
Autonomous Extrinsic Calibration of a Depth
Sensing Camera on Mobile Robots

MASTER’S THESIS

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Ao.Univ.-Prof. Dipl.-Ing. Dr. techn. M. Vincze
Dipl.-Ing. G. Halmetschlager-Funek

submitted at the

Vienna University of Technology
Faculty of Electrical Engineering and Information Technology

Automation and Control Institute

by
Farhoud Malekghasemi

Laudongasse 36/515
A-1080 Vienna

Austria

Vienna, 15th June, 2018

Vision for Robotics Group
A-1040 Vienna, Gusshausstr. 27, Internet: http://www.acin.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Preamble
First I would like to thank my supervisor Dipl.-Ing. Georg Halmetschlager-
Funek for his invaluable guidance during my master’s thesis, and special thanks
to my professor Dr. Markus Vincze for supporting and encouraging me during
my master’s studies.

I would also like to thank my family specially my parents Leyli Masoud
and Farhad Malekghasemi who made this possible for me and were always
supportive and gave me motivation to develop myself.

Special thanks to my dear wife Sara Rezaei for her support, whose under-
standing and help made hard days much easier.

Farhoud Malekghasemi
Vienna, 15th June, 2018

I

Abstract
This study presents a fast and autonomous system to find the rigid transfor-
mation between the RGB-D camera and a local reference frame on a mobile
robot. The major advantages of the method over the conventional methods of
calibration is that there is no need for a special setup or any known object in
the scene. This is achieved by taking advantage of robot’s motion combined
with camera tracking method. It is shown that two circular motion and one
plane detection are sufficient to autonomously calibrate the robot in different
environments with some minimal texture. The presented method is evaluated
with both, computer simulation and in real-life scenarios.

II

Kurzzusammenfassung
Diese Arbeit präsentiert ein schnelles und autonomes System, um die starre
Transformation zwischen der RGB-D-Kamera und einem lokalen Koordinaten-
system auf einem mobilen Roboter zu finden. Die Hauptvorteile des Verfahrens
gegenüber den herkömmlichen Kalibrierungsverfahren bestehen darin, dass
keine spezielles Setup oder irgendein bekanntes Objekt in der Szene benötigt
werden. Dies wird erreicht, indem die Roboterbewegung mit einer verfolgung des
Kamerapose kombiniert wird. Es wird gezeigt, dass zwei kreisförmige Bewegung
und eine Ebenenerkennung ausreichen, um den Roboter in unterschiedlichen
Umgebungen die ein Mindestmass an Textur aufweisen, autonom zu kalibrieren.
Die vorgestellte Methode wird sowohl in einer Computersimulation als auch in
realen Szenarien evaluiert.

III

Contents

1 Introduction 1
1.1 Problem Description . 2

2 Related Work 4

3 Background 6
3.1 Pose in 3D Space . 6

3.1.1 Translation Transformation 6
3.1.2 Rotation Transformation 7

Euler Angels . 8
RPY Angels . 9
Quaternion . 10

3.2 Camera Calibration . 12
3.2.1 Extrinsic Parameters . 14
3.2.2 Intrinsic Parameters . 14
3.2.3 Distortion Coefficients 18

Radial Distortion . 18
Tangential Distortion . 19

3.2.4 Camera Parameters Estimation 21
DLT Method . 22

3.3 Visual Motion Estimation . 25
3.3.1 Direct Methods . 26
3.3.2 Feature Based Methods 31

4 Approach 33
4.1 Ground Plane Detection . 35
4.2 Two-Rotation Drive . 37

4.2.1 Circle Fit Algorithm . 39
4.3 Straightforward Drive . 41

4.3.1 Line Fit Algorithm . 42

5 System Description 43
5.1 V4R Camera Tracker Node . 43
5.2 Camera Tracker Simulator Node 44

IV

Contents V

5.3 Planar Segmentation Node . 44
5.4 Calibration Node . 45
5.5 Drive node . 45

6 Performance Evaluation 47
6.1 Experimental Setup . 47

6.1.1 V4core Platform . 47
6.1.2 Ground Truth Measurement 47
6.1.3 Gazebo Simulation . 50
6.1.4 Rviz . 51

Marker Publisher Node 51
6.2 Experiments and Results . 53

6.2.1 Pose Estimation Quality Factor (PEQF) 53
6.2.2 Simulation . 53
6.2.3 Real-Life Scenarios . 54

Results . 54
6.2.4 Camera Tracking Error 62

7 Conclusion 65

List of Figures

1.1 Microsoft Kinect . 1

3.1 Translation vector . 6
3.2 Euler angels rotation . 8
3.3 RPY angels reference . 9
3.4 Quaternions rotation . 11
3.5 Pinhole camera model . 13
3.6 A thin lens . 13
3.7 Image coordinate system . 15
3.8 Skew between camera pixel axes 16
3.9 Radial distortion . 19
3.10 Tangential distortion . 19
3.11 Optical flow fields for a simple scene 27
3.12 Hierarchical Lukas and Kanade Gaussian pyramid 30

4.1 Pose of a camera in 3D space 33
4.2 Overview of the different steps in the approach 34
4.3 Roll(φ), Pitch(θ) with respect to detected ground plane 36
4.4 Top view of two-rotation drive 38
4.5 Top view of straightforward drive 41

6.1 V4core mobile robot system for research and development . . . 48
6.2 Fiducial marker . 48
6.3 Fiducial marker detected . 49
6.4 GAZEBO simulation of the V4core robot 50
6.5 Markers in rviz . 51
6.6 Mosaic and wooden floor structure 54
6.7 Bottom camera translation paramerets estimation error 56
6.8 Bottom camera rotation parameters estimation error 56
6.9 Middle camera translation paramerets estimation error 58
6.10 Middle camera rotation parameters estimation error 58
6.11 Top camera translation paramerets estimation error 60
6.12 Top camera rotation parameters estimation error 60
6.13 Tracking trajectory and circle fitting result for mosaic floor . . . 63

VI

List of Figures VII

6.14 Tracking trajectory and circle fitting result for wooden floor . . 64

List of Tables

5.1 Launch files arguments for calibration node 46
5.2 ROS services of the nodes . 46

6.1 Ground truth data . 49
6.2 Rviz markers description . 52
6.3 Bottom camera pose estimation data 55
6.4 Middle camera pose estimation data 57
6.5 Top camera pose estimation data 59

VIII

1 Introduction
The use of vision as a sensor to provide information for controlling autonomous
systems, such as AMR1 and redundant manipulators, has grown significantly in
recent years [1]. After Microsoft released the Kinect RGB-D sensor (figure 1.1)
as a new natural user interface in November 2010 for its XBOX 360 gaming
platform, RGB-D sensors, also known as depth or 3D2 cameras, got more
popular in branches of robotics and computer vision as they became cheaper,
more accurate, and smaller compared to the previous existing sensors.

Figure 1.1: Microsoft Kinect RGB-D sensor.

An RGB-D sensor senses the depth information of environment using an
infrared camera and projection of structured infrared light to the scene. It then
registers depth information with the visual information from a RGB camera.
The resulted information opens up new opportunities to solve fundamental
problems such as object and activity recognition, people tracking, 3D mapping,
SLAM3, segmentation and 3D reconstruction, etc [2]–[6].

In order to interpret the collected data by a 3D camera from the scene
into useful information for the tasks mentioned before, a rigid transformation
between the camera and a reference point is always necessary. For example, If
a manipulator robot detects an object in the scene using its camera and wants
to manipulate it with its gripper, this transformation must be used to calculate

1Autonomous Mobile Robots
2Three Dimensional
3Simultaneous localization and mapping

1

1 Introduction 1.1 Problem Description 2

the object location in real world coordinate system in order to control its arm
for reaching this exact point in space. Another application example for this
rigid transformation is data fusion between multiple sensors on a robot. For
example, when there is two 3D cameras or a camera and a laser range scanner
this transformation is necessary in order to align point clouds together. The
parameters which are used to describe this transformation are called extrinsic
parameters of a camera and extrinsic calibration or camera pose calibration are
the terms used in literature for describing the methods that determine these
parameters.

The state-of-the-art methods of extrinsic calibration include:

• Measuring distances directly or having the CAD model of the robot
available (for extrinsic calibration);

• Using reference objects on the scene with precalibrated position and
orientation [7];

• Knowing the geometry of the scene (photogrammetry resectioning method
[8]);

• Using calibration pattern like checkerboard (used in OpenCV and Matlab
[9], [10]).

1.1 Problem Description
In practice, extrinsic parameters of a camera are not always constant and may
change in multiple cases such as:

• Wear and tear in robot parts through time;

• Collision accidents;

• Changing mounting place of the camera on body of the robot by user to
adopt different environments;

• The camera is mounted on a pan-tilt unit.

1 Introduction 1.1 Problem Description 3

All of these displacements, violate the prior assumption of known extrinsic
transformations. Thus, recalibration of the camera is unavoidable.

Recalibration is the starting point of the problems, because all of the state-
of-the-art methods of the extrinsic calibration aforementioned are challenging,
need long procedures which makes them time consuming, need external precal-
ibrated objects or calibration patterns and not easily repeatable without an
expert in the loop. For example, for filling the images into the the system with
showing a calibration template to the cameras.

The current study aims to develop a fast and autonomous method to estimate
this rigid transformation between an RGB-D camera, on-board of a mobile
robot, and a reference point on the robot. It is assumed that the working area
of the robot is a flat floor on which:

• The robot can freely move around on the floor;

• The floor can be observed by the cameras;

• The floor has some minimal texture (there is always some on the floor);

• The cameras are mounted in front of the robot.

It is shown that, driving the robot in two circular paths by benefiting from
its locomotion combined with a visual motion estimation method to determine
camera trajectory while movement and one plane detection are sufficient to
autonomously calibrate the robot in different environments with some minimal
texture without need to any calibration object or pattern.

The remainder of this study is structured as follows. Chapter 2 summarizes
the previous similar research pertaining to camera calibration problem. Chapter
3 introduces basic principles of rotation matrix in 3.1 and camera calibration
in section 3.2. Extrinsic and intrinsic parameters of a camera will be discussed
in more detail there. Section 3.3 of this chapter explains the principles behind
visual motion estimation also known as visual odometry. In chapter 4 the
approach taken to solve the problem is discussed. Chapter 5 describes system
implementation in ROS4 with information about structure of nodes, launch
files, services and etc. The method is evaluated through the experiments in
chapter 6 and the outcome results are analyzed. Chapter 7 concludes the study
and gives some directions for further research.

4Robot Operating System

2 Related Work
This chapter presents related previous researches and state-of-the-art in the
field of motion base camera calibration methods. Most of related researches
focus on the calibration of intrinsic camera parameters.

Classic methods of calibration using patterns are well known and accurate
for both intrinsic and extrinsic parameters. The principles behind these meth-
odes are explaind in section 3.2. However, there exist several methods that
use the motion of a camera to obtain sequence of images from a static scene
with invariant features to match in order to calibrate the intrinsic parame-
ters of a camera without need to any calibration pattern such as following works.

Pollefeys et al. [11] proposed a calibration method for varying intrinsic
camera parameters in zooming/focusing cameras using image sequences. It
shows that the absence of skew alone is enough to allow selfcalibration.

Maybank et al. [12] proposed a method for intrinsic calibration of RGB cam-
era when it has displacements with respect to a rigid scene. It uses the epipolar
transformations relate with this displacements of the camera. Correspondences
points between pair of images of the scene are used in order to estimate the
epipolar transformation. However, Hartley [13] reported that this method
requires extreme accuracy of computation and it is unworkable. Instead it
suggests another parameter estimation algorithm applicable to multiple number
of images.

