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Abstract—Aiming to expose security risks in hardware designs,
we describe a novel usage of symbolic simulation that led to
discoveries of previously unknown potential local data leakages
on an Intel Core processor design. Symbolic simulation is an
established formal verification method, the main vehicle for
verification of arithmetic data-paths in Intel Core processor
designs for twenty years. It extends traditional simulation by
allowing symbolic variables in the stimulus, covering the circuit
behavior for all possible values simultaneously. A special trait
of symbolic simulation is that every variable has a name. In
the security context, named values allow us to know the exact
origin of data and identify data leakages by determining whether
values are expected to be read by an operation or present a risk.
Leveraging the existing formal verification infrastructure and
observing an operation’s data dependencies we could identify
local leaks without the need to have a complete functional
specification for the operation.

Index Terms—Security, Data Leakage, Formal Verification,
Symbolic Simulation

I. INTRODUCTION

Comprehensive formal verification of execution engines
has been standard practice in virtually all Intel® Core™

processor development projects in the last two decades, and
extensive infrastructure has been built to support these efforts.
The technical basis of this work is symbolic simulation, a
technology extending usual digital circuit simulation with
symbolic values, representing sets of concrete values in a
single simulation.

In the aftermath of the Spectre and Meltdown vulnerabili-
ties, security has become a greater focus area for validation. In
this paper we discuss a novel approach leveraging the exist-
ing formal infrastructure for Intel Core processor Execution
clusters (EXE) to analyze potential data leakages, security
violations where privileged data could be made visible to non-
privileged parties. The approach is based on the special feature
of symbolic simulation that stimulus values have names that
can be used to uniquely relate a value to a specific signal and
time.

Intel provides these materials as-is, with no express or implied warranties.
Intel processors might contain design defects or errors known as errata, which
might cause the product to deviate from published specifications. No product
or component can be absolutely secure. Intel, Intel Core, Intel Atom, Pentium
and Intel logo are trademarks of Intel Corporation. Other names and brands
might be claimed as the property of others.

Below we first discuss the concept of symbolic simulation
and its use in EXE formal verification, and the security
challenges in EXE. Then, we will describe the principles of
our solution analyzing potential data leakages using symbolic
simulation, practical considerations in the implementation of
the solution over a live Intel Core processor development
project, and the results of our experiments. With a moderate
engineering effort, we were able to extend the existing formal
environment with extra checkers detecting potential data leak-
ages. On the one hand, this allowed us to verify the absence
of data leaks for large classes of micro-operations, and on the
other to identify several previously undiscovered local data
leakage issues, where micro-operations unintentionally wrote
back data that had been left behind in the internal state of the
cluster by a previous micro-operation.

The closest counterpart to our work in the scientific litera-
ture or commercial tools is taint analysis [1], [2], [3], [4]. Like
our approach, taint analysis tracks the propagation of values
from one signal to another. However, taint analysis works by
attaching extra information, the ’taint’, to simulation values to
track their progress, and requires extra engineering either in
the simulator or in post-simulation analysis. In our approach
values are tracked using the symbolic variable names already
present in the symbolic simulation for the verification, and we
only needed to implement a thin analysis layer on top of the
existing collateral. Second, taint analysis generally assumes
a static classification of signals to ’secret’ and ’non-secret’
and analyzes possible paths leaking secret values to non-secret
signals. This does not adequately reflect the common design
pattern of pipelined designs, like the EXE cluster, where the
same signals are used to carry both secret and non-secret
data at different times, and the notion of a ’secret’ is relative
to a micro-operation. To our knowledge, our work is among
the first published explorations of the application of symbolic
simulation into security verification of hardware designs (cf.
[2], [5]).

II. SYMBOLIC SIMULATION IN EXE VERIFICTION

A. Symbolic Circuit Simulation

Digital circuit simulation is a standard tool in the arsenal of
every working circuit design and validation engineer. Symbolic
simulation extends this technology with the ability to carry out
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Fig. 1. Symbolic expressions in simulation
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Fig. 4. Symbolic trace

a simulation using symbolic representations of sets of values
in a single simulation trace [6], [7].

