebenso fallen hier die Grenzschichten zwischen Druck- und Saugseite zusammen.

Wie im Totaldruckverlauf p_{t2} ist hier ein Drift des lokalen Maximums zu sehen, welches auf der Druckseite (linke Teilung) sich von Schaufel 3 bis Schaufel 11 stetig in Richtung Teilungsmitte bewegt.

5.1.3 Gemittelte Größen und AVDR

In den nachfolgenden Abbildungen sind die teilungsgemittelten Werte vom statischen Druck, Totaldruck, Abströmungsgeschwindigkeit, Abströmungswinkel, und der Axialstromdichteverhältnis AVDR und die Profilreynoldszahl dargestellt.

gemittelter statische Druck $(\overline{p}_{s2} - p_u)$

Abbildung 37 gemittelter statische Druck - Schaufel 3 bis 11

In Abbildung 37 sind die gemittelten statischen Drücke $(\bar{p}_{s2} - p_u)$ von jeder Schaufelgitterteilung gegenübergestellt. Der Betrag des gemittelten statischen Drucks liegt zwischen 32 und 102 Pa.

Beim Betrachten der Ergebnisse fällt auf, dass der Betrag des statischen Drucks mit steigender Schaufelnummer sinkt. Dies lässt sich auf die Schiefstellung der Messwiege (siehe Abbildung 22) zurückführen.

gemittelter Totaldruck $(\overline{p}_{t2} - p_u)$

Abbildung 38 gemittelter Totaldruck - Schaufel 3 bis 11

In Abbildung 38 sind die gemittelten Totaldrücke $(\bar{p}_{t2} - p_u)$ von jeder Schaufelgitterteilung gegenübergestellt. Der Betrag des gemittelten Totaldrucks liegt zwischen 2186 und 2097 Pa.

Beim Betrachten der Ergebnisse fällt auf, dass der Betrag des Totaldrucks bei den oberen 4 Schaufeln (3 bis 6) relativ ähnlich bleibt. Die zwei mittleren Schaufeln (7 bis 8) weisen in dieser Betrachtung den geringsten Totaldruck auf, wobei dieser wieder bis zur Schaufel 11 ansteigt.

gemittelte Abströmungsgeschwindigkeit

Abbildung 39 gemittelte Abströmungsgeschwindigkeit – Schaufel 3 bis 11

In Abbildung 39 sind die gemittelten Abströmungsgeschwindigkeiten \overline{w}_2 von jeder Schaufelgitterteilung gegenübergestellt. Der Betrag der gemittelten Abströmungsgeschwindigkeit liegt zwischen 59,8 und 60,9 m/s.

Beim Betrachten der Ergebnisse fällt auf, dass der Betrag der Abströmungsgeschwindigkeit bei den oberen 4 Schaufeln (3 bis 6) stetig ansteigt. Dies ist durch das stetige Sinken des statischen Druckanteils und der relativ gleichbleibenden Totaldruckkomponente bedingt.

Die Schaufeln 7 bis 11 weisen hier eine ähnliche Verteilung der Abströmungsgeschwindigkeit wie der Totaldruck auf, da hier die statischen Druckkomponenten relativ gleichbleibend sind.

gemittelter Abströmungswinkel

Abbildung 40 gemittelter Abströmungswinkel – Schaufel 3 bis 11

In Abbildung 40 sind die gemittelten Abströmungswinkel $\overline{\beta}_2$ von jeder Schaufelgitterteilung gegenübergestellt. Der Betrag des gemittelten Abströmungswinkel liegt zwischen 22,9° und 23,8°.

Für die spätere Hitzdrahtsondenmessung kann demnach ein Sondenwinkel $\beta_{2,rel}^+$ von 23° gewählt werden, um die Einflüsse des Absrömungswinkels bei der eindimensionalen Abströmungsgeschwindigkeitsmessung möglichst gering zu halten.

Beim Betrachten der Ergebnisse fällt auf, dass der Betrag des gemittelten Abströmungswinkel über alle Schaufeln gering ansteigt. Die Strömung erfährt an den unteren Schaufeln also eine geringfügig größere Ablenkung als bei den oberen Schaufeln.

In Abbildung 41 sind die Axialstromdichteverhältnisse (AVDR) von jeder Schaufelgitterteilung gegenübergestellt. Der Betrag des AVDR-Werts liegt zwischen 1,07 und 1,11.

Da der AVDR \neq 1 und zwischen 0,8 \leq AVDR \leq 1,2 liegt handelt es sich hierbei um eine quasizweidimensionale Strömung. Dies bedeutet, dass Kontraktionen der Grenzschichten auftreten. Beim Betrachten des Verlaufs fällt auf, dass das AVDR über die Schaufelnummer ansteigt. Bei den ersten Schaufeln herrscht demnach eine idealere zweidimensionale Strömung als bei den letzten. Dies lässt sich vermutlich auf Schaufelgitters die Schiefstellung des zurückführen, da eventuell eine Wechselwirkung von den oberen Schaufeln in der Anströmung auf das Strömungsprofil der unteren Schaufeln hat.

gemittelte Profilreynoldszahl

Abbildung 42 gemittelte Profilreynoldszahl – Schaufel 3 bis 11

In Abbildung 42 ist die gemittelten Profilreynoldszahl Re_p von jeder Schaufelgitterteilung gegenübergestellt. Der Betrag der gemittelten Profilreynoldszahl liegt zwischen 3,69 10³ und 3,75 10³. Das Profil 85B45 weist demnach eine durchschnittliche Profilreynoldszahl von 3,72 10³ auf.

5.1.4 Gradientenkorrektur

Wie Abbildung 33 Geschwindigkeitsprofil in ersichtlich ist, treten im Geschwindigkeitsgradienten auf, die einen Einfluss auf den ermittelten Abströmungswinkel haben. Daher wird mittels einer Gradientenkorrektur der tatsächliche Abströmungswinkel bestimmt.

Abbildung 43 Dimensionsloser Geschwindigkeitsgradient – Schaufel 3, 7 und 11

In Abbildung 43 ist der Verlauf des dimensionslosen Geschwindigkeitsgradienten dargestellt. Es ist zu sehen, dass auf der Druckseite (linke Teilung) ein negativer Geschwindigkeitsgradient herrscht und auf der Saugseite (rechte Teilung) hingegen ein positiver. Der Wendepunkt des Verlaufs orientiert sich an der Teilungsmitte der Schaufeln.

Die nächsten drei Abbildungen zeigen den Vergleich der Ergebnisse des Abströmungswinkels mit und ohne Gradientenkorrektur bei den Schaufeln 3, 7 und 11.

Abbildung 44 Abströmungswinkel mit und ohne Gradientenkorrektur – Schaufel 3

Abbildung 45 Abströmungswinkel mit und ohne Gradientenkorrektur – Schaufel 7

Abbildung 46 Abströmungswinkel mit und ohne Gradientenkorrektur – Schaufel 11

Beim Betrachten der Abbildungen fällt auf, dass bei allen Schaufeln eine Korrektur auf der Druckseite (linke Teilung) und der Teilungsmitte anfällt. Auf der Saugseite sind geringe Abweichungen zwischen den Werten mit und ohne Gradientenkorrektur zu sehen. Dies liegt daran, dass mit zunehmendem Abstand zur Nachlaufdelle die Geschwindigkeitsgradienten abnehmen, da die Strömung hier ungestörter ist.

Bei dieser Auswertung wurde eine geringe Korrektur des gemessenen Abströmungswinkels erreicht die einen Maximalwert von lediglich +/- 0,3° aufweist.

5.1.5 Auswertungsergebnisse

Eine Übersicht der Auswertungsergebnisse der Dreilochsonden-Messung über alle neun gemessenen Schaufeln ist in Tabelle 13 ersichtlich.