Luong et al. [14] shows that correspondences points between three images
from a static scene is sufficient to calculate the epipolar transformations of
each pair of images, intrinsic parameters and the motion parameters.

Most of the researches on extrinsic parameters calibration without using any
specialized reference objects has focused on the case of multiple cameras such
as following work.

Carrera et al. [15] estimates rigid transformation between multiple cameras
(RGB) mounted on a mobile robot with no image overlap for data fusion by a

4

2 Related Work 2 Related Work 5

full horizontal rotation movement and capturing a synchronized image sequence
from each camera. It detects correspondences points using invariant SURF
feature between different images from each camera and perform 3D alignment
to fuse.

Miller et al. [16] estimates rigid transformation between multiple 3D cameras
fixed in the environment. It uses the unstructured motion of objects in the
scene for calibrating the relative pose and time offsets of a pair of depth sensors
autonomously. Initial extrinsic parameters are estimated from candidate point
correspondences at each time frame which are extracted from positions of
moving objects in the scene. Finally, this initial parameters are refined with an
occlusion-aware energy minimization.

Pathirana et al. [17] proposes an autonomous method to calibrate multiple
3D cameras fixed in a rehabilitation environment to achieve data fusion by
detecting skeleton data (human joints’ positions).

There are relatively very little researches on extrinsic calibration of a single
3D camera that we are considering in this study.

3 Background
This chapter presents the principles behind defining pose of an object in
3D space in section 3.1, camera calibration in section 3.2 and visual motion
estimation methods in section 3.3.

3.1 Pose in 3D Space
In computer vision and robotics, a pose is defined as the combination of position
and orientation of an object in 3D space relative to a reference coordinate
system. This combination defines a coordinate system (frame) attached to the
object in the reference frame such as world coordinate system. Translation and
rotation transformations are used to describe relationship between these two
coordinate systems which defines pose of the object in the reference coordinate
system.

3.1.1 Translation Transformation
The parallel move or translation is an affine geometric mapping that moves
every point of the space in the same direction by the same distance. It is
identified by a displacement vector t = [X,Y,Z]T (cf. figure 3.1).

Figure 3.1: Translation vector t.

6

3 Background 3.1 Pose in 3D Space 7

A point p has the position vectors Wp in the coordinate system ∑
W and Cp

in the coordinate system ∑
C . The relationship between them is calculated by

applying translation vector t from ∑
C to ∑W :

Cp = Wp + W
C t. (3.1)

Remark.
W
C t = −(CW t)

3.1.2 Rotation Transformation
Rotation transformation R is a 3× 3 matrix that defines relationship between
two coordinate systems which are rotated respect to each other. An elemental
rotation is a rotation about one of the axes of a coordinate system. Basic
rotation matrices (equations 3.2 – 3.4) are known that rotate a vector by an
angle about X,Y or Z axis in mathematical positive direction. However, the
question arises: how can be a general rotation transformation in 3D space easily
represented ?

Rx(θ) =

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 (3.2)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (3.3)

Rz(θ) =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (3.4)

Remark.
(CWR)−1 = W

C R = (CWR)T

RxRy 6= RyRx

3 Background 3.1 Pose in 3D Space 8

Any orientation in 3D space is parameterized by three DoF1. Therefore, three
elemental rotations are enough to define a general rotation. There exist different
methods for parameterization of a general rotation using elemental rotations.
Two most common methods, Euler and RPY2 angels, will be explained in the
following and later on a completely different method called quaternion will be
discussed.

Euler Angels

A general rotation matrix R in 3D space is defined by the Euler triple (α, β, γ)
as a combination of elemental rotations:

C
WR = Rz,αRx,βRz,γ. (3.5)

It is rotated first about the Z axis of the original system by α, then about
the current X axis by β and finally by γ about the now current Z axis. By
using the elemental rotation matrices, parameterized rotation matrix becomes
(sin(α) and cos(α) are abbreviated to sα and cα):

C
WR =


cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ
sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ
−sβcγ sβsγ cβ

 (3.6)

Figure 3.2: Euler angels rotation.3

1Degrees of Freedom
2Roll – Pitch – Yaw
3https://commons.wikimedia.org/wiki/File:Euler.png

https://commons.wikimedia.org/wiki/File:Euler.png

3 Background 3.1 Pose in 3D Space 9

RPY Angels

An alternative to the Euler angles is so-called roll pitch yaw angles. Unlike
the Euler angles, these refer to a fixed reference frame. A general rotation
matrix R in 3D space is defined by the RPY triple (φ, θ, ψ) as a combination
of elemental rotations:

C
WR = Rz,ψRy,θRx,φ (3.7)

whose angles refer to the reference coordinate system as in figure 3.3. φ
becomes as roll, θ as pitch and ψ as yaw angle. An explicit representation of pa-
rameterized rotation matrix is (sin(α) and cos(α) are abbreviated to sα and cα):

C
WR =


cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (3.8)

Figure 3.3: RPY angels reference.

The parameterization of a general rotation by Euler or RPY angles is very
descriptive. However, it is proved at critical points both of them have problem.
This phenomenon is called Gimbal lock. At this points, both methods lose
one DoF and their ability to represent all rotations in 3D space. This problem
appears when two axes are driven into a parallel configuration. One way of
overcoming this problem is using quaternions.

3 Background 3.1 Pose in 3D Space 10

Quaternion

Quaternions are extension of complex numbers to three dimensions. A quater-
nion q ∈ H is represented using imaginary units i, j and k as:

q = q1 + iq2 + jq3 + kq4. (3.9)

As with the complex numbers, there are also multiplication rules for quater-
nions which are agreed on as following:

i2 = j2 = k2 = ijk = −1 (3.10)

ij = +k jk = +i ki = +j (3.11)

ji = −k kj = −i ik = −j. (3.12)

Remark.
Re(q) = q1

Im(q) = iq2 + jq3 + kq4

q̄ = q1 − iq2 − jq3 − kq4

|q| = qq̄ =
√
q2

1 + q2
2 + q2

3 + q2
4

Two vectors c = [cx,cy,cz]T and w = [wx,wy,wz]T can be represented as
purely imaginary quaternion:

qc = icx + jcy + kcz,

qw = iwx + jwy + kwz.

There exists a quaternion ρ ∈ H with |ρ| = 1, that causes a rotation from c to
w by evaluating:

qw = ρ qc ρ̄. (3.13)

3 Background 3.1 Pose in 3D Space 11

ρ defines a mathematically positive quaternion rotation by the angle α about
the rotation axis in the direction of the unit vector r as:

ρ = cos
(α

2
)

+ sin
(α

2
)

(irx + jry + krz). (3.14)

A rotation matrix R in 3D space results using the given unit quaternion in
equation 3.9 as following.

R =


1− 2(q2

3 + q2
4) 2(q2q3 − q1q4) 2(q2q4 + q1q3)

2(q2q3 + q1q4) 1− 2(q2
4 + q2

2) 2(q3q4 − q1q2)
2(q2q4 − q1q3) 2(q3q4 + q1q2) 1− 2(q2

2 + q2
3)

 (3.15)

This assignment of rotations to unit quaternions ρ is not unique. Any general
rotation in 3D space is determined by two unit quaternions.

Figure 3.4: The rotation about the axis r = i+ j+k by rotation angle of 120◦.4

4https://en.wikipedia.org/wiki/File:Diagonal_rotation.png

https://en.wikipedia.org/wiki/File:Diagonal_rotation.png

3 Background 3.2 Camera Calibration 12

3.2 Camera Calibration
The world and camera coordinate system are related by the lens and image
sensor parameters, namely focal length of the lens, pixels size of sensor, center of
image position (principle point) and the position and orientation of the camera.
Estimating these parameters is referred to as camera calibration or camera
resectioning. These parameters are used to correct for lens distortion, measure
size of an object or finding the location of the camera in scene. The cameras
are used to get information about the environment so it is necessary to know
the relationship between image and the world coordinate system. Therefore,
these parameters are categorize in three main parts:

• Extrinsic parameters, which define transformation from 3D world coordi-
nate to 3D camera coordinate system;

• Intrinsic parameters, which define transformation from 3D coordinate
system of camera to 2D image plane;

• Lens distortion (radial and tangential) coefficients.

Figure 3.5 illustrates these transformations between different coordinate
systems. When the camera is calibrated and all the parameters are estimated,
it will be possible to conduct quantitative 3D measurements in real world
through the image of camera [18]. At first, for modeling the camera pinhole
model is being used, which has the general assumption that the lens of camera
obeys the thin lens approximation:

1
z

+ 1
z′

= 1
f

(3.16)

wherein z is the distance to the object and z′ is the image distance to the lens
and f is the focal length (figure 3.6).

Using homogeneous coordinates, WP = [X,Y,Z,1]T for a point in the world
coordinate system and CP = [x,y,z,1]T for the same point in camera coordi-
nates and p = [u,v,1]T for a point in image frame (pixel coordinates), helps
to easily represent perspective projection transformation in the form of a 3×4
matrix M as following [18]:

p =
1
z
M(WP) (3.17)

3 Background 3.2 Camera Calibration 13

Figure 3.5: Pinhole camera model and relation between the image plane Π,
camera center frame (C) and fix coordinate system W . [19]

zz′

Figure 3.6: A thin lens. Rays passing through center are not refracted. Rays
parallel to the optical axis are focused on the focal point F ′. [18]

3 Background 3.2 Camera Calibration 14

The perspective projection matrix M in equation 3.17 is decomposed into
two parts. As discussed previously these are the intrinsic parameters matrix K
and extrinsic parameters consisted of rotation matrix R and translation vector
t.

M := K
[
R t

]
(3.18)

3.2.1 Extrinsic Parameters
Extrinsic parameters, R and t, relate the 3D camera center coordinate C to the
(arbitrary) 3D world coordinate system W which is base of the mobile robot in
this case. R is a 3×3 rotation matrix defined by three independent parameters
resulting from the product of three elementary rotations such as Euler angels
(ω,ϕ,κ in figure 3.5) and t is a 3×1 translation vector. Adding these two
together results in six extrinsic parameters which specifies the position and
orientation (pose) of the camera in space with respect to the robot base. The
transformation of coordinates between C and W is rigid, therefore it can be
written as:

CP =


C
WR C

Wt

0T 1

(WP). (3.19)

A rigid body in three dimensional space has six DoF. The extrinsic parameters
represent these six. Our main focus in this study is to autonomously define
these six extrinsic parameters.

3.2.2 Intrinsic Parameters
Intrinsic parameters, also referred to as intrinsic matrix K (3×3), relate the
3D camera center (optical center) to the 2D image coordinate system by a
projective transformation. By considering only the intrinsic part of equation
3.17 it is obvious that:

3 Background 3.2 Camera Calibration 15

p =
1
z

[
K 0

]
(CP). (3.20)

The equations 3.21 are known from the mathematics of the pinhole camera
model (figure 3.5) for perspective projection form 3D to ideal 2D real image
coordinates. 

