
Formal Methods in Computer-Aided Design 2021

Sound and Automated Verification of Real-World
RTL Multipliers

Mertcan Temel
Electrical and Computer Engineering

University of Texas at Austin
Austin, TX, USA
mert@utexas.edu

Warren A. Hunt, Jr.
Computer Science

University of Texas at Austin
Austin, TX, USA
hunt@cs.utexas.edu

Abstract—We have developed an algorithm, S-C-Rewriting,
that can automatically and very efficiently verify arithmetic
modules with embedded multipliers. These include ALUs, dot-
product, multiply-accumulate designs that may use Booth en-
coding, Wallace-trees, and various vector adders. Outputs of the
target multiplier designs might be truncated, right-shifted, or
a combination of both. We evaluate the performance of other
state-of-the-art tools on verification problems beyond isolated
multipliers and we show that our method applies to a broader
range of design techniques encountered in real-world modules.
Our verification software is verified using the ACL2 theorem
prover, and we can soundly verify 1024x1024-bit isolated mul-
tipliers and similarly large dot-product designs in minutes. We
can also generate counterexamples in case of a design bug. Our
tool and benchmarks are available online.

Index Terms—Formal Verification, Integer Multipliers, Hard-
ware Verification, Arithmetic Circuits, ACL2, Term-rewriting

I. INTRODUCTION

Integer multipliers are fundamental building blocks for
general-purpose (e.g., CPUs and GPUs), image, communi-
cations, and cryptographic processors. Multipliers are used
to implement dot-product, division, square-root, and floating-
point operations; in turn, these operations find their way
into graphics, cryptography, and signal processing systems.
In some cases, such as cryptographic processors, integer
multipliers might be used to multiply numbers as large as
1024 bits.

Given the ubiquity of multipliers, it is crucial to have a
sound verification method for designs that include multipliers.
However, the formal verification process of multipliers is still a
challenge, especially for the most common design approaches
such as Wallace tree and Booth encoding. Decision-procedure-
based tools such as BDDs, SAT solvers do not scale [1],
[2]. In recent years, multiplier verification efforts have shifted
towards using computer algebra methods [2]–[6] and they
have yielded more promising results. However, these studies
focused heavily on isolated multiplier designs, and they do not
perform well (if at all) for multipliers with truncated output
(e.g., a 32x32-bit multiplier with a 32-bit output). Studies
that explore the verification problem of embedded multipliers
(e.g., multiply-accumulate, dot-product) have been limited,
and they do not support designs with Wallace tree and Booth
encoding [1]. Additionally, only one computer-algebra-based

tool [3] provides a system to check the correctness of the proof
itself, leaving open the possibility that these tools might claim
a design to be correct when the design is actually flawed.

In our previous work [7], we proposed a method to verify
integer multipliers efficiently and automatically. Using the
ACL2 theorem proving system, we developed a provably
correct verification mechanism based on term-rewriting. This
method has been shown to quickly verify a wide range of
integer multiplier designs (e.g., 1024x1024-bit multipliers with
simple partial products have been verified in less than 10
minutes). However, our focus concerned only untruncated
isolated multiplier designs. Moreover, we did not discuss how
the algorithm performs with buggy designs.

We have expanded our method and we have been able to:
• improve proof-time performance by a factor of 2 or more;
• verify designs beyond untruncated isolated multipliers;
• and quickly generate counterexamples.

Additionally, we retain the same level of proof automation and
keep our tool provably correct.

In this paper, we aim to explore the verification problem
of multipliers on more complex designs than explored in
previous verification studies and deliver our solutions. We
provide examples of complex multiplier architectures with
optimizations that can be encountered in real-world designs.
We discuss how existing state-of-the-art verification tools
perform on such modules. Finally, we present our improved
method and show that we can verify these complex designs
very efficiently. For example, we can verify 64x64-bit isolated
multipliers or similar designs within seconds and 1024x1024-
bit isolated multipliers or similar dot-product designs in 5
minutes, no matter which design algorithm is used.

This paper is structured as follows. Sec. II summarizes the
most common design algorithms for isolated and embedded
multipliers. We show why it is important to develop a ver-
ification method for embedded and truncated multipliers and
why it is not enough to have a verification tool only for isolated
multipliers. In Sec. III, we summarize the related work from
the most recent and/or prominent studies. Sec. IV recapitulates
our term rewriting algorithm from our previous work and
introduces some of its recently discovered limitations. Sec. V
discusses our new improvements so that we can verify more
designs with better efficiency and generate counterexamples

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 13 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-9738-587X
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_13
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_13
https://creativecommons.org/licenses/by/4.0/


for buggy modules. Sec. VI describes how our lemmas are
implemented and applied. Finally, we show our experiment
results in Sec. VII and compare our performance with other
state-of-the-art multiplier verification tools.

II. MULTIPLIER ARCHITECTURES

There are various algorithms to design RTL multipliers and
integrate them in other arithmetic modules such as a multiply-
accumulate (MAC). The difficulty of verifying these modules
depends on the design algorithm. Some algorithms bring out
clean and regularly structured modules, and some and most
commonly used algorithms produce complex structures. This
section elaborates on the verification problem by summarizing
common algorithms to design multipliers and how they are
implemented in other arithmetic circuits.

A. Isolated Multipliers

An isolated multiplier is a circuit with two bit-vector inputs
and one bit-vector output. The output vector represents an
integer equivalent to the multiplication of the input vectors,
which can be signed or unsigned integers. Isolated multipliers
are often implemented in two stages: partial product generation
and partial product summation.

Partial products can be generated by multiplying (i.e., logi-
cal AND) each input bit with each other as in primary school
multiplication. For signed numbers, the input numbers need to
be sign-extended, in which case the Baugh-Wooley [8] sign
extension technique can be used to lower the implementation
area. Booth encoding [9] (particularly radix-4) is a more
common and efficient way to generate partial products. Booth
encoding incorporates more than two input bits at a time when
generating partial products. This can provide more parallelism
and fewer partial products. However, Booth encoding makes
a circuit’s structure and logic more complex, making it more
difficult to reason about the circuit.

There are numerous methods to sum partial products in
hardware. Unlike primary school multiplication, hardware
algorithms do not sum partial products one column at a
time, from right to left. Summations are performed more
locally with unit adders such as half and full adders. An
array multiplier is a simple example that is built with such
unit adders following a shift-and-add methodology. Array
multipliers have a regular structure, which makes it straight-
forward to verify them. However, they can have a large gate
delay (i.e., propagation delay). On the other hand, Wallace-
tree-like multipliers [10], such as Dadda tree [11], provide
more parallelism. These summation tree algorithms sum partial
products with less propagation delay and only slight changes
in the implementation area. Designers can also utilize low
gate-delay vector adders, such as Brent-Kung [12], Ladner-
Fischer [13], and conditional sum, as a final stage adder to
get the multiplication result. This can make Wallace-tree-like
algorithms with complex final stage adders more preferable
for hardware applications, but their irregular structures make
the verification problem difficult, especially when paired with
Booth encoding.

