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Abstract

Monitoring systems can be used to check the condition of a system and determine if it
needs maintenance. Due to complexity, many systems do not have models, which are
usually required for monitoring. However, it is desirable to monitor them to maintain
quality and improve lifetime. It is known that monitoring is possible with simple
assumptions and minimal system knowledge, but without a system specific model.
These assumptions rely on signal features. Improving feature extraction should make
the process in general more reliable. This thesis focuses on feature extraction and
interpretation. The signal feature considered here is a jump, and it should be possible
to detect a non-instantaneous jump also in presence of a signal drift. The difference
between a drift and a non-instantaneous jump is purely system dependent and cannot be
defined a priori. Therefore, the number of samples representing the minimum duration
of a signal state is defined. Strong changes that take less than half of this duration cause
the state to change, which defines a jump. This thesis is based on a part of CCAM.
CCAM is a context-aware monitoring system with confidences. It uses these confidences
for a local clustering algorithm to define a system state. It was stripped of assumptions
that would limit the usability, then analysed and extended upon, based on the analysis.
The extensions remove drift in the immediate history of a state, increase the probability
that a state is formed, and extract parameters at runtime. Tests have been performed
and the removal of the limiting assumptions has significantly improved the behaviour
for general signals. The extensions improve this even further. This was to be expected
for signals using the noise distribution the extensions and the analysis were based on.
However, as soon as more realistic signals are investigated, the performance degrades.
This stems from parts of CCAM that are not modified in the scope of this thesis, and
it is evident that further improvements are necessary. A test on industry data revealed
that the extension for removing the drift inside a states history is insufficient. On
the other hand, the runtime parameter extractor performed well even on industrial
data, thereby reducing the required parameters to one. This is a first step towards and
possibly into self-learning.





Kurzfassung

Die Überwachung von Prozessen ist ein weites Feld und dient zur Erkennung von
Störungen oder der Notwendigkeit von vorbeugender Wartung. Normalerweise wird
hierbei ein Modell des Prozesses oder zumindest ein tieferes Verständnis vorausgesetzt.
Aufgrund der zunehmenden Komplexität ist eine detaillierte Modellierung jedoch oft
schwer oder unmöglich. Es ist jedoch bekannt, dass ein System auch ohne ein Modell
überwachbar ist. Hierbei werden Annahmen über das System getroffen und minimale
Systeminformationen verwendet. Einer dieser Ansätze basiert auf Feature-Extraction,
und die Qualität der Erkennung von charakteristischen Mustern in Prozessdaten hat
einen entscheidenden Einfluss auf die Qualität der Prozessüberwachung. Die vorlie-
gende Arbeit baut auf CCAM auf, einem Überwachungssystem welches auf lokalem
Clustering basiert. Hierbei werden Confidence Functions verwendet, um einen Wert
einem Cluster zuzuordnen. In der vorliegenden Arbeit wird versucht, die Erkennung
eines Signal-Sprungs, welcher nicht abrupt sein muss, auch während eines starken Drifts
auftreten darf und mit Rauschen überlagert ist, zu verbessern. Dazu wurden limitie-
rende Annahmen von CCAM entfernt, um nachfolgend den entsprechenden Teil von
CCAM zu analysieren. Diese Analyse ist zweifach, einerseits von einem mathematisch
internen Aspekt und andererseits von einem statistischen externen Aspekt. Auf Basis
dieser Analyse wurden mögliche Verbesserungen definiert und anhand unterschiedlicher
Signaltypen systematisch getestet. Die Erweiterungen von CCAM wurden unter der
Annahme von weißem Signalrauschen definiert und funktionieren in diesem Rahmen
exzellent. Bei der Anwendung auf Prozesssignale, die der industriellen Realität näher
sind, zeigte sich jedoch eine schlechtere Performance. Diese Limitierungen stammen
großteils aus Teilbereichen von CCAM, die in der vorliegenden Arbeit nicht modifi-
ziert wurden. Ein Test an einem echten Industriesignal zeigte insbesondere, dass der
verwendete Algorithmus zur Entfernung einer lokalen Drift, welcher die Erkennung
von Sprüngen erleichtern sollte, noch verbesserungsbedürftig ist. Im Gegensatz dazu
hat die Extraktion von Parametern während der Laufzeit für alle getesteten Signale
gut funktioniert. Diese Erweiterung ist ein erster Schritt in Richtung selbstlernender
Systeme, die für praxisnahe modellfreie Prozessüberwachung von großer Wichtigkeit
sind.
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Chapter 1

Introduction

Monitoring systems can lead to actions taken, which improve longevity of the system
and can help to maintain quality of the product. This is nothing new, we have done it
for centuries. Early third century BC, Ktesibios of Alexandria invented, or at least is
credited for inventing a float valve to regulate the level in water clocks [2]. A float valve,
in technical terms is an analogue feedback loop regulating the water level of something,
commonly a tank. A bit more recent, before the third industrial revolution, processes
were under manual control, in other words humans got values displayed (Monitoring)
and then action were taken to correct errors. Through the third industrial revolution
many processes got automated, thereby improving production quantity and quality [3].
These forms of automation/control have one thing in common: there is a form of
system model present. Be it the innate understanding by a human or explicitly
mathematically/statistically defined model; But not all systems have models of them
due to complexity. Truly getting rid of any form of model is unlikely, but pushing the
creation of model into an automated process or creating a broadly applicable model
with parameters which can be automatically detected might be the way to go. The
first approach goes towards a neural network, while the second one more towards a
general expert system. It should be noted that a general expert system might be a
contradiction, as it would be an expert for a general, universally applicable system.
Neural networks have shown to be a good solution in complex tasks and through
hardware advances they seem to be a possible approach to the problem. Figuratively
speaking, they do not need a predefined model of a system as they incorporate it trough
training. To go a bit more into detail they are fully mathematically defined algorithms,
but it is often not fully understood how the solution is the desired solution. They are
commonly referred to as black boxes because of that. They often get initialized with
random parameters and then through training they try to approach local minima. This
training process is an optimization process and neural networks themself can be put in
the non-linear adaptive filtering category [4].
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There are multiple approaches of training a neural network, but they usually have one
big problem: they require massive quantities of data, but at the same time if bad data
is used the overall performance of the neural network is worsened. There were many
approaches to reduce the data amount of neural networks. One of the most prominent
one is transfer learning. Simplified, data from other regions can be used to train a
neural network or a pre-trained neural network can be used, which has shown to reduce
data amount required significantly [5].
Building a general system is the same as making general assumptions about systems. A
general assumption that usually holds true for systems is causality. A system should
only change iff some form of input changes. An input can be anything from a defined
input signal to changes in the environment. For this definition it is irrelevant if it is
measured or unmeasured. When factoring in the environment the label context-aware
usually given to a system. Context-aware and context-awareness are to the best of the
authors knowledge not formally defined, however, many descriptions are used, varying
in level of detail.
Context-awareness (in ubiquitous computing) seems [6][7] to have been introduced
by Schilit in 1994, which states “[...] context-aware software adapts according to the
location of use, the collection of nearby people, hosts, and accessible devices, as well as to
changes to such things over time.” [8]. This could be adapted to: context-aware systems
adapt or react to the environment or changes of it. Environment is intentionally used
with its broad definition as anything might interact with the sensor/algorithm/system.
Let us put the assumption of causality into a more tangible scenario, a continues/on
demand water heater. Figure 1.1 displays the essential of a continues water heater.
There is only one valve for the gas and no valve for the water. We shall focus on the
energy input, let us say gas flow rate and it shall have a feedback loop measuring the
temperature of the hot water. This example was chosen as there are multiple industrial
systems which have a similar principle and at the same time a far higher complexity.

Fig. 1.1: The base principle behind a continues water heater.

If the fuel flow rate changes it could be to a number of reasons, some of them them are:
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• target temperature was changed ( direct, expected )

• warm water production has started/increased thereby requiring more energy to
keep the temperature constant ( indirect, expected )

• the ambient temperature has changed, the water input temperature has changed (
indirect, explainable )

• part of the thermal isolation has broken off, the fuel line is leaking ( indirect,
unexpected )

A direct reason is quite easy to demine where it originates. If the set value changes
the actuating variable has to change. On the other hand, an indirect reason is quite a
bit harder to figure out. For the case of change in production, be it on/off/increase,
the connection between the change in volume and the temperature is not essential for
the function. It can function without it and not modelling it decreases the complexity
and cost of the model and later for the build system; But having the complexity means
a more consistent temperature when such a change happens and a higher grade of
automation. But regardless of the grade of automation, there is a value that can be
measured which is known to influence the temperature and therefore the fuel flow rate.
Explainable changes can be measured and the physical model could be extended by
corresponding parts, but most likely statistical data would be used to define a norm. The
last aspect is the change of the physical object in an unexpected manner. Unexpected,
as in they are not dependent on a realistically measurable value during production.
Usually of destructive nature, e.g. wear and tear. Measuring or estimating wear and
tear at runtime commonly requires highly complex models, be they mathematical or
statistical in nature.
If no complex model is desired the base assumption of causality can still be used to
define normal and abnormal behaviour. Using the whole systems information, it can
easily be described as: if and only if an input changes an output is allowed to change
within a certain time frame. This would only require the information of what is an
input and what is an output, rather than a defined model of the system. The problem
changes to what is a change in input/output.
Feature extraction can be used to feed such an algorithm instead of raw data, thereby
abstracting the data. Figure 1.2 displays the base idea.
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System
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Parameters

Input
Features
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System State Informa-
tion

Fig. 1.2: A Feature extraction gathering data from all inputs and outputs of a system,
which then could be analysed and used to control the system.

There are multiple possible features that can be extract from signals. For this thesis,
jumps are considered relevant, but they by themself are an interpretation of a change-
point detection. To detect a point-change is no miracle. Some of the existing algorithms
are described in chapter 2. They can easily answer the question: has the point changed?
To answer the question of how it has changed, the difference between jump and drift
needs to be defined. To define a jump might not be seen as hard at first, as there is a
mathematical definition for a jump, which also exists in the discrete realm. However,
real systems usually do not exhibit a perfect, instantaneous jump. Figure 1.3 displays
the step response of a simple system. The similarities with a jump are rather meagre.
It has a slope and an overshoot. If the signal is measured in a finer granularity it
could easily be mistaken for a drift. The answer to what is and what isn’t, is purely
system dependent. It should be noted that drifts and jumps can occur at the same time,
therefore searching for zero degree "slopes" is not the answer. However it is discussed in
chapter 2.
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Fig. 1.3: Example of what should be considered a jump. It is the shifted step response
of the system 1

s2+s+1 taken at specific timings.

By improving and possibly automating feature extraction, higher level algorithms
could be empowered to produce better current machine state information and possible
react to patterns, thereby possibly enabling pre-emptive actions to improve quality, or
longevity by scheduling maintenance. Such a monitoring system could then be used to
improve cheap systems, where process control would be to costly, while at the same
time requiring less data than a neural network. A second possible use case would be
systems where process control has been driven to its limits. If the complexity of the
system exceeds the current possibilities of process control, a grey-box monitoring system
might be the only viable approach.
As a side-note the goal is to enhance current systems and process control and not
replace it. A fully modelled system will in all likelihood always be superior to such a
grey-box approach, as it holds the true system information.

1.1 Scientific Problem and Contribution
Under the base assumption that in systems semi-stationary states exist, which are
represented by semi constant values, frequencies, amplitudes, patterns, it can be argued
that context is the reason why an output values changes when no input value has
changed. An algorithm should be found which can interpret a point-change as a jump,
even if a drift is simultaneously occurring. This algorithm shall be an online algorithm
with little delay, as it is considered important to detect sudden changes fast. It should
have stable parameters which should be able to be gathered from historic data. This
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algorithm should also be resource efficient as it should be used on all inputs and outputs
of an system. Computing the parameters from historic values is allowed to use an offline
algorithm and resource efficiency has no major role.
The approach of this thesis is to remove assumptions that would limit a found algorithm
with high potential ( CCAM [1]). This is followed up by an analysis of the modified
algorithm and afterwards, based on the analysis, extensions are formalized to improve the
behaviour. The analysis is done from two different approaches: a mathematical internally
defining approach and a statistical externally characterizing approach. Through the
defining and characterising analysis improvements to the algorithm can be formalized,
namely:

• Approximating the drift and removing it.

• Using dynamic fuzzy functions to improve the probability of forming a state.

• Using local information to extract fuzzy function parameters during runtime, even
if non are provided initially. 1

The improvements have a focus on resource efficiency and have a small individual
analysis.
The base algorithm, the algorithm with the limiting assumptions and the fully adapted
algorithm are at the end tested on multiple data sets, in order to experimentally verify
the analysis and investigate the improvements and their cross-interaction. The data
sets that are used are:

• Synthetic-Optimal:
A data set that is created to show strengths and weaknesses of the of the algorithm
and adaptations.

• Synthetic-Signal-Mimicking:
A data set which was generated based on a statistical analysis of industrial data.
The advantage is that it contains additional information that the real industrial
data is missing.

• Industrial data:
True industrial data, which has been anonymized.

1Providing no parameters is technically speaking not possible, so the initial parameters are set outside
of a useful range.
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1.2 Structure of the Thesis
The structure of the thesis is quite linear. Chapter 2 displays existing algorithms
and makes a selection. They are categorized in offline and online algorithms. This
categorisation has an importance as the final algorithm shall be an online algorithm.
The offline category exists as some might be turned to online algorithms, or might be
useful for extensions. In chapter 3 an existing algorithm was taken in its base form
and adapted to suit the general nature of the problem. This adapted algorithm was
then analysed from two viewpoints. The two viewpoints are a mathematical, what
types of solutions exist and a statistical, how the algorithm behaves. In chapter 4 the
analysis from the previous chapter is used to form further possible improvements for
the algorithm and they are directly tested on datasets which are thought to show their
strengths and weaknesses. That chapter concludes with a fusion of the adaptations.
Chapter 5 tests the adaptation from chapter 3, the multiple adaptations from chapter 4
and the base algorithm on multiple datasets visualizing the benefits of the adaptations
and their shortcomings. Chapter 6 concludes this thesis and describes possible further
improvements.



Chapter 2

Related Work

In general two different types of algorithms exist online and offline. Online algorithms
have a strict causal requirement while offline algorithms do not. The desired algorithm
for the jump interpretation has to be an online algorithm, while the automatic/simplified
parameter extractor is allowed to be an offline algorithm. Depending on the algorithm
it might be possible to convert an offline algorithm to an online one by introducing
a delay, but because of the temporal constrain on the desired algorithm it is unlikely.
The main benefits of offline algorithms are that, they usually create better results than
online ones as they have access to more information. The offline algorithm section
mainly focuses on the parameter extractor while the online algorithm section focuses
on the jump detector.

2.1 Offline Signal Algorithms
Offline Algorithms have a big scope. They reach from linear filters to signal recon-
struction. Often there are hardly any temporal run-time constrains on the algorithm.
However, there is a special niche where offline algorithms are used in an online fashion.
This niche creates sets of data each time-step, like an image, they are still considered
"offline" as there is no restriction on what data from the entire dataset is used, but at
the same time very strict runtime constraints exist.
Iterative approaches are also commonly seen for offline algorithms. The desired signal
which should be analysed is a piecewise semi constant signal. Jumps are allowed
to be instantaneous or a transient process. These two conditions make the problem
significantly harder. Ideally the signal should be decomposed to its base components,
such as noise and individual sections separated by jumps. Such a decomposition is
believed to prove useful when configuring a step detector.
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2.1.1 Filter Approach
Matched/Correlation filters are the first looked upon. They are also usually found
in the online algorithm domain, as a delay is all that is required to transform them.
They are commonly used in very noisy environments when looking for specific patterns.
They are also used as an offline algorithm inside image processing, in that scenario
they are treated as pseudo offline as they do not move over the time axis, only over
the image axes. They can reliably detect a pattern even with heavy noise. A step
could be interpreted as a pattern and in fact there is of course a response which can be
interpreted as a "found" pattern.
Normally, a pattern is considered to be found when a defined threshold value is surpassed
and usually the intervals of patterns are also known. Both of these constraints cannot be
universally defined for all signals, which might lead to the conclusion that the parameter
extractor requires signal specific parameters itself. If such parameters are required
and they are not easy to generate then the advantage of having the automatic/easy
parameter extractor could be lost.

Image processing filters have for a long time concerned themself with edges, be it
finding them or preserving them. Some of them are:

• median filter, removes outliers,

• bilateral filter, smooths while preserves edges,

• canny edge detection, uses a derivative and then thresholds, to define possible and
definite edges, then iteratively defines used edges.

All of them are seen as acausal filters for the purpose of this thesis, with a defined filter
width. Therefore they could be brought into the online domain by a delay. Median filters
are likely going to be used as they are figuratively speaking low passes, which allow close
to ideal jumps; And at the same time they do not require any signal information. A
bilateral filter might also be interesting if signal information is present, as they smooth
the signal in a linear fashion, but limit the information over which they smooth, in
order to preserve edges. Such a filter might be useful to sharpen an edge, but they
require a selecting algorithm, commonly a threshold, which would be dependent on
signal information. Canny edge detection is similar in this regard, it would also require
signal information to define edges; But the steps up to the this requirement might be
useful.
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2.1.2 Iterative Algorithms
First order spline fitting algorithm might also be an interesting approach with the
assumption that jumps have at least two knots in close proximity. As an example, let us
assume a jump from 0 to 1 over the course of 100 measurements, the overall amount of
measurements is 2000. Let there be white Gaussian noise with a standard deviation of
0.1 . The spline shall be first order, in other words linear interpolation between spline
points. A greedy search1 algorithm is used and defined by the maximum of the absolute
difference between spline and true signal. The inserted point shall be at the position of
the maximum absolute difference and the value of the median of the 11 closest points.
The median is only used to reduce the influence of the noise. Figure 2.1 displays the
example with the first two iterations, as more are not needed. It should be noted that
the displayed algorithm is by no means sophisticated. The two most relevant problems
are that a termination condition is missing and that no automatic spline point merging
exists to remove over-fitting.
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Fig. 2.1: Simple spline fitting algorithm demonstrated with iterations over a simple
jump.

Piecewise constant signals(PWC) is a term which describes similar problems and
a suit of algorithms [9]. Unsurprisingly there are algorithms which might solve the
problem of this thesis, but it seems like they are offline algorithms rather than online
ones which makes them only applicable for the parameter generator. The second
problem is that some of them force the signal to be truly constant which contradicts the

1https://en.wikipedia.org/w/index.php?title=Greedy_algorithm&oldid=1028149539

https://en.wikipedia.org/w/index.php?title=Greedy_algorithm&oldid=1028149539
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assumption of this thesis. Even so, there might be algorithms which could be adapted
to solve the problem.

Stepwise jump placement is an algorithm from the PWC suite which places jumps
at likely locations and connects these with constant values [10]. It has a high similarity
to spline fitting, but forces the signal to be truly constant between jumps. The jump
positions are determined by a greedy search. There is also the inverse approach of
defining each point as a jump and then removing the least likely one iteratively. The
one major problem with it is that drifts can not be recreated with this algorithm. The
algorithm might be adapted to handle them, but the question arises what the difference
between this and a spline fitting algorithm would be.

0-degree Spline fitting was mentioned in [9], but no explicit paper was found. The
base idea is quite interesting and might be modified to sharpen the jumps found by
another algorithm. By redefining the "0-degree" condition to allowed slopes and only
passing values of suspected jumps into the algorithm it might be possible to sharpen
jumps. As an example let us reuse the jump from first order spline fitting. By running
a RANdom SAmple Consensus (RANSAC)2 algorithm for a Polynomial of zeroth order
and using the mean of captured values as fitting. It should return the value and the
position of first and last fitting value. By removing the found values from the signal,
dominant offset values can be found iteratively. Figure 2.2 displays the example. As
RANSAC needs an evaluation function a simple threshold of the distance was chosen
with the value of 0.2 .

