
Formal Methods in Computer-Aided Design 2021

Towards Scalable Verification of
Deep Reinforcement Learning

Guy Amir, Michael Schapira and Guy Katz
The Hebrew University of Jerusalem, Jerusalem, Israel

{guyam, schapiram, guykatz}@cs.huji.ac.il

Abstract—Deep neural networks (DNNs) have gained signifi-
cant popularity in recent years, becoming the state of the art in
a variety of domains. In particular, deep reinforcement learning
(DRL) has recently been employed to train DNNs that realize
control policies for various types of real-world systems. In this
work, we present the whiRL 2.0 tool, which implements a new
approach for verifying complex properties of interest for DRL
systems. To demonstrate the benefits of whiRL 2.0, we apply it
to case studies from the communication networks domain that
have recently been used to motivate formal verification of DRL
systems, and which exhibit characteristics that are conducive
for scalable verification. We propose techniques for performing
k-induction and semi-automated invariant inference on such
systems, and leverage these techniques for proving safety and
liveness properties that were previously impossible to verify due
to the scalability barriers of prior approaches. Furthermore, we
show how our proposed techniques provide insights into the inner
workings and the generalizability of DRL systems. whiRL 2.0 is
publicly available online.

I. INTRODUCTION

In recent years, deep neural networks (DNNs) [23] have
become highly popular due to their ability to produce state-of-
the-art results in multiple fields, e.g., image recognition [34],
text classification [37], game playing [45], and many oth-
ers [7]. DNNs used in such contexts have been shown to suc-
cessfully learn, by training on data, a model that generalizes
to previously unseen inputs. In particular, deep reinforcement
learning (DRL) [40] has been recently used to train DNNs
to learn control policies for complex computer and networked
systems, surpassing the state-of-the-art in a variety of applica-
tion domains, including database management [60], compiler
optimization [41], congestion control [27], [39] on the Internet,
routing [53], compute-resource scheduling [9], [42], adaptive
video streaming [38], [43], and many more.

Despite the overwhelming success of DNNs, many safety
issues pertaining to them have been identified [22], [51],
demonstrating that although DNN models potentially yield
excellent performance, they also suffer from many weaknesses.
For instance, it has been shown that DNNs can be manipulated
into performing severe errors through only slight distortions
to their inputs [17]. This phenomenon, called adversarial
perturbations, plagues effectively all modern DNNs.

Adversarial perturbations, alongside other safety and secu-
rity vulnerabilities, have brought about a surge of interest in
formally verifying the correctness of DNNs. A plethora of
approaches for DNN verification have been proposed in recent
years (e.g., [19], [25], [30], [55]). Unfortunately, in general,

all proposed tools face significant scalability barriers, which
render them unable to verify state-of-the-art, industrial DNNs
with millions of parameters. Furthermore, even when applied
to small DNNs, these tools are often restricted to verifying
simplistic properties. The scalability challenge is further ag-
gravated in the DRL context, which involves sequential DNN-
informed decision making, and so reasoning about repeated
invocations of the DNN, where the outcome of one invocation
can influence the input to the DNN in subsequent invocations.
Consequently, the applicability of recently introduced DNN
verification tools to complex properties and systems of prac-
tical interest remains extremely limited.

To begin bridging this gap, we previously introduced a
tool called whiRL 1.0 [16], which enables verifying certain
safety and liveness properties, or identifying violations, for
practical DRL systems. We demonstrated whiRL 1.0’s use-
fulness by verifying properties of interest for three systems
from the communication networking domain. We identified
such systems to be prime candidates for verification for two
main reasons: first, state-of-the-art DNNs in this domain tend
to be of moderate sizes, which are within reach of existing
verification technology; and second, meaningful and complex
specifications can be formulated and verified because the
inputs for these systems are carefully handcrafted and reflect
important semantic meaning (as opposed to raw pixel data in
computer vision applications, for example). whiRL 1.0, which
combines DNN verification techniques with bounded model
checking, uses a black-box DNN verification engine as a
backend, and can thus benefit from any future improvements to
DNN verification technology. As exemplified by our promising
initial results in [16], whiRL 1.0 constituted a first step towards
enhancing the reliability of DRL systems.

Still, whiRL 1.0 had severe limitations: most notably, al-
though it successfully generated violations of desired proper-
ties, it was incapable of proving that properties of practical
significance held without making very strong assumptions,
e.g., that runs of the considered system terminate within a very
small number of steps. However, the executions of real-world
systems are often infinite, or finite but consisting of many
steps. In such scenarios, whiRL 1.0 and other DRL verification
tools are unable to prove that most relevant properties hold.

In this work, we present whiRL 2.0 [1] — a verification
engine for DRL systems. whiRL 2.0 significantly extends the
capabilities of the original whiRL 1.0 tool to accommodate
verifying complex properties. In particular, while whiRL 1.0

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 28 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_28
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_28
https://creativecommons.org/licenses/by/4.0/

was limited to verifying basic safety properties, whiRL 2.0
utilizes k-induction techniques for proving both safety and
liveness properties of DRL systems. In addition, whiRL 2.0
uses invariant inference techniques to quickly prove properties
that could otherwise be quite difficult to verify. whiRL 2.0 also
incorporates abstraction methods for providing some visibility
into the DRL system’s operation. We demonstrate the effec-
tiveness of these techniques by revisiting the three case studies
involving state-of-the-art DRL systems to which whiRL 1.0
has been applied in [16]: the Aurora [27] Internet congestion
controller, the Pensieve [43] adaptive video streamer, and the
DeepRM [42] compute resource scheduler. We are able to
prove various properties of these systems that, to the best of
our knowledge, were beyond the reach of prior state-of-the-art
tools, including the original whiRL 1.0 tool.

The rest of this paper is organized as follows. Section II
covers basic background on DNNs, DRL systems, and DNN
verification. Next, in Section III we present our whiRL 2.0 ver-
ification tool, and describe its novelties and main components.
We present whiRL 2.0’s semi-automated invariant inference in
Section IV, and discuss the tool’s implementation in Section V.
Our case studies are described in Section VI, followed by
related work in Section VII. We conclude in Section VIII.

II. BACKGROUND

A. Deep Neural Networks and Deep Reinforcement Learning

A deep neural network (DNN) [23] is a directed graph,
where the nodes (also called neurons) are organized in layers.
In feed-forward DNNs, data flows from the first (input) layer,
onto a sequence of intermediate (hidden) layers, and finally
into a final (output) layer. The network is evaluated by as-
signing values to the input layer’s neurons, and then iteratively
computing the assignment of each of the hidden layers, until
reaching the output layer and returning its evaluation to the
user.

More specifically, the value of each neuron in the hidden and
output layers is computed using the values of neurons in the
preceding layer. Each such layer has a type, which determines
the exact way in which its neuron values are computed. One
common layer type is the weighted sum layer, in which each
neuron is computed as an affine combination of the values
of neurons in the preceding layer, based on edge weights
and bias values determined as part of the DNN’s training
process. Another popular layer type is the rectified linear unit
(ReLU) layer, where each node y is connected to a single
node x from the preceding layer, and its value is computed
by y = ReLU(x) = max(0, x). In this paper we will focus
on weighted sum and ReLU layers, although there exist many
additional layer types, such as max-pooling and hyperbolic
tangent, to which our technique may be extended.

