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Abstract—Capability Hardware Enhanced RISC Instructions
(CHERI) extend conventional ISAs with capabilities that can
enable fine-grained memory protection and scalable software
compartmentalisation. CHERI-RISC-V is an extended version
of the RISC-V ISA with support for CHERI, and Flute is
an open-source 64-bit RISC-V processor with a five-stage, in-
order pipeline. This case study presents the formal verification
of CHERI-Flute, a modified version of Flute that implements
CHERI-RISC-V, against the Sail CHERI-RISC-V specification.
To the best of our knowledge, this is the first extensive formal
verification of a CHERI-enabled processor.

We first translated relevant portions of the Sail CHERI-
RISC-V specification to SystemVerilog Assertions. Then we
formulated and proved four classes of end-to-end correctness
properties about CHERI-Flute, covering the CHERI instructions
and certain liveness properties about the entire processor. None of
these results are routine—they all rely on novel proof engineering
methodologies that extract microarchitectural invariants to serve
as lemmas for the end-to-end proofs.

This work exposed several previously-unknown bugs in
CHERI-Flute, most of which occur in the implementation of
sophisticated combinational logic for certain CHERI instructions.

I. INTRODUCTION

Despite decades of hardening and mitigation efforts—such
as stack protection, garbage collection, and virtualisation—
memory safety issues remain a common and dangerous source
of security vulnerabilities. A 2019 report by Microsoft [1]
states that ‘70% of the vulnerabilities addressed through a se-
curity update each year continue to be memory safety issues’.
The root cause of this phenomenon is the pervasive use of
an unsafe memory model for interpreting the C programming
language [2]. This model can be traced back to the PDP-
11 and presumes that memory is simply a linear array of
individually addressable bytes. This has induced a number of
deeply ingrained assumptions about pointer behaviour that go
beyond what is guaranteed by the C specification and rely only
on ‘implementation-defined behaviour’.

The Capability Hardware Enhanced RISC Instructions
(CHERI) project offers an alternative model that provides bet-
ter memory safety [3]. Its main features include a new machine
representation of C pointers called capabilities, and extensions
to existing instruction set architectures (ISA) that enable the
secure manipulation of capabilities. For intuitive understand-
ing, capabilities can be regarded as traditional pointers with
extra properties that make them more like object references in
a memory-managed language, such as Java. On one hand, this
model continues to support limited arithmetic operations on

capabilities that, for example, allow a loop to iterate through
an array by repeatedly incrementing a capability. On the other
hand, it makes it impossible to construct arbitrary capabilities
that can be dereferenced—a significant departure from the
usual ‘unsafe’ understanding of the C programming language.

Well-developed ISAs that integrate capabilities include
CHERI-RISC-V and CHERI-MIPS [4], which are extended
from RISC-V and MIPS. Rigorous engineering techniques
have been used extensively in their development [5]. Specif-
ically, Sail [6] specifications of these CHERI ISAs exist that
give a precise and executable definition to each instruction.

This case study explores the formal verification of an open
source implementation of CHERI-RISC-V. Flute is a 64-bit
RISC-V processor with a five-stage, in-order pipeline [7]
released by Bluespec Inc. in late 2018. Researchers at
Cambridge University have extended Flute with support for
CHERI-RISC-V [8], and this extended implementation, named
CHERI-Flute, was our verification target.

A. Contributions

We have verified several classes of properties for CHERI-
Flute using the JasperGold formal verification environment [9].
The scope of our verification comprises the correct execution
of all 80-plus CHERI instructions as well as certain liveness
properties for the processor as a whole. Our proof does not
cover the existing RISC-V instructions, which do not involve
capabilities. Formal verification methodologies for these in-
structions are well-established and so they are not of central
interest in this case study.

To the best of our knowledge, this is the first extensive
formal verification of a CHERI processor implementation. Our
aim in this paper is to make the methodology accessible for
future verification projects on novel architectures, including
ones that target capability hardware. All our verification code
is available open-source [10].

We have deliberately taken an end-to-end approach. That
is, properties are proved for the entire core, as opposed to
individual components such as the individual execution units.
In CHERI-Flute, the hardware that deals with capabilities is
novel, complex, and distributed across the pipeline stages.
Our end-to-end approach avoids the necessity to isolate this
hardware and characterise its environment.

Our verification results all rely on novel proof engineering
methodologies that extract microarchitectural invariants to
serve as lemmas for the end-to-end proofs. Some of these
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Fig. 2. Pipeline of Flute, including forwarding paths

invariants are of interest in themselves. For example, one
of them shows that the core can never create a malformed
capability—an important consistency invariant.