ũ = f
x

z

ṽ = f
y

z

(3.21)

Figure 3.7: Image coordinate system. [18]

Point p = [u,v]T (before the homogeneous coordinate vector of p) on the
computer image plane is defined in pixel units instead of metric unit, contrary
to f which is in milliliters, and usually pixels are not completely square (figure
3.7). Therefore some scaling factors should be introduced to compensate for
these problems instead of f (α for x axis and β for y axis). The equations 3.21
can be written as: 

u′ = α
x

z

v′ = β
y

z

(3.22)

3 Background 3.2 Camera Calibration 16

Additionally, due to some manufacturing error camera pixel coordinate sys-
tem may be skewed, therefore the angle θ between u and v axes is not exactly
90 degrees (figure 3.8). Trigonometry proves the relation between actual u′,v′
and measured u′′,v′′ as following:


u′′ = u′ − cos(θ)v′′ = u′ − cot(θ)v′

v′′ = v′

sin(θ)

(3.23)

u′, u′′

v′
v′′

θ

p

Figure 3.8: Skew between camera pixel axes.

Finally, the actual origin of the camera coordinate system is usually not at
the center. For example as shown in the figure 3.7, the origin C is at the lower
left corner. To define this position two more parameters u0 and v0 are added
to equations. Thus, equations 3.23 becomes:


u = u′′ + u0

v = v′′ + v0

(3.24)

3 Background 3.2 Camera Calibration 17

By substituting equations 3.22 and 3.23 into 3.24 it will be obtained:


u = α

x

z
− βcot(θ)y

z
+ u0

v = β

sin(θ)
y

z
+ v0

(3.25)

These equations are written as following by converting to homogeneous
coordinates:

uv
1

 =
1
z


α −βcot(θ) u0 0
0 β

sin(θ) v0 0

0 0 1 0



x
y
z
1

 . (3.26)

Comparing these equations and 3.20 gives us the intrinsic matrix:

K =


α −βcot(θ) u0

0 β

sin(θ) v0

0 0 1

 . (3.27)

Substituting α and β

sin(θ) with focal length f and aspect ratio between two

with a, [cx,cy] for coordinates of the principal point in pixels and s for skew
coefficient of the camera, leads to a simpler notation for intrinsic matrix with
five DoF.

K =


f s cx
0 af cy
0 0 1

 (3.28)

If the camera does have square pixels on its sensor and no skew exists be-
tween the axes the intrinsic matrix becomes even more simple:

3 Background 3.2 Camera Calibration 18

K =


f 0 cx
0 f cy
0 0 1

. (3.29)

3.2.3 Distortion Coefficients
The pinhole camera model is a useful model which gives us mathematical means
to describe the relationship between world and image points. However, it does
not account for lens aberrations because of the general assumption of thin
lens. A more realistic camera model also includes these aberrations and models
them using distortion coefficients. Two major of these are radial and tangential
distortions.

Radial Distortion

Most commonly confronted distortion is radially symmetric ones due to cheap
lens manufacturing. As a result of light rays bending more near edges than opti-
cal center of the lens. Straight lines in scene turn out curved in the image with
radial distortion. Symmetric radial distortion are categorized as following types:

• Barrel radial distortion (figure 3.9-a)

• Pincushion radial distortion (figure 3.9-b)

• Mustache radial distortion (figure 3.9-c)

The radial distortion is approximated in most applications using a low degree
polynomial [20]:

λ = 1 +
n∑
i=1

kir
2i, n ≤ 3 (3.30)

wherein

r2 := ũ2 + ṽ2. (3.31)

3 Background 3.2 Camera Calibration 19

(a) (b) (c)

Figure 3.9: Radial distortion.

ũ and ṽ are the coordinates of an undistorted point in real image coordinate
system, calculated using perspective projection from equation 3.21. k1, k2, k3
are coefficients for radial distortion. Applying λ to this point gives the distorted
point in real image coordinates [ud, vd]T :

ud
vd

 = (1 + k1r
2 + k2r

4 + k3r
6)

ũ
ṽ

. (3.32)

Tangential Distortion

Tangential distortion occurs when the lens of the camera is not perfectly parallel
to image sensor (cf. figure 3.10). The approximation for this distortion is often

Figure 3.10: Tangential distortion. [21]

written as following [20]:

3 Background 3.2 Camera Calibration 20

ud
ud

 =

ũ
ṽ

+

2p1ũṽ + p2(r2 + 2ũ2)
p1(r2 + 2ṽ2) + 2p2ũṽ


︸ ︷︷ ︸

d

(3.33)

wherein p1, p2 are coefficients for tangential distortion.

Considering both distortions and combining together 3.32 and 3.33 leads to
distorted points ud, vd:

ud
vd

 = λ

ũ
ṽ

+ d. (3.34)

Finally, an accurate camera model is the mixture of the pinhole model with
corrections for radial and tangential distortions:


u
v

1

 = K


ud
vd
1

. (3.35)

3 Background 3.2 Camera Calibration 21

3.2.4 Camera Parameters Estimation
The common way of camera parameters estimation in machine vision approaches,
which also referred to as camera calibration, is using fiducial points (such as
checkerboards) whose positions are known in world coordinate system with
homogeneous vectors Pi and finding correspondence for them in the image
positions pi.

Pi = [Xi, Yi, Zi, 1]T , i = 1, ..., n

pi = [ui, vi]T

The equation 3.17 and enough points gives a set of equations which are solved
for camera matrix M.


ui
vi
1

 =


m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34


︸ ︷︷ ︸

M


Xi

Yi
Zi
1

 (3.36)

Each known point i and its correspondence define a pair of equations (3.37).
There are 11 unknowns in camera matrix to be calculated therefore at least six
points are needed (n ≥ 6).

ui = m11Xi +m12Yi +m13Zi +m14

m31Xi +m32Yi +m33Zi +m34

vi = m21Xi +m22Yi +m23Zi +m24

m31Xi +m32Yi +m33Zi +m34

(3.37)

Different methods are proposed to solve this problem such as:

• DLT5 method [22];

• Zhang’s method [23];

• Tsai’s method [24].

5Direct Linear Transformation

3 Background 3.2 Camera Calibration 22

Only the DLT method will be discussed in this study in following chapter. After
calculating M , it should be decomposed to get both intrinsic and extrinsic
camera parameters.

DLT Method

This linear set of equations are written in a homogeneous set of equations (3.38)
as following:

ui(m31Xi +m32Yi +m33Zi +m34) = m11Xi +m12Yi +m13Zi +m14

vi(m31Xi +m32Yi +m33Zi +m34) = m21Xi +m22Yi +m23Zi +m24

[
Xi Yi Zi 1 0 0 0 0 −uiXi −uiYi −uiZi −ui
0 0 0 0 Xi Yi Zi 1 −viXi −viYi −viZi −vi

]



m11
m12
m13
m14
m21
m22
m23
m24
m31
m32
m33
m34



=
[
0
0

]

(3.38)
and for n points it becomes:



X1 Y1 Z1 1 0 0 0 0 −u1X1 −u1Y1 −u1Z1 −u1
0 0 0 0 X1 Y1 Z1 1 −v1X1 −v1Y1 −v1Z1 −v1
...
Xn Yn Zn 1 0 0 0 0 −unXn −unYn −unZn −un
0 0 0 0 Xn Yn Zn 1 −vnXn −vnYn −vnZn −vn


︸ ︷︷ ︸

A2n×12



m11
m12
m13
m14
m21
m22
m23
m24
m31
m32
m33
m34


︸ ︷︷ ︸
m12×1

=


0
...
0


︸︷︷︸
02n×1

.

(3.39)

3 Background 3.2 Camera Calibration 23

Obviously, m should not be equal to zero in order to solve Am = 0 homo-
geneous set of equations, Therefore this is a total least squares minimization
problem.

min‖Am‖ (3.40)

m is valid up to scale, so it is assumed to be a unit vector which means its
magnitude is one. The solution is to minimize the magnitude of Am under the
constraint ‖m‖ = 1.

Using SVD6 it is possible to decompose matrix A2n×12 to a diagonal ma-
trix D2n×12 written in decreasing order of absolute values and two orthogonal
matrices U2n×2n and V12×12 as below. The columns of U and V are orthonor-
mal bases.

A = UDVT (3.41)

Plugging this to minimization problem 3.40 gives us:

min
∥∥∥UDVTm

∥∥∥. (3.42)

Since U and V are made up of orthogonal unit vectors multiplying them does
not change the magnitude, so:∥∥∥UDVTm

∥∥∥ =
∥∥∥DVTm

∥∥∥ (3.43)

‖m‖ =
∥∥∥VTm

∥∥∥ = 1. (3.44)

Considering 3.43 minimization problem 3.42 subject to 3.44 becomes:

min
∥∥∥DVTm

∥∥∥. (3.45)

By substituting of unite vector y := VTm it becomes:

min‖Dy‖ (3.46)

subject to ‖y‖ = 1.
6Singular Value Decomposition

3 Background 3.2 Camera Calibration 24

Minimization problem 3.46 is minimum when y = [0,...,0,1]T because, as men-
tioned before, D is a diagonal matrix with decreasing values and this y puts
weight only on the smallest element of D. Since V is orthogonal and its trans-
pose is its inverse and y = VTm then:

m = Vy (3.47)

So the solution for m is the multiplication of V with y which pulls out only the
last column in V. It is known that the columns of V are eigenvectors of ATA.

Remark.
A = UDVT

ATA = VDTUTUDVT

ATA = VDTIDVT

ATA = VD2VT

Thus, the m vector which satisfies the minimization 3.40 is the eigenvector
of ATA with smallest eigenvalues.

3 Background 3.3 Visual Motion Estimation 25

3.3 Visual Motion Estimation
Successful path planning and obstacle avoidance in mobile robots which are
capable to move around depends on a good pose estimation of the robot in the
environment. Using sensors data to estimate change in pose over time is called
odometry. Rotary encoders, GPS7, cameras, laser scanners, inertial sensors and
etc are all used before for this purpose. Each of these sensors has its special
use cases and both its pros and cons.

For example, rotary encoders are cheap and used often on wheeled robots
but they suffer from lack of precision sometimes, because wheels can slip and
slide on the floor creating an unreliable traveled distance as compared to actual
traveled one.

Rotary encoders can not be used in drone odometry. Instead GPS-based
odometry techniques are used in these cases but GPS suffers also from problems
like losing significant signal power indoors and low precision. Cameras are also
used successfully for visual odometry methods.
According to Chhaniyara [25], “Visual odometry is an image processing

technique for incremental, on-line estimation of robot position and velocity
from image sequences”.

NASA’s two MER8, Spirit and Opportunity, are two successful application
examples of visual odometry. They achieved accuracy as small as 2 mm with
high rates of successful convergence of 97% on Spirit and 95% on Opportunity
in slip ratios as high as 125% while driving on slopes as high as 31 degrees [26].
In visual odometry methods compared to others, neither prior knowledge of
the scene nor the motion is necessary.

The fundamental of visual odometry is motion estimation or camera motion
tracking. Camera motion tracking also referred as Ego-Motion in literature is
the estimation of the transformation between camera and the world coordinate
system. There is a large range of possible applications for camera tracking such
as SLAM, SfM9 and AR10 [27], object tracking, camera stabilization, etc.

The basic idea behind motion estimation methods is to compare successive
images iteratively to find the translation and rotation between them. Depend-

7Global Positioning System
8Mars Exploration Rovers
9Structure from Motion

10Augmented Reality

3 Background 3.3 Visual Motion Estimation 26

ing on the used method, according to [28] motion estimation is categorized as
following:

• Direct methods;

• Feature based methods.

State-of-the-art methods combine these two approaches together, wherein
feature based approaches are used for long range matches and direct approaches
are used for shorter range ones [29]. Also alternative approaches were tried
which combine visual and other types of sensors, namely visual-inertial [30] or
GPS and stereo-vision odometry [31].

