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Abstract—In recent years, cloud service providers have sold
computation in increasingly granular units. Most recently,
“serverless” executors run a single executable with restricted
network access and for a limited time. The benefit of these
restrictions is scale: thousand-way parallelism can be allocated in
seconds, and CPU time is billed with sub-second granularity. To
exploit these executors, we introduce gg-SAT: an implementation
of divide-and-conquer SAT solving. Infrastructurally, gg-SAT
departs substantially from previous implementations: rather than
handling process or server management itself, gg-SAT builds
on the gg framework, allowing computations to be executed on
a configurable backend, including serverless offerings such as
AWS Lambda. Our experiments suggest that when run on the
same hardware, gg-SAT performs competitively with other D&C
solvers, and that the 1000-way parallelism it offers (through AWS
Lambda) is useful for some challenging SAT instances.

Index Terms—parallel SAT, serverless computing, divide and
conquer.

I. INTRODUCTION

Modern Boolean satisfiability (SAT) solvers have been
successfully applied to important practical and theoretical
domains, such as hardware verification, planning, and math-
ematics. Progress in the scalability of these tools has come
from both algorithmic improvements and better leveraging of
multi-processing hardware. While the number of processors on
a single machine is limited, and maintaining a warm cluster
to run occasional tasks is expensive, cloud-computing is a
promising approach for leveraging on-demand parallelism at
low cost.

Recent cloud-computing services are offered at increasingly
fine granularity and low latency. Instead of renting a server
or a cluster, one can now rent state-free executors, which
can be rapidly and plentifully provisioned at a low price—
a paradigm referred to as serverless computing. Serverless
executors generally have restricted network access, limited
memory, and limited runtime. For example, Amazon’s Lambda
service rents a Linux container to run arbitrary x86-64 executa-
bles for up to 15 minutes, with less than a second of startup
time and no charge when idle. Similar services are offered
by Google, Microsoft, Alibaba, and IBM. Previous research
has used serverless computing as a “burstable supercomputer”
for video processing [2], neural network training [25], and
more [13]–[15], [33]. These successes beg the question: “can
serverless computing be leveraged for massively parallel SAT-
solving?”

There are two traditional parallel SAT-solving paradigms:
1) the portfolio approach, where each thread runs a different
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SAT solver on the same instance; and 2) the divide-and-
conquer (D&C) approach, where a problem is partitioned into
independent sub-problems to be solved in parallel. While the
former approach in combination with clause-sharing leads
to surprisingly good performance for small portfolio sizes,
the benefits decrease as parallel computing power increases,
and this approach is also not well aligned with the runtime
and communication limitations of serverless executors. In this
paper, we follow the second approach and present gg-SAT,
a divide-and-conquer (D&C) SAT solver compatible with
serverless computing. gg-SAT makes black-box use of a
solver (e.g., CaDiCaL [8]) and a divider (e.g., march [28])
to solve and partition the problems, respectively. Problem
division is performed throughout the search, whenever a sub-
problem reaches a timeout imposed by either the user or the
cloud-service. Infrastructurally, gg-SAT differs substantially
from previous D&C implementations: rather than handling
process or server management itself, gg-SAT builds on top
of the gg framework for parallel computation. By expressing
D&C search using gg, gg-SAT can execute that search on
any mixture of user-specified backends; supported backends
currently include local processes, remote machines, and server-
less cloud-services such as AWS Lambda and Google Cloud
Functions. To implement gg-SAT, we designed and built
pygg, a novel and idiomatic Python interface to gg. We
expect that pygg will be independently useful for other future
projects, perhaps including parallel SMT solving.

We evaluate gg-SAT using local processes and AWS
Lambda as backends. Local experiments suggest that gg-SAT
performs competitively with the original Cube-and-Conquer
prototype [19], a recent reimplementation of it [18], and
a portfolio solver PLingeling [7], on benchmarks taken
from [18], [19]. Cloud experiments suggest that gg-SAT
unlocks levels of parallelism which are useful for solving some
challenging instances from the 2020 SAT Competition.

II. BACKGROUND & RELATED WORK

A. Parallel SAT

Propositional satisfiability is an old problem; we refer the
reader to the handbook of satisfiability [9] for an introduction.
Parallel SAT-solving also has a lengthy history, with two main
approaches.

The first approach is portfolio solving, pioneered in [16],
[22], [34]. In a portfolio solver, each thread runs a differ-
ent solver or configuration on the same original formula.
An instance is solved as quickly as the best individual
solver for that instance. Portfolio solvers include: ManySAT
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[17], CryptoMinisat [32], PLingeling [7], Syrup [3],
HordSAT [6], and Painless [26]. Some portfolio solvers
also use clause sharing [11], [31]: sharing learnt clauses
among the different solvers.