This case study exposed several previously-unknown bugs
in the implementation of CHERI-Flute, which have all been
reported to and confirmed by the designers [11], [12], [13].
Most of these bugs occur in the implementation of sophis-
ticated bit manipulation logic for CHERI-related instructions,
demonstrating the effectiveness of formal verification in catch-
ing subtle bugs in a novel processor design. In some cases, we
have been able to provide verified bugfixes to the designers.

II. BACKGROUND TO CAPABILITY ARCHITECTURE

CHERI extends ISAs with a new hardware representation
for pointers and new instructions for manipulating them.
See [4] for its full specification and [14] for a high-level
summary of the large research effort surrounding CHERI.

Instead of using 32- or 64-bit integers to represent point-
ers, CHERI uses a richer representation called capabilities
that can be stored in capability registers in the core or in
capability-sized and capability-aligned words in the memory.
The program counter, which usually holds integer addresses,
is replaced by the program counter capability (pcc).

A capability, illustrated in Fig. 1, contains additional in-
formation compared to a traditional pointer, most notably
including the following.
Validity Tag. A 1-bit tag that indicates whether the capability

is valid. Such a tag is associated with ‘each location that
can hold a capability—whether a capability register or a
capability-sized, capability-aligned word of memory’ and
it ‘tracks capability validity for the value stored at that
location’ [4]. When a location that can hold a capability
is untagged, its contents are simply data and hence do
not grant any privilege.

Permissions. A bitmask that controls what the capability can
be used for, such as loading or storing from the memory,
or setting pcc to execute code.

Bounds. A capability with a set of permissions is not by
default authorised to exercise them at all addresses.
Instead, the capability also encodes a range of addresses
within which it may exercise its permissions.

CHERI instructions operate on capabilities in accordance to
security principles such as privilege minimisation, monotonic-
ity, and provenance; these are enforced by checking the Valid-
ity Tag, Permissions, Bounds, and other information attached
to capabilities [4]. For example, only a valid capability, with

permission to load, and whose address is within its bounds,
can be used to load from that memory address. Otherwise, the
processor traps and potentially causes the program to crash.
The checks performed by each CHERI instruction are known
as its guard conditions, and the correctness of their hardware
implementation is crucial to the security protections provided
by CHERI.

III. BASICS OF CHERI-RISC-V
CHERI-RISC-V extends the RISC-V ISA with support for

CHERI [4]. This case study treats its 64-bit variant.

A. Compression of Capabilities

When stored in memory, capabilities are represented in
a compressed format [4], [15]. A compressed capability in
64-bit CHERI-RISC-V takes 128 bits (plus an out-of-band
validity tag bit)—twice as many bits as a traditional pointer.
In the capability registers of the core, however, they are
represented in a decompressed format that occupies even more
bits. Decompression and compression are done transparently
when they are moved between memory and the core.

Capability compression is lossy. That is, there exist decom-
pressed capabilities that do not correspond to any compressed
capability. These decompressed capabilities are termed unrep-
resentable. Such a capability poses a significant problem if
it appears in the core, since there is no well-defined way to
store it to the memory—as that would require compressing the
capability first. Part of our verification is to show that unrep-
resentable capabilities can never be created by the processor.

B. Sail CHERI-RISC-V Instruction Specification

The definition of each CHERI instruction in the Sail
CHERI-RISC-V specification [16] roughly takes the form of
Algorithm 1. An instruction can retire either unsuccessfully,
due to violations of one of its guard conditions, or successfully,
after modifying the architectural state of the processor. As will
be seen in Section V-A, the distinction between successful
and unsuccessful retirement is central to the way we specify
instruction correctness in this work.

IV. FLUTE AND CHERI-FLUTE

Flute [7] is a 64-bit RISC-V processor with a five-stage, in-
order pipeline designed for low- to medium-end applications.
The processor is designed in Bluespec SystemVerilog (BSV)
and has been synthesised and tested on Xilinx FPGAs.

Flute has the basic pipelined microarchitecture commonly
found in computer architecture textbooks [17], featuring a
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Algorithm 1: Typical CHERI instruction specification
if ¬guard condition 1 then retire FAIL(TagViolation);
else if ¬guard condition 2 then retire
FAIL(PermitLoadViolation);

. . .
else if ¬guard condition 12 then retire
FAIL(LengthViolation);

else
modify architectural state;
retire SUCCESS;

end

Fetch (F ), a Decode (D), an Execute (E), a Memory (M ),
and a Write-back (W ) stage. It also comes with forwarding
mechanisms to make the pipeline more efficient. The regis-
ter file (regfile) consists of 32 general-purpose registers
r0, . . . , r31, where r0 is hardwired to zero.

