
Formal Methods in Computer-Aided Design 2021

Data-driven Optimization of Inductive
Generalization

Nham Le
University of Waterloo

nv3le@uwaterloo.ca

Xujie Si
McGill University

CIFAR AI Chair, Mila
xsi@cs.mcgill.ca

Arie Gurfinkel
University of Waterloo

arie.gurfinkel@uwaterloo.ca

Abstract—Inductive generalization (IG) is the key to the
efficiency of modern Symbolic Model Checkers (SMCs). In this
paper, we introduce a data-driven method for inductive gener-
alization, whose performance can be automatically improved
through historical runs over similar instances. Our method is
inspired by recent advances for the part-of-speech (PoS) tagging
problem in natural language processing (NLP). Specifically, we
use a hierarchical recurrent neural network augmented with
syntactic and semantic information to predict essential parts of
a proof obligation that could be generalized, instead of checking
each part one by one. We develop a prototype called ROPEY by
incorporating our method into SPACER – a state-of-the-art SMC,
and perform evaluations on the KIND2’s simulation benchmarks.
ROPEY is evaluated in two settings: online learning – for a given
instance, we run SPACER for a number of iterations and collect its
trace on which ROPEY is trained, and then use ROPEY to guide
SPACER to finish the remaining solving process; and transfer
learning – ROPEY is trained over historical runs of SPACER in
advance, and for future instances, ROPEY is used directly to guide
SPACER from the very beginning. For non-trivial benchmarks,
ROPEY perfectly answers 72% and 77% of the queries in the
online and transfer learning settings, respectively. While the
speed improvement is not the focus of the paper, our preliminary
results are promising: for non-trivial instances, ROPEY’s end-to-
end running time is 25% faster.

I. INTRODUCTION

Model checking has been widely used in various important
areas such as robustness analysis of deep neural networks [27],
verification of hardware designs [16], software verification [3],
analysis [20] and testing [41], parameter synthesis in biol-
ogy [5], and many others. The central challenge of model
checking is to find a concise and sound approximation of
all possible states a given system may reach, which does not
cover any undesired states (i.e. violating given specifications).
Tremendous progress has been made by innovations in ef-
ficient data representations [10], scalable SAT solvers [43],
[35], [18], and effective heuristics [14], [13], [32]. Modern
model checkers share a common basis, namely, IC3 [7], of
which the key insight is inductive generalization (IG). This
idea has been generalized to support rich theories [26] that
are crucial for many verification tasks [30], [22] beyond
hardware verification. The generalized IC3 with rich theories,
also known as satisfiability checking for Constrained Horn

This work was supported, in part, by an Individual Discovery Grant from
the Natural Sciences and Engineering Research Council of Canada, and the
Canada CIFAR AI Chair Program.

Clauses modulo Theory (CHC) [6], becomes the core part of
a broad range of verification tasks.

Existing IG techniques follow either an enumerative search
process [7], [8] or ad-hoc heuristics [21], [31]. These heuristics
are effective but demand non-trivial domain-specific (or even
problem-specific) expertise. In this work, we aim to learn
such heuristics automatically from the past successful IGs. We
observe that verification problems as well as associated IGs are
not isolated from each other. Taking software verification as
an example, verifying different properties of the same program
involves similar or same IGs; different versions of programs
have a similar code base; and different software may use the
same conventions, idioms, libraries and frameworks, resulting
in similar structures.

Our approach is inspired by recent advances in deep learn-
ing, especially in NLP where non-trivial semantic correlations
between words are learned automatically using Neural Net-
works (NNs) [33]. However, IG raises many new challenges
for deep learning. First, the input and the output of IG are
symbolic expressions, which are highly structured with rich
semantics. Slight syntactic variations can lead to dramatic
changes in semantics. Second, more importantly, given that
neural networks hardly provide any reliable guarantees, how
to design a data-driven system based on deep neural networks,
which exhibits learnability from past experiences but still
preserves soundness? All these challenges have to be properly
addressed in building a data-driven reasoning framework. In
this work, we share our design choices and empirical find-
ings in building a data-driven inductive generalization engine
ROPEY, which introduces a neural component into SMC.
Specifically, we make the following contributions:
• we adapt standard deep learning models to effectively

represent symbolic expressions by incorporating both
syntactic and semantic information;

• we design a simple but effective learning objective so that
training data can be collected with nearly no changes of
existing model checkers;

• our integration algorithm achieves soundness by design,
and in the worst case, the learning component may only
hurt the running time performance;

• we implement ROPEY on top of SPACER, a state-of-the-
art CHC-solver. Our empirical evaluations indicate that
ROPEY can effectively predict perfect answers for IG

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 17 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0003-2800-9392
https://orcid.org/0000-0002-3739-2269
https://orcid.org/0000-0002-5964-6792
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_17
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_17
https://creativecommons.org/licenses/by/4.0/

Fig. 1: Literal co-occurrences in solving
PRODUCER_CONSUMMER_luke_2_e7_1068_e8_1019.

queries, and this predictive power directly translates to
an improvement in end-to-end running time.