Fig. 1 depicts a toy DNN comprising an input layer with two
neurons, followed by a weighted sum layer and a ReLU layer.
For input V1 = [1, 3]T , the second layer’s computed values
are V2 = [18,−3]T . In the third layer, the ReLU functions
are applied, resulting in V3 = [18, 0]T . Finally, the network’s
single output is V4 = [54].

v11

v21

v12

v22

v13

v23

v14

2

−4

5

1

ReLU

ReLU

3

−1

+1

−2

Weighted
sum ReLUInput Output

Fig. 1: A toy DNN. The values above the edges are weights, and the
values below the vertices are biases.

Formally, a DNN N that receives k inputs and returns n
outputs is a mapping Rk → Rn. The DNN consists of a
sequence of m layers L1, . . . , Lm, where L1 is the input layer
and Lm is the output layer. We use si to denote layer Li’s size,
and v1i , . . . , v

si
i to denote Li’s individual neurons. We refer

to the column vector [v1i , . . . , v
si
i]T as Vi. During evaluation,

the input values V1 are fed to the network’s input layer, and
V2, . . . , Vn are computed iteratively.

Each weighted sum layer Li has a weight matrix Wi of
dimensions si × si−1 and a bias vector Bi of size si. These
Wi and Bi are set at training time, and determine how Vi
is computed: Vi = Wi · Vi−1 + Bi. For a ReLU layer Li,
the values of Vi are computed by applying the ReLU to each
individual neuron in its preceding layer: vji = ReLU(vji−1).

In deep reinforcement learning (DRL) [40], a DNN, called
the agent, learns a policy π, which maps each possible
observed environment state s to an action a. During training,
at each discrete time-step t ∈ 0, 1, 2..., a reward rt is displayed
to the agent, based on the action at it chose to perform
after observing the environment’s state at that time st. This
reward is used for tuning the agent DNN’s weights. The DNNs
produced using DRL fall within the same general architecture
described above; the difference lies in the training process,
which is aimed at generating a DNN that computes a mapping
π that maximizes the expected cumulative discounted return
Rt = E

[∑
t γ

t · rt
]
. The discount factor, γ ∈

[
0, 1
)
, controls

the effect that past decisions have on the total expected reward.

B. Verification of Deep Neural Networks

A DNN verification query typically includes a DNN N ,
a pre-condition P on N ’s input, and a post-condition Q on
N ’s output [28]. The verification algorithm’s goal is to find
a concrete input x0 such that P (x0) ∧ Q(N(x0)) (the SAT
case), or prove that no such x0 exists (the UNSAT case).
Typically, we use the pre-condition P to express some states
of the environment that the network might encounter, and use
the post-condition Q to encode the negation of the behavior
we would like N to exhibit in these states. Thus, when
the verification algorithm returns UNSAT, this implies that
the desired property always holds. Conversely, a SAT result
indicates that the desired property does not always hold, and
this is demonstrated by the discovered counter-example x0.

For example, observe the toy DNN in Fig. 1, and suppose
we wish to verify that the DNN’s output is strictly larger than
5, for any input, i.e., for any x = 〈v11 , v21〉, it holds that N(x) =

194

v14 > 5. This is encoded as a verification query by choosing
a pre-condition which does not restrict the input, i.e., P =
(true), and by setting Q = (v14 ≤ 5), which is the negation
of our desired property. For this verification query, a sound
verifier will return SAT, and a feasible counter-example such
as x = 〈0,−1〉, which produces v14 = 0 ≤ 5. Hence, the
property does not hold for this DNN.

Verifying DRL Systems. Beyond the general challenges of
verifying DNNs (most notably, scalability), verifying DRL
systems involves additional challenges. These challenges stem
from the fact that DRL agents typically run within reactive
systems, and are invoked multiple times, with the inputs to
each invocation usually affected by the outputs of previous
invocations. This means that (i) the specifications for DRL
systems need to account for multiple invocations; and (ii) the
scalability issue is aggravated, because the verifier needs to
consider multiple consecutive invocations of the network,
which is akin to considering a significantly larger DNN.

While attempts have been made to develop tools tailored for
DRL system verification (e.g., [16], [32], [44]), two important
challenges have yet to be addressed. First, existing verifica-
tion approaches for DRL systems have focused on refuting
properties, and not on proving that they hold; and second,
existing approaches were not geared towards verifying reactive
systems. As part of the whiRL project, we make an initial
attempt at addressing these two challenges.

III. whiRL 2.0

Our contribution in this paper is the whiRL 2.0 verification
tool, which significantly extends our existing DRL verification
engine, whiRL 1.0. The whiRL 2.0 tool allows to verify
complex queries on DRL systems, which were previously
beyond our reach. Specifically, it supports the verification
of safety and liveness properties of DRL systems using a
k-induction-based approach. Additionally, it incorporates in-
variant inference techniques, which facilitate the verification
of complex safety properties. whiRL 2.0 uses an underlying
verification engine as a black-box, and is hence compatible
with many existing DNN verifiers.

Formalizing DRL Agents. DRL agents typically operate
within reactive systems: they process a (possibly infinite)
sequence of states, each representing a current snapshot of
the environment observed by the agent. Each state is obtained
from its predecessor by triggering the action outputted by the
DRL agent, and allowing the environment to react.

In line with the formulation proposed in [16], we formalize
the DRL verification problem by encoding the DRL system, as
well as its environment, into a transition system T = 〈S, I, T 〉.
Each state s ∈ S in this transition system is a snapshot of the
current observable environment; these states correspond to the
inputs of the DNN agent. We use I ⊆ S to denote the set of
initial states. The transition relation, T ⊆ S × S, is defined
such that 〈xi, xj〉 ∈ T iff the system can transition from state
xi to state xj ; i.e., when the DNN is presented with state xi,
it selects some action, to which the environment can respond

in a way that leads the system to state xj . Although the DNN
is deterministic, the environment is not necessarily so, and so
T need not be deterministic. An execution of the system is
defined as a sequence of states x1, . . . , xn, such that x1 ∈ I ,
and for all 1 ≤ i ≤ n−1 it holds that T (xi, xi+1). The process
of encoding a DRL system as a transition system is supported
by whiRL 1.0, via constructs for representing features common
to DRL systems (e.g., inputs in the form of a “sliding window”
over the recent history of observations) [16].

Example. As a running example, we focus on the Aurora DRL
system [27], which implements a congestion control policy. In
today’s Internet, different services (e.g., video streaming like
Netflix and Amazon, VoIP services such as Skype) contend
over the same network bandwidth, with aggregate demand for
bandwidth often exceeding the available supply. If Internet
traffic sources do not pace the rates at which their data is
injected into the network, the network will become congested,
resulting in data being lost or delayed, and, consequently, in
bad user experience and even global Internet outages. Con-
gestion control is the task of determining, for each individual
Internet traffic source, how quickly its traffic should be injected
into the network at any given point in time. Congestion control
is thus a both fundamental and timely networking challenge.