We should also note that an isolated multiplier implemen-
tation may not always return the full multiplication result.
Instead, the result might be truncated, right-shifted, or a
combination of both. For example, when two 32-bit numbers
are multiplied, a lossless multiplier would output a 64-bit
number. On the other hand, if the design only calculates the
lower, say, 32-bits of the result, we say that the result is
truncated. Similarly, when, say, only the upper 32-bits of the
result are returned from the multiplier, we say that the result
is right shifted. If only the middle portion of the result is
returned, which may happen in fixed-point arithmetic, we say
that the result is right shifted and truncated. Some designs
implement rounding or saturation when a certain portion of
the result is discarded when truncating and/or shifting.

B. Simple Arithmetic Modules with Embedded Multipliers

Integer multipliers can be implemented in various arithmetic
modules such as MAC, dot-product, and floating-point arith-
metic units. This section summarizes how a MAC module can
be implemented in hardware.

A simple MAC computes a∗b+c, where a, b and c are bit-
vectors. When designing a MAC module, one may implement
an isolated multiplier that computes a ∗ b and a vector adder
that adds c to the multiplier’s output. To verify such a MAC
module, one can decompose the design, use different tools
to verify the isolated multiplier and the final adder separately,
and compose the proofs to show that the overall MAC module
is correct. However, this design methodology uses two vector
adders consecutively (one vector adder as part of the isolated
multiplier and one for adding c). Vector adders can make
up a large portion of the gate delay (and/or area) in such
circuits, and this design technique can increase the gate delay
considerably, making this approach a poor design choice.

Fig. 1. An efficient way to compute MAC result

Fig. 1 shows an alternative approach that uses only one vec-
tor adder. This MAC module does not implement a complete
isolated multiplier. Instead, it uses an incomplete multiplier.
We define incomplete multipliers as modules that multiply
two bit-vectors but do not use a final stage adder to return
the complete multiplication result; instead, they return the
two bit-vectors generated after the Wallace-tree reduction
(summing these two vectors would give the multiplication
result). This output form is also referred to as redundant

54



form. After the incomplete multiplication, the two bit-vector
outputs are summed together with the addend (c) using another
Wallace tree and a vector adder. This can be a preferable
design approach as it provides better gate-delay performance.
However, it removes the boundaries between multiplication
and summation, which complicates the job of a verification
engineer. Further complicating verification, an alternative de-
sign technique may sum c with the initial partial products
with a single Wallace-tree and vector adder, which can remove
the boundaries even further. In such cases, we cannot simply
decompose the design and use a multiplier verification tool
that works only with isolated multipliers.

We can see similar design methodologies in other mod-
ules. For example, a dot product design may use multiple
incomplete multiplier modules and sum all the output vector
pairs together in another summation tree using a Wallace-
tree and a final stage adder. This method would prevent
the increase in area and gate delay by using only one final
stage adder in the overall design. Similarly, a floating-point
module implementing FMA (fused multiply-add) may use an
incomplete integer multiplier.

C. Multi-purpose Multipliers

Some processing units may implement multipliers for vari-
ous arithmetic operations with different operand sizes. For ex-
ample, x86 chips have many integer multiplication instructions
such as PMADDWD (multi-lane multiply and add together,
in other words, dot-product), PMULHW (multi-lane multiply
and store upper half of the result), and PMULLW (multi-
lane multiply and store lower half). Multiplier circuits can
occupy a large implementation area, and it is common for such
instructions to share resources and reuse multiplier modules.

We have created an example arithmetic circuit that shows
how multiplier modules can be reused for different operations.
We call this arithmetic unit integrated multipliers whose
schematic diagram is shown in Fig. 2. This design multiplexes
various multipliers and adders to perform 4-point 32-bit dot-
product, 1-lane 64-bit multiply-accumulate, or 4-lane 32-bit
multiply-accumulate with options to return lower or upper
significant halves of the result. This module also includes an
accumulator register that can be used, for example, to perform
an 8-point 32-bit dot-product in two clock cycles, or 12-point
32-bit dot-product in three clock cycles, and so on. The mode
of operation is determined by the control signal mode.

This module implements four identical 32x32-bit incom-
plete multipliers whose inputs are two 32-bit numbers with
an additional sign bit and whose outputs are two bit-vectors.
Depending on the mode of operation, the outputs of these
multipliers are summed with another summation tree, and the
final result is calculated with vector adders. The datapaths for
32-bit MAC and dot-product operations are as described in
the previous section (Sec II-B). This module also supports
64-bit operands, in which case the outputs of the 32x32-bit in-
complete multipliers are appropriately shifted, sign-extended,
and summed to calculate the 64x64-bit multiplication result.
We call such operations merged multiplication, where multiple

Fig. 2. The circuit diagram of integrated multipliers, our example arithmetic
unit.

smaller multipliers are used to implement a larger multiplier.
The module can also add a number to the 64x64-bit multipli-
cation result and make this a 64-bit MAC operation.

We can verify this design for each possible mode of
operation. For example, we can set the mode signal to perform
dot product and check if the result matches the mode’s speci-
fication. Industrial designs are often much more intricate than
this module; however, it is often possible to reason about one
arithmetic operation at a time. Then, the verification problem
becomes as complex as verifying a single arithmetic operation.

III. RELATED WORK

The verification problem of multipliers continues to have
a great deal of research interest, and researchers offer new
techniques every year. This section covers the most recent and
prominent studies that attempt to solve this problem, particu-
larly for RTL designs with Booth encoding and Wallace-tree-
like structures.

A. BDDs, BMDs, SAT and SMT Solvers

Automated and well-studied generic tools and methods such
as BDDs, SAT, and SMT Solvers can theoretically be used to
verify multiplier designs. However, it has been shown that
these methods do not scale for designs larger than 12x12-
bit multipliers [1], [2]. SAT solvers may scale better when
generating counterexamples for buggy designs. Some success
has been achieved with BMDs but only for regularly structured
multipliers [14]. On the other hand, these automated tools may
be used to verify some multiplier design components, such as
the final stage adder [3].

B. Computer Algebra Methods

In computer algebra-based methods, multiplier circuits are
modeled with a set of polynomials. Basic logical gates of
a circuit are represented in terms of algebraic expressions
(e.g., ∀x, y ∈ {0, 1} x ∨ y = x + y − xy ) as well as the
multiplication result (see Example 1 for a 2x2-bit unsigned
multiplier specification). The algebraic representation on its

55



own does not scale when verifying multipliers. Researchers
implement various heuristics and optimizations that are spe-
cific to multiplier designs to achieve efficient and practical
results. A notable optimization is identifying the logic from
adder modules implemented in target multiplier designs [3],
[4], [15]–[17].