In a symbolic simulator the input stimulus may contain
symbolic variables in addition to the traditional concrete values
0, 1, X or Z. These symbolic variables are effectively names
of values, denoting sets of possible actual concrete values. In
the simulation, these symbolic values propagate alongside the
constant values, and in each logic gate, they may be combined
with each other or one of the constants to result in either a
logical expression on the symbolic variables, represented by an
expression graph, or a constant. See Figure 1 for an example.

In a bit level symbolic simulator a single symbolic variable a
corresponds to the set of Boolean values containing both 0 and
1. If stimulus to a symbolic simulation refers to the variables

a, b and c, the internal signals might carry values like a∧b or
a∨(b∧¬c). Usual logic rules apply: if the inputs to an AND-
gate are a and 1, the output will be a, if the input to a NOT-gate
is b, the output will be ¬b, and if the inputs to an AND-gate are
a and b, the output is the logical expression a∧b. In symbolic
simulation, a specific symbolic variable is associated with a
specific signal and time in the stimulus. Associating a variable
with a signal at a time does not fix the value, but instead gives
a name that can be used to refer to the value.

In symbolic simulation, the constant value X is used to
denote a universal undefined or unknown value, which propa-
gates according to rules depicted in Figure 2. The value X
denotes lack of information: we do not know whether the
value is 0 or 1. The propagation rules reflect this intuition.
Symbolic simulation uses X’s as an abstraction mechanism:
unlike symbolic variables, X’s are an over-approximation of
Boolean circuit behavior. Both symbolic variables and X’s
allow us to verify a property over a single symbolic trace, and
conclude that it is valid over every possible trace instantiating
the X’s and the symbolic variables with 0’s or 1’s.

Figure 3 depicts a simplified pipelined ALU circuit with
a 16-bit wide two-cycle data-path from sources to write-
back. Figure 4 depicts a typical symbolic trace that might
be used in the verification of this ALU, focusing on a single
instance of an eight-bit wide bitwise OR micro-operation. The
control signals are driven with concrete values corresponding
to the operation, and the source data is driven with symbolic
variables a[15], . . . ,a[0] and b[15], . . . ,b[0] in the one cycle in
which the operation is issued. In all other cycles these signals
are driven with the undefined value X (gray waveform). In
the simulation, the values of the write-back data and zero flag
two cycles later are then expressions on the symbolic variables
associated with the source data.

A single symbolic simulation trace corresponds to a set of
ordinary simulation traces, covering behaviors of the simulated
circuit for all the possible instantiations of the symbolic vari-
ables with concrete values. The ability to cover all behaviors
forms the basis of using symbolic simulation as a formal
verification method. In this role symbolic simulation excels
in verification of deep targeted properties of fixed length
pipelines, typically of the transactional form stimulus A at
time t is followed by response B at time t + n. It has a
unique ability to carve out the circuit logic relevant to the
progression of a pipeline while ignoring the rest of the circuit
and other transactions in flight. As the approach is conceptu-
ally simple and concrete, it gives the human verifier a fine-
grained visibility into the progress of the computation during
a verification task, enabling precise analysis and mitigation
of computational complexity bottlenecks. Because of these
advantages, symbolic simulation can routinely handle circuits
that are magnitudes above the capacity of more traditional
formal property verification approaches, as well as circuits
where the pipelines are too enmeshed to be amenable to
equivalence-based verification methods.
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B. Execution Cluster

Intel Core processor architecture has evolved gradually over
the years. Typically, a new design project maintains functional
backwards compatibility with earlier designs while providing
improvements along different axes: new instructions and capa-
bilities, improved performance or power, or design adjustments
to meet side conditions set by a new manufacturing process.
A design project routinely inherits components from earlier
designs.