Fig. 2 illustrates the pipeline of Flute with its stages occu-
pied by instructions I1, . . . , I5. Outgoing paths from stage M
and W , including forwarding paths, are highlighted in red and
blue respectively. These paths carry information about pending
updates to the register file: the pending update in stage W
writes the value vW into register rdW , and the pending update
in stage M writes the value vM into register rdM .

To articulate properties, we define two subscripted reg-
ister files: regfileM , which contains the contents of
regfile after committing the pending update in stage W ,
and regfileE , which contains the contents of regfile
after committing the pending updates in both stages W and M ,
in that order. The subscripted versions are essentially what the
register file appears to be to stages M and E after forwarded
values are taken into account. Hence their subscripts.

A. CHERI-Flute

CHERI-Flute [18] extends Flute with support for CHERI-
RISC-V. We sketch here the main relevant changes.

First, the registers are widened to become hybrid registers
that can be used as both integer and capability registers.
Second, most of the computation supporting the CHERI
instructions—calculating bounds, incrementing addresses, and
so on—is implemented within the ALU located in stage E.
Finally, circuitry is added to stage M that partially checks
whether any CHERI instruction passing through it violates
the instruction’s guard conditions. The rest of the checks are
performed earlier by the ALU. While these checks could
in principle all be placed in the ALU, this would cause
unacceptably long delays in stage E for certain instructions.
Hence they are spread across stages E and M instead.

V. FORMULATING CORRECTNESS

Our formal verification flow is driven by JasperGold. The
design is first compiled into SystemVerilog using the open-
source bsc compiler and then imported into JasperGold. This
pre-compilation is necessary because JasperGold cannot read
the Bluespec SystemVerilog source of CHERI-Flute directly.

The specification for correctness, which in our case is the
Sail CHERI-RISC-V specification, also needs to be mapped
into properties—written as SystemVerilog Assertions (SVA)—
about the compiled SystemVerilog design. Tooling does not
exist to achieve this automatically, so for this case study we
manually translated those portions of the Sail specification
necessary for the verification effort into SVA. This yielded
more than 1000 lines of data structures and functions of
SystemVerilog and almost 100 correctness properties in SVA.
As these properties are about a compiled design, a certain
amount of ‘reverse engineering’ was needed to identify the
relevant signal names.

A. The Instruction Specification Framework

A RISC-V processor is simple enough to formulate correct-
ness of its instructions in the classical, direct way that will be
familiar from many examples in the literature.

Let α be an abstraction function that maps each mi-
croarchitectural state of CHERI-Flute to a CHERI-RISC-V
architectural state. Write s

I−→ s′ to mean that a CHERI-
Flute processor retires instruction I and thereby transitions
from microarchitectural state s to microarchitectural state s′.
Similarly, write S

I−→ S′ to mean that, according to the
CHERI-RISC-V specification, executing instruction I alters
the architectural state S to architectural state S′. Note that
both transition relations are deterministic.

Now for the implementation of an instruction I to conform
to specification, we require that

∀s s′. s I−→ s′ =⇒ α(s)
I−→ α(s′) (1)

where s ranges over the reachable microarchitectural states of
CHERI-Flute. The reachability of s is, of course, crucial; this
is further discussed in Section VI-B.

Now the formulation Prop. (1) faces a significant prac-
tical challenge. A CHERI instruction can be retired either
successfully or unsuccessfully—and, in the latter case, there
are sometimes more than a dozen ways in which it can fail.
So formulating correctness as in Prop. (1) will require a
full specification of what the processor’s behaviour, and the
resulting architectural state, should be for each kind of failure.
This would be ideal, but also greatly increases the effort of
formulating the required properties.

We therefore formulate a weaker notion of correctness that
greatly simplifies the properties, albeit at the cost of a less
comprehensive verification. Define two checkmarked relations
as follows. For any instruction I and microarchitectural states
s and s′, the relation s

IX−→ s′ holds iff s
I−→ s′ and

instruction I is retired successfully. And for any instruction I
and architectural states S and S′, the relation S IX−→ S′ holds
iff S I−→ S′ and all instruction I’s guard conditions are met.