Zuströmung						
Schaufel	<i>t</i> ₁	$(p_{s1}-p_u)$	$(p_{t1} - p_u)$	<i>w</i> ₁	β_1	
[-]	[°C]	[<i>Pa</i>]	[<i>Pa</i>]	$\left[\frac{m}{s}\right]$	[°]	
3	32,2	1406 +/- 20	2386 +/- 15	41,4 +/- 0,5	32,0	
4	32,6	1402 +/- 22	2377 +/- 21	41,3 +/- 0,6	32,0	
5	31,8	1403 +/- 24	2383 +/- 18	41,3 +/- 0,6	32,0	
6	32,2	1392 +/- 19	2369 +/- 20	41,3 +/- 0,6	32,0	
7	31,8	1386 +/- 16	2358 +/- 15	41,2 +/- 0,5	32,0	
8	31,8	1382 +/- 18	2358 +/- 14	41,3 +/- 0,5	32,0	
9	32,0	1373 +/- 19	2353 +/- 21	41,4 +/- 0,6	32,0	
10	32,4	1394 +/- 17	2376 +/- 16	41,4 +/- 0,5	32,0	
11	33,0	1385 +/- 16	2365 +/- 21	41,5 +/- 0,6	32,0	
			Abströmung			
Schaufel	$t_1 = t_2$	$(\overline{p_{s2}} - p_u)$	$(\overline{p_{t2}} - p_u)$	$\overline{w_2}$	$\overline{\beta_2}$	
[-]	[°C]	[<i>Pa</i>]	[<i>Pa</i>]	$\left[\frac{m}{s}\right]$	[°]	
3	32,2	102,4 +/- 1,1	2185,5 +/- 1,4	60,222 +/- 0,031	23,11 +/- 0,07	
4	32,6	77,2 +/- 1,1	2181,7 +/- 1,3	60,603 +/- 0,030	22,93 +/- 0,07	
5	31,8	62,8 +/- 1,2	2182,7 +/- 1,5	60,713 +/- 0,033	22,94 +/- 0,07	
6	32,2	49,3 +/- 1,2	2172,3 +/- 1,4	60,847 +/- 0,031	23,26 +/- 0,07	
7	31,8	38,5 +/- 1,2	2116,9 +/- 1,5	60,144 +/- 0,032	23,52 +/- 0,07	
8	31,8	40,4 +/- 1,2	2096,9 +/- 1,8	59,820 +/- 0,040	23,46 +/- 0,07	
9	32,0	35,7 +/- 1,1	2139,2 +/- 1,5	60,529 +/- 0,031	23,61 +/- 0,07	
10	32,4	42,0 +/- 1,1	2135,7 +/- 1,5	60,384 +/- 0,033	23,49 +/- 0,07	
11	33,0	31,7 +/- 1,1	2156,2 +/- 1,5	60,943 +/- 0,031	23,77 +/- 0,07	

Tabelle 13 Auswertungsergebnisse Dreilochsonden-Messung

Aufgrund der Betrachtung einer inkompressiblen Strömung ($\rho = const$) wird angenommen, dass die Temperatur in der Zu- und Abströmung konstant bleibt. Daher entspricht in dieser Messung die Zuströmungstemperatur t_1 gleich der Abströmungstemperatur t_2 .

Die Fehlerrechnung für die Zuströmung beginnt mit den Abweichungen des gemessenen statischen Drucks $(p_{s1} - p_u)$ und den Totaldrucks $(p_{t1} - p_u)$. Die Abweichungen der Zuströmungsgeschwindigkeit w_1 wurde mithilfe der Gauß'schen Fehlerfortpflanzung bestimmt.

Die Fehlerrechnung für die Abströmung startet mit den Abweichungen der gemessenen Drücke der Sondenlöcher p_1 , p_2 und p_3 . Die Abweichungen des statischen Drucks $(p_{s2} - p_u)$, Totaldrucks $(p_{t2} - p_u)$, der Abströmungsgeschwindigkeit w_2 und dem Abströmungswinkel β_2 wurden mithilfe der Gauß'schen Fehlerfortpflanzung bestimmt. Die Berechnungskette der Abströmungsmessung ist in Abbildung 10 auf Seite 16 ersichtlich

Beim Betrachten der Abweichungen der Abströmungsmessung fällt auf, dass die Beträge geringer als jene der Zuströmungsmessung sind. Dies liegt an der langen verketteten Berechnung der Größen der Abströmung. Hierbei ist jedoch besonders zu beachten, dass bei der linearen Interpolation der Kalibrierkoeffizienten keine Abweichung über die Kalibriermessung angegeben wurde, was die Fehlerrechnung etwas verfälscht.

5.2 Hitzdrahtsonden-Messung

Aufgrund der Erkenntnisse über den Abströmungswinkel bei der Dreilochsonden-Messung wurde für die Messung mit der Hitzdrahtsonde der Sondenwinkel $\beta_{2,rel}^+$ von 25° auf 23° reduziert, um die Einflüsse des Abströmungswinkels bei der eindimensionalen Abströmungsgeschwindigkeitsmessung möglichst gering zu halten.

5.2.1 Bestimmung lokaler Abströmungsgrößen

Für die Hitzdrahtsonden-Messung fallen im Vergleich zu der Dreilochsonden-Messung weniger Auswertungsgrößen an, da die Geschwindigkeit während der Messung bereits über die vorher definierte Kalibrierkurve und der gemessenen Brückenspannung ausgegeben wird. In den nachstehenden Auswertungen werden die Ergebnisse von Schaufel 3, Schaufel 7 und Schaufel 11 verglichen.

In Abbildung 47 ist der Verlauf der gemessenen Abströmungsgeschwindigkeit w_2 über die Schaufelgitterteilung dargestellt. Der Betrag der Abströmungsgeschwindigkeit liegt bei Schaufel 3 zwischen 58,8 und 67,1 m/s, bei Schaufel 7 zwischen 58,6 und 65,9 m/s und Schaufel 11 zwischen 58,2 und 66,8 m/s.

Ebenfalls wie bei der Dreilochsonden-Messung lässt sich bei dem Verlauf der Messergebnisse ein Drift des Minimums an der der Druckseite (linke Teilung) in Richtung der Teilungsmitte erkennen. Das lokale Minimum von Schaufel 3 ist am weitesten von der Mitte der Teilung entfernt, wo hingegen das lokale Minimum von Schaufel 11 nahezu in der Teilungsmitte der Schaufel liegt. Ebenso ist der gemessene Geschwindigkeitsbetrag der mittleren Schaufel (7) am Rand der Saugseite (rechte Teilung) geringer als jener der äußeren Schaufeln (3 und 11).

Abbildung 48 Hitzdrahtsonde: Turbulenzgrad – Schaufel 3, 7 und 11

In Abbildung 48 ist der Verlauf der gemessenen Turbulenzgrads T_w über die Schaufelgitterteilung dargestellt. Der Betrag des Turbulenzgrads liegt bei Schaufel 3 zwischen 2,2 und 6,5 %, bei Schaufel 7 zwischen 2,3 und 6,0 % und Schaufel 11 zwischen 1,9 und 6,3 %.

Die Werte des Turbulenzgrades sind am Rand der Schaufelteilung, sowohl auf der Druck- (linke Teilung) als auch auf der Saugseite (rechte Teilung) ähnlich und liegen zwischen 2 und 4 %. Die Strömung ist am Rand demnach ungestörter.

Beim Betrachten des Verlaufes des Turbulenzgrade fällt auf, dass dieser in Richtung Teilungsmitte auf ca. 6 % ansteigt. Das bedeutet, dass am Strömungsnachlauf nach der Schaufelkante höhere Turbulenzen auftreten. Hier tritt ein Ablösen der Strömung aufgrund der Schubspannungen an der Profiloberfläche auf.

5.2.2 Gemittelte Abströmungsgeschwindigkeit

gemittelte Abströmungsgeschwindigkeit

Abbildung 49 Hitzdrahtsonde: gemittelte Abströmungsgeschwindigkeit – Schaufel 3 bis 11

In Abbildung 49 sind die gemittelten Abströmungsgeschwindigkeiten \overline{w}_2 von jeder Schaufelgitterteilung gegenübergestellt. Der Betrag der gemittelten Abströmungsgeschwindigkeit liegt zwischen 62,1 und 64,4 m/s.

Beim Betrachten der Ergebnisse fällt auf, dass der Betrag der Abströmungsgeschwindigkeit bei den oberen 3 Schaufeln (3 bis 5) und unteren 3 Schaufeln (9 bis 11) sich ca. um 63 m/s einpendelt. Bei den mittleren drei Schaufeln (6 bis 8) ist die Schwankungsbreite etwas höher zwischen den Besagten 62,1 und 64,4 m/s.

5.2.3 Auswertungsergebnisse

Eine Übersicht der Auswertungsergebnisse der Hitzdrahtsonden-Messung über alle neun gemessenen Schaufeln ist in Tabelle 14 ersichtlich.