3.3.1 Direct Methods
Direct methods, also referred to as dense methods, recover motion at each pixel
using spatio-temporal (location x,y and time t) image brightness variation.
This image brightness variation during time is known as optical flow. Optical
or optic flow is the apparent motion of an object in the image. Calculating
optical flow in whole image characterizes optic flow fields which are used for
forming or segmenting a scene.

Figure 3.11 shows a simple scene on the left and its optical flow fields on
right. Suppose a camera is viewing this scene parallel to the white rectangle
and moving left. The flow fields will be seen as the image on the right. The
optical flow on the white rectangle is constant and small. It is constant since
the plane is parallel to the image plane. It is small because it is far away from
the camera. The optical flow field for the light gray rectangle is also constant
but larger because it is near to the camera. On the inclined gray plane, field is
small for far points and it is larger for nearby points. As it becomes obvious,
because different structures correspond with different flow fields, such flow
fields are used for scene segmentation.

These methods are sensitive to appearance variations and they are useful
when image motion is small and objects do not move very quickly (higher
frame rate). Slow moving assumption guaranties the constancy of brightness
for nearby pixels from one frame to another, then it is written:

3 Background 3.3 Visual Motion Estimation 27

Figure 3.11: A simple scine (left) and optical flow fields for with a camera
parallel to white rectangle moving left (right). [18]

I(x,y,t) = I(x+ dx, y + dy, t+ dt) (3.48)

using Taylor series approximation without higher order terms:

I(x,y,t) ≈ I(x,y,t) + ∂I
∂x
dx+ ∂I

∂y
dy + ∂I

∂t
dt (3.49)

and finally, replacing derivatives of the image with Ix, Iy, It notation and
u = dx

dt
, v = dy

dt
it becomes:

Ixu+ Iyv + It = 0. (3.50)

3.50 is known as the brightness constancy constraint equation, in which u
and v are changes in location of pixel during the time which determine direction
of motion (velocity). The equation 3.50 is written also in gradient form as:

(∇I)T .

u
v

 = −It (3.51)

therefore direct methods are sometimes referred to as gradient methods.

3 Background 3.3 Visual Motion Estimation 28

In order to get the direction of motion, the equation 3.50 should be solved
for each pixel to find two unknowns u and v. But one encounter a problem
here because there is only one equation with two unknowns. The problem is
known as the aperture problem of optical flow algorithms. To overcome this
some additional constraints are needed.

Horn and Schunk in [32] have suggested smoothness assumption method
by introducing a global energy functional to be minimized as additionally
constraint formulated below :

e =
∫ ∫

[(Ixu+ Iyv + It)2 + γ(u2
x + u2

y + v2
x + v2

y)]dxdy (3.52)

wherein ux = du

dx
, uy = du

dy
, vx = dv

dx
, vy = dv

dy
and γ is a weighting factor.

The global motion methods use all pixels in the image to estimate motion,
therefore they are used for removing camera motion, object-base segmentation
and generating mosaics.

More commonly, local constraints are used to solve this problem. Lucas and
Kanade in [33] have suggested least squares method. General assumption in
this approach is the optical flow invariance in a local neighborhood of the pixel
under consideration. By considering a 3 by 3 window around the pixel, each
pixel pi (i = 1, ..., 9) in the window gives an equation according to 3.50 so there
will be an overdetermined system with two unknowns and nine equations to
solve. These are written in matrix form as:


Ix(p1) Iy(p1)
Ix(p2) Iy(p1)

... ...
Ix(p9) Iy(p1)


︸ ︷︷ ︸

A9×2

u
v


︸ ︷︷ ︸
d2×1

=


−It(p1)
−It(p2)

...
−It(p9)


︸ ︷︷ ︸

b9×1

(3.53)

In order to solve system of equations 3.53, standard least square method
is applied:

min ‖Ad− b‖2 (3.54)

3 Background 3.3 Visual Motion Estimation 29

The matrix A is not square, so it is not invertible, therefore pseudo inverse
method is used to invert it.

Remark.
(AT

2×9A9×2)︸ ︷︷ ︸
G

d2×1 = AT
2×9b9×1

d2×1 = (ATA)−1
2×2(ATb)2×1

So, direction of motion computes:

u
v

 =

∑i Ix(pi)Ix(pi)
∑
i Ix(pi)Iy(pi)∑

i Ix(pi)Iy(pi)
∑
i Iy(pi)Iy(pi)

−1

︸ ︷︷ ︸
(ATA)−1

−∑
i Ix(pi)It(pi)

−∑
i Iy(pi)It(pi)


︸ ︷︷ ︸

ATb

(3.55)

So far, it is assumed that the motion is small, but it is not always the case. If it
is larger than a pixel then first order Taylor series approximation will not hold.
Solution to this comes from hierarchical L-K11 (Coarse-to-fine) method. It
uses Gaussian pyramid for downsampling each image. This makes the motion
small enough to be tracked. Figure 3.12 shows two successive frames H and
I, downsampled in 3 levels. Then it continues with running L-K between two
smallest images in level 3 which produces a flow field of moving pixels. In
the next step it upsamples this flow field and applies it to H in level 2 then
warps the result which gives the image I in level 2 with a little small differences.
Finally it runs L-K again between warped and image I in level 2. This is done
iteratively until to reach the original image in level 0.

Brightness constancy is assumed in direct methods, but this assumption does
not hold always due to change in illumination of the scene or object reflection.
In addition, the motion could be large and also a point may not move like its
neighbors. These conditions cause problems for these methods. However, it

11Lukas and Kanade

3 Background 3.3 Visual Motion Estimation 30

Level 0

Level 1

Level 2

Level 3

Figure 3.12: Hierarchical Lukas and Kanade Gaussian pyramid. [34]

is possible to use features in the image to solve this problems which will be
discussed in next section.

3 Background 3.3 Visual Motion Estimation 31

3.3.2 Feature Based Methods
Feature based methods, also known as indirect methods, extract a set of specific
features from each image and determine the motion by finding correspondences,
in contrast to the direct methods which determine motion in each pixel of the
image [28]. All parts of an image does not contain useful information about
motion, for example it is only possible to recover motion orthogonal to the
straight edges. Accordingly, it makes sense to use features in the regions with a
rich enough texture. These methods are robust tracking methods and suitable
for object tracking tasks when its motion is large (more than 10 to 20 pixels).
One of the most known feature based methods is KLT12 tracker algorithm [35].
KLT tracker algorithm (similarly to direct method) calculates matrix

G = ATA

from equation 3.55 for each pixel with a window around it, but it keeps only
some of them (contrary to direct method) which are useful for solving the
equation system. System 3.55 is solvable when 2 × 2 matrix G is invertible.
This means that it should have a low condition number κ.

κ(G) :=
λmax
λmin

wherein λmax and λmin are maximal and minimal eigenvalues of G respectively.
Low condition number is said to be well-conditioned, if it is not the inverse is
unstable. It implies that it is not possible for eigenvalues to have a very large
magnitude difference. Also, to decrease noise effect they must be large enough.
Two large eigenvalues demonstrate existence of different gradients within a
window, which represent features that are trackable reliably like corners, salt
and pepper textures, or any other. Two small eigenvalues mean a non constant
brightness within a window. A large and a small eigenvalue correspond to a
unidirectional pattern which is not suitable for tracking.

In practice, when the smaller eigenvalue is larger than a threshold the noise
condition is satisfied and the matrix G is also usually well-conditioned, because
the brightness variation in a window is limited by the maximum allowable pixel
value, so the greater eigenvalue can not be arbitrarily large. To determine
threshold for the camera to be used during tracking, the eigenvalues for images
of a region with approximately uniform brightness should be measured.

12Kanade-Lucas-Tomasi

3 Background 3.3 Visual Motion Estimation 32

Algorithm 1 gives an example for choosing the best feature for KLT tracker.

Algorithm 1: KLT feature selection
1. Compute the G matrix and its minimum eigenvalue λmin at every

pixel in the image.

2. Call λmax the maximum value of λmin over the whole image.

3. Keep the image pixels that have a λmin value larger than a
threshold.

4. Keep the local maximum pixels (a pixel is kept if its λmin value
is larger than that of any other pixel in its 3× 3 neighborhood).

5. Keep the subset of those pixels so that the minimum distance
between any pair of pixels is larger than a given threshold distance.

4 Approach
The main goal of the approach presented in this thesis is to develop a method
to determine the pose (extrinsic parameters) of a 3D camera with respect to
the base coordinate system of a mobile robot. We assume in this chapter
that the base is at the mass center of the robot. The pose of a camera in
3D space is described by a translation vector t = [X, Y, Z]T and a rotation
matrix R = Rz(ψ)Ry(θ)Rx(φ) with respect to a reference point (cf. figure
4.1). Therefore, there are six parameters (6 DoF) to be determined:

• There elements of the translation vector: X, Y , Z;

• Three angles of rotation matrix: Roll(φ), Pitch(θ), Yaw(ψ).

Figure 4.1: Pose of a camera in 3D space with respect to base frame of the
robot.

33

4 Approach 4 Approach 34

These six parameters will be calculated in three steps as following:

1. Ground plane detection (section 4.1);

2. Two-rotation drive (section 4.2);

3. Straightforward drive (section 4.3).

Figure 4.2 shows an overview of these three steps and relation between sub
steps in the algorithm. After obtaining the image sequence from the camera the
algorithm start with detecting ground plane using RANSAC1 [36] in first step for
determination of Z, φ and θ parameters. Then it uses these calculated roll and
pitch angels in two-rotation drive step for calculation of X and Y parameters
using a camera tracker for determination of camera trajectory during robots
movements in two circular paths. Finally, in last step straightforward drive
it uses the same camera tracker during a straight line movement of robot for
determination of ψ parameter.

Figure 4.2: Overview of the different steps in the approach.

1Random Sample Consensus

4 Approach 4.1 Ground Plane Detection 35

4.1 Ground Plane Detection
It is assumed that the robot is working on a flat floor. Detecting the ground
plane in FoV2 of the camera, is enough to calculate the parameters of the first
step. The segmentation algorithm finds all the points within a point cloud
that support a plane model using RANSAC as a robust estimator of choice. A
threshold for distance determines how close a point must be to the model in
order to be considered as an inlier. Finally the contents of the inlier set, are
used to estimate coefficients of the plane equation in 3D space:

nxx+ nyy + nzz + d = 0 (4.1)

wherein d represents the distance between plane and the camera, which is
equivalent to the distance of the camera from the ground which is the height
of the camera defined by Z parameter, therefore:

Z = d. (4.2)

The vector nT = [nx,ny,nz] represents the normalized normal vector of the
plane which is perpendicular to the surface. The formed angles between this
normal vector and the coordinate system of camera provides roll and pitch
angles in this step, which is calculated simply using trigonometry as illustrated
in figure 4.3.

The pitch angle of camera θ is equal to the angle between the normal vector
of the ground plane n and the xc − yc plane of camera coordinate system, so it
is calculated with:

θ = arctan
nz
ny

 . (4.3)

The roll angle of camera φ is equal to the angle between the normal vector
of the ground plane n and the yc − zc plane in the camera coordinate system,
so it is calculated with:

φ = arctan
nx
ny

 . (4.4)

Hence all three parameters in this step have been determined.
2Field of View

4 Approach 4.1 Ground Plane Detection 36

Figure 4.3: Roll(φ), Pitch(θ) with respect to detected ground plane in camera
coordinate system.