Now, consider the property expressed by the proposition

∀s s′. s IX−→ s′ =⇒ α(s)
IX−→ α(s′) (2)

which says that any successful retirement of instruction I oc-
curs in compliance with the specification. Proving the stronger
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Fig. 3. Microarchitectural state with register-only instruction

condition Prop. (1) shows the processor complies with the full
specification indicated by Algorithm 1, which has numerous
branches leading to different types of failures. Prop. (2) is a
weaker condition but greatly simplifies the properties.

This simplified property cannot detect a faulty processor
with incorrect unsuccessful retirement. That is, a processor that
correctly prevents a certain CHERI instruction that violates its
guard conditions from being retired at the end of the pipeline,
but which nontheless produces an incorrect processor state
according to the CHERI RISC-V specification. The property
will, however, still detect processors with incorrect successful
retirement. That is, processors that produce the wrong archi-
tectural state upon a CHERI instruction being retired the end
of the pipeline, or processors that retire a CHERI instruction at
the end of the pipeline that violates its guard conditions. This
ensures that none of the security guarantees offered by CHERI
is compromised. To see this, suppose for contradiction that
Prop. (2) is true for some faulty processor which incorrectly
retires successfully some instruction I, i.e., there exist s and
s′ such that the relation s IX−→ s′ holds but some of instruction
I’s guard conditions are not met. Consequently, by Prop. (2),
the relation α(s)

IX−→ α(s′) also holds. But this implies that
all of instruction I’s guard are are met, which contradicts
the assumption. Section IX discusses ways to relatively easily
obtain properties that reflect the stronger specification.

B. Expressing Specifications as Properties

For mechanised formal verification in JasperGold, it is
of course necessary to articulate the intent of the abstract
correctness condition described by Prop. (2) as a group of
SystemVerilog expressions. In practice, this means

(i) characterising the microarchitectural states s and s′ for
which s IX−→ s′ holds, and

(ii) defining the mapping α for at least microarchitectural
states s and s′ where s IX−→ s′ does hold.

Note that expressing (i) means characterising when the in-
struction I has retired successfully. One of the contributions
of our methodology is to observe that this can be tied to the
detection of certain microarchitectural states. Note also that
(ii) is much simpler than having also to define the architectural
states resulting from every kind of unsuccessful retirement.

In practice, we have developed these properties in separate
groups for each of three distinct classes of instructions that
share common structure. The sections that follow explain
these. In the actual proof code, a systematic scheme of
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Fig. 4. Microarchitectural state with state abstractions

‘property templates’ is employed to makes it easy to create
and manage almost 100 properties without having to maintain
multiple copies of boilerplate code. It also allowed us to
quickly implement and validate proof engineering ideas for
a large batch of properties, improving research efficiency.

C. Register-Only CHERI Instructions

A register-only CHERI instruction computes a function of
its operands and writes a result into a given register, causing
a trap if any of its guard conditions is not met.

Recall from Section V-B that two expressions are needed
to formulate the required correctness properties. To express
(i), consider Fig. 3, which shows the microarchitectural state
when some register-only instruction I1 is in stage W . Denote
this state by s and the state right after instruction I1 is
retired by s′. Since stage W is at the end of the pipeline,
any instruction reaching stage W is retired at the end of the
current cycle. Moreover, any instruction reaching stage W can
no longer cause traps, so it is bound to be retired successfully.
Conversely, if a register-only instruction is retired successfully,
then it must have been in stage W just before its retirement.
So s

I1X−→ s′ and (i) can be expressed simply by checking
whether the given instruction is in stage W .

To express (ii), consider Fig. 4, which illustrates the mi-
croarchitectural state of CHERI-Flute in some state s that is
about to successfully retire instruction I1 and enter state s′,
i.e., s IX−→ s′. Hence α(s) and α(s′) must give the architectural
states right before and after instruction I1 is retired. Then
observe that

• α(s) can be obtained directly from the current register
file, pcc, etc., and

• α(s′) can be obtained by combining the current register
file, pcc, etc. with the pending updates contained in the
output of stage W ,

so (ii) can be expressed as a function of state s.
Given formulations of expressions (i) and (ii), the SVA

property for a register-only instruction with register addresses
rd and rs , and immediate data imm will say that if stage W
contains an instruction with opcode OP, then

• rdW = rd ,
• vW = resultOP (regfile [rs] , imm), and
• guardOP (regfile [rs] , imm).
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Where resultOP and guardOP are SystemVerilog functions
translated from the Sail specification of the instruction with
opcode OP that compute its write-back result and guard
conditions respectively.

D. Branching CHERI Instructions

A branching CHERI instruction redirects the control flow
and (optionally) saves the return address in a given register. Of
course, it also has guard conditions to ensure that the updated
pcc has the right Bounds and Permissions. This creates
an opportunity to decompose what a branching instruction
does into two operations: checking its guard conditions and
(optionally) saving the return address, and (conditionally or
unconditionally) redirecting the control flow.