2https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&oldid=983497063

https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&oldid=983497063
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Fig. 2.2: Simple constant value fitting algorithm over a simple jump.

It is quite obvious that this algorithm could not solve the problem if a drift is present.
By changing the the fitting function to use the surrounding values for a polynomial first
order fitting and using an error function with linearly increasing error up to a point could
alter the algorithm to accept drifts. Figure 2.3 displays the adapted example. It should
be noted that the algorithm used to display is in the stage of explorative-prototype,
it does not always produce the desired result. There are ways to remove unwanted
results, such as using only connected segments of signal for error function evaluation.
Connected segments in this case could mean that no more than 2 values in sequence
are allowed to be outside the allowed distance to the spline.
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Fig. 2.3: Simple linear value fitting algorithm over a simple jump with drift.



2.2 Online Signal Algorithms 13

A major problem with this approach is that it requires an evaluation function. Usually
such an evaluation function is data specific. It would require this information from an
overarching algorithm which would pass a suspected jump; Conversely, this also means
that such an overarching algorithm has regions in which, in its opinion, no jump occurs,
from which the required information might be obtained.

2.2 Online Signal Algorithms
Online algorithms are algorithms designed to process data during run-time. Some
algorithms have strict delay requirements, especially ones that actively control a system.
Delay in this context is the amount of measurements required past a current time-step
in order to generate the response for this time step. Such delays are inherent to the
algorithm and can not be solved by more processing power. As an example a linear
causal filter has no delay as the algorithm produces the answer for that time-point by
only using past information. Comparing that to a correlation filter, a delay of about
half the order ( that is the same as about half the size of the correlation reference) is
usually present. Because the algorithm is intended to be used at some point as a part of
actively controlling a system no inherent delay is wished. That the interpretation of the
signal might have a delay due to the signal is probably unavoidable, but making it the
only delay should make controlling easier and increase safety. Through this restriction
matched/ correlation and median filters are unusable.

2.2.1 Commonly used Algorithms
CUSUM is an old and well researched approach [11][12]. It works on the base that a
signal has a constant offset and noise. The integral over the noise should be zero. By
subtracting the prior known offset, jumps and drifts can be detected. The detection is
done by summing up the distances to the offset, with the twist that the sum can not get
negative, if it would, it would be 0 instead. The same is done for the negative aspect to
gain the ability to detect negative point-changes as well. This is a sequential method
which is very resource efficient. It needs the expected mean value, and a threshold
value. CUSUM through its integrating behaviour is very sensitive to slow changes and
inaccuracies. These slow changes and inaccuracies can create a problem if CUSUM
is running continuously. Such a problem could be solved by regularly resetting the
algorithm. To reduce downtime, two CUSUMs could be run simultaneously and be
reseted alternatingly. Another Problem with CUSUM is that it detects steps and drifts.
Drifts should not be detected and the mean value of a signal is unknown. Both problems
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could be mitigated by using a sliding average filter for the mean but the question arises
if this simple adaptation might destroy the advantages of the algorithm itself.

Shiryaev-Roberts procedures are mentioned usually as well when CUSUM is men-
tioned [13]. The base premises is that signal distributions are known. It seems to be
exceptionally good in terms of average delay to detection. This trade is highly desired.
It seems there are studies on variations on this algorithm which incorporate an unknown
post change distribution [14].The problem with this algorithm is that the pre-jump
distribution has to be known. If the drift would be known it could be compensated
in the algorithm either prior to calculation or as a time dependent distribution. But
the drift is unknown. Theoretically the more data is available the more computations
the algorithm has to do, but as shown in [15] less data can be used to approximate a
solution.

Exponentially weighted moving average (EWMA) is another common algorithm
when talking about point-changes [16]. It is a very light weight highly effective Infinite
Impulse Response (IIR) low-pass filter. Therefore, it would be easy and cost efficient to
implement in hardware. It could be used with a threshold to detect point-changes. As
normally with low-pass filters fast changes are not instantly visible. This alone could
already disqualify EWMA, but it is very effective in determining the offset and low
frequencies of a signal which could make it suitable to be used as the required offset
information for CUSUM.

2.2.2 Simple Adaptations
CUSUM modified with EWMA might create an algorithm which could solve the
problem. As these are modifications the true algorithm description is required. Let xn

be the new incoming value and O the predefined offset. CUSUM creates a negative and
a positive sum of the differences to the predefined value,

CUSUM+,0 := 0, (2.1)
CUSUM+,n := max(CUSUM+,n−1 + xn − O, 0), (2.2)
CUSUM−,0 := 0, (2.3)
CUSUM−,n := min(CUSUM−,n−1 + xn − O, 0). (2.4)

(2.5)
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By modifying the CUSUM algorithm to use EWMA as offset On with the EWMA
parameter p,

O0 := x0, (2.6)
On := (1 − p) · On−1 + p · xn, (2.7)

CoE+,0 := 0, (2.8)
CoE+,n := max(CoE+,n−1 + xn − On, 0), (2.9)
CoE−,0 := 0, (2.10)
CoE−,n := min(CoE−,n−1 + xn − On, 0), (2.11)

(2.12)

the offset does not need to be defined at the start. Such a modification is not fully
drift resistant as there will be a delay between EWMA having the correct offset and
CUSUM over EWMA (CoE) requiring it. By introducing a coefficient q into CoE to
slowly forget the past,

FCoE+,0 := 0, (2.13)
FCoE+,n := max(FCoE+,n−1 · q + xn − On, 0), (2.14)
FCoE−,0 := 0, (2.15)
FCoE−,n := min(FCoE−,n−1 · q + xn − On, 0), (2.16)

(2.17)

might fix the problem of the delay in offset. Figure 2.4 shows CUSUM in it base form
and the two modified forms. Sub-figure a shows that all three could solve the problem
with a simple threshold, as expected. Sub-figure b demonstrates the sensitivity of
CUSUM, in this case undesired. It also visualizes the cumulative error of CUSUM over
EWMA, this cumulative error is not as dominant as in sub-figure c, where it would
invalidate a threshold approach. A forgetful CUSUM over EWMA (FCoE) could solve
the problem in all three demonstrated cases.
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(b) A drift of 1 over the whole range
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(c) A drift of 10 over the whole range

Fig. 2.4: CUSUM and two adaptations of it visualized with a drifting signal and a
step.
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CUSUM, Shiryaev-Roberts procedures and EWMA are algorithms designed to detect
point-changes, not steps. This is an important differentiation. The source of the
change is irrelevant for them. CUSUM and Shiryaev-Roberts procedures use the entire
past through a quasi integrating behaviour. For them it is not a question of whether
they detect the change but rather when. The integrating behaviour is the root of the
sensitivity and why the detection is guaranteed. On the other hand a non-integrating
behaviour would mean that drifts would not be recognisable and jumps might not be
detected.

CCAM has a state detector that tries to cluster values into states as an online
algorithm [1]. For this it uses a changing window with a maximal size and discrete
differences between the incoming value and all values inside the window. If a step of
significant change enters this window it might be detected. If it is detected it is likely
that it is detected rather early. The algorithm only uses the window for local information
to detect a step, or state change. Therefore, the longer the step is undetected the
less likely it is to be recognized . This sounds highly negative, but the advantage is
that by using only local information it is drift resistant by nature. If CCAM’s state
detector and the CUSUM and the prior introduced adaptations are used with a more
extreme signal the advantage of CCAM’s state detector become visible. Figure 2.5 and
Figure 2.6 show the capabilities of CCAM, even when identical parameters are used
for both signals. It should be noted that CUSUM could also solve the problem but
would need specialized parameters for that. It should also be noted that due to the
high parameter stability of CCAM acceptable parameters should be easy to find.
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Fig. 2.5: CUSUM and adaptations, and CCAM’s state detector visually compared,
with a simple drift.
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Fig. 2.6: CUSUM and adaptations, and CCAM’s state detector visually compared,
with a sine and a drift.



Chapter 3

Analysis of the Step Detector

CCAM is a context-aware algorithm which uses feature extraction as one of its methods
to calculate a "health status" of a system [1]. Through discussions with the author of
the original algorithm and supported up by [17], the author of this thesis was informed
that the algorithm was developed and tuned for medical signals, such as heart rate,
breath rate. Such signals usually are positive and stay in a specified range, e.g. the
heart rate of a normal human stays in the range of 40-200 beats per minute, depending
on multiple factors. CCAM has been tested and further improved to work in other
areas than medical and it has shown potential. However, the assumptions for medical
data remain and can easily lead to problems with the domain change. Removing these
assumptions changes the algorithm in its behaviour.

In general the whole CCAM algorithm can be summarized with the following two
questions:

• Was a step detected?

• If not, is it drifting?

If the first question is answered with yes, then it leaves the current state and it either
finds an old fitting state or creates a new state. If it neither can find an old state nor
create a new one for a prolonged time the system is considered "Broken". If it is in a
state it is considered "OK" and if its drifting it is considered "Drift". These questions
are asked for all signals simultaneously and a state represents multiple signals and not
only one. The logic behind the algorithm can be seen in a more detailed manner in
Figure 3.1.
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Fig. 3.1: Flow chart of the CCAM system as proposed in [1].

Simplified explained the step detector is a a clustering algorithm, that means it tries to
assign an input to a "cluster". In this case a cluster is called state. A state is defined by
a number of recently added values to that state. It assigns a value to a state depending
on a confidence, which in turn uses the distance to the other values in that state. A
state is founded by the first value assigned to it. This happens when there is no old
state fitting for a value. Afterwards the cluster is extended by each assigned value up
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to a prior specified length. Once this length is reached the new values pushes out the
oldest value. How it exactly works is described in the following section.

3.1 Original Algorithm
This section describes the step detector as defined by [1]. A custom nomenclature is used
to improve readability, as a lot of symbols or alter forms of them are used throughout
the thesis. However, they are connected to the original algorithm as described by
Table 3.1.

3.1.1 Definition
The algorithm has one new input value vi. The subscript i is which signal of an array
of signals is used.
The algorithm has a history of the past values in the current state. This will be called
Hi,j. The subscript j is which point in the history is used.
The first step of the algorithm is to calculate the normalized distance Δnorm,i,j over
vi to Hi,j and then to "normalize" it to vi,

Δnorm,i,j = vi − Hi,j

vi

. (3.1)

Then a confidence and co-confidence function need to be defined. The used parameters
for them are da, db, dc, dd. The second step is to have Δnorm,i,j evaluated by the
confidence function and label the result as Cvalconf ,i,j , and evaluated by the co-confidence
function and label the result as Cvalcoconf ,i,j,

Cvalconf ,i,j =





da−Δnorm,i,j

da−db
: da < Δnorm,i,j < db

1 : db ≤ Δnorm,i,j ≤ dc
dd−Δnorm,i,j

dd−dc
: dc < Δnorm,i,j < dd

0 : other



 , (3.2)

Cvalcoconf ,i,j =





Δnorm,i,j−db
da−db

: da < Δnorm,i,j < db

0 : db ≤ Δnorm,i,j ≤ dc
Δnorm,i,j−dc

dd−dc
: dc < Δnorm,i,j < dd

1 : other



 . (3.3)
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Cvalconf ,i,j and Cvalcoconf ,i,j are taken from [1] but were altered as there seems to be a
typo in the source algorithm1.
Next Cvalconf ,i,j and Cvalcoconf ,i,j need to be sorted over j. This is not explicitly stated, but
implicitly by [1]. Cvalconf ,i,j is sorted descendingly and Cvalcoconf ,i,j is sorted ascendingly.
These are called Csconf ,i,k and Cscoconf ,i,k respectively. It should be noted that the
subscript changed from j to k as it is now an amount and not a point in the history.
With these sorted values it needs to be decided how representative they are. For this
purpose, confidences were defined over the sample amount for Csconf ,i,k and Cscoconf ,i,k.
They are called Csaconf ,i,k and Csacoconf ,i,k ,and are linearly increasing and decreasing
respectively,

Csaconf ,i,k =
 1 : k ≥ sa

k
sa

: 0 ≤ k < sa

 , (3.4)

Csacoconf ,i,k =
 0 : k ≥ sa

sa−k
sa

: 0 ≤ k < sa

 . (3.5)

sa is a specified sample amount.
Next Csconf ,i,k and Csaconf ,i,k need to be combined. They are combined by using the
"and" operation on Csconf ,i,k up to k and then and-ing it with Csaconf ,i,k . The same but
with the "or" operator is done on Cscoconf ,i,k and Csacoconf ,i,k respectively,

Cconf ,i,k =
k∧

q=1
Csconf ,i,q ∧ Csaconf ,i,k , (3.6)

Ccoconf ,i,k =
k∨

q=1
Cscoconf ,i,q ∨ Csacoconf ,i,k . (3.7)

It should be noted that k is the number of samples and the index in an ordered array,
as well as that the first sample would be index 1 and not 0.
Lastly, a state is held if any Cconf ,i,k ≥ Ccoconf ,i,k over k. If a state is held viis pushed
to the front of Hi,j. If it is not held, old states are checked and entered or if none are
found a new state is created.
The connection in nomenclature between this thesis and [1] is shown in Table 3.1.

1That it actually is a typo is confirmed when checking figure 1. in [1]
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This Work Symbols Symbols from [1] Comments
sa sa

da, db, dc, dd da, db, dc, dc

vi vi,new

Hi,j vhi,j

Δnorm,i,j di,j

Cvalconf ,i,j csv,i,j

Cvalcoconf ,i,j cdv,i,j

Csconf ,i,k csv,i,k Note the k instead of j

Cscoconf ,i,k cdv,i,k Note the k instead of j

Csaconf ,i,k css,i,k

Csacoconf ,i,k cds,i,k

Cconf ,i,k cb,i

Ccoconf ,i,k cn,i

Tab. 3.1: Connection of names from this work to [1].

3.1.2 Example
To give an example of this algorithm the values from Table 3.2 were chosen. Because
the step detector is the desired component only one signal is used and the subscript i

is ignored. Figure 3.2 visualizes the past input values which have been moved into H.
Figure 3.3 visualizes Cvalconf , Cvalcoconf , Csaconf and Csacoconf .

Name Value
sa 10
da, db, dc, dd [−8, −2, 2, 8]
H [4.6, 3.5, 1.9, 9.1, 7.4, 2.6, 5.9, 1.4, 1.1, 11.0]
v 1

Tab. 3.2: Values for the example.
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Fig. 3.3: Visual representation of the defined functions.

Table 3.3 shows the resulting values for the current value. Because Cconf ≥ Ccoconf has
at least one true value, the state would be held, this is also shown by Figure 3.4 . It
should be noted that Csaconf and Csacoconf technically speaking have a value for k = 0,
but it is unused by the algorithm so it is not displayed. It is only relevant if sa is 0.
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Value Name Values Comments
Δnorm=[ 3.6 , 2.5 , 0.9 , 8.1 , 6.4 , 1.6 , 4.9 , 0.4 , 0.1 , 10.0 ]

Cvalconf=[ 0.7 , 0.9 , 1.0 , 0.0 , 0.3 , 1.0 , 0.5 , 1.0 , 1.0 , 0.0 ] not sorted
Cvalcoconf=[ 0.3 , 0.1 , 0.0 , 1.0 , 0.7 , 0.0 , 0.5 , 0.0 , 0.0 , 1.0 ] not sorted

Cvalconf=[ 1.0 , 1.0 , 1.0 , 1.0 , 0.9 , 0.7 , 0.5 , 0.3 , 0.0 , 0.0 ] sorted
Cvalcoconf=[ 0.0 , 0.0 , 0.0 , 0.0 , 0.1 , 0.3 , 0.5 , 0.7 , 1.0 , 1.0 ] sorted

Csaconf=[ 0.1 , 0.2 , 0.3 , 0.4 , 0.5 , 0.6 , 0.7 , 0.8 , 0.9 , 1.0 ]
Csacoconf=[ 0.9 , 0.8 , 0.7 , 0.6 , 0.5 , 0.4 , 0.3 , 0.2 , 0.1 , 0.0 ]

Cconf=[ 0.1 , 0.2 , 0.3 , 0.4 , 0.5 , 0.6 , 0.5 , 0.3 , 0.0 , 0.0 ]
Ccoconf=[ 0.9 , 0.8 , 0.7 , 0.6 , 0.5 , 0.4 , 0.5 , 0.7 , 1.0 , 1.0 ]

Cconf≥Ccoconf=[ F , F , F , F , T , T , T , F , F , F ]
Tab. 3.3: Calculated values from the example. F is for false and T is for true.
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Fig. 3.4: Visual representation of Cconf and Ccoconf .

3.2 Necessary Adaptations
As already mentioned in the introduction to this chapter, CCAM and its predecessor
were based on assumptions from the medical field [18]. These assumptions are believed
to be that the noise is proportional to the offset, and the noise is small compared to the
offset and must not reach values close to 0. Values inspected were such as heart-rate,
breath-rate, temperature and so on. These assumptions likely lead to design derisions
that will cause problems for general signals. These problems need to be addressed and
corrected otherwise the algorithm will not work reliable with a general data set.
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3.2.1 The Problems
The first problem is the normalization of the difference. If a signal would get 0 as
a new value, Δnorm would be undefined and if it would get a value close to 0, Δnorm

would be enormous. This would cause the algorithm to be unable to keep any state.

The second problem is a semi problem. The normalized distance or distance in
general has only one sign. The problem is that Cvalconf and Cvalcoconf are defined over
R but will only ever be used R0+. Everything below 0 will never be used. This could
quite easily lead to misinterpreting the algorithm.

The third problem is a semi problem as well. Csconf ,i,j is a sorted array, ∧ in numerical
terms is a minimum, therefore

k∧
j=1

Csconf ,i,j has to be at one side of the sub-array j =
1...k. Using ∧ is good to demonstrate the thought behind it but might overcomplicate
the the algorithm.

The fourth problem is that the equations chosen for Cvalconf and Cvalcoconf as well as
Csaconf and Csacoconf are suboptimal. To be more precise the relationships of a = 1 − b

for both pairs of functions. This relationship and a few constraints lead to transforming
this algorithm from a fuzzy logic algorithm to a threshold algorithm for the state. This
does not mean that a higher level algorithms would not get a probability for a state,
only that the decision of "Is it in a state?" is a single threshold based decision. As this
is a serious redefinition of the algorithms foundation a proof is provided in section 3.3.

The fifth problem is part of building and re-entering a state. If a value is not part of
a state and no old state is found it creates a new state. Let us assume that the value is
an outlier. By pure chance the following value is close enough to not leave that new
state. A full state may be build because of an outlier. This would create a false state
change.
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3.2.2 Adaptation of the algorithm
The found solutions are used in the following sections, as this is accepted as the new
base algorithm.

For the first problem redefining Δnorm to a simple distance is enough,

Δ = |v − H| . (3.8)

This also leads to the problem that each signal will need individual Cvalconf & Cvalcoconf

functions. Therefore the index is removed and the signals decoupled.

For the second problem stating the function domains should be enough,

fCvalconf :R0+ −→ [0, 1] , (3.9)
fCvalcoconf :R0+ −→ [0, 1] . (3.10)

For the third problem replacing
k∧

j=1
Csconf ,j with Csconf ,k is the solution as they are

mathematically the same. It should be noted that the index i has been removed in
accordance to the firsts problems solution.