At high level, a single core consists of a set of major design
components called clusters. The front-end cluster fetches and
decodes architectural instructions, translates them to micro-
operations and computes branch predictions. The out-of-order
cluster receives streams of micro-operations from the front
end, keeps track of dependencies between them, schedules
ready-to-execute micro-operations for execution, takes care of
branch misprediction and event recovery, retires completed
instructions, and updates architectural state. The execution
cluster carries out data computations for all micro-operations
implemented by the design, performs memory address cal-
culations, and determines and signals branch mispredictions.
The memory cluster handles memory accesses, may contain
first level caches and interfaces with a system-on-chip layer
outside the core, including for example a graphics processing
unit and a memory controller. The SystemVerilog source code
of a cluster usually contains several hundred thousand lines of
code. While not a physical entity like the above, microcode
is also a major design component, the complexity of which is
comparable to that of the clusters.

In this paper we focus on security validation of the exe-
cution cluster (EXE) on an Intel Core processor design. The
EXE cluster consists of six main units: the integer execution
unit (IEU) contains logic for plain integer and miscellaneous
other operations, the single instruction multiple data (SIMD)
integer unit (SIU) contains logic for packed integer operations,
the floating-point unit (FPU) implements plain and packed
floating-point operations such as DIV, MUL, ADD, etc., the
address generation unit (AGU) performs address calculations
and access checks for memory accesses, the jump execution
unit (JEU) implements jump operations and determines and
signals branch mispredictions, and the memory interface unit
(MIU) receives load data from and passes store data to memory
cluster, maintains store forwarding buffers, performs various
datatype conversions, and takes care of data bypassing. In a
typical contemporary Intel Core processor design, the EXE
cluster implements over 5000 distinct micro-operations and
supports multi-threading.

At an abstract level, the EXE cluster is a pipelined machine,
receiving as input streams of micro-operations (micro-ops,
uops) through a set of schedule ports. Each micro-operation
receives its source data either through the cluster interface or
through a bypass from a previous operation, and produces its
result through a write-back port after an operation-dependent
latency. The cluster has state components, which a micro-
operation may read or update synchronously.

C. EXE Formal Verification

Formal verification of arithmetic data-paths has been a focus
area at Intel ever since the Pentium® FDIV bug in 1994. The
primary vehicle for this work is symbolic simulation, incor-
porated in Intel’s in-house Forte verification toolset under the
name of Symbolic Trajectory Evaluation (STE) [7]. Initially
a research initiative during the Pentium Pro design cycle,
Formal Verification has been carried out as a routine part of
Intel processor development projects since Pentium 4 in 1999.
All Intel Core processor EXE data-paths since 2005, as well
as most Intel Atom® processor and Gen Graphics arithmetic
engines have been formally verified using symbolic simulation
[8], [9].

In concrete terms, EXE formal verification is carried out
through a shared verification system called Cluster Verification
Environment (CVE), a large software artifact that creates a
standard, uniform methodology for writing specifications and
carrying out verification tasks [8]. Underlying CVE is the
Forte/reFLect toolset, consisting of the high performance sim-
ulator STE wrapped in a full-fledged functional programming
language [7]. All verification takes place at the level of the
full cluster, not the underlying individual units.

In verification of the EXE cluster, every micro-operation and
every port on which the micro-operation can execute corre-
spond to a separate symbolic simulation task. This simulation
starts from a totally unconstrained initial state and focuses on
one instance of the micro-operation under verification. The
control signals that are relevant to the micro-operation are
restricted according to the micro-operation, and the source data
signals are driven with symbolic variables, as in the simplified
example in Figure 4. Additionally, some internal and external
control signals of the circuit are driven with symbolic variables
and may be restricted using control invariants that are used to
capture reachable state restrictions. Due to the unconstrained
initial state of the simulation, such reachable state restrictions
are not automatically accounted for in the verification and need
to be manually formulated and separately verified. All other
signals in the simulation are driven with the undefined value
X. Altogether, in this setup the single instance of the micro-
operation under verification in the single symbolic trace covers
all possible invocations of the micro-operation in any legal
trace of the circuit.