Another approach to parallelizing SAT is divide-and-
conquer (D&C). D&C solvers attempt to divide a SAT instance
into easier SAT instances, which can then be solved in parallel
by a base solver. Typically, D&C solvers divide instances
by partitioning the search space. The important questions—
how and when to divide—are answered heuristically, typically
with heuristics derived from look-ahead solvers and CDCL
solvers. There has been substantial work on D&C SAT solv-
ing [10], [23], [24], including: Psato [35], Painless [27],
and AMPHAROS [29]. One prominent approach, “cube-and-
conquer” [19] uses a lookahead solver to divide instances and
a CDCL solver to solve subproblems; this approach has been
successful for large mathematical problems [21].

B. Distributed SAT

A number of systems attempt parallel SAT solving using
a cluster of computers, possibly rented from the cloud. Most
of these systems (Qsat [30], HordSAT [6], TopoSAT [12],
SLIME [20]) follow the portfolio approach. One recent system
(Paracooba [18]) follows the D&C approach. All of these
systems operate in the “cluster” computational model, in which
long-running processes on each node communicate over the
network.

C. Serverless Computing

Cloud service providers, such as Microsoft Azure, rent out
computational resources including compute, storage, and ac-
celerators. Over the past decade, service providers have rented
compute with increasing granularity, scale, and availability.
Their recent offerings include serverless services, which run
a single executable for a limited time, with limited memory
and restricted network access. While restricted, serverless
computing has strengths: it offers massive parallelism that can
be rapidly provisioned, with fine-grained billing. For example,
AWS Lambda [4] runs executables for up to 15 minutes, with
3GB of memory and 500MB of disk space; the runs are billed
at sub-second granularity, and a thousand executors can be
provisioned in seconds.

While serverless computing was designed for operational
convenience, recent work has explored using it as a “burstable
supercomputer-on-demand” [13], for tasks such as video pro-
cessing [2], ray tracing [14], and machine learning [25].
One system, gg [13], provides a general framework for
leveraging minimal executors (including serverless ones). It
uses a configurable backend (such as a local machine, remote
machines, or serverless executors) to evaluate a programmer-
defined dependency graph of thunks: programs that take files
as inputs. Thunks can output files or new thunks; the latter
causes the dependency graph to dynamically grow. Dynamic
dependency graphs can express many applications; gg has
been used for tasks such as neural network verification [33],
compilation [13], and video encoding [15].
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(a) The D&C search tree. ϕ’s solve query times out and is split
into three sub-problems, one of which has been solved.
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(b) The gg dependency graph. Dashed arrows denote depen-
dencies; if a node produces multiple outputs, the dependency
edges are labelled. The solid arrow denotes a thunk that returns
another thunk. Shaded thunks have been evaluated.

Fig. 1: A D&C search snapshot and its corresponding depen-
dency graph. In both diagrams, S, M, and D denote solve,
merge, and divide, respectively.

III. DESCRIPTION

A. Algorithm

gg-SAT uses a D&C algorithm with multiplicatively grow-
ing timeouts. It is parameterized by a base solver and a divider.
The base solver can be any SAT solver. The divider’s job is to
partition a problem into a requested number of sub-problems
such that the disjunction of the sub-problems is equisatisfiable
with the original problem. Other parameters to the algorithm
include the timeout t, the timeout growth factor f , the number
of initial partitions pi, and the number of partitions for each
sub-problem, ps.

Figure 1a illustrates the solving of formula ϕ as a tree, with
pi = 1 and ps = 3. The number of initial divisions is 1,
so the base solver first attempts the original problem ϕ with
timeout t. This times out, so the divider runs and splits ϕ into
sub-problems (ϕ0, ϕ1, ϕ2), each of which is attempted with
timeout ft. The sub-problem ϕ0 is determined to be UNSAT;
other sub-problems have yet to be solved, and may be divided
again. The process ends when all sub-problems are determined
to be UNSAT or any sub-problem is determined to be SAT.