4 Approach 4.2 Two-Rotation Drive 37

4.2 Two-Rotation Drive
This method is used to calculate the second step parameters, including X and
Y distances of the camera in the robot base coordinate system. In this step, the
robot rotates along two circular paths with different radiuses. If the trajectory
of the camera is determined during these rotations, then X and Y distances are
calculated using simple geometry. To obtain the camera trajectory, the V4R3

camera tracker implemented. This tracker will be discussed with more detail
in section 5.1.

The camera tracker provides these transformations from camera perspective
in the base frame of the robot, which is selected as reference frame. Before
any calculation is started the camera trajectory should be transformed to
compensate for roll and pitch angels that have been found in previous section,
since the camera coordinate and robot base coordinate systems are rotated
respectively.

When the robot drives two times with circular path, the camera also has
circular movement trajectories with respect to the center of rotation. For the
first drive, if the rotation radius is selected to be zero then the robot rotates
exactly around itself on a spot and the center of rotation will be equal to the
base origin. For the second drive, if the rotation radius is selected to be half
of the distance between two wheels then it will rotate exactly around one of
the wheels. This keeps one of the wheels fix in place and reduces movement
error and noise production from the motor during the drive. Figure 4.4 shows a
robot from a top view with two differential-drive wheels in the base coordinate
system and two camera trajectories that would be taken during the first and
second circular path drive by the camera mounted on it. The yaw angle is
irrelevant here because it does not affect the camera trajectory during a circular
movement of the robot (cf. figure 4.4).

The camera trajectory is a set of points p in 3D space. Since the camera
height is fixed and it has been calculated in the previous section, trajectory
data in the z direction is irrelevant here. r1 and r2 radiuses are calculated by
applying 2D circle fit algorithm on this set of points. This algorithm will be
explained in following section 4.2.1.

After calculation of r1 and r2, the two camera trajectories equations in the
x− y plane are written as below:

3Vision for Robotics group, ACIN, TU Vienna

4 Approach 4.2 Two-Rotation Drive 38

Figure 4.4: Top view of a robot with two differential-drive wheels in the base
coordinate system and a 3D camera on board for Two-Rotation
drive.

4 Approach 4.2 Two-Rotation Drive 39

x2 + (y − rF)2 = r2
1 (4.5)

x2 + (y − rS)2 = r2
2 (4.6)

with rF and rS are the first and second drive radiuses. X and Y distances
are calculated by solving two circles equations for an intersection point as the
flowing:

Y = r2
1 − r2

2 + r2
S − r2

F

2(rS − rF) (4.7)

X =
√
r2

1 − (Y − rF)2. (4.8)

It is obvious from equation 4.7 that rF and rS radiuses could be chosen
arbitrary but they should not be equal, because division by zero is undefined.

It is assumed that the camera is looking forward on the robot, therefore the
calculated negative value for X will be discarded. Hence the two unknown
parameters of this step have been determined.

4.2.1 Circle Fit Algorithm
The algorithm is an implementation of direct least squares fitting a circle to
2D points in [37]. The goal is to fit a set of points with a circle equation:

(x− a)2 + (y − b)2 = r2 (4.9)

where [a,b]T is the circle center and r is the circle radius, which is impor-
tant in calculation of X and Y. The error function to be minimized for n points
in set is:

E =
n∑
i=1

(Li − r)2 (4.10)

4 Approach 4.2 Two-Rotation Drive 40

where Li =
√

(xi − a)2 + (yi − b)2. Setting to zero of partial derivatives of
equation 4.10 with respect to a, b and r leads to:

r = 1
m

n∑
i=1

Li (4.11)

a = 1
m

n∑
i=1

xi + r
1
m

n∑
i=1

∂Li
∂a

(4.12)

b = 1
m

n∑
i=1

yi + r
1
m

n∑
i=1

∂Li
∂b

. (4.13)

These equations are solved using fixed-point iteration to obtain radius r and
center of the circle.

4 Approach 4.3 Straightforward Drive 41

4.3 Straightforward Drive
This method is used to calculate the yaw angle of the camera in the last step.
For this calculation the robot starts driving straightforward for a short distance
(≈ 10 cm) while the camera tracker is providing the camera trajectory. As
shown in figure 4.5, considering camera trajectory with respect to the camera
coordinate system forms a line in the zc − xc plane. Calculation of the angle
between zc axis of the camera and this line yields to the yaw angle. In order
to get the slope of the trajectory, a line fit algorithm is applied to the set of
camera trajectory points.

Figure 4.5: Top view of a robot with two differential-drive wheels in the base
coordinate system and a 3D camera on board for straightforward
drive.

The line fit algorithm will be explained in the following section 4.3.1. Finally,
the yaw angle is calculated with following equation, wherein A is the line slope
from fitting algorithm:

ψ = arctan(A). (4.14)

Hence yaw angle parameter in this step have been determined.

4 Approach 4.3 Straightforward Drive 42

4.3.1 Line Fit Algorithm
The algorithm is an implementation of linear fitting of 2D points in [37]. The
goal is to fit a set of points with a line equation:

y = Ax+B. (4.15)

The error function to be minimized is sum of the squared errors between the y
values and the line values (only in y-direction).

E =
n∑
i=1

[(Axi +B)− yi]2 (4.16)

Setting gradient of equation 4.16 to zero leads to a system of two linear
equations: ∑n

i=1 x
2
i
∑n
i=1 xi∑n

i=1 xi n

 [A
B

] ∑n
i=1 xiyi∑n
i=1 yi

 (4.17)

which is solved to obtain A and B.

A =
n
∑n
i=1 xiyi −

∑n
i=1 xi

∑n
i=1 yi

n
∑n
i=1 x

2
i −

∑n
i=1 xi

∑n
i=1 xi

(4.18)

B =
∑n
i=1 x

2
i
∑n
i=1 yi −

∑n
i=1 xi

∑n
i=1 xiyi

n
∑n
i=1 x

2
i −

∑n
i=1 xi

∑n
i=1 xi

(4.19)

5 System Description
The method is implemented using C++ and Python in ROS. This chapter
gives information about implemented nodes and services and describes available
settings in launch files in order to control the calibration process.

5.1 V4R Camera Tracker Node
A camera tracking algorithm provides us the trajectory of the camera in 3D
space. This trajectory is determined using the camera tracker of V4R-library
[38]. The method combines two approaches:

• Feature-based method using a pyramidal implementation of the KLT-
tracker as discussed in section 3.3.2;

• A keyframe-based refinement step.

The algorithm detects FAST1-keypoints [39] first to initialize a keyframe and
assign them to the corresponding 3D locations. Then it tracks, frame by frame,
the keypoints using pyramidal KLT-tracker, which allows tracking large camera
motions. Finally, it uses RANSAC to robustly estimate the rigid transformation
(the camera pose) from the corresponding depth information of the organized
RGB-D frames. Additionally, it applies a keyframe-based refinement step by
projecting patches to the current frame to account for the accumulated drift
for individual point correspondences and optimizing their locations.

In more detail, when a keyframe is created, normals are estimated and in
combination with estimation of the camera pose a locally correct patch warp-
ing from the keyframe to the current frame is generated. Then a KLT-style
refinement step including the normalized cross correlation of the patches gives
sub-pixel-accurate image locations for bundle adjustment and ability to reduce
the drift while tracking. This tracker is able to model large environments
because keyframes are generated depending on the tracked camera pose which

1Features from accelerated segment test

43

5 System Description 5.2 Camera Tracker Simulator Node 44

makes it suitable for our case in this study.

This algorithm produces as output:
• A set of keyframes K = {K1, ..., Kn};

• A set of transformations T = {T 1, ..., T n}.

for camera pose adjusting the corresponding keyframes to the reference frame
which is defined by the first camera frame or by user. [40]

5.2 Camera Tracker Simulator Node
Since there is no guarantee that camera tracker performs accurately and it
does not perform well in the simulation environment due to lack of traceable
features, it is not possible to use camera tracker in order to execute proof-of-
concept experiments on the method. Therefore, an additional node is added to
simulation in order to simulate the behavior of the camera tracker. It calculates
camera trajectory based on the tf tree of the robot and publishes the trajectory
of it while the robot moves.

The node looks up for transformation between world_frame and camera_link
frame and takes the first pose of the camera as initial pose, then in each
iteration of the node it calculates the difference between the current pose of
the camera and previous one. This defines the trajectory of the camera in
world coordinate system. This trajectory should be rotated with respect to roll,
pitch and yaw angles of the camera_link, which are obtained by looking up the
transformation between camera_link and base_link frames. And finally, the
trajectory should be rotated again to compensate for rotation of axes in camera
coordinate system compare to reference coordinate system (cf. figure 4.1).

5.3 Planar Segmentation Node
In order to detect the ground plane, planar segmentation algorithm, which
is an open source software from PCL2, has been used. The PCL is a large
scale, open source project for 2D/3D image and point cloud processing. The
PCL framework contains numerous state of the art algorithms including filter-
ing, feature estimation, surface reconstruction, registration, model fitting and
segmentation [41].

2Point Cloud Library

5 System Description 5.4 Calibration Node 45

5.4 Calibration Node
The calibration node has two lunch files. One for running on the real robot,
and the other for simulation environment. The reason for this is, as mentioned
before (section 5.2), the camera tracker which does not perform properly in
simulation. These files also contain necessary settings for the calibration process.
Table 5.1 describes these settings. The rotation radius in settings only defines
the second circle radius in two-rotation drive (0.158 m is the half of distance
between two wheels of the V4core robot) because the radius for the first circle
is defined as zero so the robot rotates on a spot. When the calibration process
is finished the node publishes calculated parameters (X, Y, Z, roll, pitch, yaw)
to ROS parameter server using name space /v4r_core_sensor_calibration/...
and if the params_to_file option has been set to true in the launch files, it
saves them in a file.

The launch files also bring up other necessary nodes during the calibration
such as the planar segmentation and the marker publisher. Finally, they call the
drive node which has the duty of executing three main steps of the algorithm
for calibration process.

5.5 Drive node
The drive node controls the whole actions of the robot during the calibration
process. It commands the robot to drive forward by publishing linear twist
messages in X direction and calls the camera tracker start_tracking service by
sending the request message and awaiting for reply. After short amount of time
(≈ 3 seconds) it stops the robot and calls for stop_tracking service. Afterwards
it calls for yaw_calculation service provided by calibration node for calculation
of the yaw parameter. Similar routines are done for two-rotation drive parts.
The node publishes angular twist messages in Z direction and in order to detect
circle path completion, it subscribes to odometry message of the robot and
calculates the difference between initial yaw angle of the robot at starting
moment of the drive with current angle of it during the drive. It continues
the rotation until the difference between them is bigger than 0.1 radian. Then
it stops the rotation. This method is not very precise but it enough for this
case because the algorithm fits a circle to the trajectory and it does not mater
if the circle is perfectly close or not completed. first_circle_calculation and
second_circle_calculation services are called respectively. Table 5.2 describes
all the available services in the method.

5 System Description 5.5 Drive node 46

Argument Default value Description
camera camera_top The camera topic for the one which will

be calibrated.
straight_speed 0.1 Linear speed of the robot in straightfor-

ward drive section.
rotation_speed 0.1 Angular speed of the robot in two-

rotation section.
rotation_radius 0.158 The radius of the circle for the second

rotation in two rotation drive.
params_to_file false If true, saves the calculated

calibration parameters to
/tmp/v4r_core_calibration_params.yaml
file.

Table 5.1: Launch files arguments for calibration node.

Node Service Description
calibration first_circle_calculation Fits a circle to the cur-

rent camera trajectory with
method described in section
4.2.1.

second_circle_calculation Fits a circle to the current
camera trajectory and calcu-
lates the X and Y parameters
with method described in sec-
tion 4.2.

yaw_calculation Fits a line to the current cam-
era trajectory and calculates
the yaw angle with method de-
scribed in section 4.3.1.

camera_tracker start_tracker Starts the camera tracking.
stop_tracker Stops the camera tracking.