Zuströmung						
Schaufel	<i>t</i> ₁	$(p_{s1} - p_u)$	$(p_{t1} - p_u)$	<i>w</i> ₁	β_1	
[—]	[°C]	[<i>Pa</i>]	[<i>Pa</i>]	$\left[\frac{m}{s}\right]$	[°]	
3	21,3	2479 +/- 20	1464 +/- 21	41,34 +/- 0,59	32	
4	20,7	2482 +/- 18	1460 +/- 17	41,44 +/- 0,50	32	
5	20,5	2478 +/- 21	1464 +/- 14	41,27 +/- 0,51	32	
6	20,3	2478 +/- 19	1456 +/- 18	41,23 +/- 0,52	32	
7	20,3	2483 +/- 19	1462 +/- 20	41,39 +/- 0,55	32	
8	20,3	2475 +/- 18	1462 +/- 18	41,23 +/- 0,51	32	
9	20,1	2480 +/- 13	1461 +/- 21	41,32 +/- 0,50	32	
10	20,1	2475 +/- 17	1460 +/- 21	41,26 +/- 0,54	32	
11	20,1	2470 +/- 21	1466 +/- 22	41,02 +/- 0,62	32	
		,	Abströmung			
Schaufel	$t_1 = t_2$	$(\overline{p_{s2}} - p_u)$	$(\overline{p_{t2}} - p_u)$	$\overline{W_2}$	β ₂	
[-]	[°C]	[<i>Pa</i>]	[<i>Pa</i>]	$\left[\frac{m}{s}\right]$	[°]	
3	21,3	-	-	63,51	23	
4	20,7	-	-	63,49	23	
5	20,5	-	-	63,39	23	
6	20,3	-	-	64,37	23	
7	20,3	-	-	62,75	23	
8	20,3	-	-	62,08	23	
9	20,1	-	-	62,94	23	
10	20,1	-	-	62,97	23	
11	20,1	-	-	63,38	23	

Aufgrund der Betrachtung einer inkompressiblen Strömung ($\rho = const$) wird angenommen, dass die Temperatur in der Zu- und Abströmung konstant bleibt. Daher entspricht in dieser Messung die Zuströmungstemperatur t_1 gleich der Abströmungstemperatur t_2 .

5.3 Vergleich Geschwindigkeitsmessung Dreilochsonde und Hitzdrahtsonde

Nachstehend wird der Verlauf der Abströmungsgeschwindigkeit exemplarisch an Schaufel 7 von den zwei Messreihen der Dreilochsonde und Hitzdrahtsonde verglichen und die gemittelte Abströmungsgeschwindigkeit von Schaufel 3 bis 11 bei den beiden Messungen gegenübergestellt.

Abbildung 50 Vergleich Abströmungsgeschwindigkeit Schaufel 7 – Dreilochsonde und Hitzdrahtsonde

Beim Betrachten des Verlaufs der Messergebnisse mit beiden Messinstrumenten in Abbildung 50 fällt auf, dass sich dieser über die Teilung sehr ähnlich verhält. Auch das lokale Minimum ist ca. an der gleichen Stelle der Teilungsmitte. Lediglich beim Betrag der Abströmungsgeschwindigkeit fällt auf, dass die Hitzdrahtsonden-Messung einen um ca. 2,5 m/s höheren Wert angibt als jener der Dreilochsonden-Messung.

Der Grund für diese Abweichung kann an den Temperaturunterschieden bei den beiden Messungen liegen. Bei der Dreilochsonden-Messung herrschte Lufttemperatur von ca. 32 °C und bei der Hitzdrahtsondenmessung lag diese bei ca. 20 °C. Ebenso gibt es einen Temperaturunterschied zwischen der Kalibrierung der Hitzdrahtsonde (23 °C) und der eigentlichen Messung (21 °C) der auch sich auf das Messergebnis auswirken kann, da Hitzdrahtsonden eine Temperaturempfindlichkeit aufweisen.

Abbildung 51 Vergleich gemittelte Abströmungsgeschwindigkeit Schaufel 3 bis 11– Dreilochsonde und Hitzdrahtsonde

Beim Vergleich der gemittelten Abströmungsgeschwindigkeit von Schaufel 3 bis 11 von beiden Messungen in Abbildung 51 fällt ebenfalls wie oben genannt auf, dass sich der Betrag im Schnitt um ca. 3 m/s zwischen der Dreilochsonden-Messung und der Hitzdrahtsonden-Messung unterscheidet. Ebenfalls ist hier anzumerken, dass sich bei der Dreiloch-Sondenmessung die gemittelte Abströmungsgeschwindigkeit bei 60 m/s mit einer geringen Abweichung einpendelt. Bei der Hitzdrahtsonden-Messung hingegen sind in den mittleren Schaufeln (6 bis 8) höhere Schwankungen im Vergleich zu den anderen Schaufeln zu verzeichnen.

6 Zusammenfassung und Ausblick

In dieser Diplomarbeit wurde ein Schaufelgitter bestehend aus 13 gleichen Gleichdruckturbinenprofillen 85B45 konstruktiv für eine Abströmungsmessung im Windkanal des Turbomaschinenlabors der TU Wien ausgelegt und gefertigt.

Mithilfe des Zweifelkriteriums und der Briling'schen Bedingung für Gleichdruckgitter wurde eine Schaufelgitterteilung von 51 mm ermittelt. Das Schaufelgitter wurde nach der Fertigung an die Messwiege des Windkanals montiert. Um eine horizontale Anströmung der Schaufelprofile zu ermöglichen, müsste die Messwiege um 28,8° geneigt werden, was den Metallwinkel der Anströmung entspricht. Jedoch verfügt die Messwiege über eine maximale Neigung von 32°, wodurch eine direkte horizontale Anströmung der Schaufelprofile nicht ermöglicht werden konnte. Um den Einfluss der Randschichten des Strömungskanals auf die Messergebnisse zu vermeiden, wurden für die Abströmungsmessung die neun mittleren Schaufelprofile herangezogen.

Die Abströmungsmessung erfolgte über eine pneumatische Dreilochsonde $(\beta_{2,ref}^+ = 25^\circ)$ und einer Hitzdrahtsonde $(\beta_{2,ref}^+ = 23^\circ)$ welche mit einer Schrittweite von 1,5 mm in der Messebene durchgeführt wurde. Die Messebene ist 22 mm von der Abströmkante der Turbinenschaufeln entfernt.

Mithilfe der Dreilochsonden-Messung konnte der statische Druck, Totaldruck, die Abströmungsgeschwindigkeit und der Abströmungswinkel bestimmt werden. Aus diesen Größen wurden noch weitere Größen zur Charakterisierung der Abströmungsmessung ermittelt. Dazu gehören die die Sondenreynoldszahl, der Totaldruckverlustbeiwert und das Axialstromdichteverhältnis (AVDR).

Die durchschnittliche Zuströmungsgeschwindigkeit der Messungen liegt bei ca. 41 m/s. Der Betrag der Abströmungsmessung ist bei der Hitzdrahtsonden-Messung (~63 m/s) größer als bei der Dreilochsonden-Messung (~60 m/s). Dieser Unterschied lässt sich vermutlich auf die Temperaturunterschiede der beiden Messungen zurückführen. Der mithilfe der Dreilochsonde ermittelte statische Druck liegt durchschnittlich bei ca. 50 Pa, der ermittelte Totaldruck bei ca. 2150 Pa und der ermittelte Abströmungswinkel bei ca. 23°. Die Profilreynoldszahl liegt bei der Dreilochsonden-Messung bei ca. $310 \cdot 10^3$ und bei der Hitzdrahtsonden-Messung bei ca. $350 \cdot 10^3$. Die Sondenreynoldszahl liebt bei der Dreilochsonden-Messung bei ca. $3,7 \cdot 10^3$. Aufgrund der pneumatischen Messung der Abströmung konnte ein Profilverlustbeiwert von ca. 0,2 bestimmt werden. Ebenso wurde eine Gradientenkorrektur durchgeführt, um den Einfluss von Geschwindigkeitsgradienten in der Abströmung auf die Messergebnisse zu untersuchen. Hieraus hat sich ergeben, dass geringe Einflüsse von Geschwindigkeitsgradienten vorhanden sind, die eine maximale Korrektur von ca. +/- 0,3° hervorrufen.

Bei der Bestimmung des AVDR-Werts ergeben sich für die Dreilochsonden-Messung Werte von 1,07 bis 1,11. Es handelt sich hierbei um eine quasizweidimensionale Strömung. Beim Betrachten des Verlaufs fällt auf, dass das AVDR über die Schaufelnummer ansteigt. Bei den ersten Schaufeln herrscht demnach eine idealere zweidimensionale Strömung als bei den letzten, was auf die Schiefstellung des Schaufelgitter zurückzuführen ist.

Mithilfe der Hitzdrahtsonden-Messung konnte noch zusätzlich der Turbulenzgrad der Abströmung bestimmt werden. Der Turbulenzgrad der gemessenen Schaufeln liegt an den Rändern bei ca. 2 % und bei der Nachlaufdelle bei ca. 6 %.

Ausblickend könnte mittels einer Wiederholung der Messung unter der Verwendung einer Zweidrahtsonde die Messergebnisse des Abströmwinkels zwischen einer Hitzdrahtsonde und einer Dreilochsonde verglichen werden. Dadurch könnten Unterschiede der beiden Messmethoden und der Einfluss der Strömungsrichtung auf die jeweiligen Messergebnisse herausgearbeitet werden. Zusätzlich könnte mittels einer Fünflochsonde eine Räumliche Messung durchgeführt werden, um Sekundärströmungen zu untersuchen.

