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Kurzfassung

Die Einzelbild-Superauflösung (SA) ist eine Methode, um aus einem einzigen Bild mit
niedriger Auflösung ein hochauflösendes Bild zu erzeugen. Die SA wird in verschiedenen
Bereichen eingesetzt, z. B. in der medizinischen Bildgebung, der Satelliten- und der
Sicherheitsbildgebung. Die Verwendung von superaufgelösten Bildern beschleunigt die
Trainingskonvergenz und erhöht die Erkennungs- und Segmentierungsgenauigkeit im
Vergleich zu niedrig aufgelösten Bildern. Neben der Erhöhung der Auflösung kann die SA
auch zur Rauschunterdrückung eingesetzt werden. Es gibt physikalische Beschränkungen
für die Bildqualität und -auflösung aufgrund der Bilderfassungshardware. Die SA hilft,
diese Beschränkungen zu überwinden. Diese Arbeit konzentriert sich auf die Anwendung
von SA für C-Band Synthetic Aperture Radar (SAR)-Bilder, die von den Sentinel-1-
Satelliten der Copernicus-Mission der Europäischen Weltraumorganisation aufgenommen
wurden. Erdbeobachtungsaufgaben wie die Klassifizerung der Bodenbedeckung, die
Erkennung von Ölverschmutzungen, Bodenoberflächentemperatur und Bodenfeuchtigkeit
hängen von der Qualität der Fernerkundungsbilder ab. Geringe Auflösung und Rauschen
beeinträchtigen die zugrundeliegenden Modelle, daher ist eine hohe Auflösung für die
Geowissenschaften von großer Bedeutung. In dieser Arbeit werden modernste SA-Ansätze
auf der Grundlage von tiefen neuronalen Netzen untersucht. Eine Erdbeobachtungsaufgabe
zur Segmentierung der Bodenbedeckung wird verwendet, um die Eignung der SA für
SAR-Bilder zu bewerten. Die Ergebnisse der Hochskalierung von SAR-Bildern um einen
Faktor von 2 oder 4 werden anhand von Bildqualitätsmetriken (PSNR, SSIM) und einem
Erdbeobachtungssegmentierungsmodell bewertet. Darüber hinaus wird untersucht, ob die
SA-Modelle mit ungesehenen zeitlichen und räumlichen Konditionen zurechtkommen und
ob ein adversarisches Training die Ergebnisse weiter verbessern kann. Die abschließende
Bewertung zeigt, dass SA für C-Band SAR-Bilder bei einer Hochskalierung um den Faktor
2 geeignet ist und dass ungesehene zeitliche und räumliche Konditionen keine Probleme
verursachen. Im Gegensatz dazu ist für eine SA um den Faktor 4 zur Bewältigung
ungesehener zeitlicher und räumlicher Konditionen ein zusätzlicher Aufwand (erneutes
Trainieren des Erdbeobachtungsmodells auf den SA-Bildern) erforderlich. Die Ergebnisse
deuten darauf hin, dass das adversarische Training sowohl die Klassifizierung als auch die
Bildqualitätsmetriken verbessern kann. Wenn nur die niedrig aufgelösten Bilder gesichert
werden, kann die SA um den Faktor 2 oder 4 den erforderlichen Speicherplatz um den
Faktor 4 bzw. 16 verringern. Diese Arbeit legt den Grundstein für zukünftige Forschung
im Bereich der Einzelbild-SA für C-Band SAR-Bilder.
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Abstract

Single image Super-Resolution (SR) is a method to get a high-resolution image out of
a single Low-Resolution (LR) image. SR is used in different domains, such as medical
imaging, satellite imaging, and security imaging. Using SR compared to LR images
speeds up training convergence and boosts recognition and segmentation accuracy. Apart
from increasing the resolution of LR images, SR is able to denoise. Given the image
acquisition hardware, there are physical restrictions on the image quality and resolution.
SR helps overcome those limitations. This work focuses on the application of SR for
Synthetic Aperture Radar (SAR) C-Band images captured by the Sentinel-1 satellites of
the Copernicus Mission conducted by the European Space Agency. Earth Observation
(EO) tasks, such as land cover estimation, detection of oil spills, land surface temperature,
and soil moisture depend on the quality of the given remote sensing images. LR and
noise impairs the underlying models, therefore SR is significant for earth science. This
thesis investigates state-of-the-art SR approaches on SAR C-band images based on deep
neural networks. An EO task for pixel-wise land cover segmentation is proposed in order
to assess the suitability of SR for SAR images. Results of upscaling SAR images by a
factor of 2 or 4 are evaluated based on image quality metrics (PSNR, SSIM) and an EO
segmentation model. Furthermore, it is assessed if the SR methods can handle unseen
temporal and spatial conditions and if adversarial training can further enhance the results.
The final evaluation shows that SR for SAR C-band images is viable for upscaling by a
factor of 2 and that unseen temporal and spatial conditions are manageable. In contrast,
for SR by a factor of 4 to handle unseen temporal and spatial conditions, additional effort
(re-training the EO model on the SR images) is required. Results indicate that adversarial
training can improve both classification and image quality metrics. By keeping only the
LR images, SR by a factor of 2 or 4 can reduce the necessary storage by a ratio of 4 or
16, respectively. This work lays the ground for future research in the field of single image
SR for SAR C-band images.
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CHAPTER 1
Introduction

Given an image, Super-Resolution (SR) is a technique to create a new image with a
higher resolution [1]. This is achieved using a single image or multiple images [2]. This
work will focus on using single images to achieve the increase in resolution. Such methods
are termed Single-Image Super-Resolution (SISR).

1.1 Motivation and Problem Statement
This thesis focuses on Synthetic Aperture Radar (SAR) remote sensing imagery. Remote
sensing is the acquisition of information about an area or object, typically from aircraft
or satellites [3]. The SAR instrument uses radio waves to create the image and operates
in different acquisition modes depending on the application requirement, e.g. vegetation
classification, oceanography or archaeology [4]. An example for such images can be seen
in Figure 1.1, which is captured by the Sentinel-1 satellite of the Copernicus Mission by
the European Space Agency.

High-Resolution (HR) images have a high level of detail [5], allow a precise image
interpretation, and enable new remote sensing applications [6]. Low-Resolution (LR)
images have less visible details, which hinder remote sensing applications like road
extraction and target identification [7]. However, available instruments make a trade-off
between high spatial and high temporal resolution [8, 9]. The goal of SR is to generate
a HR image from a given LR input [10]. A comparative illustration between LR and
HR images of the same geographic region are exemplified in Figure 1.2. In this example,
the LR has sixteen times less pixels than the HR counterpart. The task of SR is to
use the available information of the LR image to recreate an image in HR resolution.
Furthermore, SR is able to reduce the inherent noise in the LR images [11, 12].

Earth Observation (EO) tasks like land cover estimation, detection of oil spills, land
surface temperature, and soil moisture depend on remote sensing images [13]. There
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1. Introduction

Figure 1.1: SAR image over Carinthia, Austria. Source: TU Wien Sentinel-1 datacube

is evidence for faster training convergence [14] and increased recognition [15] [16] and
segmentation [17] accuracy, when using SR compared to the original LR images. Applying
SR to increase the resolution and reduce the noise can consequently enahnce the underlying
models and is therefore significant for earth science.

Another motivation of SR, besides enhancing the quality of the given image, is the ability
to cut down processing and storage capacity [18] through compression [19]. By using SR
models, only LR images - compressed data - need to be stored, which can then be used
to reconstruct the original HR image. This task is especially relevant to TU Wien as
part of the Earth Observation Data Center (EODC) collaboration, as the data volume
is expected to reach Peta-byte scale during a satellite lifespan [20]. This is relevant for
conserving the data.

There are physical constraints on the image acquisition technology and hence on the
image resolution [21]. Therefore, achieving SR reduces the limitations of the sensors
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1.2. Aim of the Thesis

(a) LR (b) HR

Figure 1.2: Same geographic area in (a) LR (40m GSD) and (b) HR (10m GSD).

currently available or deployed [22]. It can enhance the historical data available, and
make it more comparable to the new (and better) remote sensing images.

1.2 Aim of the Thesis
This thesis aims to answer the following question: Is a Convolutional Neural Network
(CNN) model suitable for increasing the resolution of a given SAR C-band image by a
factor of 2 or 4? In detail, the suitability of the CNN model will be evaluated on the
basis of semantic image segmentation for land cover, i.e. assigning a land cover class to
each image pixel. The EO task assessment is described in Section 5. Furtheremore, the
goal of this work is to provide a model for upscaling lower resolution SAR images based
on State-Of-The-Art (SOTA) techniques for SR.

While answering the main research question, the following additional sub-questions will
be addressed:

1. How does the CNN handle unseen temporal conditions, e.g. can the model handle
autumn conditions without being trained on such?

2. How does the CNN handle unseen spatial conditions, e.g. can the model handle
mountainous regions without being trained on such?

3. Can a Generative Adversarial Network (GAN) [23] improve the results of the CNN?

This work refers to SISR with scale factors of 2 and 4 to up-scale SAR images with 20
meter to 10 meter, and 40 meter to 10 meter spatial resolution, respectively. The images
with 10 meters pixel spacing are termed high resolution, the rest low resolution.

3



1. Introduction

The goal is to assess if SR is suitable for SAR C-band images on the grounds of a
task-based evaluation. Analyzing state-of-the-art approaches with and without deep
learning is crucial for SAR SR. To serve as a basis for future research, the models will be
also evaluated with the standard SR metrics PSNR and SSIM [24], as this offers more
comparability than the task-specific assessment.

1.3 Structure of the Thesis
The remainder of this thesis is structured as follows: Chapter 2 presents an overview of
existing literature in the field. Additionally, it formally defines remote sensing, SR, and
semantic image segmentation.

Chapter 3 presents the data at hand and introduces key concepts of neural networks
for the SR tasks. Neural Network (NN) components for SR are preluded and discussed.
Furthermore, the state-of-the-art models which are going to be used in the experiments
are presented, i.e. SRCNN, VDSR, SRResNet, SRGAN, ESRGAN, and EESRGAN.
Chapter 3 concludes with introducing U-Nets as used for the task-based evaluation.

Chapter 4 introduces the datasets and the required data pre-processing steps. The
importance and usage of data augmentation is showcased. Training and implementation
details are presented.

Chapter 5 depicts how the experiments are set up to answer the research question.
Important classification and image quality metrics are defined. The results of the
experiments are presented based on the models introduced in Chapter 4. Next to
presenting the results, this chapter focuses on discussing and interpreting the results.
The research question and sub-questions are evaluated.

Section 6 concludes with what can be learned from this work and what the future
prospects for SR techniques in deep learning for spatial data are.

4



CHAPTER 2
Related Work

Section 2.1 gives an introduction to the topic of remote sensing. For a better understanding
of the data at hand, the underlying sensor types are specified and discussed.
An overview of the SOTA SR methods is given in Section 2.2. Furthermore, Section 2.2
formally defines the task of SR.
Section 2.3 focuses on semantic segmentation, the goal of which is to label each pixel
with a corresponding class. Semantic segmentation is a task that is used in this thesis to
evaluate the different SR techniques.

2.1 Remote Sensing and Sensor Types
Remote sensing has no universally accepted definition [25]. A general definition is given
by Sabins and Floyd [26]: "Remote sensing is the science of acquiring, processing, and
interpreting images and related data, acquired from aircraft and satellites, that record the
interaction between matter and electromagnetic energy".
Lush [27] divides remote sensing into two categories, depending on the electromagnetic
spectrum of the recorded radiation. Optical sensors are able to record the reflected
energy of the visible and infrared bands (wavelength less than 1 mm). Microwave sensors
measure the microwave portion of the electromagnetic spectrum (wavelength larger than
1 mm). Furthermore, Joshi et al. [28] divide microwave remote sensing into passive
and active radars. Passive radars measure the emitted energy of the observed surface.
Whereas, active radars emit electromagnetic waves and measure the reflected signal.
In its basic form, the radar radiates electromagnetic energy and detects the reflected
echoes [29]. The sensor is used to generate electromagnetic power, which is directed over
the switch to the antenna. The antenna and switch are simultaneously used to collect the
returned radio waves and to direct the pulse to the receiver. The receiver converts the
power into digital numbers, which are stored by the data recorder for later processing [4].

5



2. Related Work

For a radar to achieve high resolution, an antenna of sufficient size is necessary [30].
However, SAR is able to achieve high spatial resolution with smaller antennas by being
in motion and by combining the received signals in a sequential way [30, 31]. Therefore,
SAR imagery is one of the main sources for change detection studies [32].

SAR is a sensor capable of measuring the reflectivity of a surface [33]. Each pixel of
the SAR data at hand contains the value of the backscatter coefficient, σ0, expressed
in Decibel (dB). Simply put, σ0 indicates what proportion of the initially transmitted
power is returned, normalized by the illuminated area [34].

Radars are capable of transmitting and receiving electromagnetic waves in horizontal
and vertical polarizations [35]. Figure 2.1 illustrates a pulse transmission with horizontal
and vertical polarization. The arrow depicts the direction of the wave.

Figure 2.1: Electromagnetic wave with horizontal and vertical polarization. Source: [35]

There are four types of polarization depending on the polarization received and trans-
mitted - Vertical on transmit, Vertical on receive (VV), Vertical on transmit, Horizontal
on receive (VH), Horizontal on transmit, Horizontal on receive (HH), and Horizontal
on transmit, Vertical on receive (HV) [36]. VV and HH are categorized as co-polarized,
whereas VH and HV as cross-polarized [37]. The selection of polarization depends on
the application. For instance, when monitoring vegetation, co-polarization is a better
measure for early vegetation, whereas cross-polarization is better suited for advanced
vegetative stages [38].

The intensity of the backscatter data depends on multiple factors. On the one hand, it is
dependent on the object, i.e. surface (smooth, rough) [39], moisture conditions [40], soil
conditions [41], topography (flat area, relief area) [42], soil texture (sand, silt, clay) [43].
On the other hand, it is dependent on the sensor, i.e. frequency (C-, X-, L-band) and
polarization (VH, VV, HH, HV), while being independent of daylight and cloud cover
[44].

Radars operate on different frequencies. The wavelength of the microwave is inversely
proportional on the frequency, and vice verse, obeying the equation Wavelength =

6



2.1. Remote Sensing and Sensor Types

Speed of Light/Frequency [45]. Backscatter is dependent on the wavelength [46], hence
the emitted microwave frequency is of importance. The frequencies are bundled in
different bands. For convenience, each band is designated with specific letters, e.g. L
(1-2 GHz), C (4-8 GHz), X (8-12 GHz) [29].

SAR images depicted in this work are based on the intensity values of the backscatter
coefficient - high backscatter values are plotted in white, low in black. A general
guideline to better understand the images is that more backscatter bounces lead to less
backscattering response [47]. An example of single, double, and triple bounce can be
seen in Figure 2.2. Furthermore, trees with larger leaves produce stronger single- and
double bounce scattering than ones with smaller leaves, e.g. croplands [48]. Consequently,
urban areas and man-made objects have high backscatter [49]. Compared to urban
areas, forests have medium backscatter [50], yet distinguishably more than crop fields
[51]. Water bodies have the lowest backscatter, due to the smooth surface. However,
backscatter increases when the surface is rougher (wind, currents, waves) [52], which can
be explained by the Bragg resonance as a dominant mechanism of radar backscatter from
water surface [53].

(a) Single Bounce Scattering (b) Double Bounce Scattering (c) Triple Bounce Scattering

Figure 2.2: Image showcasing the backscattering mechanisms in urban areas: (a) Single
Bounce Scattering, (b) Double Bounce Scattering, and (c) Triple Bounce Scattering.
Source: [47]

Different applications have been developed which make use of the backscatter properties
of different surfaces. Some examples include the detection of windthrow [44], monitoring
of vegetation dynamics [54], crop field classification and monitoring [55], flood dynamics
[56], ice classification and mapping [57], and climate studies [58].

Optical imagery is obstructed by clouds, haze, rain, and fog, which is a fundamental
problem as it affects the availability of observing the surface underneath [59], particularly
for tropical countries [4]. This leads to spatial and temporal data gaps [60]. Similarly,
optical sensors reveal only the top of the canopy. Hence, the lower canopy and soils
are obscured and cannot be depicted [28]. Whereas optical photogrammetry does not
operate during the night, SAR imagery and monitoring is possible at nighttime since it
has its own source of illumination (by emitting electromagnetic waves) [61].

