
Formal Methods in Computer-Aided Design 2021

Stainless Verification System Tutorial
Viktor Kunčak

LARA Research Group
School of Computer and Communication Sciences

EPFL
Lausanne, Switzerland
viktor.kuncak@epfl.ch

Jad Hamza
LARA Research Group

School of Computer and Communication Sciences
EPFL

Lausanne, Switzerland
jad.hamza@epfl.ch

Abstract—Stainless (https://stainless.epfl.ch) is an open-source
tool for verifying and finding errors in programs written in
the Scala programming language. This tutorial will not assume
any knowledge of Scala. It aims to get first-time users started
with verification tasks by introducing the language, providing
modelling and verification tips, and giving a glimpse of the tool’s
inner workings (encoding into functional programs, function
unfolding, and using theories of satisfiability modulo theory
solvers Z3 and CVC4).

Stainless (and its predecessor, Leon) has been developed
primarily in the EPFL’s Laboratory for Automated Reasoning
and Analysis in the period from 2011-2021. Its core specification
and implementation language are typed recursive higher-order
functional programs (imperative programs are also supported
by automated translation to their functional semantics). Stainless
can verify that functions are correct for all inputs with respect
to provided preconditions and postconditions, it can prove that
functions terminate (with optionally provided termination mea-
sure functions), and it can provide counter-examples to safety
properties. Stainless enables users to write code that is both
executed and verified using the same source files. Users can
compile programs using the Scala compiler and run them on
the JVM. For programs that adhere to certain discipline, users
can generate source code in a small fragment of C and then use
standard C compilers.

Index Terms—verification, formal methods, proof, counter-
example, model checking, Scala, functional programming, sat-
isfiability modulo theories

I. INTRODUCTION

Stainless [1] is a tool for verifying and finding errors in
programs written in a subset of the Scala [2] programming
language. Stainless is open source (distributed under Apache
license) and hosted on GitHub at:

https://github.com/epfl-lara/stainless/
https://epfl-lara.github.io/stainless/

Stainless (and its predecessor, Leon) have been developed
primarily in the EPFL’s Laboratory for Automated Reasoning
and Analysis in the period from 2011-2021, see, in particular
[1], [3] as well as [4]–[14]. The core specification and im-
plementation language of Stainless are typed recursive higher-
order functional Scala programs. It also supports certain im-
perative programs [4], [6]. Stainless can verify that functions
are correct for all inputs with respect to provided preconditions
and postconditions, it can prove that functions terminate (with

optionally provided termination measure functions), and it can
also provide counter-examples to safety properties.

Stainless can be used to write programs that are directly
executable and proven correct. In particular, because it uses
Scala’s syntax and type system, users can execute Stainless
programs using the standard Scala compiler (version 2.12.13 at
the time of writing). In addition, there are passes that eliminate
non-executable (ghost) code from source to make sure that
it does not result in run-time overhead after compilation. For
programs that adhere to certain discipline the “genc” option of
Stainless can be used to generate C source code that compiles
with common compilers such as gcc.

A. Outline

In this tutorial, we show examples demonstrating how to
use Stainless to develop verified models and programs. We
will mostly use basic notation for functional programming,
which we will introduce along the way. We will use Stainless
version 0.9 or later.

In addition to basic introduction, we will suggest strategies
for specifying programs and helping Stainless prove them
correct. An example is using lemmas and proving them by
induction expressed through terminating recursion.

To help users be more effective when using Stainless, we
also outline key mechanisms that Stainless uses in proof and
counterexample search: encoding into functional programs,
function unfolding, and using rich theories of satisfiability
modulo theory solvers Z3 and CVC4.

II. GETTING STARTED

Stainless is a command line application that runs on the
Java virtual machine, version 1.8. We mostly test it on Ubuntu
Linux. We provide releases for Linux and Mac. Others use it
on Windows as well, where it may be simplest to use Windows
Subsystem for Linux to get started. Download the release file
from

https://github.com/epfl-lara/stainless/releases/

then unzip the file and put a link to stainless in your path.
The following is a simple program, call it MaxBug.scala,

containing a function max. Max attempts to compute maximum
of the two 32-bit integers by returning one of them, depending
on the sign d of their difference.