For the fourth problem an approach is needed to define Cvalconf and Cvalcoconf as well
as Csaconf and Csacoconf . For this the algorithm needs to be understood. There are two
approaches, a mathematical one (see section 3.3) and a statistical one (see section 3.4).
The author provides an example how they can be defined to solve this problem (see
section 3.3.3.3), but it should be noted that this example is just a simple one and was
not tested in any form.

For the fifth problem it is necessary to change how a state is build. By defining that
a state has a purely temporary phase where it is actively compared to all other fully
build states would force a state created by an outlier to be dropped. This decision shall
be based on the highest confidence. If a true state change should happen it is assumed
the the confidence of the values post-jump fit better into the newly created state than
into the pre-jump state. Because this is resource demanding this temporary phase shall
be sa/10 long. This solution has also a downside, especially when pushing against the
sensitivity limits of the algorithm itself; But in most cases it will only have a positive
effect. For the negative effect to occur an old state has to exist and the pre-jump values
have to be far to close to post-jump values.
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3.3 Mathematical Analysis
The mathematical analysis aims to define the algorithms behaviour depending on the
functions used for Cvalconf and Cvalcoconf as well as Csaconf and Csacoconf . For this constraints
were defined as a generalization and simplification.

3.3.1 Definitions
The following definitions are used for the analysis.

Distance
Δ = |v − H| (3.11)

The equation is identical to subsection 3.2.2, but for consistency shown.

Value Confidence

fCvalconf :R0+ −→ [0, 1] (3.12)
fCvalcoconf :R0+ −→ [0, 1] (3.13)

Again these quations are identical to subsection 3.2.2, but for consistency shown.
Constraints are added for these two functions. fCvalconf has to be decreasing, and fCvalcoconf

has to be increasing,

∀x, y ∈ R0+ : x < y ⇒fCvalconf (x) ≥ fCvalconf (y) , (3.14)
∀x, y ∈ R0+ : x < y ⇒fCvalcoconf (x) ≤ fCvalcoconf (y) . (3.15)

There are two reasons for these constraints. First, the the shown examples in [1] fulfil
these constrains. Second, many noise distributions have some sort of maximum and
from that maximum the likelihood decreases with distance.

Sample Confidence
The sample confidence and co confidence are also defined as increasing and decreasing,
respectively,

fCsaconf :N0 −→ [0, 1] ∀x, y ∈ N0 : x < y ⇒ fCsaconf (x) ≤ fCsaconf (y) , (3.16)

fCsacoconf :N0 −→ [0, 1] ∀x, y ∈ N0 : x < y ⇒ fCsacoconf (x) ≥ fCsacoconf (y) . (3.17)
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Again the argument is made that the example in [1] is part of this group and that more
samples can be trusted more than fewer samples.

Confidence Combination

Cconf ,k =Csconf ,k ∧ Csaconf ,k (3.18)
Ccoconf ,k =Cscoconf ,k ∨ Csacoconf ,k (3.19)

These equations behave identical to the original definition but are less computationally
complex and give the opportunity to connect Csconf ,k and Csaconf ,k as well as Cscoconf ,k

and Csacoconf ,k directly.

Order (Anti-)Isomorphism
Strictly increasing bijective functions are order isomorph. Respectively strictly decreas-
ing bijective functions are order anti-isomorph. Order Isomorphism simplified means
that if an ordered set is given to a function the resulting set is also ordered in the same
"direction". Anti-Isomorphism would mean the "inverse direction".

3.3.2 Analysis
The analysis will take the following steps.

1. Show and prove that sorting prior to using the value confidence function is the
same as sorting after the value confidence function. Thereby being able to connect
the sample amount and true values. It should be noted that if it was allowed to
sort the input rather than the output, it would be needed to sort the input in
an ascending manner which would lead to Cvalconf being decreasing and Cvalcoconf

ascending, which is exactly what is desired.

2. Show the origin of all possible solutions for keeping the state.

Sorting
The value confidence function is a surjective decreasing function over R0+. Let f be
a surjective decreasing function. This function can be split up into two subfunctions,
the first one has all injective parts the second one has the rest. Let D be the domain
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of a surjective decreasing function f . Let Db be the parts of D for which an inverse
function from f(D) exist, so the injective subdomain. Let Ds be D\Db,

f :D −→ f(D),

f =
 fb : Db −→ fb(Db), ∃f−1

b

fs : Ds −→ fs(Ds)
D = Db ∪ Ds, Db ∩ Ds = ∅,

f(Db) ∩ f(Ds) = ∅
. (3.20)

It should be noted that either part might be empty, but it does not change the analysis.
The injective part is automatically bijective and decreasing, making it strictly decreasing.
A strictly decreasing function is order anti-isomorph.
fs is a decreasing surjective function which has no injective parts. In other words for
each possible value in fs(Ds) multiple values in Ds exist,

∀x ∈ Ds, ∃y ∈ Ds : x = y, fs(x) = fs(y) , (3.21)

because if a value only had one counterpart this value would be injective thus not be
part of Ds.
Ds can be split even further. Each sub range of Ds which evaluates to the same value
by fs is placed in a corresponding Ds,k with a function fs,k ,

∀k ∈ fs(Ds), ∀x ∈ Ds,k : fs,k(x) := k , (3.22)

Ds =
fs(Ds)

k

Ds,k , (3.23)

∀a, b ∈ fs(Ds) : a = b =⇒ Ds,a ∩ Ds,b = ∅ . (3.24)

Because fs is decreasing there is an order to Ds,k over k. If fs(a) < fs(b) then all
elements of the set where a falls into, are greater then all elements of the set b falls into

a ∈ Ds,A, b ∈ Ds,B : fs(a) < fs(b) =⇒ ∀x ∈ Ds,A, ∀y ∈ Ds,B : x > y . (3.25)

As fs is decreasing an increasing set of Ds,k shall create a partly decreasing set consisting
of one numerical value by applying fs,k . Because k is one numerical value every
permutation of Ds,k creates a partly ordered set. Therefore a strictly increasing set
which creates a partly decreasing set exists.
The last part which is missing is to put fs and fb in relationship. By taking a value
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from Db and from Ds an order can be established by comparing these values once f is
applied to it,

a ∈ Db, b ∈ Ds :




f(a) > f(b) =⇒ a ≤ b

f(a) < f(b) =⇒ a ≥ b

f(a) = f(b) =⇒ a ∈ Ds impossible !
, (3.26)

because D is split into Db and Ds, the values once f is applied can not be identical as
that would contradict the split itself.
In conclusion an increasing set will create a partly ordered decreasing set when a
decreasing surjective function is applied. Therefore a partly ordered increasing set will
result in a partly ordered decreasing set, which is required in order to say that sorting
is allowed to take place prior to applying the value confidence function.
The same steps can be taken for the value co confidence function, which is an increasing
surjective function, therefore a partly ordered increasing set will result in a partly
ordered increasing set.
This leads to the conclusion that both value based functions need an ascendingly sorted
array as an input, in order to remove the sorting in a later step.

Possible Solutions
The condition to holding a state is that any Cconf is greater or equal to Ccoconf for a
specific k,

∃k : Cconf ,k ≥ Ccoconf ,k ⇐⇒ keep state . (3.27)

By using the redefinitions for Cconf and Ccoconf as defined by Equation 3.18 and Equa-
tion 3.19 (again shown for convenience) ,

Cconf ,k =Csconf ,k ∧ Csaconf ,k ,

Ccoconf ,k =Cscoconf ,k ∨ Csacoconf ,k

and inserting them into the condition, allows the condition to be split into 4 individual
equations that Cscoconf being greater or equal to Cscoconf and Csacoconf ,

Csconf ,k ≥ Cscoconf ,k , (3.28)
Csconf ,k ≥ Csacoconf ,k (3.29)
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and Csaconf being greater or equal to Cscoconf and Csacoconf ,

Csaconf ,k ≥ Cscoconf ,k , (3.30)
Csaconf ,k ≥ Csacoconf ,k . (3.31)

This split is allowed because ∧ is used on the greater side and ∨ on the smaller side.
Therefore all 4 equations have to be fulfilled for the state to be kept. By using the
previous prove and accepting that fCvalconf and fCvalcoconf take the same sorted Δ and are
not sorted afterwards to create Csconf and Cscoconf , each mention of them can be replaced
by their respective function, as they are not dependent on k but rather on the value in
the k place of the array.
Csaconf and Csacoconf can also be transformed into their respective functions. They are
only dependent on k and not on any value.
In other words, the connection between k and the the value in the k place of the array
is intentionally severed. Let x ∈ R0+ and n ∈ N then the following equations show this
transformation,

fCvalconf (x) ≥ fCvalcoconf (x) , (3.32)
fCsaconf (n) ≥ fCsacoconf (n) , (3.33)
fCsaconf (n) ≥ fCvalcoconf (x) , (3.34)
fCvalconf (x) ≥ fCsacoconf (n) . (3.35)

The first two Equitations stay so to say in their respective domain, they compare a
value confidence with a value co-confidence and a sample confidence with a sample
co-confidence. This makes it easy to calculate a condition for x and n which needs to
be fulfilled based on the functions. The solution for x is a range with either [0, xt] or
[0, xt), depending on the functions used and both part of R0+. It is also figuratively
allowed for x to be infinite, which would just mean that the range would be R0+. For n
the solution is also a range but takes the shape of [nt, sa], part of N0+.
For the third and fourth equations the conditions are a little more difficult to define.
It is basically mapping "R0+ × [1, sa] −→ Boolean". Because [1, sa] is a subset of N a
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range can easily be numerically evaluated. This range is in R0+ for every n. For the
third equation it is called SSCVCCn,

∀n ∈ [1, sa], ∀x ∈ SSCVCC,n,

∀y ∈ R0+\SSCVCC,n :
y > x,

fCvalcoconf (x) ≤ fCsaconf (n),
fCvalcoconf (y) > fCsaconf (n)

(3.36)

and for the fourth equation it is called SSCCVCn,

∀n ∈ [1, sa], ∀x ∈ SSCCVC,n,

∀y ∈ R0+\SSCCVC,n :
y > x,

fCvalconf (x) ≥ fCsacoconf (n),
fCvalconf (y) < fCsacoconf (n)

. (3.37)

It should be noted that SSCVCCn is continues and if it is not empty it will start at 0.
This is due to the fact that fCvalcoconf (x) is a increasing function and it has to be smaller
or equal to fCsaconf (n).
SSCVCCn has another useful feature. Because fCsaconf (n) and fCvalcoconf (x) are increasing,
the range SSCVCC,n can only increase or stay the same when n increases,

∀n ∈ [1, sa − 1] : SSCVCC,n ⊆ SSCVCC,n+1 . (3.38)

An equivalent argument can be made for SSCCVC,n, but with the difference that fCvalconf

and fCsacoconf are decreasing, and because both are decreasing it leads to the same
conclusion that SSCCVCn can only increase or stay the same when n increases,

∀n ∈ [1, sa − 1] : SSCCVC,n ⊆ SSCCVC,n+1 . (3.39)

By having defined conditions for these four equations the possible solutions can be
defined. Table 3.4 summarizes the found mathematical contributions.
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Equations Constraint for keeping state
fCvalconf (x) ≥ fCvalcoconf (x) x ∈ [0, xt] or x ∈ [0, xt)
fCsaconf (n) ≥ fCsacoconf (n) n ∈ [nt, sa]
fCsaconf (n) ≥ fCvalcoconf (x) x ∈ SSCVCC,n

fCvalconf (x) ≥ fCsacoconf (n) x ∈ SSCCVC,n

Tab. 3.4: The conditions and the equations they stem from that a state is kept.

The three possible solutions:

1. No Solution/ Trivial Solution. No solution exists therefore a state can never be
kept.

2. Singe Point Solution. This solution is defined by xt, nt. Note that SSCCVC and
SSCVCC could create a single point, but this would be treated as a special case of
the multi point solution.

3. Multi Point Solution. This solution is shaped by SSCCVC and SSCVCC. xt,nt also
come into effect but they are not the main focus.

3.3.3 The three Solutions
This subsection analyses the three possible solutions. The analysis is done by interpreting
the solution, showing a scenario or conditions so that a specific solution is created. If
useful a graphical representation of the solution is shown.
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3.3.3.1 No Solution/ Trivial Solution

This solution will never be able to keep a state. This can be achieved by fulfilling any
of the following interpreted conditions.

xt The value confidence and co-confidence function never intersect and ∀x ∈
R0+ : fCvalconf (x) < fCvalcoconf (x), so it is never more likely that a signal is in
a state rather than not in the "current" state. It should be noted that if a
signal has no state the current value is used as the first value of a new state,
therefore every value is put into a state even if that state is not kept.

nt The sample confidence and co-confidence function never intersect and ∀n ∈
[1, sa] : fCsaconf (n) < fCsacoconf (n), so there is no number of samples at which
it could be said that a value confidence could be trusted enough to keep a
state.

SSCCVC There is no possible value or sample amount that the value confidence would
ever be more expressive than the trust that there are not enough samples.

SSCVCC The trust in the sample amount is never enough to outweigh confidence that
the values are not good enough.

3.3.3.2 Single Point Solution

The single point solution, which might also be referred to as threshold solution, is like
the name suggests a single point in a two dimensional value space which defines the
entire solution. This point is (nt, xt). It should be noted that SSCCVC & SSCVCC might
collapse to a single point, this would be considered as a special case of the multipoint
solutions and is therefore excluded.
There are two cases which have to be considered. The first case is that xt is the
intersections of value confidence and co-confidence function and therefore is part of the
range. The second case is that xt is defined by a discontinuous function and an not
included boundary value has to be used for the range. This just has to be kept in mind.
It is possible to argue that the non included case does not exist as the algorithm is
implemented on a physical machine, therefore a boundary value can be found at the
accuracy limit of the used data-type.
Through the characteristics of SSCCVC and SSCVCC it is easy to check if a solution falls
into the category of single point solution. It has to be checked if the range defined with
xt is a part of the union between SSCCVC and SSCVCC at the nt position,
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[0, xt] ⊆ {SSCCVC,nt ∩ SSCVCC,nt} =⇒ single point solution , (3.40)
[0, xt) ⊆ {SSCCVC,nt ∩ SSCVCC,nt} =⇒ single point solution , (3.41)

of course depending on the case.
Figure 3.5 visualizes this single point solution. This visualization however does not
incorporate SSCCVC and SSCVCC as they are not important for this type of solution.
The sorted Δk can be plotted into this plot with k = n and x = Δn.
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Fig. 3.5: Visual representation of the single point solution. If even one value falls into
the green space it would keep the state.

Example
Let us reuse the example from subsection 3.1.2 . Table 3.5 is an exact copy shown for
convenience.

Name Value
sa 11
da, db, dc, dd [−8, −2, 2, 8]
H [1.1, 13.1, 4.6, 1.4, 9.1, 1.9, 11.0, 7.4, 2.6, 3.5, 5.9]
v 1

Tab. 3.5: Values for the example. They are the identical values from subsection 3.1.2.

fCvalconf and fCvalcoconf are defined over R0+, therefore only the values of dc, dd are relevant.
By searching the intersection of fCvalconf and fCvalcoconf , xt can be calculated and it evaluates
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to 5. The intersection of fCsaconf and fCsacoconf evaluates to 5 as well. This is displayed in
Figure 3.6.
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Fig. 3.6: Visual representation of the defined functions and their intersections.

The last missing part is the sorted Δ. Table 3.6 shows the relevant and resulting values.
These values would result in a plot as shown in Figure 3.7. In this example the state
would be kept. It should also be noted that 3 values of Δ fulfil the criteria to hold the
state, this is the same number as in subsection 3.1.2. The only difference is that the
confidence is unknown and would need to be calculate separately.

Symbol Value Remarks
sa 10
nt 5
xt 5 case [0, xt]
Δ [0.1, 0.4, 0.9, 1.6, 2.5, 3.6, 4.9, 6.4, 8.1, 10.0] sorted

Tab. 3.6: Relevant calculated values for the example.
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Fig. 3.7: A visual example of a single point solution and applied to a sorted Δ.

Problem with a = 1 − b

There is a problem with fCvalconf & fCvalcoconf and fCsaconf & fCsacoconf if they are defined
in the manner a = 1 − b, with a, b being the confidence and co-confidence functions
respectively. The problem is that the single point solution is the only possible solution
if a non trivial solution exists. By applying this to the 4 conditional equations (3.32,
3.33, 3.34 and 3.35) the following four equations are logical consequences,

fCvalconf (x) ≥ fCvalcoconf (x) ⇒ fCvalconf (xt) ≥ 0.5 , (3.42)
fCsaconf (n) ≥ fCsacoconf (n) ⇒ fCsaconf (nt) ≥ 0.5 , (3.43)
fCsaconf (n) ≥ fCvalcoconf (x) ⇒ fCsaconf (nt) ≥ 1 − fCvalconf (xt) , (3.44)
fCvalconf (x) ≥ fCsacoconf (n) ⇒ fCvalconf (xt) ≥ 1 − fCsaconf (nt) . (3.45)

The last two equations are identical. By inserting the first two equations into the third
one, an inequation is created. This is always true because the left side of the inequation
is greater or equal to 0.5 and the right side is smaller or equal to 0.5 . The left side has
to be greater or equal to the right side. Therefore it is a tautology.
Therefore if nt and xt exist and the defining functions are in the connection of a = 1 − b

it will always be a single point solution. The constraints of fCvalconf , fCvalcoconf , fCsaconf and
fCsacoconf should still be remembered.
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3.3.3.3 Multi Point Solution

The multi point solution is mainly defined by SSCCVC and SSCVCC. xt and nt still have a
role of constraining the edges of the solution. As the name suggests it can be represented
by multiple point in a two dimensional value space, which defines the entire solution.
SSCCVC and SSCVCC represent the main conditions of this solution which are as following:
SSCCVC Is a value x at the position n good enough for that position considering the

trust-worthiness of that position in the sorted Δ?
SSCVCC Is the value x at the position n not too bad for that position considering

the trust-unworthiness of that position in the sorted Δ?
Both conditions need to be fulfilled for at least one n. They are figuratively asking the
inverse questions of each other, but inverse in this case does not mean a = 1 − b, it is
expressed by four independent functions. The two conditions from the point solution
still apply so x ∈ [0, xt] / x ∈ [0, xt) and n ≥ nt. This can be represented by a plot. An
example is shown in Figure 3.8.
It can be simplified to a 0 to xt,n range by using the characteristics of SSCCVC,n and
SSCVCC,n, the maximum of the conjunction of them and the range defined by xt,

xt,n := max({[0, xt] ∩ SSCCVC,n ∩ SSCVCC,n}) . (3.46)

xt,n := max({[0, xt) ∩ SSCCVC,n ∩ SSCVCC,n}) . (3.47)

Then a state is held if n ≥ nt and xn ≤ xt,n. This simplification visually displayed is
where the name comes from. The simplification is shown in Figure 3.9. It should be
remembered that sample number is a discrete value. It should also be noted that this
example was not generated by functions, it only exists to show the mechanism of this
type of solution.
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Fig. 3.8: Visual representation of the multi point solution. If even one value falls into
the green space and is inside both bars it would keep the state.
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Fig. 3.9: Visual representation of the simplified multi point solution. If even one value
falls into the green space it would keep the state.

Example
This example will construct a multipoint solution and not use one, as the usage is
graphically identical to the single point solutions but with a differently shaped field.
Table 3.7 show the desired values for the multipoint solution. Multi-points is what xt,n

shall follow inside of (nt, xt), it will shape {SSCCVC,n ∩ SSCVCC,n}.
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Name Value/Function
sa 10
xt 10
nt 3
multi-points n2/5

Tab. 3.7: Defining the desired values for the example.