Likewise, radar imagery has its drawbacks. The main drawback is the speckle, which
is inherent in all SAR images. It is a signal-dependent granular noise (modeled as

7



2. Related Work

multiplicative noise) produced by constructive and destructive interference of the signal
[62] that causes the "salt-and-pepper" effect in the images. Speckle leads to measurement
uncertainty [28], edge detection issues [63], difficulty in image interpretation, target
identification, and classification [64]. An illustration of the speckle effect is shown in
Figure 2.3, where an image has been synthetically altered to be noisy. Furthermore,
topography (varying terrain elevation and slope) significantly impacts the geometric and
radiometric properties of SAR images [65, 66].

(a) noise-free (b) noisy

Figure 2.3: Synthetically speckled image from [62]: (a) noise-free reference, (b) noisy.

Spatial resolution, in remote sensing, defines the ability of the sensor to distinguish the
reflected signal between two adjacent targets [67]. In higher (or finer) resolution images,
smaller objects can be detected than in lower (or coarser) resolution images. In remote
sensing, Ground Sampling Distance (GSD) is the distance between neighboring pixels
measured on the ground. In the literature, the term pixel spacing and GSD are used
interchangeably. The higher the GSD value of a remote sensing image, the lower the
spatial resolution of the image. Equivalently, having two images covering the same area,
the one with more pixels is to be referred as high resolution, the one with less as low
resolution.

Remote sensing is an important data source for gathering land-use and land-cover
information [68]. By monitoring the earth’s surface, better environmental understanding
and decision making are possible [69].

2.2 Super Resolution
The goal of SR is to accurately estimate an HR image from a given LR image [18].
SR reconstruction is an ill-posed inverse problem [70]. It is an inverse problem, as the

8



2.2. Super Resolution

objective is to find a function f which takes as input a LR image and outputs a SR
image. An ill-posed problem is a problem which has an unstable solution, more than
one solution, or has no solution. It is also known as an improperly posed problem [71].
The solution is stable, if a slight change to the initial data yields a small change of the
solution [72]. SR is ill-posed, since the reconstruction of the HR image is extremely
sensitive to the LR data [73]. Likewise, SR is ill-posed, since infinitely many compatible
HR images can be downscaled to the same LR image [74, 75].

A method for image upscaling is interpolation [76]. Types of interpolation are nearest
neighbor, bilinear, or bicubic interpolation [77]. Not only are those methods used to
define a performance baseline, they are also used to create the input for the NN. Instead
of using the lower resolution image, the interpolated image is often served to the first
layer of the network [78, 79].

With the prevalence of Deep Learning (DL) in computer vision tasks, Dong et al.’s work
[78] was one of the first to tackle SR using a convolutional neural network with 3 layers.
This neural network is called Super-Resolution Convolutional Neural Network (SRCNN).

Kim et al. enhanced the SRCNN by adding more convolutional layers [79]. Deeper (and
wider) network structures increase the model’s performance [80]. However, this comes at
the cost of overfitting, especially for smaller data sets, and increased training time. It
should be noted that stacking too many layers leads to a degradation problem - accuracy
starts to decrease [81].

To overcome the problems of increased learning time and degradation of accuracy, He
et al. proposed a residual learning framework [82]. The framework utilizes shortcut
connections [83] to relay the initial input image to the final layer. This technique is used
by both Kim et al. [79] and Wagner et al. [84]. While Huang et al. incorporated the
very deep convolutional neural network on remote sensing data1 without success [85],
Wagner et al. managed to get promising results.

Recently, GANs have been playing a main role in the field of SR [86]. This is due to the
fact that adversarial training works decently even with small datasets2 (which might be
the case when working with spatial data) [87], and that it achieves perceptually realistic
results [88]. As a consequence, it is a main component in some of the leading models
(SRGAN [89], EEGAN [90], ESRGAN [91], and EESRGAN [92]).

A GAN is a framework for training two models simultaneously: a generator and a
discriminator [23]. Following the analogy of Creswell et al. [93] in computer vision, the
generator is an art forger and the discriminator is an art expert. The forger tries to
create forgeries as close as possible to the original art. Meanwhile, the expert tries to
distinguish between a given forgery and the authentic art. The success of one is the
failure of the other.

1Based on the Sentinel-2 MultiSpectral Instrument, which is a very different product in comparison
to the SAR from Sentinel-1, i.e. multi-spectral vs. single band

2As low as 400 training images.
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2. Related Work

The basis for this master thesis are the EEGAN [90], ESRGAN [91], and EESRGAN
[92] state-of-the-art models. Their novelty lies in the usage of additional sub-networks
for edge-enhancement, so-called residual dense blocks, and residual-in-residual dense
blocks, based on the works of Jiang et al. [90], Zhang et al. [94], and Wang et al. [91],
respectively.

Analyzing the ESRGAN makes sense because the authors have won the PRISM2018-SR
Challenge in perception [91]. The EEGAN is chosen as it implements an edge-enhancement
strategy for obtaining clear edges [90], a feature which is desired in satellite imaging. The
EESRGAN model [92] is selected since the authors achieved state-of-the-art results on
satellite images for object detection by utilizing SR in comparison to using the original
data, EEGAN, or ESRGAN super-resolved images.

Most recently, models based on recurrent neural networks [95] or the novel trainable
second-order channel attention [96] have started challenging the dominance of GAN-based
SISR models. This master thesis will not focus on those techniques, as they and not yet
verified for remote sensing images.

Most of the milestone-defining-papers are based on optical images. In comparison, only
scarce literature covers DL-based SISR models evaluated on SAR data [14, 97, 98].
Furthermore, there is a shortage on benchmark datasets, hence it is difficult to derive
conclusions for the remote sensing field [21] and especially for SAR imagery.

It is important to note that while this thesis is focusing only on DL approaches, there
are non-DL methods such as the works of Kanakaraj et al. [64], and Karimi and Taban
[99]. No papers were found covering the novel state-of-the-art SISR DL models on
exclusively SAR C-band data. Kanakaraj et al. [100] have reported a SR framework
for Sentinel-1 SAR C-band images - however, multiple (12) LR images are required for
a single SR image, and it is not a DL approach. Nevertheless, in an adjacent topic,
neural networks for fully Polarimetric Synthetic Aperture Radar (PolSAR) images are
researched [101, 102, 103].

2.3 Semantic Image Segmentation
In computer vision, semantic segmentation is the task of partitioning a given image into
multiple segments by assigning a label (class) to each pixel [104]. The output of the
semantic segmentation is referred to as semantic map [105]. In remote sensing, the terms
segmentation and classification are used interchangeably [106, 107, 108, 109]. On the
contrary, in computer vision, image classification is referred to as assigning a class to the
whole image [110].

Semantic segmentation is crucial to this work, as it will be used to evaluate the selected
SR models. An example of semantic segmentation in remote sensing can be seen in
Figure 2.4. The image contains five different classes (building, car, tree, low vegetation
and impervious surface), each depicted in a different color.
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Figure 2.4: Semantic image segmentation with five classes. Source: [111]

Pixel-level semantic segmentation is chosen as the task for the assessment of the SR
models, since there are several earth observation use-cases. For instance land use and land
cover classification [112], object detection (vehicle [113], ship [114], cloud [115] detection),
and change detection [116]. Furthermore, semantic maps can be used as input for object
detection models, as used by Audebert et al. [117] for detecting and classifying vehicles.
Precise land cover classification indicates the position of borders, which is crucial for
infrastructure management and urban planing [118].

Non-DL machine learning approaches focus on extracting low-level hand-crafted features
such as color, hue, saturation, gradient, geometric context, shape, and texture [119].
Subsequently, a classifier is applied to predict a class for each pixel [111]. On the other
hand, in DL, to extract high-level features, Long et al. [120] employ a Full Convolutional
Network (FCN) exceeding SOTA methods for semantic segmentation. The FCN consists
of convolutions, pooling [121], and activation functions. The semantic map is upsampled
only at the end of the network through strided convolutions [122] to match the shape of
the input image.

SegNet is a FCN using an encoder-decoder architecture for semantic pixel-wise segmenta-
tion [123]. The encoder part is based on the convolutional layers of the 16 layer VGG
network [124]. The decoder part is used for upsampling the feature maps of each encoder
layer, so that the final segmentation map matches the shape of the input image.

U-Net [125] is similar to the SegNet. The difference in the encoding part is that it uses
the feature maps after the activation function instead of the feature maps after the
pooling layer. This change enables the U-Net to compensate for the loss of information
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due to the pooling layers [126]

Attention U-Net [127] utilizes attention gates to further improve the U-Net. U-Nets are
well-established SOTA methods based on end-to-end deep CNN architectures and more
efficient than patch-based models [128]. Therefore, the Attention U-Net is selected for
the semantic image segmentation part of this thesis.

2.4 Summary
In this chapter formal definitions of remote sensing, SR, and semantic image segmentation
have been presented. The varying remote sensors, with focus on optical and radar,
together with their strengths and weaknesses have been discussed. Essential remote
sensing terms such as speckle, pixel spacing, and ground sampling distance have been
specified. Furthermore, SAR imagery, its influencing factors (surface, moisture conditions,
soil conditions and texture, topography, frequency, polarization), and interpretation have
been illustrated.

This chapter also introduced related work on SISR. Main differences between the ref-
erenced models lie in the number of layers, and the usage of residual learning or GAN
frameworks. The mentioned models will be further described in Chapter 3.

Interpolation shows its usefulness as means of baseline and input for DL approaches.
Additionally, some issues in training SR networks, such as increased training time,
overfitting, and the degradation problem, have been depicted. It was shown that there
are DL-based SISR models for SAR data. However, no state-of-the-art DL approaches
have been validated on the data at hand (SAR C-band).

An overview to semantic image segmentation and its application in EO was given.
Earlier semantic image segmentation models were based on feature engineering to extract
meaningful visual features. In contrast, more recent methods use deep learning to extract
high-level features. The role of pixel-wise segmentation in the thesis has been indicated
as a measure to assess the quality of different SR images.
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CHAPTER 3
Foundations of Deep Learning

Based Super Resolution and
Semantic Segmentation

This chapter gives a general introduction to DL in SR and semantic segmentation. The
notation throughout this work is introduced.

Section 3.1 showcases how SR training is conducted, while defining the key loss functions.
Section 3.2 introduces the activation functions in the context of neural networks. Section
3.2 covers sub-pixel convolutions, which are used to generate high-resolution representa-
tion. Section 3.4 outlines the residual learning framework, which is used to train deeper
neural networks. Furthermore, Section 3.4 introduces the concepts of residual blocks,
dense blocks, residual dense blocks, and residual-in-residual dense blocks. Those blocks
are necessary for the models used throughout this thesis.

The models used to evaluate the research question are described in Section 3.5. Their ar-
chitectures are depicted and discussed. Section 3.5 additionally introduces the adversarial
training framework and displays how it can be utilized in the context of SR.

3.1 Training
ILR denotes the low-resolution, IHR the high-resolution, and ISR the super-resolved
image. ILR, IHR, and ISR are different versions of the same image. The goal is to find a
model G, which yields ISR close to IHR , denoted G(ILR) = ISR. In this work, in the
context of neural networks, G stands for the generator network.

ILR is represented as a real-valued tensor of size H × W × C, where H is the height, W
the width, and C the number of channels of the given image. Whereas IHR and ISR are
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in the shape of rH × rW × C, where r denotes the upscaling factor, i.e. 2 or 4. C = 1,
as only one channel is used.

The data at hand is sampled only in one resolution, particularly the best and only
available resolution is with GSD of 10 meters. Thus, in training, the initial remote
sensing image is downscaled and used as the low-resolution image, while having the
original image serving as the high-resolution image.

Manhattan (L1) and Euclidean (L2) norms are key elements in training a SR network.
The Mean Squared Error (MSE) is equivalent to the squared L2 norm and is defined as
follows:

MSE(IHR, ILR) = (G(ILR) − IHR)2 (3.1)

In SR one deals with pixel predictions, therefore G(ILR) and IHR from (3.1) need to be
represented as pixels. In particular, the MSE loss becomes:

MSE(IHR, ILR) = 1
r2HW

rW�
w=1

rH�
h=1

(G(ILR)h,w − IHR
h,w )2 (3.2)

Where G(ILR)h,w is the pixel at position (h, w) of the model’s prediction.

The L1 criterion measures the Mean Absolute Error (MAE) and is defined as follows:

L1(IHR, ILR) = |G(ILR) − IHR| (3.3)

Another loss used in this work is the texture loss Ltexture. It is proposed by Gatys et al.
[129] to improve texture representations in CNNs. The loss is defined as follows for a set
of layers L:

Ltexture(IHR, ILR) =
�
l∈L

MSE(Gl(ILR), Gl(IHR)) (3.4)

Where Gl ∈ Rn×n is the Gram matrix. Hence, the texture loss is the Euclidean distance
between the Gram matrices of the LR and HR images. The Gram matrix Gl has matrix
entries Gl

i,j , such as:

Gl =

��
Gl

1,1 · · · Gl
1,n

... . . . ...
Gl

n,1 · · · Gl
n,n

�� =

�F l
1 · F l

1 · · · F l
1 · F l

n
... . . . ...

F l
n · F l

1 · · · F l
n · F l

n

� (3.5)

Where the (i, j) entry of the lth layer is defined as the dot product (·) between the feature
maps i and j of layer l, in equation:
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Gl
i,j = F l

i · F l
j =

�
k

F l
ikF l

j,k (3.6)

F l ∈ Rn×m is the feature map matrix of layer l in the network, which have n feature
maps of length m. F l

i,k is the activation of the ith filter at position k in layer l. A feature
map is the output (after activation) of the convolutional layer [130].

3.2 Activation Functions
An activation function defines the output of a neuron (unit of a NN) for a given input
[131]. The SR models used in this work make use of different activation functions, namely
sigmoid, Rectified Linear Units (ReLU), Leaky ReLU (LReLU), and Parametric ReLU
(PReLU). For better understanding of the models used, the activation functions are
defined and their differences are emphasized.

The sigmoid function produces an output between 0 and 1, and is defined as f(x) =
1/(1 + e−x) [132]. f is the activation function and x is the input of the neuron.

ReLU is a function which produces an output between 0 and x, and is defined as
f(x) = max(0, x). There is evidence that ReLU improve the training of deep NNs [133].

LReLU is defined as a piecewise function [134]:

f(xi) =
�

xi, xi > 0
αixi, xi ≤ 0 (3.7)

Here, xi denotes the input of the i-th channel. Hence, it is possible to have a different
activation weight α for different channels. In the original paper [134], αi is fixed at 100,
however, this can be seen as a hyperparameter of the NN.

The authors of the LReLU claim that their activation function is more robust during the
NN optimization, i.e. avoiding zero gradients. However, they also state that there are no
significant performance improvements compared to the ReLU.

He et al. created the PReLU while surpassing human-level performance on the ImageNet
2012 classification dataset [135]. Neither ReLU nor leaky ReLU have any parameters,
PReLU is a learned activation unit. In their work, He et al. state that it improves the
accuracy, while the new parameter is negligible in comparison to the total number of
model parameters. PReLU is defined as Equation (3.7), where αi is a learnable parameter
[135].

3.3 Sub-Pixel Convolution Layer
Shi et al. [136] define the sub-pixel convolution layer as an operation which rearranges
the elements of a tensor of size H × W × Cr2 to a tensor of size rH × rW × C. The new
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size is exactly the desired shape of ISR, since it increases the height and width of the
original image by the factor r. Figure 3.1 visualizes the sub-pixel convolution layer. It
aggregates the feature maps of the previous layer (low-resolution space) and creates the
SR image. Figure 3.1 demonstrates the upscaling by factor 2, i.e. r = 2.

Figure 3.1: Sub-pixel convolution layer. Source: Own image based on [136]

The authors of the sub-pixel convolution layer state that there are two benefits of using
a sub-pixel convolution layer, instead of working with an upscaled LR image from the
beginning. The first benefit is that the feature extraction happens in the LR space. Hence,
it is possible to use smaller filter sizes to cover the same receptive field (in comparison to
working with the upscaled LR image). This considerably lowers the computational and
memory complexity [136]. The second benefit is that more upscaling filters are learned
in contrast to the single upscaling filter when using the bicubically upscaled image. This
is due to the fact that there are multiple layers between the input and the sub-pixel
convolution layer. Thus, the network is able to learn a more complicated mapping from
low-resolution to high-resolution, opposed to the single fixed filter upscaling [136].