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 2 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://github.com/epfl-lara/stainless/
https://epfl-lara.github.io/stainless/
https://github.com/epfl-lara/stainless/releases/
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_2
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_2
https://creativecommons.org/licenses/by/4.0/

object TestMax {
def max(x: Int, y: Int): Int = {
val d = x - y
if (d > 0) x
else y

} ensuring(res =>
x <= res && y <= res && (res == x || res == y))

}

We use object to group functions into modules. We define
functions using def and provide their parameters (here: x and
y) and their types, as well as the return type. We define local
immutable values using val keyword. Scala infers the type of
d as Int.

After the usual body, we introduced an ensuring statement.
The first identifier, res, binds the return value of the function.
After the arrow => we state the property we would like the
result to satisfy. In this case, the result should be greater than
each argument and it should be equal to one of them.

Invoke stainless MaxBug.scala and you may get output
containing some of the following.
MaxBug.scala:7:49: warning: => INVALID
x <= res && y <= res && (res == x || res == y))

ˆ
warning: Found counter-example:
warning: y: Int -> -2147483648

x: Int -> 1
Verified: 0 / 3

stainless summary

MaxBug.scala:3:13: max Subtraction overflow invalid
MaxBug.scala:7:37: max postcondition invalid
MaxBug.scala:7:49: max postcondition invalid
...
total: 3 valid: 0 (0 from cache) invalid: 3

Use --timeout=5 to set time out to 5 seconds. and
--no-colors to request clean ASCII output with parsable line
numbers in reports.

Why did Stainless report a counterexample? Indeed, execut-
ing max with the two provided values computes using signed
32-bit arithmetic the value -11 for d, so the function returns
y as the result res so y <= res is false. We can repair this
example in at least two ways:

• Use if (x <= y) instead of the value d.
• Use BigInt instead of Int, thus adopting unbounded

integers instead signed 32-bit ones.
If you run your program several times, you may notice
that Stainless reports that a valid verification condition was
persistently cached (inside .stainless-cache). You can turn
off caching with --vc-cache=false.

You may find the --watch option useful when modifying
a file several times, which makes Stainless run verification
whenever the source file is changed.

By default, Stainless uses a version of z3 (4.7.1) which is
packaged inside Stainless (--solvers=nativez3). This allows
Stainless to interact with z3 through Java calls. You may also
use an externally built version of z3 (for instance, z3 4.8.12

is shipped with the release) by specifying --solvers=smt-z3.
In that case, Stainless will communicate with z3 using SMT-
LIB files, which might be slower than Java calls, but has two

benefits. First, you get to use the newest release of z3. Second,
smt-z3 is more likely to respect timeouts than nativez3.

You can also use CVC4 as the solver if you download
and put cvc4 executable on your path. You can use both
with --solvers=smt-cvc4,smt-z3. Use --debug=smt to pre-
serve the generated SMT-LIB files and look for them in the
smt-sessions directory.

III. VERIFIED FUNCTIONAL PROGRAMMING

We will now implement a simple function that computes
differences of successive elements of a list. Let us start our
file with import stainless.collection._ so we can use the
immutable List library of Stainless. You can find the sources
of this and other library files at following URL:

https://github.com/epfl-lara/stainless/blob/master/frontends/
library/stainless/collection/List.scala

Let’s try to write a function diffs that takes a list of elements,
for example x1,x2,x3,x4 and keeps the first element and then
follows it by the list of their differences. In this case we would
like to obtain x1,x2 − x1,x3 − x2,x4 − x3. For empty and
one-element list the output equals input. Let us write this as
the default implementation. We can also state the example of
four-element list as a symbolic test case. To state it, we use
another function with a dummy body and a postcondition that
invokes diffs.

import stainless.collection._
object Diffs {
def diffs(l: List[BigInt]): List[BigInt] = {
l match {
case Nil() => l
case _ :: Nil() => l
// missing cases

}
}
def test(x1: BigInt, x2: BigInt,

x3: BigInt, x4: BigInt): Unit = {
} ensuring(_ =>
diffs(List(x1,x2,x3,x4)) ==
List(x1, x2 - x1, x3 - x2, x4 - x3))

}

After developing a function that meets this partial specifica-
tion, we can see whether it meets a stronger specification. For
example, we can define the inverse function undiff that takes
y0, y1, . . . , yn and computes y0, y0 + y1, . . . ,

∑n
i=0 yi. Being

masters of functional programming, we recognize that this is
just a prefix sum of a list, so we define it by

def undiff(l: List[BigInt]): List[BigInt] =
l.scanLeft(BigInt(0))(_ + _).tail

where scanLeft is defined in our List library. Now we
can add as the ensuring condition of diffs the condition
ensuring (res => (undiff(res)== l)). It so happens that
Stainless proves this condition automatically using its algo-
rithm. As an off-line exercise, try to prove this result with pen
and paper. This might give you a sense on how Stainless is
able to prove this property.