B. Implementation

To apply D&C to SAT, we must instantiate its primitive
notions (sub-problems, solving, and dividing) for SAT. We
follow previous work [19], [24] by using a lookahead solver
(march) to build sub-problems described by cubes (lists of
asserted literals) and by using a CDCL solver (CaDiCaL [8])
to attempt to solve problems and sub-problems. march can
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Fig. 2: gg-SAT expresses D&C search as a dynamically expanding dependency graph and uses gg to evaluate that graph
using a back-end of the user’s choice.

produce a large number of cubes (e.g., millions) and can take a
long time. This was appropriate for cube-and-conquer (which
ran march exactly once per problem) but is inappropriate for
divide-and-conquer (which runs march many times seeking
a small number of sub-problems each time). To address this,
we configure march with a maximum cube length, which
substantially reduces its runtime.

Our D&C implementation uses the gg framework for par-
allel execution [13]. Recall (§II) that using gg requires the
computation to be expressed as a dependency graph of thunks,
each of which is an individual executable. For D&C, there are
three kinds of thunks. Solve thunks run the base solver; if it
returns a result, the thunk returns that result as well; otherwise,
the solve thunk returns a merge thunk, which combines the
solutions to sub-problems that are produced by a divide thunk,
which runs the divider. Figure 1 illustrates the relationship
between an in-progress D&C search and the gg dependency
graph. When D&C attempts to solve S(ϕ, t), the dependency
graph contains only the nodes left of the dotted line. However,
when that query times out, the corresponding thunk returns 5
new thunks: a divide thunk to create 3 sub-problems, three
solve thunks to (attempt to) solve them, and a merge thunk,
whose output should be taken as the output of the original S
thunk.

By expressing D&C search as a gg dependency graph,
we can use gg to execute that search using a back-end (or
combination of back-ends) of the user’s choice. Figure 2
visualizes the different runtime components of the system.
Our driver translates the D&C search tree into a graph. The
reductor analyzes this graph, searching for thunks whose
dependencies are fully evaluated; it sends these to a configured
backend. When an executor returns values or subgraphs, the
reductor updates its graph. When the graph is reduced to a
single value, the reductor returns that value to the driver. For
more details about the execution process, see [13].

To ease the development of gg-SAT, we built pygg, a
python library for building dynamic gg dependency graphs.
While gg is conceptually simple, using it typically requires
programmers to write many different shell scripts for tasks
such as embedding values in the gg graph, creating different

kinds of thunks, and reformatting files for different solvers.
With pygg, the entire computation can be expressed as a
single python script. Different kinds of thunks are just different
python functions, each of which can return basic python
values, one or more files, or the output of some combination
of other thunks. With pygg, our D&C implementation fits in
a single python script of less than 200 lines. pygg has been
merged upstream into the gg project.

IV. EXPERIMENTS

gg-SAT is the first SAT solver targeting serverless com-
putation, so we cannot compare with previous tools on our
infrastructure of interest. Nonetheless, we perform two exper-
iments. First, we compare gg-SAT with other multithreaded
solvers on a single multicore machine, to validate the general
architecture and performance of gg-SAT. Second, we use
1000 serverless executors to attempt unsolved benchmarks
from the SAT 2020 competition, showing the utility of the
massive parallelism that gg-SAT unlocks.

A. Local experiment

We compare with the default configurations of three parallel
solvers: 1) the original Cube-and-Conquer prototype (denoted
CnC) 1 [19]; 2) Paracooba2 [18], a recent Cube-and-
Conquer re-implementation that is optimized for distributed
computing; 3) Treengeling 3 [8], a divide-and-conquer
SAT solver; and 4) PLingeling [8], a state-of-the-art port-
folio SAT solver. We evaluate on the benchmarks reported in
[18], [19]. We run gg-SAT with pi = 64, ps = 4, t = 10,
and f = 1.5, a set of parameters empirically determined to
work well. For the other four solvers, we use the default
parameters except that the number of threads is set to 64.
Our testbed machines have two 2.70GHz Xeon Platinum 8280
CPUs, running CentOS 7. Each job is run with a 256 GB
memory limit, and a 1-hour wall-clock timeout.

Table I shows the solvers’ wall-clock runtime for each
benchmark. Given the small set of benchmarks, we can

1https://github.com/marijnheule/CnC/tree/ee8f8aab3729b46bc92dc
2https://github.com/maximaximal/Paracooba/tree/d905b67304eb780
3https://github.com/arminbiere/lingeling/tree/7d5db72420b95ab (same for