Ebenso könnte ein Schaufelprofil in einem weiteren Versuch messtechnisch ausgestattet werden, um eine lokale statische Druckmessung auf der Oberfläche des Profils durchzuführen. Somit kann eine lokale Profildruckverteilung für das Profil 85B45 ermittelt werden, welche dann mit anderen lokalen Druckverteilungen anderer Profile des Labors verglichen werden kann.

Da der Zuströmwinkel auf die maximale Verstellung der Wiege auf 32° beschränkt war, könnten für weitere Messungen größere Strömungswinkel verwendet werden, um somit auftretende Strömungsstörungen zu vermessen. Ebenso könnte die Wiege mit unterschiedlichen Zuströmwinkeln schrittweise verstellt werden, was unterschiedliche Betriebspunkte des Schaufelgitters widerspiegelt.

Das Gleichdruckturbinenprofil 85B45 kann geometrisch mithilfe von einfachen Kreisen und Geraden in einem CFD-Programm erzeugt werden. Dadurch könnte zukünftig durch eine Kombination aus einer Laborübung und einer CFD-Übung, welche sich mit der gleichen Schaufelgeometrie beschäftigt, der Vergleich von Messergebnissen und Simulationsergebnissen nähergebracht werden.

In der Laborübung könnte die Messung der Abströmung des Turbinenprofils mittels einer Dreilochsonde durchgeführt werden. Während der CFD-Übung könnten dann die Messungen als Referenzwerte für die Auslegung des CFD-Programms herangezogen werden, um ein Gefühl über die Variation der Ergebnisse einer Simulation über verschiedene Simulationsparameter zu erhalten. Dies könnte den Lernerfolg und die Faszination für die thermischen Turbomaschinen bei den Studierenden fördern.

Literaturverzeichnis

[1] Derflinger, S.: Beurteilung der Zuströmung im Schaufelgitterwindkanal mittels integraler Strukturlänge und Anisotropie-Invarianzkarte. Diplomarbeit, TU Wien, 2014

[2] Eden, K., Gebhard, H.: Dokumentation in der Mess- und Prüftechnik. Springer Vieweg, Wiesbaden, 2014

[3] Hinteregger, M.: Numerische Simulation der Strömung in einem Gleichdruckturbinengitter. Diplomarbeit, TU Wien, 2011

[4] Jørgensen, Finn E.: How to Measure Turbulence with Hot-wire Anemometers – A Practical Guide. Dantec Dynamics, Skovlunde Denmark, 2002

[5] Kariman, M. R.: Fluid Dynamic Investigation of an Alternative Extraction Steam Turbine Control Method: Rotary Valve. Doktorarbeit, TU Wien 2013

[6] Lerena Diaz, D.: Experimental Calibration of Three-Hole Pressure Probes with Different Head Geometries. Diplomarbeit, TU Wien, 2003

[7] Lukas, I.: Auslegung von Laufgittern für Axialturbinenstufen mit kleinem Reaktionsgrad. Diplomarbeit, TU Wien, 2015

[8] Schrempf, M.: Kalibrierung von pneumatischen Dreilochsonden unter Nickwinkeleinfluss. Diplomarbeit, TU Wien, 2016

[9] Smajić, D.: Untersuchungen zur Erweiterung des Betriebsbereichs von pneumatischen Dreilochsonden. Diplomarbeit, TU Wien, 2011

[10] Staffenberger, M.: Verdichterspezifische Validierung der Transitionsmodellierung in TRACE. Diplomarbeit, TU Wien, 2013

[11] Willinger, R.: Numerische Strömungsberechnung von thermischen Turbomaschinen. Skriptum zur Vorlesung, TU Wien, 2017

[12] Willinger, R.: Unterlagen zur Laborübung "Hitzdrahtsonden-Messung". Institut für Thermodynamik und Energieumwandlung, TU Wien, 2004

[13] Willinger, R., Ghaffari, P.: Unterlagen zur Laborübung "Strömungsmessung mit pneumatischen Sonden". Institut für Thermodynamik und Energieumwandlung, TU Wien, 2014

[14] Willinger, R., Haselbacher, H.: A three-hole pressure probe exposed to velocity gradient effects – experimental calibration and numerical investigation. Conference on Modeling Fluid Flow (CMFF'003), Budapest, Hungary, September 3-6, 2003

[15] Widhalm, M: Berechnung der ebenen kompressiblen turbulenten Strömung in deinem Turbinengitter. Diplomarbeit, TU Wien 2000

A Zeichnungen

Anhang 1 Gleichdruckschaufel 85B45 Zeichnung

Anhang 2 Fertigungszeichnung Schaufelgitter 85B45

Anhang 3 Messwiege (Neigung 32°) mit montiertem Schaufelgitter 85B45

B Messwerte

Δβ	w	Ма	Re	<i>k</i> ₁	k ₂	k ₃	k _r	k _t	k_s
[°]	$\left[\frac{m}{s}\right]$	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
-30	61,56	0,18	9615	0,666	-0,379	0,851	-2,855	-0,774	0,547
-25	61,44	0,18	9585	0,776	-0,266	0,769	-1,973	-0,427	0,480
-20	61,53	0,18	9599	0,843	-0,167	0,692	-1,480	-0,269	0,452
-15	61,53	0,18	9599	0,914	-0,066	0,600	-1,030	-0,134	0,412
-10	61,40	0,18	9578	0,963	0,059	0,483	-0,613	-0,053	0,391
-5	61,48	0,18	9592	0,991	0,188	0,351	-0,226	-0,013	0,374
0	61,5	0,18	9594	0,997	0,317	0,207	0,149	-0,004	0,356
5	61,48	0,18	9579	1,001	0,402	0,086	0,417	0,002	0,322
10	61,51	0,18	9584	0,987	0,524	-0,041	0,758	-0,017	0,324
15	61,49	0,18	9581	0,965	0,644	-0,160	1,111	-0,048	0,334
20	61,57	0,18	9593	0,906	0,727	-0,291	1,479	-0,137	0,317
25	61,55	0,18	9590	0,844	0,813	-0,393	1,902	-0,246	0,331
30	61,54	0,18	9588	0,774	0,882	-0,505	2,367	-0,386	0,322

Tabelle 15 Kalibrierwerte SVUSS Dreilochsonde

Tabelle 16 Kalibrierwerte Single-Sonde DANTEC 55P11

W	$\left[\frac{m}{s}\right]$	10,224	13,180	16,807	21,886	28,254	36,518	47,279	61,221	79,114	101,052
E	[V]	2,094	2,172	2,251	2,342	2,435	2,535	2,642	2,755	2,873	2,993
t	[°C]	23,416	23,434	23,431	23,428	23,423	23,380	23,288	223,121	22,723	22,246

16062001	32				
989,8	23,0	41,36			
2386	1406	32,2			
22	75	25			
2,4	1,6	30			
2347,1	844,24	516,55	9,97	7,2	6,01
2324,85	835,26	518,07	9,35	5,36	5,96
2305,37	828,9	520,14	9,18	6,27	5,68
2267,36	818,67	522,49	7,25	5,22	6,44
2236,12	809,27	519,87	8,81	4,63	4,42
2188,86	798,91	521,66	8,09	6,28	4,73
2148,92	784,67	515,72	6,58	5,75	4,55
2090,87	778,31	506,32	6,61	5,34	4,95
2041,11	768,64	491,81	8,26	5,59	5,52
1986,66	762,01	476,33	5,67	4,75	5,6
1938,56	763,39	461,54	5,84	5,75	4,84
1914,38	767,53	440,54	5,08	4,45	5,85
1887,98	777,07	420,08	5,63	6,75	5,59
1889,36	786,19	403,22	5,8	5	5,65
1890,05	804,85	390,78	6,4	6,39	5,58
1908,57	816,18	381,11	6,9	5,92	4,99
1953,63	829,87	371,57	11,08	4,85	5,72
1990,94	846,17	366,46	6,4	7,95	5,27
2039,59	861,1	361,76	7,22	6,88	5,65
2103,17	867,87	363,83	11,54	6,67	5,59
2140,35	878,38	366,46	8,06	5,58	4,88
2203,51	882,52	373,37	10,7	6,7	4,88
2252,29	882,8	383,32	12,8	5,68	5,58
2294,17	869,25	391,33	6,28	7,39	5,34
2324,99	863,59	402,11	7,82	7,01	6,31
2330,93	857,37	411,51	10,81	6,27	5,92
2349,45	850,6	420,36	9,29	5,42	6
2355,81	845,34	430,86	7,12	6,65	4,91
2352,36	839,26	433,21	10,93	6,46	5,17
2359,82	839,26	440,67	6,16	7,7	6,52
2362,58	839,12	442,06	8,25	5,73	5,26
2349,73	835,95	454,22	7,15	4,46	4,69
2346,28	835,26	456,98	7,05	6,21	5,39
2341,16	834,15	463,48	8,15	4,63	6,11
2329	834,84	464,44	7,29	5,08	6,13