3.4 Residual-Learning
In the work of He et al. [82], a residual learning framework is proposed to ease up the
training of very deep networks. For the time being they have successfully trained the
deepest network on the ImageNet [137] visual image recognition challenge.

3.4.1 Residual Block
The main concept of the residual learning framework are so-called Residual Blocks (RB).
A neural network can have one or more residual blocks. A representation of this concept
can be seen in Figure 3.2. The idea is to add the output of a previous layer to a deeper
layer.
In the case of SR, X in Figure 3.2 could represent the initial lower-resolution image, or
an output of a previous neural network layer. This input goes through one or more layers
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G(X). In the simplest case, where the first NN layer is X and the final is G(X) + X,
the residual block is the full architecture of the SR network. In the papers considered,
G(X) typically consists of convolutional layers [138] followed by non-linear functions (i.e.
activation functions).

Figure 3.2: A residual block. Source: Own illustration based on [82]

The addition of the identity in this case is called a shortcut connection, due to the nature
of skipping layers. It takes the input of a previous layer and adds it to the output of
a layer ahead. This construct, as seen in Figure 3.2, does not add any extra model
parameter nor computational complexity. This makes comparing models with same depth
and width more accessible [82].

In their paper [82], He et al. argue - when assuming the identity mappings are optimal -
that it would be easier to optimize a residual in comparison to a different mapping. This
is due to the fact that most networks use non-linear functions and setting the residual to
zero is easier. This statement is especially interesting in the case of SR, as most of the
pixels in the input image already contain a lot of correct information.

SR models with residual-learning learn a residual image (instead of the SR image).
To generate the SR image, the learned residual is added to the LR image. For this
to work, the shapes of both residual and LR need to be equal. Due to the fact that
the high-resolution version of a low-resolution image has similar features and structure,
residual learning is intuitively a good mechanism.

3.4.2 Dense Block
The Dense Block (DB) was proposed by Huang et al. [139] as part of their Dense
Convolutional Network (DenseNet), which obtained significant improvements over the
SOTA in all Canadian Institute For Advanced Research (CIFAR) object recognition
datasets [140]. The authors of the DB showed that DenseNets are able to scale to
hundreds of layers without training difficulties.

Figure 3.3 shows the structure of the DB. The main idea is that each layer receives the
feature maps of all previous layers of the given dense block by using direct connections.
This connectivity between the layers is named dense. Each direct connection symbolizes
a concatenation of the corresponding feature-maps. The concatenation increases the
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number of features, which boosts the variation in the input of the consecutive layers and
leads to an higher efficiency [139]. The concatenation operation is illustrated in Equation
3.8, where the tensors t1 and t2 are concatenated to t3.

t1 =
�

1 2
3 4

�
, t2 =

�
5 6
7 8

�
, t3 =


1 2
3 4
5 6
7 8

 (3.8)

The dense block in Figure 3.3 is referred to as 3-layer. It should be noted that the DB
does not necessarily need to be a composite function of Conv and ReLU operations, it
can contain an arbitrary composition of layers.

Figure 3.3: Dense Block. Source: Own image based on [139]

Tong et al. [141] first introduced the DB for image SR. The authors state that DBs are
useful for learning high-level features.

Zhang et al. [142] argue that the SR models using only residual or dense blocks are missing
the hierarchical features of the original low-resolution images. The next incremental
improvement to the block structure to overcome this problem was the residual dense
block.

3.4.3 Residual Dense Block
An advantage of residual learning is that the network preserves the low-frequency
components (color, gradient orientation) [143] of the input image [144]. High-level
features (texture, edges, structures) are on the contrary extracted by deep and complex
architectures [142]. Nonetheless, for convincing SR results a combination of both low-
and high-level features is necessary [145].

To address the shortcomings of the RB and DB, the so-called Residual Dense Block
(RDB) was proposed by Zhang et al. [94]. Not only is it able to extract the high-frequency
features, but it also uses the hierarchical features of the original LR image.

The residual dense block, inspired by the RB and DB, can be observed in Figure 3.4. It
consists of two main parts. The first one is a mechanism to pass each preceding RDB to
each layer of the current RDB. This is done by the dense connectivity in the DB. The
DB takes as input the previous RDB (RDB d − 1 in 3.4), which enables the extraction of
local dense features [94]. The second one is the summation of the RDB input and output,
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this is in essence the residual learning as seen Figure 3.2. In their works, Zhang et al.
conclude that this stabilizes the training of wider networks, preserves information from
the current to the preceding RDBs, and improves the flow of information [94].

Figure 3.4: Residual Dense Block. Source: Own image based on [94]

3.4.4 Residual-in-Residual Dense Block
Wang et al. [91] introduce the Residual-in-Residual Dense Block (RRDB) while creating
their ESRGAN model, which earns them the first place in the Prim2018-SR Challenge
(region 3) [146]. The RRDB is depicted in Figure 3.5. It is an extension of the residual
dense block as it adds the input of the first RDB to the output of the last RDB. Essentially,
a RRDB consists of multiple RDBs in combination with a shortcut connection. The
authors claim the substituting DBs, RBs or RDBs for RRDBs increases the capacity of
the networks while being easier to train.

Figure 3.5: Residual-in-Residual Dense Block. Source: Own image based on [91]

3.5 Models
This section introduces and compares the models used in the thesis. Hyperparameters
are presented in Section 4.6.

3.5.1 Convolutional Neural Networks (CNNs)
The VDSR by Kim et al. [79], the SRCNN by Dong et al. [78], and the implementation
of the VDSR for satellite imagery by Wagner et al. [84] use ReLU as their non-linear
mapping (activation layers). The referred CNNs take as input the bicubically upscaled
LR image (to the size of HR) and return the SR image.

The structure and the differences of the CNN approaches are showcased in the following
passage.
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SRCNN

An overview of the SRCNN network is displayed in Figure 3.6, where R symbolizes a
ReLU layer. Dong et al. [78] use three layers with filters of sizes 9 × 9, 1 × 1, and 5 × 5,
respectively. Only after the first and second convolutional layer a ReLU follows.

Figure 3.6: SRCNN network structure. Source: Own illustration based on [78]

VDSR

While Dong et al. [78] did not achieve any notable success using more layers, Kim et al.
[79] managed to outperform the formal SRCNN model by using 20 layers, having filter
sizes of 3 × 3. They named their network Very Deep Super-Resolution (VDSR). The
second major change of the network structure is that a residual is learned instead of a
high-resolution image. It can be argued that learning the residual is what enabled the
training of the VDSR, since residual connection addresses the problem of vanishing and
exploding gradients [81]. The structure of the VDSR network is shown in Figure 3.7.

Figure 3.7: VDSR network structure. Source: Own illustration based on [79]

Kim et al. [79] achieve such a deep network by using padding after each feature map. In
contrast, Dong et al. [78] do not use any padding. A 36 × 36 px image and a layer with
a 9 × 9 filter is assumed as input. Without padding, the output of the layer would be a
28 × 28 px image. With padding the result would have remained the same size as the
input image, thus 36 × 36 px, only padded with zeros. On the one hand, the number
of layers gets limited by having filter sizes larger than 1 × 1 (as 1 × 1 does not reduce
the output image). On the other hand, there is the border effect problem [147], in which
pixels at the border are never centered in the filter.

Stacking more layers enables the VDSR network to have a larger receptive field: 41 × 41
in comparison to the 13 × 13 px of the SRCNN. Although having more model parameters,
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the authors of the VDSR were able to achieve state-of-the-art results in 4 hours, whereas
the SRCNN takes several days to converge. [79]. The VDSR is able to converge faster due
to the residual-learning, high learning rate (104 times higher than SRCNN), and gradient
clipping. To draw a comparison in terms of convergence speed, Figure 3.8 contains the
performance curve for residual and non-residual networks. It can be seen that residual
models converge faster than non-residual models, and that they are more stable when
using higher learning rates.

(a) Initial learning rate 0.1 (b) Initial learning rate 0.01

(c) Initial learning rate 0.001

Figure 3.8: Performance curve for residual and non-residual networks. Source: [79]
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Unlike typical CNNs, the works presented here do not make use of a pooling layer. This
is due to the reason that those layers would reduce the resolution, which is au contraire
on what SR is expected to do.

3.5.2 Generative Adversarial Networks
Adversarial training is a framework for deep generative models that make those models
competitive in comparison to other deep neural networks. Two main components form this
framework: a generator and a discriminator. Given random noise, the generator produces
an output which the discriminator needs to classify. Effectively, the discriminator needs
to figure out if the output is coming from the distribution of the training data, or not.
The generator is rewarded when the discriminator makes a mistake, and vice versa. This
simultaneous training mimics a min-max two-player game [23].

The competition between both is what drives each method to improve its model. When
the generator is able to fool the discriminator, the discriminator adjusts its model, and
vice versa if the discriminator is able to correctly label the data. The models are adjusted
by stochastic gradient descent. The training stops once the discriminator is not able to
distinguish between both labels, i.e. probability of both labels is 1

2 .

A simplified GAN for SR can be observed in Figure 3.9. The generator creates synthesized
(super-resolved) images. Both the SR and the HR (real high quality) images are given to
the discriminator, which on his part needs to classify which image is real and which is
fake.

Figure 3.9: A sample GAN used for SR. Source: Own image

Based on GANs, two prominent models (SRResNet and SRGAN) were created by Ledig
et al. [89]. They use a deep neural network for both generator and discriminator. In SR,
the input for the generator is not random noise. Instead, the low-resolution image is
used. Once trained, the generator network is used for creating SR images.
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SRResNet & SRGAN - the Similarities

SRResNet and SRGAN share the same generator and discriminator architecture. The
network structures of the corresponding generator and discriminator can be observed in
Figure 3.10, where k denotes the kernel (filter) size, n the number of feature maps, and s
the stride. For example, k3n64s1 denotes a convolution layer with 3 × 3 filter kernels, 64
feature maps and stride of one.

Figure 3.10: Generator and discriminator network architectures of the SRResNet and
SRGAN models. Source: [89]

The generator network has 16 identical residual blocks. Each residual block is made of
Convolution (Conv) layers, Batch Normalization (BN) layers [148], and PReLU as the
activation function. Ledig et al. use in a similar way like the SRCNN and VDSR only
filters of sizes 3 × 3 and 9 × 9.

The discriminator network contains eight Conv layers. The number of feature maps
start with 64 and are gradually doubled until 512. LReLU is used with α = 0.2. Dense
(fully-connected) layers are layers in which each neuron receives input from all units of
the previous layer. Dense (1024) is a dense layer with 1024 neurons.

Contrary to the SRCNN and VDSR networks, which use the bicubically enlarged images,
the generators of the SRResNet and SRGAN use the original LR images. Hence, a way is
needed to increase the resolution of the input images. To learn the upscaling operation a
sub-pixel convolution layer is used (PixelShuffler). Sub-pixel convolution layers speed-up
training as opposed to using deconvolution layers [149]. Simultaneously, upscaling at the
end of the network instead of in the beginning, leads to more representational power
(when comparing two networks with the same number of parameters) [150]. In 3.10 two
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sub-pixel convolution layers are used, since the depicted model is created for upscaling
images by a factor of 4.

SRResNet & SRGAN - the Differences

In their works, Ledig et al. [89] came to the conclusion that MSE (which is used in
SRCNN, VDSR and SRResNet), as defined in Equation 3.1, is not the best loss function
for creating images pleasant for the human perception. Based on the works of Johnson et
al. [151] and Bruna et al. [152], in place of MSE they used the so-called perceptual loss
function. They argue that minimizing MSE encourages the model to select a solution
containing pixel-wise averages of plausible solutions. Those solutions are overly-smooth
and have low perceptual quality.

The perceptual loss (Lpercep) is defined as a weighted sum of the content loss (Lcontent)
and the adversarial loss (Ladv), in equation:

Lpercep = λ1Lcontent + λ2Ladv (3.9)

Where λ1 = 1 and λ2 = 0 in case of the SRResNet, and λ1 = 1 and λ2 = 0.001 in case of
the SRGAN. Lcontent is in both cases the MSE loss. The adversarial loss Ladv is defined
as the sum of the probabilities of the discriminator over all training samples (N):

Ladv =
N�

n=1
−logD(G(ILR(n))) (3.10)

Where D is the discriminator network, which yields the probability of the image being
the original high-resolution image. ILR(n) is the n-th low-resolution image.

In the SRResNet, the Lcontent is the pixel-wise MSE loss. However, in the SRGAN, they
utilize the so-called VGG loss based on the ReLU activation layers of the pre-trained
19-layer VGG network [124]. In the VGG network, the image dimension is reduced
by stacking multiple convolutional and max pooling layers, which extracts higher-level
features. The loss is calculated as the Euclidean distance of the VGG-features between
the high-resolution image IHR and generated image ISR:

LV GGi,j = 1
Wi,jHi,j

Wi,j�
w=1

Hi,j�
h=1

||φi,j(IHR)w,h − φi,j((ISR)w,h)||2 (3.11)

Where Wi,j and Hi,j describe the dimensions of the associated feature maps in the given
VGG net. φi,j is the feature map obtained by the jth convolution (after the non-linear
function) before the ith max pooling layer.
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ESRGAN

Based on the SRGAN, Wang et al. introduced the Enhanced SRGAN (ESRGAN)
[91]. Concretely, they improved the SRGAN by altering the network architecture, the
adversarial loss, and perceptual loss.

The net design is altered in two ways. First, by introducing the residual-in-residual dense
block. Second, by removing the batch normalization layers.

The RRDB replaces the residual blocks in the SRResNet and SRGAN architecture. The
authors state that RRDB enables the training of a deeper network and helps improve
the perceptual quality of the SR images.

Eliminating BN layers reduces the GPU memory usage 1 [153]. Hence, this freed memory
enables the usage of more complicated structures, i.e. RRDS. The removal of BNs is
also beneficial in the task of deblurring [154], which is a desired quality in SR. BN might
be the cause of undesirable artifacts and hindrance of the generalization ability [91].
Following the authors of the ESRGAN, the artifacts are more likely when the net is deep
and a GAN is used.

Batch normalization layers are used to normalize the features after the convolutional
layers in the residual blocks of the SRGAN. It can be argued that BNs are applicable in
the area of target classification rather than the field of SR.

Altering the adversarial loss means to change the way the discriminator learns. Specifically,
they make use of a Relativistic GAN (RaGAN) [155], compared to the Standard GAN
(SGAN). RaGAN is designed to measure which image is more realistic rather than
which image is real or fake [155, 156, 91]. More precisely, the discriminator network
D in Equation 3.10 estimates the probability of the input being real (the original HR
image). In contrast, the discriminator DRa in RaGAN estimates the probability that
the HR image is more realistic than the SR image. Following [91], mathematically, the
discriminator probability for a given input x is formulated as follows:

D(x) = σ(C(x)) (3.12)

For RaGAN, the probability changes to:

DRa(IHR, ISR) = σ(C(IHR) − EISR [C(ISR]) (3.13)

σ is the sigmoid function, C(x) the output of the discriminator, and EISR [.] the average
of the SR data in the mini-batch. The adversarial loss becomes:

Ladv = EIHR [log(1 − DRa(IHR, ISR))] − EISR [log(DRa(ISR, IHR))] (3.14)
1The SRResNet net has about 40% less memory usage when removing the BNs [153].
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Jolicoeur-Martineau [155] states that the RaGAN significantly improves data quality and
the stability of the GAN, without any cost. Wang et al. [91] state that by using the
formulation in Equation 3.14 the NN produces sharper edges and precise textures.

The final difference when comparing ESRGAN with SRGAN is the perceptual loss
(Lpercep). The equation (3.11) still holds true, where φi,j is the feature map obtained by
the jth convolution before the ith max pooling layer. However, φi,j is now the feature
map before the activation function - whereas in SRGAN it was after. Figure 3.11 provides
an example of how the perceptual feature looks for a given image. The difference between
before and after activation can be seen for two different channels. Simultaneously, it
resembles the difference between lower (from φ2,2, as used in ESRGAN) and higher-level
(from φ5,4, as used in SRGAN) features.

Figure 3.11: Feature maps before and after activation for the 34th and 56th channels.