The utility of our current solution is modest since its applica-
tions are restricted to two use-cases: verification of multiple
properties of a single system (transfer learning), and guiding
verification of a hard property using its partial run (online
learning). This, however, is already useful in the context of
multi-property verification that is common both in hardware
and software verification domain [12]. More importantly, we
demonstrate that NN-based heuristics can be effective in IC3-
style algorithms. We believe this will lead to many further
improvements, including heuristics that will eventually transfer
between systems.

The rest of the paper is structured as follows. Sec. II
shows a motivating example. Sec. III gives an overview of our
approach. Sec. IV describes two novel embedding methods
for converting symbolic expressions into numerical vectors.
Sec. V formalizes the learning problem and describes our
neural network architecture. Sec. VI presents our empirical
evaluation and ablation study. Finally, Sec. VII discusses
closely related work, and Sec. VIII concludes the paper.

II. A MOTIVATING EXAMPLE

In this section, we motivate our approach by illus-
trating the solving process of a particular CHC prob-
lem – the variant e7_1068_e8_1019 of the prob-
lem PRODUCER_CONSUMMER_luke_2 from KIND2 [11]
benchmarks. We identify a bottle neck in IG, observe a pattern
in the solving process, and explain how this leads to our
intuition. While we use a specific instance for illustration, the
results generalize to others in our benchmarks. We assume
familiarity with SMC [15] and inductive generalization of
IC3 [7]. These are also summarized in Sec. III.

SPACER cannot solve this variant in less than 930s. SPACER
proves that the instance is safe up to depth 29 in 883s, in which
545s (61%) is spent on IG – so this is the bottleneck.

During inductive generalization process, SPACER takes a
candidate lemma L, and uses an SMT solver to check whether
each literal of L can be dropped. Each call to the SMT solver
is potentially very costly. Thus, it is desirable to drop or skip
multiple literals together.

We conjecture that there is a pattern between literals: some
groups of literals may always be dropped or kept together. If
this correlation is known, it can be used to speed up IG.

Counter example
of length N
exists?

<Init, Tr, Bad>
N := 0

Inductive
generalization

Is it a safe
inductive
invariant?

Lgeneralized

UNSAFE
SAFE

NO, N:=N+1

NO
+

Bounded
lemma L

YES

(a) SMC architecture.

Inductive
generalization

SPACER's other components

<Init, Tr, Bad>

Lcandidate

Lgeneralized
L

L

(b) ROPEY architecture.

Fig. 2: Overview of Symbolic Model Checking and ROPEY.

To verify our hypothesis, in Fig. 1 we visualize the co-
occurrences of kept literals in the instance. Literals are ordered
by the time they are learned. Each cell Xij in the grid is the
number of times the literals `i and `j appear together in some
generalized lemma (normalized by the largest value). In the
figure, brighter cells indicate larger values.

The figure shows a strong geometric pattern, with literals
clustered into unusual groups. However, we are not able to tell
the exact heuristics describing those patterns. In this paper, we
turn this observation into a practical inductive generalization
method with the help of data-driven approach.

III. OVERVIEW

In this section, we give an overview of our technique,
outline the challenges involved, and our key insights to address
them. The context is symbolic SMT-based Model Checking
(SMC) [7], [26], [29], also known as satisfiability checking
for Constrained Horn Clauses modulo Theory (CHC) [6]. In
Model Checking, the high-level goal is to show that an infinite
state transition system (Tr) does not have an execution/path
that reaches a set of bad states (Bad) by finding a formula Inv
that is an inductive invariant of Tr and does not intersect with
Bad . The goal of CHC solving is to show that a set of First
Order Logic formulas Φ that satisfy the Horn restriction [6] is
satisfiable by exhibiting a symbolic formula Model that defines
an FOL model that satisfies Φ. The two problems are closely
related. Model Checking is often reduced to CHC solving.
Both problems are in general undecidable.

Fig. 2a shows the basic structure of an SMC algorithm based
on IC3 architecture. In the paper, we use SMC SPACER [29],
but the architecture is common to many engines. SMC iter-
atively unrolls Tr , uses an SMT solver to find a bounded
counterexample (which is usually decidable), and, if no coun-
terexample is found, attempts to create an inductive invariant.
The invariant is constructed as a set of so called lemmas, where
each lemma blocks a predecessor of Bad (a proof obligation),
and is a disjunction of atomic formulas. An example lemma
is x ≤ 0 ∨ y, which often written as a set for convenience,
i.e {x ≤ 0, y}. Many of the details of the algorithm are not
important, and we omit them here. The step we focus on in this
paper is inductive generalization (IG) (highlighted in blue in
Fig. 2a), that is responsible for generalizing learned lemmas.
In practice, IG is crucial for the performance of SMC.

87

Input: the original F-inductive lemma L = {`1, `2, ..., `n}
Output: a generalized F-inductive lemma K ⊆ L

1 K ← ∅ // kept literals
2 C ← L // literals to check
3 while C 6= ∅ do
4 K,C ← dropOne(K,C)

5 return K

6 function dropOne(K, C)
7 lit← pick(C)
8 if isInductive(K ∪ C \ {lit}) then
9 C ← C \ {lit}

10 else
11 K ← K ∪ {lit}
12 C ← C \ {lit}
13 return K,C

Fig. 3: ITERDROP algorithm.