To start of, any function must be defined, for this the author arbitrarily chooses fCsacoconf

and it is defined as
fCsacoconf := 1 − n

sa
. (3.48)

Next SSCCVC can be defined, by using the wished solution for the multi-points,

∀n ∈ [1, sa] :
xt,n :=n2/5

SSCCVC,n :=[0, xt,n]

. (3.49)

Because fCsacoconf and SSCCVC are defined, fCvalconf can be calculated. It should be noted
that fCvalconf will have discrete values and between those values the function is allowed to
have any form as long as the constraint of decreasing is not broken. By having defined
x and the resulting confidences these discrete positions can be calculated,

∀n ∈ [1, sa] :
fCvalconf (xt,n) :=fCsacoconf (n)

⇓
fCvalconf (xt,n) :=1 − n

sa

. (3.50)

A visual representation of fCvalconf is shown in Figure 3.10.
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Fig. 3.10: Visual representation of the fCvalconf . The grey patches are the areas where
the function has to be inside but no closer definition is given so far.

For the sake of simplicity of this example the author assumes n to be in R+ to calculate
fCvalconf . This leads to fCvalconf being defined continuously,

fCvalconf (x) :=
 1 −

√
x·5
sa

: 0 ≤ x ≤ 20
0 : else

(3.51)

and visualised in Figure 3.11.
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Fig. 3.11: Visual representation of the fCvalconf . The continues arbitrary function is an
arbitrary function which fits the conditions.
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With fCvalconf fully defined, fCvalcoconf can be partly defined. fCvalcoconf has to be smaller or
equal fCvalconf (xt) up to xt, at xt it has to be fCvalconf (xt) and beyond xt it has to be greater
or equal to fCvalconf (xt), while of course being increasing as a function,

∀x ∈ R+, x < xt :fCvalconf (x) ≥ fCvalcoconf (x) , (3.52)
∀x ∈ R+, x = xt :fCvalconf (x) = fCvalcoconf (x) , (3.53)
∀x ∈ R+, x > xt :fCvalconf (x) ≤ fCvalcoconf (x) . (3.54)

Again an arbitrary function is chosen which fulfils the requirements, it is defined as:

fCvalcoconf (x) :=
 fCvalconf (xt) · e

x−10
10 : 0 ≤ x ≤ 20

1 : else
(3.55)

and both the conditions and chosen function are visualized in Figure 3.12.
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Fig. 3.12: Visual representation of the fCvalcoconf . The grey patches are the areas where
the function has to be inside. The continues arbitrary function is an arbitrary
function which fits the conditions.

The last function missing is fCsaconf . It is defined by fCsacoconf and nt. fCsaconf again has
defined conditions. It has to be smaller or equal up to nt, at nt it has to be fCsacoconf and
after it has to be greater or equal to fCsacoconf ,

∀n ∈ [1, nt − 1] :fCsaconf (n) ≤ fCsacoconf (n) , (3.56)
n = nt :fCsaconf (n) = fCsacoconf (n) , (3.57)

∀n ∈ [nt + 1, sa] :fCsaconf (n) ≥ fCsacoconf (n) . (3.58)
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Again an arbitrary function fitting the conditions is defined as:

fCsaconf (n) :=


fCsacoconf (nt)
3 · n : 1 ≤ n ≤ 4

1 : else
(3.59)

and both things are shown in Figure 3.13.
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Fig. 3.13: Visual representation of the fCsaconf . The grey patches are the areas where the
function has to be inside. The continues arbitrary function is an arbitrary
function which fits the conditions.

With fCsaconf all functions are defined. As well as nt, xt and SSCCVC. SSCVCC has to be
calculated. Table 3.8 shows the result of this calculation. It also shows SSCVCC and
their combination.
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Position SSCVCC [calculated] SSCCVC [defined] {SSCVCC ∩ SSCCVC}
1 [0, 7.7266] [0, 0.2] [0, 0.2]
2 [0, 14.6581] [0, 0.8] [0, 0.8]
3 [0, 18.7127] [0, 1.8] [0, 1.8]
4 R0+ [0, 3.2] [0, 3.2]
5 R0+ [0, 5.0] [0, 5.0]
6 R0+ [0, 7.2] [0, 7.2]
7 R0+ [0, 9.8] [0, 9.8]
8 R0+ [0, 12.8] [0, 12.8]
9 R0+ [0, 16.2] [0, 16.2]
10 R0+ [0, 20.0] [0, 20.0]

Tab. 3.8: The calculated results for SSCVCC and the defined values for SSCCVC and
their combination.

The final act is to visualize the resulting multipoint solution. Figure 3.14 shows the
simplified solution.
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Fig. 3.14: Visual representation of the simplified multi point example and n2/5 as it
was one of the main constraints. If even one value falls into the green space
it would keep the state.
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3.4 Behaviour Analysis
So far the mathematical aspect of when and under what condition a state is lost has
been analysed. This section focuses on the likelihood of staying or leaving a state under
the condition of a white noise and a sharp step. The single point solution is analysed
as the multipoint solution can be constructed by using multiple single point solutions,
but it would not add anything for the goal of this section. The goal of this section is
to deepen the understanding of the algorithm, while using the single-point solution.
This understanding could then be used to define the solution itself, based on the signal
attributes.

3.4.1 Analysis
Prior to starting the analysis a few things need to be defined.

1. The noise used is white Gaussian noise, so a normal distribution.

2. µ of the distribution is normalized to σ.

3. The used variable for the distribution x is also normalized to σ.

4. A step is instantaneous and pre & post step noise exists.

5. The step height is normalized to σ and is called γ.

6. The new input value v from the mathematical analysis is normalized to σ and is
called v.

7. The value threshold xt from the mathematical analysis is also normalized to σ and
is called .

8. The sample amount threshold nt from the mathematical analysis is normalized to
sa and is called θ, it will be redefined during the chapter.

Due to the normalisation to σ, the distribution has no longer a σ in the exponential
term and by keeping the definition that the are of the integral form neg. to pos. infinity
has to be 1, σ vanishes from the distribution,

ψ(x, µ) = 1√
2 · π

· e− 1
2 ·(x−µ)2

, (3.60)
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This normalisation has no effect on the integral,

Φ(x, µ) =
x

−∞
ψ(x , µ) dx . (3.61)

Both of these functions are shown in Figure 3.15.
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Fig. 3.15: ψ(x, 0) and Φ(x, 0) graphically represented.

Figure 3.16 visualizes the used variables as part of a time-series and as the single-point
solution.
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Fig. 3.16: Two sub-figures which display where the normalized parameters can be
found in a signal or in the algorithm.

For the first step let us assume the history length as infinite, therefore the history has a
perfect distribution. The first question is which is needed for Δ to contain θ of the
history,

v+

v−
ψ(x , 0) dx ≥ θ , (3.62)

or for a given how big is v allowed to be? Figure 3.17 shows this over v and .
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Fig. 3.17: The green area displays value combinations of and v which would hold a
state. θ is considered 0.5 and the black line is the border and was calculated
by transforming it to (v). It should be noted that the history is considered
infinitely long.

By answering the first question, it is known which value would keep a state and which
would loose a state. By assuming that the input value is a step plus noise,

v = γ + noise , (3.63)

two questions can be answered:

1. How likely is it to stay in a state, when assuming γ is 0?

2. How likely is it to detect a jump, when assuming γ is not 0?

Referring to question 1, the probability of staying in a state can be calculated using a
distribution-weighted mean over the Boolean equation with the common substitution
that true equals 1 and false equals 0. This results in changing the integral boundaries
from negative & positive infinity to −&+ the outline from Figure 3.17 for a given ,

x̃( , θ) = solve
for v


 v+

v−
ψ(x , 0) dx = θ


 , (3.64)

Pstay( , θ, γ) =
x̃( ,θ)

−x̃( ,θ)

ψ(x, γ) dx , (3.65)

the solution is visualised in Figure 3.18 for γ = 0.
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Fig. 3.18: The likelihood that a state is kept Pstay dependent on . θ is considered 0.5
and γ is considered 0 for this plot. It should be noted that due to numerical
instability the inverse function was calculated ( (Pstay) ).

The same calculations can be done while varying θ. The result is shown in Figure 3.19.
It should be noted that there are numerical inaccuracies inside the graph, visible at the
top. The top should extend all the way back to = 4. The reason for these inaccuracies
is that the inverse function was calculated, because Pstay ≈ 0 has higher relevance.
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Fig. 3.19: The likelihood that a state is kept Pstay dependent on and θ. γ is considered
0 for this plot. It should be noted that due to numerical instability the
inverse function was calculated ( (Pstay, θ) ).

The bottom of Figure 3.19 looks like the error-function over while the upper part
looks like a shifted shrunken one. At θ = 0 the calculation does not make sense as Pstay

should be 1, but as soon as θ = 0 it is correct again.
Referring to question 2: it is not as straightforward as the first question, because the
jump does not need to be detected with the first value, it only needs to be detected
at some point. With the base assumption that each incorrectly accepted values sb

fits perfectly into the post jump distribution, θ needs to be modified. The probability
that it stays inside the state depending on θ is shown in a 3D multi-isosurface plot in
Figure 3.20.
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Fig. 3.20: The colour-coded likelihood that a state is kept Pstay dependent on , θ and
γ. The layers have the values 0.9, 0.7, 0.5, 0.3, 0.1 .

Figure 3.20 displays quite a bit about the behaviour of the algorithm. The probability
that it stays in the state decreases as the normalized sample threshold θ increases. This
is as expected. The second aspect that can be seen is that there is a trade-of between
the normalized sample threshold θ and the normalized value threshold , this is also as
expected.
Making θ dependent on the incorrectly accepted values sb reduces the amount needed
to fulfil the condition as sb increases, since sb fulfil the condition as per definition,

θ(sb, sa) = nt(sa) − sb

sa
. (3.66)

It should be noted that nt can depend on the sample amount sa. This possible
dependency is defined by fCsaconf and fCsacoconf . In the base form of CCAM as defined in
[1] it results in at least 50% of the samples,

nt(sa) = 0.5 · sa , (3.67)

this will be used in this section if not stated otherwise. By applying the modified θ the
likelihood can be calculated and is shown in Figure 3.21. Note, Figure 3.21 displays
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the part of Figure 3.20 where sb is in the range of 0 to 0.5, because it is a coordinate
transformation of one axis.

Fig. 3.21: The colour-coded likelihood that a state is kept Pstay dependent on , sb
and γ. The layers have the values 0.9, 0.7, 0.5, 0.3, 0.1 . sb has been used as
a continues number for this figure which it actually is not. sa is considered
as 40 for this plot and nt is considered 20. It should be noted that there
are visual computational errors in this Figure.

Figure 3.21 shows a lot of the algorithms behaviour. The more values are wrongfully
accepted the less likely a jump is detected (increasing sb direction). The lower the
normalized value threshold is the more likely a jump is detected and the higher the
normalized step height γ is the more likely a jump is detected. The next interesting
question is how likely is a jump detected within sb. This can be calculated by multiplying
the likelihood that it stays over sb and subtracting it from 1,

Pdetected( , sb, γ) = 1 −
sb

sb =0
Pstay( , sb , γ) . (3.68)

Figure 3.22 shows the result of this calculation. As expected, the more values are past
the jump the higher the probability, but with a decreasing efficiency.
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Fig. 3.22: The colour-coded likelihood that a jump was detected Pdetected within sb,
dependent on , sb and γ. The layers have the values 0.9, 0.7, 0.5, 0.3, 0.1
. It should be remembered that sb is a discrete value and the values are
simply interpolated to create a surface. sa is considered as 40 for this plot
and nt is considered 20.

The likelihood that a jump is detected within and depending on sa is another interesting
question. It is shown in Figure 3.23.
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Fig. 3.23: The colour coded probability that a state is lost Pdetected depending on γ, sa
and with sb being sa. The layers have the values 0.9, 0.7, 0.5, 0.3, 0.1 . It
should be noted that if nt is smaller or equal 0 the probability of loosing the
state is considered 0. nt is used as defined in equation 3.67. It should be
noted that sa starts at 10 as the simplification of an infinitely long history
is far too inaccurate underneath it.

The likelihood that a jump is detected within a fixed sa depending on nt is another
interesting question. It is shown in Figure 3.24.
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Fig. 3.24: The colour coded probability that a state is lost depending Pdetected on γ,
nt and with sb being nt. The layers have the values 0.9, 0.7, 0.5, 0.3, 0.1 .
It should be noted that if θ is smaller or equal 0 the probability of loosing
the state is considered 0. sa is set to 100. nt starts at 1 in this graph.

The next logical step is to look at the behaviour when sa is changing. Calculating this
however is not that easy. The original simplification of an infinitely long history can no
longer be used. The correct formulation is basically a sum over binomial probability.
The probability is the integral over the distribution with the limits of x ± and then
multiplying the new value distribution and integrating from negative infinity to positive
infinity,

+∞

−∞
ψ(x, γ) ·

sa

i=nt(sa)

 sa

i

 ·
 x+

x−
ψ(x , 0) dx

i

·
1 −

x+

x−
ψ(x , 0) dx

sa−i

dx . (3.69)

The evaluation is shown in Figure 3.25.
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Fig. 3.25: The probability that enough values are inside θ to fulfil the condition of
nt, dependent on and sa. It should be noted that nt is used as defined in
equation 3.67, which causes the at first glance strange behaviour. γ is 0 for
this plot.

Figure 3.25 (b) seems to be slowly approaching the behaviour of Figure 3.18, which
is to be expected since Figure 3.18 is the same probability but with an infinitely long
history.
By varying γ, the probability of keeping a step can be calculated. The numeric evaluation
is shown in Figure 3.26. It has a very interesting behaviour, it does not really change
depending on sa. This is interesting as it means that keeping a state is seemingly not
effected by sa, but detecting a state change is effected.
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Fig. 3.26: The colour coded probability that a state is kept depending on γ, sa and .
The layers have the values 0.9, 0.7, 0.5, 0.3, 0.1 .

There is one more question which so far has not been asked. How likely is a state even
found? The answer to this is straightforward. A state is found if the temporary state
which is created after a state is lost can reach the maximum number of historic values.
In other words the temporary state is not allowed to have any errors in it, otherwise
it is dropped and a new temporary state is created. Also if a value fits to an existing
state better than the building state, the existing state is prioritised, entered and the
temporary one is deleted. In other words for each sa the state has to be kept and would
need to be of higher confidence than all old ones. Calculating the probability that a
state is kept regardless of old states can be done and is visualized in Figure 3.27.
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Fig. 3.27: The likelihood that a state is kept over sa and .

3.4.2 Essential Findings
3.4.2.1 Parameters and their effects

There is a four-way connection between the normalized value threshold , the normalized
sample threshold θ, the normalized step height γ and the probability that a state is kept.
Fixating the probability creates a surface over , θ and γ as shown in Figure 3.20; But,
the normalized step height γ is a parameter that is defined by the unknown signal and
should not be predictable. The normalized value threshold and the normalized sample
threshold θ on the other hand are freely choosable within their bounds. Due to the
fact that a jump can be found within a time frame even after it has occurred increases
the probability that it is found. This however requires a discrete approach, imposing
rules onto the normalized sample threshold θ. Figure 3.24 display the probability that
a jump was found within a time-frame after it has occurred(, with roughly speaking
nt ≈ 100 · θ, relevant for the figure).
Successfully building a state under ideal condition seems to define a kind of minimum
normalized value threshold . Figure 3.27 displays this. It seems like a normalized
value threshold of around and above 4 is good and below 2 is unusable, for the used
configuration of θ ≈ 0.5.
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Increasing or decreasing the sample amount sa is another aspect that needs to be
discussed. Increasing it has a positive and a negative effect.
The positive effect of increasing sa is that a jump is more likely to be found, displayed
in Figure 3.23. Thereby increasing the sensitivity of the algorithm.
The negative effect of increasing sa is that a state is harder to build, displayed in
Figure 3.27. This in turn would require a higher normalized value threshold in order
to counteract this effect and thereby decrease the sensibility.

3.4.2.2 Resulting possible improvements

There a multiple possible improvement resulting from this analysis.
The advantages of increasing sa could be used if the the disadvantages could be removed.
A possible approaches is introducing a changing normalized value threshold depending
on the progress of building the state, thereby being able to define a higher one while
building and a lower one while searching for jumps. Another approach could be
granting full state "rights" at a fraction of the defined sa. This would circumvent the
disadvantages, by not introducing them in the first place.
Gathering parameters for the normalized value threshold should be possible from
historic values and possible even at runtime. Through the minimal required normalized
value threshold for a specific normalized sample threshold θ and a minimal reliable
detectable normalized step height γ a compromise for the normalized value threshold
can be statically defined. Using such a statically defined value and σ from the signal
the required parameter for a single-point solution can be calculated. This in turn would
require σ to be known at all times(, this also implies Gaussian white noise). Calculating
it from the historic values is easy. Approximating it at runtime can include resource
expensive algorithms. However, due to the fact that a local history is sorted cheap
approximations might be usable.



Chapter 4

Extension

Based on the mathematical and statistical analysis multiple extensions can be for-
malized for the algorithm. These range from information for the developer, useful
information for testing and possibly for deployment, to modifying the algorithm to
improve its capabilities. It starts with a toolset to view the signal from the eyes of the
algorithm. This toolset is meant for signal analysis and to check the statements of the
automatic parameter detector. The automatic parameter detector is the second section
and describes a possible solution to the problem. This is followed by three sections
modifying different parts of the algorithm, with the goal to make the algorithm more
reliable, increase sensitivity and decrease errors. This chapter finishes by combining the
introduced extensions, as some negative side-effects are removed by that fusion.

4.1 Toolset for working with Data
The toolset is a simple tool that gives a user/ developer information about a signal;
And if also given the used confidences, it can be used to interpret the data and make
assumptions about the result that would be created by the step detector algorithm. To
achieve this it displays a histogram of the distance Δ between an new input value v
and the local history H ( see section 3.3), of the whole signal and a box-plot for every
index of Δ, for the whole signal. If the confidences are given, the solution space from
subsection 3.3.3 can be overlayed.
Simply put, the toolset shows the step up to and including Δ in a statistical way that
can then be interpreted by a user afterward. Figure 4.1 visualizes this. On the left side
a histogram of all Δ is displayed and on the right side the box-plot for each index of Δ
. How this data can be interpreted is shown later in this section.
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Fig. 4.1: An example of a signal and the toolset response. In the toolset response on
the left side is a histogram of Δ and on the right the box-plot for each sample
position, overlayed with the keep state condition diagram. The maximum
history length is 100 and the chosen functions result in a simple threshold
condition also known as single-point solution at (50,4) .



4.1 Toolset for working with Data 63

4.1.1 Definition
The toolset creates Δ for the signal once enough historic values exist to fill the history.
Let S be the signal and S the length of it, then it creates Δ starting at the position
sa in S until S ,

∀x ∈ [sa + 1, S ], ∀n ∈ [1, sa] : Δx
n := |Sx − Sx−n| . (4.1)

Then the histogram is created over all Δx
n.

Afterwards Δx
n is sorted over n, for each x. At the end a box-plot is created over

the sorted Δ, over index n and the simplified representation of keeping a state from
subsection 3.3.3 is added on top, which has been numerically calculated. The histogram
displayed is the histogram of all values of Δx

n.

4.1.2 Interpretation
Using Figure 4.1(b) certain assumptions can be made:

1. The jump is likely detected, visible because the values of the second, smaller
histogram peak are outside the keeping condition.

2. There might be a state drop during one of the states, but unlikely. Visible because
no value barely misses the keep state condition. By contrast, if the keep condition
would have been set to roughly 2.2 at nt there would probably be multiple incorrect
state losses.