Effectively, in the verification setup for a single micro-
operation the control signals are set to fix the data-path
controls to match a single instance of that micro-operation, and
symbolic variables on the data are used to exhaustively simu-
late the data-path instance. The simulation is then connected to
an abstract functional reference model for the micro-operation
through source and write-back mappings, and the output of
the design and the reference model compared. These design-
dependent mappings extract the intended source and result
values for the micro-operation at the relevant times relative
to the instance we are verifying.

For a large majority of micro-operations in the EXE cluster,
the data-path can be exhaustively symbolically simulated in
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one pass at the full cluster level. For certain complex opera-
tions like floating-point addition, careful case splits on the data
space are needed to contain symbolic expression growth in
the simulation, and for most complex operations like floating
point divide or fused multiply add, a sequential decomposition
strategy is applied.

III. EXE SECURITY VERIFICATION

A. EXE and Data Security

Traditionally EXE validation has focused on the functional
correctness of the micro-operations, including the validation
of control logic required for non-interference from other
operations simultaneously in flight. Since the Spectre and
Meltdown vulnerabilities, security validation has become a
greater focus area. In both exploits, a rogue process can the-
oretically gain access to privileged data by observing the side
effects of speculative, although ultimately unsuccessful access
to a memory location containing the secret. A key ingredient
of these exploits is that secret data temporarily propagates
and influences execution flows in the micro-architectural level,
although the results of the computations on the secret data
are appropriately squashed before they become architecturally
visible. In the classic functional correctness sense this is not a
problem, as the secret data is never directly exposed. However,
in the exploits a rogue process tracks the ways in which
the secret data has influenced the execution flows, especially
through timing analysis, in an effort to statistically deduce
the secret with a high probability. This means that we need
to secure the propagation of secret data also at the micro-
architectural level. As it is difficult to foresee all the ways in
which the secrets’ influences on execution could be exploited,
the best strategy is to try to limit the propagation of secrets in
the system as best as we can, and try to block any leakages
at a local level as early as possible.

Looking at the EXE cluster from the security and data
leakage perspective, the first thing to note is that in the larger
context some micro-operations may be privileged, and some
may not, some data may be secret, and some may not, but EXE
has no awareness of that. All it sees are micro-operations and
data. Privileged and less privileged operations are interleaved
out-of-order in the same thread and between threads. The
mixture of secret and non-secret makes it harder to formulate a
property Thou shalt not leak secrets, as we don’t have a good
measure of what counts as a secret. However, each micro-
operation has a well-defined notion of the data it is expected
to process: which buses at which times relative to the operation
carry its source and result data. Relative to an operation, we
can then over-approximate all other data as secret. This leads
to the following fundamental security property for EXE:

For every micro-operation executing in EXE, its result data
should be exclusively a function of its source data.

By ’result data’ we mean the main write-back data bus,
flags, faults, and all auxiliary outputs together. This security
property can be formalized more accurately as:

For every micro-operation u, there is a function spec(u)
such that for every trace T of the circuit and every point t of
T , if uop u is issued at point t of T and we write src for the
source data of u and wb for the write-back data of u relative
to the point t of T , then wb = spec(u)(src).

For many micro-operations, this security property follows
automatically from functional correctness. If the specification
for the operation is fully defined for all possible source values,
and we have verified that the implementation fully agrees with
the specification, there is simply no logical possibility for the
result data not to be purely a function of the source data.
However, many operations have partially undefined results,
where some result components are unspecified either for all or
some source values. For example, some floating-point micro-
operations do not fully support all possible source values,
reverting to microcode flows for rare or hard-to-implement
cases, leaving the result data undefined. Similarly, certain
helper operations that are used only in specific microcode
flows in contexts where some parts of the result are never
used may leave these result components undefined. Designs
take advantage of the undefined spaces, as they allow an
implementation to be optimized without a need to maintain
identical behavior in the undefined space. These undefined
spaces provide an opportunity for a micro-operation to write
back values that are derived from some other data than its
sources, including possibly secret data that has been or is being
processed by other micro-operations.