Conceptually, inductive generalization is a simple process,
usually done with an algorithm similar to the one we call
ITERDROP1, shown in Fig. 3. ITERDROP starts with a valid
lemma L = {`1, . . . , `n}, and proceeds to generalize L by
removing an arbitrary chosen literal from L, and using an
SMT solver to check whether the lemma is still valid (by
calling isInductive). The details of isInductive are
not important – but it can be quite expensive. If the call
succeeds, the literal is removed, otherwise it is kept. The goal
is to generalize to a valid lemma with a minimal number
of literals. From now on, when the context is clear, we use
generalization instead of inductive generalization.

We illustrate ITERDROP with a sample run, shown in
Fig. 4a. Start from the given lemma L = {x3, x1, x6 =
1, x9 − x10 ≥ 41, x5 = 1}, ITERDROP proceeds as follows:

1) it tries to drop the first literal, x3, by checking whether
L′1 = {x1, x6 = 1, x9 − x10 ≥ 41, x5 = 1} is valid;

2) assume that L′1 is valid, then L← L′1, x1 is chosen next;
3) now, assume that L′2 = {x6 = 1, x9−x10 ≥ 41, x5 = 1}

is not valid. L remains as is and x6 = 1 is chosen next;
4) assume that L′3 = {x1, x9 − x10 ≥ 41, x5 = 1} is valid,

then L← L′3, and x9 − x10 ≥ 41 is chosen next;
5) assume that L′4 = {x1, x5 = 1} is not valid, then L is

unchanged, and x5 = 1 is chosen next;
6) assume that L′5 = {x1, x9 − x10 ≥ 41} is valid, then L′5

is the final generalized lemma.
The example highlights the difficulty of inductive gener-
alization. First, each call to isInductive is potentially
very expensive. Thus, reducing the number of the calls is
highly desirable. Second, many of the calls, like steps 3
and 5 are “useless” – no new lemma is learned from them.
Thus, reducing such “useless” calls is also highly desirable.
Finally, a solver makes many (up to thousands) such inductive
generalization calls per run.

Our key insight is that since generalization happens fre-
quently, and, while the lemmas are different, the literals are
similar, it is possible to learn the co-occurrence between

1While there are more advanced IG techniques, such as [23], we choose
ITERDROP since it is used in SPACER– a state-of-the-art CHC solver.

literals that do and do not occur in the same lemma together.
This co-occurrence, if learned, could then be used to improve
inductive generalization!

Crucially, SPACER learns new literals all the time, and
literals between different instances of the same problem are
often similar, for instance, x1− 2x3 ≥ 20 and x1− 2x3 ≥ 25.
Thus, an ML-based solution is useful to transfer knowledge
between different sets of literals. Our method is inspired by
the PoS-tagging problem in NLP, in which NNs automatically
learn co-occurrence patterns between words and their tags.
We elaborate more on this inspiration in Sec. V. We have
also tried creating our own hand-crafted heuristics for directly
calculating co-occurrence (for example, by using Boolean
abstraction of literals), but none worked well in practice.

Concretely, we propose a novel neural network architecture,
denoted by M , that learns from past IG queries, and is then
used to predict answers for new IG queries. As shown in
Fig. 4c, M outputs a binary mask (a list of zeros and ones)
corresponding to literals that should be dropped or kept in the
lemma. To evaluate M in the context of an SMC, we devise
a new neural-based IG algorithm called XDROP, that has M
at its core (Fig. 6). We have developed ROPEY, a prototype
SMC that uses XDROP to guide SPACER. (Fig. 2b).

In Fig. 4b, we illustrate a run of XDROP on our exam-
ple: (1) it runs M on the input L; (2) it creates a mask
{0, 1, 0, 1, 0}, corresponding to a candidate Lcand = {x1, x9−
x10 ≥ 41}; (3) it checks the inductiveness of Lcand; (4) it
accepts Lcand, and runs ITERDROP starting from Lcand. Note
that XDROP runs only 3 inductiveness checks, compared to 5
used by ITERDROP.

Challenges. To make ROPEY a practical verification engine,
we have to address challenges in both the machine learning
and the logical soundness aspect. For machine learning, the
challenge is in representing symbolic expressions as vectors,
while still maintaining their rich semantic structure. For logical
soundness, the challenge is in setting up the learning objective
and using the neural net in a way that guarantees the soundness
of a verification engine.

Representation learning of symbolic formulas. Literals
are symbolic formulas, which are structured and have mean-
ing sensitive to small changes. Simply viewing a literal as
a sequence of tokens fails to capture the subtle semantic
differences between structurally similar formulas.