Tabelle 17 Dreilochsonde Messergebnisse Schaufel 3

4000000	00	[1	
16062002	32	44.0			
989,7	24,0	41,3			
2377	1402	32,6			
22	75	25	21		
2,4	1,6	30	22		
2329	834,84	464,44	7,29	5,08	6,13
2322,92	824,61	474,95	6,95	6,5	6,44
2300,11	823,51	479,92	7,2	6,34	6,15
2275,38	816,6	480,75	6,48	4,55	5,83
2248,7	806,65	484,62	9,9	5,28	6,07
2206,55	792,83	484,76	7,52	4,89	6,36
2168,68	784,39	482,55	6,31	5,22	6
2119,06	770,3	475,5	7,9	5,03	6,88
2074,84	766,15	467,35	7,09	6,05	5,52
2020,66	762,56	462,79	7,15	5,1	6,12
1978,92	753,3	443,99	5,76	4,68	7,09
1931,93	753,44	426,58	7,44	5,63	5,63
1908,16	758,96	407,92	5,39	6	5,45
1895,44	764,22	391,06	5,97	5,38	5,19
1895,86	781,22	374,33	6,45	7,55	4,33
1897,79	793,1	362,31	10,03	6,81	6,37
1919,35	818,12	352,64	5,68	4,1	5,96
1963,3	830,97	339,92	10,26	6,81	6,16
2016,51	844,1	332,73	7,93	9,13	6,21
2068,62	854,88	338,26	8,87	7,77	6,27
2121,69	863,45	336,33	9,6	6,86	5,47
2178,35	867,6	338,54	9,16	5,75	5,96
2227,83	870,08	348,63	12,69	6,24	5,99
2272,06	863,86	356,37	8,02	6,59	5,3
2304,68	859,3	367,84	7,12	4,91	5,41
2320,43	847,14	372,54	8,26	5,38	6,55
2342,96	838,43	379,59	7,92	7,35	4,21
2347,66	836,08	385,8	8,41	6,28	5,12
2351,67	827,52	389,4	5,76	6,63	5,82
2337,29	825,17	400,04	6,4	5,63	5,39
2347,52	817,43	409,99	7,39	6,29	6,35
2340,75	828,76	413,03	6,59	5,24	6,21
2339,5	823,51	426,99	7,11	5,69	5,23
2339,92	819,78	432,24	7,68	4,76	5,58
2335,91	820,88	440,12	6,58	5,41	4,77

Tabelle 18 Dreilochsonde Messergebnisse Schaufel 4

16062003	32				
989,6	24,5	41,34			
2383	1403	31,8			
22	75	25	18		
2,4	1,6	30	24		
2335,91	820,88	440,12	6,58	5,41	4,77
2318,22	816,18	443,44	6,83	4,63	5,52
2301,22	807,48	450,21	6,13	5,34	7,49
2265,7	796,42	459,05	6,36	5,19	5,9
2236,12	788,4	463,34	8,24	6,1	6,43
2186,51	775,69	462,92	7,55	5,55	5,8
2138	761,18	461,54	6,93	4,58	6,09
2078,43	753,71	457,26	5,89	4,23	5,34
2036,69	745,56	445,23	8,06	5,91	6,06
1993,99	738,92	433,21	6,69	4,43	4,12
1942,3	737,82	417,04	8,28	5,72	5,98
1907,33	743,21	401,7	7,02	6,54	6,23
1876,23	751,5	387,74	7,52	6,78	5,41
1865,59	764,63	373,78	8,4	5,76	5,6
1877,75	777,62	354,85	8,18	6,62	6,75
1889,78	789,65	346,14	12,09	7,97	5,24
1915,21	811,62	335,5	9,34	8,76	5,4
1967,59	824,34	325,13	9,4	6,59	5,96
2004,21	836,22	322,51	8,75	7,02	4,91
2067,65	852,53	322,23	9,07	7,26	4,76
2120,17	857,64	325,96	14,73	8,72	5,15
2171,72	862,62	334,53	14,55	9,51	5,8
2236,82	860,55	343,93	15,27	5,67	6,52
2283,53	858,89	356,78	14,13	7,29	6,19
2325,13	847,97	365,21	7,89	6,24	6,02
2341,71	843,69	379,72	10,7	7,53	4,23
2369,91	829,87	385,8	6,57	5,42	4,29
2370,32	828,9	396,59	6,88	5,44	5,16
2365,62	816,18	400,04	7,98	4,41	5,57
2374,75	821,99	404,6	6,98	5,78	5,4
2376,4	813,97	417,18	6,07	7,26	6,25
2374,61	813,28	428,23	7,98	7,86	7,55
2369,63	820,88	424,78	6,7	5,59	5,4
2362,72	809,69	436,53	6,55	5,15	6,64
2360,79	813	439,98	5,52	6,84	7,3

Tabelle 19 Dreilochsonde Messergebnisse Schaufel 5

16062004	32				
989,3	24,5	41,33			
2369	1392	32,2			
22	75	25	20		
2,4	1,6	30	19		
2360,79	813	439,98	5,52	6,84	7,3
2341,44	805,68	447,86	6,46	5,9	7,68
2318,22	806,23	457,81	6,24	5,65	5,55
2304,95	797,66	461,4	5,75	8	6,52
2285,05	787,85	465,27	6,75	5,27	6,8
2238,47	773,89	469,84	7,78	5,8	5,27
2202,82	765,32	471,22	8,92	5,68	5,49
2152,51	750,95	467,07	5,67	4,27	6,52
2097,09	739,89	454,22	6,69	5,78	6,29
2045,12	728,97	446,89	9,59	6,16	7,03
1986,25	722,06	435,28	7,23	5,49	6,43
1942,99	718,33	419,67	8,09	6,72	5,97
1901,25	717,5	397,69	7,37	5,83	5,92
1876,37	723,86	386,08	6,91	6,48	6,05
1866,28	731,88	371,02	6,72	5,41	6,94
1862,27	754,13	350,98	6	5,57	5,41
1877,2	764,77	333,15	9,77	6,3	6,28
1909,96	786,61	329,28	6,93	6,31	5,59
1956,25	791,72	321,54	10,17	7,04	5,13
1996,33	804,43	318,77	7,63	5,8	5,01
2049,54	822,95	320,02	6,82	7,66	4,63
2102,34	831,66	325,68	8,02	6,45	5,2
2173,65	834,01	335,08	11,17	6,8	6
2221,47	828,34	345,31	7,77	6,05	6,12
2259,07	830,14	361,2	13,32	7,1	4,95
2298,32	822,82	372,26	8,24	6,72	6,21
2323,61	808,72	382,9	7,75	8,05	5,63
2334,11	803,19	393,54	9,55	5,76	6,27
2345,31	790,61	401,42	9,33	5,8	5,05
2347,24	785,78	408,33	7,43	5,58	5,94
2346,28	783,43	416,07	9,82	7,39	6,59
2341,3	784,95	418,97	6,28	7,1	4,96
2333,42	782,18	428,1	7,17	6,76	6,11
2337,29	785,36	440,26	6,4	5,41	5,41
2325,41	782,6	446,2	9,97	6,21	5,11

Tabelle 20 Dreilochsonde Messergebnisse Schaufel 6

16062005	32				
989,1	24,5	41,17			
2358	1386	31,8			
22	75	25	15		
2,4	1,6	30	16		
2314,35	778,73	443,85	6,98	5,53	5,23
2310,89	771,96	451,32	5,96	5,03	5,92
2305,78	774,86	449,38	6,14	5,39	6,58
2295,42	769,88	454,22	5,69	5,63	6,59
2277,03	769,88	463,06	8,49	5,96	5,96
2253,26	761,59	466,66	6,72	4,89	5,31
2217,19	751,78	464,44	6,78	4,84	4,68
2184,85	740,58	464,86	8,67	5,15	4,75
2134,68	727,59	460,02	6,55	6,13	6,15
2087,14	716,26	455,6	5,96	5,92	6,41
2040,15	706,31	440,4	7,26	5,96	7,16
1979,34	695,8	432,1	9,76	5,53	5,84
1940,22	692,49	416,76	8,35	7,29	6,55
1888,12	690,69	393,82	5,59	7	4,47
1863,52	687,1	379,45	8,3	7,23	4,84
1830,76	701,33	364,8	5,6	6,32	6,09
1832,28	709,49	343,24	5,18	4,91	5,47
1843,89	718,61	328,17	8,77	5,27	5,49
1867,39	731,32	316,29	9,78	7,31	5,55
1897,93	743,07	310,48	11,17	6,62	5,24
1945,34	758	306,75	8,61	6,04	5,86
1988,6	766,29	307,58	7,09	6,07	5,76
2038,35	772,65	313,8	6,28	6,13	5,08
2099,44	774,72	319,74	6,13	7,12	6,63
2129,29	777,48	333,42	9,04	6,24	6,67
2173,38	777,35	345,59	7,39	7,05	6,88
2194,52	767,95	360,1	7,04	6,38	6,7
2215,53	766,7	374,75	8,29	6,27	6,7
2226,31	762,97	386,91	13,07	7,8	7,68
2233,22	757,86	402,39	12,53	5,82	8,15
2242,07	758,96	405,29	10,01	5,31	6,98
2238,06	767,26	412,76	13,45	6,87	7,43
2223,55	758,41	422,29	10,89	5,68	6,84
2229,21	755,65	428,65	6,96	6,3	5,96
2236,82	756,62	429,06	11,32	6,16	8,27