The most common scenario of data leakage in undefined
spaces is when secret data processed by an earlier micro-
operation lingers in some internal flops of EXE and is passed
to the write-back bus as a later micro-operation’s undefined
result. In a fully pipelined machine where all clocks toggle
all the time, this scenario cannot happen, as secret data stays
in any pipe-stage for exactly the one cycle when it is being
processed before being overwritten by the next wave of values.
However, such always-toggling designs are a thing of the past.
Qualified clocks are ubiquitous, and their use increases and
becomes more fine-grained by every design generation because
of power considerations. In many data-paths the clocks toggle
at most once for each operation. This means that any secret
data processed by an operation remains in internal flops in
every pipe-stage, until the next operation executing in the same
data-path clears it. In this context the security property above
can be viewed as setting a security perimeter around EXE.
Secret data can linger on inside the cluster but cannot be
exported through the write-back bus by any micro-operation.

The general concept of the analysis of data leakages through
undefined behavior is directly relevant for the prevention of
Meltdown-type vulnerabilities, although the areas primarily
contributing to Meltdown are outside our focus area in EXE.
An essential part of Meltdown is transient execution after a
faulting load micro-operation from an out-of-bounds memory
location containing secret data [10]. While the problematic
load micro-operation produces a fault due to an access check
violation, it may, under certain circumstances, nevertheless
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have read the secret value from the memory location and
passed the value on to a subsequent flow that exposes the
secret. The specification for a load micro-operation is likely
to be of the form if the load does not generate a fault, the
writeback data will be the value held by the memory location
pointed to by the sources, otherwise the writeback data is
a don’t-care. Note that the naive specification, without the
faulting condition and the don’t-care space, is very unlikely
to hold for any real implementation, as a load can fault for a
variety of reasons, many of which prevent the routing of the
memory data to the writeback. This undefined space in the
specification allows the secret to be exposed, or conversely,
as pointed out by Canella et al: “. . . merely replacing the data
of a faulting instruction with a dummy value suffices to block
Meltdown-type leakage in silicon. . . ” [10, p 252].

B. EXE Security Analysis with Symbolic Simulation

Considering the fundamental security property formulated
above, an extremely useful feature of symbolic simulation is
that every symbolic variable can be uniquely related to the
signal and time it was associated with in the stimulus. Each
1 in stimulus looks exactly like any other 1, each 0 like any
other 0, but every symbolic variable carries immediately in its
name the notion of which signal and time it originated from.
The uniqueness of names and the setup of EXE verification
allows us to re-phrase the security property as:

For every micro-operation executing in EXE, the symbolic
expressions for its result data should only refer to symbolic
variables associated with its source data, and should not allow
the undefined value X.

This property is relative to the symbolic simulation task
for the micro-operation, as outlined in Section II-C. The
symbolic re-formulation of the security property guarantees
the original version since the single symbolic simulation for
the micro-operation is an over-approximation of every possible
invocation of the micro-operation in any trace. This means
that we can simply read the function spec(u) required by the
original definition, mapping source data to the result, from the
symbolic expressions for the result data.

Another way of viewing the matter is that the symbolic
expressions on the write-back signals fully capture all depen-
dencies of the write-back on any signals in their fan-in cone.
The constant values in the simulation do not matter in this
respect. Since the symbolic simulation for the micro-operation
over-approximates every possible invocation of it in any trace,
every constant value in the symbolic simulation is also present
in all these invocations. Consequently, the propagation of such
constants in the simulation to the write-back cannot disclose
anything about the internal state of the circuit that would not
be universally true. As a technical restriction, in our work all
case splits and decompositions used to alleviate verification
complexity are on data and not on control signals and will not
turn any symbolic variables on control signals to constants.

Notice that the symbolic formulation of the security prop-
erty is not a property about the value of the result data itself.

Instead, it is a property about the symbolic expression used
to represent the value of the result data in the simulation, and
the symbolic names that occur in that expression. Because it
talks about names, not values, it is not something that could
be coded in methods that describe properties of signal values,
such as SystemVerilog Assertions.