Recently, researchers have proposed employing DRL for
this purpose, and presented the Aurora congestion con-
troller [27]. An Aurora-controlled traffic source uses a DNN
to select the next rate at which to send traffic, based on
observations regarding the implications of its past choices
of sending rates. Specifically, Aurora’s inputs are t vectors
v−t, . . . , v−1, containing performance-related statistics per-
taining to the sender’s most recent t rate-change decisions.
These incorporate information about what fraction of sent data
packets were lost following each rate selection, how long it
took the sent packets to reach the traffic’s destination, etc. The
DNN’s output determines whether the current rate should be
increased, kept steady, or decreased. Changing the sending rate
can potentially affect the environment, e.g., an increase to the
rate might lead to packet loss if the new rate exceeds network
capacity. These changes to the environment, in turn, affect the
future inputs to the DNN. See [27] for additional details.

In the formulation of Aurora as a verification challenge
in [16], each state, which corresponds to a possible input to
Aurora’s DNN, is represented by a t-tuple of statistics vectors.
The state also contains the DNN’s (deterministic) output for
the input it represents. This is required for defining good and
bad states, as will be discussed later. Congestion controllers
are expected to converge to “good” rate decisions from any
starting point. Hence, we let the set of initial states be the
set of all states. Recall that the input to the DNN represents
a sliding window over t-long histories of statistics vectors.
Thus, for each two consecutive states, s1

T→ s2, it holds that
s2 is obtained from s1 by augmenting the vectors in s1 with
a statistics vector associated with the DNN’s rate change at
state s1, and discarding the vector in s1 corresponding to the
least recent of the t prior rate changes.

195

DRL System Specifications. Once the DRL system is formu-
lated as a transition system, we can specify safety and liveness
properties [11] that it should uphold. Safety properties indicate
that the system never displays unwanted behavior, and these
are often formulated through a predicate PB(s) that returns
true iff s ∈ S is a bad state, i.e., a state in which the property
is violated. The safety verification problem then boils down to
determining whether there is a reachable bad state in T [4].
Liveness properties indicate that the system eventually displays
desirable behavior, and these are often formulated through a
predicate PG(s) that returns true iff s ∈ S is a good state, i.e.,
a state in which the property is fulfilled. Verifying a liveness
property is performed by checking that there are no infinite
sequences of consecutive states in which only finitely many of
the states are good [4]. For instance, a natural safety property
with respect to Aurora is that when Aurora observes excellent
network conditions (no packet loss, close-to-minimum packet
delays), as reflected by the statistics vectors fed to the DNN,
the DRL agent does not advise to decrease the sending rate in
the next time-step. An example of a liveness property in this
setting is that if excellent network conditions persist, Aurora
should always eventually increase the sending rate.

K-Induction. Proving that safety or liveness properties hold
(or finding counter-examples) involves traversing large tran-
sition system graphs. For modern DRL systems, this is often
infeasible, in particular because the rich environments in which
these systems operate can react in many ways after each action
taken by the agent, resulting in high (or even infinite) out
degrees for many states. In whiRL 1.0, this issue was addressed
through the application of bounded model checking (BMC), an
approach that explores only a small fraction of the transition
system graph, namely, states within a k-step distance from an
initial state. BMC can find safety and liveness violations (if
they are reachable within k steps) as depicted in Fig. 2, but
cannot prove the absence of such violations.

0
1
2
3
4

6
0
1
2
3

k = 1 step

7
6
0
1
2

k = 2 steps

8
7
6
0
1

k = 3 steps

Bad StateBad State

Fig. 2: BMC searches for violations of a safety property. Each vector
represents a state, and encodes the statistics that Aurora observed
in the past t = 5 time-steps. The unwanted state is surrounded by
a red rectangle, and is reachable only after k = 3 steps from the
initial state. Note that consecutive states have shared inputs shifted,
and each time-step sample is depicted in a different color.

In whiRL 2.0, we address this important gap by adding the
means for proving that safety and liveness properties hold. To
this end, we employ the method of k-induction [11].

Intuitively, the idea in k-induction is to look for state
sequences of length k, which can start from arbitrary states

in T (not necessarily from initial states), and for which the
property is violated. If a violating execution exists, it must
contain an indicative k-long sequence of steps — a suffix of
the execution that ends in the bad state for safety properties, or
a sequence of non-good states for liveness properties. Thus, if a
verifier finds that a k-induction query is UNSAT, we know that
the corresponding property holds. If, however, it returns SAT
with a counter-example that does not start at an initial state, we
cannot conclude whether the property holds, and must increase
k in search of a conclusive answer. Fig. 3 depicts a snapshot
of the k-induction process used for proving a safety property.

0
1
2
3
4

6
0
1
2
3 . . .

4
2
7
1
5

6
4
2
7
1

3
4
2
7
1

7
3
4
2
7

Bad State

(k + 1) steps

k steps

(k + 2) steps

Fig. 3: Using k-induction to prove a safety property, i.e., that the
system never reaches the bad state (surrounded by a red rectangle).
Although there are k-long and (k+1)-long execution sequences that
end in the bad state, there is no such sequence of length (k+2); and
due to this and to BMC on the base cases, the property holds.

More formally, following the terminology in [4], verifying
ω-regular liveness properties is reducible to checking persis-
tence properties of the form ”eventually forever B”, where
B represents a “bad” state (∃s s.t. B = ¬PG(s)). Using k-
induction in the spirit of [6], [54], we can rule out the existence
of k-long sequences of bad states for a given k (even ones not
starting at an initial state). This is performed by formulating
the following query:

∃x1, x2, . . . , xk.
(k−1∧

i=1

T (xi, xi+1)
)
∧
(k∧

i=1

¬PG(xi)
)

for increasingly large values of k. As soon as one such query
returns UNSAT, we are guaranteed that the liveness property
holds. A similar encoding can be used for proving safety
properties.

We note that realizing k-induction in our case-studies en-
tailed contending with challenges such as the need to encode
verification queries that capture the system-environment in-
teraction from any (possibly non-initial) state. An additional
challenge was scalability; duplicating the network to encode
k steps can induce an exponential blowup in running time.
whiRL 2.0 curtails the search space by using bound tightening
mechanisms, and by enforcing certain dependencies between
the inputs to the k duplicate networks encoded as part of a k-

196

induction query. Specifically, these k inputs typically represent
the k recent observations of the agent’s environment, and
can be restricted by requiring them to constitute a “sliding
window”: each pair of consecutive inputs must agree on the
k − 1 previous observations that appear in both inputs.

BMC and k-induction are related techniques; the former
is geared towards refuting a property, and the latter is geared
towards proving it. In whiRL 2.0, we take a portfolio approach,
as depicted in Fig. 4: we alternate between BMC and k-
induction queries, until we: (i) refute the property (BMC
returns SAT); or (ii) prove the property (k-induction returns
UNSAT); or (iii) hit a timeout threshold. When steps 1 and 2
both fail, we increment k by 1 and repeat the process. Thus,
although we do not know in advance whether the property in
question holds, we hope that one of the two techniques will
either find a counter-example or prove the property.

verification schema

K++

K-InductionBMC

SAT

UNSAT

UNSAT

SAT

Fig. 4: whiRL 2.0’s verification schema.