The algorithm of Stainless initially treats called functions
as unknown (uninterpreted) mathematical functions. It then

3

https://github.com/epfl-lara/stainless/blob/master/frontends/library/stainless/collection/List.scala
https://github.com/epfl-lara/stainless/blob/master/frontends/library/stainless/collection/List.scala

iteratively expands each call by defining the function to be
equal to one unfolding of its body and also inserts the
ensuring clause as an assumption.

IV. AMORTIZED QUEUE

We have found Stainless to work very well for verification
of purely functional data structures. Let us examine the case of
an amortized queue such as the one from [15, Section 5.2, Page
42]. We will start by writing down an abstract class. In this
class we define methods with dummy bodies denoted by ???

but with ensuring clauses that specify the desired behavior of
operations. To specify the behavior we use toList function,
which is also left unspecified in the abstract class.
import stainless.collection._
import stainless.lang._
abstract class Queue[A] {
def enqueue(a: A) = (??? : Queue[A])
.ensuring(res =>
res.toList == this.toList ++ List(a))

def dequeue: Option[(A, Queue[A])] =
(??? : Option[(A, Queue[A])])

.ensuring(res => res match {
case None() =>
this.toList == Nil[A]()

case Some((a, q)) =>
this.toList == a :: q.toList

})

def toList: List[A]
}

When we extend the abstract class, Scala requires us to define
toList, whereas Stainless ensures that our implementation
meets the specifications in the abstract class. We can imple-
ment an inefficient queue using a single list.
case class SimpleQueue[A](l: List[A])

extends Queue[A] {
def enqueue(a: A) = SimpleQueue(l ++ List(a))

def dequeue = l match {
case Nil() => None()
case Cons(x, xs) => Some((x, SimpleQueue(xs)))

}

def toList = l
}

Stainless successfully verifies that the properties required by
a queue are satisfied by this implementation. Even if correct,
this implementation is inefficient because enqueue takes linear
time in the current number of queue elements. We will thus
try to develop and prove correct the implementation like one
from [15, Section 5.2, Page 42] that uses two lists and that
has constant time amortized complexity.
case class AmortizedQueue[A](front: List[A],

rear: List[A])
extends Queue[A] {

def toList = front ++ rear.reverse

The toList, which we use only for specification, gives us a
hint on how to implement enqueue efficiently. For dequeue

we will need a reverse operation on lists, which we can
implement in linear time. Despite its complexity, our version

of dequeue will be verified automatically. As for enqueue,
its implementation is simple, yet its proof turns out to require
some well known property of lists that we need to tell Stainless
to invoke explicitly!

def enqueue(a: A): Queue[A] = {
val res: Queue[A] = // to fill

// You can state using assertions things you know are true,
// to see if Stainless is able to prove them:
assert(res.toList == front ++ (a :: rear).reverse)

// Alternatively, you can use an equation style reasoning.
// Here Stainless should timeout from the second to the third
// step, because some steps are missing.
(
res.toList ==:| trivial |:
front ++ (a :: rear).reverse ==:| trivial |:
// Add missing steps here to arrive to the result.
// For complicated steps, you need to invoke lemmas
// instead of writing ‘trivial‘.
this.toList ++ List(a)

).qed

res
}

V. PROPERTIES AND PROOFS

How do we state properties in Stainless? We write a property
∀x : T .F (x) as a function lemmaF defined by:

def lemmaF(x: T): Unit = {
()

} ensuring (_ => F(x))

When we wish to instantiate the property taking x to be some
specific value v, we insert a function invocation lemmaF(v)

into the part of the code where we need this property. Suppose
that proving property ∀x : T .F (x) is not automatic. Then
verification of lemmaF itself will fail, as stated. If F (x), for
example, follows from G(x,x + 1) that is established in
lemmaG(x,y), then we can state and prove lemmaF as:

def lemmaF(x: T): Unit = {
lemmaG(x,x+1)

} ensuring (_ => F(x))

Thus, we can adopt the following strategies for libraries of
lemmas:

• introduce a function for a lemma
• use a function parameter for each universally quantified

variable
• write lemma statement in the ensuring clause
• use the body of the function to encode a high-level proof,

with function invocations corresponding to applying pre-
viously proven lemmas.