Example 1. 4a1b1 + 2a1b0 + 2a0b1 + a0a0

Computer algebra methods have made a lot of progress
towards the multiplier verification problem. However, these
studies have focused mainly on isolated multipliers with
untruncated outputs and the same operand sizes (nxn-bit
multipliers with 2n-bit outputs). This makes it more difficult to
utilize them for real-world designs where truncation, shifting,
and integration with other arithmetic operations are common
(See Sec. II).

Ciesielski et al. [1] showed that their method could be
used for other multiplier-centric arithmetic operations, such as
MAC; however, they showed that they only verified multiplier
modules with regular structures. The benchmarks and their
verification tool are not provided. We do not know of any
publicly available tool that can scale and automatically verify
designs such as MAC and dot-product. The underlying theory
used by the computer-algebra methods may support verifica-
tion of such arithmetic circuits. However, some optimizations
that make these tools efficient may or may not be directly
applicable to modules beyond isolated multipliers.

Verifying multipliers whose output is truncated or shifted is
difficult for the computer algebra approach. Su et al. [18] dis-
cussed why computer algebra techniques are inefficient when
verifying truncated arithmetic circuits. They stated that in-
termediate expressions, which are manageable in untruncated
modules, can grow exponentially in truncated designs. They
suggested a method to reconstruct a truncated multiplier into a
complete multiplier by adding missing elements before verifi-
cation. They did not discuss the soundness of their approach,
their experiments were only on simple multipliers, and the
benchmarks and the tool are not provided. Kaufmann et al. [3]
suggested using modular arithmetic and defined a specification
in the ring Z2n [X] where n is the multiplier output size. They
showed that this approach works on a simple multiplier model,
but our experiments with RTL designs resulted in time-out. We
are not aware of any computer algebra studies that can verify
truncated and/or shifted RTL multipliers.

C. Industrial Methods

Verification efforts of commercial multipliers often involve
a great deal of manual work. A common method is to create a
simple reference design that is structurally close (isomorphic)
to the original and then repeatedly equivalence-check a litany
of ever-increasingly complex designs [19]. Some engineers
verify reference designs using mechanized proof systems [20].
Another common analysis method is to decompose a design
into smaller parts, reason about these parts separately, and
then compose these proofs into a top-level theorem [21]–[23].
Finding a workable decomposition and combining individual

proofs of multiplier fragments can be a cumbersome task.
Such methods help formal verification engineers verify various
multiplication operations such as multiply-accumulate and dot-
product; however, this usually entails extensive manual effort.
Moreover, these proofs are often design-specific, and even
a slight change in the design might cause a previous proof
procedure to fail.

IV. S-C-REWRITING ALGORITHM

In our previous work [7], we introduced a verified term-
rewriting algorithm that can verify a wide range of isolated
multiplier designs more quickly than the other state-of-the-
art tools. In this section, we summarize this term-rewriting
algorithm and discuss its recently discovered limitations.

We use the ACL2 theorem prover to verify and run our
multiplier verification tool. ACL2 is an interactive and auto-
mated theorem proving system, and a programming language
that is used by both industry and academia [24]. For a target
multiplier design, we try to prove conjectures of the form given
in Listing 1. defthm is a commonly used utility by ACL2
users, and it asks the ACL2 system to check conjectures. On
the left hand side, we specify symbolic simulation of a mul-
tiplier design representation. We use the SVL semantics [25]
to simulate designs, which are automatically translated from
Verilog (our verification tool can be used with other simulators
as well). The right hand side has the multiplier specification;
in this example, the target multiplier module returns a 128-bit
number equivalent to the multiplication of two 64-bit signed
numbers.

Listing 1. A correctness conjecture for a signed 64x64-bit isolated multiplier

(defthm multiplier_is_correct
(implies (and (integerp a)

(integerp b))
(equal (simulate :inputs (a b)

:design <signed_64x64_mult>)
(truncate 128

(* (signext 64 a)
(signext 64 b))))))

We prove such conjectures by rewriting both sides of the
equality to fixed final forms. We define two functions s (short
for sum) and c (short for carry) as given in Def. 1. The target
representations for the first few output bits of some modules
(half, full, vector adders, and multipliers) are given in Table I.
Our goal is to rewrite all such modules/operations to this form.
We call this s-c representation or s-c form.

Definition 1. Functions s and c are defined as follows.

∀x ∈ Z s(x) = mod2(x)

∀x ∈ Z c(x) =
⌊︂x
2

⌋︂
While verifying multiplier designs, we wish not to work

with the logical definition of adder modules but instead work
with their s-c representations. The SVL semantics allow
hierarchical reasoning such that if we previously prove that
symbolic simulation of an adder module can be replaced with
this s-c form, then the SVL system can use this form (as

56



TABLE I
TARGETED FINAL FORMS FOR SOME MODULES/FUNCTIONS

Function out2 out1 / cout out0 / sout
Half-adder - c(a+ b) s(a+ b)

Full-adder - c(a+ b+ cin) s(a+ b+ cin)

Bit-vector
addition
a+ b

s(a2 + b2
+c(a1 + b1
+c(a0 + b0)))

s(a1 + b1
+c(a0 + b0))

s(a0 + b0)

Bit-vector
multiplication
a ∗ b

s(a0b2 + a1b1
+a2b0
+c(a1b0 + a0b1

+c(a0b0)))

s(a1b0 + a0b1
+c(a0b0))

s(a0b0)

opposed to the adder’s logical definition) while expanding
the definition of multiplier designs. Therefore, we first prove
that each distinct adder module can be represented with the
s-c form. We use a term-rewriting algorithm to carry out
the proofs for adder modules [7]. Since verifying adders
is straightforward [3], we omit this rewrite algorithm here
for brevity. After the adder proofs, we start verifying the
target multiplier design. As we expand the definition of the
multiplier, our program replaces each instance of its adder
modules automatically with their s-c representation.

Using the s-c form for adders instead of their logical def-
initions can bring about simpler expressions representing the
output bits of a multiplier. An example of such an expression
is given in Example 2 for a Wallace-tree multiplier with simple
partial products.

Example 2. The 4th LSB of a Wallace-tree multiplier output
when its adders are represented in the s-c form:

s( s( s(a3b0 + a2b1 + a1b2)
+a0b3
+c(a2b0 + a1b1 + a0b2))

+c(s(a2b0 + a1b1 + a0b2) + c(a1b0 + a0b1)))

We rewrite such terms to make them syntactically equivalent
to our target final form. To do that, we define a set of lemmas
of the form lhs = rhs such that terms that match lhs are
replaced with rhs with appropriate term bindings. All lemmas
are proved using ACL2 and we omit the proofs here.

We investigated such terms from multiplier designs and
realized that we could rewrite and simplify nested calls of
s with Lemma 1. Rewriting with this lemma when applicable
can simplify the term from Example 2 to the form given in
Example 3.