The first of these is just what a register-only instruction
does, so we can simply reuse the property template developed
in Section V-C. So the rest of this section is devoted to formu-
lating the correctness properties about the second operation.

First, it is necessary to briefly explain how the control
flow is managed in CHERI-Flute. Initially, stage F fetches
an instruction from fetch_addr and predicts the address
of the next instruction using the branch predictor. This pre-
dicted address (pred_addr) is by default used as the next
fetch_addr, and it is also passed along the pipeline with
the currently fetched instruction until it reaches stage E,
where the ALU computes the correct address of the next
instruction (next_addr). The processor then compares the
computed next_addr with the pred_addr it received.
If the two addresses do not match, then a branch mispre-
diction has occurred, and stage F has been fetching the
wrong instructions and passing them along the pipeline. To
rectify this, fetch_addr is set to next_addr, and all
pipeline stages prior to stage E are flushed. Otherwise, if the
branch prediction has been correct, no flushing is needed and
fetch_addr is updated in the default way.

Fig. 5 shows the microarchitectural state when some branch-
ing instruction I3 is in stage E. To formulate the correctness
properties about control flow redirection, the framework devel-
oped in Section V-A is slightly generalised. Specifically, if a
branching instruction I is in stage E and a branch mispredic-
tion has occurred, then instruction I is now considered ‘about
to be retired successfully’ insofar as control flow redirection
is concerned, and it is now considered to have been ‘retired
successfully’ after fetch_addr is set to next_addr. This
gives the expression (i) discussed in Section V-B. As for
expression (ii), the architectural states of the processor right
before and after some branching instruction is retired success-
fully are taken from the values of fetch_addr before and
after that instruction is retired successfully, respectively.

E. Memory CHERI Instructions

A memory CHERI instruction loads from or stores to the
memory using the capability (directly or indirectly) specified
by its operands, causing a trap if any of its guard conditions is
not met. What a memory instruction does can be decomposed

into two operations: checking its guard conditions, and loading
from or storing to the memory.

The correctness properties about the first operation can be
formulated simply by reusing the property template developed
in Section V-C. Hence this section focuses on formulating the
correctness properties about the second operation.

CHERI-Flute is connected to the memory hierarchy through
an interface consisting of several input and output ports, which
must be properly used in order for the memory to function
correctly. As with register-only instructions, a memory instruc-
tion I is about to be retired successfully when it is in stage
W , after having sent and fulfilled its request to the memory
in stage M . Thus, the correctness property should assert that
before I is retired successfully, when it was in stage M , the
memory interface had been properly used to fulfil what the
specification requires of it. In our proof, SVA sequences are
used to precisely specify the exact sequence of events that
must have taken place when instruction I was in stage M .

Fig. 6 and Fig. 7 show how a memory load instruction I2
is moved from stage M to stage W and becomes ready to be
retired successfully. The correctness property checks that
• a new memory request was not sent before the previous

request had been fulfilled,
• a memory exception did not occur,
• the value returned from the memory when I2 was in stage
M was decompressed correctly (if it was a capability) and
used in the pending update to the register file, and

• the content of the pending update remains stable as I2 is
moved from stage M to stage W .

The correctness properties about memory store instructions
are highly similar and thus omitted here.

F. Processor Liveness

All correctness properties discussed so far are safety prop-
erties. Our verification also tackled the important issue of
processor liveness—demonstrating that the processor does not
freeze so that the pipeline never progresses.

Of course, there are challenges when dealing with liveness.
First, it is usually very difficult to prove liveness properties in
practice, and there is no such thing as a bounded proof for
liveness that can at least give some confidence. Second, even
if a liveness property is proved, there is still no guarantee
about when the desirable event will occur, which is not ideal
when performance is critical. Third, a necessary condition for
a processor to exhibit liveness is the correct behaviour of
the external components connected to it. For example, if the
memory never fulfils a load request, then the processor might
wait indefinitely for a response, stalling the pipeline. This can
be ruled out by assuming certain fairness constraints about
the external components, but these can of course potentially
be violated unless they are themselves verified.

There is a conventional workaround to the first two prob-
lems. Instead of proving the liveness property that ‘the pipeline
eventually progresses’, we derive a safety property that ‘the
pipeline progresses within n cycles’ parametrised by n and
search for the smallest n (if it exists) for which the safety
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property can be proved. This not only averts the difficulty of
proving liveness properties but also generates a concrete bound
on when the pipeline progresses.