The final loss used for the generator is defined as:

LG = λ1Lperceptual + λ2Ladv + λ3L1 (3.15)

EESRGAN

Edge-Enhanced Super-Resolution (EESRGAN) [92] is inspired by the Edge Enhanced
GAN (EEGAN) [90] and ESRGAN [91]. Both the EESRGAN and EEGAN were proposed
in the field of remote sensing, hence, they are highly relevant for this study.

The authors of both the EESRGAN and EEGAN state that the SR models based on DL
miss high-frequency edge information. To solve this problem, they suggest the usage of an
Edge-Enhancement Network (EEN). The EEN is integrated as an intermediate network
in the generator network. Its goal is to, as the name suggests, improve the boarders

26



3.5. Models

of the image by removing noise and artifacts [90]. More precisely, in the EESRGAN,
the SR image is now not generated directly by the generator, but within the EEN. In
context to the EESRGAN, the image that is produced by the generator is referred to as
Intermediate SR (ISR) image, whereas the image produced by the EEN as SR.

EEN can be seen in Figure 3.12. Laplacian is the Laplacian operator, which is used
for edge extraction [157]. The Upsampling Block is equivalent to nearest-neighbor
interpolation. The rest of the network is composed of Conv, RRDB, and activation
functions. It can be observed that extracted edges (by the Laplacian operator) are
subtracted from the ISR image and at the end of the network, the Enhanced Edge is
added. Hence, the goal of the network is to learn those new improved edges which
substitute the original edges.

Figure 3.12: Edge-enhancement network used in the EESRGAN. Source: [92]

To increase the quality of the reconstructed images [90] and reduce the artifacts [158], a
Charbonnier function [159] is employed. The Charbonnier function is an edge-preserving
regularization, which is used to avoid smoothing of the edges in images [159]. The
function employed as the Charbonnier penalty function is defined as ρ(x) =

�
(x2 + �2),

where � = 0.001, as utilized by [158] for SR.

The Charbonnier function is used two-fold. First for image consistency (Eq. 3.16), and
second for edge consistency (Eq. 3.17).

Limg_cst = ρ(IHR − ISR) (3.16)

Ledge_cst = ρ(IHR_edge − ISR_edge) (3.17)

Where IHR_edge and ISR_edge are the edges of IHR and ISR extracted by the Laplacian
operator, respectively.

The Charbonnier loss is then defined as:

Lchar = Limg_cst + Ledge_cst (3.18)
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The training of the generator and EEN networks is done simultaneously. The overall loss
of ESRGAN (3.15) is extended by the Charbonnier loss. Thus, the loss is defined as:

LG = λ1Lperceptual + λ2Ladv + λ3L1 + λ4Lchar (3.19)

Lperceptual is defined as in SRGAN and ESRGAN. Ladv is defined as in ESRGAN. L1 is
the criterion from Equation (3.3).

The discriminator DRa is the same as the one from ESRGAN.

3.5.3 U-Nets for Semantic Segmentation
U-Nets in this work are used for pixel-wise image segmentation - assigning a label to
each pixel. An example of semantic image segmentation can be observed in Figure 3.13.
Each class has a distinguished color.

Figure 3.13: Pixel-wise image segmentation. Source: Own illustration based on the TU
Wien Sentinel-1 datacube data.

U-Net

Ronneberger et al. [125] propose the U-Net as a semantic image segmentation network
which outperforms prior models without requiring thousands of annotated training
samples. Figure 3.14 demonstrates a general U-Net architecture. The input image has
a resolution of 1 × H1 × W1, where 1 is the number of channels, H1 and W1 are the
input height and width, respectively. White boxes represent the concatenation with the
skip-connected layer. F represents the number of feature maps.

The architecture consists of two paths: a contracting part (reducing the resolution)
to generate high-level features and an expanding path (increasing the resolution) for
localization [160]. The localization happens as the contextual information is added to
the upsampled layers by skip-connections.
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Figure 3.14: U-Net architecture. Source: Own image based on [160]

Features are extracted by the following layer configuration: 3 × 3 Conv, BN, and ReLU.
(x2) in the legend symbolizes that the layer configuration is done twice. Since the Conv
has a padding of one, the layer configuration increases the number of feature maps, while
leaving the height and width unchanged. Downscaling is done by applying a 2 × 2 max
pooling operation [161]. Max pooling with stride two halves the input resolution for each
feature map. Hence, Hi = Hi−1/2, for i ∈ N2. Whereas in the expanding path, Up-Conv
increases the width and height, while halving the number of features. Up-Conv consists
of upsampling, which is done by the nearest neighbor algorithm, a 2 × 2 convolution,
which halves the number of feature maps, a BN, and a ReLU.

Since the feature maps are calculated based on different scales, the contracting part
yields a multi-level, multi-resolution feature representation [162]. The final layer is a 1 × 1
Conv which transforms the number of feature maps to equal the number of classification
classes.

Attention U-Net

Oktay et al. [127] propose the Attention U-net as an improved version of the U-Net
model, which already had very good performances on various segmentation applications
[125]. The Attention U-Net is suited for multi-class semantic segmentation and is selected
as a measure to evaluate the performance of the SR networks.

Figure 3.15 depicts the architecture of the Attention U-Net. The novelty of the Attention
U-Net compared to the U-Net is the attention gate. Attention gates suppress irrelevant
features while focusing on the important ones [160].

Figure 3.16 schematically shows the structure of an attention gate. An attention gate
takes as input the features (x) propagated by skip connections and the layers (g) in the
expanding phase after the Cov layers. g is the gating signal as depicted in the figure.
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Figure 3.15: Attention U-Net architecture. Source: Own image based on [125]

It has better feature representation compared to x, however, it is missing the spatial
representation. Since x and g do not have matching shapes, they need to be transformed.
For better explanation, assume x and g are the first layers that go through the activation
gates, i.e. are the layers symbolized as F3 × H3 × W3 and F4 × H4 × W4, respectively.
x passes through an Up-Conv, which scales in the given example H4 × W4 to H3 × W3.
Thereafter, both x and g pass through a 1 × 1 Conv, so that both have the same number
of feature maps F . For this reason, they can be summed. While ReLU suppress the
irrelevant features, the sigmoid activation function encourages the relevant ones. The
final 1 × 1 Conv scales the number of feature maps to equal F3, so that a multiplication
with x is possible.

Figure 3.16: Attention gate structure. Example based on the skip connection from
F3 × H3 × W3 and gating signal from F4 × H4 × W4. Source: Own image based on [125]

3.6 Summary
Key loss functions, such as MSE, MAE, perceptual, adversarial, Charbonnier, and VGG
were defined. The building blocks of SR were presented, i.e. sub-pixel convolutions,
residual blocks, dense blocks, residual dense blocks, and residual-in-residual dense blocks.
The difference between low-level (color, gradient orientation) and high-level features
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(texture, edges, structures), their importance in reconstructing high-resolution images,
and how they are affected by the different building blocks was presented.

It was shown how residual-learning works, and how it naturally fits the goal of SR. It
was explained why working with the original LR images is better than working with the
upscaled versions thereof, i.e. achieving a larger receptive field when using the same
number of model parameters.

The methods, which are going to be used in the experiments of this work, have been
depicted. Their differences have been reviewed and discussed, i.e. using the original
images or the bicubically upscaled version, the model architectures and how to enable
their training. Two types of networks are used for SR - CNNs and GANs. SRCNN, VDSR,
and SRResNet are the CNN models. Whereas SRGAN, ESRGAN, and EESRGAN are
the GAN networks.

U-Nets for semantic image segmentation have been introduced. The Attention U-net
is used for the pixel-wise segmentation in the further experiments, as it is an improved
version of the U-Net which performs good on segmentation problems.
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CHAPTER 4
Methodology

In this chapter, the data at hand is described. Furthermore, the available classes and
their distribution are listed. Section 4.2 illustrates the extent of the study together
with the sites used for analysis. Section 4.3 showcases how data is pre-processed and
split into training, testing, and validation datasets. Section 4.4 covers the topic of data
augmentation, which helps tackle the inherent issue of class imbalance. Section 4.5
showcases how the VGG loss is altered for single-channel images.

The training configuration of each models used in this work is described in Section 4.6.
This includes learning rate, batch size, optimizer, and loss functions. The metrics used to
evaluate the models based on image and segmentation quality are outlined in Section 4.7.

4.1 Data
The data used in this work was acquired by the SAR instrument of the two satellites
Sentinel-1A and Sentinel-1B of the Copernicus mission. The satellites operate at C-band,
with a central frequency of 5.404 GHz [163, 164]. It is an active SAR radar, hence, it
emits electromagnetic energy. Each pixel’s value depends on the intensity of the reflected
radar signal. This type of data is called backscatter. The data used in this thesis was
acquired in the interferometric wide swath mode and consists of VV and VH polarized
data. The images are displayed in gray scale when only one channel (VH or VV) is
provided. An illustration of a VV and VH image stack (two-channel image) is provided
in Figure 4.1, based on the tile "E045N021T1" of the Equi7 Grid system [165].

It was decided that only VV data is used for this experiment. It is argued that due to the
similarity between VV and VH data, if SR is viable for VV, then it will also be suitable
for VH data.

All SAR data, including the reference data for semantic segmentation, is contributed by
the Microwave Remote Sensing research group of TU Wien using the TU Wien Sentinel-1
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(a) VH (b) VV (c) VH for red, VV for green
channel

Figure 4.1: Tile "E045N021T1" presented in three different configurations: (a) using VH
backscatter information, (b) using VV backscatter information, and (c) using (a) as the
red and (b) as the green color channel.

datacube. The SAR data is provided in the GeoTIFF format and is made up of 2-D
images. The dimension of each image is 10000 × 10000 pixels with 10 meters GSD.
Hence, each image covers an area of 100 × 100 kilometers.

4.2 Study Site
The data is provided in the Equi7 Grid. In this study, the two tiles "E045N021T1"
and "E051N015T1" are used. The selection is based on the criteria to cover different
topography and land covers.

Tile "E045N021T1" is used from two different points in time - 30th of March and 13th

of November 2018. The tile covers a flat area of the Netherlands. For convenience,
throughout this work, "E045N021T1" from March is referred to as March scene, while
the same tile from November is referred as November scene. "E051N015T1" was taken
on the 2nd of June 2018 over a mountainous area in Austria. For convenience, this tile is
called Mountains scene.

A map with the extent of the study site for March can be observed in Figure 4.2. The
Mountains study site is illustrated in Figure 4.3. Due to the strong similarity between
the March and November sceneries, the November study map is depicted in the appendix
(Figure A). Each figure illustrates the scene and the corresponding areas which are
investigated more thoroughly throughout this study.

The reference data for the semantic segmentation is available as part of the released
Collection 2 of the Copernicus Global Land Cover layers [166]. It is resampled from 100m
to 10m resolution for it to match the HR data at hand. It should be noted that the land
covers are from 2015. Furthermore, following the corresponding product user manual,
errors in the ground truth are present [167]. This is due to the reason that algorithms

34



4.2. Study Site

Figure 4.2: Extent of the study site of the March scene.

Figure 4.3: Extent of the study site of the Mountains scene.

were used to create the semantic map. Figure 4.4 illustrates the segmentation maps of
the two tiles in this study.
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(a) March & November (b) Mountains

Figure 4.4: Semantic maps used in the experiments for the tile: (a) March & November
and (b) Mountains

4.3 Data Pre-processing and Splitting

The authors of the models that are evaluated in this work have used different patch sizes
for the HR images. For instance, Dong et al. [78] (SRCNN) use images of 36 × 36px, Kim
et al. [79] (VDSR) use 41 × 41px, Rabbi et al. [92] (EESRGAN) use 64 × 64px, Ledig et
al. [89] (SRGAN) use 96 × 96px, and Wang et al. [91] (ESRGAN) use up to 192 × 192px
patches. For better comparison of the SR images, all experiments are conducted with
the same patch size, namely 200 × 200px. The size has been selected since it divides the
remote-sensing images of 10000 × 10000px without remainder and the need of overlapping
to 2500 patches. The increase in patch size is favorable, since using larger patches leads
to better performance, especially deeper networks benefit more than shallower networks
[91].

Following the SR competitions Nitre2017 [168] and Prim2018 [146], the data used for the
experiments is split semi-randomly into train (80%), validation (10%) and test (10%)
sets. Train is used for training, validation for measuring the models performance while
training, and test for evaluating data not seen before.

The data is split semi-randomly due to the fact that while splitting the March tile into
patches every 10th patch is used as validation, starting from the 5th patch. Starting from
the 10th patch, every 10th patch is used as test. The rest is used as the train dataset,
besides the first and second occurrences of a patch containing the bare class, which are
set as validation and test data, respectively. Similarly, from the first three occurrences of
the class shrubs one is set aside as validation, the rest as test. This is done due to the
fact that there are in total only 15 and 9 patches containing the classes shrubs and bare,
respectively. Without doing so, the split yields zero samples of those minority classes for
the validation or test sets. Patches containing Not a Number (NaN) values are skipped.
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The splitting yields in total 5 datasets. A train dataset containing 2001 March patches
(before augmentation). A validation set containing 248 March patches. A test dataset
containing 250 March patches. A test dataset containing 2499 November patches. A test
dataset containing 2018 Mountains patches.

The values of the tiles are transformed to floats in the range between 0 and 1 by using
the formula:

Xscaled = (X − min(X))
max(X) − min(X) (4.1)

Where X and Xscaled are the input and output of the scaler, respectively. For the scenes
November and Mountains, the min and max are taken based on the March scene, to
avoid data leakage.

After pre-processing and splitting, the test datasets for the March, November, and
Mountains scenes can be observed in Figure 4.5. The number of samples in the March
test dataset is substantially lower in comparison to the other two tiles, as 90% of it are
used for training and validation. The November and Mountains acquisitions are used
solely for testing.

Figure 4.5: Gray value distribution of the test data of the scenes March, November, and
Mountains.

It can be observed that the November scene has more values near 0 and above 0.50 than
the Mountains scene, due to the fact that since the November tile is more urbanized,
which leads to higher backscatter values. The second reason is that it contains more
water bodies, which reflect less in the direction of the radar in contrast to urbanized
areas.

Both the super resolution and the semantic segmentation task share the same training,
validation, and test datasets. Table 4.1 contains the classes available in the datasets.
The pixel count is related to the training dataset. Colors of each class stay unchanged
throughout this work. The class with the most examples is cropland, which has 30538
times more samples than the class with the least examples - bare / sparse vegetation.
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This indicates the inherent problem of class imbalance. In case of skewed data, Machine
Learning (ML) systems may have troubles learning the concepts related to the minority
classes, which may lead to a performance gap between the majority and minority classes
[169].

# Name Color Count Share

1 Cropland 27942665 36.083%
2 Open forest, unknown 18323635 23.662%
3 Herbaceous vegetation 8778472 11.336%
4 Urban 8545059 11.034%
5 Closed forest, evergreen needle leaf 6223785 8.037%
6 Closed forest, deciduous broad leaf 2117285 2.734%
7 Open forest, evergreen needle leaf 1528481 1.974%
8 Permanent water bodies 1484678 1.917%
9 Herbaceous wetland 808403 1.044%
10 Closed forest, mixed 678319 0.876%
11 Open forest, deciduous broad leaf 465237 0.601%
12 Closed forest, unknown 296076 0.382%
13 Open sea 217311 0.281%
14 Open forest, mixed 26321 0.034%
15 Shrubs 3358 0.004%
16 Bare / sparse vegetation 915 0.001%

Table 4.1: List of classes with the corresponding colors as well as count and share of
pixels based on the training dataset.

4.4 Data Augmentation
Increasing the size of the training set by using data augmentation can yield better results
[170]. Data augmentation also helps handling the problem of class imbalance [171], which
is an issue for the semantic segmentation task at hand, as the distribution of the classes
is skewed.

However, it is unclear how much augmentation is too much [172]. In a pixel segmentation
task, Liu et. al [173] found out that the data additionally generated should be between
30 and 70%. The benefit of augmentation is higher for the minority classes [173].

The authors of both the SRGAN and ESRGAN make use of 90 degree rotation and
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horizontal flip. Additionally to those two transformations, vertical flip, 180 degree
rotation, and 270 degree rotation are used. The data augmentation is done for all patches
containing less than 25% of the majority classes (cropland and open forest unknown).
Hence, in total 1485 additional training images are generated, which equals to about
60% of the total training samples. SR and semantic segmentation is learned based on
the same augmented training dataset.