Lemma 1. ∀x, y ∈ Z s(s(x) + y) = s(x+ y)

Example 3. Example 2 simplified with Lemma 1:

s(a3b0 + a2b1 + a1b2 + a0b3
+c(a2b0 + a1b1 + a0b2)
+c(s(a2b0 + a1b1 + a0b2) + c(a1b0 + a0b1)))

Now, we observe more than one instance of c on the same
summation level. We rewrite and simplify them by a set of
lemmas. Lemmas 2-5 are applied to the term as rewrite rules,

where the function d is defined as ∀x ∈ Z d(x) = x
2 . Then,

we get the term in Example 4. This is syntactically equivalent
to our target form for the 4th output bit, and we can conclude
that the multiplier is correct for this output bit.

Lemma 2. ∀x, y ∈ Z c(x) + c(y) = d(x+ y − s(x)− s(y))

Lemma 3. ∀x, y ∈ Z c(x) + d(y) = d(x+ y − s(x))

Lemma 4. ∀x, y ∈ Z d(x) + d(y) = d(x+ y)

Lemma 5. ∀x ∈ Z d(−s(x) + x) = c(x)

Example 4. Example 3 rewritten with Lemma 2-5:

s(a3b0 + a2b1 + a1b2 + a0b3
+c(a2b0 + a1b1 + a0b2

+c(a1b0 + a0b1)))

As Booth encoding can incorporate multiple input bits when
generating partial products, we can see operators for logical
gates (e.g., logical OR, XOR) when verifying Booth encoded
multipliers. We use a few more simple lemmas to simplify
terms from Booth encoding and we derive the same final
form. These lemmas, along with examples, are provided in
our previous work [7], and we omit them here for brevity.
These extra lemmas are triggered automatically when Booth
encoding is present, and they do not affect other proofs when
simple partial products are used.

Once we are done rewriting the left-hand side in Listing 1,
we rewrite the right hand side (specification) to the same form
through proved rewrite rules from our library. When we see
that the two sides are syntactically equivalent, we conclude
that the multiplier is correct.

Note that our target representation has a separate term for
each output bit whereas the computer algebra methods specify
all output bits with a single expression (see Example 1). This
makes it easier for our method to verify designs whose output
may be manipulated on bit level such as by truncating, shifting,
and bit-masking.

Example 5. The first instance of a2b0 in Example 2 is replaced
by a2b1 to simulate a bug. Then, the rewriting algorithm
returned:

s( a3b0 + a2b1 + a1b2 + a0b3
+d(−s(a2b1 + a1b1 + a0b2)

−s(a2b0 + a1b1 + a0b2 + c(a1b0 + a0b1))
+s(a2b0 + a1b1 + a0b2)
+a2b1 + a1b1 + a0b2
+c(a1b0 + a0b1)))

In our previous work, we did not investigate what happens
when the design has a bug and whether or not the algorithm
can work beyond isolated multipliers. If our program cannot
verify a multiplier for some reason, it returns a term rewritten
with our lemmas. For example, when we introduce a simple
bug to the term in Example 2, the described rewriting algo-
rithm will return the term given in Example 5. The resulting
term is larger than the initial term, and the gap can grow even
larger for big designs. When a proof attempt fails, either due

57



to a bug in the design or some problem with our verification
method, resulting terms are often very large and users do not
receive a useful feedback from the program.

A proof attempt might fail even when the target design is
correct. We have found such an instance and we could not
verify some Booth encoded merged multipliers (See Sec. II)
larger than 16x16-bit multiplication. Since the resulting terms
are so large, we could not understand if there was a missing
lemma that could help finish the proofs. We encountered
similar issues with some dot-product and MAC designs, and
we were likewise unable to verify them.

V. IMPROVEMENTS TO S-C-REWRITING

We have developed and experimented with various alter-
natives to the existing S-C-Rewriting algorithm. Our goal
is to verify designs beyond isolated multipliers and return
small terms if a proof attempt fails due to a design bug or a
problem in the verification system. We have found a rewriting
scheme that meets these goals. Instead of rewriting c terms
with Lemmas 2-5, we use only the new Lemma 6. Similar to
Lemma 1, this lemma extracts the arguments of inner s calls
but it also creates a byproduct −c(x).

Lemma 6. ∀x, y ∈ Z c(s(x) + y) = c(x+ y)− c(x)

When the given designs are correct, this lemma helps
simplify multiplier designs without needing Lemmas 2-5. We
have also seen that when this lemma is used, proofs are
actually much faster for Booth encoded designs as well as
array multipliers by an order of magnitude (see Sec. VII).

For cases where a proof-attempt fails, we apply another
lemma (Lemma 7) to cancel out common terms shared be-
tween the specification and the design. After all our lemmas
are applied and the design is simplified, the rewriter compares
if the simplified design is syntactically equivalent to the
specification for each output bit. If they are not, then we
rewrite the term that represents the equivalence of these two
sides with Lemma 7.

Lemma 7. ∀x, y ∈ {0, 1} (x = y) ⇐⇒ (s(x+ y) = 0)

Lemma 6 and Lemma 7 help the program return a much
smaller term if a proof attempt fails. Assume that we are
rewriting a term that checks the equivalence of the term
from Example 2 to its specification (Example 4). When we
introduce the same bug from Example 5 to this term, our new
rewrite method will return the term in Example 6.

Example 6. When the same bug from Example 5 is rewritten
with the improved rewriting algorithm:

s( c(a0b2 + a1b1 + a2b0)
+c(a0b2 + a1b1 + a2b1))

= 0

As seen in this example, the returned term is considerably
smaller than what we would get from the older algorithm
(Example 5). We have observed the same behavior with larger
multipliers so much so that the returned term can sometimes

give a hint as to where the bug exists within the design.
Moreover, since these terms are often small, we use the
FGL [26] or the GL [27], [28] utilities in ACL2 to send
such returned terms to an external SAT Solver. We have seen
through our experiments (Sec. VII) that SAT Solver can return
a counterexample very quickly from simplified terms.

As noted in Sec. IV, proof attempts may fail even when
the design is correct. This was the case with our initial term
rewriting strategy for some Booth encoded merged multipliers
and some MAC and dot-product modules. Since the returned
terms are smaller with the modified term-rewriting, we could
find the source of the problem and determine the missing
lemmas needed to verify these designs. We found out that
we simply need to rewrite some c and s instances in terms of
logical operators (see Lemmas 8-11) when certain syntactic
conditions on their arguments are met. Those conditions are:
the arguments x, y and z (if available) need to be instances
of the logical AND (∧) function only, and the operands in y
and z (if available) need to be a subset of the operands of x.
For example, we can apply Lemmas 8-9 if x = a ∧ b ∧ c ∧ d,
y = a ∧ c, and z = b ∧ c but we cannot apply it if z = b ∧ e.
The resulting terms from these rewrites are simplified the same
way as Booth encoding logic. We have these strict syntactical
conditions so that the rewriting system is more deterministic
and there is minimal effect on the verification procedures
for other designs. We leave these lemmas enabled in our
program, and they help automatically verify the previously
failed designs, such as merged multipliers.