We incorporate both syntactic and semantic information of
a literal into its representation. Our approach views a literal
as a directed acyclic graph (DAG), which is post-processed
from its abstract syntax tree (AST), and then adapts TREEL-
STM [44] to embed such a DAG structure. Our approach also
takes semantic information into consideration so that specific
properties of values are respected: embedding of numbers and
variables should preserve their relative order and equality.

Learning for inductive generalization. Directly using
ML to address the generalization problem is a non-trivial
structure prediction problem. It takes in a set of symbolic
formulas and outputs another set of symbolic formulas that
are more general and more concise. Rather than having an

88

 and (x_3)
 (x_1)
 (x_6 = 1)
 (x_9 - x_10 >=41)
 (x_5 = 1)

 and (x_1)
 (x_6 = 1)
 (x_9 - x_10 >=41)
 (x_5 = 1)

 and (x_6 = 1)
 (x_9 - x_10 >=41)
 (x_5 = 1)

 and (x_1)
 (x_9 - x_10 >=41)
 (x_5 = 1)

 and (x_1)
 (x_5 = 1)

 and (x_1)
 (x_9 - x_10 >= 41)

inductive?

YES

NO

NO

YES

inductive?

inductive?

inductive?

 and (x_1)
 (x_9 - x_10 >= 41)

inductive?
YES

(a) ITERDROP example.

 and (x_3)
 (x_1)
 (x_6 = 1)
 (x_9 - x_10 >=41)
 (x_5 = 1)

Neural
network

 and (x_1)
 (x_9 - x_10 >= 41)

 and (x_1)
 (x_9 - x_10 >= 41)

inductive?
YES

 (x_9 - x_10 >= 41) NO
inductive?

 (x_1) NO
inductive?

XDROP

(b) XDROP example.

0 1 0 1 0 1 0 1

x_3 x_1 x_6 = 1 x_9 - x_10 >= 41 x_5 = 1

0 1

(c) XDROP’s neural network: 0 means drop, and 1 means keep.

Fig. 4: Examples of how ITERDROP and XDROP do inductive generalization on the same query.

end-to-end ML solution, we embed a learning component in
a classic symbolic approach of generalization. Specifically,
the learning component captures the co-occurrence between
literals appearing in past runs and predicts the likelihood of
keeping or dropping a literal in the current run. Furthermore,
uncertainties introduced by the learning component have to be
carefully controlled, which otherwise could lead to unsound
conclusion. ROPEY is designed to make sound progress no
matter what predictions the learning component provides. Bad
predictions may be harmful to the performance, but not to
soundness!

IV. REPRESENTATION LEARNING

Machine learning frameworks [36] and algorithms [44], [38]
operate over fixed-length numerical vectors. One challenge
for applying machine learning for IG is converting discrete
structures with rich semantic meanings into such numerical
representations. In this section, we describe how we embed the
basic unit of our inputs – symbolic formulas – into fixed-length
vectors, while still maintaining their syntactic and semantic
meaning to a certain extent.

A. Representing and normalizing symbolic formulas

Abstract Syntax Trees (ASTs) are natural representations of
formulas that are traditionally used in parsing and compilers.
They preserve the key structure of the formula, while hiding
(or abstracting) unnecessary details such as white space,
commas and parentheses. Alternative representations such as
sequences of tokens abstract too much of the structure of the
formula, while highlighting unnecessary differences. Thus, we
represent logical formulas using their ASTs: operators label
nodes of the tree, operands are children, constants (boolean
and numeric) and variables are leaves. An example of an AST
is shown in Fig. 5b.

Ideally, we would like to represent semantically equivalent
formulas with the same AST. However, this is not guaranteed
if one naively parses a formula into an AST. For example,
x+ 0 > y and x > y are semantically equivalent, yet differ in
the concrete syntax, and have different ASTs. To address this,
we rewrite each formula in a “normal” form by simplifying as

well as ordering commutative operators. Specifically, we use a
simplification engine of Z3 [17]. Our normalizer cannot handle
sophisticated semantic equivalences, such as normalizing 2/7 ·
x9 − 4/7 · x10 ≥ 6 into 1/7 · x9 − 2/7 · x10 ≥ 3. Improving
the normalization process to handle such cases would be an
interesting future work.

Note that semantically equivalent rewriting and normaliza-
tion make our representations of symbolic formulas essentially
directed acyclic graphs (DAGs) modulo semantic equivalence,
because semantically equivalent subtrees share the exact same
embedding. Indeed, representations of symbolic formulas in
our implementation are DAGs, although they are viewed as
if they were trees by the embedding model. Without further
notice, when we refer to a node in a tree, we actually mean
its corresponding node in the DAG.

We use TREELSTM [44] to embed a symbolic formula,
or more concretely its AST representation, into a fixed-
length vector. TREELSTM is essentially a recursive process,
where the embedding of a (sub-)tree is an aggregation of
the embedding of the root node and embeddings of its sub-
trees. The basic requirement of using TREELSTM is to have
an embedding for each node. In the rest of this section, we
describe the features used to embed each AST node into a
fixed-length vector.