3. The height of xt could be slightly decreased when a states history is full. Visible
because the single point solution captures all outliers of a suspected state at nt

and is still bigger than the maximum of those outliers.

To see if those assumptions are correct the state detector algorithm is applied to the
signal and unsurprisingly it is exactly as predicted. This is visualized in Figure 4.2.
It should be noted that xt is set to 4 · σ in accordance to subsection 3.4.2, therefore
it was very unlikely that an incorrect state loss would happen, a state should build
successfully. By also setting the jump height to 10 · σ it would be nearly impossible
that a jump would not be detected again in accordance to section 3.4. The reason this
example was chosen is that it is unambiguous and easy to see and understand.
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Fig. 4.2: The example from Figure 4.1(a) but with the state detector algorithm applied
and the states visually displayed.

4.2 Automatic Parameter Detection
Automatic parameter detection is the first step to create a step detector that is capable of
handling all possible signals. If the required parameters can be determined automatically
from the historical values, it might be possible to transfer it to the runtime of the
algorithm.
There are multiple approaches to how such a automatic parameter deducer could
function, some are:

1. Give no parameters and let the algorithm figure out what could work.

2. Give it a parameter that describes an inherent property of the signal, like a time
constant.

3. Let a user draw/select portion of a historic signal to use that information to define
what a state should look like.

To be fair the last approach is very user intensive, but should create good parameters.
The first approach is the most desired one, the second one is acceptable under the
condition that the required parameter is highly stable. It could be possible to transform
the second approach to the first one by using an iterative approach. The automatic
parameter deduction algorithm that was implemented uses one parameter, which is sa.
The base assumption of the algorithm is that there are more "stable", non-jumping
segments of the signal than jumping ones. It starts with guessing where jumps are, by
searching for a step through correlation and then isolates patches which are unlikely
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jumps. Then the Δ of these patches are calculated, which is the same calculation as in
section 4.1. Afterwards selected quantiles are made, which are then used to calculate a
threshold for the single-point solution. This threshold then gets transformed into the
confidence functions in a predefined manner.

4.2.1 Definition
Let sa be the history length. Let S be a sample. Let Sstep be a step signal for the
convolution, it has sa times "-1" followed by "0" followed by sa times "1",

Sstep,n :=




−1 : 1 ≤ n ≤ sa

0 : n = sa + 1
1 : sa + 1 < n ≤ 2 · sa + 1

. (4.2)

Let Striangle be a triangle signal with the maximum of sa in the middle, starting and
ending with 0 and the length of 2 · sa + 1,

Striangle,n :=
 n − 1 : 1 ≤ n ≤ sa + 1

−n + 1 + 2 · sa : sa + 1 < n ≤ 2 · sa + 1
. (4.3)

Because convolutions are associative they can be calculated and displayed. They and
their convolution are shown in Figure 4.3.
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Fig. 4.3: The graphical representationism of the convolution kernel for a sa of 100.
Note that that the signals have a length 201 and 401 respectively.
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It should be noted that the convolution of step and triangle is highly similar to derivative
of gauss. This is picked up in the analysis of the algorithm.
The absolute of the convolution of S and Sstep and Striangle is called T ,

T := |S ∗ Sstep ∗ Striangle| (4.4)

and it is similar in nature to a smoothed derivation.1 This means there are now two
possible interpretations for T . The higher T is, the more it has in common with a high
step. This is due to the fact that convolution can be used to find a specific pattern
inside a signal. The pattern that should be found is the step and then a triangle in
order to make found positions more dominant. Therefore higher values in T are more
likely to be jumps.
The second interpretation is that it is a smoothed derivation. This means that places of
high incline also have a high T . Jumps are likely to have the highest incline. Therefore
high peaks in T are likely to indicate jumps.
Finding peaks can be done by a simple local maxima. The quarter of peaks with the
highest values are defined as jumps. It was experimentally determined that a quarter is
acceptable. It was a trade-off between removing to much from the signal and keeping
jumps. The positions of these maxima are used to segment the input signal and for each
of those segments half of sa is also removed at each end, in order to remove possible
slopes from non-instantaneous jumps. Each segment, which is longer than sa can now
be used to generate independent statistics, in the same manner as the toolset did. The
results of those statistics are merged at the end. The comparison to the pure toolset is
shown in Figure 4.4. There are a few visible aspects:

1. The jump is not visible.

2. There are less overall values.

3. Median and quantiles are slightly lower, this is also the data skew that was intended
to be removed.

1It should be noted that finite convolution depending on definition can decrease the size of the result
or pad the signal with zeros. Padding the signal with zeros would introduce jumps at both ends.
To combat this the input signal was mirrored on both ends and the middle section was used. This
only influences the borders of the signal.
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(a) Toolset of data
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(b) Toolset of divided data

Fig. 4.4: Comparison of Toolset for base data and by Automatic parameter deduction
splitted data, for a history length of 100 on an equivalent dataset as Figure 4.1.

With this the majority of the work has been done. The last missing piece is to define
the functions. As already described a threshold of about 4 · σ is desired for Gaussian
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noise, so the desired single point solutions is nt := 0.5 · sa and xt := 4 · σ and by using
the relationship of a = 1 − b for confidence and co-confidence functions the single-point
solution can be enforced. The sample confidence and co-confidence are simple linear
functions from 0 to 1 and respectively 1 to 0,

fCsaconf (k) =
 1 : k ≥ sa

k
sa

: 0 ≤ k < sa
, (4.5)

fCsacoconf (k) =
 0 : k ≥ sa

sa−k
sa

: 0 ≤ k < sa
. (4.6)

The xt is a bit harder to find, as simply using the value were about 99.9936658% of
all values fall below is highly prone to errors. By finding two points and extrapolating,
a higher reliability is produced. But on the other hand, by taking two points an
implicit assumption is made that it follows a certain distribution. This algorithm is
a proof of concept. The explicit assumption is made that it is a one sided Gaussian
normal distribution. How it could/should be handled in the future is discussed in
subsection 4.2.3. Another thing is by using Δ, it is not the original Gaussian distribution,
it is the convolution of the distribution, however there is a simple conversion between
them, the factor is

√
2. Let a and b be points in the value confidence/co-confidence

function that describe the points where the functions have a probability of 1/0 and
0/1 then the mean of both values will be the single-point solution threshold. If a drift
is happening the drift would be part of the noise and the noise would would not be
purely random any more. It would cause the difference to gain an offset, changing the
distribution to an equal distribution rounded of by a one sided Gauss. This also means
that the sorting of values influences a drift-less signal stronger than a strongly drifting
one. So using a specific position in the history will create an error. a and b shall be:

a :=Quantil(Δ, 0.9) (4.7)
b :=a + 7.6 · (Quantil(Δ, 0.95) − a) (4.8)

By having a and b defined, fCvalconf and fCvalcoconf can be defined as:

fCvalconf : R0+ → [0, 1]

fCvalconf (x) =




1 : x ≤ a
b−x
b−a

: a < x < b

0 : b ≤ x

(4.9)
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fCvalcoconf : R0+ → [0, 1]

fCvalcoconf (x) =




0 : x ≤ a
x−a
b−a

: a < x < b

1 : b ≤ x

(4.10)

4.2.2 Analysis of the Algorithm
As this algorithm is crude in nature the analysis is held short. There are three main
aspects that need to be addressed:

1. The similarities to Canny edge detector.

2. The value stability.

3. The required amount of data.

The similarities to Canny edge detector are highly interesting. The Canny edge
detection uses the derivation of Gauss. It is used as an image processing kernel. It uses
two thresholds to determine strong and weak edges. In short, Canny edge detection
is based on the idea that by using a Gaussian kernel, smoothing is done and by using
the derivation of the kernel, the derivation of the data is produced. The true similarity
between the algorithm described in this thesis and Canny is the similarity of the kernel
used. The similarity is displayed in Figure 4.5. The similarity is a positive surprise
because Canny edge detection has already proven itself to be capable of finding edges,
in other words a mathematically highly similar approach has proven itself to be capable
of finding jumps, but the algorithm described in this thesis uses a statistical threshold
rather than a fixed one, so there can easily be false positives and false negatives. Canny
edge detection was originally avoided as an approach as the algorithm in its base form
uses signal specific parameters in the form of a hysteresis. The goal of this section
was to find signal specific parameters and requiring them in order to get them does
not make sense; However there are variations of canny edge detection, usually with
the prefix auto or zero-parameter, which remove this criteria and they also rely on
statistics. The difference that remains is that the value domain is explicitly defined,
usually 0 − 255, which is unwanted for this algorithm. Therefore modifying canny edge
detection to solve this problem could have also been a viable approach.
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Fig. 4.5: The comparison between derivation of Gauss and convolution of Striangle and
Sstep. Gauss was fitted by subtracting the max of the convolution from the
middle and multiplying it by

√
2 and using that as σ for Gauss. Both signals

maxima were normalized to 1. The used sa is 100.

The value stability is highly important. For a constant signal there should not be
changes in the generated single-point solution. On the other hand for a drifting signal,
changes over the used sa need to occur as the drift itself is part of the noise distribution.
Both versions are displayed in Figure 4.6 and it is visible that there are slight errors,
due to the simplistic calculation method, but their influence is in the range of ±10% at
low sa and around ±2% at higher sa.
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(a) Threshold value calculated over drift free signal
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(b) Threshold value calculated over drifting signal

Fig. 4.6: Visualisation of the single-point solution over the sample amount. The drift
strength is 0.0050σ per sample.

The required amount of data is interesting to look at. The less data is available, the
more problems the jump removal causes, as it will likely generate more false positives
than true jumps. The second aspect to that is, that if little data is available it will
behave like an inferior Toolset. If the amount of data is too small the jump removal
will simply remove all available data, which results in the algorithm retuning no answer.
Figure 4.7 displays the behaviour of being unable to find a solution for less than 300
data points.
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Fig. 4.7: The evaluation of the algorithm over an example similar to Figure 4.1, but
with a variable data length. The used sa is 100. Note that the first data
point is at 310.

4.2.3 Summary and possible Improvements

As the proposed algorithm is in a state of prove of concept there are multiple possible
improvements. However there are two major ones. Improving the jump detection and
guessing the real distribution.
Improving the jump detection could be done by first letting the algorithm run through
the available data, then let the step detector run with the generated parameters, creating
states and then use the state information to create data fragments for the parameter
generator. Doing this iteratively while a segment is long enough might create better
parameters for specific data. This relies on the assumption that if there are no jumps
in a segment and it is split arbitrarily then the solution should be the solution from the
last iteration, or a value close to it, thereby validating the result.
Guessing the real distribution could be done by trying to match multiple ones and
using the best fitting one. By having access to the real distribution of the signal an
ideal parameter could be calculated. This fitting of distributions of course requires the
signal to be divided into jump free segments.
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4.3 Integrated Preprocessing
The power of preprocessing is nothing new and was deliberately not used, because it
would change the signal and not the capabilities of the algorithm. There are multiple
aspects of preprocessing that could improve how easy the algorithm stays inside a
state while at the same time improve its sensibility. Integrating a data preprocessing
algorithm into the step detector could result in such improvements while at the same
time not being dependent on parameters. By targeting the history inside the step
detector a sort of preprocessing can be done without effecting the data itself.
There is only one important question for the algorithm "How far is the current value
from the values in the history?". Minimizing this for non jumps while leaving a jump
unaffected would optimize the jump detector. Drifts are one aspect which widens the
distribution while being easily removable locally. By making an approximation for the
current incline, the incline could be removed for each value inside H and the new input
value. By removing the drift the remaining distribution, offset and a possible jump
become more visible. In order to not integrate a jump into these calculations the new
value is not allowed to be considered for the drift calculation. On a detected jump this
drift remover has to be reset/deactivated until enough values exist to reliably determine
the incline again.
There are multiple approaches to calculating an incline, from discrete differences to
linear approximation using least quadratic error. The two main differences are the value
stability and processing power needed.

4.3.1 Definition
The two approaches looked at are mean of discrete differences and linear approximation
using least quadratic error.

Mean of differences is easy and computationally cheap compared to the linear
approximation. It is akin to a linear filter. It is the subtraction of the lower half from
the upper half, divided by half of the length rounded down and then again divided
by half of the length rounded up. In the case of having an uneven history length the
middle value is ignored,

ζMeanDiff :=
sa
i=sa− sa/2 +1 Hi − sa/2

i=1 Hi

sa/2 · sa/2 (4.11)
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This incline then can be removed from the history by removing a polynomial of first
order from the history and the new value. The new value is treated as the sa + 1 value
for the polynomial, the resulting Δ is called ΔMeanDiff ,

ΔMeanDiff := (v − (sa + 1) · ζMeanDiff) −




H −



1
2
3
...
sa


· ζMeanDiff




(4.12)

Linear approximation using least quadratic error is computationally more complex.
By using a simple matrix of the zeroth and first values for a first-order polynomial, an
overdetermined linear system of equations with offset and incline can be "solved" by a
QR-Factorization,

Asa×2 :=



1, 1
1, 2
1, 3
... ...
1, sa


, (4.13)

Asa×2 ·
offset
ζLinAp

 =Hsa×1 , (4.14)
offset
ζLinAp

 =Asa×2\Hsa×1 , (4.15)

it should be noted that the cases sa is 1 or 2 are ignored in this case. Again the history
and the new value get adjusted creating the difference called ΔLinAp,

ΔLinAp := (v − (sa + 1) · ζLinAp) −




H −



1
2
3
...
sa


· ζLinAp




(4.16)

Both adaptations have a problem with smaller sa. The reason for this is that both
adaptations can not differentiate between occurring noise and a drift. On the other
hand, the base algorithm has no problem with an occurring drift, at a low sa. Therefore
both adaptations only become active if a certain history length has been surpassed.
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The chosen minimal history length is 5 and to have a smooth transition the weighted
average is used in the interval from 5 to 10,

l := |H| , (4.17)

Δused =




Δ : l < 5
Δ · 1 − l−5

5 + Δadaptation · l−5
5 : 5 ≤ l ≤ 10

Δadaptation : 10 < l
. (4.18)

4.3.2 Adaptation of the Step-detector
The adaptation of the step detector is quite simple. It requires an additional func-
tion with which the Δ is calculated. By extending the algorithm by this additional
configurability it can be can adapted in the future if a better method is found.

4.3.3 Analysis of the adaptation
The main focus of the both methods is to eliminate the drift. The base algorithm is by
nature to some degree resistant to drifts, because it only looks at data in close proximity,
but by increasing the history length the drift becomes more noticeable. At the same
time the longer the history is, the easier it is to detect smaller jumps, as there are more
opportunities to loose the state, while at the same time the single point solution can be
tailored more strictly. There are four aspects to analyse:

1. How does the adaptation affect drift-less signals?

2. How does the adaptation affect drifting signals?

3. How does the adaptation affect signals with a pattern?

4. How does the adaptation affect non-instantaneous jumps?

The following analysis calculates the single-point solution the same way the toolset
would.

Drift-less signals are of major importances. If the adaptation affects them strongly
all advantages might be lost. Figure 4.8 displays the calculated single-point solution for
a signal without a jump and no drift, over sa. It is clearly visible that the adaptation
has problems with small sa. It becomes practically indistinguishable around the 200
mark for sa. The unadjusted versions of the displayed signals show the behaviour of
the incline adaptations if they would be allowed at low sa.
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Fig. 4.8: Comparison of the threshold extracted from a jump-less signal, with no drift
using different ways to calculate Δ, over sa.

Drifting signals should highlight this adaptation. Unsurprisingly they do, as displayed
in Figure 4.9. They provide a good solution even though a drift is applied to the
signal. Using the adaptation would provide the ability to detect a step even when
it would happen very inconveniently from the eyes of the algorithm, as displayed by
Figure 4.10. The reason why it would be considered inconvenient for the algorithm
is because the jump is opposing the drift, therefore creating values which have been
recently encountered and accepted by the state. In other words with an sa of 200 it
finds enough values inside the history for the post-jump values to keep the state. The
second negative aspect is that a higher threshold is required to reliably keep a state in
the first place.
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Fig. 4.9: Comparison of the threshold extracted from a jump-less signal, with a drift
of strength 0.02σ per step, using different ways to calculate Δ, over sa.
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(a) Step-detector no adaptations.
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(b) Step-detector with ΔMeanDiff adaptation.
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(c) Step-detector with ΔLinAp adaptation.

Fig. 4.10: Comparison of the step-detector on a strong drift with a negative jump.
The jump height is 5σ and the drift strength is 0.02σ per value. All have a
sa of 200 and they use a single-point solution threshold of 6.8σ/4.08σ/4.04σ
respectively, as calculated by Figure 4.9.

.
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Pattern containing signals are an interesting case. They are mainly looked at because
the patterns can be interpreted as a changing drift. Figure 4.11 shows the suggested
single-point solution of the base algorithm and both adaptations for a sine signal, with
a pattern length of 500 samples. There seems to be a kind of resonance peak in both
adaptations, which seemingly separates the solution between viewing the pattern as a
local drift or as being part of the distribution. ΔMeanDiff and ΔLinAp have significant
differences above 600. It is unsurprising that changing the length of the pattern, the
displayed response in Figure 4.11 scales accordingly.
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Fig. 4.11: Comparison of the threshold extracted from a jump-less signal, without a
drift, with an sine pattern of length 500 samples, using different ways to
calculate Δ, over sa. Note the difference in scaling compared to Figure 4.8
and Figure 4.9

Non-instantaneous jumps are highly common in data and can be viewed as suddenly
strongly drifting signals. Strongly drifting signals are no problem for this extension,
as they adapt to the drift. In this case, this might be a negative. If a jump is not
found fast, it starts to be interpreted as a drift rather than a jump. The root of this
problem stems from the indirect redefinition of the difference between a jump and a
drift. So far it was purely defined by the incline. With this adaptations the value of
the incline is of no concern any more, but rather the speed with which it changes. The
speed is of course relative to the history length. Both adaptations are outperformed
by the base algorithm in therms of sensitivity on non-instantaneous jumps, when they
are brought to the sensitivity limit of the base algorithm. The sensitivity limits were
explored in section 3.4. A possible fix is to limit the the positions inside the history
from which the information for the incline is collected, thereby introducing a kind of
lag element into the algorithm. As always lag elements can have very negative effects,
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especially on resonance phenomena. The second problem with reducing the amount of
information used is the value stability. Mathematically speaking, the reduction in used
historic values is quite simple. By using only values around the middle of the history
and defining the amount of values used to 50% of the history length, the algorithm
has a delay of 25%sa and a value stability equal to 50%sa. For the mean of discrete
differences, the new incline is calculated in the following manner:

saMiddle := sa/2 (4.19)
saQuarter := sa/4 (4.20)

LLB :=saMiddle − saQuarter + 1 (4.21)
LUB :=saMiddle + saQuarter − 1 (4.22)

ζMeanDiffDelay :=
LUB
i=saMiddle Hi − saMiddle

i=LLB
Hi

saQuarter · saQuarter
(4.23)

For the linear approximation the new incline would be calculated in the following
manner, again only using the middle of the historic data:

saMiddle := sa/2 (4.24)
saQuarter := sa/4 (4.25)

LLB :=saMiddle − saQuarter + 1 (4.26)
LUB :=saMiddle + saQuarter − 1 (4.27)
LAU :=2 · saQuarter − 1 (4.28)

ALAU×2 :=



1, 1
1, 2
1, 3
... ...
1, LAU


(4.29)

 offset
ζLinApDelay

 =ALAU×2\HLAU×1
LLB...LUB

(4.30)

2 There are also filters which can approximate the derivate. One of them is SavitzkyGolay
3 filter. It has multiple components to it. The used one is the first derivative for a
first order fit, as an asynchronous FIR filter. The asynchronicity is no problem in this
case as it is desired that a delay is still part of it. The filter has a frame length which

2The . . . operator here used means that only values from left side of . . . to right side of . . . are used.
3https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter https://aip.scitation.

org/doi/pdf/10.1063/1.4822961

https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter
https://aip.scitation.org/doi/pdf/10.1063/1.4822961 
https://aip.scitation.org/doi/pdf/10.1063/1.4822961 
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shall be roughly sa/4, it has to be uneven, so adding one if is even. It also has to be
at least one longer than the order, which leaves it to be at least 3. To increase the
value stability, the mean over half of the values in the middle is done. This operation
again is a digital FIR filter. In other words both can be combined and by padding
the edges of the coefficients with zeros, a matrix with filter coefficients can be created
which gets cycled through depending on the current sa. This incline shall be called
ζSGolay. Figure 4.12 visualizes the effect of the introduced lag. As expected they have
worse resonance phenomena. But without them it would not be possible to detect slow
non-instantaneous jumps and would be outperformed by the base algorithm.
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Fig. 4.12: Comparison of the threshold extracted from a jump-less signal, without a
drift, with an sine of length 500 samples using different ways to calculate
Δ, over sa. A focus is on the 3 new ways of calculation.