Purely universal statements can return Unit type. For existen-
tial statements, we can often state their constructive Skolem-
ized form and return a witness for the existential quantifier
from the lemma.

It can be helpful to examine some proofs of properties in
the List library. Remarkably, we can even make recursive
invocations of functions in their bodies. Which mathematical
reasoning principle do such proofs correspond to?

4

VI. DIGITS

For built-in types such as Int and Long, the SMT solvers
will successfully reason about their bitwidth representation.
What if we wish to reason about the bits of arbitrarily large
numbers? As a simple example, let us define simple addition
as a recursive function on lists of bits.

import stainless.annotation._
import stainless.lang._
import stainless.collection._
object AddBitwise {
type Digits = List[Boolean]
val zero = Nil[Boolean]()

def add(x: Digits, y: Digits, carry: Boolean):
Digits = {

require(x.length == y.length)
(x,y) match {
case (Nil(), Nil()) =>
if (carry) true::zero else zero

case (Cons(x1,xs), Cons(y1,ys)) => {
val z = x1 ˆ y1 ˆ carry
val carry1 = (x1 && y1) ||

(x1 && carry) ||
(y1 && carry)

z :: add(xs, ys, carry1)
}

}
}

}

How can we state that such addition is commutative? How can
we prove it in Stainless? As an off-line exercise, think about
how we can prove that this corresponds to actual addition on
integers (BigInt).

VII. TERMINATION

The following recursive function searches for an element in
a sorted array, but it has a bug. You may run Stainless on this
file to spot it. Fix the issue, and add a decreases clause at the
beginning of the function to ensure that Stainless can prove
the function terminating.

import stainless.lang._

object BinarySearch1 {

def search(arr: Array[Int], x: Int, lo: Int, hi:
Int): Boolean = {

if (lo <= hi) {
val i = (lo + hi) / 2
val y = arr(i)
if (x == y) true
else if (x < y) search(arr, x, lo, i-1)
else search(arr, x, i+1, hi)

} else {
false

}
}

}

In Stainless, all functions are required to have a measure
(either inferred automatically, or written in a decreases clause
by the user). The system in its current design would be
unsound (we would be able to prove false postconditions or
assertions) if we allowed non-terminating functions.

VIII. IMPERATIVE FEATURES

Stainless supports some imperative features, such as lo-
cal mutable variables, while loops, return statements, and
more (see https://epfl-lara.github.io/stainless/imperative.html).
Stainless transforms these constructs into functional programs.

Using a while loop and a return statement, rewrite the
findIndexOpt function:

def findIndexOpt(ar: Array[Int], v: Int):
Option[Int] = {

}

that finds an index of element v in a sorted array ar. Prove
that, when your function returns Some(i), then ar(i)== v. To
prove that array indices are within bounds, you will need a
loop invariant, for which the syntax is:

(while(...) {
decreases(...)
...

}).invariant(...)

Does Stainless help you if you make an overflow mistake when
computing the middle of an interval using bounded arithmetic?

Note that while loops require decreases clauses as well
(when the measure cannot be inferred automatically), because
they are translated into recursive functions by Stainless. To see
how the while loop and the return statement are transformed,
you may run the command below on your file. Stainless has
a pipeline containing several phases, and ReturnElimination

is the one that removes while loops and return statements.
The --debug-objects option tells Stainless to only display
the findIndexOpt function in the debug output.

stainless --debug=trees
--debug-objects=findIndexOpt
--debug-phases=ReturnElimination FindIndex.scala

As a harder exercise, identify and prove a stronger postcon-
dition of findIndexOpt: what can we state in the postcondition
for the case when the function returns None? What assumptions
and loop invariants do we need to be be able to prove this
postcondition?

IX. DESIGN PRINCIPLES

A number of verification systems have been developed in
the past decades. Stainless tries to borrow many of the features
that others and us have found useful in other systems. At the
same time, it is driven by a somewhat unique combination of
principles, whose understanding may help set the expectations
from the tool.