Data distribution before and after augmentation can be seen in the Figure 4.6a and 4.6b.
It can be observed that the share of the majority classes (Cropland and Open forest
unknown) is reduced by 10% and 5% after the augmentation, respectively. Despite the
effort of data augmentation, the dataset is still imbalanced. A perfect class balance would
be 16/100 = 6.25%.

(a) March Train (b) March Train Augmented

Figure 4.6: Distribution of the classes in datasets: (a) March Train, (b) March Train
Augmented.

The distribution in the test datasets can be observed in Figure 4.7. It can be seen that
the class distribution of March Train 4.6b, March Test 4.7a, and November Test 4.7b is
very similar. This is as expected, since both the March and November scenes share the
same ground truth mask. Mountains Test 4.7c is not only imbalanced, but the classes are
in contrast to the March dataset, on which the segmentation network is trained. Hence,
some classes are poorly characterized by the train dataset.

An alternative to data augmentation for handling the problem of class imbalance is
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(a) March Test (b) November Test

(c) Mountains Test

Figure 4.7: Distribution of the classes in datasets: (a) March Test, (b) November Test,
(c) Mountains Test.
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undersampling. Undersampling eliminates examples of the majority class [169]. However,
the technique of undersampling is not utilized in this thesis, since on the one hand the
reviewed literature uses solely data augmentation. On the other hand, undersampling
adds the risk of losing useful information from the removed samples [174]. Nevertheless,
undersampling can improve the prediction accuracy on the minority classes [175].

4.5 VGG Loss
The VGG loss, as defined in Equation 3.11, plays a crucial role in SRGAN, ESRGAN, and
EESRGAN. The VGG loss is based on the pre-trained VGG-19 network [124]. However,
this network is trained and made for three-channel images, i.e. RGB. Nonetheless, the
data at hand is a single-channel SAR image. Hence, network or input need to be altered.

It is impossible to adapt the pre-trained VGG network to work with single-channel images
without retraining. Therefore, the input to the VGG network is adjusted.

Since the VGG loss is applied to both the HR and SR images, both images are modified
before being input to the VGG network, such that the number of channels increases
to three. In particular, the shape of HR and SR is transformed from H × W × C to
H × W × 3C by copying the existing channel values to the other two.

4.6 Model & Training Configurations
In this section, the designs and the training configurations of each evaluated model are
presented. The experiments are carried out as similar as possible to papers presented in
Section 3.5. The main differences are discussed.

The models covered in this chapter are adapted to work with grayscale images by
modifying the first and final layers of the NNs. In other words, the filter of the first
convolutional layer has an input of one channel instead of three channels. Simultaneously,
the filter of the last convolutional layer has one instead of three output channels.

When not additionally noted, training is conducted by using a batch size of eight and
the Adam [176] optimizer with betas 0.9 and 0.99.

Early stopping describes a technique to halt the NN training before finishing all training
steps or epochs. Early stopping is used to avoid overfitting [177].

4.6.1 SRCNN
MSE is used as loss function. Learning rate starts with 0.0001, following [178]. The
learning rate is reduced by factor 10 every 40 steps.

Early stopping (20 epochs without PSNR improvement) is utilized to avoid performance
degradation.

41



4. Methodology

4.6.2 VDSR
Training is conducted with MSE as the loss function and utilizing gradient clipping.
Learning rate starts with 0.001. The learning rate is reduced by factor 10 every 40 steps.
The early stopping from the SRCNN is used to lower the generalization error.
The final VDSR model and training configurations differ from the works of Kim et al.
[79] in terms of learning rate and weight decay. The training was not successfull when
using the specified weight decay of 0.0001. At the same time it was also not possible
to train the network with higher learning rates (0.1, 0.01, 0.001) as recommended by
the authors of the VDSR paper due to unstable gradients. The creators of the VDSR
reduce the learning rate by factor 10 every 20 steps. However, the learning rate reduction
happens every 40 steps in the experiment. This is to counter the fact that the learning
rate was strongly reduced in the beginning.

4.6.3 SRResNet and SRGAN
The training of the SRGAN is done in two steps. First, the generator network (SRResNet)
is trained. Second, the SRResNet is used to initialize the weights of the SRGAN generator
network. This initialization is possible, as both the SRResNet and SRGAN share the
same generator architecture.
SRResNet is trained for 200 epochs with a perceptual loss following Equation (3.9) with
λ1 = 1 and λ2 = 0. This is equivalent to using the MSE loss. The first 100 epochs use a
learning rate of 0.0001, the rest use a learning rate of 0.00001.
The SRGAN has the same learning rates and number of epochs as the SRResNet however,
the loss function of the SRGAN is with λ1 = 0.36, and λ2 = 0.001. In the SRGAN, λ1 is
chosen slightly higher than in the original paper so that both losses are in the same scale.
Following the original paper, φ5,4 is set after the activation (ReLU) of the layer. This
layer is seen as a later layer, focusing on higher-level features, as previously seen in Figure
3.11.
Both SRResNet and SRGAN are made up of 16 residual blocks. Each residual block is
compromised of 3 × 3 Conv, BN, PReLU, 3 × 3 Conv, and BN.

4.6.4 ESRGAN, ESRGANPSNR, and ESRGANTexture

The ESRGAN, ESRGANPSNR, and ESRGANTexture are three models with the same
generator structure. Similar to SRGAN, the generator network of ESRGAN needs to
be initialized. The generator network which is used for the initialization of the weights
is trained without the discriminator (adversarial loss). In this work it is referred to as
ESRGANPSNR. The name is chosen, as the network’s goal is to achieve high PSRN
values, potentially for the cost of perceptual quality.
Following the original paper, ESRGANPSNR starts with a learning rate of 0.0002 and is
decayed by a factor of 2 every 100 steps. λ1 = 0, λ2 = 0, and λ3 = 1.

42



4.6. Model & Training Configurations

Inspired by [179] and [180], the ESRGANPSNR is extended by adding a texture loss
following Equation (3.4). Following [180], the activation layers L selected for the Gram
matrices are 7 (φ2,2), 16 (φ3,4), 25 (φ4,4), and 30 (φ5,2) of VGG-19. This extended model
is called ESRGANTexture. The weight of this additional loss is 10000 for it to be in the
same scale as the MAE loss. Besides the loss, the training setup of ESRGANPSNR and
ESRGANTexture is the same.

ESRGAN uses the VGG loss as the content loss (Lcontent). In comparison to the SRGAN,
ESRGAN uses φ2,2 in the loss function and it takes the feature maps before the activation
layer. Following the ESRGAN paper, λ1 = 1, λ2 = 0.005, and λ3 = 0.01.

In total, 16 RRDBs are used. Each RRDB contains 3 RDBs. Each DB is a 5-layer dense
block consisting of Conv and LReLU (0.2) layers, besides the last layer, which is only a
Conv. Batch size is selected as four, since a higher number leads to out of memory errors.

It is important to note that the output of the DB is multiplied with 0.2 when adding it in
the RDB (3.4 as a reminder). Similarly, the output of the last RDB is multiplied with 0.2,
when adding it all together at the end of 3.5. This scaling by factor 0.2 is called residual
scaling, as introduced in the Inception-v4 net [181], which prevents training instability
[153].

4.6.5 EESRGAN

In the case of EESRGAN, both generator and discriminator are trained simultaneously.
The generator loss uses Equation (3.19) with λ1 = 1, λ2 = 0.001, λ3 = 0.01, and λ4 = 5.

Following the original paper, learning rate is set to 0.0001 and is halved every 100 steps.
Batch size is two, as a batch size of eight leads to memory errors.

16 RRDBs are used in the generator with the same structure as in ESRGAN. The
edge-enhancement network contains six 3 × 3 Conv layers, each followed by a LReLU
(0.2). The dense sub branch contains 5 RRDB blocks. The mask sub branch has three
3 × 3 Conv layers, each followed by a LReLU (0.2). At the end of the mask branch, a
sigmoid is used as an activation function.

It is important to note that the EESRGAN paper [92] and the corresponding imple-
mentation1 (task of SR) are contradicting each other. Precisely, the EESRGAN loss
(Equation (3.19)) is missing the edge-consistency component (3.17). Only their second
implementation2 (task of SR and object detection) included the edge consistency. Since
the second implementation includes the corresponding object detection network, and the
first implementation is more similar to the task of this work, it was decided that in the
experiments the edge-consistency component will be also removed.

1https://github.com/Jakaria08/EESRGAN/blob/master/model/ESRGAN_EESN_Model.py as of
7th of July, 2021.

2https://github.com/Jakaria08/EESRGAN/blob/master/model/ESRGAN_EESN_FRCNN_Model.py
as of 7th of July, 2021.
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4.6.6 Attention U-Net
Following the Attention U-Net representation as of Figure 3.15, the first double convolution
yields F1 = 64. Each subsequent double convolution doubles the feature maps, i.e.
F2 = 2F1. Each max pooling doubles halves the width (W ) and height (H). It is
important to note that since the input image is of shape H1 × W1 = 200 × 200, W4 and
H4 equal to 25/2, which is not divisible without remainder. Hence, the result of the
Up-Conv and the block connected by the skip connection do not match. To overcome
this issue, the result of the first Up-Conv is zero-padded to have matching shapes.

The number of classes (NC) is 16. The number of epochs is set to 100 with batch size
eight. Adam optimizer with learning rate of 0.001 is used. Following [182] (a NN for
urban scene segmentation model for HR SAR data), a reduce-on-plateau learning rate
schedule is used (factor: 0.5, patience 15, relative threshold: 0.0001). The model, which
has achieved the highest precision value on the validation dataset, is chosen.

4.7 Metrics
Two types of metrics are used in this work - metrics for segmentation and image quality.

4.7.1 Segmentation Metrics
The metrics used are accuracy, precision, recall, and Intersection-over-Union (IoU). IoU,
also referred to as Jaccard index, is a standard metric for segmentation problems, which
takes into account the class imbalance issue (that is apparent in the data at hand) [183].
IoU measures the overlap between the predicted segmentation and the given ground
truth mask. The referred metrics for class k are defined as count based measurements by
the following equations:

Accuracyk = TPk + TNk

TPk + TNk + FPk + FNk
(4.2)

Precisionk = TPk

TPk + FPk
(4.3)

Recallk = TPk

TPk + FNk
(4.4)

IoUk = TPk

FPk + TPk + FNk
(4.5)

Where TPk, TNk, FPk, and FNk denote the true positive, true negative, false positive,
and false negative counts of class k, respectively. In fact, the metrics are calculated for
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each class separately and then weighted based on the class weight. The class weight for a
given class k is defined as:

wk = Pixels of class k for given scene
Total pixels (4.6)

Hence, the weighted metric is:

Weighted metric =
K�

k=1
wkmetrick (4.7)

metrick is one of the defined segmentation metrics for class k, K the number of classes,
wk the class weight. The sum over the weights is 1.

The confusion matrix and the calculation of the TP, TN, FP, and FN for a given class b
is depicted in Figure 4.8. It can be observed that for class b, all rows and columns not
containing class b are marked as TN. In comparison to TN - TP, FN and FP become
insignificant. As noted by Zhang et al. [184], it is easy to get high accuracy in a multi-class
segmentation problem. This is the reason why only one metric based on TN is selected
for evaluating the segmentation experiments.

Figure 4.8: TP, TN, FP, and FN in case of multi-class segmentation with respect to class
b. Source: [185]

Micro-average and weighted-average are recommended by Singh et al. [186] in case of
multi-class classification and class imbalance. In the case of micro-average, the total
number of TP, TN, FP, and FN are aggregated for each class, subsequently the desired

45



4. Methodology

metrics are calculated. On the contrary, macro-average first calculates the metric for each
class and thereafter yields the final metric by averaging. Thus, macro-average weights all
classes equally, without taking into account that some classes might have more or less
samples. This is accounted by weighted-averaging, as done by employing the weights wk.
Hence, weighted-average as described in Equation 4.7 is used in this work.

4.7.2 Image Quality Metrics
To additionally evaluate the performance of the SR models, the metrics Peak Signal-
to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM) are used. These are utilized
due to the fact that most state-of-the-art papers (Section 2.2) make use of them as
quantitative metrics for image similarity. PSNR is an approximation to human perception
of reconstruction quality. Essentially, it is a measurement of differences for each pixel.
In comparison to PSNR, SSIM does not estimate the absolute errors. It measures the
perceived change in structural information and not the pixel values. It makes use of loss
of correlation, luminance and contrast distortion [187]. PSNR and SSIM are defined as
follows:

PSNR(IHR, ISR) = 20log10( maxI�
MSE(IHR, ISR)

) (4.8)

SSIM(IHR, ISR) = (2µIHRµILR + C1)(2σIHRILR + C2)
(µ2

IHR + µ2
ILR + C1)(σ2

IHR + σ2
ILR + C2) (4.9)

Where maxI is the maximum possible pixel value of the image, in our case it is 1. C1
and C2 are two small constants, in this work following [188], they are chosen as 0.0001
and 0.0009, respectively. µIHR , µILR , σIHR , σILR , and σIHRILR are the means, standard
deviations, and cross-covariances for the images IHR and ILR.

Having a higher PSNR or SSIM is better. However, the image with the higher quantitative
measure may not be perceived as the better one by human perception (qualitative
measurement) [189, 190, 191].

4.8 Summary
The data at hand, in terms of tiles of the Equi7 Grid system, was introduced, i.e. the
scenes March, November, and Mountains. Necessary data pre-processing steps were
presented. It was shown how the data is split for the experiments.

Data augmentation was introduced as an important vehicle for increasing the training set
and reducing its imbalance. The data augmentation techniques used were pointed out,
i.e. flips and rotations. It was illustrated how the classes are distributed before and after
data augmentation. It was demonstrated that the classes of the Mountains tile are poorly
characterized by the train dataset, since it has a very different distribution of classes.
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4.8. Summary

Training and implementation details were described. Parameters and their deviation
from the original papers were shown. The metrics used for measuring image quality
(PSNR and SSIM) and classification correctness (accuracy, precision, recall, IoU) were
formally defined and discussed.
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CHAPTER 5
Experiments

This chapter presents the experiments. Section 5.1 covers the experimental design used
to evaluate the research questions. Section 5.2 depicts the implementation environment.
Section 5.3 presents and discusses the results of the different SR methods for each test
dataset, i.e. March, November, and Mountains.

5.1 Experimental Design
The original SAR images are downscaled by a factor of 2 or 4. Thereafter, the SR models
outlined in Section 4.6 are used to generate the corresponding SR images.

For the purpose of comparison, two additional models, beyond the different CNN archi-
tectures, are considered: the Adaptive Importance Sampling Unscented Kalman Filter
(AISUKF) method [192] and bicubic interpolation. The AISUKF is a state-of-the-art
non-DL model for SAR SR, whereas bicubic interpolation will define a basis of comparison
for a method without the need of training.

To answer the research question a quantitative analysis is carried out. The upscaled
images are compared with the original high-resolution images from the same scene, i.e.
March, November, or Mountains, based on an earth observation model for land cover
segmentation. The EO model (trained Attention U-Net from Section 4.6.6) is created
as part of the master thesis. It detects 16 different land covers (e.g. permanent water
bodies, urban or forest) based on the CCI Land Cover dataset1 [193]. The labeled data
(ground truth) are available.

The EO model is trained on the HR data of the March scene. To assess the quality of
the SR networks, the EO model will be evaluated once on the HR and once on the SR
SAR images. Accuracy, precision, recall, and IoU are used to measure the difference in

1Dataset is provided by ESA containing land cover maps from 1992 to 2015.
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the model’s results. The EO model applied on the HR March, November, and Mountains
scenes will serve as a baseline for the corresponding experiment.

The suitability of SR for SAR C-band images is given if comparable results to the March
baseline are achieved when using SR images as input to the EO model. It can be argued,
that the EO model should be trained on the SR and not the HR data, given that the SR
images can have different properties, e.g. be smoother and contain less noise. Therefore,
the model trained on the HR image might not work well and the metrics would be thus
lower for the SR image. Nevertheless, training an additional EO model for SR data is
seen as increased effort if a HR EO model already exists. Therefore, in this thesis SR
for SAR C-band images is also identified as viable if an EO model trained on SR data
attains comparable results to the March baseline.