Table 5.2: ROS services of the nodes.

6 Performance Evaluation
This chapter evaluates the proposed method on both computer simulation and
real-life scenarios with an experimental setup and presents gathered data from
the experiments and their analyze.

6.1 Experimental Setup
This section explains the used experimental setup for testing the proposed
method and rviz environment used to debug the method.

6.1.1 V4core Platform
The V4core mobile robot platform is used for testing the presented method
and obtaining data in real-life scenarios. V4core is a mobile robot system for
research and development based on a Pioneer P3-DX [42] platform. Figure 6.1
shows V4core robot that is equipped with three 3D cameras looking to the
floor in front of it. These three are called top, middle and bottom cameras
mounted respectively at 1.33 m, 0.75 m and 0.44 m from the floor. They are
mounted at different poses to get versatile results during the experiments.

6.1.2 Ground Truth Measurement
Ground truth for X, Y and Z lengths of these cameras are measured manually
using tape measure and laser measuring tool and the ground truth angels are
measured by cameras looking at a fiducial marker (figure 6.2) that is fixed in
the environment of the robot.

fiducials [43] ROS package detects this kind of markers by the aruco_detect
node using corner detection. For each marker visible in FoV of camera it
dedicates a coordinate frame. The pose of this fiducial frame relative to the
camera frame can be estimated by knowing the intrinsic parameters of the
camera and the size of the fiducial. The image coordinates of each detected

47

6 Performance Evaluation 6.1 Experimental Setup 48

Bottom 3D camera

Middle 3D camera

Top 3D camera

(d)

(b)
(a)

Figure 6.1: V4core mobile robot system for research and development based
on a Pioneer P3-DX. It is equipped with (a) Two differential-drive
wheels, (b) Hokuyo URG-04LX scanning laser in front, (3D cameras)
ASUS Xtion PRO LIVE, (d) a pan-tilt unit for the top camera.

Figure 6.2: Fiducial marker.

6 Performance Evaluation 6.1 Experimental Setup 49

corner corresponds to a ray in space definable by a linear equation. The pose
estimation code solves a set of these equations to determine the transform from
coordinate frame of the fiducial to the camera’s coordinate system.

Once the marker is placed on the floor and aligned exactly with base coor-
dinate system of the robot, the calculated transform gives the roll, pitch and
yaw angles of the camera in base coordinate system (cf. figure 6.3).

Figure 6.3: Fiducial marker detected in RGB image (left) and the calculated
transformation displayed in rviz (right) from marker frame fid_01
to camera frame camera_link.

The ground truth data is measured for the three cameras mounted on the
V4core and the results are shown in table 6.1.

Camera X(m) Y(m) Z(m) Roll(◦) Pitch(◦) Yaw(◦)

Top camera 0.173 0.020 1.333 0.0 51.6 0.0

Middle camera 0.115 0.020 0.755 0.2 34.4 0.2

Bottom camera 0.280 -0.150 0.440 1.1 26.9 -29.8

Table 6.1: Ground truth data for three cameras in experiments.

6 Performance Evaluation 6.1 Experimental Setup 50

6.1.3 Gazebo Simulation
Gazebo simulator makes it possible to rapidly test algorithms without depending
on real machine using an URDF1 model of the robot. In order to build a model
of the V4core robot an already existing model of the Pioneer P3-DX [44] has
been modified and gazebo plugins are used to give more functionality to the
model. These plugins connect ROS with Gazebo to get sensor readouts from
simulation environment and send motors control signals to it. For V4core
model, two depth camera plugins are added to the Pioneer model at the same
position as their real world positions (Figure 6.4). The top camera is mounted
on a pan-tilt unit on the robot, therefore two revolute joints, each with one
degree of freedom (around Z axis for panning and around Y axis for tilting),
are also added to the joint of top camera and transmission elements are used to
describe the relationship between motors and these joints in the model, which
allow ROS controlling the motors during simulation.

Figure 6.4: GAZEBO simulation of the V4core robot.

1Universal Robotic Description Format

6 Performance Evaluation 6.1 Experimental Setup 51

6.1.4 Rviz
Rviz is a 3D visualization environment to display state information and sensor
data such as camera images, point cloud, laser measurements and path planning
from view point of the robot in ROS. There are also marker messages to send
rviz data in order to visualize and compare and have better insight of what
is going on during an operation of the robot. These markers are added to
implantation of the method for visualizing different steps in marker publisher
node in order to make debugging process easier and less time consuming.

Marker Publisher Node

The marker publisher node uses visualization_msgs/Marker massages to vi-
sualize different information from the method in rviz. Figure 6.5 illustrates
these markers in rviz after a calibration method is completed and table 6.2
gives more detail about all available markers.

Figure 6.5: Markers in rviz.

6 Performance Evaluation 6.1 Experimental Setup 52

T
op

ic
N
am

es
pa

ce
s

C
ol
or

D
es
cr
ip
ti
on

/c
am

er
a_

tr
ac
ke
r

tr
aj
ec
to
ry

G
re
en

Tr
aj
ec
to
ry

of
th
e
ca
m
er
a
in

re
fe
re
nc

e
co
or
-

di
na

te
sy
st
em

.
tr
aj
ec
to
ry
_
sim

ul
at
io
n

Bl
ue

Tr
aj
ec
to
ry

of
th
e

ca
m
er
a

fro
m

ca
m
er
a

tr
ac
ke
r
sim

ul
at
or
.

/c
am

er
a_

po
se

ci
rc
le

R
ed

Fi
tt
ed

ci
rc
le

to
th
e
pr
oj
ec
te
d
ca
m
er
a
tr
a-

je
ct
or
y
du

rin
g
ro
ta
tio

n
dr
iv
es
.

lin
e

D
ar
k
bl
ue

A
n
ar
ro
w

sh
ow

in
g
fit
te
d
lin

e
to

pr
oj
ec
te
d

ca
m
er
a
tr
aj
ec
to
ry

du
rin

g
st
ra
ig
ht
fo
rw

ar
d

dr
iv
e.

pl
an

e_
no

rm
al

Pu
rp
le

A
n

ar
ro
w

sh
ow

in
g
no

rm
al

ve
ct
or

of
de
-

te
ct
ed

gr
ou

nd
pl
an

e.
ca
m
er
a_

po
se

G
re
en

A
n
ar
ro
w

sh
ow

in
g
es
tim

at
ed

po
sit

io
n
of

th
e
ca
m
er
a.

/c
am

er
a_

tr
ac
ke
r_

pr
oj
ec
ti
on

lin
e

Bl
ue

D
as
he

d
lin

es
ho

wi
ng

ca
m
er
a
tr
aj
ec
to
ry

du
r-

in
g

st
ra
ig
ht
fo
rw

ar
d

dr
iv
e
af
te
r
ro
ll

an
d

pi
tc
h
an

gl
es

co
m
pe

ns
at
io
n.

ci
rc
le
_
1

Ye
llo

w
D
as
he

d
lin

es
ho

wi
ng

ca
m
er
a
tr
aj
ec
to
ry

du
r-

in
g
fir
st

ro
ta
tio

n
dr
iv
e
af
te
r
ro
ll
an

d
pi
tc
h

an
gl
es

co
m
pe

ns
at
io
n.

ci
rc
le
_
2

Bl
ue

D
as
he

d
lin

es
ho

wi
ng

ca
m
er
a
tr
aj
ec
to
ry

du
r-

in
g
se
co
nd

ro
ta
tio

n
dr
iv
e
af
te
r
ro
ll

an
d

pi
tc
h
an

gl
es

co
m
pe

ns
at
io
n.

Ta
bl
e
6.
2:

Rv
iz

m
ar
ke
rs

de
sc
rip

tio
n.

6 Performance Evaluation 6.2 Experiments and Results 53

6.2 Experiments and Results
This section explains the outcome of the experiments and introduces a factor
to compare between different results.

6.2.1 Pose Estimation Quality Factor (PEQF)
As a means of comparison between the calibration results of the same cameras
in different scenarios, PEQF is defined as the average of six absolute values
of pose estimation parameters’ error each divided by the absolute value of
correspondence ground truth parameter.

PEQF = 1
6

∣∣∣∣∣Xerror

XGT

∣∣∣∣∣ +
∣∣∣∣∣YerrorYGT

∣∣∣∣∣ + ...+
∣∣∣∣∣θerrorθGT

∣∣∣∣∣ +
∣∣∣∣∣ψerrorψGT

∣∣∣∣∣
 (6.1)

In order to avoid division by zero in cases that the ground truth is zero a
very small number (0.001) is used. The smaller PEQF gets the more accurate
pose estimation result is (less error in the pose estimation).

6.2.2 Simulation
Ground truth data is used to build a simulation model of the robot in Gazebo
simulation environment as described in section 6.1.3 in which the proof-of-
concept tests are conducted. Since the camera tracker is not able to work
properly in simulation environment, camera tracker simulator which has been
described in section 5.2 is used during these experiments. Simulation is ran for
each of three cameras and their poses are estimated. The difference between
ground truth data and estimated pose are calculated to get error. The results
showed that the pose estimation error for translation parameters (X, Y , Z)
was from 0 mm to 3.3 mm and for rotation parameters (φ, θ, ψ) was from 0◦
to 0.5◦ (cf. figures 6.7 – 6.12).

The outcome proved functionality of the method under ideal circumstances
of the simulation considering almost zero pose estimation error for all three
cameras. The source of small errors in the simulation results is approximation in
the line and circle fitting algorithms. PEQF for pose estimations in simulation
are calculated as 0.01, 0.02 and 0.02 respectively for bottom, middle and top
cameras. The resulted data from the experiments are available in tables 6.3 – 6.5.

6 Performance Evaluation 6.2 Experiments and Results 54

6.2.3 Real-Life Scenarios
For real-life scenarios, two kinds of experiments are conducted several times
with V4core robot for each of the three cameras. First, the method is tested
in an area with mosaic floor structure. Secondly, the same experiments are
done in an area with wooden floor structure. Figure 6.6 shows two samples of
these areas. The whole process of calibration for a camera took under three
minutes each time. The pose estimation error is calculated as difference between

Figure 6.6: Mosaic and wooden floor structure.

ground truth data and the mean value of results in both area similar to the
previous section (cf. tables 6.3 – 6.5). Following graphs give more clear insight
of experiments’ results by illustrating data in the tables.

Results

Figures 6.7 and 6.8 illustrate the pose estimation error and its SE2 of the nearest
camera to the floor which is the bottom camera mounted at 44 cm from the
floor. The estimation error amount for the X parameter in the wooden floor and
mosaic floor is around 6 mm. The error of the Y parameter is approximately 5
mm in the wooden floor and the mosaic floor. For the estimation of the Z it
can be seen that the error is close to 3 mm for wooden floor and around 7 mm
for mosaic floor. The rotation parameters graph shows 0.3◦ and 0.4◦ error for
the roll parameter estimation respectively for wooden floor and mosaic floor
areas. For the pitch parameter, examined in the wooden floor, error is 0.3◦
and for the mosaic floor 0.1◦. For the yaw parameter this amount is 0.3◦ for
wooden floor and 0.2◦ for mosaic floor in both areas.

2Standard Error

6 Performance Evaluation 6.2 Experiments and Results 55

Overall, the estimations for the bottom camera is considered as accurate in
both of the wooden floor area with PEQF of 0.1 and the mosaic floor area with
the same PEQF. All errors are under 1 cm for the translation parameters and
under 0.5◦ for the rotation parameters.