A. Searching for Both Proofs and Counterexamples

From the beginning [13], the system was designed to search
for both counterexamples and proofs in a unified iterative loop.
Thanks to this design, on many programs Stainless behaves
like a combination of a bounded model checker and a k-
inductive prover such as [16]: we can often expect a definite
answer, whether the program verifies or has a counterexample.

5

https://epfl-lara.github.io/stainless/imperative.html

B. Recursive programs as foundation, not transition systems.

Operational semantics tells us that we can translate func-
tional (and many other) programs into transition systems.
This has even been used in verification tools with success
[]. Nonetheless, we believe that it carries significant overhead,
especially for proofs. Thus, like in ACL2 [17], [18] our inter-
mediate representation is based on recursive functions [13] and
we hope to leverage high-level structure to make verification
more feasible, much like Liquid Haskell [19] which needs
to be complemented with symbolic execution to also generate
counterexamples [20]. Consequently, iterative unfolding of our
recursive functions in Stainless gives a different sequence of
approximations than the one we would obtain by representing
programs using control-flow graphs and explicit stacks [21].

C. Top-down verification for each function.

Stainless verifies each desired function one by one. When
verifying a function f , it does not check which other parts of
code invoke f . In particular, it will, in its current design, not
infer preconditions for a function automatically. Preconditions
need to be explicitly specified using a require clause at
function entry. On the other hand, when Stainless examines
the body of f and finds a function g, then it will examine not
only the specification of g, but also its body. If g is recursive,
this process will continue, with a check for counterexample
and check for unsatisfiability performed at each step. This
process treats functions more transparently than some modular
verifiers. The process is also breadth-first, instead of having
the form of directed rewriting as in some other systems. The
effectiveness of this process is explained in part by the fact
that it results in a decision procedure for certain classes of
functions [14], [22], [23]. Furthermore, we continue to be
surprised by how well this simple strategy works in practice,
even if we have no theoretical reason to know that it will
succeed.

D. Scala subset as the input language.

Stainless uses Scala as a language that has substantial
user base, regularly ranked higher than Haskell and LISP in
Stack Overflow developer surveys [24], which is relevant for
maintaining the correspondence between what executes and
that is verified. As a functional language, Scala contains an
expressive purely functional fragment which can be used for
specification and modelling. The users of Stainless thus largely
avoid the need to learn a separate specification language,
because functional programs are a great specification vehicle.
At the same time, the system supports polymorphism and
subtyping with a type system that eliminates many nonsensical
programs before they waste user’s time inside the program
verifier’s loop. That said, Stainless purposely avoids by design
certain Scala 2 features, such as null references and complex
initalization. Other features, such as machine integers, are
modelled precisely: it is certainly necessary in practice to
have machine integers of various width available (for example,
32-bit Int and 64-bit Long), but it is also helpful to use
unbounded BigInt data types, especially for specifications, and

these different types should not be confused. Stainless provides
the user a choice and maps these data types and operations on
them to the appropriate types and theories inside SMT solvers
[8]. Subtyping is currently implemented via a translation into
a language with disjoint types [3]; its use requires additional
encoding and may slow down verification. Imperative features
are supported as a choice of either unshared mutable state [6]
or using a model [4] that, at user level, is similar to dynamic
frames [25] of Dafny [26].

E. Embracing SMT solver theories, avoiding quantifiers.

Instead of using axioms to encode program semantics and
data types, Stainless leverages algebraic data types, sets, and
arrays. Stainless thus currently emits quantifier-free queries to
solvers (either Z3 or CVC4). The hope with this choice is
that SMT solvers will remain predictable for both proofs and
counterexamples. In contrast, the use of quantifiers may lead
to more automation and sometimes excellent performance for
proofs, but quickly leads outside of the space where the solvers
can reliable report counterexamples.

F. Executability of programs and specifications.

In Stainless we aim to write programs that can be compiled
using the standard Scala compiler. Specification constructs
in Stainless are defined in a Scala library and they have
dummy execution semantics. In some cases, even such dummy
semantics may result in overhead, so we have developed passes
that eliminate some of the specification code altogether. In
addition, Stainless has a subset that can be used to generate
C code suitable for embedded systems, an enhanced version
of such functionality developed for Leon [27].