B. Embedding features of an AST node

A common technique to map a node N to a vector is to
first map the infinite (or simply large) set Σ of all possible
nodes into a finite set T of tokens (a.k.a. encoding), and then
embed each token into a vector using an embedding matrix of
size |T | × demb.

a) Encoding: Under the standard encoding scheme,
many nodes have to be mapped into the same token. For
example, in NLP, all out-of-vocabulary words are mapped
into a token <UNK>. Similarly, variable names, and numerical
constants over an expression can be mapped into two tokens:
<VAR> and <NUM>, respectively.

Unfortunately, this encoding scheme is inadequate in our
setting. We believe that both the variable names and the values

89

Kind ::= 〈BOOL OP〉 | 〈BOOL VAR〉
| 〈REAL OP〉 | 〈REAL VAR〉 | 〈REAL〉
. . .

Value ::= Var | Op | Constant
Var ::= variable name
Op ::= + | − |<| · · ·

Constant ::= real constant
CEn(p) ::= [s, e1 · · · e2n+1]

s ∈ [1, 10) ⊂ R, ei ∈ {0, 1}
PEd(v) ::= [f1, f2 · · · fd]

fi ∈ (0, 1) ⊂ R

(a)
(b)

Fig. 5: (a) The grammar for AST node features, and (b) an example AST and its semantic features.

of the numeric constants are highly relevant for successful
generalizations! For example, consider two pairs of formulas:

x1 − 2x3 + 7x5 ≥ 10 x1 − 2x3 + 7x5 ≥ 14 (1)
x1 − 2x3 + 7x5 ≥ 10 x1 + x3 − x5 ≥ 0 (2)

Pair (1) represents two parallel hyperplanes, with the first
subsuming the second. Pair (2) represents two intersecting hy-
perplanes and cannot be simplified any further. The difference
between the two pairs disappears when all numeric constants
are mapped to a small finite set of tokens. Yet, this difference
is crucial for successful learning in our context!

Instead of abstracting variables (or constants) into a single
token, we propose a finer granularity abstraction as follows.
Each node is abstracted as a pair of 〈Kind,Value〉, whose
grammar is shown in Fig. 5a. Kind captures the type (or sort)
of the expression of an AST node. The encoding is one of
the pre-defined symbols, such as 〈BOOL OP〉 for a Boolean
operator, etc. Value captures the content of an AST node.
It could be a Variable Name, an Operator, or a Constant.
Operators are encoded as their string representation. Constants
are encoded as their string representations. Variable Names are
encoded using the form x_i, where x is some fixed string,
and i a numeric id of the variable.

Next, we describes how we embed the pair 〈Kind,Value〉
into a fixed-length vector.

b) Embedding: Kind is embedded into a fixed-length
vector of length dKind using a standard embedding matrix [34]
EKind of the size |Kind| × dKind. Value could be embedded
in the same manner. However, given Value is quite diverse,
we propose different embedding methods for different kinds
of values. When Value is an Op, we introduce the second
embedding matrix EOp of the size |Op| × dOp.

When Value is a Variable Name, we combine two embed-
ding methods. The first method, which we call Naive Embed-
ding, is the same as above, in which we use another embedding
matrix EV ar of the size |Var| × dV ar. The second method,
which we call Positional Embedding, based on the method
introduced in [46]. It embeds the id t of the normalized
variable name x_t as follows: The embedding of the position

t is a vector PEd(t) of length d. The value for the ith entry in
the vector PEd(t) is defined as follows:

PEd(t)i =

{
sin(ωk · t) if i = 2k
cos(ωk · t) if i = 2k + 1

where ωk = 10000−2k/d. This embedding satisfies many nice
properties: each position is mapped to a unique value, all en-
tries in the vector are between 0 and 1 (which makes learning
easier), and, lastly, for every fixed offset k, there exists a
transformation matrix T ∈ Rd×d s.t. T ·PEd(t)i = PEd(t+k)i
holds for any position t and index i [46]. This last property
allows the model to learn relative positions easily. In practice,
we combine the two methods by concatenating their vectors.

When Value is a Constant, we want to embed it in a way that
allows the network to quickly extract magnitudes of constants
along with their values. We propose the following Constant
Embedding method: Given a numerical value p, its embedding
is a vector CEn(p) of length 2(n + 1). To embed it, we first
write p in its scientific notation: p = s × 10e. The entries in
CEn(p) are then calculated as follows:

CEn(p)1 = s

CEn(p)i 6=1 =

{
1 if i = 2 + n + e
0 if i 6= 2 + n + e

Simply put, we embed the significant s as the first entry
in the vector, and the rest is the one-hot encoding of e in
the range [−n, n]. For example, with n = 2, p = 42 =
4.2×101, its embedding is CE2(42) = [4.2 0 0 0 1 0]. Similarly,
CE3(0.42) = [4.2 0 0 1 0 0 0 0].

The final feature vector for a node is then the concatenation
of the embedding of Kind and Value. In our experiments,
we set dKind = dOp = dV ar = d = 64, and n = 6. We
conclude this section with an example. Fig. 5b shows an AST
for x9−x10 ≥ 41 and its transformation into a tree of feature
vectors, with n = 6 and d = 64.