When we run a micro-operation that has a fully specified
result data, we naturally verify that it writes exactly the data
we expect it to and nothing else, as otherwise the verification
would fail. However, when there is an undefined space in the
output, the situation is trickier because we don’t know what
value to expect. The use of named variables allows us to verify
that the result data is a function of the source data without the
need to say what that function spec(u) is, i.e. without needing
to specify the expected result value. This is very efficient
when we are looking at the undefined space, where typically
there is no good definition of what the result should be.

C. Implementation

Next, we describe in detail how this idea was implemented.
In high level, named variables allow us to:

A) Sample the output of a DUT to get a list of named
variables that have propagated to it and occur in the
symbolic expression it holds. In the example in Figure
4, bit [0] of the write-back data carries the expression
a[0]+b[0], referring to the variables [a[0],b[0]]. We call
this list the dependency list of the expression.

B) Identify suspicious names in the dependency list. The
CVE infrastructure has a known naming convention, so
the variable name allows us to distinguish the data that
we would expect to propagate from suspicious data. In
the example in Figure 4, the names a[0] and b[0] are
expected, since they are the named variables driven to
the sources of the operating uop.

The security analysis has two outcomes. First, we can detect
security vulnerabilities where they exist. Second, the absence
of detected vulnerabilities for the vast majority of micro-
operations provides strong evidence that no secrets can be
leaked to the interface of the cluster through those operations.

Data propagation in the circuit is often gated by specific
operations that exclusively enable the data flow. If that en-
abling is too short, and there is no mechanism that clears
the data after the operation, it can hang there. Stale data
becomes a security risk when another operation can read this
data. In early stages of verification environment development
for a new project, the validation focuses on pure data-path
verification in a sterile environment, and as a simplification,
disables power gating and lets clocks toggle freely. At this
stage all data flows uninterrupted, and we cannot guarantee
there are no leakages coming from stale data on a power-
gated bus. Security verification analysis becomes effective and
meaningful only when we enable all power optimizations in
the formal environment. At the time we started this security
initiative, this pre-condition was met in almost all areas of the
design we were working on.
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Formal verification of arithmetic data-paths in the EXE
cluster is fully covered in CVE using symbolic simulation. We
have specifications for all existing micro-operations and the
infrastructure to run a full regression to collect any information
needed for the extra layer of security check. This provided a
solid base for our analysis, and an efficient process that led to
interesting results in a short time. The process can be divided
into three stages.

1) Identify operations that have an undefined result.
As an example, in the simplified ALU in Figure 3 the
write-back bus is 16 bits wide, but a shorter opera-
tion like the eight-bit OR only uses bits [7:0] for the
result. The upper bits [15:8] could be left undefined,
which might provide an opportunity for data leakage.
For any micro-operation, CVE provides two different
mechanisms for undefined results:
• Each uop in CVE has a defined data type signa-

ture, which specifies useful static information about
the shape of the sources and result of the uop,
such as data size, data type (integer, floating-point),
signed/unsigned etc. The source or write-back data
can be of NULL type, meaning it is not used by the
uop. For NULL write-back, the checkers will not
sample the write-back bus at all in a simulation.

• A uop may have a defined write-back datatype, but
its specification may explicitly encode a don’t-care
space. For example, the data output of a divide
operation could be defined as a don’t-care when the
divisor is zero. In this case the checkers will sample
the output in a simulation but will ignore the value
for the functional correctness check. In the eight-bit
OR example, we could sample the full 16 bit write-
back bus, but not necessarily check the upper eight
bits, leaving them explicitly undefined.

For both methods the existing CVE data structures
allowed us to easily identify the set of uops that produce
undefined results, creating a clear goal for the main
security analysis. The first step in enabling the security
check was to switch from the first method to the second
one for all uops, to make sure we always sample the
write-back bus: identify the uops using the first method,
convert the NULL data signatures to a meaningful type,
and incorporate the explicit don’t-care space into the
functional specification.

2) Sample results and detect unexpected variables.
This stage is the heart of the process, using the existing
symbolic simulation capability in the two steps above:
A) Sample the output and extract the list of variables
in the symbolic expression, and B) Identify suspicious
variable names in the list. The ingredients of this stage
are:
• Every variable in the dependency list has a name.
• Expected variables are the named variables associ-

ated with the source signals in the aligned source
pipe-stage of the current operating uop, as discussed

above. As sampled by the operating uop, they are
considered safe.