Acknowledgements. Research on Stainless has been
funded in part by (i) the Swiss Science Foundation
grants 200021 132176, 200020 138204, 200020 146649,
200021 144503, 200020 159949, and 200021 175676.
(ii) European Research Council (ERC) Starting Grant
PE6-306484-IMPRO, (iii) The Swiss State Secretariat for
Education, Research and Innovation, Swiss Space Office
grant “Embedded Flight Software Verification–ESOVER” and
(iv) the envelope budget for the LARA group from the EPFL
School of Computer and Communication Sciences.

Stainless and Inox were created from parts of Leon code
by Nicolas Voirol. In addition to Nicolas and the two au-
thors of this tutorial, contributors to Stainless and Inox in-
clude: Roman Ruetschi, Georg Stefan Schmid, Marco An-
tognini, Ravichandhran Madhavan, Etienne Kneuss, Lars Hu-
pel, Emmanouil Koukoutos, Philippe Suter, Roman Edelmann,
Utkarsh Upadhyay, Ivan Kuraj, Sandro Stucki, Ruzica Piskac,
Tihomir Gvero, Czipó Bence, Sumith Kulal, Lucien Iseli,
Regis Blanc, Iulian Dragos, Dragana Milovančević, Antoine
Brunner, Mirco Dotta, Yann Bolliger, Rodrigo Raya, Samuel
Gruetter, Mikaël Mayer, Guillaume Massé. Romain Jufer
worked with Jad Hamza on a fork for smart contract veri-
fication and Solidity code generation, Romain Edelmann and
Rodrigo Raya developed an interactive proof assistant concept

6

based on Inox. Regis Blanc developed a Scala library for input
and output of SMT-LIB files. ScalaZ3 interface to the Z3
dynamically linked library additionally received contributions
from Ali Sinan Köksal and Thorsten Tarrach. Contributors
to Stainless Bolts case studies include additionally Samuel
Chassot and Clément Burgelin. We thank users of Stainless
from Ateleris GmbH including Simon Felix, Filip Schramka,
and Ivo Nussbaumer. We also thank MSc students at EPFL
taking the Formal Verification course, completing interesting
case studies and identifying bugs in the system.

REFERENCES

[1] J. Hamza, N. Voirol, and V. Kunčak, “System FR: Formalized foun-
dations for the Stainless verifier,” Proc. ACM Program. Lang, no.
OOPSLA, November 2019.

[2] M. Odersky, L. Spoon, and B. Venners, Programming in Scala, 4th ed.
Artima Inc, 2008.

[3] N. C. Y. Voirol, “Verified functional programming,” Ph.D. dissertation,
EPFL, thesis number 9479, 2019. [Online]. Available: http://doi.org/10.
5075/epfl-thesis-9479

[4] G. Schmid and V. Kunčak, “Proving and disproving programs with
shared mutable data,” 2021.

[5] R. Madhavan, S. Kulal, and V. Kuncak, “Contract-based resource
verification for higher-order functions with memoization,” in ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL), 2017.

[6] R. W. Blanc, “Verification by reduction to functional programs,” Ph.D.
dissertation, EPFL, thesis number 7636, 2017. [Online]. Available:
http://doi.org/10.5075/epfl-thesis-9479

[7] N. Voirol, E. Kneuss, and V. Kuncak, “Counter-example complete
verification for higher-order functions,” in Scala Symposium, 2015.

[8] R. Blanc and V. Kuncak, “Sound reasoning about integral data types
with a reusable SMT solver interface,” in Scala Symposium, 2015.

[9] V. Kuncak, “Developing verified software using Leon (invited contribu-
tion),” in NASA Formal Methods (NFM), 2015.

[10] E. Koukoutos and V. Kuncak, “Checking data structure properties orders
of magnitude faster,” in Runtime Verification (RV), 2014.

[11] R. W. Blanc, E. Kneuss, V. Kuncak, and P. Suter, “An overview of
the Leon verification system: Verification by translation to recursive
functions,” in Scala Workshop, 2013.

[12] A. Köksal, V. Kuncak, and P. Suter, “Constraints as control,” in
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL), 2012.

[13] P. Suter, A. S. Köksal, and V. Kuncak, “Satisfiability modulo recursive
programs,” in Static Analysis Symposium (SAS), 2011.

[14] P. Suter, M. Dotta, and V. Kuncak, “Decision procedures for algebraic
data types with abstractions,” in ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL), 2010.