V. LEARNING TO GENERALIZE

In this section, we elaborate on our insight first mentioned
in Sec. III, then we describe the details of our model.

90

Word Tag

Travelers noun
love verb
to preposition
park verb
here adverb

Literal Tag

x3 drop
x1 keep
x6 = 1 drop
x9 − x10 ≥ 41 keep
x5 = 1 drop

TABLE I: Two examples for PoS-tagging (left) and IG (right).

A. Lemma Labeling Problem

In Natural Language Processing, part-of-speech tagging
(PoS-tagging) is the process of labeling each word in a text
(corpus) a particular part of speech, based on its definition
and its context. Table I (left) shows an example of tagging a
sentence. To correctly tag each word, a tagger needs to know
that “park” in this context is a verb, not a noun. State-of-the-art
PoS-tagger tackles this problem purely from the probabilistic
view [45]: in the dataset, how many times “park” is tagged as
a NOUN, how many times “park” is tagged as a VERB given
that the following word is tagged as an ADVERB, etc.

Our insight is that the inductive generalization could be
viewed as a special case of PoS-tagging in which there are
only two tags: drop and keep. Table I (right) shows one such
example. We also view the problem in the same probabilistic
way: in the dataset, how many times x3 is kept, how many
times x3 is dropped given that x1 is kept, etc. It is reasonable to
expect there are shared patterns between different properties
of the same system, or between different points in time of
the same solving process. However, it is not expected that the
learned pattern is transferable between different systems (x3 in
one system is completely different from x3 in the others, just
like “park” in English and Korean are completely different).

Formally, we define our problem as an instance of the
sequence labeling problems:

Problem 1 (Lemma labeling problem) L is the set of all
possible literals. Given a list of literals L of length n and
a vector M of zeros and ones, |M| = n, train a tagger
M : Ln 7→ {0, 1}n s.t. M(L) ≈M.

Note that in the problem definition we keep the lemma as a list
instead of a set of literals. This means that given a different
ordering from the same set of literals, we might end up with a
different result. However, this is also the behavior of SPACER,
because SPACER maintains the lemma as a list of literals, and
pick(C) in Fig. 3 simply returns the first element in C.

B. Model

To handle inputs of different lengths, we use two variants
of the Long Short-Term Memory (LSTM) [25] network. At
the high level, the information (hidden state) at each timestep
t in a vanilla LSTM is

−→
ht = LSTM(it,

−−→
ht−1), where it is

the input at timestep t, and a vector of zeros is used for the
initial

−→
h0. Intuitively, the formula says that the hidden state at

timestep t captures information from every prior timestep.
The first variant, Bidirectional-LSTM [38], has been shown

to improve the labeling performance in NLP tasks [47]. It ex-
tends LSTM by including information from later timesteps as

Input: the original F-inductive lemma L = {`1, `2, ..., `n}
Output: a generalized F-inductive lemma

1 LCand ← {`i | ` ∈ L,M(L)[i] = 1}
2 if isInductive(LCand) then
3 return iterDrop(LCand)
4 else
5 return iterDrop(L)

Fig. 6: XDROP algorithm.

well, thus, allowing the network to use better context informa-
tion. Concretely, it adds the backward

←−
ht = LSTM(it,

←−−
ht+1).

Then, the hidden state ht is the concatenation [
←−
ht ,
−→
ht].

The second variant, TREELSTM [44], has been shown to be
suitable for tree-like inputs, such as ASTs. It extends LSTM
by considering the linear chain of timesteps as a special case
of a tree, in which each node has exactly one child. Given
a node ij in a tree, with H(ij) is the set of hidden states
corresponding to each child node of ij , TREELSTM extends
the equations with hj = TreeLSTM(ij , H(ij)). Intuitively,
TREELSTM passes information from all children to their
parent, allowing better topology information to be learned. In
this work, we use the information at the root node as the
summary of the whole tree.2

Fig. 4c shows our full model with a Bidirectional LSTM
layer on top of a TREELSTM layer in a hierarchical manner.
From top to bottom in Fig. 4c, at a literal `t corresponding to
an AST with root Roott, we calculate the following:

it = TreeLSTM (Roott, H(Roott))
←−
ht = LSTM (it,

←−−
ht+1)

−→
ht = LSTM (it,

−−→
ht−1)

ht = [
←−
ht ,
−→
ht] yt = W · ht + b

where W ∈ R|ht|×2 and b ∈ R2 are the weight matrix and
bias that transforms ht to a vector of size 2. Each equation
above corresponds to a layer in Fig. 4c. Finally, the predicted
label for `t is the index of the max value of yt.

Fig. 6 describes how we use the learned model in our neural-
based IG algorithm XDROP. Given that deep learning models
could make arbitrary predictions, special care need to be taken
in order to preserve soundness. In the worst case, XDROP
should be effectively the same as ITERDROP. More formally,
we have the following important yet straightforward theorem.

Theorem 1 XDROP is sound and terminating.