Lemma 8. ∀x, y, z ∈ {0, 1} c(x+y+z) = x∧y∨x∧z∨y∧z

Lemma 9. ∀x, y, z ∈ {0, 1} s(x+ y + z) = x⊕ y ⊕ z

Lemma 10. ∀x, y ∈ {0, 1} c(x+ y) = x ∧ y

Lemma 11. ∀x, y ∈ {0, 1} s(x+ y) = x⊕ y

Additionally, we tested this method with another simulation
tool, SVTV [24], to show that our method does not have to be
used with the SVL system. The SVTV system sources designs
from Verilog and flattens them before (symbolic) simulation.
We found a way to mark the adder modules before flattening
to easily rewrite them in the s-c form. We omit the details here
for brevity, and the readers may refer to our online tutorials
for details (http://mtemel.com/fmcad21).

VI. IMPLEMENTATION

All of our rewriting system consists of lemmas of the
form lhs = rhs. When patterns found in conjectures match
lhs, they should be replaced by rhs. Since conjectures for
multiplier designs may yield very large terms, we implement
a scalable mechanism to find such patterns and apply our
lemmas.

We use a verified rewriter [29] that follows an inside-out
rewriting strategy [30], [31]. Example 7 shows how a rewrite
rule can modify a term from inside out. We can prove the
associativity of summation (see the upper-left corner) using
the existing libraries and the built-in axioms in ACL2. The

58



defthm event saves the proved lemma as a rewrite rule.
When this rewrite rule is in the system, we can apply it
to terms whenever the left hand side pattern finds a match.
Assume that this is the only enabled rule, and we would like
to prove another conjecture which contains the term shown on
the upper-right corner. Since the rewriter performs inside-out
rewriting, it will start with the innermost term to search for
matching patterns. The first match occurs for the following
bindings: a to x3, b to x4, and c to x5. With these term
bindings, the term is replaced using the right hand side of
the rewrite rule, and we obtain the term in the lower-left
corner. The rule can find another match on this new term.
After similarly rewriting this term, we obtain the term in the
lower-right corner.

Example 7. A target term is rewritten with a rewrite rule.

Rewrite Rule Target Term

(defthm sum-assoc
(equal (+ (+ a b) c)

(+ a (+ b c))))

(+ (+ x1 x2)
(+ (+ x3 x4) x5))

After the First Rewrite After the Second Rewrite

(+ (+ x1 x2)
(+ x3 (+ x4 x5)))

(+ x1
(+ x2

(+ x3
(+ x4 x5))))

Even though the rewriter dives into every subterm, it keeps
track of already processed terms and it does not attempt to
rewrite them again. For example, assume that x4 in the target
term from Example 7 is not a variable but it is a very large
term that is already rewritten. After the first rewrite, x4 will
have moved within the term. Since the applied rule has a fixed
pattern on the left and right hand sides, the rewriter knows
to not process x4 again. On the other hand, if there was
an applicable rule, the new subterm (+ x4 x5) could be
rewritten.

Our overall rewriting system follows this basic rewriting
strategy with many more lemmas that work together har-
moniously. Fig. 3 shows a flow diagram when the rewriter
processes a conjecture for multiplier designs. Assume that we
are using the SVL system for simulation, and the user has
already created rewrite rules for adder modules to represent
them in the s-c form. When the user states a conjecture for
the target multiplier design (see Listing 1) and submits it to
ACL2, the rewriter dives into the innermost terms to search
for applicable rules. The first subterm that it rewrites is the
symbolic simulation instance for the target multiplier design.

The SVL system simulates designs by executing all the
functional blocks (e.g., Verilog assignments and submodules)
and one by one calculating the values for all internal wires and
registers. As the rewriter is symbolically simulating an SVL
design, derived expressions for internal wires and registers
are tested against rewrite rules. If the rewriter encounters an

Fig. 3. Steps taken by the rewriter when rewriting a conjecture for a multiplier
design

instantiation of an adder module, then it is replaced by the
s and c functions using the rules created by the user. If the
rewriter encounters some other module or an assignment, then
regular ACL2 expressions representing their functionality are
created from their logical definitions.

When new instances of the s and c are created after the
adder modules are rewritten, our lemmas for these functions
are triggered and our simplification algorithm is applied. For
example, when the new term is an instance of c and one of its
arguments is an instance of s, then Lemma 6 will be applied.
If the arguments of the new s and c instances contain some
Boolean expressions, then our lemmas for Booth encoding [7]
are applied.

As the symbolic simulation of the circuit finishes, we get
a term that is completely rewritten with our algorithm. After
that, the system rewrites the right hand side (specification) to
the s-c form with other rewrite rules in our library, compares
the two sides syntactically, and exits. If the final term is t,
then we can conclude that the multiplier is correct. Otherwise,
we can investigate this term and/or send it to a SAT solver so
as to generate counterexamples or attempt to finish the proofs.

Note that our lemmas described in Sec. IV, Sec. V, and our
previous work [7] do not trigger an expensive rewriting chain
upon application. They each have an almost constant time
complexity. The slowest component of the rewriting algorithm
is lexicographical sorting of the terms in column summations,
which are expected to be very small sets as compared to the
overall size of the given design. Since our lemmas are applied
as the circuit’s definition is expanded and we never perform
a global search, we observe an almost linear time complexity
with respect to the design size as shown in the next section.

VII. EXPERIMENTS

We verified various multiplier designs using our tool and
applicable tools from related work. We ran our experiments on
an Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz computer
with 32GB system memory. We used three RTL multiplier

59



TABLE II
PROOF-TIME RESULTS IN SECONDS (ROUNDED) FOR VARIOUS

UNTRUNCATED, SIGNED ISOLATED MULTIPLIER DESIGNS

Size Architecture RS [4] AMu [3] Prev [7] This work

64x64 sp-cwt-ks 39 42 1 .5
sp-ar-rc 3 2 1 .5
sp-dt-bk 5 2 1 .5
b4-wt-hc 154 28 1 1
b2-wt-hc 123 77 4 1
b4-dt-ks 17 28 1 1
b4-dt-csel 19 5 4 1
b4-os-bk 15 5 6 1
b4-wt-csu 21 5 5 2
b4-bdt-hc 131 6 5 2
b4-rbat-ks 19 7 5 2
b4-ar-vcska 17 5 12 2
b4-4:2-lf 30 5 8 3
b4-7:3-bcla 44 TO 12 6
b4-wt-cla 22 14 21 12

128x128 sp-cwt-ks 1001 TO 3 2
sp-ar-rc 96 10 20 2
b4-wt-hc TO 803 13 4
b4-dt-ks 773 785 8 4

256x256 sp-cwt-ks TO TO 16 7
sp-ar-rc 2416 176 556 11
b4-wt-hc TO TO 62 15
b4-dt-ks TO TO 47 15

512x512 sp-wt-lf TO 1577 76 44
sp-dt-bk TO 1562 64 40
b4-wt-hc TO TO 418 65
b4-dt-ks TO TO 282 71

1024x1024 sp-wt-lf TO 14005 345 240
sp-dt-bk TO 13247 397 220
b4-wt-hc TO TO MO 288
b4-dt-ks TO TO MO 300

MO: Out of memory (32GB) TO: Time-out (5400 secs./90 mins. for 64x64
and 128x128 multipliers, 16200 secs./270 mins. for the rest)

generators [32]–[34] to generate isolated multipliers, MAC,
and dot-product designs. The benchmarks and our tool are
available online (http://mtemel.com/fmcad21).