Bottom camera X(m) Y(m) Z(m) Roll(◦) Pitch(◦) Yaw(◦)
Ground truth 0.280 -0.150 0.440 1.1 26.9 -29.8

Simulation 0.280 -0.147 0.439 1.1 26.8 -29.8
Simulation error 0.000 0.003 0.001 0.0 0.1 0.0
PEQF = 0.01

Mosaic floor
Data mean 0.286 -0.155 0.447 0.7 26.9 -30.0
Error mean 0.006 0.005 0.007 0.4 0.1 0.2
STDV 0.003 0.003 0.004 0.3 0.1 0.0
SE 0.001 0.001 0.001 0.1 0.0 0.0
PEQF = 0.1

Wooden floor
Data mean 0.274 -0.153 0.443 1.2 26.7 -29.5
Error mean 0.006 0.005 0.003 0.3 0.3 0.3
STDV 0.004 0.004 0.002 0.2 0.3 0.0
SE 0.001 0.001 0.001 0.1 0.1 0.0
PEQF = 0.1

Table 6.3: Bottom camera pose estimation data.

Figures 6.9 and 6.10 show the pose estimation error and its SE for the middle
camera. It is observable that estimation error of the X in the wooden floor has
the highest error around 45 mm while this amount in the mosaic floor is close
to 18 mm. Estimation error of the Y in general has the lowest difference with
ground truth among the other translation parameters with 8 mm and 5 mm.
Estimation error of the Z is around 13 mm for the wooden and mosaic floor.
The roll parameter estimation error in the wooden floor is around 0.7◦ and in
the mosaic floor is about 0.3◦. The highest error is for the pitch parameter in
the wooden floor, close to 2.7◦ and 2.4◦ in the mosaic floor. Estimation error
for the yaw parameter through both areas resulted in almost the same number

6 Performance Evaluation 6.2 Experiments and Results 56

Figure 6.7: Bottom camera translation parameters estimation error.

Figure 6.8: Bottom camera rotation parameters estimation error.

6 Performance Evaluation 6.2 Experiments and Results 57

around 0.2◦.

Overall, the estimations for the middle camera is considered as acceptable.
Because all of the errors for the mosaic floor area are under 2 cm for the
translation parameters and under 2.5◦ for the rotation parameters with PEQF
of 0.4. PEQF of 1.1 quantifies the noticeable weaker performance of the method
in the wooden floor area because of 5 cm error for the translation parameters
and 3◦ for the rotation parameters.

Middle camera X(m) Y(m) Z(m) Roll(◦) Pitch(◦) Yaw(◦)
Ground truth 0.115 0.020 0.755 0.2 34.4 0.2

Simulation 0.113 0.022 0.755 0.0 34.9 0.0
Simulation error 0.002 0.002 0.000 0.2 0.5 0.2
PEQF = 0.02

Mosaic floor
Data mean 0.099 0.025 0.741 0.0 36.8 0.1
Error mean 0.018 0.005 0.014 0.3 2.4 0.2
STDV 0.006 0.008 0.002 0.2 0.4 0.3
SE 0.002 0.002 0.001 0.0 0.1 0.0
PEQF = 0.4

Wooden floor
Data mean 0.070 0.028 0.742 -0.5 37.1 0.1
Error mean 0.045 0.008 0.013 0.7 2.7 0.2
STDV 0.003 0.003 0.002 0.3 0.3 0.4
SE 0.001 0.001 0.001 0.1 0.1 0.1
PEQF = 1.1

Table 6.4: Middle camera pose estimation data.

In figures 6.11 and 6.12, the top camera pose estimation error and its SE are
illustrated. This is the most distanced camera from the floor mounted at 1.33
m height. Estimation error for the X parameter in the wooden floor is about
70 mm and in the mosaic floor around 45 mm. For the Y parameter, error is
about 17 mm for wooden and around 11 mm for mosaic floor. In estimation of
the Z parameter in wooden and mosaic floor this amount is close to 38 mm. In

6 Performance Evaluation 6.2 Experiments and Results 58

Figure 6.9: Middle camera translation parameters estimation error.

Figure 6.10: Middle camera rotation parameters estimation error.

6 Performance Evaluation 6.2 Experiments and Results 59

the roll parameter estimation error is around 1.9◦ and 1.3◦ respectively for the
wooden and mosaic floor. In estimation of the pitch parameter in the wooden
floor error is 2.3◦ and in mosaic floor it is around 2.6◦. The yaw estimation
peaks in the wooden floor and gets more than 4◦ and in the mosaic floor it has
dramatically better performance with 0.4◦ error.

Overall, the estimations for the top camera is considered as not accurate in
both of the wooden floor area with PEQF of 5.7 and the mosaic floor area with
the PEQF of 1.6. The weaker performance in the wooden floor area is also
noticeable in this case. It is also obvious from the graphs that the estimation
errors are way more than the previous cases.

Top camera X(m) Y(m) Z(m) Roll(◦) Pitch(◦) Yaw(◦)
Ground truth 0.173 0.020 1.333 0.0 51.6 0.0

Simulation 0.171 0.022 1.333 0.0 51.4 -0.1
Simulation error 0.002 0.002 0.000 0.0 0.2 0.1
PEQF = 0.02

Mosaic floor
Data mean 0.128 0.022 1.294 0.7 54.2 0.4
Error mean 0.045 0.011 0.039 1.3 2.6 0.4
STDV 0.009 0.009 0.005 1.0 0.4 0.1
SE 0.003 0.002 0.002 0.3 0.1 0.0
PEQF = 1.6

Wooden floor
Data mean 0.103 0.029 1.296 1.9 53.9 4.1
Error mean 0.070 0.017 0.037 1.9 2.3 4.1
STDV 0.009 0.009 0.006 1.3 0.4 0.0
SE 0.003 0.003 0.002 0.4 0.1 0.0
PEQF = 5.7

Table 6.5: Top camera pose estimation data.

The simulation results have already proved that the method is able to
estimate pose of the camera accurately. The calculated SE values for real-life
scenarios, which are illustrated in the graphs, show the maximum variation from

6 Performance Evaluation 6.2 Experiments and Results 60

Figure 6.11: Top camera translation parameters estimation error.

Figure 6.12: Top camera rotation parameters estimation error.

6 Performance Evaluation 6.2 Experiments and Results 61

error mean of 3 mm for the translation parameters and 0.4◦ for the rotation
parameters. This proves the internal consistency of the method which means
estimated parameters during the multiple experiments are almost the same.
Therefore, the source of the pose estimation errors is in the other participating
parts of the calibration process such as camera tracker or the camera itself.
Comparing calculated PEQFs for each camera in different areas clarifies the
effect of the floor structure in the pose estimation processes, which only effects
the camera tracker algorithm. This incident is investigated more in the next
chapter. Another noticeable point when the camera is getting far from the floor
in both scenarios is the increment of error in estimation of the Z parameter
and the rotation parameters which caused by inaccurate depth information
from the camera.

6 Performance Evaluation 6.2 Experiments and Results 62

6.2.4 Camera Tracking Error
In order to evaluate the performance of the camera tracker another kind of
experiment is staged. In which the camera trajectory data from camera tracker
and fitted circle to it are recorded during a circular path drive of the robot in
the both wooden and mosaic floor areas using all three cameras. The ground
truth trajectory of the cameras are also calculated by knowing the ground truth
pose of them from section 6.1.2.

Figures 6.13 and 6.14 illustrate comparison between these trajectories for
all three cameras. Bottom camera provides very good tracking results in both
areas. Because the camera tracker trajectories are almost in a perfect circle
shape and fitted circles to them are very close to the ground truth trajectories.
This type of good matching results in accurate estimation of the parameters
with PEQF of 0.1 in both areas.

The PEQF increases for the middle camera in wooden floor area to 1.1
compare to its value in the mosaic floor which is 0.4. This means a weaker
performance of pose estimation in wooden floor area. The reason behind this
is obvious from comparing the camera trajectories for middle camera in both
areas. The camera trajectory for this camera in the wooden floor area has
much more tracking error than then equivalent on in the mosaic floor area.

The PEQF for the top camera in mosaic floor is 1.6 but it increases dramat-
ically to 5.7 in the wooden floor area. The results show that the trajectory
tracking for this camera has more tracking error than the others in the mosaic
floor area and it has the the most error for tracking among the other in wooden
floor area.

Tracking error increment is also noticeable by looking to the results of this
experiment from bottom camera to the top one in each area. As the camera
gets higher from the floor the tracking trajectory accuracy starts to decline.

6 Performance Evaluation 6.2 Experiments and Results 63

Figure 6.13: Ground truth (—), tracking trajectory (- - -) and circle fitting
(· · ·) result for three cameras mounted at different heights (0.44m,
0.75m, 1.33m) from mosaic floor during a circular path drive of
the robot.

6 Performance Evaluation 6.2 Experiments and Results 64

Figure 6.14: Ground truth (—), tracking trajectory (- - -) and circle fitting
(· · ·) result for three cameras mounted at different heights (0.44m,
0.75m, 1.33m) from wooden floor during a circular path drive of
the robot.

7 Conclusion
The simulation experiment results proved functionality of the method under
ideal circumstances, considering almost zero pose estimation error for all three
cameras.

The real-life scenarios provided pose estimations data for the three cameras
mounted on the V4core robot at different poses in two areas with the wooden
and mosaic floor structure. These experiments revealed the internal consis-
tency of the method (cf. figures 6.7 – 6.12). They also showed that there are
other sources causing the pose estimation errors in participating parts of the
calibration process such as the camera tracker.

In order to evaluate the performance of the camera tracker, the camera
trajectory data and fitted circle to it are recorded during a circular path drive
of the robot in the both wooden and mosaic floor areas using all three cameras.
The ground truth trajectory of the cameras are also calculated by knowing the
ground truth pose of them (cf. 6.13 – 6.14). The outcome of this experiment
proved that the camera tracker has better performance on the mosaic floor
area compared to the wooden one which leads to less estimation error in this
area. The reason behind this incident is the lack of enough traceable features
(texture) in the wooden floor area compare to the mosaic floor area.

Two other noticeable points in both real-life scenarios and camera tracker
error experiments, when the camera is getting far from the floor, are:

• the increment of error in estimation of the Z parameter and the rotation
parameters, and

• accuracy decline in the tracking trajectory quality.

This result was expected because it is already shown in previous studies that
the depth accuracy of a 3D camera decreases when the distance between the
camera and the planar surface increases [45].

This study focused on presenting a novel autonomous and fast method for
extrinsic calibration of a 3D camera on board of a mobile robot without any

65

7 Conclusion 7 Conclusion 66

need for artificial targets, using only the data provided by camera and and
mobility of the robot.

The simulation results proved the concept and the real-life scenarios also
demonstrated that the method provided good results in term of accuracy for
practical cases, with consideration of the accuracy range of the 3D camera
and sufficient texture of working environment of the robot. It is known from
stereo systems that the floor always contains some texture or stains which are
sufficient to be tracked contrary to walls, that might be really textureless.

The method has a significant advantage over present systems to use the
existing static scene of the robot’s working environment as a calibration pattern.
Another advantage of the method is its speed. The full calibration is done
autonomously under three minutes, unlike manual methods which are much
more slower and human intervention is always needed in the calibration process.
Furthermore, the robot is able to check its calibration when needed.