XDROP is implemented in Python using PyTorch [36],
while SPACER is implemented in C++. We implement a client-
server architecture in which XDROP is wrapped in a gRPC
server which connects to a gRPC client inside SPACER.

C. Discussion

Using NNs to guide generalization might seem arbitrary at
first. Perhaps a simpler heuristic based on counting frequency
is sufficient. In fact, we have tried many different handcrafted
heuristics first. However, two common problems arose: (a) the

2It is also possible to use the sum of every node in the tree as the summary,
as mentioned in [44].

91

0 500 1000 1500 2000
ind.gen queries (k)

0.5

0.6

0.7

0.8

0.9

1.0
pe

rfe
ct

 p
re

di
ct

io
n

ra
tio

(a) Online learning.

0 500 1000 1500 2000
ind.gen queries (k)

0.5

0.6

0.7

0.8

0.9

1.0

pe
rfe

ct
 p

re
di

ct
io

n
ra

tio

(b) Transfer learning.

Fig. 7: M ’s predictive power for benchmarks with at least k
IG queries.

heuristics do not work consistently across different bench-
marks; (b) even if a heuristic works, it does not transfer
to different properties since different literals are learned for
different properties and systems.

There are many alternative ways to guide generalization
using a neural component than the one we chose. Perhaps most
desirable is to have an end-to-end solution in which the neural
component takes an original lemma as input and produces a
generalized lemma as output. However, the symbolic reasoning
required for this is so complex that we believe that such
a solution is much harder to train and scale up. Another
alternative is to learn an approximation of the inductive check,
i.e., the function isInductive(Context , L) 7→ {true, false}
that determines whether a candidate lemma L is inductive in
the current context. We have tried such an approach, but could
not make it effective. The difficulty is that the Context that
is used by the inductive checker is a large symbolic formula.
This makes training the network difficult. We suspect it is as
hard as learning a neural SMT-solver [40], [39].

VI. EMPIRICAL EVALUATION

A. Benchmarks and environment setup

We evaluate ROPEY on a set of simulation benchmarks
publicly available 3 for the KIND2 model checker [11]
(simply called KIND2 from now on). This benchmark suite
corresponds to verification of systems that are known to
be challenging for IG, for which SPACER behaves poorly.
Furthermore, KIND2 benchmarks can be easily grouped into
training set (i.e. a set of original benchmarks) and testing set
(i.e. a set of corresponding variants). In total, KIND2 consists
of 324 benchmarks.

We train ROPEY’s neural network M using Adam optimizer
[28] with dropout rate 0.5. We set the hidden size of TreeL-
STM to be 64, and use embedding dimensions mentioned in
Sec. IV.4 We stop training when either the performance has
not been improved over the last 250 epochs or the number
of epochs reaches a predefined threshold (i.e. 1 500). Naive
Embedding, Positional Embedding and Constant Embedding
are always used. Ablation study for those embeddings is

3https://github.com/kind2-mc/kind2-benchmarks.
4These dimensions could be further fine-tuned, which we leave as interest-

ing future work.

discussed in Sec. VI-E. All experiments are performed on a
Linux desktop equipped with an Intel® Xeon E5-2680 v2, an
NVIDIA 1080 Ti GPU, and 64GBs of memory. The artifacts
including code and data are available on the project website
at https://nhamlv-55.github.io/Ropey.

Given that evaluating benchmarks with a short running time
(i.e. less than one second) is susceptible to noise, for all
experiments we report both the numbers for all benchmarks
and the numbers for non-trivial benchmarks. We define a non-
trivial benchmark as the one that takes at least 5 seconds to
solve, or has at least 100 IG queries (depending on whether we
are measuring running time or predictive power, respectively).

B. Predictive power

We evaluate the model M in two settings, namely, online
learning and transfer learning. Given a lemma in the form of
a list of literals, M predicts a likely inductively generalized
lemma, which is a sub-list of the given lemma. We define a
prediction returned by M as a perfect prediction iff given the
same input, vanilla SPACER produces the same exact answer.
Note that this is a conservative criterion because there might
be multiple valid inductive generalizations.

Online learning In this setting, we collect 144 benchmarks
from KIND2 that have at least 2 IG queries in their solving
trace. For each of them, we use SPACER to solve it until
completion or until a time limit of 930 seconds is reached.
Each solving trace is then split in half, and M is trained on
the first half to predict the answers to queries seen in the
second half of the trace (tail queries). We measure how many
percent of the tail queries are perfectly predicted by M . The
average length of queries is 9.75 literals.
M achieves 60.19% perfect prediction ratio for all bench-

marks and 72.18% for non-trivial benchmarks. The trend of
perfect prediction ratio along with the corresponding number
of queries are plotted in Fig. 7a, where Y-axis is the perfect
prediction ratio and X-axis is benchmarks ordered according
to their total number of IG queries. The plot shows that M
generally works better for larger benchmarks. For instance, M
returns perfect predictions for more than 90% of the queries
in benchmarks with 1 600 or more IG queries.