The derived safety property we proved for CHERI-Flute
says that if an instruction enters stage E, then within nine
cycles, either a new instruction enters stage E, or the processor
enters one of three special states, triggered by particular
instructions, that requires it to wait for certain external signals.

This property shows that as long as the processor does not
enter one of the special states, new instructions will enter
stage E periodically, so the pipeline never freezes. The number
‘nine’ is the smallest number for which this property can be
proved, and the focus on stage E is because certain RISC-V
instructions are retired in stage E—i.e. they are never moved
into stages M or W . Asserting this property on any stage
prior to stage E always attracts a counterexample where an
instruction is repeatedly issued but never reaches beyond stage
E, effectively stalling the subsequent stages.

Of course, the proof of this property relies on several fair-
ness constraints. Most notably, it is assumed that the memory
always fulfils a request within two cycles. The number ‘two’
here is arbitrarily chosen, and it is reasonable to conjecture that
a different number can be used without making any substantial
difference other than perhaps affecting the number ‘nine’ in
the derived safety property.

VI. PROOF ENGINEERING

Not all our correctness properties can be proved in a push-
button manner. Specifically, those properties about register-
only CHERI instructions as well as those about the register-
only components of branching and memory CHERI instruc-
tions cannot be proved straightforwardly. Instead, proof con-
vergence on these properties relies on proof engineering
methodologies that are explained in this section.

A. Decomposing the Pipeline

This methodology is called ‘decomposing the pipeline’
because it enables one to prove some property about a desired
instruction when it is in a later stage of the pipeline by first
proving some lemmas about the instruction when it was in
earlier stages of the pipeline.

1) The First Lemma: The correctness property shown in
Section V-C for any register-only instruction cannot be proved
directly in JasperGold. Instead, we prove a structurally iden-
tical version of the property that is ‘pushed back’ one stage
in the pipeline, referencing regfileM instead of regfile,
rdM and VM instead of rdW and VW , and using a suitably
adjusted guardM

OP function, as we sketch below.
If this version of the property can be proved, then it can be

used as a lemma to successfully prove the original correctness
property through k-induction [19]. The lemma is a property
of a register-only instruction in stage M instead of stage
W . Observe that the write-back result of any register-only
instruction is computed by the ALU in stage E. Therefore,
for any register-only instruction I1 in stage M with opcode
OP as illustrated in Fig. 8, its write-back result must already
be available in vM . This means that we can assert

vM = resultOP (regfileM [rs] , imm)

in the lemma, where the subscripted regfileM is used to
take into account any forwarded value vW from stage W .

Now recall from Section IV-A that checks for guard con-
ditions are spread across stages E and M . Thus, when
instruction I1 reaches stage M , only the checks in stage E
have been performed, whereas the checks in stage M are still
underway. Therefore, it is incorrect to assert that

guardOP (regfileM [rs] , imm)
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in the lemma. Rather, the lemma only asserts that the subset
of instruction I1’s guard conditions that are checked in stage
E have been met. This subset is given by guardM

OP.
Given the lemma, the original correctness property can be

proved by k-induction. But without it, k-induction is unable
to converge because for any value of k, the SAT-solver can
always find a trace that violates the inductive hypothesis. Such
a trace would begin at an unreachable microarchitectural state
where the desired instruction is in stage M . It would then stall
the pipeline during the next (k − 1) steps, only moving the
desired instruction to stage W at the (k+1)-th step, where the
inductive hypothesis fails to hold. The pipeline can stall for
arbitrarily many cycles in such traces due to the absence of the
very fairness constraints that enable the proof of the liveness
properties in Section V-F. However, it is unnecessary to add
fairness constraints here. Instead, we use the given lemma to
prevent the SAT-solver from exploring such unreachable states.
And since stage M is immediately prior to stage W , k = 1 is
sufficient for the proof to converge.

2) The Second Lemma: To actually prove the lemma just
explained, the same methodology is simply reapplied. That is,
a second lemma is used to narrow the space of states in which
the desired instruction is in stage E so as to exclude traces
that violate the first lemma.

Fortunately, this second lemma is relatively easy to discover,
since the only state information contained in stage E is the
decoded content of the current instruction in stage E. Thus,
the second lemma simply needs to assert that any instruction
in stage E is properly decoded, which enables the proof of
the first lemma by 1-induction.

Now this second lemma can, in turn, be proved by 1-
induction if a similar third lemma is proved about stage D.
And so on. This chain of lemmas stops, of course, at stage
F where the last lemma can be proved directly. In practice,
however, since CHERI-Flute’s design of stages F and D is
relatively simple, we took advantage of one of JasperGold’s
black-box proof engines to automatically complete the proof.