4.3.4 Summary and possible Improvements

The introduced adaptations in this extension were designed to make the algorithm
more drift resistant, which all of them fulfilled. On signals with constant or slowly
changing incline the adaptations produce an excellent result. If patterns are part of the
signal, resonance phenomena can occur. These phenomena have a negative effect on
the sensitivity as they require the single-point solution to include higher values.
From the perspective of the computational resources required, linear approximation
with least quadratic error requires the calculation of a pseudo inverse each cycle. The
size of the required matrix , if the delayed version is used, is 0.5 · sa. Compared to
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that, the mean of discrete differences is FIR filter of order 0.5 · sa, and the history array
doubles as filter array. The filter coefficients can easily be calculated. As a side-note
the SavitzkyGolay approach would also be a FIR filter, but of size close to 0.75 · sa.
The filter coefficients can be calculated, but it requires folding making it a lot more
costly than the mean of discrete differences. For both FIR filters the coefficients can be
precomputed and stored as constants, increasing runtime performance drastically.
As can be seen from non-instantaneous jumps, algorithms that work better can be found,
especially when using algorithms specially designed for line fitting, derivative calculation.
One of the possible approaches could be RANSAC. A full RANSAC algorithm could be
implemented and as a cost function fCvalcoconf (2 · "distance") could be used. The reason
that it might be beneficial to use twice the distance for the fCvalcoconf when used by
RANSAC is that the co-confidence function is at 0.5 when the input is at 4 · σ, so by
using twice the distance this would push 0.5 to the distance of 2 · σ. The downside
of using the co-confidence function for RANSAC would be that it becomes dependent
on it. If it were incorrect, it could not calculate an incline. As seen in the following
extensions, the assumption of having a usable co-confidence function at all times should
not be made. A second aspect why linear filters are prioritised is that linear filters
can be easily implemented in hardware, which would decrease the computation time of
them drastically.

4.4 Dynamic Value Confidences and Phantom History
It was already multiple times mentioned that having a higher threshold while building a
state could be advantageous. Section 3.4 ended with the likelihood that a state is found
and concluded that a value close to 4σ is close to optimal. But using 4σ as a threshold
has the problem that the sensitivity is also somewhere around 4σ depending on the
acceptable error rate. Modifying xt to follow a trajectory over the current history length
can dramatically increase the chances of finding a state and at the same time improve
sensitivity once it is fully build. This sounds good at first, but there are problems that
come with it. If building a state is made easier, this also means building an incorrect
state is made easier. Also by changing the single-point solution, the confidence it
produces shifts. This shift can give a building state a higher confidence than an existing
one, making it easier to create incorrect states. In other words the creation of states
will be the preferred method of handling outliers, which is incorrect behaviour. To
counteract this, only the decision of keeping a state should be influenced by the dynamic
threshold. This has the benefit of making it easier to build a state and at the same
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time increasing sensitivity while giving a correct confidence at all times.
Figure 4.13 visualizes the probability of keeping a state depending on the history length
for 4σ. To get the total probability of building a state the product of up-to the chosen
maximum history length needs to be calculated. This leads to the conclusion that if
building a state fails it is more likely for it to fail at the begin of building than at the
end.
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Fig. 4.13: The probability that a state is kept depending on the the current history
length for a single-point solution threshold of 4σ.

By using the trajectory shown in Figure 4.14 the probability of finding a state can be
increased from 98.52% to 99.77% or even 99.91% if non linear trajectories are allowed.
After the state is build it would previously stay at the threshold of 4σ with an error
rate of 0.006851%. Reducing the threshold to 3.5σ for an error rate of 0.0492% per
sample or to 3σ for an error rate of 0.2799% per sample, would improve the sensitivity.
As soon as the state is fully build the error rate is no longer that problematic, as once
the algorithm leaves the state it should quickly re-enter it.
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Fig. 4.14: Possible trajectories of the single-point threshold over the history length.

To demonstrate this behaviour as well as the accuracy increase a post-build threshold of
1σ ( error rate of 35.1338% per sample ) was chosen in Figure 4.15 and a jump-height
of 2σ was found, which under normal circumstances is close to impossible. It should be
noted that a post-build threshold of 1σ is far to low to be sensible. It demonstrates
how much easier it is to create a state using the dynamic threshold than to keep it, as
no values are dropped until position 100. The fact that there are values other than 0 in
sub-figure (b) prior to position 100 is due to the fact that it is an acausal smoothed
curve. Once the first state is fully build, it switches to a single-point solution threshold
of 1σ and the errors start occurring. That the error rate is not exactly 0.35 is due to
the fact that it is random and has a small window size. At the value of 500 it detects
a jump of height 2σ. Again for the next 100 values no drops occur. At the 600 mark
the value drops starts happening again, but this time it is sometimes found that the
values fit well into the first state, which is highly incorrect. Finding that the first state
as a good fit also explains why the average of dropped values is to low in the post-jump
region.
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Fig. 4.15: Using a non-linear dynamic state building single-point solution threshold
with a maximum history length of 100, and a post-build single-point solution
threshold of 1σ. Sub-figure (a) displays where which state was found and
which values were dropped. Sub-figure (b) displays the moving average of
dropped values with a window size of 51.

There is a second major problem. Increasing the sensitivity is useless if only a state is
lost, a new state has to be successfully build as well. A state is build successfully if
and only if all values fit into the new state, which this adaptation already takes care of.
The second condition is that the values fit better in this new state than all old states.
That a building state fits best is by far not guaranteed. If the sensitivity is increased to
such an extent that the values overlap with another state, it can get quite likely that a
new state cannot be built, as the values just re-enter the old state. This shifts the old
state towards the new states value domain. Once it is shifted far enough it will accept
all new values. Figure 4.16 visualizes this phenomena.
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Fig. 4.16: Displays how the sensitivity can be good enough, but a new state can not
be build. sa is 200, a post jump threshold of 2σ.

The algorithm successfully leaves the old state and tries building a new one. Then one
value fits into the old state and therefore the algorithm re-enters it, dropping all values
of the previously building state. By storing which values were discarded, the algorithm
can estimate whether such behaviour is occurring. When such a behaviour occurs,
artificially filling the history of a new state increases the probability to fill the history
completely before an input value fits better into an old state than the building one. This
artificial filling of the history is called phantom history. Figure 4.17 demonstrates the
effectiveness of the phantom history on the same data and configuration as Figure 4.16.
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Fig. 4.17: Displays how the phantom history can improve finding a state. sa is 200, a
post jump threshold of 2σ. It uses the same configuration as Figure 4.16
but with the phantom history. "Phantom History ready" means that it will
be used when a new state is created.
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4.4.1 Definition
There are two things to define in this adaptation.

The Dynamic Value Confidence is quite simple to define. The new definition range
is:

R0+ × N −→ [0, 1]2 . (4.31)

The behaviour of the function itself is a little more complicated. Let sacurrent be the
current history length and samax the maximum history length. Let the functions c(x)
and d(x) take the place for the the parameters inside fCvalconf and fCvalcoconf ,

a(x, b) :=




1 : x ≤ c(b)
d(b)−x

d(b)−c(b) : c(b) < x < d(b)
0 : d(b) ≤ x

, (4.32)

fCvalconf adaptive(x, sacurrent) = {a(x, sacurrent), a(x, samax)} , (4.33)

a(x, b) :=




0 : x ≤ c(b)
x−c(b)

d(b)−c(b) : c(b) < x < d(b)
1 : d(b) ≤ x

, (4.34)

fCvalcoconf adaptive(x, sacurrent) = {a(x, sacurrent), a(x, samax)} . (4.35)

The functions c(x) and d(x) define how the threshold behaves over sa. The first return
value of fCvalconf adaptive and fCvalcoconf adaptive shall be used to determine whether a state is
kept and the second one for all confidence purposes other than keeping a state.

The Phantom history shall be a history that contains samax/10 of the most recent
input values. These values shall be marked if that value either caused a change of state
or was part of a dropped state that was smaller than samax/10. If more than 50% of the
phantom history is marked and a new state would be created, it will change the way
the state is created. This change basically violates the boundaries of what belongs to a
state. It takes a number of most recent values equal to the number of marked values
inside the phantom history. It should be noted that because only the number of marked
values is used and not the marked values itself, it is likely that the values which are
used are part of a fully build state. This is intentional and desirable behaviour, as it
represents the new state better than only the dropped values could.
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4.4.2 Adaptation of the Step-detector
Incorporating this adaptation into the algorithm is a bit more tricky. The two adapta-
tions that have to be made are modifying confidence calculation/keeping a state and
adding a Phantom history to modify building a state.

Adapting Confidence and keeping a state requires that fCvalconf and fCvalcoconf return
twice the amount of values. One set for the purpose of keeping a state and the second
set for calculation of confidence. To make it easy to use, the algorithm should be
capable of handling a function pair which does not use this adaptation.

The Phantom history requires multiple changes to be implemented. First, a history
array with additional information has to be added, to define whether that history value
has caused a state change or belonged to an unfinished state that was dropped due
to an old better fitting state. Second, a counter to has to be implemented to count
the current length of the building state. This is necessary because the history of the
building state is no longer identical to the amount of time that the state was active.
This counter is increased each time a value is accepted into the building state. When
the state is dropped the counter is used to mark that amount of most recent values in
the phantom history. The counter is reset when a new state is created and it is ignored
as soon as a state is no longer compared to old states. The third change is when a new
state is initialized, the phantom history has to be examined and if more than half of
it is marked, count the amount of marked values and use that amount to extend the
history of that newly created state by this amount of most recent values. This extension
of state history will include values claimed by old states and values claimed by dropped
states preceding it. The phantom history has the length of samax/10. This is the same
amount that is required by a new state to leave the active comparison phase. In other
words it will shorten or even remove the comparisons to older states.

4.4.3 Analysis of the adaptation
The adaptation has two main focuses, building a state more reliable and improving
sensitivity. There are four aspects to analyse:

1. How does the adaptation affect building a state?

2. How does the adaptation affect sensitivity?

3. How does the adaptation affect drifting signals?

4. How does the adaptation handle old good fitting states?
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Building a state is one of the main aspects of the adaptation. As already discussed
the likelihood that a state is build is higher, but a likelihood of 98.52% is not bad to
start with. It gets important once we accept that fCvalconf and fCvalcoconf might not be
ideally defined. Variations in the threshold have an effect on the likelihood. Figure 4.18
displays the effect of the likelihood of finding a state with a mismatch of σ between
the signal and fCvalconf and fCvalcoconf . With a 10% error in sigma the chance of finding
a state drops to around 95% and with a 20% error it would drop to around 87%. At
the same time using linear or non linear trajectories for the threshold with an error of
20% would drop to around 96% or 98% respectively. Such an approach would increase
parameter stability, since small errors in the definition of the parameters would have
even less impact.
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Fig. 4.18: The likelihood that a state is found even when σ of a signal is different than
the σ fCvalconf and fCvalcoconf were defined for. The chosen sa is 100.

Sensitivity is the second main aspect of the adaptation. Figure 4.19 visualizes the
mathematical probability that an old state is lost at any point and that enough values
are outside the old state to bring a new one beyond the comparison phase, depending
on step height, for sa being 40. It should be noted that the calculation time of the
algorithm used seemed to be factorial with sa. The probability that it is inside or
outside the old state changes depending on the amount of previous values belonging
to the old state. The calculation does not take the confidence comparison between
building and old state into account. In other words the true probability should be
between the solid line and the dashed line, for each colour.
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Fig. 4.19: The probability that a state is lost and the probability that enough values
are not kept to build a new state beyond the comparison phase depending
on the step height.

Drifting Signals are of major importance. It is to be expected that this adaptation
should reduce drift acceptance. Figure 4.20 shows this behaviour. It is clear that if this
extension is wanted a form of drift removal is required.
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Fig. 4.20: Multiple states are created due to the drift. The drift has a strength of
0.009σ per value. The jump height is −10σ and an appropriate single-point
solution threshold of 4.9σ was chosen. It should be noted that the standard
algorithm was able to solve this without any problems. A post-build
threshold of 3.675σ (3/4 · 4.9) was chosen.

Handling multiple good fitting states comes into focus because of the higher proba-
bility that a state loss occurs. Figure 4.21 demonstrates what can happen. A special
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focus is in the point around 7500 where the state changes only because of the noise.
This problem has to do with the way old states are handled. Proximity of a state has
no influence on the probability of it. This is a problem with the algorithm that is more
common with this extension.

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
−5

0

5

10

Samples

Si
gn

al
va

lu
e

[a
.u

.]

Signal
State #1
State #2
State #3
State #4
Dropped values

Fig. 4.21: A signal with a dominating pattern that ends around the same value. A
single-point solution threshold of 4.6σ was chosen. A post-build threshold
of 3.45σ (3/4 · 4.6) was chosen.

4.4.4 Summary and possible Improvements

The introduced adaptations were designed to increase sensitivity and the probability
that a state is built. They accomplish the intended purpose. However, the analysis
is more on the negative side about the sensitivity increase, as it comes with negative
aspects. These negative aspects are less drift resistance and a higher likelihood of
false state changes due to old states. The drift resistance could be mitigated by using
the Integrated Preprocessing. Mitigating the problem of re-entering old states could
be done by limiting which states can be entered, checking if states are equivalent/
indistinguishable and then disabling/deleting them, or by giving states in proximity
the edge on re-entering them. The phantom history adaptation is only required if the
desired state is partly within an old state. The usefulness of it is questionable, if such a
sensitivity is not explicitly desired.
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4.5 Runtime Adaptation
The problem of having incorrect parameters is twofold. Using parameters that are
too big will reduces sensitivity, while having parameters that are too small will reduce
the possibility that a state is being found at all. By using an algorithm that extracts
parameter information at runtime such problems should be reduced. Making a full
statistical analysis with all already occurred values would be very resource intensive. So
using only local and low resource algorithms would be preferable. Using the algorithm
from Automatic Parameter Detection only on the current Δ and feeding these values
into a low-pass filter might achieve the desired effect. Automatic Parameter Detection
in short calculates the 4σ threshold value by extrapolating it from two quantile values.
The question arises as to how stable that would be and whether drifts could be a
problem.

4.5.1 Definition
There are three things to define. First, the parameter extraction from the current
history. Second, the used low-pass filter; And third, the calculation of fCvalconf and
fCvalcoconf .

Parameter extraction from the current history can be done surprisingly easy. As
already mentioned the parameter extraction shall be done exactly as in Automatic
Parameter Detection:

aextracted :=Quantile(Δ, 0.9) (4.36)
bextracted :=aextracted + 7.6 · (Quantile(Δ, 0.95) − aextracted) (4.37)

The low-pass filter is a bit more tricky. It shall force changes to occur slowly. It
shall take multiple full history lengths to apply them fully. A FIR low-pass would be of
a high order, which is undesired. This leaves only IIR low-pass approaches. Using an
IIR low-pass of first order can be enough. As already mentioned EWMA is a very light
weight and highly effective low-pass filter. If applied to a step it approaches the steady
value in the manner of:

V · 1 − e− t
τ (4.38)
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V being the height of the step. As defined, it shall take multiple history lengths to get
close to V so τ should roughly be sa. For the IIR low-pass this means that it can be
defined as:

yi = yi−1 · 1 − 1
sa

+ 1
sa

· xi (4.39)

x being the input and y being the output. It should be noted that it is only an
approximation between the exponential equation and the discrete equation. The error
between them is inf

i=2 1/(i! · (−sa)i) simply calculable by Taylor approximation.
A low-pass shall exist for all parameters.

The calculation of fCvalconf and fCvalcoconf is not hard to do, but hard to define. Using
Lambda calculus4 simplifies the definition, but would make it harder to read. So the
middle way was chosen, which was first defined in a more classical mathematical sense,
which should be understandable and then defining it using the lambda calculus. Let
ffCvalconf

be a function which returns a confidence function as an answer:

ffCvalconf
: R2 −→ (R → [0, 1])

(a, b) →


x →




1 : x ≤ a
b−x
b−a

: a < x < b

0 : b ≤ x


 (4.40)

ffCvalconf
= λa.


λb.







1 : x ≤ a
b−x
b−a

: a < x < b

0 : b ≤ x





 (4.41)

Let ffCvalcoconf
be the function which returns the co-confidence function,

ffCvalcoconf
: R2 −→ (R → [0, 1])

(a, b) →


x →




0 : x ≤ a
x−a
b−a

: a < x < b

1 : b ≤ x


 , (4.42)

ffCvalcoconf
= λa.


λb.







0 : x ≤ a
x−a
b−a

: a < x < b

1 : b ≤ x





 . (4.43)

4https://en.wikipedia.org/wiki/Lambda_calculus

https://en.wikipedia.org/wiki/Lambda_calculus
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4.5.2 Adaptation of the Step-detector
Thanks to the definition the adaptation of the algorithm is quite easy. Feeding the
sorted Δ into the parameter extractor and those results into the low-pass filter. The
results of the low-pass are then fed into the lambda expressions which return a set of
functions used for value confidence and co-confidence. These functions simply replace
the predefined confidence and co-confidence functions.
There are two possibilities of updating the functions either only on fully build states or
at all times regardless of state. Both of these versions are looked at.
It should be noted that the updates of the parameters is only allowed to occur on the
comparison with the active state. On comparisons with inactive states, updating the
parameters are not allowed.

4.5.3 Analysis of the Adaptation
There are multiple aspects to check that might be problematic. The following behaviours
are analysed:

• How do the parameters change for a steady signal?

• How do the parameters change for a drifting signal and a suddenly drifting signal?

• How does the adaptation influence building a state?

• How do the algorithms behave if the initial parameters are to small?

Analysing all aspects for both versions does not make sense. E.q. updating at all times
and only updating when a state is fully build can only create differences if a state is
not fully build. Also if no state can be build fully initially, it does not make sense to
check the behaviour of the version that only updates when a state is fully build.

Steady Signal should not be affected by this extension. That however is not the case.
The problem with simple statistical methods is that if the data set is not big enough
they get inaccurate. This is also the case for this algorithm. Figure 4.22 displays this
problem. The desired output would be a steady line at 4. It is quite interesting because
the prevailing range is 3-4. Reducing xt was one of the main goals of Dynamic Value
Confidences and Phantom History. It had a problem with drifts.
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Fig. 4.22: Single-point solution value threshold over a signal with 10000 samples and
a noise of 1 and an sa of 200. It should be noted that the step-detector
defined 2 samples, as not part of the state. It should be noted that in this
case the difference between both versions are so miniscule that only one is
shown.