[15] C. Okasaki, Purely Functional Data Structures. Cambridge University
Press, 1998.

[16] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli, “The kind 2
model checker,” in Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Pro-
ceedings, Part II, ser. Lecture Notes in Computer Science, vol. 9780.
Springer, 2016, pp. 510–517.

[17] J. S. Moore, “Milestones from the pure lisp theorem prover to ACL2,”
Formal Aspects Comput., vol. 31, no. 6, pp. 699–732, 2019.

[18] R. S. Boyer and J. S. Moore, “Proving theorems about LISP functions,”
in Proceedings of the 3rd International Joint Conference on Artificial
Intelligence. Standford, CA, USA, August 20-23, 1973, N. J. Nilsson,
Ed. William Kaufmann, 1973, pp. 486–493. [Online]. Available:
http://ijcai.org/Proceedings/73/Papers/053.pdf

[19] N. Vazou, “Liquid haskell: Haskell as a theorem prover,” Ph.D. disser-
tation, UNIVERSITY OF CALIFORNIA, SAN DIEGO, 2016.

[20] W. T. Hallahan, A. Xue, M. T. Bland, R. Jhala, and R. Piskac,
“Lazy counterfactual symbolic execution,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019,
K. S. McKinley and K. Fisher, Eds. ACM, 2019, pp. 411–424.
[Online]. Available: https://doi.org/10.1145/3314221.3314618

[21] L. Lamport, “The pluscal algorithm language,” in Theoretical Aspects
of Computing - ICTAC 2009, 6th International Colloquium, Kuala
Lumpur, Malaysia, August 16-20, 2009. Proceedings, ser. Lecture Notes
in Computer Science, M. Leucker and C. Morgan, Eds., vol. 5684.
Springer, 2009, pp. 36–60.

[22] V. Sofronie-Stokkermans, “Locality results for certain extensions of
theories with bridging functions,” in Automated Deduction - CADE-
22, 22nd International Conference on Automated Deduction, Montreal,
Canada, August 2-7, 2009. Proceedings, ser. Lecture Notes in Computer
Science, R. A. Schmidt, Ed., vol. 5663. Springer, 2009, pp. 67–83.

[23] T. Pham, A. Gacek, and M. W. Whalen, “Reasoning about algebraic data
types with abstractions,” J. Autom. Reason., vol. 57, no. 4, pp. 281–318,
2016.

[24] S. Overflow, “Annual developer survey,” 2021. [Online]. Available:
https://insights.stackoverflow.com/survey/

[25] I. T. Kassios, “Dynamic frames: Support for framing, dependencies and
sharing without restrictions,” in FM 2006: Formal Methods, 14th Inter-
national Symposium on Formal Methods, Hamilton, Canada, August 21-
27, 2006, Proceedings, ser. Lecture Notes in Computer Science, J. Misra,
T. Nipkow, and E. Sekerinski, Eds., vol. 4085. Springer, 2006, pp. 268–
283.

[26] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Logic for Programming, Artificial Intelligence, and
Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal,
April 25-May 1, 2010, Revised Selected Papers, ser. Lecture Notes in
Computer Science, E. M. Clarke and A. Voronkov, Eds., vol. 6355.
Springer, 2010, pp. 348–370.

[27] M. Antognini, “Extending safe C support in Leon,” Master’s thesis,
EPFL, 2017. [Online]. Available: https://infoscience.epfl.ch/record/
227942/

7

http://doi.org/10.5075/epfl-thesis-9479
http://doi.org/10.5075/epfl-thesis-9479
http://doi.org/10.5075/epfl-thesis-9479
http://ijcai.org/Proceedings/73/Papers/053.pdf
https://doi.org/10.1145/3314221.3314618
https://insights.stackoverflow.com/survey/
https://infoscience.epfl.ch/record/227942/
https://infoscience.epfl.ch/record/227942/

	Introduction
	Outline

	Getting Started
	Verified Functional Programming
	Amortized Queue
	Properties and Proofs
	Digits
	Termination
	Imperative Features
	Design Principles
	Searching for Both Proofs and Counterexamples
	Recursive programs as foundation, not transition systems.
	Top-down verification for each function.
	Scala subset as the input language.
	Embracing SMT solver theories, avoiding quantifiers.
	Executability of programs and specifications.

	References