B. Developing Microarchitectural Invariants

CHERI instructions compute relatively sophisticated func-
tions of their operands. In the Sail specification, these are given
by total functions on all decompressed capabilities, including
the unrepresentable ones mentioned in Section III-A. But since
unrepresentable capabilities pose a significant problem if they
appear in the processor, CHERI-Flute is designed so they can
never be created by the hardware in the first place. CHERI-
Flute is then excused from conformance with the specification
for unrepresentable capabilities.

This, of course, leads to the generation of unreachable coun-
terexamples in model checking, so our verification includes a
global consistency invariant over the entire processor, showing
that only representable capabilities are present. Formulating
and proving this invariant was challenging because there are
many internal registers in CHERI-Flute’s microarchitecture
that can influence the architecturally visible registers. A weak
invariant that does not cover these internal registers cannot be

proved by k-induction since the SAT-solver can always find
an unreachable state in which one of these registers contains
an unrepresentable capability, which then ‘pollutes’ one of the
architecturally visible registers within the next few cycles.

This challenge was overcome using State-Space Tunnelling,
a JasperGold feature that allows the user to prune unreachable
portions of the state space when performing k-induction
proofs. Essentially, it allows us to specify some k and let
the SAT-solver generate a trace of length k that violates
the invariant. The user then examines this trace to identify
any internal register that causes the violation, and manually
strengthens the invariant to include it.

This process repeats until, for some sufficiently large k, no
violating trace can be found, at which point proof convergence
for the invariant is achieved. In the end, the invariant in our
proof was sufficiently strong to be proved by 1-induction.

VII. RESULTS AND EVALUATION

In this case study, the implementations of all 80-plus CHERI
instructions (except a very few not yet implemented) have
been subject to formal verification in JasperGold against the
correctness properties in Section V through the proof engineer-
ing methodologies in Section VI.1 While the implementations
of most instructions were found to satisfy the correctness
properties, several were found to be buggy.

The bugs found roughly fell into two categories. The first
category are simple coding mistakes: the designer failed to
notice details of the specification, or the specification changed
after the design was created. These bugs are usually detectable
with a moderate amount of scrutiny or simulation testing. The
second category are algorithmic errors, typically caused by
subtle mistakes in complex pieces of logic. These are much
more difficult to uncover, even with the most intensive code
review or simulation testing.
• In the incOffsetFat function, a bit vector is truncated

but subsequent code still uses the old non-truncated value.
This can potentially lead to the creation of unrepre-
sentable capabilities for certain inputs.

• Several CSR registers are not initialised to the null
capability when the processor is reset.

These two bugs have been confirmed and fixed by the design-
ers [11], [13]. The following have also been confirmed by the
designers and fixes are pending:
• The getTop function incorrectly truncates the returned

value.
• AUIPCC incorrectly clears the validity tag of the returned

capability for certain inputs.
• CUnseal fails to check a permission bit.
• CCSeal incorrectly causes the processor to trap for

certain inputs.
One final bug illustrates an especially productive collabo-

ration between verification and design: in the setAddress

1On a 24-core AMD EPYC 7F72 processor, with 256 GB of RAM, the
proofs are completed within two hours through parallelisation.
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function, the validity tag of the returned capability is cleared
incorrectly in a corner case.

This function was originally developed by trial and error us-
ing the BlueCheck automated test generation framework [20]
and as well as TestRIG, a framework for testing RISC-V pro-
cessors with random instruction generation [21]. But neither
method detected this corner case. The designers’ initial patch
for the function was buggy because it mishandles another cor-
ner case, which was yet again detected by formal verification.
Consequently, we redesigned the function from scratch and
formally verified its correctness against the specification before
it was submitted to and accepted by the designers [12].

A. Bug or Feature?

Two issues belong to an interesting category sometimes
encountered in formal verification: a trace violates the spec-
ification, but it is unclear whether the hardware should be
changed to match the specification or vice versa.

The first was that specification requires the CSetOffset
and CIncOffset instructions perform a standard ‘repre-
sentability check’ to determine if the capabilities they return
are representable. But in CHERI-Flute the CSetOffset
instruction performs a slightly different, non-standard check
optimised for that particular instruction, although the
CIncOffset instruction uses use the standard check.

So the behaviour of the CSetOffset instruction violates
the specification, but in a beneficial way. It is therefore up
to the designers to decide whether the specification should be
changed to incorporate this optimised representability check.