• All X values on the outputs are flagged, since the
unnamed undefined value X cannot tell where it
came from and is therefore inherently suspicious.

• By convention, a driven variable that is not part of
expected source data for a uop uses a name that is
a combination of the signal and the time at which
it was driven, for example: “SignalName@24”.

Given the values in the write-back bus, we check for X’s
and query the variable dependency list for suspicious
names. In the eight-bit OR example of Figure 4, there
are no X values, and the dependency list includes only
’good’ names such as a[7] or b[0].
This check is fully automated, as the classification of
variable names to good vs suspicious ones can be done
mechanically based on existing information about the
intended uop source interfaces and variable naming
conventions.

3) Trace the suspicious variables.
The presence of the undefined value X or a suspicious
name in the dependency list does not yet automatically
mean that what we see is real data leakage. By methodol-
ogy, symbolic simulation uses a maximally uninitialized
start state for the simulation, with all signals having
the value X, and uses stimulus that drives X’s on most
inputs to the circuit, overapproximating the real legal
behaviors of the circuit. We need to trace the suspicious
variable or X, see how it propagated to the write-back,
and understand whether the path to the write-back is
possible in the real operating environment of the circuit.
This stage is like the debug process of any simulation,
tracing the origin of a value in the circuit. We use a
schematic viewer that shows symbolic values and trace
the ones that we find interesting. In some cases, to better
analyze a behavior, we strengthen the simulation to drive
a variable at an internal signal that used to hold an
unnamed X that may propagate to the write-back.

Consider for example the simplified ALU of Figure 3 and
assume that the circuit is augmented with power gating logic
that turns off clocks for the high eight bits [15:8] of the data-
path for operations that only operate on the low eight bits
[7:0] of data. If we now simulate an eight-bit OR operation
on the circuit as in Figure 5, we might observe X values in
bits [15:8] of the write-back as in Figure 6, instead of the
’good’ result of Figure 4. Tracing back the X values on the
write-back, we would find an internal flop with the output X
and a clock that does not toggle, as in Figure 7. In the circuit,
this flop will hold any value the previous operation has left
there, presenting a leakage risk. To check whether this data
really propagates to the output, we want to track a concrete
named variable. To do this, we drive unique named variables
“Src1[15]@23” . . . “Src1[8]@23” to the internal flop as in
Figure 8, and observe these variables in the write-back, as in
Figure 9. Once we understand the leakage mechanism, we can
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then manually generate a concrete example exhibiting both an
earlier uop leaving behind stale data, and a later uop that leaks
the stale data to the write-back bus, as in Figure 10. In this
example, the high eight data bits of a 16-bit uop A remain in
the internal state until they are overwritten by the next 16-bit
uop C, and are exposed by the 8-bit uop B in the meanwhile.

IV. RESULTS

The flow of security verification was implemented as an
automated extra check on top of the traditional data-path
symbolic simulation. The process leveraged the existing ca-
pabilities of CVE that already supported all EXE uops. This
gave us the ability to run a full regression and get first results
quickly.

We chose to focus on the write-back data interface buses
and concentrated on the about 2000 uops for which these
buses are relevant, out of about 5000 legal uops for the
cluster in total. Among these uops we first identified the
ones that have fully or partially unspecified write-back data.
Our analysis showed that 89.4% of the uops were completely
specified, and 10.6% had unspecified write-back data. We then
further analyzed the uops with unspecified write-back data by
symbolic dependency analysis and found that 97.8% of uops
were either completely specified or exhibited no unexpected
data at write-back, whereas 2.2% of the uops had an undefined
result space and failed the dependency analysis.

For the 97.8% of the uops that passed our analysis, we
provided strong evidence that there is no risk of data leakage,
as our analysis took place in the formal framework covering
all possible behaviors. Note also that the dependency analysis
allowed us to reduce the ratio of suspicious uops from 10.6%
to 2.2%. As a restriction in scope, we did not look at data
leakages in the bypass network, although the method would
be equally applicable there.