Tabelle 21 Dreilochsonde Messergebnisse Schaufel 7

4000000		1		1	
16062006	32				
989	25,0	41,26			
2358	1382	31,8			
22	75	25	14		
2,4	1,6	30	18		
2244,55	763,53	441,09	12,03	6,47	7,45
2233,77	759,93	446,89	10,61	6,12	7,03
2222,99	751,92	449,52	10,51	5,45	5,96
2195,08	749,7	451,45	8,94	6,16	7,48
2192,17	743,62	447,58	11,17	5,08	7,09
2156,66	740,44	450,9	8,84	4,79	6,67
2149,05	724,97	451,73	9,9	5,58	7,77
2092,67	717,5	450,76	8,77	4,72	6,7
2060,19	709,35	455,05	10,06	4,42	7,07
2041,39	699,12	432,1	12,03	6,02	7,83
1972,56	690,69	435,42	8,54	4,66	5,8
1930,55	683,23	418,28	7,26	5,36	7,58
1889,64	678,8	409,85	9,51	4,84	6,4
1842,79	678,39	391,2	8,76	5,52	6,44
1814,73	677,7	375,58	11,87	5,06	4,71
1811,97	687,1	358,58	8,52	5,19	5,91
1798,7	695,25	345,17	7,68	5,96	7,14
1820,4	715,71	326,51	8,92	6,61	5
1829,93	734,23	317,67	7,93	6,81	5,62
1885,35	744,59	310,9	9,62	6,01	5,45
1934	767,53	306,61	11,66	5,61	5,04
1978,78	778,59	307,86	8,53	6,89	5,03
2049,54	792,13	311,31	13,31	5,7	5,07
2106,62	793,24	322,23	8,21	6,55	5,7
2159	791,31	332,6	13,81	5,92	5,01
2190,1	786,88	349,18	9,78	4,79	4,73
2229,35	780,53	362,86	11,87	5,78	6,09
2262,25	773,06	368,67	12,09	7,36	5,29
2263,9	775,55	379,17	14,92	5,41	3,89
2271,37	773,75	392,16	10,79	7,55	6,17
2270,12	768,92	401,98	11,51	4,54	6,78
2289,2	775,41	406,81	11,81	4,68	6,81
2299,56	766,43	416,21	10,43	6,4	5,93
2293,34	772,92	424,92	8,8	7,34	4,73
2290,16	765,6	427,68	12,03	5,59	5,39

Tabelle 22 Dreilochsonde Messergebnisse Schaufel 8

16062007	32				
989	25,0	41,37		_	
2353	1373	32			
22	75	25	21		
2,4	1,6	30	19		
2300,25	771,27	436,67	9,13	6,28	5,83
2296,8	774,31	440,81	9,87	6,87	6,09
2286,29	766,57	446,75	9,32	5,6	6,84
2273,16	768,09	455,88	10,27	7,62	5,44
2257,41	762,42	458,36	8,65	5,17	6,94
2236,95	753,44	465,83	6,84	6,12	5,08
2208,76	740,72	469,84	5,34	4,72	5,27
2168,26	727,87	468,31	7,09	5,35	5,37
2116,85	719,16	467,49	7,61	6,57	6,09
2075,53	706,58	458,23	6,14	5,55	5,92
2014,72	694,56	450,49	5,92	5,22	4,92
1957,36	688,2	437,22	5,37	5,19	6,01
1903,46	681,29	422,57	7,31	4,38	5,72
1873,61	682,54	401,28	6,68	6,05	4,23
1833,39	685,71	384,84	5,76	6,99	5,17
1821,5	694,28	365,21	6,52	5,75	5,52
1812,24	706,17	348,77	7,49	6,61	5,4
1835,46	717,64	332,46	6,44	6,18	5,58
1850,11	743,49	323,2	8,29	5,73	5,19
1909,68	759,38	320,43	9,61	4,61	5,59
1963,16	779,14	316,98	7,53	6,01	5,18
2025,36	787,85	318,36	10,36	6,13	4,87
2081,75	790,89	326,65	7,49	6,9	4,95
2142,56	797,52	337,16	7,28	6,28	5,04
2202,26	793,93	346,42	10,88	5,57	6,53
2243,73	793,38	362,17	6,94	7,15	5,27
2278	781,63	375,02	8,72	5,22	5,33
2298,73	774,86	386,63	12,01	6,82	5,78
2312,14	766,98	395,62	5,38	5,63	4,37
2320,15	771,13	401,42	12,61	7,37	4,65
2312,69	766,84	414,97	8,53	6,12	5,79
2319,46	763,25	421,6	7,52	6,31	5,63
2333,01	767,67	421,6	8,41	5,42	5,63
2306,89	771,27	432,24	9,72	7,02	4,83
2306,2	764,63	437,36	9,8	5,59	5,97

Tabelle 23 Dreilochsonde Messergebnisse Schaufel 9

16062008	32				
988,7	25.0	41,42			
2376	1394	32.4			
22	75	25	16		
2,4	1,6	30	17		
2324,44	773,48	445,23	7,9	5,24	5,38
2318,91	777,35	451,73	7,7	6,16	6,25
2298,87	772,79	456,57	9,91	5,12	5,25
2285,46	768,92	464,58	7,16	5,33	5,23
2256,99	762,42	467,49	6,28	5,17	6,7
2232,53	750,81	470,66	5,78	4,19	6,7
2187,06	739,62	472,46	8,43	4,68	5,04
2146,84	725,79	467,07	6,6	5,45	6,22
2087	715,29	461,4	7,02	5,58	5,37
2029,64	704,93	452,97	7,65	5,08	5,75
1961,37	693,04	441,36	7,45	5,63	7,36
1909,26	688,34	423,95	6,29	5,63	6,6
1868,49	686,68	400,87	7,73	5,92	6,28
1836,29	689,31	379,03	9,29	5,85	5,69
1809,34	695,94	370,05	6,61	5,76	5,58
1796,07	707,69	350,98	6,4	7,93	5,04
1801,88	720,27	331,07	8,33	6,4	5,03
1819,01	738,92	317,67	8,72	5,94	6,43
1849,97	756,2	313,38	8,14	6,37	5,29
1898,9	766,01	308,55	6,25	7,72	5,04
1948,51	778,04	309,1	9,59	6,82	6,13
2023,98	797,8	316,29	10,06	5,48	4,8
2067,37	797,25	322,64	11,22	6,84	5,35
2141,04	811,76	336,6	7,18	7,89	5,41
2206	805,54	350,56	9,16	6,31	5,28
2237,37	802,64	365,49	13,67	5,88	6,38
2268,74	798,49	381,52	13,17	5,22	5,27
2309,79	782,18	390,09	8,58	5,31	4,92
2319,33	784,39	407,5	9,93	4,84	6,58
2333,15	770,16	415,38	9,43	5,83	5,58
2332,32	774,72	423,12	10,81	6,98	5,93
2346,28	772,09	428,23	8,08	6,13	5,62
2345,03	772,92	433,62	8,98	5,34	5,85
2344,48	776,66	440,95	9,53	4,55	4,47
2346,41	775,41	448,14	5,92	6,59	4,96