Abstraction. In computer networking systems, such as the
Aurora congestion controller, the system’s state is often a set of
observations about the environment. Through close inspection
of our considered case-studies, we observe that occasionally
some of the input fields are irrelevant to the property being
checked, in the sense that the property can be proved even
when disregarding them. We thus integrate into whiRL 2.0
abstraction capabilities [10] — the ability to strip off irrelevant
input fields, as indicated by the user, when dispatching a
verification query. The original transition system T is thus
changed into an abstract transition system, T ′, which over-
approximates the original one. Specifically, the states of T ′
are symbolic, each corresponding to multiple states of T ; and
s′1

T ′

→ s′2 if and only if some states s1 and s2, to which s′1
and s′2 correspond, satisfy s1

T→ s2. If the verification engine
concludes that the property holds for T ′ (i.e., the negation
of the property is UNSAT), it follows that it also holds for
the original T . However, a counter-example for T ′ may be
spurious, as it may not be valid for T , in which case the
original query may need to be solved to obtain a definite result.

For example, in Aurora, the DNN input represents
performance-related statistics pertaining to the t most recent
rate adjustments made by the sender. In Aurora’s implemen-
tation used for our evaluation, we chose t = 10 (as in [27]).
In this context, abstraction might expose, for instance, that a

certain property holds regardless of what values are assigned
to the fields not relating to the 5 most recent rate changes,
indicating that the policy is, in essence, dependent only on
the 5 most recently observed statistics vectors.

We leverage the fact that inputs to recently-proposed com-
puter networked systems consist of fairly few fields with
natural semantic meaning, thus leading to a limited number
of actual combinations of input fields that are abstracted.

In Section VI we demonstrate how whiRL 2.0’s abstraction
capabilities can shed light on the inner workings of the verified
system, rendering the “black-box” policy learned by the DRL
system somewhat more translucent.

IV. INVARIANT INFERENCE

Verifying DRL systems is difficult, as one must often reason
about transitions across many states to establish that a property
holds. BMC and k-induction can mitigate this issue to some
extent, but sometimes this is not enough. To further boost the
scalability of whiRL 2.0, we enhanced it with semi-automated
invariant inference capabilities.

In the context of safety verification of a transition system
graph, an invariant can be regarded as a partition of the
state space S into two disjoint sets, S1 and S2, such that no
transition leads from one set to the other: s1 ∈ S1∧s2 ∈ S2 ⇒
〈s1, s2〉 /∈ T . Invariants are useful if we know that I ⊆ S1 (all
initial states are in S1) and PB(s)⇒ s ∈ S2 (all bad states are
in S2). In this case, the existence of the invariant immediately
guarantees that no bad states are reachable. Unfortunately,
discovering such useful invariants is known to be undecidable
in general, and very difficult to accomplish in practice [46].

As part of whiRL 2.0, we propose a heuristic for semi-
automated invariant inference, which leverages common traits
of communication networking systems. More precisely, we
observe that many relevant properties in these systems can
be regarded as Boolean monotonic functions; they tend to be
satisfiable when the DNN’s input vectors are allowed to fluc-
tuate extensively, but quickly become unsatisfiable when these
input vectors are restricted. Often, finding the tipping point,
i.e., the minimal input restrictions that cause the property to
shift from SAT to UNSAT, constitutes an invariant that is useful
for proving other properties, and which can also render the
policy learned by the DNN more translucent to humans.

We demonstrate these notions on the Aurora congestion
controller. Recall that Aurora’s output indicates whether the
sending rate should be increased, maintained, or decreased.
whiRL 2.0 can search for an invariant that translates to the
range of inputs for which the DNN outputs that the sending
rate should be decreased. Such an invariant can assist in
the verification of complex properties, and provide human
engineers with comprehensible insights into the DRL system.

Technically, whiRL 2.0 allows the user to specify the output
property and mark the relevant input fields. For example, in
Aurora’s case, “the sending rate should be decreased” as the
output property, and a subset of the input statistics as the
relevant fields. Then begins a binary search on the range of
the inputs in order to find the minimal restrictions that render

197

the verification query UNSAT. At each step of the binary
search, we invoke a black-box verification procedure to solve
the resulting query. This allows us to locate the tipping point
up to a prescribed precision. whiRL 2.0 has built-in templates
for input and output restrictions, which can be regarded as
different strategies for conducting the aforementioned binary
search. Each template takes into account either the DRL
system’s input variables or output variables, and controls them
by adjusting their bounds; tightening them to “push” the query
towards the UNSAT region. Currently, these templates include
(i) for a fixed output, tightening or loosening the bounds of
the specified input variables, executing binary search until the
point in which the query switches from SAT to UNSAT is
discovered; and (ii) performing a similar operation, but this
time on the bounds of the specified output variables, while
fixing the inputs according to user-specified constants.

Fig. 5 illustrates an invariant search procedure. In this
procedure, we have a candidate invariant (the middle blue line)

I

B

7

Fig. 5: Invariant search procedure.
The initial states are the green
square labeled I , and the bad states
are the red square labeled B.

that splits the search space
into two parts. Ideally, the
reachable states should all
be on one side of the par-
tition, and the bad states
on the other side. Our bi-
nary search automatically
adjusts the invariant can-
didate. In case an initial
invariant candidate is too
strong (there are reachable
states on both sides), it is
weakened, and the line is moved towards B. If, however, the
initial invariant candidate is too weak (there are bad states on
both sides), it is strengthened, and the line is moved towards
I . Both kinds of adjustments are performed by tightening or
loosening the bounds on the input or output variables.

V. IMPLEMENTATION

We implemented whiRL 2.0 as a Python framework that pro-
vides general functionality for verifying DRL systems. whiRL
2.0 uses Marabou [31], a state-of-the-art SMT-based [5], [12],
[14] DNN verifier, as a backend (although other verifiers could
also be used). whiRL 2.0 includes the following key modules,
which did not exist in whiRL 1.0:
1) K-Induction Query Verifier. A module that allows the

user to generate k-induction queries. The module can
encode either a safety property or a liveness property,
specified by their PB(s) and PG(s) predicates, respectively.

2) Invariant Finder. A module through which a user can
instruct whiRL 2.0 to search for an invariant. The user needs
to provide the post-condition Q, and mark the variables to
focus on. whiRL 2.0 then performs the previously described
semi-automated search procedure, and returns within the
specified parameters a range for which the invariant holds,
if such a range is found.

3) Input Abstraction. A module that allows the user to
specify, for a given verification query, which input fields

TABLE I: whiRL 2.0 features used in each case study.

Aurora Pensieve DeepRM
K-Induction 3 3 7

Bounded Model Checking 3 3 3

Invariant 3 7 3

Abstraction 7 3 3

should be abstracted. When abstraction is applied, whiRL
2.0 will either return UNSAT (if the abstract query returns
UNSAT), or default to the original query if the abstract
query returns a spurious counter-example.

Additionally, whiRL 2.0 retains some of whiRL 1.0’s function-
ality, most notably its DNN loading interfaces and bounded
model checking capabilities. The code for whiRL 2.0, along-
side documentation and the experiments described in the paper,
are all available online under a permissive license [1]. An
appendix with the formulation of the verified properties is also
available online [2].