Future studies should examine the effects of the intrinsic calibration of the 3D
camera on the method to obtain more accuracy and refinement of the method
to live camera calibration during SLAM without need for any predefined paths
with optimization of the camera tracker algorithm.

Bibliography
[1] S. M. Grigorescu, G. Macesanu, T. T. Cocias, D. Puiu, and F. Moldoveanu,

„Robust camera pose and scene structure analysis for service robotics,“
Robotics and Autonomous Systems, vol. 59, no. 11, pp. 899–909, 2011.

[2] L. Shao, J. Han, D. Xu, and J. Shotton, „Computer vision for rgb-d sen-
sors: kinect and its applications [special issue intro.],“ IEEE transactions
on cybernetics, vol. 43, no. 5, pp. 1314–1317, 2013.

[3] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, „3-d mapping
with an rgb-d camera,“ IEEE Transactions on Robotics, vol. 30, no. 1,
pp. 177–187, 2014.

[4] T. Fäulhammer, R. Ambruş, C. Burbridge, M. Zillich, J. Folkesson, N.
Hawes, P. Jensfelt, and M. Vincze, „Autonomous learning of object models
on a mobile robot,“ IEEE Robotics and Automation Letters, vol. 2, no. 1,
pp. 26–33, 2017.

[5] K. Tateno, F. Tombari, and N. Navab, „Real-time and scalable incremental
segmentation on dense slam,“ in Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on, IEEE, 2015, pp. 4465–4472.

[6] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, „Real-time
3d reconstruction at scale using voxel hashing,“ ACM Transactions on
Graphics (TOG), vol. 32, no. 6, p. 169, 2013.

[7] C.-C. Wang, „Extrinsic calibration of a vision sensor mounted on a robot,“
ieee Transactions on Robotics and Automation, vol. 8, no. 2, pp. 161–175,
1992.

[8] C McGlone, E Mikhail, and J Bethel, „Manual of photogrammetry,
american society for photogrammetry and remote sensing,“ Bethesda,
MD, 2004.

[9] (2015). Camera calibration, [Online]. Available: https://docs.opencv.
org/3.1.0/dc/dbb/tutorial_py_calibration.html.

[10] (2018). Camera calibration, [Online]. Available: https://www.mathworks.
com/help/vision/camera-calibration.html.

67

https://docs.opencv.org/3.1.0/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/3.1.0/dc/dbb/tutorial_py_calibration.html
https://www.mathworks.com/help/vision/camera-calibration.html
https://www.mathworks.com/help/vision/camera-calibration.html

Bibliography Bibliography 68

[11] M. P. R. K. L. Van, „Gool. self calibration and metric reconstruction in
spite of varying and unknown internal camera parameters,“ in ICCV’98,
1998.

[12] S. J. Maybank and O. D. Faugeras, „A theory of self-calibration of a
moving camera,“ International Journal of Computer Vision, vol. 8, no. 2,
pp. 123–151, 1992.

[13] R. I. Hartley, „An algorithm for self calibration from several views,“ in
Cvpr, Citeseer, vol. 94, 1994, pp. 908–912.

[14] Q.-T. Luong and O. D. Faugeras, „Self-calibration of a moving camera
from point correspondences and fundamental matrices,“ International
Journal of computer vision, vol. 22, no. 3, pp. 261–289, 1997.

[15] G. Carrera, A. Angeli, and A. J. Davison, „Slam-based automatic extrinsic
calibration of a multi-camera rig,“ in Robotics and Automation (ICRA),
2011 IEEE International Conference on, IEEE, 2011, pp. 2652–2659.

[16] S. Miller, A. Teichman, and S. Thrun, „Unsupervised extrinsic cali-
bration of depth sensors in dynamic scenes,“ in Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on, IEEE,
2013, pp. 2695–2702.

[17] S. Li, P. N. Pathirana, and T. Caelli, „Multi-kinect skeleton fusion for
physical rehabilitation monitoring,“ in Engineering in Medicine and
Biology Society (EMBC), 2014 36th Annual International Conference of
the IEEE, IEEE, 2014, pp. 5060–5063.

[18] D. A. Forsyth and J. Ponce, Computer vision: a modern approach. Prentice
Hall Professional Technical Reference, 2002.

[19] J. Heikkila, „Geometric camera calibration using circular control points,“
IEEE Transactions on pattern analysis and machine intelligence, vol. 22,
no. 10, pp. 1066–1077, 2000.

[20] J. Heikkila and O. Silven, „A four-step camera calibration procedure with
implicit image correction,“ in Computer Vision and Pattern Recognition,
1997. Proceedings., 1997 IEEE Computer Society Conference on, IEEE,
1997, pp. 1106–1112.

[21] B. Ribbens, V. A. Jacobs, C. Vuye, J. Buytaert, J. Dirckx, and S. Vanlan-
duit, „High-resolution temporal profilometry using fourier estimation,“
Recent advances in topography research, pp. 61–108, 2013.

[22] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

Bibliography Bibliography 69

[23] Z. Zhang, „A flexible new technique for camera calibration,“ IEEE Trans-
actions on pattern analysis and machine intelligence, vol. 22, no. 11,
pp. 1330–1334, 2000.

[24] R. Tsai, „A versatile camera calibration technique for high-accuracy 3d
machine vision metrology using off-the-shelf tv cameras and lenses,“ IEEE
Journal on Robotics and Automation, vol. 3, no. 4, pp. 323–344, 1987.

[25] S. Chhaniyara, K. ALTHOEFER, and L. D. SENEVIRATNE, „Visual
odometry technique using circular marker identification for motion pa-
rameter estimation,“ in Advances In Mobile Robotics, World Scientific,
2008, pp. 1069–1076.

[26] M. Maimone, Y. Cheng, and L. Matthies, „Two years of visual odometry
on the mars exploration rovers,“ Journal of Field Robotics, vol. 24, no. 3,
pp. 169–186, 2007.

[27] D. Marimon, Y. Maret, Y. Abdeljaoued, and T. Ebrahimi, „Particle
filter-based camera tracker fusing marker and feature point cues,“ in
Proceedings of IS&T/SPIE Conference on Visual Communication and
Image Processing, vol. 6508, 2007.

[28] M. Irani and P Anandan, „About direct methods,“ in International
Workshop on Vision Algorithms, Springer, 1999, pp. 267–277.

[29] T. Brox, C. Bregler, and J. Malik, „Large displacement optical flow,“
in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, IEEE, 2009, pp. 41–48.

[30] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, „Keyframe-
based visual–inertial odometry using nonlinear optimization,“ The In-
ternational Journal of Robotics Research, vol. 34, no. 3, pp. 314–334,
2015.

[31] L. Wei, C. Cappelle, Y. Ruichek, and F. Zann, „Gps and stereovision-
based visual odometry: application to urban scene mapping and intelligent
vehicle localization,“ International Journal of Vehicular Technology, vol.
2011, 2011.

[32] B. K. Horn and B. G. Schunck, „Determining optical flow,“ Artificial
intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.

[33] B. D. Lucas, T. Kanade, et al., „An iterative image registration technique
with an application to stereo vision,“ 1981.

[34] (2005). Computer vision, [Online]. Available: http : / / courses . cs .
washington.edu/courses/cse455/05wi/notes/LucasKanade.ppt.

http://courses.cs.washington.edu/courses/cse455/05wi/notes/LucasKanade.ppt
http://courses.cs.washington.edu/courses/cse455/05wi/notes/LucasKanade.ppt

Bibliography Bibliography 70

[35] C. Tomasi and T. Kanade, „Detection and tracking of point features,“
1991.

[36] M. A. Fischler and R. C. Bolles, „Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,“ Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[37] D. Eberly, „Least squares fitting of data,“ Chapel Hill, NC: Magic Soft-
ware, 2000.

[38] (2015). The vision4robotics library, [Online]. Available: https://www.
acin.tuwien.ac.at/en/vision-for-robotics/software-tools/
v4r-library/.

[39] E. Rosten, R. Porter, and T. Drummond, „Faster and better: a machine
learning approach to corner detection,“ IEEE transactions on pattern
analysis and machine intelligence, vol. 32, no. 1, pp. 105–119, 2010.

[40] J. Prankl, A. Aldoma, A. Svejda, and M. Vincze, „Rgb-d object modelling
for object recognition and tracking,“ in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on, IEEE, 2015, pp. 96–
103.

[41] (2017). Point cloud library, [Online]. Available: http://pointclouds.
org/about.

[42] (2016). Pioneer 3-dx, [Online]. Available: http://www.mobilerobots.
com/ResearchRobots/PioneerP3DX.aspx.

[43] (2018). Fiducials, [Online]. Available: https://github.com/UbiquityRobotics/
fiducials.

[44] (2018). Pioneermodel, [Online]. Available: https://github.com/SD-
Robot-Vision/PioneerModel.

[45] H. Haggag, M. Hossny, D. Filippidis, D. Creighton, S. Nahavandi, and
V. Puri, „Measuring depth accuracy in rgbd cameras,“ in Signal Pro-
cessing and Communication Systems (ICSPCS), 2013 7th International
Conference on, IEEE, 2013, pp. 1–7.

https://www.acin.tuwien.ac.at/en/vision-for-robotics/software-tools/v4r-library/
https://www.acin.tuwien.ac.at/en/vision-for-robotics/software-tools/v4r-library/
https://www.acin.tuwien.ac.at/en/vision-for-robotics/software-tools/v4r-library/
http://pointclouds.org/about
http://pointclouds.org/about
http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
https://github.com/UbiquityRobotics/fiducials
https://github.com/UbiquityRobotics/fiducials
https://github.com/SD-Robot-Vision/PioneerModel
https://github.com/SD-Robot-Vision/PioneerModel

Erklärung
Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Drit-
ter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt
wurde. Die aus anderen Quellen oder indirekt übernommenen Daten und
Konzepte sind unter Angabe der Quelle gekennzeichnet. Die Arbeit wurde
bisher weder im In– noch im Ausland in gleicher oder in ähnlicher Form in
anderen Prüfungsverfahren vorgelegt.

Wien, 15. Juni 2018

Farhoud Malekghasemi

	1 Introduction
	1.1 Problem Description

	2 Related Work
	3 Background
	3.1 Pose in 3D Space
	3.1.1 Translation Transformation
	3.1.2 Rotation Transformation
	Euler Angels
	RPY Angels
	Quaternion

	3.2 Camera Calibration
	3.2.1 Extrinsic Parameters
	3.2.2 Intrinsic Parameters
	3.2.3 Distortion Coefficients
	Radial Distortion
	Tangential Distortion

	3.2.4 Camera Parameters Estimation
	DLT Method

	3.3 Visual Motion Estimation
	3.3.1 Direct Methods
	3.3.2 Feature Based Methods

	4 Approach
	4.1 Ground Plane Detection
	4.2 Two-Rotation Drive
	4.2.1 Circle Fit Algorithm

	4.3 Straightforward Drive
	4.3.1 Line Fit Algorithm

	5 System Description
	5.1 V4R Camera Tracker Node
	5.2 Camera Tracker Simulator Node
	5.3 Planar Segmentation Node
	5.4 Calibration Node
	5.5 Drive node

	6 Performance Evaluation
	6.1 Experimental Setup
	6.1.1 V4core Platform
	6.1.2 Ground Truth Measurement
	6.1.3 Gazebo Simulation
	6.1.4 Rviz
	Marker Publisher Node

	6.2 Experiments and Results
	6.2.1 Pose Estimation Quality Factor (PEQF)
	6.2.2 Simulation
	6.2.3 Real-Life Scenarios
	Results

	6.2.4 Camera Tracking Error

	7 Conclusion