Tabelle 24 Dreilochsonde Messergebnisse Schaufel 10

16062009	32				
988.2	25.0	41.45			
2365	1385	33			
22	75	25	21		
2.4	1.6	30	16		
2345.03	779.83	450.76	7.3	5.86	6.4
2327.76	774.44	454.63	6.18	5.95	5.23
2329.69	774.86	462.51	8.48	6.68	5.94
2323.19	775.41	468.73	8.43	4.25	5.49
2316.28	768.92	473.01	6.46	6.01	5.11
2296.66	765.18	476.88	5.29	5.28	5.08
2269.57	759.1	480.75	6.37	5.86	5.3
2240.69	747.36	483.79	8.35	5.54	5.08
2196.74	737.54	481.03	6.53	4.69	5.63
2142.7	722.75	473.84	7	6.67	5.48
2075.25	706.72	466.79	4.84	3.58	5.22
2023.98	697.32	455.05	7.1	6.84	5.86
1959,16	685,16	439,15	7,9	5,18	5,4
1911,61	681,43	422,02	5,52	5,27	5,61
1860,89	678,39	400,45	6,29	5,34	5.06
1828,97	676,32	381,11	6,6	5,88	5,36
1810,45	689,45	358,72	6,58	5	5,41
1814,04	707,14	341,58	8,14	5,35	5,56
1823,58	725,24	326,24	8,82	7	5,63
1860,06	735,61	317,81	6,18	5,66	5,45
1910,65	756,75	315,46	5,67	5,76	4,63
1969,94	771,4	316,84	13,11	6,03	5,52
2041,11	780,53	317,67	7,39	6,57	5,44
2112,01	794,48	329,42	7,34	6,43	5,82
2172	788,4	343,65	8,72	6,56	5,46
2218,02	788,82	358,72	11,53	8,58	6,09
2259,07	780,11	374,47	7,65	5,74	4,29
2291,82	771,96	384,98	7,26	5,22	5,03
2313,38	762,01	397,14	7,75	4,32	5,03
2318,77	762,01	411,79	9,46	5,14	5,38
2326,51	753,44	416,49	12,67	5,27	5,33
2337,29	749,43	423,54	13,1	7,04	6,29
2327,2	753,57	431,41	12,24	6,12	5,19
2330,52	750,53	440,4	6,67	6,28	6,59
2332,45	753,3	441,36	6,91	4,25	5,18

Tabelle 25 Dreilochsonde Messergebnisse Schaufel 11

0	0	0	65,264	2,32	3,555
1,5	0	0	64,964	2,291	3,527
3	0	0	64,41	2,71	4,208
4,5	0	0	64,108	2,802	4,37
6	0	0	63,381	2,96	4,67
7,5	0	0	62,397	3,392	5,436
9	0	0	61,59	3,334	5,414
10,5	0	0	60,342	3,354	5,559
12	0	0	60,317	3,5	5,803
13,5	0	0	59,799	3,263	5,457
15	0	0	59,302	3,206	5,406
16,5	0	0	58,997	3,353	5,684
18	0	0	58,902	3,361	5,707
19,5	0	0	58,802	3,461	5,885
21	0	0	59,281	3,573	6,027
22,5	0	0	59,784	3,737	6,25
24	0	0	60,125	3,904	6,493
25,5	0	0	61,309	3,97	6,475
27	0	0	62,22	3,752	6,03
28,5	0	0	63,462	3,676	5,793
30	0	0	64,031	3,582	5,595
31,5	0	0	64,451	3,154	4,894
33	0	0	65,182	2,925	4,487
34,5	0	0	66,109	2,198	3,324
36	0	0	66,411	2,151	3,238
37,5	0	0	66,617	1,835	2,755
39	0	0	66,617	1,73	2,597
40,5	0	0	66,768	1,698	2,544
42	0	0	66,643	1,482	2,224
43,5	0	0	67,086	1,627	2,426
45	0	0	66,276	1,589	2,397
46,5	0	0	66,639	1,608	2,412
48	0	0	66,852	1,572	2,352
49,5	0	0	66,324	1,96	2,955
51	0	0	65,66	2,105	3,206

Tabelle 26 Hitzdrahtsonde Messergebnisse Schaufel 3

-					
0	0	0	65,098	2,03	3,118
1,5	0	0	64,822	2,293	3,537
3	0	0	64,357	2,441	3,793
4,5	0	0	64,188	2,653	4,133
6	0	0	63,851	2,807	4,396
7,5	0	0	62,369	3,038	4,871
9	0	0	62,093	3,121	5,026
10,5	0	0	61,527	3,254	5,289
12	0	0	60,692	3,24	5,338
13,5	0	0	59,991	3,292	5,487
15	0	0	59,548	3,213	5,395
16,5	0	0	59,341	3,349	5,644
18	0	0	58,824	3,285	5,584
19,5	0	0	58,971	3,394	5,755
21	0	0	58,804	3,407	5,794
22,5	0	0	59,812	3,711	6,205
24	0	0	60,522	3,688	6,093
25,5	0	0	60,661	3,871	6,382
27	0	0	61,946	3,758	6,066
28,5	0	0	62,678	3,779	6,029
30	0	0	64,217	3,305	5,147
31,5	0	0	64,767	3,139	4,847
33	0	0	65,374	2,622	4,011
34,5	0	0	65,728	2,708	4,12
36	0	0	66,288	1,89	2,852
37,5	0	0	66,451	1,674	2,52
39	0	0	66,366	1,549	2,335
40,5	0	0	66,775	1,388	2,079
42	0	0	66,83	1,391	2,082
43,5	0	0	66,547	1,562	2,347
45	0	0	66,57	1,461	2,195
46,5	0	0	66,196	1,669	2,521
48	0	0	66,221	1,804	2,724
49,5	0	0	65,977	1,857	2,815
51	0	0	65,633	2,071	3,155

Tabelle 27 Hitzdrahtsonde Messergebnisse Schaufel 4

0	0	0	65,46	1,879	2,871
1,5	0	0	65,187	2,209	3,388
3	0	0	64,279	2,415	3,758
4,5	0	0	63,717	2,751	4,317
6	0	0	63,001	2,928	4,648
7,5	0	0	62,463	3,196	5,117
9	0	0	61,258	3,338	5,449
10,5	0	0	60,717	3,222	5,307
12	0	0	60,074	3,045	5,069
13,5	0	0	59,819	3,282	5,487
15	0	0	58,655	3,406	5,806
16,5	0	0	58,923	3,275	5,558
18	0	0	59,107	3,035	5,135
19,5	0	0	58,878	3,275	5,563
21	0	0	59,023	3,501	5,932
22,5	0	0	59,651	3,691	6,187
24	0	0	60,882	3,729	6,125
25,5	0	0	60,416	3,896	6,449
27	0	0	61,867	3,913	6,325
28,5	0	0	62,774	3,771	6,007
30	0	0	64,264	3,398	5,287
31,5	0	0	63,743	3,375	5,295
33	0	0	65,681	2,753	4,192
34,5	0	0	64,772	2,536	3,915
36	0	0	66,126	2,136	3,23
37,5	0	0	66,671	1,555	2,332
39	0	0	66,788	1,258	1,884
40,5	0	0	66,701	1,267	1,899
42	0	0	66,804	1,219	1,824
43,5	0	0	66,989	1,071	1,599
45	0	0	66,788	1,156	1,731
46,5	0	0	66,465	1,388	2,088
48	0	0	66,308	1,353	2,041
49,5	0	0	66,325	1,59	2,397
51	0	0	65,978	1,725	2,614

Tabelle 28 Hitzdrahtsonde Messergebnisse Schaufel 5

0	0	0	66,583	1,764	2,649
1,5	0	0	66,571	1,911	2,871
3	0	0	66,221	2,229	3,366
4,5	0	0	65,434	2,361	3,608
6	0	0	65,029	2,58	3,967
7,5	0	0	64,61	2,86	4,427
9	0	0	63,458	3,095	4,877
10,5	0	0	62,857	3,218	5,119
12	0	0	62,216	3,365	5,409
13,5	0	0	61,285	3,302	5,388
15	0	0	60,68	3,284	5,412
16,5	0	0	60,327	3,33	5,519
18	0	0	60,064	3,205	5,336
19,5	0	0	59,471	3,287	5,527
21	0	0	59,743	3,269	5,472
22,5	0	0	59,508	3,357	5,641
24	0	0	60,766	3,646	6
25,5	0	0	61,406	3,703	6,03
27	0	0	61,665	3,938	6,386
28,5	0	0	62,311	3,729	5,984
30	0	0	63,988	3,729	5,828
31,5	0	0	64,866	3,418	5,269
33	0	0	65,655	3,061	4,663
34,5	0	0	66,691	2,407	3,609
36	0	0	67,009	2,204	3,289
37,5	0	0	66,933	1,961	2,929
39	0	0	67,461	1,394	2,066
40,5	0	0	67,323	1,679	2,493
42	0	0	67,976	1,232	1,812
43,5	0	0	67,327	1,309	1,945
45	0	0	67,446	1,398	2,073
46,5	0	0	67,172	1,525	2,27
48	0	0	67,316	1,394	2,071
49,5	0	0	66,819	1,478	2,212
51	0	0	66,905	1,54	2,302