VI. CASE STUDIES

We evaluate whiRL 2.0 on three case studies of DRL sys-
tems: the Aurora [27] congestion controller, the Pensieve [43]
adaptive video streamer, and the DeepRM [42] compute re-
source scheduler. All three case studies, which were used
to illustrate the power of whiRL 1.0 in [16], are from the
domain of communication networks. We have identified such
DRL systems as highly suitable candidates for evaluating DRL
system verification techniques as they achieve state-of-the-art
results despite being of moderate sizes, rendering verification
tractable. Table I summarizes the whiRL 2.0 capabilities ap-
plied in each case study. All experiments were conducted on an
HP EliteDesk machine with six Intel i5− 8500 cores running
at 3.00 GHz, and with a 32 GB memory.

A. The Aurora Congestion Controller

Aurora [27] is a state-of-the-art DRL system that acts as
a congestion controller for data transmission [27]. Aurora
receives an input vector of size 3t, which consists of obser-
vations from the previous t time-steps. Specifically, the input
consists of 3 distinct values representing performance-related
statistics for each of the previous t rate changes outputted by
the DNN: (i) latency gradient: the derivative of latency (packet
delays) across time, as measured by the sender, following a
change to the rate; (ii) latency ratio: the ratio of the average
latency experienced by the sender, following a change to the
rate, to the minimum past latency experienced. This value is
never smaller than 1; and (iii) sending ratio: the ratio of the
rate at which packets are injected into the network by the
sender (i.e., the sending rate), to the rate at which the sent
packets arrive at the receiver. We note that the latter rate can be
strictly lower than the former rate if the network is congested,
which can lead to sent packets being forced to wait in in-
network buffers, or being dropped along the way. The sending
ratio is never smaller than 1. Intuitively, simultaneous low
latency gradient, latency ratio, and sending ratio are indicative

198

of excellent network conditions. Aurora has a single output
value, which indicates whether the sending rate should be
increased (positive output), decreased (negative output), or
maintained (output is zero). When network conditions are
good (low latency, no packet loss), this in indicative of the
current rate not overshooting the network bandwidth. Hence,
we expect the sending rate to increase so as to take over
available bandwidth. In contrast, when network conditions are
poor (high latency, high packet loss), this is indicative of
network congestion, and so we expect Aurora to decrease the
rate. See [16], [27] for additional details.

In line with previous work [16], [27], we set t = 10, i.e.,
the input size to Aurora’s DNN is of size 3t = 30. Aurora’s
DNN has a single hidden ReLU layer with 48 neurons, and a
single neuron in its output layer.

Proving Liveness. In our previous work [16], two liveness
properties of Aurora were formulated, but could not be verified
using whiRL 1.0. Using whiRL 2.0, we successfully proved that
both properties from [16] always hold. Details follow.
• Property 1: excellent network conditions eventually

imply rate increase. When Aurora observes a history of
excellent network conditions (low latency, no packet loss),
the DRL system should eventually increase the sending rate,
i.e., eventually output positive values. Using whiRL 2.0’s
k-induction capabilities, we successfully proved that this
property, as formulated in [16], indeed holds for any infinite
run. The property was successfully proved, within a few
seconds, for k = 2.

• Property 2: poor network conditions eventually imply
rate decrease. Symmetrically to property 1, when Aurora
observes a history of poor network conditions, the DRL
system should eventually decrease the sending rate by
outputting negative values. By performing k-induction with
k = 5, we proved that this property, as formulated in [16],
indeed holds for all infinite executions. This query took
approximately 4.5 hours to solve.

Semi-Automatic Invariance Inference. Next, we used whiRL
2.0’s invariant inference capabilities to find invariants for
proving safety properties of Aurora.
• Invariant A: bounding the next-step decrease in sending

rate for excellent network conditions. When Aurora ob-
serves a history of excellent network conditions (low latency,
no packet loss), the DRL agent’s output should be non-
negative, i.e., should not imply a decrease to the sending
rate. This safety property was shown to be violated in
previous work [16]. Here, we utilize whiRL 2.0’s invariance
inference techniques to prove a bound on this (undesirable)
next-step decrease in sending rate, to provide visibility into
the performance of the DRL system.
whiRL 2.0’s method for producing the desired invariant
appears in Alg. 1. The algorithm takes two user inputs: the
latency slack ε, and the precision η. The ε input captures the
notion of “excellent network conditions” encoded as inputs
to the DNN: the observed latency gradient is restricted to

the range [−ε, ε]; and the observed latency ratio is restricted
to the range [1, 1 + ε]. Additionally, the sending ratio is
set to 1 (indicating that sent traffic arrives at the receiver
without being delayed or dropped within the network). The
algorithm now performs a binary search over the DNN’s
output space (leaving the prescribed input ranges for the
DNN fixed). Specifically, the η input specifies the desired
precision: the output of the algorithm will be an upper
bound b on the DNN’s output, such that the output b is
impossible, but b+ η is possible, given the aforementioned
input restrictions. Recall that the upper bound b relates to the
negation of the desired property, and so an upper bound of b
implies that Aurora’s DNN will never decrease the sending
rate by b or more when network conditions are excellent.
This procedure terminates within a few seconds, returning an
upper bound on the input for which the DNN verifier returns
UNSAT. The algorithm’s correctness immediately follows
from the underlying verifier’s soundness.

Algorithm 1 Finding Invariant A

Input: ε, η // latency slack, precision
Output: UBUNSAT // worst-case output decrease bound

1: UBUNSAT ← −∞ // −M , for some large constant M
2: UBSAT ← 0
3: QUERY ← DNN VERIFY (ε, output ≤ 0)
4: while (|UBSAT − UBUNSAT| ≥ η) do
5: OUTUPPER ← 1

2 (UBUNSAT + UBSAT)
6: QUERY ← DNN VERIFY (ε, output≤ OUTUPPER)
7: if QUERY is SAT then UBSAT ← OUTUPPER

8: if QUERY is UNSAT then UBUNSAT ← OUTUPPER

9: return UBUNSAT

• Invariant B: inferring when Aurora fails to decrease the
next-step sending rate even though network conditions
are poor. We now wish to characterize poor network
conditions in which Aurora does not decrease its sending
rate, as expected of it. The procedure is described in Alg. 2.
Now, the sending ratio is not fixed to 1, but is rather
within the range [1, P], for a user-specified P value. P
represents a user-provided upper bound on ratio of the
rate at which packets leave the sender (i.e., the sending
rate) to the rate which these packets arrive at the receiver.
For a slack ε, the procedure again restricts the latency
gradient to the range [−ε, ε] and the latency ratio to the
range [1, 1 + ε]. Intuitively, setting low values for ε while
allowing sending ratios to be high corresponds to sending
traffic across communication networks in which in-network
buffers are very shallow. In such networks, packets cannot
accumulate within the network, resulting in low latencies
for packet delivery. However, since in-network buffers are
shallow, packets are dropped once network bandwidth is
even slightly exceeded, resulting in high sending ratios
when the sending rate significantly overshoots the network’s
capacity (and many packets are lost).
The algorithm fixes the output’s lower bound to be non-
negative, and executes a binary search on the input sending

199

ratio. Specifically, the algorithm returns, for any user-chosen
value P, a lower bound (LBUNSAT) such that Aurora always
decreases the sending rate when its observations regarding
past sending ratios all lie within the range [LBUNSAT,P].
whiRL 2.0 finds the invariant within a few seconds.