PLingeling)
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TABLE I: Runtime (s) of gg-SAT, CnC, Paracooba, Treengeling, and PLingeling on the benchmarks reported in
[18], [19]

benchmark Result gg-SAT CnC Paracooba Treengeling PLingeling

9dlx vliw at b iq8 UNSAT 850 – 966 – 155
9dlx vliw at b iq9 UNSAT 2830 – 1302 – 222
AProVE07-25 UNSAT 599 – 2091 1596 –
cruxmiter32.cnf UNSAT 717 496 – 2078 –
dated-5-19-u UNSAT 1723 436 1819 891 1030
eq.atree.braun.12 UNSAT 466 170 465 384 605
eq.atree.braun.13 UNSAT 3225 826 – 1615 1517
gss-24-s100 SAT 1166 – – 1618 335
gss-26-s100 SAT 3509 – – 560 –
gus-md5-14 – – – – – –
ndhf xits 09 UNS UNSAT 948 – – – 1633
rbcl xits 09 UNK UNSAT 629 – – – 2965
rpoc xits 09 UNS UNSAT 331 – – – 1267
sortnet-8-ipc5-h19 SAT – – 3008 – 225
total-10-17-u UNSAT 1098 388 919 310 666
total-5-15-u UNSAT – 1440 – 3253 –

draw only limited conclusions. Nonetheless, the results sug-
gest gg-SAT’s performance is reasonable. It solves more
benchmarks than the other three divide-and-conquer solvers,
corroborating past research [1] that interleaving look-ahead
with CDCL can be beneficial. It also solves more than
PLingeling, suggesting that the divide-and-conquer ap-
proach can be preferable to the portfolio approach in some
cases. Note, however, that each other solver can solve at
least one benchmark that gg-SAT cannot, suggesting that the
approaches are complementary.

B. Serverless experiment

Our second experiment demonstrates the utility of the
thousand-way parallelism that gg-SAT makes convenient. We
find that with this parallelism, gg-SAT can solve challenging
instances that are out of reach for solvers running at lower
levels of parallelism.

We sample 8 instances from the Cloud track of the
SAT Competition 2020 [5], none of which were solved
during the competition.4 As summarized in Table II, four
of the five solvers from the previous section (using the
same configurations) are unable to solve any of these in-
stances within 4 hours. Treengeling solves one instance,
Steiner-81-21-bce, in 9331 seconds. However, with
gg-SAT running on AWS Lambda with 1000-way paral-
lelism, we find that three instances: Steiner-81-21-bce,
bv-term-small-rw_350.smt2, and mulhs16.smt2
are UNSAT in 2559, 1455, and 2866 seconds respectively.
For AWS Lambda, we configure gg-SAT with pi = 1024,
ps = 8, t = 10, and f = 1.5.5

4Steiner-81-21-bce, abw-I-ash85.mtx-w24,
ccp-s8-facto4, bv-term-small-rw_350.smt2,
Steiner-405-71-bce, mulhs16.smt2,
LED_round_29-32_faultAt_29_fault_injections_5_
seed_1579630418, PRESENT_round_1-32_faultAt_30_
fault_injections_10_seed_1579630418

5Our experiment is incomparable with the results of the 2020 SAT cloud
track. The competition environment differs substantially from our testbed; it
uses 1600 cores, 20 minutes, and different hardware.

TABLE II: Solver performance on 8 hard instances from the
SAT Competition 2020

Solver Executor Parallelism Time Limit (h) Solved

CnC local threads 64 4 0
Paracooba local threads 64 4 0
Treengeling local threads 64 4 1
PLingeling local threads 64 4 0
gg-SAT local threads 64 4 0
gg-SAT AWS Lambda 1000 1 3

V. DISCUSSION

We have presented gg-SAT, a parallel D&C SAT solver
compatible with serverless-computing. gg-SAT is built on top
of gg, an infrastructure for evaluating parallel computations.
gg-SAT appears competitive with other parallel SAT solvers,
and easily unlocks ad-hoc large-scale parallelism through ex-
ecution on serverless cloud-services. This massive parallelism
appears to be effective in solving some challenging instances.
To implement gg-SAT, we also built pygg, a novel python
interface to gg, which we hope will be useful for other
applications, such as parallel SMT solving.

Future Work: gg-SAT itself could be substantially im-
proved. Currently, its search strategy (e.g., how many sub-
problems to create, when to re-divide) is independent of the
number of idle workers and the number of unsolved problems.
This can cause one of two undesirable dynamics: most workers
sitting idle while a few tackle challenging sub-problems (that
would ideally be immediately divided) or too much time being
spent re-dividing (even though all workers are already busy).
In the future, we hope to adjust the search strategy depending
on the current workload of the system, dividing more when
workers are idle, and less when they are not. We suspect that
this will improve performance while also reducing the number
of parameters for the system.

Other future directions for gg-SAT include proof-
generation, new dividers, and trying to retain useful clauses
from failed base solver attempts.
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