Drifting Signals are of major importance for this algorithm. The adaptation has
shown in the stead signal test that it reduces the single-point solution threshold. A
similar behaviour can be seen in this example. It is lower than the solution from
Automatic Parameter Detection, but it exhibits an intended behaviour. Roughly
speaking the threshold should be "threshold of drift free signal" + "drift strength" · sa/2.
In other words if it works correctly the threshold for a drift strength of 0.01 per sample
and an sa of 200 should be 4-5. Figure 4.23 displays this trait. Figure 4.24 again
displays this trait with a stronger drift. It is also the first to show a truly noticeable
difference between both versions. The version which only update on fully build states
can not create a fully build state initially, therefore it is doomed to repeat to try to
build a state again and to fail again. But there is a chance that a state is build and
once it happens the single point-solutions threshold practically jumps.
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Fig. 4.23: Single-point solution value threshold over a signal with 10000 samples and a
noise of 1, a drift strength of 0.01 per sample and an sa of 200. It should be
noted that in this case the difference between both versions are so miniscule
that only one is shown.
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Fig. 4.24: Single-point solution value threshold over a signal with 10000 samples and
a noise of 1, a drift strength of 0.03 per sample and an sa of 200. It should
be noted that the initial parameters are to low and that states are dropped
at the start of the signal.

Figure 4.25 displays what happens when the signal suddenly begins to drift. The
adaptation can handle it, although the single-point solution was reduced to less than 4
pre drift. The interesting aspect is that it seems to be more reactive once its drifting,
but that is incorrect. The values that are being "flattened" by the IIR low-pass are
bigger, because the drift is part of the distribution and therefore the sorting of Δ, which
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normally would also act as a sort of smoothing filter, gets partly disabled, which gives
the impression that it is more reactive.
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Fig. 4.25: A signal with a sudden drift of 0.02σ and the currently used/calculated
threshold on the right y-axis. An sa of 200 was used. It should be noted
that the difference between both versions are so miniscule that only one is
shown.

Building a State is interesting with these adaptations. By default, the thresholds
gets anchored to around 3.5σ, which has a significantly lower change to create a state
than 4σ would have. Figure 4.26 displays this negative effect. Setting sa to 3000 can
enforce the problem to some extent. It can find a state at the beginning while the
threshold is high but once it has reached the 3.5-4 domain and the jump occurs it has
a problem. It should be noted that there is a chance that this problem could occur
but under normal circumstances it is unlikely. Solving this problem is not easily done.
Using the phantom history and a dynamic building threshold from Dynamic Value
Confidences and Phantom History would probably be beneficial. If they are adjusted
to a default threshold value of 3.5σ, it could negate the problem. Note the threshold
jumps at 3 points in the figure. This is due to the values being outlies and by chance
are also quite far apart, resulting in an huge value, which due to the nature of the filter
gets passed on to the threshold. Also it was only tested for the variation which updates
at all times.
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Fig. 4.26: A signal with a jump which is being segmented. sa is 3000.

Incorrect parameters is what this adaptation aims to improve, but having to small
parameters might be a problem as no state can be formed. It is clear that the version
that only updates on fully build states can not solve this problem. Figure 4.27 shows
how the adaptation behaves when the initial parameters are 0.
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Fig. 4.27: The algorithm starts with a single-point solution threshold of 0. sa is 100.

There is more to analyse inside the adaptation. As mentioned inside the Definition
an IIR low-pass exists for all parameters. Viewing the behaviours of the individual
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parameters reveals what happens internally. Figure 4.28 displays this. As a reminder
the definitions of the fCvalconf and fCvalcoconf :

fCvalconf :R0+ −→ [0, 1]

fCvalconf (x) =




1 : x ≤ a
b−x
b−a

: a < x < b

0 : x ≥ b

, (4.44)

fCvalcoconf := 1 − fCvalconf . (4.45)

Figure 4.28 displays the behaviours of the internal parameters. Up until about 200 they
are identical, after which small temporary states are formed. This allows the adaptation
to differentiate between the quantiles used, which is sufficient to further increase the
size of the temporary states. At around 400 the threshold is big enough to create a
state of size 50, which further differentiates the quantiles enabling b to increase more
quickly. At around 450 the last temporary state is dropped, but another big state is
build and because the threshold increases fast enough it can be fully build.
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Fig. 4.28: Same data as Figure 4.27, but showing internal behaviour. Around 450 the
first permanent state is found.

4.5.4 Summary and possible Improvements
The adaptation aimed to fit fCvalconf and fCvalcoconf to the signal during the runtime. It
achieves it better than expected. It can not quite reach the desired threshold value
and stays to low. This makes it harder for it to find a state. Using Dynamic Value
Confidences and Phantom History could help out, but it should not modify the post
build threshold. It is capable of finding a good solution even for drifting signals and even
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if the initial parameters are useless. It seems that the version that updates parameters
regardless of state is superior. Looking at this extension from the standpoint of resource
consumption, it turns out to be surprisingly cheap. It requires array accesses and basic
mathematical operators. The values do not need to be sorted as they already are from
the algorithm.

4.6 Combination of useful Adaptations
Three algorithms that modify the step-detector have been demonstrated. They were
shown in isolation to demonstrate their effect on the behaviour of the step-detector.
Merging them together into a unified adaptation is the last act of this chapter. Some of
the adaptations have weaknesses that are strengths of others. These strengths should be
achieved in positions that make later weaknesses irrelevant. For example, the weakness
that the drifts make it harder to keep a state for a to small post build threshold is
irrelevant if the drift was compensated for by the Runtime Adaptation.
This section does not have an analysis nor a summery or possible improvements as they
are done in the following chapters.

Integrated Preprocessing is taken in its entirety. The used algorithm to approximate
the incline is ζSGolay.

From Dynamic Value Confidences and Phantom History the phantom history and
the increased state building threshold are used. The post build threshold is unused
because it would collide with the Runtime Adaptation. This part should make it
significantly easier to build a state.

The whole Runtime Adaptation is used. It actually has a synergy with the phantom
history. When the phantom history is activated, the history of a state is artificially
filled, which makes it possible to calculate a better threshold.

4.6.1 Algorithm Steps
In this subsection the steps that the modified step-detector takes are roughly explained,
as otherwise it would be scattered through out the thesis. The steps are explained in



100 4 Extension

an abstract manner. With an precise definition of how certain parameters or steps are
calculated, the steps shown in this subsection are sufficient to fully define the algorithm.
It is a simplification to make the whole algorithm more tangible. It starts with necessary
data structures that exist inside the algorithm. It uses a simplified flowchart extended
by an overlay of special interactions and the whole chart is explained. In the next
subsection the mathematical definitions are displayed.

The Required Data Structures and their internal parts are the following:

• State

– Id

– Dropped Stores if that state was dropped

– History[] Array containing the states old input values

• PhantomHistory

– History[] Array containing old input values

– Dropped[] Array containing if that value is marked

• OldStates[] Array containing all old states

The Required Functions for the extensions and their respective domains:

• IntegratedPreprocessing:
Ra × R −→ Ra

0+ (4.46)

The function removes an assumed drift from the history and input value, then
subtracts the input value from the history and makes the absolute of these values.
Afterwards they are sorted ascendingly.

• RuntimeAdaptation:

– Parameter extraction and smoothing:

Ra
0+ × Rb −→ Rb (4.47)

The function takes the difference and the parameters from the previous cycle
and returns updated and smoothed ones.

– Function creation:
Rb −→ Ra

0+ → [0, 1]a×2 2
(4.48)
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The function takes parameters and creates fCvalconf and fCvalcoconf . The generated
functions produce two sets of confidences, one for keeping a state and the
other for the confidence used. This can create the behaviour of keeping a
state even if the confidence is low.

It should be noted that from a programming perspective, these two functions can
be masked within one function and the parameters can be stored internally. This
would simplify the implementation and if this combination would be passed as a
function or functor it would make the whole algorithm easily configurable.
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The Simplified Flowchart is displayed in Figure 4.29. It also shows the extensions,
their positions and special data interactions.
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Fig. 4.29: Simplified flow chart of the algorithm, extended by special data interactions
represented by clouds and dashed lines.

Each new value is pushed into the phantom history, shifting the oldest value out. The
length of the phantom history is sa/10 . A zero/false is pushed into the phantom
history dropped array, pushing the oldest value out as well.
If no current state exists a new one is created and the history of the state is updated.
If a current state exists the new value and the history of the current state get fed into
the integrated preprocessing function creating a difference array. From the difference
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the parameters for the confidence and co-confidence functions are extracted. These
parameters (or initial values) are then passed to the runtime adaptation to create fCvalconf

and fCvalcoconf . These functions get stored, which is represented by the dashed line. In
combination with the defined fCsaconf and fCsacoconf it is calculated if the state is kept by
using the dynamic aspects of these functions and the confidence is calculated by using
the static aspects of those functions.
If the state is kept and it is a fully build state, the history is updated and the algorithm
returns the states-id and the confidence.
If the state is kept, but it is not a fully build state the current progress of building the
state is checked (the current length of the history) and if it is large enough the history
is updated and the algorithm returns the states-id and the confidence.
If the progress of building the state is not far enough, the input value is used to calculate
the confidences of all fully build states. If there is no state better fitting than the
current one, the history is updated and the algorithm returns the states-id and the
confidence. However, if there is a better fitting state than the current state, the length
of the current history is used to mark that amount of resent phantom history values,
then the state is discarded and the better fitting one is made active, which then updates
its history and the algorithm returns the states-id and the confidence.
If the state is not kept the algorithm differentiates between a fully build state and a
building one. If it is a fully build state the phantom history marks the most recent
history value, afterwards the state is stored. If the state is currently building the length
of the current history is used to mark that amount of resent phantom history values
and then the state is discarded.
Afterwards it is checked if a better fitting state exists.
If a better fitting state exists it is made active, then the history is updated and the
algorithm returns the states-id and the confidence.
If no better fitting state exists a new state is created. If at least 50% of the phantom
history is marked, the history of the created state gets filled with the amount of dropped
values going back from the most recent one. If this is triggered it will most likely also
include values belonging to other states, this is intended. If not enough recent values
were dropped only the new input value gets pushed into the history.
Afterwards the algorithm returns the states-id and the confidence.
Updating the history means adding the new input value to the history and if the state
is currently building it just extends the history. If the state building is finished the
oldest value gets pushed out.
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4.6.2 Definition
The full definition of the mathematical functions of the modified step-detector is shown
in this subsection. It is shown in its entirety, repeating parts of 3.1.1 Definition. The
full definition is given for consistency.
Let sa be the sample amount. So far it has been used in a dual state of being the
current and the maximal sample amount. In this definition the current version is called
sa and the maximum is called samax.
Let H be the history of the current state and v the new input value.
Let fdiff be a function which takes the current states history and the new input value
and calculates a drift-removed sorted absolute difference from this,

fdiff : Ra × R −→ Ra
0+ . (4.49)

There are multiple ways of doing this. The variation chosen for this extension is:

q :=max(3, sa/4 ) (4.50)
r :=q + mod(q + 1, 2) (4.51)

Ssgolay := Savitzky-Golay-Filter(Order = 1, Derivative = 1, size = r) (4.52)

s1 := sa − 2 · q

2 (4.53)

s2 := sa − 2 · q

2 (4.54)

Ssummean := 01×s1,11×2·q,01×s2 /(2 · q) (4.55)

SSgolayMean :=Ssgolay ∗ Ssummean (4.56)
forced to the size of Ssummean

fdrift(H, v) = (v − (sa + 1) · SSgolayMean · H) −



H −


1
2
...
sa

 · (SSgolayMean · H)



 (4.57)

fused(H, v) =




|v − H| : sa ≤ 12
|v − H| · (17 − sa)/5 + fdrift(H, v) · (sa − 12)/5 : 12 < sa < 17
fdrift(H, v) : sa > 17

(4.58)
fdiff(H, v) = sort (fused(H, v), ’ascending’) (4.59)
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Let Δ be the result of fdiff ,
Δ := fdiff(H, v) . (4.60)

Let fparameter be a function which uses confidence and co-confidence parameters and the
current states history to calculate new parameters,

fparameter :Rsa × Rb −→ Rb . (4.61)

Again there are multiple ways to calculate this and the chosen one is:

ffilter(xnew, xold) =xold · 1 − 1
sa

+ 1
sa

· xnew (4.62)

aextracted :=Quantile(Δ, 0.9) (4.63)
bextracted :=aextracted + 7.6 · (Quantile(Δ, 0.95) − aextracted) (4.64)

fparameter(Δ, [a, b]) = {ffilter(aextracted, a), ffilter(bextracted, b)} (4.65)

Let ffCvalconf
and ffCvalcoconf

be functions which generate functions,

ffCvalconf
:Rb −→ Ra

0+ → [0, 1]a×2 , (4.66)

ffCvalcoconf
:Rb −→ Ra

0+ → [0, 1]a×2 . (4.67)

There are multiple ways to define these functions, the chosen ones are:

fShape1(X , a, b) =




1 : x ≤ a
b−x
b−a

: a < x < b

0 : b ≤ x

∀x ∈ X (4.68)

fShape2(X , a, b) =




0 : x ≤ a
x−a
b−a

: a < x < b

1 : b ≤ x

∀x ∈ X (4.69)

fDyn(x, sa) =
 x · 5

3.5 : sa < samax/2
x · 5−1.5·(2·sa/samax−1)3

3.5 : sa ≥ samax/2
(4.70)

ffCvalconf
(a, b) =λa.

λb.

 fShape1(X , fDyn(a, X ), fDyn(b, X ))
fShape1(X , a, b)


 (4.71)

ffCvalcoconf
(a, b) =λa.

λb.

 fShape2(X , fDyn(a, X ), fDyn(b, X ))
fShape2(X, a, b)


 (4.72)
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The result of the results of these two functions and the result of the sample confidence
functions,

Csaconf :=
 1 : k ≥ sa

k
sa

: 0 ≤ k < sa
, (4.73)

Csacoconf :=
 0 : k ≥ sa

sa−k
sa

: 0 ≤ k < sa
, (4.74)

can be combined in the following manner:

Csconf := ffCvalconf
(a, b) (Δ) (4.75)

Cscoconf := ffCvalcoconf
(a, b) (Δ) (4.76)

Cconf ,k,j =Csconf ,k,j ∧ Csaconf ,k (4.77)
Ccoconf ,k,j =Cscoconf ,k,j ∨ Csacoconf ,k (4.78)

It should be noted that there are two indices. Two are necessary because each confidence
function returns two confidences, one for the question of keeping a state and one for
everything else,

keep :=
sa∨

q=1
(Cconf ,q,1 ≥ Ccoconf ,q,1 ) , (4.79)

confidence :=
sa∨

q=1
Cconf ,q,2 . (4.80)

How and at which point these functions are used is described in the previous subsection.
A formal mathematical definition is still missing in this subsection. Let HP be the
phantom history,

HP ⊂ R sa/10 , {0, 1} sa/10 (4.81)

and use the indexes j, k, with k = 1 being old input values and k = 2 being the
information if a value is marked. It is used to change the initial history of a created
state,

l := samax/10 , (4.82)
q :=sum(HP,1...l,2) , (4.83)

initHist(HP) =
 v : q < l/2

HP,1...q,1 : else
, (4.84)

if at least 50% of the values are marked.



Chapter 5

Testing the algorithm

This chapter tests the improved algorithm compared to FCoE from chapter 5, CCAM as
defined by [1] and CCAM without the limiting assumptions. The limiting assumptions
of CCAM where first discussed in section 3.2 and are the following:

• The noise is small compared to the average of the signal.

• The noise is proportional to the average.

• The signal may not approach or reach 0.

To make it easy to differentiate between the three CCAM algorithms, the following
names were chosen:

• The improved algorithm is called myCCAM.

• CCAM as defined by [1] is called CCAM.

• CCAM without the limiting assumptions is called CCAMb.

There are three types of data tested.

1. Synthetic Data

2. Synthetic-Signal mimicking Data

3. Industrial Data

The Synthetic Data exist to show improvements and limitations of myCCAM, while at
the same time comparing it to the other algorithms.
The Synthetic-Signal-mimicking Data are signals created by using statistical data of an
industrial signal from multiple machines. The signals were created to test drift error
detections. The statistical parameters of the real data analysed were mean, sigma,
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kurtosis and skew. These parameters were extracted from the industrial data using
a moving window approach. To better match the industry data further outlier were
introduced, which scale the noise by 4 with a predefined chance. Sections of semi
constant parameters were found in the industrial data and these parameters, forced
to constants, were used to create multiple data sets. One of these data sets was used
in this thesis and out of the 9000 generated signals in this data set 3 were chosen,
which have different levels of difficulty. Going from easy to unreasonably hard for the
algorithm in its current form.
The Industrial data is, as the name suggests, data from an industrial setting. This data
was filtered and downsampled prior to receiving it. The downsample is somewhere in the
range of 1 every 1 000 to 100 000. It is done to conserve storage space. This downsample
might obscure true information about the signal, which can not be reconstructed. As
this is industrial data units could be provided for the signal, but it is intentionally not
done to hide the origin of the data.

5.1 Synthetic Data
As already mentioned this section is about testing myCCAM on computer generated
data. myCCAM does not get usable initial parameters in order to check whether the
runtime parameter adaptation can take the role of predefined parameters. This is a
deliberate disadvantage compared to all other algorithms. For CCAMb parameters were
chosen defined by statistical parameters of the signal, or determined experimentally
and then iteratively optimized for these signals. For CCAM good fitting parameters
were experimentally determined. The problem with CCAM is that for some signals
the parameters would need to change over time in order to fit the signal. For FCoE
parameters were determined experimentally and the main focus is on solving the problem
with a threshold value. The chosen history length for all CCAM algorithms is 100.
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5.1.1 Simple Step
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Fig. 5.1: The signal the algorithms are tested on in this subsection.
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Fig. 5.2: The results of the algorithms.
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Figure 5.1 shows the signal for this test. It is a very simple signal and easy to detect.
Figure 5.2 displays the response of the algorithms. FCoE could solve it without a
problem as expected. CCAM has a problem at around 0 as expected. It is working
against its assumptions in that area. Once the signal has jumped it can find and hold a
state. CCAMb can find and hold both states without a problem. myCCAM needs some
time to find fitting parameters and has 2 errors. The errors are due to the parameters
not being quite big enough as described in section 4.5.

5.1.2 Strong drift with negative Step
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Fig. 5.3: The Signal the algorithms are tested on in this subsection.
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Fig. 5.4: The results of the algorithms.

Figure 5.3 shows the signal for this test. It is a a bit harder than the last subsection,
but still quite easy. Figure 5.4 displays the response of the algorithms. FCoE could
again easily solve the problem. CCAM again has a problem at around 0 as expected.
Once it reaches a certain value it can solve this problem. CCAMb can find and hold
both states without a problem. myCCAM needs some time to find fitting parameters
and has 3 outliers. All CCAM algorithms had a bit of a struggle finding the precise
position of the step. This is due to the signal by chance creating a non-instantaneous
jump. This is visible in Figure 5.5.
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Fig. 5.5: Close-up of the jump of Figure 5.3.

5.1.3 Strong drift and Sine with negative Step
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Fig. 5.6: The signal the algorithms are tested on in this subsection.
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Fig. 5.7: The results of the algorithms.