Algorithm 2 Finding Invariant B

Input: P ≥ 2 // upper bound on the sending ratio
Output: LBUNSAT // worst-case sending ratio bound

1: LBSAT, SRLOWER ← 1
2: LBUNSAT, SRUPPER ← P
3: QUERY ← DNN VERIFY (ε, output ≥ 0, SRLOWER,
SRUPPER)

4: while (LBSAT + 1 < LBUNSAT) do
5: SRLOWER ← 1

2 (LBSAT + LBUNSAT)
6: QUERY ← DNN VERIFY (ε, output ≥ 0, SRLOWER,

SRUPPER)
7: if QUERY is SAT then LBSAT ← SRLOWER

8: if QUERY is UNSAT then LBUNSAT ← SRLOWER

9: return LBUNSAT

Observing the bounds produced by Alg. 2 yielded surpris-
ing insights regarding the decision-making policy learned by
Aurora. Specifically, to gain insight into what our discovered
invariants reveal regarding the policies, we created multiple
instances of Aurora agents, and trained them all on the same
training data until achieving an averaged reward value similar
to that of the original Aurora controller [27]. We then observed
that for some of the Aurora instances, the discovered invari-
ants depended only on the proportion between the sending
ratio’s lower bound (SRLOWER) and upper bound (SRUPPER),
as opposed to their absolute values. Specifically, for violating
counter-examples (inputs to Aurora’s DNN) produced for
these instances, the ratio between the highest and lowest past
sending ratios was at least 2, with lower ratios giving rise
to desirable behavior by Aurora. For other trained instances
of Aurora, violating counter-examples only depended on the
absolute values of the bounds; e.g., Aurora always decreases
the rate for inputs to the DNN where all sending ratios lie in
the range [1,M] for some value M , but not when these lie in
the range [1,M + δ] for some small δ. Our findings show that
policies that yield the same expected reward on the training set
might generalize very differently to inputs that lie outside this
training set, and that our discovered invariants can shed light
on the generalization strategies of different policies learned.

B. The Pensieve Video Streamer

Pensieve is a DRL system [43] for adaptive bitrate (ABR)
selection. To provide high quality of experience for video
clients, Pensieve continuously collects statistics about the
client’s experience when downloading video chunks (e.g., was
the video rebuffered? how long did it take to download the
chunk?) to dynamically adapt the resolution at which the
next video chunk is downloaded from the video server. Each
video chunk represents a fixed-duration video segment (e.g.,
4-second-long chunks in our experiments) encoded in one

of several possible resolutions (SD, HD, etc.), with higher
resolutions corresponding to larger chunks, in terms of number
of bits. When client-sensed network conditions are good, we
expect the ABR algorithm to decide that the next video chunk
will be downloaded in high resolution (HD); and when they are
poor, we expect a low resolution (SD) to be selected, to avoid
having the client not finish the download in time, which leads
to video rebuffering. The input to Pensieve’s DNN consists
of (2t +M + 3) fields, where t > 0 represents the number
of recent video chunk downloads considered, and M > 0
represents the number of available video resolutions. The input
comprises: (i) the bitrate (1 field) in which the last video chunk
was downloaded; (ii) the current video buffer size (1 field) of
the client, reflecting the number of seconds of unwatched video
stored at the client; (iii) network throughput measurements for
video chunks downloaded in the past t time-steps (t fields);
(iv) download times for the video chunks downloaded in
the past t time-steps (t fields); (v) resolution options (M
fields) to download the next chunk; and (vi) the number of
remaining chunks to be downloaded (1 field). See [43] for a
thorough exposition of Pensieve, and [16] for a formalism of
the Pensieve verification challenge.

To maintain consistency with Pensieve’s original hyper-
parameters, in our experiments t = 8 and M = 6. Due
to the nature of an ABR algorithm, all executions are finite
(downloads finish in finite time), and so all relevant properties
are safety properties. In previous work [16], whiRL 1.0 was
applied to check two safety properties of Pensieve:
• Property 1. When the chunk download history represents

excellent conditions (short download times, large client
buffer size), the DRL system should increase the resolution
at which chunks are requested before the download finishes.

• Property 2. When the download history represents poor
network conditions (long download times, small client buffer
size), the DRL system should decrease the resolution at
which chunks are requested before the download finishes.

While Property 1 was shown not to hold [16], no counter-
examples could previously be found for Property 2, and so it
could neither be proved nor disproved using existing tools.

Using whiRL 2.0, we were able to prove that Property 2
indeed holds under certain, realistic, assumptions.1 To achieve
this, we applied k-induction, with k = 1. The result returned
by the verifier indicated that the bad states are unreachable,
and, hence, that the undesirable behavior cannot occur. These
verification queries took approximately 20 minutes to solve.

C. The DeepRM Resource Manager

DeepRM [42] is a DRL-based resource manager, responsible
for allocating various cluster compute resources (e.g., CPU,
memory) to queued jobs, in order to optimize the cluster’s
throughput. DeepRM receives the following as input: (i) the
current resource usage in the system; (ii) a queue with up to

1We assumed that chunks represent 4-second-long video segments. Con-
sidered chunk download times are between 4 to 15 seconds per chunk, which
implies that downloading each chunk takes longer than consuming it.

200

Q pending jobs waiting to be scheduled; and (iii) a backlog,
indicating the number of jobs waiting to be scheduled that
are not yet in the queue. For a fixed Q-sized job queue, the
DeepRM controller may output one of (Q+1) possible actions:
a wait action (i.e., no resources will be allocated at this time-
step), or a scheduleq action for 1 ≤ q ≤ Q, indicating that job
q should be scheduled next. DeepRM’s output is interpreted
as a probability distribution, assigning a certain probability
to each of the (Q + 1) possible actions. We refer the reader
to [42] for a thorough exposition of DeepRM, and to [16] for
a formalism of the DeepRM verification challenge.

In our case study, as in [16], we used a DeepRM system
trained with R = 2 resources: CPU and memory units, and
a job queue of size Q = 5. Overall system resources consist
of 10 CPUs and 10 memory units. We considered two kinds
of jobs: small jobs, which require 1 CPU and 1 memory unit
for a single time-step, and large jobs, which require 10 CPUs
and 10 memory units, for t = 20 time-steps.

Previous work [16] considered the following safety proper-
ties for DeepRM:
• Property 1. When all resources are fully available, and the

queue is filled with small jobs, DeepRM should never assign
the highest probability to the wait action.

• Property 2. When no resources are available, and the queue
is filled with small jobs, DeepRM should assign the highest
probability to the wait action.

• Property 3. When no resources are available, and the queue
is filled with large jobs, DeepRM should assign the highest
probability to the wait action.