We verified various architectures with different configura-
tions. For partial product generation algorithms, the designs
use either simple partial products (sp), Booth encoding radix-
4 (b4) or radix-2 (b2). Summation tree reduction algorithms
include counter-based Wallace (cwt), array (ar), Dadda (dt),
traditional Wallace (wt), overturned-stairs (os), balanced delay
(bdt), redundant binary addition (rbat), 4-to-2 compressor
(4:2), 7-to-3 compressor (7:3) trees, and merged multipliers
with Dadda tree (mdt). For final stage addition, these multi-
pliers implement Kogge-Stone (ks), ripple-carry (rc), Brent-
Kung (bk), Han-Carlson (hc), Ladner-Fischer (lf), carry-select
(csel), conditional sum (csu), variable-length carry-skip (vc-
ska), block carry-lookahead (bcla) and regular carry-lookahead
(cla) adders.

As far as we are aware, there are only two other publicly
available tools from two different research groups that can ver-
ify these complex architectures for isolated multipliers. These
are computer-algebra-based tools RevSCA2 [4] (shortened as
RS) and AMulet 2.0 [3], [35] (shortened as AMu). The tools
from other studies are not publicly available and/or they do

TABLE III
PROOF-TIME RESULTS IN SECONDS FOR SOME MULTIPLIER DESIGNS IN

VARIOUS CONFIGURATIONS

Function & I/O Size Architecture AMu [3] Prev [7] This work

16x16 = 16 usp-dt-hc TO .1 .04
16x16 = 16 ssp-dt-hc NS .1 .04
16x16 = 16 ub4-dt-hc TO .1 .06
16x16 = 16 sb4-dt-hc NS .1 .05

20x40 = 60 ub2-wt-rp NS .3 .1
20x40 = 60 sb2-wt-rp NS .3 .1
33x17 = 40 ub4-wt-hc NS .2 .1
33x17 = 40 sb4-wt-hc NS .2 .1

64x64 = 64 ub4-dt-hc TO 1 .5
64x64 = 64 sb4-dt-hc NS 1 .4
64x64 = 64 (r. shifted) ub4-dt-hc NS 2 1
64x64 = 64 (r. shifted) sb4-dt-hc NS 2 1

64x64 = 128 ub4-mdt-ks 45 F 1
64x64 = 128 sb4-mdt-ks 44 F 1
64x64 = 128 ub2-mdt-lf 61 F 1
64x64 = 128 sb2-mdt-lf 59 4 1

2(32x32)+32 = 66 sb4-dt-hc NS F 1
2(32x32)+32 = 66 sb4-os-bcla NS F 1
2(32x32)+32 = 66 sb4-bdt-csu NS F 1
2(32x32)+32 = 66 sb4-ar-csel NS F 1
2(32x32)+32 = 66 sb4-4:2-rp NS F 2
2(32x32)+32 = 66 sb4-7:3-bk NS F 3

64x64+128 = 128 ub4-dt-ks NS 2 1
64x64+128 = 128 sb4-dt-ks NS 2 1
64x64+128 = 129 sb4-dt-hc NS F 2

TO: Time-out (5400 secs) NS: Configuration is not supported by the tool.
F: Failed proof-attempt. The tool returns a large rewritten term.

not provide competitive results for the designs in question.
RevSCA2 does not produce certificates and it is not verified.
AMulet provides certificates to check the validity proofs by
external tools; we include the certification time in our results
(they can be around 3 times faster without certification). The
verification tools from our previous and current work are
verified using ACL2; thus, no additional check is required.

Table II delivers the proof-time results in seconds for signed
and untruncated isolated multipliers. Our previous work scales
substantially better than (RS [4]) and (AMu [3]) but the
performance is not as strong for Booth encoded designs. Our
improved rewriting algorithm is much faster than our previous
work and others, and it can verify even very large Booth
encoded multipliers in at most 5 minutes.

Table III delivers proof-time results for various architectures
and configurations. This includes truncated or right shifted
outputs, merged multipliers, multipliers with different operand
sizes, two-point dot-product designs with accumulate, and
truncated or untruncated MAC modules. The designs in this
table are produced with two different generators [32], [33].
AMulet has a hard-coded specification and does not support
many of these configurations. Users can determine the design
specifications for our previous work, but our older tool can-
not prove some merged multipliers, dot-product, and MAC
designs. On the other hand, our new method could verify all
of them very quickly.

Table IV shows how the proof-time performance of our tool

60



TABLE IV
OUR TOOL’S PROOF-TIME RESULTS IN SECONDS FOR SIGNED MAC AND

DOT-PRODUCT DESIGNS

Size Dot-product length
N=1 N=2 N=4 N=8 N=16

N(32x32) 0.2 0.5 1.0 2.0 4.5
N(32x32)+64 0.2 0.5 0.9 1.9 4.2
N(64x64) 0.9 1.9 3.8 8.2 19
N(64x64)+128 0.9 1.8 3.7 7.7 17
N(128x128) 3.5 7.8 18 35 81
N(128x128)+256 3.5 7.6 15 33 76
N(256x256) 15 32 67 151 356
N(256x256)+512 14 30 64 144 340

All designs use Booth radix-4 encoding, Dadda tree and Ladner-Fischer adder.

TABLE V
OUR TOOL’S PROOF-TIME RESULTS IN SECONDS FOR OUR EXAMPLE

MODULE, INTEGRATED MULTIPLIERS, DESCRIBED IN SEC. II-C

Mode SVL SVTV
Signed Unsigned Signed Unsigned

1-lane MAC 1.0 0.9 2.8 2.9
4-lane MAC (lower half) 1.0 0.9 2.8 2.8
4-lane MAC (upper half) 1.0 1.0 3.0 2.9
4-point dot-product 1.8 1.2 4.4 3.4
8-point dot-product (seq.) 4.9 2.9 14.5 10.1

scales on dot-product designs with different sizes. Even though
it is not shown here, allocated system memory scales similarly.
Finally, Table V shows the proof-time results for our example
module integrated multipliers (see Sec. II-C) for both the SVL
and SVTV simulation systems.