Tabelle 29 Hitzdrahtsonde Messergebnisse Schaufel 6

0	0	0	65,894	1,538	2,334
1,5	0	0	65,752	1,739	2,645
3	0	0	65,716	1,724	2,624
4,5	0	0	65,061	2,143	3,294
6	0	0	64,89	2,279	3,513
7,5	0	0	64,266	2,639	4,106
9	0	0	63,916	3,005	4,701
10,5	0	0	62,901	3,089	4,91
12	0	0	62,947	3,3	5,242
13,5	0	0	61,391	3,315	5,4
15	0	0	60,685	3,409	5,618
16,5	0	0	60,292	3,308	5,487
18	0	0	59,581	3,458	5,803
19,5	0	0	58,681	3,304	5,63
21	0	0	58,565	3,327	5,681
22,5	0	0	58,863	3,344	5,682
24	0	0	58,925	3,348	5,683
25,5	0	0	59,146	3,601	6,089
27	0	0	59,647	3,516	5,895
28,5	0	0	60,178	3,593	5,971
30	0	0	61,5	3,35	5,448
31,5	0	0	61,28	3,492	5,698
33	0	0	62,193	3,365	5,41
34,5	0	0	63,398	2,824	4,454
36	0	0	63,627	2,698	4,24
37,5	0	0	63,932	2,519	3,941
39	0	0	64,416	2,26	3,508
40,5	0	0	65,283	2,141	3,28
42	0	0	65,04	1,841	2,831
43,5	0	0	64,781	1,898	2,93
45	0	0	65,03	1,923	2,958
46,5	0	0	64,661	2,166	3,349
48	0	0	64,623	2,173	3,362
49,5	0	0	64,337	2,306	3,585
51	0	0	64,413	2,216	3,441

Tabelle 30 Hitzdrahtsonde Messergebnisse Schaufel 7

0	0	0	00.004	0.000	2 505
0	0	0	03,694	2,232	3,505
1,5	0	0	63,957	2,307	3,607
3	0	0	63,65	2,421	3,803
4,5	0	0	62,967	2,883	4,578
6	0	0	63,642	2,813	4,42
7,5	0	0	63,234	3,059	4,838
9	0	0	61,93	3,446	5,564
10,5	0	0	61,689	3,436	5,57
12	0	0	60,976	3,482	5,711
13,5	0	0	60,26	3,611	5,992
15	0	0	59,782	3,586	5,999
16,5	0	0	58,84	3,708	6,302
18	0	0	58,369	3,631	6,221
19,5	0	0	58,226	3,442	5,912
21	0	0	58,061	3,386	5,831
22,5	0	0	57,443	3,33	5,797
24	0	0	57,22	3,458	6,044
25,5	0	0	58,724	3,473	5,914
27	0	0	58,674	3,653	6,226
28,5	0	0	59,262	3,932	6,635
30	0	0	60,187	3,824	6,354
31,5	0	0	61,426	3,645	5,934
33	0	0	61,87	3,505	5,666
34,5	0	0	63,362	3,294	5,198
36	0	0	63,252	2,706	4,278
37,5	0	0	64,444	2,369	3,675
39	0	0	64,52	2,112	3,273
40,5	0	0	64,771	1,861	2,874
42	0	0	65,328	1,667	2,552
43,5	0	0	65,461	1,421	2,171
45	0	0	65,534	1,563	2,385
46,5	0	0	65,592	1,402	2,137
48	0	0	65,12	1,571	2,413
49,5	0	0	64,743	1,682	2,598
51	0	0	64,831	1,69	2,606

Tabelle 31 Hitzdrahtsonde Messergebnisse Schaufel 8

0	0	0	65,611	1,438	2,192
1,5	0	0	65,153	1,701	2,611
3	0	0	64,863	1,864	2,874
4,5	0	0	64,596	2,002	3,1
6	0	0	63,936	2,471	3,865
7,5	0	0	63,737	2,467	3,871
9	0	0	63,324	2,677	4,227
10,5	0	0	62,348	3,005	4,82
12	0	0	61,619	3,278	5,32
13,5	0	0	60,991	3,463	5,678
15	0	0	59,941	3,15	5,255
16,5	0	0	59,523	3,316	5,571
18	0	0	58,954	3,349	5,68
19,5	0	0	58,499	3,119	5,332
21	0	0	58,391	3,274	5,607
22,5	0	0	58,347	3,253	5,576
24	0	0	58,219	3,491	5,997
25,5	0	0	59,253	3,622	6,113
27	0	0	59,386	3,752	6,319
28,5	0	0	60,6	3,954	6,525
30	0	0	61,465	3,936	6,404
31,5	0	0	62,145	3,837	6,175
33	0	0	62,822	3,478	5,537
34,5	0	0	64,107	3,042	4,746
36	0	0	64,467	2,838	4,402
37,5	0	0	65,308	2,541	3,891
39	0	0	65,523	1,965	2,998
40,5	0	0	66,175	1,338	2,022
42	0	0	66,065	1,522	2,305
43,5	0	0	66,279	1,338	2,018
45	0	0	66,138	1,18	1,784
46,5	0	0	66,339	1,247	1,88
48	0	0	65,98	1,376	2,086
49,5	0	0	65,967	1,241	1,881
51	0	0	65,456	1,56	2,383

Tabelle 32 Hitzdrahtsonde Messergebnisse Schaufel 9

0	0	0	66,242	1,35	2,037
1,5	0	0	65,666	1,686	2,567
3	0	0	65,505	1,807	2,759
4,5	0	0	64,882	2,229	3,436
6	0	0	64,587	2,295	3,553
7,5	0	0	63,462	2,814	4,433
9	0	0	63,088	2,991	4,741
10,5	0	0	62,157	3,256	5,238
12	0	0	61,443	3,376	5,494
13,5	0	0	60,249	3,5	5,809
15	0	0	59,557	3,321	5,576
16,5	0	0	58,958	3,264	5,537
18	0	0	58,403	3,22	5,513
19,5	0	0	58,045	3,203	5,518
21	0	0	57,671	3,197	5,544
22,5	0	0	57,87	3,376	5,833
24	0	0	58,495	3,67	6,273
25,5	0	0	58,705	3,651	6,22
27	0	0	59,387	3,944	6,641
28,5	0	0	60,615	4,003	6,603
30	0	0	61,142	4,108	6,719
31,5	0	0	62,571	3,826	6,115
33	0	0	63,405	3,431	5,41
34,5	0	0	64,035	3,046	4,757
36	0	0	64,834	2,745	4,234
37,5	0	0	65,688	2,553	3,886
39	0	0	65,779	1,867	2,838
40,5	0	0	66,187	1,695	2,561
42	0	0	66,353	1,433	2,16
43,5	0	0	66,415	1,247	1,878
45	0	0	66,385	1,133	1,707
46,5	0	0	65,892	1,459	2,215
48	0	0	66,112	1,37	2,072
49,5	0	0	66,139	1,33	2,01
51	0	0	66,217	1,381	2,086

Tabelle 33 Hitzdrahtsonde Messergebnisse Schaufel 10

0	0	0	66,044	1,372	2,077
1,5	0	0	66,076	1,546	2,339
3	0	0	65,523	1,806	2,756
4,5	0	0	65,376	1,971	3,015
6	0	0	65,197	1,957	3,002
7,5	0	0	64,716	2,287	3,534
9	0	0	64,108	2,66	4,15
10,5	0	0	63,704	2,866	4,499
12	0	0	62,905	3,137	4,987
13,5	0	0	62,152	3,331	5,359
15	0	0	61,177	3,292	5,381
16,5	0	0	60,358	3,347	5,544
18	0	0	59,487	3,481	5,851
19,5	0	0	58,865	3,15	5,351
21	0	0	58,672	3,46	5,897
22,5	0	0	58,506	3,246	5,548
24	0	0	58,226	3,373	5,793
25,5	0	0	58,88	3,544	6,02
27	0	0	59,422	3,669	6,174
28,5	0	0	60,294	3,673	6,092
30	0	0	60,804	3,811	6,267
31,5	0	0	61,631	3,791	6,151
33	0	0	63,069	3,552	5,632
34,5	0	0	63,947	3,355	5,247
36	0	0	64,803	2,919	4,505
37,5	0	0	65,56	2,579	3,935
39	0	0	66,023	2,193	3,322
40,5	0	0	66,479	1,647	2,478
42	0	0	66,127	1,857	2,808
43,5	0	0	66,46	1,48	2,227
45	0	0	66,507	1,455	2,187
46,5	0	0	66,76	1,235	1,85
48	0	0	66,353	1,505	2,268
49,5	0	0	66,473	1,387	2,086
51	0	0	66,025	1,753	2,655

Tabelle 34 Hitzdrahtsonde Messergebnisse Schaufel 11

INSTITUT FÜR ENERGIETECHNIK UN TE EN