Using whiRL 1.0, it was shown [16] that Property 1 holds,
and that there exist counter-examples for Properties 2 and 3.
However, by using whiRL 2.0 we were able to prove (within
a few seconds) a stronger property that, in fact, generalizes
properties 1, 2 and 3. By applying whiRL 2.0’s abstraction
capabilities to both the inputs indicating resource utilization
and the output indicating the recommended action, we proved
that for any resource utilization level, when the queue is filled
with identical jobs, the DRL system’s output assigns a higher
probability to schedule2 than to wait. This immediately proves
Property 1, and implies that Properties 2 and 3 cannot hold.

This finding sheds new light on previous results, and en-
hances our understanding of DeepRM: (i) the three original
properties do not depend on the current resource utilization.
Rather, due to the DRL system learning a suboptimal policy,
it is biased towards scheduling a specific job (job #2), and
may fail to select wait when appropriate; and (ii) the counter-
examples found for Properties 2 and 3 are not outliers, but
rather the general case. Indeed, we were able to use whiRL 2.0
to prove that the inverses of both these properties always hold.
These results demonstrate that, beyond proving or disproving
specific properties, whiRL 2.0 can shed light on the policy
learned by the DRL system, and expose problematic issues.

VII. RELATED WORK

Due to the increasing use of DNNs, many DNN verification
tools have been proposed in recent years; some are SMT-

based (e.g., [28], [31], [35], [47]), whereas others use different
verification strategies, such as abstract interpretation [48],
[56], [59], mixed integer linear programming (MILP) [52],
and many others. Recently, these approaches were extended to
verify systems with multi-step executions, such as Recurrent
Neural Networks (RNNs) [26], [58] or hybrid systems [50].

In our evaluation of whiRL 2.0, we used Marabou [31], [57]
as a black-box DNN verifier. To date, Marabou has mostly
been applied for solving adversarial robustness queries [3], [8],
[24], [29], and our work demonstrates that it is also applicable
in the field of computer and networked systems. Marabou
affords additional features, such as built-in abstraction [15],
simplification [20], [36], repair [21] and optimization [49]
techniques, which could also be applied to our case studies.

In addition to general DNN verification engines, methods
have been devised to formally verify safety properties of DRL
systems, which are the subject matter of this work. Such
approaches include shield synthesis [33], and combining the
verification process with verified runtime monitoring [18].
Other methods focus on finding adversarial attacks that pertain
specifically to DRL agents, e.g., by using MILP [13].

In addition to the whiRL project, other approaches have
been proposed for verifying DRL systems in the domain of
communication networks. These include, e.g., Verily [32] and
Metis [44]. Importantly, however, our focus is on verifying (as
opposed to only refuting) various safety and liveness properties
of these systems. To the best of our knowledge, this lies
beyond the grasp of other existing tools.

VIII. CONCLUSION

DRL systems provide excellent performance in multiple
settings, but suffer from severe vulnerabilities. Several veri-
fication tools have been developed to mitigate this concern,
but these mostly refute, as opposed to prove, safety and
liveness properties of interest. In this work, we presented
whiRL 2.0 — a novel verification engine that supports proving
both safety and liveness properties of DRL systems. whiRL
2.0 accomplishes this through semi-automatic invariance in-
ference, alongside techniques such as k-induction and query
abstraction. We demonstrated our tool’s capabilities through
three case studies from the communication networks domain.
In addition, we demonstrated how whiRL 2.0 can provide
insights into the inner workings of these systems, uncovering
weaknesses that would otherwise remain unnoticed.

In the future, we plan to enhance our tool’s scalability by
using improved search heuristics. Also, we intend to enrich
the semi-automatic invariant inference templates to support
searching for more complex invariants.

Acknowledgements. We thank Nathan Jay, Tomer Eliyahu
and the anonymous reviewers for their contributions to this
project. The project was partially supported by the Israel
Science Foundation (grant number 683/18), the Binational
Science Foundation (grant numbers 2017662 and 2019798),
and the Center for Interdisciplinary Data Science Research at
The Hebrew University of Jerusalem.

201

REFERENCES

[1] G. Amir, M. Schapira, and G. Katz. Artifact Repository, 2021. https:
//doi.org/10.5281/zenodo.4769612.

[2] G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification of
Deep Reinforcement Learning, 2021. Technical Report. https://arxiv.org/
abs/2105.11931.

[3] G. Amir, H. Wu, C. Barrett, and G. Katz. An SMT-Based Approach for
Verifying Binarized Neural Networks. In Proc. 27th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 203–222, 2021.

[4] C. Baier and J. Katoen. Principles of Model Checking. MIT press, 2008.
[5] C. Barrett and C. Tinelli. Satisfiability modulo theories. In Handbook

of Model Checking, pages 305–343. Springer, 2018.
[6] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety

checking. Electronic Notes in Theoretical Computer Science, 66(2):160–
177, 2002.

[7] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba. End to End Learning for Self-Driving Cars, 2016.
Technical Report. http://arxiv.org/abs/1604.07316.

[8] N. Carlini, G. Katz, C. Barrett, and D. Dill. Provably Minimally-
Distorted Adversarial Examples, 2017. Technical Report. https://arxiv.
org/abs/1709.10207.

[9] W. Chen, Y. Xu, and X. Wu. Deep reinforcement learning
for multi-resource multi-machine job scheduling. arXiv preprint
arXiv:1711.07440, 2017.

[10] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
Guided Abstraction Refinement. In Proc. 12th Int. Conf. on Computer
Aided Verification (CAV), pages 154–169, 2000.

[11] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. Handbook of
Model Checking, volume 10. Springer, 2018.

[12] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[13] A. Dethise, M. Canini, and N. Narodytska. Analyzing learning-
based networked systems with formal verification. IEEE International
Conference on Computer Communications (IEEE InfoCom, 2021.

[14] B. Dutertre and L. De Moura. The yices smt solver. Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, 2(2):1–2, 2006.

[15] Y. Elboher, J. Gottschlich, and G. Katz. An Abstraction-Based Frame-
work for Neural Network Verification. In Proc. 32nd Int. Conf. on
Computer Aided Verification (CAV), pages 43–65, 2020.

[16] T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira. Verifying Learning-
Augmented Systems. In Proc. Annual Conf. of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication (SIGCOMM),
2021.

[17] H. F. Eniser, M. Christakis, and V. Wüstholz. Raid: Random-
ized adversarial-input detection for neural networks. arXiv preprint
arXiv:2002.02776, 2020.

[18] N. Fulton and A. Platzer. Safe reinforcement learning via formal meth-
ods: Toward safe control through proof and learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2018.

[19] T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri,
and M. Vechev. AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In Proc. 39th IEEE Symposium
on Security and Privacy (S&P), 2018.

[20] S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz.
Simplifying Neural Networks using Formal Verification. In Proc. 12th
NASA Formal Methods Symposium (NFM), pages 85–93, 2020.

[21] B. Goldberger, Y. Adi, J. Keshet, and G. Katz. Minimal Modifications
of Deep Neural Networks using Verification. In Proc. 23rd Int. Conf. on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR),
pages 260–278, 2020.

[22] C. Gongye, H. Li, X. Zhang, M. Sabbagh, G. Yuan, X. Lin, T. Wahl,
and Y. Fei. New passive and active attacks on deep neural networks
in medical applications. In Proceedings of the 39th International
Conference on Computer-Aided Design, pages 1–9, 2020.