Sub-goals of this thesis are to evaluate how well SR models can handle unseen temporal
and spatial conditions. A paradigm for unseen spatial conditions is the mountainous
region in the Mountains tile. Whereas an example for unseen temporal condition is the
change of seasons, i.e. autumn in the November scene. The effect of autumn is visible
in Figure 5.1, in which the backscatter of the Herbaceous vegetation is strongly reduced
in comparison to the Cropland and Urban land covers of the corresponding area of the
March scene. Figure 5.2 exemplifies how closed forest is not affected by the change of the
seasons. In contrast, open forest has an increased backscatter, as depicted in Figure 5.3.

Figure 5.1: Image patch 10 of the scenes March and November, along with the associated
segmentation mask

To accept or refute the two hypotheses, the EO model will be applied on the SR images
of the November and Mountains scenes. Subsequently, the resulting segmentation maps
will be compared with the November and Mountains baselines, respectively. Hence, the
SR models are evaluated on conditions without being trained on them.

The experiments consider upscaling by factors of 2 and 4. Super-resolving images from
20m to 10m and 40m to 10m are symbolized as SR x2 and SR x4, respectively.
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Figure 5.2: Image patch 99 of the scenes March and November, along with the associated
segmentation mask

Figure 5.3: Image patch 152 of the scenes March and November, along with the associated
segmentation mask

Figure 5.4 visualizes the experimental design of the master thesis. First, the LR data
will be created by downsampling the 10m HR images, i.e. 10m to 20m and 10m to
40m. Second, the different SR models will be used to create the SR images from the LR
data. Third, the SR and HR images will be compared based on PSNR and SSIM, and at
the same time they will be evaluated by the segmentation task with focus on accuracy,
precision, recall, and IoU.

5.2 Implementation Environment
All implementations are done in the programming language Python utilizing the PyTorch
[194] machine learning framework. For reproducibility, random initialization seeds are
set to 1 in numpy and PyTorch.

The experiments have been achieved using the Vienna Scientific Cluster 3 (VSC3). The
computations are run on a node compromised of NVIDIA Pascal GeForce GTX 1080
GPU, 2× Intel Xeon E5-2650v2 CPUs (2,6 GHz, 8-Core, Codename Ivy-Bridge), 64 GB
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Figure 5.4: Experimental design. SR-Network and EO-Model are trained on the March
scene using the HR data. The corresponding tiles, i.e. March, November, or Mountains
are used when evaluating the HR and SR images

RAM (DDR3, ECC, 1.866 MHz).

5.3 Results
This chapter covers the evaluation of the research questions. Each hypothesis is evaluated
once for SR x2 and once for SR x4.

5.3.1 EO Model for Semantic Segmentation
Figure 5.5 illustrates the confusion matrix for the predictions of the EO model on the
HR images of the March scene. The corresponding segmentation metrics are depicted in
Table 5.1, in which division by zero results in NaN. It can be observed that the model
does not make any prediction on the sparsely available classes, e.g. Shrubs, Bare / sparse
vegetation, Open forest, mixed. This is in accordance to Table 4.1, which listed the count
of the pixels of each class for the training set. Hence, the EO model itself is not able to
perfectly distinguish all the different classes. This explains the lower precision, recall,
and IoU compared to the accuracy as seen in the corresponding Sections 5.3.3 (SR x2)
and 5.3.4 (SR x4).

Moreover, both the confusion matrix and the corresponding segmentation metrics suggest
that the imbalance in the class distribution is a problem even after the data augmentation
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Figure 5.5: Confusion matrix for the evaluation on the HR March scene.

Class Accuracy Precision Recall IoU
Shrubs 1 NaN 0 0
Herbaceous vegetation 0.867 0.2876 0.0796 0.0665
Cropland 0.7294 0.5925 0.9016 0.5565
Urban 0.936 0.6855 0.7525 0.5594
Bare / sparse vegetation 1 NaN 0 0
Permanent water bodies 0.9865 0.6246 0.8273 0.5525
Herbaceous wetland 0.9907 0.3578 0.1786 0.1352
Closed forest, evergreen needle leaf 0.9464 0.5622 0.727 0.4642
Closed forest, deciduous broad leaf 0.9746 0.4113 0.0331 0.0316
Closed forest, mixed 0.9933 NaN 0 0
Closed forest, unknown 0.9961 NaN 0 0
Open forest, evergreen needle leaf 0.9834 NaN 0 0
Open forest, deciduous broad leaf 0.9937 NaN 0 0
Open forest, mixed 0.9999 NaN 0 0
Open forest, unknown 0.7712 0.5319 0.3535 0.2696
Open sea 0.9948 1 0.2092 0.2092

Table 5.1: List of classes with the corresponding segmentation metrics for the March
scene based on the HR data.
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as described in Section 4.4. To counteract this, associated classes can be merged. For
instance, different forest classes can be grouped together into one forest class. Another
possibility is to create a two-stage classifier [195]. In particular, the NN of the first stage
would predict the grouped classes (e.g. forest). The NN of the second stage would then
more precisely segment the grouped class (e.g. Closed forest, evergreen needle leaf). This
staged approach is advantageous if the grouped classes are not practical for the EO task
at hand.

The confusion matrices and segmentation metrics of the November and Mountains scene
are similar. These can be viewed in the appendix (Figures B and C and Tables A and B).

5.3.2 Dismissed Model
The AISUKF method is dismissed for the further experiments as it showed poor results.
An example upscaled image by the AISUKF method can be seen in Figure 5.6, where
interpolation and the original HR image are displayed as reference. The upscaling factor
is 2. It can be observed that the classical SAR approach denoises the image, however, at
the cost of high-level feature loss and over-smoothing.

(a) AISUKF upscaling (b) Bicubic upscaling (c) HR

Figure 5.6: Image from March tile presented in three different configurations: (a) Adaptive
ISUKF upscaling, (b) Bicubic upscaling, and (c) HR

The AISUKF method is run on MATLAB R2020b with the original code provided by
the authors on Github2. The model takes a LR image and 15 transformations of it as
input. The 15 transformations are generated by random horizontal and vertical shifting
by -15 to 15 pixel.

The super-resolved SAR images presented in the AISUKF work [192] showed promising
results, hence this method was evaluated. It can be argued that the reason why the
method fails is that the SAR used in their dataset has a higher GSD, as cars, boats,
or even building antennas can be observed. In contrast, the SAR images used in this
work have a GSD of 10, hence, small objects are not visible. It is not stated which SAR
dataset the authors used.

2https://github.com/sitharavpk/Adaptive-ISUKF, last accessed on July 15th, 2021.
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In summary, it can be said that the AISUKF method might be useful when trying to
remove the inherent speckle noise. However, one of the goals of this work is to provide a
compression and decompression model without large loss of details, which is the case in
the AISUKF method. Hence, this method is not evaluated in the further experiments.

5.3.3 SR x2
This section includes the quantitative and qualitative results of the SR models when
upscaling SAR images by a factor of 2. The section is divided into four subsections, one
for each hypothesis of this thesis.

Main hypothesis: SR with an upscaling factor of 2 is suitable for SAR
C-band images

The quantitative measurements of SR by a factor of 2 can be seen in Table 5.2. The
Evaluation tile is depicted above the results. Numbers are rounded off in the fourth
decimal place. Best results for each evaluation metric are marked in bold. Second best
are underlined.

Observing the image quality metrics (PSNR and SSIM) in Table 5.2, it can be seen that
SRResNet has the best results for the March and November scenes. In contrast, SRCNN
and VDSR achieve the best PSNR and SSIM results on the Mountains tile, respectively.

The aggregated results over all scenes are presented in Table 5.3. The result of each scene
is weighted by the count of its pixels compared to the total pixels in all three scenes. The
number of pixels are 10000000, 99960000, and 80720000 for the March, November, and
Mountain acquisitions, respectively. Equivalently in percent, 5.24%, 52.42%, and 42.33%
of the total pixels. Overall, the SRResNet shows best performance compared to other
models based on the image metrics. Based on the semantic segmentation metrics, the
two best models are ESRGANPSNR and ESRGANTexture.

Corresponding visual results of the SR models for patch 111 of the March scene can
be seen in Figure 5.73. Each depicted image contains the PSNR and SSIM metrics
compared to the HR image. It becomes clear that it is not easy to spot differences nor to
perceptually decide which method works best (when ignoring SRGAN).

3Despite having four times less pixels, the LR is depicted as the same size as the HR and SR images.
This is the reason why the individual pixels are observed in the LR, which makes the image appear (as it
is) as lower-resolution.
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March scene PSNR (in dB) SSIM Accuracy Precision Recall IoU
HR 100 1 0.8158 0.5267 0.5814 0.3863
Bicubic 37.7048 0.9286 0.7729 0.4534 0.4926 0.2847
SRCNN 37.5998 0.9308 0.7696 0.4512 0.4907 0.2818
VDSR 38.2782 0.9357 0.7752 0.4571 0.5034 0.2955
SRResNet 38.5967 0.9402 0.7844 0.4771 0.5231 0.3170
SRGAN 13.1765 0.1006 0.7497 0.1570 0.0211 0.0015
ESRGANPSNR 37.8991 0.9306 0.7976 0.5067 0.5502 0.3473
ESRGANTexture 37.8428 0.9302 0.7925 0.4930 0.5357 0.3308
ESRGAN 35.3867 0.8974 0.7664 0.4590 0.4111 0.2535
EESRGAN 38.5406 0.9392 0.7824 0.4752 0.5215 0.3144

November scene
HR 100 1 0.8181 0.5191 0.5550 0.3810
Bicubic 37.5624 0.9282 0.7708 0.4438 0.4848 0.2802
SRCNN 37.4586 0.9304 0.7672 0.4411 0.4811 0.2760
VDSR 38.1400 0.9353 0.7740 0.4506 0.4937 0.2897
SRResNet 38.4551 0.9397 0.7846 0.4677 0.5108 0.3106
SRGAN 13.5922 0.1039 0.7569 0.1520 0.0209 0.0014
ESRGANPSNR 37.7371 0.9295 0.7981 0.4867 0.5342 0.3405
ESRGANTexture 37.6980 0.9294 0.7973 0.4843 0.5298 0.3327
ESRGAN 34.9865 0.8968 0.7499 0.4537 0.3099 0.1904
EESRGAN 38.4131 0.9389 0.783 0.4662 0.5086 0.3084

Mountains scene
HR 100 1 0.6558 0.4209 0.0752 0.0317
Bicubic 37.1874 0.9225 0.6658 0.4186 0.0776 0.0393
SRCNN 36.9932 0.9234 0.6642 0.4218 0.0718 0.0338
VDSR 37.2511 0.9228 0.6636 0.4211 0.0722 0.0336
SRResNet 37.0602 0.9199 0.6657 0.4241 0.0769 0.0390
SRGAN 12.3143 0.0913 0.6894 0.0133 0.0013 0.0008
ESRGANPSNR 36.2105 0.9044 0.6579 0.4288 0.0651 0.0280
ESRGANTexture 35.9431 0.8990 0.6663 0.4028 0.0839 0.0464
ESRGAN 34.2602 0.8732 0.6390 0.3764 0.0540 0.0104
EESRGAN 36.9094 0.9175 0.6634 0.4249 0.0741 0.0358

Table 5.2: SR results for upscaling factor of 2. All training is done based on the March
scene. Evaluation is done separately for each scene.

To be able to visually distinguish the differences of the predictions, parts of the images
are zoomed in. More precisely, the patch from Figure 5.7 is displayed in Figure 5.8. The
yellow square in the first HR shows a 20 × 20px surface, which is then enlarged for better
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Overall PSNR (in dB) SSIM Accuracy Precision Recall IoU
HR 100 1 0.7492 0.4779 0.3532 0.2334
Bicubic 37.4074 0.9257 0.7264 0.4336 0.3128 0.1784
SRCNN 37.2652 0.9274 0.7236 0.4334 0.3083 0.1738
VDSR 37.7672 0.9299 0.7273 0.4384 0.3157 0.1816
SRResNet 37.8682 0.9313 0.7342 0.4497 0.3277 0.1959
SRGAN 13.0281 0.0984 0.7279 0.0935 0.0126 0.0012
ESRGANPSNR 37.0956 0.9188 0.7386 0.4632 0.3364 0.2085
ESRGANTexture 36.9590 0.9165 0.7415 0.4502 0.3413 0.2114
ESRGAN 34.6965 0.8868 0.7037 0.4212 0.2068 0.1175
EESRGAN 37.7794 0.9298 0.7323 0.4491 0.3253 0.1933

Table 5.3: Overall results for upscaling factor of 2 by weighted averaging over all scenes.

Figure 5.7: SR by a factor of 2 for the patch 111 of the March scene

visual observation. This zoomed area in the March is of importance, as it is where very
high backscatter values appear. The reconstruction of the high backscatter area as well
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Figure 5.8: SR by a factor of 2 for the patch 111 of the March scene, zoomed in

as its surroundings resemble the original image. From this it follows that high backscatter
is not an issue for the SR models.

Lower and medium backscatter surfaces can be found in Figure 5.9. The figure depicts
a vessel (medium backscatter) on permanent water bodies (low backscatter) next to
an unknown open forest (medium backscatter). Since the DL reconstructions are very
similar to the ground truth for all three types of surfaces found on the image, it can be
concluded that medium and low backscatter are also not an issue for SR x2.

At a more granular level, both close-up Figures 5.8 and 5.9 show that the SR networks
slightly reduce speckle from the HR images. Furthermore, the more complex models
(SRResNet and the ESRGAN variations) appear perceptually less blurry than the models
using the bicubically upscaled images as input.

Evaluating the models based on the March segmentation metrics, no model outperforms
the others significantly. However, ESRGANPSNR (best) and ESRGANTexture (second
best) stand out, as they are slightly better than the rest in the given categories. It is
important to note, that the models with the highest image quality metrics do not also
have the highest segmentation metrics. This result is related to the conclusion of Ledig
et al. [89], where PSNR and SSIM fail to appraise image quality with respect to the
human visual system.

Comparing the results of this experiment with the work of Wang et al. [91] (as it compares
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Figure 5.9: SR by a factor of 2 for the patch 991 of the March scene, zoomed in

Bicubic, SRCNN, SRGAN, and ESRGAN for RGB images), one can see that it is not
unusual that the bicubic interpolation and the simpler CNNs (i.e. SRCNN, VDSR) score
higher PSNR than the more complex CNN models (i.e. SRGAN and ESRGAN). However,
both the experiments of this work and the work of Wang et al. showcase perceptually less
appealing images (i.e. more blurry or noisy) generated by the Bicubic and the simpler
CNNs.

Figure 5.10 visualizes, how the segmentation model works for different SR data. It
depicts a river crossing an area containing primary the land covers Urban, Cropland,
and Open forest unknown. The metrics below each segmentation map are calculated for
the individual patch. The figure underlines the results depicted in Table 5.2, i.e. the
segmentation maps are marginally worse when using SR as opposed to HR images.

Due to the fact that the EO model achieves segmentation metrics very close to the March
baseline, it can be concluded that SR is viable for upscaling SAR images by a factor of 2.
This was also deduced by visually inspecting the generated patches.

While the main hypothesis for SR x2 is already verified, an additional experiment is
conducted to study the effects of training the EO model with the SR data. The models
evaluated for this part of the experiment are narrowed down to the four best models based
on the classification metrics, i.e. being best on any of the metrics. The selected models
are Bicubic, ESRGANPSNR, ESRGANTexture, and ESRGAN. Bicubic and ESRGAN are
not part of the best models for SR by a factor of 2, however, they are part of the best
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Figure 5.10: Segmentation on the SR images scaled by a factor of 2 for the patch 991 of
the March scene

models for SR by a factor 4, as will be shown later.