In addition to the designs reported here, we have also
verified some private industrial designs at Centaur Tech-
nology with a similar performance. These designs include
multiply-accumulate, dot-product, multiplication of signed and
unsigned numbers, truncation, right-shifting, rounding, and
saturation. Our program is not designed to handle branches
implemented for saturation. Therefore, after our program sim-
plified the saturated designs, we sent the resulting terms to
a SAT Solver (glucose [36]) with the FGL utility [26], [37],
and we have seen that proofs finished successfully in a few
seconds.

We have also tried our tool on buggy designs and used
a SAT solver (glucose [36]) to create counterexamples from
simplified terms. We randomly inserted (one or more) bugs
into various 64x64-bit, 128x128-bit, and 256x256-bit designs
and experimented with 20 different scenarios. Our tool rewrote
each multiplier design and returned simplified terms within
the same amount of time as given in Table II. It took the SAT
solver between 0.1 to 10 seconds to return a counterexample
from rewritten terms. Our previous tool could not be used in
this workflow because it returns massive terms when proof-
attempts fail (see Sec. IV). Using the SAT solver with the
original conjecture (in other words, without rewriting with
our tool) could give a counterexample in some cases after
a few minutes, but it timed out (60 minutes) in the majority
of cases. Additionally, our tool can tell exactly which output
bits are mismatching the specification. With our new method,

we see that our term-rewriting strategy can be very practical
and efficient for debugging flawed designs.

VIII. CONCLUSION

We have presented a term-rewriting method that can be used
to verify digital circuit designs with embedded integer multi-
pliers. Our tool is efficient, automated, and provably correct.
We have shown that we can verify isolated multipliers as large
as 1024x1024-bit in less than 5 minutes. Our system allows
the user to modify the specification per the target design.
Therefore, we can verify multipliers with unusual operand
sizes, whose output may be truncated, right-shifted, rounded
or saturated. In addition, we can verify other multiplier-
centric arithmetic operations such as dot-product and multiply-
accumulate. Our library and tutorials are distributed with the
ACL2 system, and this content is available online for public
use (http://mtemel.com/fmcad21).

This work has been a continuation of our earlier study [7].
With the improvements detailed in this paper, we can verify
Booth encoded designs with a much better proof-time effi-
ciency, along with MAC, dot-product, and merged multiplier
designs. In addition, we can now generate counterexamples for
buggy designs. Moreover, we provide a more comprehensive
summary of various multiplier design techniques and discuss
why they might be challenging for verification tools.

We use the ACL2 programming language and interactive
theorem prover to run and verify our multiplier verification
tool, and we use the SVL semantics as our preferred method
to simulate Verilog designs. However, our term rewriting algo-
rithm does not require any specific feature from a particular a
theorem prover or anything unique to the SVL system. Using
a term rewriter and a simulator with hierarchical reasoning can
be enough to implement our algorithm on any platform.

We have exploited design hierarchy when implementing our
algorithm, whereas the other state-of-the-art tools [3], [4] work
on flattened designs. We should note that these tools more or
less depend on the original design having clear boundaries for
adder modules for their good proof-time performance in the
majority of cases. Our choice to use a symbolic simulation
system that allows hierarchical reasoning reduces engineering
costs and simplifies our program. This way, we do not need
to implement any detection algorithm for adder logic. If
necessary, using our term-rewriting algorithm for flattened
designs might be possible by implementing some preprocess-
ing techniques to reconstruct the design hierarchy. On the
other hand, incorporating hierarchical reasoning into computer
algebra methods may help improve their performance.

We continue to exercise and improve our method with ever
more complex designs such as floating-point multiplication.
We have laid a groundwork to permit verification procedures
with improved automation and efficiency. The convenience
that comes with our fast and automatic verification process can
contribute to building reliable hardware systems that include
embedded integer multipliers of varying sizes, including but
not limited to general-purpose processing units, image proces-
sors, digital signal processors, and secure cryptoprocessors.

61



REFERENCES

[1] M. Ciesielski, C. Yu, W. Brown, D. Liu, and A. Rossi, “Verification
of gate-level arithmetic circuits by function extraction,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, pp.
1–6. [Online]. Available: https://doi.org/10.1145/2744769.2744925

[2] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal Verification of Integer Multipliers by Combining Gröbner Basis
with Logic Reduction,” in Proceedings of the 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE). Research Publish-
ing Services, 2016, pp. 1048–1053.

[3] D. Kaufmann, A. Biere, and M. Kauers, “Verifying Large Multipliers
by Combining SAT and Computer Algebra,” in 2019 Formal Methods
in Computer Aided Design (FMCAD), Oct 2019, pp. 28–36.

[4] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA: Using Reverse
Engineering to Bring Light into Backward Rewriting for Big and Dirty
Multipliers,” in Proceedings of the 56th Annual Design Automation
Conference 2019, ser. DAC ’19. New York, NY, USA: ACM, 2019,
pp. 185:1–185:6.

[5] M. Ciesielski, T. Su, A. Yasin, and C. Yu, “Understanding Algebraic
Rewriting for Arithmetic Circuit Verification: a Bit-Flow Model,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2019.

[6] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: Clean your
Polynomials before Backward Rewriting to verify Million-gate Multi-
pliers,” 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 1–8, 2018.

[7] M. Temel, A. Slobodova, and W. A. Hunt, “Automated and scalable
verification of integer multipliers,” in Computer Aided Verification.
Cham: Springer International Publishing, 2020, pp. 485–507. [Online].
Available: http://doi.org/10.1007/978-3-030-53288-8%5F23

[8] C. R. Baugh and B. A. Wooley, “A Two’s Complement Parallel Array
Multiplication Algorithm,” IEEE Transactions on Computers, vol. C-22,
pp. 1045–1047, 1973.

[9] A. D. Booth, “A Signed Binary Multiplication Technique,” vol. 4, no. 2.
Oxford University Press (OUP), 1951, pp. 236–240.

[10] C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans.
Electronic Computers, vol. 13, pp. 14–17, 1964.

[11] L. Dadda, “Some Schemes for Parallel Multipliers,” 1965.
[12] Brent and Kung, “A Regular Layout for Parallel Adders,” IEEE Trans-

actions on Computers, vol. C-31, no. 3, pp. 260–264, mar 1982.
[13] R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation,” Journal

of the ACM (JACM), vol. 27, no. 4, pp. 831–838, oct 1980.
[14] R. E. Bryant and Y.-A. Chen, “”Verification of Arithmetic Functions

with Binary Moment Diagrams”,” in DAC 1994, 1994.
[15] M. A. Basith, T. Ahmad, A. Rossi, and M. Ciesielski, “Algebraic

approach to arithmetic design verification,” in Proceedings of the In-
ternational Conference on Formal Methods in Computer-Aided Design,
ser. FMCAD ’11. Austin, Texas: FMCAD Inc, 2011, p. 67–71.