[23] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

[24] D. Gopinath, G. Katz, C. Pǎsǎreanu, and C. Barrett. DeepSafe: A Data-
driven Approach for Assessing Robustness of Neural Networks. In Proc.

16th. Int. Symposium on on Automated Technology for Verification and
Analysis (ATVA), pages 3–19, 2018.

[25] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification
of Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pages 3–29, 2017.

[26] Y. Jacoby, C. Barrett, and G. Katz. Verifying Recurrent Neural Networks
using Invariant Inference. In Proc. 18th Int. Symposium on Automated
Technology for Verification and Analysis (ATVA), 2020.

[27] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar. A
deep reinforcement learning perspective on internet congestion control.
In International Conference on Machine Learning, pages 3050–3059.
PMLR, 2019.

[28] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proc.
29th Int. Conf. on Computer Aided Verification (CAV), pages 97–117,
2017.

[29] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Towards
Proving the Adversarial Robustness of Deep Neural Networks. In Proc.
1st Workshop on Formal Verification of Autonomous Vehicles (FVAV),
pages 19–26, 2017.

[30] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a
Calculus for Reasoning about Deep Neural Networks. Formal Methods
in System Design (FMSD), 2021. To appear.

[31] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification
(CAV), pages 443–452, 2019.

[32] Y. Kazak, C. Barrett, G. Katz, and M. Schapira. Verifying Deep-RL-
Driven Systems. In Proc. 1st ACM SIGCOMM Workshop on Network
Meets AI & ML (NetAI), pages 83–89, 2019.

[33] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem. Shield Synthesis
for Reinforcement Learning. In Proc. Int. Symposium On Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA),
pages 290–306, 2020.

[34] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classification with
Deep Convolutional Neural Networks. In Proc. 26th Conf. on Neural
Information Processing Systems (NIPS), pages 1097–1105, 2012.

[35] L. Kuper, G. Katz, J. Gottschlich, K. Julian, C. Barrett, and M. Kochen-
derfer. Toward Scalable Verification for Safety-Critical Deep Networks,
2018. Technical Report. https://arxiv.org/abs/1801.05950.

[36] O. Lahav and G. Katz. Pruning and Slicing Neural Networks using
Formal Verification , 2021. Technical Report. https://arxiv.org/abs/2105.
13649.

[37] S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent Convolutional Neural
Networks for Text Classification. In Proc. 29th AAAI Conf. on Artificial
Intelligence, 2015.

[38] A. Lekharu, K. Moulii, A. Sur, and A. Sarkar. Deep learning based
prediction model for adaptive video streaming. In 2020 International
Conference on COMmunication Systems & NETworkS (COMSNETS),
pages 152–159. IEEE, 2020.

[39] W. Li, F. Zhou, K. R. Chowdhury, and W. Meleis. Qtcp: Adaptive
congestion control with reinforcement learning. IEEE Transactions on
Network Science and Engineering, 6(3):445–458, 2018.

[40] Y. Li. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274, 2017.

[41] R. Mammadli, A. Jannesari, and F. Wolf. Static neural compiler
optimization via deep reinforcement learning. In 2020 IEEE/ACM 6th
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC)
and Workshop on Hierarchical Parallelism for Exascale Computing
(HiPar), pages 1–11. IEEE, 2020.

[42] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource manage-
ment with deep reinforcement learning. In Proceedings of the 15th ACM
workshop on hot topics in networks, pages 50–56, 2016.

[43] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming
with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 197–210, 2017.

[44] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu. Interpreting
deep learning-based networking systems. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and protocols for
computer communication, pages 154–171, 2020.

202

https://doi.org/10.5281/zenodo.4769612
https://doi.org/10.5281/zenodo.4769612
https://arxiv.org/abs/2105.11931
https://arxiv.org/abs/2105.11931
http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1709.10207
https://arxiv.org/abs/1709.10207
https://arxiv.org/abs/1801.05950
https://arxiv.org/abs/2105.13649
https://arxiv.org/abs/2105.13649

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[46] O. Padon, N. Immerman, S. Shoham, A. Karbyshev, and M. Sagiv.
Decidability of Inferring Inductive Invariants. In Proc. 43th Symposium
on Principles of Programming Languages (POPL), pages 217–231,
2016.

[47] L. Pulina and A. Tacchella. Challenging smt solvers to verify neural
networks. Ai Communications, 25(2):117–135, 2012.

[48] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. T. Vechev. Fast and
effective robustness certification. NeurIPS, 1(4):6, 2018.

[49] C. Strong, H. Wu, A. Zeljić, K. Julian, G. Katz, C. Barrett, and
M. Kochenderfer. Global Optimization of Objective Functions Rep-
resented by ReLU networks, 2020. Technical Report. http://arxiv.org/
abs/2010.03258.

[50] X. Sun, K. H., and Y. Shoukry. Formal Verification of Neural Network
Controlled Autonomous Systems. In Proc. 22nd ACM Int. Conf. on
Hybrid Systems: Computation and Control (HSCC), 2019.

[51] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus. Intriguing Properties of Neural Networks, 2013.
Technical Report. http://arxiv.org/abs/1312.6199.

[52] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural
Networks with Mixed Integer Programming, 2017. Technical Report.
http://arxiv.org/abs/1711.07356.

[53] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar. Learning to route
with deep rl. In NIPS Deep Reinforcement Learning Symposium, 2017.

[54] T. Wahl. The k-induction principle. Northeastern University, College of
Computer and Information Science, pages 1–2, 2013.

[55] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security
Analysis of Neural Networks using Symbolic Intervals. In Proc. 27th
USENIX Security Symposium, pages 1599–1614, 2018.

[56] L. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. Boning,
and I. Dhillon. Towards fast computation of certified robustness for
relu networks. In International Conference on Machine Learning, pages
5276–5285. PMLR, 2018.

[57] H. Wu, A. Ozdemir, A. Zeljić, A. Irfan, K. Julian, D. Gopinath,
S. Fouladi, G. Katz, C. Păsăreanu, and C. Barrett. Parallelization
Techniques for Verifying Neural Networks. In Proc. 20th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 128–137,
2020.

[58] H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska.
Verification of Recurrent Neural Networks for Cognitive Tasks via
Reachability Analysis. In Proc. 24th Conf. of European Conference
on Artificial Intelligence (ECAI), pages 1690–1697, 2020.

[59] H. Zhang, T. Weng, P. Chen, C. Hsieh, and L. Daniel. Efficient neural
network robustness certification with general activation functions, 2018.

[60] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang,
T. Cheng, L. Liu, et al. An end-to-end automatic cloud database tuning
system using deep reinforcement learning. In Proceedings of the 2019
International Conference on Management of Data, pages 415–432, 2019.

203

http://arxiv.org/abs/2010.03258
http://arxiv.org/abs/2010.03258
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.07356

	Introduction
	Background
	Deep Neural Networks and Deep Reinforcement Learning
	Verification of Deep Neural Networks

	whiRL 2.0
	Invariant Inference
	Implementation
	Case Studies
	The Aurora Congestion Controller
	The Pensieve Video Streamer
	The DeepRM Resource Manager

	Related Work
	Conclusion
	References