The results of training the pixel-wise image segmentation model using the SR data can
be seen in Table 5.4. In all scenes and all metrics (besides accuracy in November and
Mountains), the segmentation models trained on SR are better than the EO model
trained on HR. Despite outperforming the model based on HR data, the improvement is
not significant. It can be argued that the marginal superiority is due to the fact that
the SR images are slightly less noisy (less speckle). Moreover, the better performance
compared to the March baseline, verifies that SR x2 is suitable for SAR C-band images
when training the EO model on the SR images.
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March scene Accuracy Precision Recall IoU
HR 0.8158 0.5267 0.5814 0.3863
Bicubic 0.8181 0.5383 0.5851 0.3943
ESRGANPSNR 0.8231 0.5339 0.5905 0.4041
ESRGANTexture 0.8216 0.5308 0.5874 0.3960
ESRGAN 0.8230 0.5205 0.5893 0.4023

November scene
HR 0.8181 0.5191 0.5550 0.3810
Bicubic 0.8085 0.5160 0.5393 0.3690
ESRGANPSNR 0.8144 0.5305 0.5516 0.3836
ESRGANTexture 0.8132 0.5364 0.5428 0.3737
ESRGAN 0.8165 0.5268 0.5585 0.3884

Mountains scene
HR 0.6558 0.4209 0.0752 0.0317
Bicubic 0.6501 0.4759 0.0754 0.0268
ESRGANPSNR 0.6545 0.3977 0.0741 0.0358
ESRGANTexture 0.6502 0.4087 0.0674 0.0256
ESRGAN 0.6489 0.4284 0.0636 0.0248

Overall
HR 0.7492 0.4779 0.3532 0.2334
Bicubic 0.7419 0.5001 0.3453 0.2254
ESRGANPSNR 0.7471 0.4744 0.3515 0.2374
ESRGANTexture 0.7446 0.4820 0.3438 0.2275
ESRGAN 0.7458 0.4848 0.3506 0.2352

Table 5.4: Segmentation metrics when the segmentation model is trained on the SR data
with an upscaling factor of 2.

The performance improvement between the overall results in Table 5.3 and Table 5.4 is
depicted in Figure 5.11. ESRGANPSNR and ESRGANTexture improve less when compared
to Bicubic and ESRGAN. This phenomenon is due to the fact that ESRGANPSNR and
ESRGANTexture have overall best and second best segmentation results when using the
EO model based on the HR data.
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Figure 5.11: Performance improvement when the segmentation model is trained on the
SR data with an upscaling factor of 2 based on the overall performance.

To further differentiate between the models used for SR, the respective parameters and
run times are depicted in Table 5.5. The results in comparison to the overall IoU metrics
are illustrated in Figure 5.12. It can be observed that there is a strong correlation
between the prediction time and the number of model parameters. Simultaneously, the
more complex models do not necessarilly lead to better IoU.

Model #Parameters Training Time (in h) Prediction Time (in s)
Bicubic 0 0 0.0005
SRCNN 39,001 2.37 0.0017
VDSR 664,704 2.8 0.0036
SRResNet 1,381,011 8.47 0.0129
SRGAN 16,903,260 15.01 0.01
ESRGANPSNR 11,807,425 35.54 0.0566
ESRGANTexture 11,807,425 38.73 0.0498
ESRGAN 27,329,674 42.12 0.0537
EESRGAN 32,883,787 61.01 0.4287

Table 5.5: Parameters and run times for the x2 SR models.

The prediction time for a single image patch is a multiple more when using DL models
compared to bicubic interpolation. The time for a whole tile is for the comperatively
expensive models (on the basis of ESRGAN) yet only 30 seconds. Nevertheless, depending
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Figure 5.12: Precision and training time is depicted for each SR x2 model. Size of the
markers depends on the corresponding prediction time.

on the application, this can be significant or of no importance.

Training is mandatory for the DL models compared to the bicubic interpolation. However,
this adds the opportunity for the DL networks to further enhance image quality. Fur-
thermore, training time can be reduced by adjusting the hyperparameters, e.g. learning
rate and epochs.

Sub-hypothesis 1: SR networks with an upscaling factor of 2 are able to
handle unseen temporal conditions

Observing Table 5.2, it can be noted that the metrics are slightly worse on the November
scene, in comparison to the March scene. However, this statement is valid for the results
on both the HR and SR data. The worse performance on HR data indicates that the
Mountains tile, as expected, is more challenging for the EO model than the others.

Figure 5.13 contains the same area from two different points in time (March and Novem-
ber). It compares the March results of Figure 5.7 with the corresponding November image
reconstructions. The four best models (Bicubic, ESRGANPSNR, ESRGANTexture, and
ESRGAN) are selected for comparison. It can be observed that the DL approaches restore
the high-backscatter urban area more precisely, due to the fact that the quantitative
measures are better and the image appears less blurry. Similar conclusion can be made
for lower backscatter crop fields and herbaceous vegetation areas of the same patch, as
seen in Figure 5.14.
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Figure 5.13: SR by a factor of 2 for the patch 111 of the March and November scenes.
Urban area is magnified

Figure 5.14: SR by a factor of 2 for the patch 111 of the March and November scenes.
Crop field and herbaceous vegetation area is magnified

A direct comparison between the March and November segmentation maps of a given
patch is observable in Figure 5.15. From this figure, it can be deduced that the EO model
segments the March and November SR images similarly.

It is concluded that SR with an upscaling factor of 2 can handle unseen temporal
conditions as a direct consequence of the proximity between the November segmentation
metrics and the November baseline. This deduction is also made through the observation
of the generated SR images and the corresponding segmentation maps.

64



5.3. Results

Figure 5.15: Comparison between the segmentation masks for SR x2 on patch 991 of the
March and November scenes

Sub-hypothesis 2: SR networks with an upscaling factor of 2 are able to
handle unseen spatial conditions

Table 5.2 shows that there is a significant drop in the segmentation metrics when
comparing the Mountains and March scenes. Specifically, there is a considerable difference
in the recall and IoU metrics. This is true for both the EO model evaluated on HR
and SR data. This indicates that the EO model has difficulties handling unseen spatial
conditions.

Figure 5.16 illustrates the SR images and the corresponding segmentation maps of the
same area. It can be seen, that both image and segmentation metrics are closer to the
results of the March scene than to the Mountains scene.

Figure 5.17 shows the surfaces where the EO model has difficulties in segmenting. The
figure represents a similar composition of land covers to Figure 5.16, i.e. primary a mix
of urban, crop field, and forests. The SR images showcase no sudden drop in quality.
However, the segmentation quality is significantly worse. The difference between the
selected areas is that patch 800 (worse performance) is located in a mountainous area
- whereas patch 2007 (better performance) is located in the valley. It follows that not
specifically the type of land cover is the issue for the EO model, but that the topological
relief influences the quality of the segmentation maps. This corresponds to Song et al.
[196], who conclude that the terrain relief (e.g. elevation, slope) must be considered
before segmentation.

Considering that all four segmentation metrics on the Mountains scenes are better
compared to the Mountains baseline (Table 5.2), it follows that SR is suitable for unseen
spatial conditions.
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Figure 5.16: SR and corresponding segmentation map with an upscaling factor of 2 for
the patch 2007 of the Mountains scene

Figure 5.17: SR and corresponding segmentation map with an upscaling factor of 2 for
the patch 800 of the Mountains scene

Sub-hypothesis 3: GAN improves the SR networks with an upscaling factor
of 2

The only model which performs worse (in all metrics besides accuracy) compared to its
peers is SRGAN. As noted in Section 4.7.1, it is easier to get high accuracy compared to
the other metrics. To explain the worse performance of the SRGAN, it can be argued that
the model converged to a bad local minimum. Since the networks weights are initialized
with the SRResNet structure, which is in terms of PSNR and SSIM the best performing
model for two out of the three scenes, the fault is not in the generator architecture.
However, the potential issues are twofold. First, the content loss (VGG loss) substitutes
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the pixel loss. SRGAN is the only CNN that has no pixel loss. Second, it was observed
in Figure 3.11 that the feature maps after activation of the 56th channel contain limited
information.

EESRGAN is a GAN-based model and achieves second best PSNR and SSIM for the
March and November scenes. ESRGAN is also a GAN-based model and scores best and
second best for multiple metrics in the additional experiment (EO training on SR data).
This indicates that GAN training can occasionally improve the results.

5.3.4 SR x4
This section includes the quantitative and qualitative results of the SR models when
upscaling SAR images by a factor of 4. The section is divided into four subsections, one
for each hypothesis of this thesis.

Main hypothesis: SR with an upscaling factor of 4 is suitable for SAR
C-band images

The evaluations of SR by a factor of 4 are depicted in Table 5.6. In terms of PSNR and
SSIM, VDSR achieves the best results for all scenes with a slight lead over EESRGAN
and SRCNN. PSNR and SSIM are significantly lower compared to the experiments with
upscaling by a factor of 2. This confirms that SR by higher upscaling factors is more
complex than by lower upscaling factors.

Overall, the results in Table 5.2 (x2) are significantly better than the results of Table 5.6
(x4). This demonstrates not only that SR x4 is more difficult than SR x2, but also that
classification works better on the more precisely reconstructed SR data.

In contrast to x2 SR, PSNR and SSIM results for x4 SR are comparable across the
different scenes. It differs from model to model if the best results are achieved on the
March, November or Mountains acquisitions. This demonstrates that the SR x4 networks
produce images in the same quality independently of seen or unseen temporal and spatial
conditions, when not considering the segmentation task. Nevertheless, it can be argued
that the distinction between the scenes is lower due to the generally lower metrics.
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March scene PSNR (in dB) SSIM Accuracy Precision Recall IoU
HR 100 1 0.8158 0.5267 0.5814 0.3863
Bicubic 30.7499 0.7116 0.6963 0.3129 0.4016 0.1729
SRCNN 31.2726 0.7179 0.6847 0.2314 0.3882 0.1545
VDSR 31.3594 0.7257 0.6854 0.2536 0.3890 0.1553
SRResNet 31.0854 0.7191 0.6872 0.3144 0.3909 0.1578
SRGAN 22.7373 0.3527 0.6762 0.2294 0.1752 0.0919
ESRGANPSNR 30.5179 0.6965 0.6963 0.3445 0.3998 0.1710
ESRGANTexture 30.6791 0.6964 0.6901 0.3416 0.3951 0.1623
ESRGAN 28.2876 0.6146 0.7142 0.3789 0.4042 0.186
EESRGAN 31.3329 0.7249 0.6862 0.3015 0.3900 0.1559

November scene
HR 100 1 0.8181 0.5267 0.5814 0.3863
Bicubic 30.6016 0.7102 0.6976 0.3598 0.3913 0.1681
SRCNN 31.1090 0.7163 0.6842 0.3147 0.3693 0.1452
VDSR 31.2011 0.7245 0.6845 0.3208 0.3692 0.1457
SRResNet 30.9850 0.7192 0.6861 0.3350 0.3700 0.1478
SRGAN 22.2488 0.3470 0.6847 0.2203 0.1749 0.0920
ESRGANPSNR 30.3636 0.6946 0.6963 0.3596 0.3820 0.1637
ESRGANTexture 30.5739 0.6970 0.6950 0.3705 0.3855 0.1626
ESRGAN 28.4939 0.6189 0.7105 0.3400 0.3558 0.1640
EESRGAN 31.1791 0.7236 0.6832 0.3441 0.362 0.1423

Mountains scene
HR 100 1 0.6558 0.4209 0.0752 0.0317
Bicubic 30.9076 0.7276 0.6572 0.4487 0.0409 0.0051
SRCNN 31.3089 0.7282 0.6565 0.4377 0.0383 0.0028
VDSR 31.3587 0.734 0.6565 0.4496 0.0385 0.0030
SRResNet 31.0765 0.7242 0.6566 0.4397 0.0387 0.0033
SRGAN 21.273 0.3398 0.6483 0.2311 0.0522 0.0129
ESRGANPSNR 30.0617 0.6818 0.6571 0.4542 0.0410 0.0055
ESRGANTexture 30.6045 0.6998 0.6567 0.4497 0.0391 0.0036
ESRGAN 26.3183 0.6149 0.6504 0.4400 0.0483 0.0102
EESRGAN 31.3058 0.7315 0.6566 0.4742 0.0382 0.0032

Table 5.6: SR results for upscaling factor of 4 when training on the March scene.

Based on the overall results (Table 5.7), the VDSR network achieves highest PSNR and
SSIM, narrowly followed by the EESRGAN. Depending on the segmentation metric,
Bicubic, ESRGANTexture, or ESRGAN achieve the best results.
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Overall PSNR (in dB) SSIM Accuracy Precision Recall IoU
HR 100 1 0.7492 0.4779 0.3532 0.2334
Bicubic 30.7358 0.7176 0.6804 0.3949 0.2435 0.0993
SRCNN 31.1991 0.7213 0.6724 0.3624 0.2301 0.0854
VDSR 31.2730 0.7285 0.6726 0.3718 0.2302 0.0858
SRResNet 31.0259 0.7212 0.6736 0.3782 0.2308 0.0871
SRGAN 21.8591 0.3442 0.6688 0.2253 0.1230 0.0585
ESRGANPSNR 30.2409 0.6892 0.6796 0.3988 0.2385 0.0971
ESRGANTexture 30.5893 0.6981 0.6785 0.4025 0.2393 0.0953
ESRGAN 27.5593 0.6169 0.6852 0.3843 0.2281 0.100
EESRGAN 31.2377 0.7269 0.6720 0.3969 0.2264 0.0841

Table 5.7: Overall results for upscaling factor of 4 by weighted averaging over all scenes.

To visualize and distinguish the images on a pixel level, an area from patch 111 of the
March scene is zoomed in in Figure 5.18. Following the SR metrics, VDSR offers the
best image, however, ESRGANTexture is perceived as most similar, as it offers the same
structure of the highly-reflected surface.

Figure 5.18: SR by a factor of 4 for the patch 111 of the March scene, zoomed in

The patch of Figure 5.9 (SR x2) showcasing lower and medium backscatter surfaces is
visualized for SR x4 in Figure 5.19. Even with the information of what should be seen
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on the zoomed area, the LR image on its own offers no potential of recognition. Not only
is the difference between LR and HR more apparent, but the models utilizing bicubically
upscaled images (Bicubic, SRCNN, VDSR) as well as SRResNet and EESRGAN are
perceived as blurry compared to the HR and ESRGAN variations. On the other hand,
the DL methods are able to reconstruct the three different types of surfaces. Therefore,
it can be concluded that for low, medium, and high backscatter is not an issue for SR x4.
However, details are lost when comparing the images to the SR x2 results.

In contrast to the SR x2 networks, which learned to reconstruct the speckle, the SR x4
networks (besides ESRGAN) reduce the speckle. This finding is particularly interesting,
since on the one hand, speckle is seen as a downside (see Section 2.1). On the other
hand, it is argued that this is the reason why the EO model works well on the SR x4
ESRGAN data compared to its peers. Furthermore, the EO model achieves multiple best
and second best segmentation results on the SR x4 ESRGAN, and none on the SR x2
ESRGAN data.

Figure 5.19: SR by a factor of 4 for the patch 991 of the March scene, zoomed in

Assessing the models by the segmentation metrics, the best models are Bicubic, ESRGANPSNR,
ESRGANTexture, and ESRGAN being either best or second best on one of the selected
metrics. The models overlap with the best models of the x2 experiments, as discussed
with the exception of ESRGAN. Again, better SR metrics (PSNR and SSIM) do not lead
to better classification metrics (accuracy, precision, recall, IoU).

Figure 5.20 helps assessing the quality of the segmentation masks for the different SR
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inputs. The results depicted in Table 5.6 are confirmed, i.e. the EO model is worse on
the SR x4 compared to the SR x2 (Figure 5.10) or the HR data. More precisely, there
is a significant difference between the March baseline and the rest. Therefore, it can
be concluded that SR by a factor of 4 is not suitable for upscaling SAR images on the
grounds of the task-evaluation, when working with the EO model trained on HR data.

Figure 5.20: Segmentation on the SR images scaled by a factor of 4 for the patch 991 of
the March scene
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To evaluate the effect of the training data on the EO model, an additional experiment is
conducted by training the EO model with the SR data. The four best methods (Bicubic,
ESRGANPSNR, ESRGANTexture, and ESRGAN) are used for this additional experiment.
Best is determined based on the classification metrics in both the x2 and x4 experiments.
The result of this additional experiment can be observed in Table 5.8.