Figure 5.6 shows the signal for this test. It is quite hard to successfully segment the
signal. FCoE can barely solve the problem, but it could easily be interpreted as an
outlier. CCAM can not solve the problem and regularly enters a zone where it can not
hold a state at all. CCAMb has the problem that it can either find too many or only
one state. The state change is not detectable because it simply is to close to the old
data. myCCAM can solve this problem, but has two outliers and one incorrect state
assumption which was simply found by chance. This state change represents one of
the problems that still remain inside myCCAM. This state is only held for one value
and therefore should not be counted as a true state change. It should be noted that in
signals of this type myCCAM has a chance to re-enter the first state due to an outlier.
This is one of the problems already discussed, and is due to the fact that all old state
have equal opportunities regardless of proximity, only dependent on the confidence.
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5.1.4 Strong drift and fast Sine with negative Step
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Fig. 5.8: The signal the algorithms are tested on in this subsection.
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Fig. 5.9: The results of the algorithms.

Figure 5.8 shows the signal for this test. It was meant to display the problem of entering
the resonant behaviour, by being at the peak of it, from section 4.3 and for myCCAM



5.1 Synthetic Data 115

to fail because of it. However, it is clearly visible in Figure 5.9 that myCCAM can solve
the problem. Every other algorithm can also solve it. myCCAM needed about 30 values
more than CCAMb to detect the jump. CCAM needs an offset to be added so that it
could be compared. FCoE could detect it without a problem. This example is the first
problem with a non Gaussian noise distribution. The noise distribution is displayed in
Figure 5.10 . As mentioned myCCAM was not intended to be able to solve it easily,
but it still managed. The likely explanation for that is that the Runtime Adaptation
(section 4.5) is able to counteract the negative effect. The negative effect is also likely
the reason for the delayed detection. This test was also re-tested with 10 times the data
length to make sure that it was not by coincidence or that the Runtime Adaptation
just did not have time to change the parameters strongly enough to ignore the jump.
The same behaviour was found for myCCAM and again it was about 30 samples slower
than CCAMb. It is also no coincidence that myCCAM needs longer to calculate the
parameters, this is also a reoccurring behaviour.
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Fig. 5.10: The noise distribution for this example.
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5.1.5 Steps with overshoot
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Fig. 5.11: The signal the algorithms are tested on in this subsection.
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Fig. 5.12: The results of the algorithms.
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Figure 5.11 shows the signal for this test. It tries to mimic parts of Current Amplitude
form Figure 6 from [1]. It has an overshoot and quickly stabilizes before it jumps again.
Figure 5.12 displays the results and FCoE can solve the problem easily. CCAM as
expected has a problem with the state at zero. CCAMb can solve this without ever
dropping a state. myCCAM has a problem at the start as the extracted parameters
are zero once the signal is stable. In other words it tries to approach zero from the
negative side and the parameters have to be positive or do not make any sense. It
can not hold any state because of that. Once the first jump happens the parameters
are increased strongly enough for a state to be held. The parameters extracted locally
can not prepare myCCAM for the post jump distribution. Therefore there are always
dropped states at the start. This creates a delay of about 20 samples before the correct
state is found and used. In addition, once the parameters are increased above zero it
can find the state at zero. It should be noted that if the initial parameters would have
been set to 0 it could have found the very first state.
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5.1.6 Miniature Steps as part of the Noise
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(b) Close-up of the signal

Fig. 5.13: The signal the algorithms are tested on in this subsection.
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Fig. 5.14: The results of the algorithms.

Figure 5.13 shows the signal for this test. It has steps as part of the noise. Figure 5.14
shows the results. FCoE can solve the problem. CCAM can not solve the problem. A
lower threshold would make it impossible to find the lower state. CCAMb can solve
the problem. myCCAM can also solve the problem, but needs more time to find the
parameters. The distribution in this case would be two separate white Gaussian noise
distributions with 4σ between the peaks.

5.2 Synthetic-Signal-mimicking Data
This section is focusing on data which was generated from statistical and internal system
information.
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5.2.1 First Signal
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Fig. 5.15: The signal the algorithms are tested on in this subsection.
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Fig. 5.16: The results of the algorithms.
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Figure 5.15 shows the signal for this test. Figure 5.16 displays the response of the
algorithms. FCoE can solve it. CCAM and CCAMb can solve it. For CCAM the
assumptions do not hinder it. myCCAM has outliers. This is due to the runtime
parameter adaptation not being able to handle the distribution. In this case it managed
to segment the signal nearly correctly. It can not segment it while it still has incorrect
parameters and at the end it can not find the state correctly as there is an outlier while
building it. These outliers are a big problem for the algorithm to successfully build a
state.

5.2.2 Second Signal

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
45.6

45.8

46

46.2

Samples

Si
gn

al
va

lu
e

[a
.u

.]

Signal

Fig. 5.17: The Signal the algorithms are tested on in this subsection.
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Fig. 5.18: The results of the algorithms.

Figure 5.17 shows the signal for this test. Figure 5.18 displays the response of the
algorithms. FCoE can solve it barely. All CCAM based algorithms can not detect
the last step. CCAM finds the remaining two jumps, but has a large dropped area
in the middle. CCAMb can also solve the two remaining jumps and somehow finds
the third jump, but the finding aspect might just be re-entering the second state due
to an outlier, which appears likely on closer inspection. In order to find the jump
reliably, the threshold value would have to be smaller, but then it could no longer find
a state successfully. myCCAM has a similar problem with extracting a to big threshold.
A second problem with this is that it switches state due to an outlier and keeps the
incorrect state too long. This would be an incorrect state change.
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5.2.3 Third Signal
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Fig. 5.19: The signal the algorithms are tested on in this subsection.
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Fig. 5.20: The results of the algorithms.
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Figure 5.19 shows the signal for this test. Figure 5.20 displays the response of the
algorithms. CCAM is missing due to it fighting against its assumptions and there is no
point in displaying it. FCoE only can find 6 out of the 9 jumps. It should be noted that
the last "found" jump has a value difference of 0.005 compared to an incorrect peak.
CCAMb can find 5 out of the 9 jumps. myCCAM does even worse and only finds 3
jumps and one incorrect one. This again displays the problems of the algorithm with
this kind of data. That there are actually 9 jumps can easily be seen in Figure 5.21
which is the signal after it has passed through a median filter of the fifth order, so a
delay of 2 samples. Afterwards it has been segmented by myCCAM with suitable initial
parameters. It should be noted that due to remaining outliers two states could not be
build. Figure 5.21 also shows that if preprocessing is possible it should be used, as it
makes the signals easier to interpret.
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Fig. 5.21: The signal from Figure 5.19 filtered with a median filter and then segmented
by myCCAM.

5.3 Industrial Data
Industrial data is a bit more problematic than generated data. There is, so to speak,
no known truth. Interpreting it is the only option to define success. In some cases
interpretation is easy, other times multiple interpretations are possible. In other words
the results will be subjective. The main focus is on interpreting the data as a human
would.
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Fig. 5.22: The signal the algorithms are tested on in this subsection.

Figure 5.22 displays the test signal. Prior to sample number 1300 short states seem to
exist, they seem to have a roughly stable value. This is the first inspected range and it
is visible in Figure 5.23. One of the smaller states that wants to be found has a length
of about 20 samples, this forces the algorithm to have a history length of less than 20
samples. A length of 15 was chosen. Due to this short length some adaptations are
per default disabled. The first one is entering a temporary phase where other states
are actively checked. When a new state is created, it by definition enters a temporary
phase which has the length of one tenth the length of the history. Because one tenth of
15 is one it skips this phase. Integrated preprocessing gets deactivated, because it is
known that the behaviour is poor with short history lengths. This technically decreases
sensitivity, which in this case does not matter. The runtime parameter adaptation
reacts a lot quicker and therefore is a lot more sensitive to the values.
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Fig. 5.23: Sub-range 0-1300 of Figure 5.22.
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myCCAM created more than 15 states, which makes the graphs almost illegible, as
either colours have to be reused or they have to be too similar to be easily differentiated.
So instead selected passages are shown in Figure 5.24. The rest of the signal was easily
segmented and does not give additional information. Sub-figure (a) and (d) display
how it would have been use-full if the state could have been re-entered. Sub-figure
(b) displays the small state that was desired to be found, it has the name State # 3
in the Sub-figure. It also displays the dynamic confidence function in full action, in
combination with runtime parameter adaptation at around 325. Sub-figure (c) displays
an interesting behaviour. It displays 3 different states, in truth there might be anything
from 4 to only 1 state. Looking at the signal on that scale makes the segmentation
plausible.
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Fig. 5.24: The results of myCCAM split into parts to make them easier to display.
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On the other hand, Figure 5.24 (c) might only be a noise pattern inherent to the signal.
This idea is supported by the test-signal range 2550 to 4100, displayed in Figure 5.25.
These patterns might be state changes with strong negative drifts or a sawtooth noise.
If they should be part of the noise a history length of at least 250-300 is required due
to the automatic parameter deduction. Due to the shape of that noise the internal
preprocessing will make problems as there is a dominant drift in the "noise". This
would force a further increase in the history length to about 600-800. This in turn
makes it impossible to find results from 0 to about 1300. Figure 5.26 displays what was
found with a history length of 600. It is quite noticeable that there are many dropped
values, this is due to the amount of data available at those positions. By removing the
integrated preprocessing the history length can be set to 250, therefore being able to
build the desired states as well. This is displayed in Figure 5.27. It should be noted
that there are 2 state changes which do not make sense. The first one from state 3 to
2 at around 3100 might actually be a true state change, but it quickly switches back
into the old state. The switching back or the initial switch would be incorrect. The
second switch is right before another seemingly true state change. This makes sense
from the point of view of the algorithm, but not from a global view. By extracting the
threshold information of the runtime parameter adaptation and using the maximum
of of the desired area as the threshold for CCAMb a similar result can be achieved
with a lower history length. This in turn means that the decision to use only the active
states history for the parameter adaptation was bad for this signal. It could use its
own history, which could get cleared with a state change, but that would also mean an
increase in processing power required. On the other hand granting full state right at a
fraction of the history length could also be used to solve this.
To display the change in behaviour of taking the smaller history length of 15 samples
Figure 5.28 is displayed. In this figure 24 different states are visible and some share
the same colour and markers. It is clear that this does not segment the data correctly.
The reason for it is that it figuratively speaking tries to detect jumps while riding the
pattern. Also the parameters which are generated at runtime do not incorporate the
pattern.
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Fig. 5.25: Sub-range 2550-4100 of Figure 5.22.

1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000

2,000

2,100

2,200

2,300

Samples

Si
gn

al
va

lu
e

[a
.u

.]

State # 1
State # 2
State # 3
Dropped

Fig. 5.26: myCCAM result for the sub-range 1323-6198 of Figure 5.22 with a history
length of 600.
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Fig. 5.27: myCCAM without integrated preprocessing result for the sub-range 1323-
6198 of Figure 5.22 with a history length of 250.



130 5 Testing the algorithm

1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000

2,000

2,100

2,200

2,300

Samples

Si
gn

al
va

lu
e

[a
.u

.]

Fig. 5.28: myCCAM without integrated preprocessing result for the sub-range 1323-
6198 of Figure 5.22 with a history length of 15. Note multiple states may
share colours and markers and no legend is provided as 24 individual states
are visible.



Chapter 6

Conclusion and Outlook

6.1 Conclusion
The main parts of this thesis are: the analyses, the extensions and the tests.
The analyses differ in their perspectives and approach. The mathematical analysis,
focused on the mechanism within the algorithm, in order to figure out how and why
a state is held. The behaviour analysis, analysed the algorithm from the outside, by
using a defined distribution, probabilities of keeping/building a state were calculated.
Each of the extensions targeted a specific problem, while at the same time trying to
minimize computational power.
The tests were performed on different sets of data, to show the behaviour of the
algorithms and extensions. The fully customized algorithm was essentially given one
parameter while the rest of them were extracted during the runtime. On one of the
tests one extension needed to be disabled to detect most of the desired states.

The Mathematical Analysis revealed that there are multiple types of solutions,
categorized according to their main contributors.
These solutions are the representation of the confidence and co-confidence functions
and describe if a state is kept, depending on the ordered distance of a new input and
the states history.
The Single-Point Solution, also called threshold solution, is a simple solution and easy
to enforce. It was used for the entire thesis. It is fully describable by two thresholds
that can be represented by a single point.
The Multi-Point Solution defines multiple of such points. The thesis has shown that
it can be generated. It is not yet known whether the Multi-Point Solution has any
advantages over the Single-point Solution.
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The Behaviour Analysis was done for the Single-Point Solution and white Gaussian
noise. It brought the noise parameters into relationship with the Single-Point Solution
parameters. It shows the probability of keeping or loosing a state and focuses on
the interconnection of the parameters. The width of the noise distribution influences
indirectly the sensitivity. To improve this the extension: Integrated Preprocessing
was created. The value threshold of the Single-Point solution has a minimum viable
value dependent on the noise width, to successfully build a state. To improve this the
extension: Dynamic Value Confidences and Phantom History was created. The noise
distribution might not be known a priori or might change at runtime, which would lead
to incorrect parameters. To counteract this the extension: Runtime Adaptation was
created.

Extension: Integrated Preprocessing targets the history of a state to remove drifts,
as drifts would widen the noise distribution. It is able to eliminate drifts, thereby
increasing the sensitivity and reducing errors. However, the tests have shown that
incorrect behaviour occurs easily. This incorrect behaviour can be suppressed by
increasing the history length, which is sometimes undesirable since small desired states
might be merged into larger ones or cannot be found. This leads to the conclusion that
the defined extension in its current state is insufficient.

Extension: Dynamic Value Confidences and Phantom History aimed at the prob-
lem of successfully finding a state. It increased the probability of finding a state
immensely, at the cost of being unable of finding small state changes while building
a state. The adaptation decouples keeping of a state and the confidence in this state,
during and after building it. It made it possible to use very restrictive definitions for
keeping a state, which in turn increase sensitivity and at the same time making building
the state very likely. It should be noted that increasing sensitivity also increases the
error rate.
The Phantom History was originally designed to make jumps detectable when the
pre and post jump distributions overlap significantly. This can be achieved, but the
sensitivity, which is required to do so, might yield an undesirably high error rate.
However, it has a beneficial influence on the Runtime Adaptation, where it significantly
improves the speed with which usable parameters are approached.

Extension: Runtime Adaptation aimed to calculate the parameters at run time and
it achieved it to a certain extent. It underperformed, which had positive and negative
side effects. The positive is that it increases sensitivity, but the downside is that it also



6.1 Conclusion 133

increases the error rate. At the moment CCAM cannot handle errors correctly. Let us
assume that two states exist, A and B and their signal value domains are interchangeable.
It can happen, due to an outlier that the algorithm exists A. The next input value
should belong to A again, but it could enter A or B because they are interchangeable
and by chance B is slightly better fitting. This would display an incorrect state change
from A to B, with an outlier in between. This behaviour is also possible if the value
domain of A and B only overlap, but are not interchangeable. In this case B would
morph into As value domain. Again an incorrect behaviour. This behaviour was visible
in the tests. How a state is re-entered and then kept is the problem.
The test have shown that the extensions works great for the distribution it was designed
for. It also worked for other distributions, but depending on the distribution it took
longer to find fitting parameters or extracted a to big value threshold. None the less it
was still a good approximation for the desired values.

Weather it is learning or not is another thing that needs to be addressed with the
Runtime Adaptation. This topic arises as neural networks are currently a big topic.
The answer to this question is a bit more problematic. A possible close comparison
for the whole algorithm would be a non-linear adaptive filter. In this comparison, the
current states history and the new input value would be the input signals, the two
outputs would be boolean value of keeping/dropping a state and the confidence value,
and the parameters would be functions. In general for adaptive filters the adaptation is
an optimisation problem. In other words how do the parameters need to be changed to
create the desired output. The next aspect is that neural networks can be considered as
specific non-linear adaptive filters and what they describe as learning are optimisation
algorithms [4]. The equivalent of the optimisation algorithm in the mapping would
be the Runtime Adaptation. If the Runtime Adaptation is an optimisation algorithm
then yes, yes it would be learning. It might fit into the subcategory of Stochastic
programming or Robust optimisation algorithms. The author’s personal opinion is that
this should not be considered as learning, it is purely reacting to the data, and is not
sophisticated enough; But it shows that there is room for a learning algorithm, one that
uses more data and considers the reaction of the algorithm as well.

The Tests showed that although the fully extended algorithm (myCCAM) got in
essence only one parameter, it outperformed or at least was equal to the base CCAM
algorithm. Comparing it to CCAM without the limiting assumptions (CCAMb) and
Forgetful CUSUM over EWMA (FCoE) yields mostly equivalent results. In the few cases
where they are ahead it is due to human adjustments in parameters that either stem
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from system knowledge, in this case noise parameters, or from an iterative approach,
optimizing the parameters over multiple test-runs. This optimisation was not done
to the fully extended algorithm (myCCAM), which had no adjustments made when
comparing it to other algorithms. At the same time the test have shown that there are
still fundamental flaws in the algorithm. These deficiencies became evident in the tests,
all the more so when realistic signals were used. Especially long patterns with strong
drift like behaviour seems to create problems. It is to be expected that patterns will
occur in some real signals as they appear in the environment on a 24 hour basis.

6.2 Future Work
There are multiple possible improvements to be done:

• Change the algorithm to allow outliers while building a state, or redefine the
conditions of a fully build state. By redefining this, sensitivity and minimal
state length might be separated. This could lead to small states being found and
acknowledged.

• Redefine how an old state is entered and what happens afterwards. A possible
approach is to use time proximity to give a recent state the advantage on re-
entering a state. This could reduce false positives. Also comparing the current
state against all old states after re-entering it for a specific time period could
decrease wrong state changes, which happen due to outliers and are kept by
chance.

• Define a confidence for the state. At the moment there is only a confidence of how
likely a value belongs to a state, but no confidence of how certain the algorithm is
that the current state is actually a true state rather than an outlier only. Such a
confidence would be distribution dependent.

• Analyse the Multi-Point Solution. By analysing it, it might reveal that a distribu-
tion specific solution has a better sensitivity, while at the same time has minimal
to no disadvantages.

• Make the Behaviour Analysis for different distributions. Afterwards compare the
optimal values of different distributions. This will probably lead to redefining the
Runtime (parameter) Adaptation.

• Redefine Integrated Preprocessing. The currently defined version is insufficient for
patterns and requires a very long history length. Separating this adaptation from
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the states history might be a possible way to proceed forward. The resonance
phenomena can possibly also be eliminated by using a sort of low-pass for the
incline calculated over time. Such a low-pass would also make it possible to remove
the delay of the algorithm, if changes are only allowed to happen slowly. However,
if the slope of the distribution were to change drastically in the event of a jump,
the post jump state might not be found due to the only slowly changing incline.

• Improve/Redefine Runtime Adaptation:

– Increase the speed at which the parameters are found. This could be done
by entering an algorithm state after being unable to find a signal state for
a certain time, at which the the low-pass is "sped up", by changing the
parameters to allow higher frequencies.

– Make a distribution estimator and use statically defined methods to extract
the required parameters and create functions accordingly. This could also be
done by a neural network that could be trained with an optimal parameter-
function selection defined by humans. It might also be an interesting idea to
superimpose the resulting functions depending on the decision probability, as
multiple different distributions might occur at the same time.

– Use the results of the algorithm and the past to define optimal parameters.
By using the past signal values and the past state information, outliers can be
identified and more optimal parameters can be extracted as a result. At the
same time it might be possible to detect jumps by using an acausal/offline
algorithm to further be able to segment the data to extract optimal parameters.
In other words to learn from hindsight. Such an algorithm might truly be
called learning, but at the same time it is likely to require a lot more resources.
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