[16] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G.-M. Greuel, “An
algebraic approach for proving data correctness in arithmetic data paths,”
in Computer Aided Verification, A. Gupta and S. Malik, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 473–486.

[17] A. Mahzoon, D. Große, C. Scholl, and R. Drechsler, “Towards formal
verification of optimized and industrial multipliers,” in 2020 Design,
Automation Test in Europe Conference Exhibition (DATE), 2020, pp.
544–549.

[18] T. Su, C. Yu, A. Yasin, and M. Ciesielski, “Formal verification of
truncated multipliers using algebraic approach and re-synthesis,” in 2017
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2017, pp.
415–420.

[19] C. Jacobi, K. Weber, V. Paruthi, and J. Baumgartner, “Automatic
formal verification of fused-multiply-add fpus,” in Proceedings of the
Conference on Design, Automation and Test in Europe - Volume 2, ser.
DATE ’05. USA: IEEE Computer Society, 2005, p. 1298–1303.

[20] D. M. Russinoff, Formal Verification of Floating-Point Hardware De-
sign: A Mathematical Approach. Springer, 2019.

[21] W. A. Hunt, S. Swords, J. Davis, and A. Slobodova, “Use of Formal
Verification at Centaur Technology,” in Design and Verification of
Microprocessor Systems for High-Assurance Applications. Springer,
2010, pp. 65–88.

[22] A. Slobodova, J. Davis, S. Swords, and W. A. Hunt, “A Flexible Formal
Verification Framework for Industrial Scale Validation,” in Proceedings
of the 9th IEEE/ACM International Conference on Formal Methods and

Models for Codesign (MEMOCODE). Cambridge, UK: IEEE/ACM,
July 2011, pp. 89–97.

[23] R. Kaivola and N. Narasimhan, “Formal Verification of the Pentium
® 4 Floating-Point Multiplier,” in 2002 Design, Automation and Test
in Europe Conference and Exposition (DATE 2002), 4-8 March 2002,
Paris, France, 2002, pp. 20–27.

[24] W. A. Hunt, M. Kaufmann, Moore, J S., and A. Slobodova, “Industrial
Hardware and Software Verification with ACL2,” Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 375, no. 2104, p. 20150399, sep 2017.

[25] M. Temel, “ACL2 SVL Documentation,” 2019. [Online].
Available: http://www.cs.utexas.edu/users/moore/acl2/manuals/current/
manual/?topic=ACL2 SVL

[26] S. Swords, “New rewriter features in FGL,” Electronic Proceedings in
Theoretical Computer Science, vol. 327, p. 32–46, Sep 2020. [Online].
Available: http://dx.doi.org/10.4204/EPTCS.327.3

[27] S. Swords and J. Davis, “Bit-blasting ACL2 theorems,” Electronic
Proceedings in Theoretical Computer Science, vol. 70, p. 84–102, Oct
2011. [Online]. Available: http://dx.doi.org/10.4204/EPTCS.70.7

[28] S. Swords, “Term-level reasoning in support of bit-blasting,” Electronic
Proceedings in Theoretical Computer Science, vol. 249, p. 95–111,
May 2017. [Online]. Available: http://dx.doi.org/10.4204/EPTCS.249.7

[29] M. Temel, “RP-Rewriter: An optimized rewriter for large terms in
ACL2,” vol. 327. Open Publishing Association, Sep 2020, p. 61–74.
[Online]. Available: http://dx.doi.org/10.4204/EPTCS.327.5

[30] H. R. Chamarthi, “Rewriting in ACL2,” 2021. [Online]. Available: http:
//www.ccs.neu.edu/home/harshrc/courses/cs2800-fall2010/f10-lec26.pdf

[31] M. Temel, “Automated, efficient, and sound verification of integer
multipliers,” Ph.D. dissertation, The University of Texas at Austin, 2021.

[32] ——, “Multgen: a fast multiplier generator,” 2021. [Online]. Available:
https://github.com/temelmertcan/multgen

[33] N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi, “Arithmetic module
generator (AMG),” 2006. [Online]. Available: https://www.ecsis.riec.
tohoku.ac.jp/topics/amg/

[34] A. Mahzoon, D. Große, and R. Drechsler, “SCA multiplier generator
GenMul,” 2019. [Online]. Available: http://www.sca-verification.org

[35] D. Kaufmann and A. Biere, “AMulet 2.0 for verifying multiplier
circuits,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems , TACAS 2021., ser. Lecture Notes
in Computer Science, J. F. Groote and K. G. Larsen, Eds., vol. 12652.
Springer, 2021, pp. 357–364.

[36] N. Sörensson and N. Een, “Minisat v1.13-a sat solver with conflict-
clause minimization,” International Conference on Theory and Applica-
tions of Satisfiability Testing, 01 2005.

[37] S. Goel, A. Slobodová, R. Sumners, and S. Swords, “Balancing
automation and control for formal verification of microprocessors,”
in Computer Aided Verification - 33rd International Conference, CAV
2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, ser.
Lecture Notes in Computer Science, A. Silva and K. R. M. Leino,
Eds., vol. 12759. Springer, 2021, pp. 26–45. [Online]. Available:
https://doi.org/10.1007/978-3-030-81685-8 2

62

https://doi.org/10.1145/2744769.2744925
http://doi.org/10.1007/978-3-030-53288-8%5F23
http://www.cs.utexas.edu/users/moore/acl2/ manuals/current/manual/?topic=ACL2____SVL
http://www.cs.utexas.edu/users/moore/acl2/ manuals/current/manual/?topic=ACL2____SVL
http://dx.doi.org/10.4204/EPTCS.327.3
http://dx.doi.org/10.4204/EPTCS.70.7
http://dx.doi.org/10.4204/EPTCS.249.7
http://dx.doi.org/10.4204/EPTCS.327.5
http://www.ccs.neu.edu/home/harshrc/courses/cs2800-fall2010/f10-lec26.pdf
http://www.ccs.neu.edu/home/harshrc/courses/cs2800-fall2010/f10-lec26.pdf
https://github.com/temelmertcan/multgen
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/
http://www.sca-verification.org
https://doi.org/10.1007/978-3-030-81685-8_2

	Introduction
	Multiplier Architectures
	Isolated Multipliers
	Simple Arithmetic Modules with Embedded Multipliers
	Multi-purpose Multipliers

	Related Work
	BDDs, BMDs, SAT and SMT Solvers
	Computer Algebra Methods
	Industrial Methods

	S-C-Rewriting Algorithm
	Improvements to S-C-Rewriting
	Implementation
	Experiments
	Conclusion
	References