The second was that, when trying to prove the global
consistency invariant, we found counterexample traces where
memory corruption causes injects corrupted capabilities into
the core. Since memory bit-flips do occur in actual hardware,
we suggested that the core should perform sanity checks on
any capability retrieved from the memory, clearing its validity
tag if it is found to be corrupted.

In the end, the designers decided not to add the sanity
checks because it may cause even more unexpected behaviour
when memory corruption occurs, making the situation more
complex to debug. So to make the proof of the global
consistency invariant converge, we added an assumption that
the memory never returns a corrupted capability.

VIII. RELATED WORK

The correctness of processor cores and their implementation
of instructions has been a focus of verification research for
decades, going at least back to the pioneering work of Hunt
on verifying the FM8501 [22] and FM8502 processors [23].
To verify more complicated, pipelined designs, Burch and Dill
devised the flushing abstraction [24], a member an extensive
family of formulations of correctness that has expanded to
cover even out-of-order designs. Aagaard et al. [25] present a
useful framework for classifying these different approaches.

From about the mid 1990s, verification was increasingly
adopted in industry to verify critical components of large-
scale designs. Notable experiments include Kaivola et al.’s

verification of the Pentium 4 floating-point divider [26], Jacobi
et al.’s fully automated verification of fused-multiply-add
floating-point units [27], Kaivola’s methodology for large-
scale formal verification of control-intensive circuits [28],
and Slobodova’s verification of AES hardware support [29].
A landmark achievement in this direction was Kaivola et
al.’s work on replacing testing with formal verification for
validating the core execution cluster of the Core i7 design [30].

The starting point of our work was Reid et al.’s end-to-
end verification of Arm processors [31]. But our approach
to verifying properties differs significantly from this work.
While the Arm verification uses bounded model checking,
we obtained much stronger unbounded proofs of all cor-
rectness properties by extracting microarchitectural invariants.
Of course, the relative simplicity of RISC-V helped make
this possible, but it was also enabled by the complexity
management methodologies we explain in this paper.

A landmark in the verification of complex cores is the work
by Goel et al. [32] on verifying x86 instructions. This was done
using the ACL2 theorem prover in concert with a number
of tightly integrated support tools, and achieved an end-to-
end verification that encompasses decoding, translation into
microcode, traps to microcode ROM, and execution.

There has been related work on verifying processors using
Symbolic Quick Error Detection (SQED) and its variants [33],
[34], [35]. These methodologies use bounded model checking
to find sequence-dependent bugs that violate a self-consistency
property, but they are not intended for checking single-
instruction bugs where an instruction always produces the
wrong result for certain inputs [33]. In contrast, our methodol-
ogy checks for both types of bugs. Indeed, most, if not all of
the bugs we found were single-instruction bugs that could not
be uncovered by checking for self-consistency. Instead, a more
traditional approach using a formal specification was required.

IX. CONCLUSIONS AND PROSPECTS

There are several ways in which the present work can be
improved and extended.

For this project, we manually translated the Sail speci-
fication of CHERI-RISC-V into SVA. It would obviously
be preferable to have an automatic translation, and we are
investigating some options for this. Apart from the usual
benefits of automation, automatic translation could eliminate
the pragmatic need to weaken the specification as described
in Section V-A. As Sail has been adoped by the RISC-V
Foundation for its golden formal model, a flow from Sail to
SVA seems highly desirable in any case.

Further work can also be done to address the drawbacks of
the liveness properties described in Section V-F. For example,
it would be ideal to remove the proof’s reliance on fairness
constraints that contain arbitrarily chosen numbers. Also,
the work can be made more complete by proving liveness
properties about pipeline stages subsequent to stage E.

Attempts could be made to verify more complex CHERI-
RISC-V processors, such as Toooba [36], where the main
challenge will be to formulate correctness properties about
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an out-of-order microarchitecture. We note, however, that the
SystemVerilog functions translated from the Sail specification
during the present work can be completely reused when
formulating the new correctness properties.

Finally, we mention that in 2019, the UK announced its
Digital Security by Design programme with £190 million of
funding for a set of research projects [37] to ‘radically update
the foundation of our insecure digital computing infrastruc-
ture, by demonstrating that mainstream processor technology
. . . can be updated to include new security technologies
based on the CHERI Architecture’ [38]. A cornerstone of
the programme is Morello [39], a CHERI-enabled prototype
developed by Arm and scheduled for release in late 2021. We
hope that this early RISC-V case study provides at least some
insights that might eventually apply in the formal verification
of Morello.
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