March scene Accuracy Precision Recall IoU
HR 0.8158 0.5267 0.5814 0.3863
Bicubic 0.8122 0.5024 0.5652 0.374
ESRGANPSNR 0.8025 0.5017 0.5574 0.3605
ESRGANTexture 0.8035 0.5005 0.5569 0.3600
ESRGAN 0.8043 0.4971 0.5572 0.3617

November scene
HR 0.8181 0.5191 0.5550 0.3810
Bicubic 0.8014 0.4920 0.5072 0.3437
ESRGANPSNR 0.7958 0.4759 0.5160 0.3419
ESRGANTexture 0.7988 0.4822 0.5167 0.3438
ESRGAN 0.8001 0.4897 0.5257 0.3497

Mountains scene
HR 0.6558 0.4209 0.0752 0.0317
Bicubic 0.6524 0.3902 0.0488 0.0141
ESRGANPSNR 0.6528 0.4333 0.0526 0.0138
ESRGANTexture 0.6552 0.4191 0.0528 0.0180
ESRGAN 0.6535 0.3898 0.0523 0.0158

Overall
HR 0.7492 0.4779 0.3532 0.2334
Bicubic 0.7388 0.4494 0.3161 0.2057
ESRGANPSNR 0.7355 0.4592 0.3220 0.2040
ESRGANTexture 0.7382 0.4564 0.3224 0.2067
ESRGAN 0.7382 0.4478 0.3269 0.2090

Table 5.8: Segmentation metrics when the segmentation model is trained on the SR data
with an upscaling factor of 4.

Figure 5.21 shows the performance improvement of the segmentation metrics when
training the EO model on the SR data. It can be observed that all four models have
similar overall improvements, which is due to the reason that there was no model
dominating the others for all metrics. All four selected SR datasets show substantially
improved results, when training with the SR data compared to the HR data. Similar as
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the EO models results for SR x2, no SR x4 model is best for all scenes.

Figure 5.21: Performance improvement when the segmentation model is trained on the
SR data with an upscaling factor of 4 based on the overall performance.

A comparison between the EO model trained on HR and SR can be observed in Figure
5.22. The positive effect of re-training is visible in both the segmentation maps and the
associated metrics, as they approximate the results of the second column (Prediction on
HR).

Figure 5.22: Comparison between the segmentation maps of the EO model trained on
HR and SR. The two rows of the first and second column contain the same image, as the
ground truth label and prediction does not change. Segmentation maps based on patch
991 the March scene using upscaling factor of 4.
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The metrics of the EO model trained on SR x4 are on a par or slightly worse than the
metrics of the EO model trained on HR. From this it follows that SR x4 is viable, then
and only then, when the EO model is based on the SR x4 data.

Due to the fact that SR x4 is not viable without re-training the EO model, further
sub-hypothesis evaluation is based on the results of the models trained with the SR
images.

The number of parameters and run times are presented in Table 5.9 and illustrated in
comparison to the overall IoU in Figure 5.23. Again, there is a strong correlation between
the prediction time and the number of model parameters. Simultaneously, the best IoU
is achieved by the models with the second most parameters (ESRGANTexture).

Comparing the x2 results to the x4 results (Table 5.5), it is apparent that the training
takes less time. This is due to the fact that the images are smaller which leads to less
Input/Output wait time (reading data). Moreover, the models that do not use the
bicubically interpolated images have slightly increased parameters.

Model #Parameters Training Time (in h) Prediction Time (in s)
Bicubic 0 0 0.0005
SRCNN 39,001 2.13 0.0017
VDSR 664,704 2.33 0.0044
SRResNet 1,528,724 6.05 0.0125
SRGAN 17,050,973 12.83 0.01
ESRGANPSNR 11,955,137 12.59 0.0585
ESRGANTexture 11,955,137 15.98 0.0616
ESRGAN 27,477,386 20.34 0.0495
EESRGAN 33,031,499 26.79 0.4155

Table 5.9: Parameters and run times for the x4 SR models.

Figure 5.23: Precision and training time is depicted for each SR x4 model. Size of the
markers depends on the corresponding prediction time.

The conclusions comparing the bicubic interpolation with the DL models x4 are analog
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to the comparison with DL models x2. In particular, it depends on the application if
the additional training and prediction time is of importance for the selection of the SR
technique.

Sub-hypothesis 1: SR networks with an upscaling factor of 4 are able to
handle unseen temporal conditions

Figures 5.24 and 5.25 compare a high backscatter and a low to medium backscatter area
between March and November, respectively. The generated SR images for a given scene
are approximations of each other and the ground truth. No artifacts are visible. The
speckle reduction of March is also applicable in November.

Figure 5.24: SR by a factor of 4 for the patch 111 of the March and November scenes.
Urban area is magnified

Figure 5.25: SR by a factor of 4 for the patch 111 of the March and November scenes.
Crop field and herbaceous vegetation area is magnified
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Figure 5.26 showcases how the segmentation models work using x4 SR data for the two
different scenes of March and November. Depending on the model and the metric, the
corresponding results between the scenes are slightly better or worse. Nevertheless, this
example verifies the sub-hypothesis of temporal independence. Furthermore, the results
of the re-trained EO model (Table 5.8) approximate the November benchmark. This
indicates that x4 SR is suitable for unseen temporal conditions, then and only then, when
the EO model is based on the SR x4 data.

Figure 5.26: Comparison between the March and November segmentation maps of the
EO model trained on SR. Segmentation maps based on patch 991 the March scene using
upscaling factor of 4.

Sub-hypothesis 2: SR networks with an upscaling factor of 4 are able to
handle unseen spatial conditions

Comparing a valley area (Figure 5.27) and a mountainous area (Figure 5.28) of the
Mountains scene, the conclusions from the experiments of SR x2 are replicated. In
particular, the predictions on the valley are more accurate than on the mountainous
area. Simultaneously, the SR images show a similar loss of quality in terms of details
and blurriness. Therefore, the topological relief is more influential for the EO task than
the SR task.

Considering that accuracy and precision of the Mountains scenes are on par with the
Mountains baseline (Table 5.8). Simultaneously, recall and IoU are slightly worse than
the baseline, it follows that SR is suitable for unseen spatial conditions, then and only
then when the EO model is re-trained on the SR data.

Sub-hypothesis 3: GAN improves the SR networks with an upscaling factor
of 4

Once more, the SRGAN performs poorly compared to its peers. Nevertheless, other GAN
models are successfully trained. Therefore, the explanation of this phenomenon stays the
same - lacking pixel loss and wrong feature maps.
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Figure 5.27: SR and corresponding segmentation map with an upscaling factor of 4 for
the patch 2007 of the Mountains scene

Figure 5.28: SR and corresponding segmentation map with an upscaling factor of 4 for
the patch 800 of the Mountains scene

EESRGAN achieves second best PSNR and SSIM altogether. Overall, ESRGAN scores
best for two out of the four segmentation metrics, respectively. When the EO model
is trained on the ESRGAN data, it achieves the two best metrics and one second best.
It can be argued that the ESRGAN yields the visually most pleasing and least blurry
images. The deblurring is achieved by the utilization of a loss based on the feature space
(VGG loss as stated in Equation 3.11) instead of the pixel space (L1 or L2 criterion).
This all hints that a GAN based approach can improve the results of the given CNN.
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5.4 Summary
It was decided that the suitability of SR will be measured based on the task of land cover
classification with 16 different classes. On the one hand, PSNR and SSIM are used for
quantifying the image quality of the generated images. On the other hand, accuracy,
precision, recall, and IoU are used for answering the scientific questions of the thesis.

This chapter showed the experimental design and the corresponding results of x2 and x4
SR. The AISUKF model was dismissed from the experiments, as it showed unpromising
results on random samples.

No model achieved simultaneously best SR and classification metrics. Overall, VDSR
and SRResNet scored best in PSNR and SSIM. In contrast, Bicubic, ESRGANPSNR,
ESRGANTexture, and ESRGAN scored best on accuracy, precision, recall, and IoU. This
indicated that the given EO model performs better on the more visually pleasing data,
besides Bicubic which also yielded comparable results. Furthermore, due to the fact that
PSNR and SSIM fail to represent the human perception of image visual quality, it was
concluded that image and segmentation quality metrics do not correlate.

The SRGAN showed no promising perceptual results nor good SR metrics. It was argued
that the reason is the wrongly selected feature maps or the missing pixel loss.

GAN did not always enhance the results with focus on PSNR, SSIM, accuracy, precision,
recall, or IoU. However, it was stated that the GAN in the ESRGAN yielded the
perceptually most pleasing results.

SR reduced the speckle inherent in the HR, LR, and bicubically interpolated images.
The noise reduction was stronger for the SR x4 in comparison to the SR x2 methods.

SR with a scaling factor of 2 has no issues handling seen or unseen temporal and spatial
conditions. With focus on upscaling factor of 4, the SR quality was equally good for
unseen temporal and spatial conditions, when considering both quantitative (PSNR and
SSIM) and qualitative (perceptual impression) measurements. The segmentation did not
achieve the desired results (similar to the HR EO model) for any temporal and spatial
conditions. Hence, x4 SR is not suitable for the given EO task. However, x4 SR is viable
for both unseen temporal and spatial conditions when training the segmentation model
on the SR x4 data.
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CHAPTER 6
Conclusion

This chapter summarizes the thesis and outlines the main findings. In addition, a number
of recommendations for future research are given.

6.1 Summary
This thesis provided grounds for evaluating and comparing SR methods for SAR C-
band images. A methodology was presented to evaluate the suitability of SR for earth
observation tasks.

An overview of SR models was given and their differences were presented. Additionally,
useful components for SR were showcased and discussed. It was observed that deeper
network architectures can be difficult to train but have the potential to substantially
increase the networks performance as they allow modeling mappings of high complexity.

With regards to the research question, it is concluded that SR is suitable for increasing
the resolution of SAR C-band images by a factor of 2. On the other hand, SR by a factor
of 4 is not suitable without additional effort. More precisely, for SR x4 to be suitable,
the EO model needs to be trained with the SR data.

Furthermore, the thesis evaluated if the SR methods can handle unseen temporal and
spatial conditions. It is determined that SR by a factor of 2 can handle both unseen
temporal and spatial conditions, as the classification metrics for the November and
Mountains scenes were on a par with the results for March scene. With focus on SR by a
factor of 4, the method can handle unseen temporal and spatial conditions only with the
additional effort of training the EO model on the SR data.

Another sub-hypothesis of this thesis was to evaluate the GAN framework as a vehicle
to improve the results. GAN situationally improved both the classification and image
quality metrics. However, it can not be stated with certainty in which cases the GAN
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enhances the results. Based on perceptual sentiment, a GAN-based method (ESRGAN)
yielded the most pleasing images.

Depending on the scaling factor and the metric of interest (i.e. precision or recall),
applying computationally expensive deep learning methods is adequate in comparison to
the trivial bicubic upscaling method. Furthermore, the adequateness of using computa-
tionally more complex methods is dependent on if unseen temporal or spatial conditions
are significant for the EO task. Additionally, it needs to be taken into consideration if
the EO model will be re-trained based on the SR data or not.

The tasks of SR and pixel segmentation are harder when the initial images are with lower
GSD. This fact follows as the results of both image quality and classification metrics
declined when comparing the x2 and x4 experimental results.

Even though PSNR and SSIM are used as an approximation to human perception
of reconstruction quality, the results have shown that perceptual loss is a promising
alternative to pixel-based loss functions (MSE, MAE). Additionally, it was showcased
how to adapt the VGG network to function with SAR images. It was also shown that
the pixel-based loss is a necessary part for SAR SR, as indicated by the SRGAN results.

Moreover, this study examined the impact of SR to the inherent speckle of the SAR
C-band images. The findings clearly indicate that SR is able to reduce the noise present
in the HR, LR, and bicubically upscaled images. Together with the fact that the EO
models trained on the SR images occasionally outperformed the March, November, and
Mountains baselines, it follows that SR helps improve earth science models.

Overall, SR cuts down processing and storage capacity through its ability to decompress
low-resolution images. For example, splitting the November scene into HR (200 × 200px),
LR for 2x SR (100 × 100px), and LR for 4x SR (50 × 50px) patches requires 381, 96,
and 24 megabyte of storage space, respectively. This is approximately a reduction by a
factor of 4 and 16, respectively for the x2 and x4 LR patches. This compression strongly
correlates to the number of pixels which is reduced. Hence, using SR greatly reduce the
disk space needed, which is especially relevant to the TU Wien as part of the EODC,
since they store petabytes of satellite data.

SR is a well researched discipline in DL. It was shown that both CNN and GAN
architectures are able to work for the spatial data at hand. The suitability of SAR SR
lays a strong basis for new or improved EO models.

6.2 Future Work
Training on more images could improve the results. Hence, the impact of the dataset
size should be inspected. For training both the SR and segmentation networks, 3486
images were used. This equals to 3486 × 200 × 200 ≈ 139M pixels or about 0.5 GB of
data. Simultaneously, there are terabytes of SAR C-band data recorded each year. In
contrast, the authors of the ESRGAN use ∼ 22.5 billion pixels. Simultaneously, it should
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not be neglected that the SAR images used in this work have only one channel, whereas
the ESRGAN images have three (RGB).

Concerning the number of channels, this work adapted the three-channel VGG loss for
single-channel SAR images. Using a feature loss trained on different images might be a
limiting factor in terms of SR quality. Moreover, Wang et al. [91] fine-tune the VGG
network for material recognition (to focus on textures rather than objects) and use this
as the feature loss to improve the visual quality of the SR images. Therefore, evaluating
different feature loss functions may prove to be an important area for future research.

The pixel segmentation task chosen for the assessment of the research question could be
restated. A potential transformation, which would make the task more general could
be to group the classes, as there were similar classes (e.g. open forest unknown, open
forest mixes, open forest evergreen needle leaf, open forest deciduous broad leaf). If the
reduction of the total classes is not an option for the EO task, then another approach is
to use a two-step segmentation approach. For example, a first segmentation model is
used to determine the group, e.g. forest or water. A second segmentation model is used
to determine the specific sub-class in the group, e.g. Closed forest, evergreen needle leaf
or open sea.

Further research could include an end-to-end approach. In this approach, the segmentation
model (and loss) would be included in the training of the SR network. Hence, the SR
network would be able to learn to generate images, which are optimal for a given EO
model.

Moreover, this thesis used only VV backscatter. However, the Sentinel-1 C-band SAR
instrument satellite, in its dual polarization mode, additionally provides the VH backscat-
ter. VV and VH data matches both temporally and spatially. Thus, VH can be used as
an additional input for the SR CNNs.
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Appendix

Figures & Tables

Figure A: Extent of the study site of the November scene.

93



Figure B: Confusion matrix for the evaluation on the HR November scene.

Figure C: Confusion matrix for the evaluation on the HR Mountains scene.
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Class Accuracy Precision Recall IoU
Shrubs 1 NaN 0 0
Herbaceous vegetation 0.8407 0.2817 0.2441 0.1505
Cropland 0.7373 0.6237 0.7288 0.5062
Urban 0.938 0.7028 0.7338 0.56
Bare / sparse vegetation 1 NaN 0 0
Permanent water bodies 0.9667 0.3606 0.8467 0.3385
Herbaceous wetland 0.9886 0.3535 0.14 0.1115
Closed forest, evergreen needle leaf 0.9351 0.5549 0.7826 0.4808
Closed forest, deciduous broad leaf 0.9729 0.2584 0.0147 0.0141
Closed forest, mixed 0.9913 NaN 0 0
Closed forest, unknown 0.9962 NaN 0 0
Open forest, evergreen needle leaf 0.9812 NaN 0 0
Open forest, deciduous broad leaf 0.9942 NaN 0 0
Open forest, mixed 0.9997 NaN 0 0
Open forest, unknown 0.7733 0.5159 0.4275 0.3051
Open sea 0.9946 0.004 0.002 0.0013

Table A: List of classes with the corresponding segmentation metrics for the November
scene based on the HR data.

Class Accuracy Precision Recall IoU
Shrubs 0.9995 NaN 0 0
Herbaceous vegetation 0.8402 0.1957 0.2035 0.1108
Cropland 0.3941 0.0366 0.6055 0.0357
Urban 0.9916 0.5192 0.4867 0.3355
Bare / sparse vegetation 1 NaN 0 0
Permanent water bodies 0.9743 0.0122 0.7655 0.0122
Herbaceous wetland 0.9686 0.003 0.1505 0.0003
Closed forest, evergreen needle leaf 0.4902 0.7444 0.0234 0.0232
Closed forest, deciduous broad leaf 0.9037 0.0546 0.0033 0.0031
Closed forest, mixed 0.8705 NaN 0 0
Closed forest, unknown 0.9772 NaN 0 0
Open forest, evergreen needle leaf 0.9833 NaN 0 0
Open forest, deciduous broad leaf 0.9912 NaN 0 0
Open forest, mixed 0.9986 NaN 0 0
Open forest, unknown 0.7674 0.0803 0.237 0.0638
Open sea 1 0 NaN 0

Table B: List of classes with the corresponding segmentation metrics for the Mountains
scene based on the HR data.
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