The first real local EXE potential data leakage was dis-
covered in less than a month. In a total effort of about two
months of work, we discovered several different potential
leakage mechanisms, all previously unknown. The failures
were analyzed and grouped to RTL bugs with a common cause.
Examples of potential leakage mechanisms include:

1) Uop A computed information intended to be written
to the write-back data bus. It went through a latch
that was toggling only while uop A was operating,
for one cycle, and shut down right after uop A had
completed. Therefore, the output of that latch was not
cleared, and the data was stuck there on an internal bus.
Analyzing uop B that was not expected to produce data
(undefined write-back), we could see that uop A’s data
was propagating freely all the way to the write-back bus.

2) The data-path of a certain unit contained a MUX prior
to the write-back bus with separate selects for specific
uops and default logic shared by many uops. A particular
uop C with undefined write-back executing in the unit
read stale data left behind by any previous uop using
the default logic.
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3) Most uops that write only part of the write-back bus,
for example 32 bits out of 128, have a clear definition
of the unused bits, and we sample them along with
the computed result of the lower part in regular data-
path verification. In one exception, the upper part for a
specific uop D was left unspecified. Tracing back the
write-back, we reached an internal source bus shared
by several operations, with a clock toggling just once
per uop, causing the data to hang. Usually, the next uop
would clear the bus. Uop D did not, leaking the upper
bits of the source data left behind by the previous uop.

These bugs were all reproduced in normal simulation. They
did not cause a functional failure: the results are never checked
since they fall into the don’t-care space of the specification.
However, it was clear that the value written to the write-back
is exactly the value left behind by a previous uop.

After the detection of these kinds of potential data leaks,
there are several options for actions to fix them. The straight-
forward solution is to modify the currently undefined uop to
have a defined value, e.g. write zeroes to the write-back data.
This will be the easiest to verify because it will become again
a strongly defined data-path verification task. It will also be the
strongest solution, as it truly closes the leak. Another solution
is to clear the stale data left by the earlier uop, for example
by opening the gating clock for an extra cycle. Both options
close the leak at the EXE boundary but require changing the
design and could cost power or area.

If it is not possible to fix the design, another option is in
the microcode level, making sure the undefined operation is
not used in any way it could be exploited. Effectively here
one establishes a security perimeter with a larger scope than
EXE to see that the compromised data is contained before it
becomes visible through a vulnerability at a higher level. This
method is less optimal than the ones above, as the analysis
scope is larger, outside the scope of existing formal tools, and
relies more on finding parallels with known vulnerabilities,
while new ways of exploiting information leaked out of
the cluster may emerge. Also, micro-code implementation is
dynamic, and it is possible that changes to the usage model
that is safe today may make it unsafe tomorrow.

The potential local data leakages discovered by our analysis
were addressed during the design project and as a result do
not lead to a security violation at a user visible level in the
final product.

V. SUMMARY

Symbolic simulation’s special trait — the usage of named
variables — makes it a productive method to analyze data
leakage risks. The scope of this work was huge for any
formal analysis: a whole cluster, thousands of operations, and
hundreds of thousands of flops in the circuit. Out of those,
without having any prior knowledge where to look for the
risks, we hit the relatively few instances that mattered in a
short time. We found real issues, in a live project, issues that
were not detected by any other method.

In this paper we described how we leveraged the existing
environment of CVE that already supports the thousands of
specifications in EXE cluster, holds information about data
types and has a clear naming convention. This made the
process efficient and demonstrated the importance of the
complete verification environment covering EXE data-path. It
is also important to clarify that the general concept we describe
here is not dependent on it. Security verification by symbolic
simulation can be implemented in various designs, where we
do not have such infrastructure to rely on. Symbolic simulation
is the key in analyzing data leakage risks of this kind, not the
formal environment in itself.

In future design projects, with the increasing demand for
security validation, we hope to explore where we can further
develop this usage of symbolic simulation.
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