Transfer learning In this setting, we use 123 bench-
marks (i.e., 30 seed benchmarks and 93 variant bench-
marks) from KIND2 based on their naming convention. For
example, metros_2_e1_1116.smt2 is one variant of
metros_2.smt2. Note that we have fewer benchmarks in
this task since some seed benchmarks can be solved without
any IG queries, while its variants cannot. Those seeds and
variants are all excluded from the task. The average length of
the queries for this task is 8.43 literals.

We train M on traces generated by solving the seed bench-
marks to completion or until timeout. The models are then
used to predict queries asked during the solving process of
the corresponding variants.
M achieves 68.36% and 76.89% perfect prediction ratio

for all benchmarks and non-trivial benchmarks, respectively.
We also plot the trend of perfect prediction ratio in Fig. 7b.

92

https://github.com/kind2-mc/kind2-benchmarks
https://nhamlv-55.github.io/Ropey

0 200 400 600 800
seconds (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

d
up

solving time + inf. time
solving time
ind. gen time + inf. time
ind. gen time

Fig. 8: ROPEY’s speedups for benchmarks taking more than s
seconds to solve.

All Non-trivial

solving + inf. time 0.81560 1.25385
solving time 1.14085 1.69792
ind. gen time 1.13570 1.63041
ind. gen + inf. time 0.70519 0.91891

TABLE II: ROPEY’s speedups compared with SPACER.

Similar to the online learning setting, M generally works
better for larger benchmarks. It is a little surprising that the
perfect prediction ratio of transfer learning setting is slightly
better than the ratio of online learning. This might indicate
that in our benchmarks, queries in the beginning and at the
end of the same benchmark are more different than queries
between seeds and variants. Quantifying this observation is an
interesting direction for future work.

C. Running time

ROPEY’s running time can be broken down into few com-
ponents: SPACER’s time (in which IG time is a subcompo-
nent), communication time over gRPC, data parsing time, and
model running time. We group the later three components
into inferencing time. On average, inferencing takes 48.1%
and 24% of the total running time for all and non-trivial
benchmarks, respectively. For future work, we state that there
are opportunities for engineering improvement to reduce the
inferencing time.

We measure the speedup in IG time and SPACER’s solving
time with and without the inferencing time. If ROPEY times
out, we measure the running time that ROPEY needs to verify
to the same depth as SPACER. The timeout is set to be 930
seconds, and in cases where ROPEY times out, we rerun it
with the timeout set to 2 790 seconds to allow it to verify to
the same depth as SPACER. The results are in Table II. We
also plot in Fig. 8 the speedups achieved at different running
time threshold s, e.g for benchmarks that takes more than 50
seconds to solve, 100 seconds to solve, etc.

For unsolved benchmarks, notice the spikes at the tail of
Fig. 8: ROPEY takes much less time to reach to the same depth
as SPACER, up to 2.8× faster (inferencing time included).

D. Training time

In this paper, we specifically consider realistic applications
where training time is not a bottleneck – train once on one
instance and apply to many similar instances (offline), or train
during a very long run (days or weeks) and apply to the rest of

0 500 1000 1500 2000
ind.gen queries (k)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

pe
rfe

ct
 p

re
di

ct
io

n
ra

tio

all embedding enabled
pos. embedding disabled
naive embedding disabled
const. embedding disabled

Fig. 9: Effects of using different embeddings for benchmarks
with at least k IG queries.

the run (online). For that reason, we do not optimize training
code, nor do we run training in an isolated environment
where time measurements are meaningful. Nonetheless, we
share some statistics of the training time – the minimum,
median and maximum training time are 17, 1027 (17 minutes),
and 165811 seconds (46 hours), respectively. More details
are hosted on our project webpage https://nhamlv-55.github.
io/Ropey/training time. Training any individual model (i.e.,
when GPU is used to train only a single model) is faster, but
training all models sequentially is too slow. Since we do not
consider training time itself to be of significant interest, we
train as many models in parallel as possible.

E. Ablation study

Embedding variables and constants is crucial for our tasks.
In this ablation study, we evaluate three embeddings we
proposed in Sec. IV-B for handling variables and constants.
Fig. 9 shows four plots of ROPEY with four different em-
bedding configurations. ROPEY achieves the best performance
when all embeddings are enabled. ROPEY’s performance drops
dramatically when the positional embedding is disabled, in-
dicating leveraging variable’s position information helps for
capturing co-occurence patterns. Disabling Naive Embedding
or Constant Embedding does not affect the performance much
for benchmarks with relatively small number (i.e. < 1 000)
of IG queries, however, the performance drops dramatically
when the number of IG queries becomes large.

VII. RELATED WORK

There has been a number of work studying neural learn-
ing for symbolic reasoning. Some studied the capability of
deep learning models on handling relatively simple symbolic
reasoning tasks, such as symbolic expression equivalence [1]
or logical entailment [19], which can be easily performed by
a symbolic engine like SMT solver. [2] and [37] focus on
learning embeddings of programs using paths over abstract
syntax trees or control flows, and the learned embeddings are
helpful for suggesting function or variable names. Our focus is
on improving state-of-the-art symbolic engines on non-trivial
symbolic reasoning tasks like symbolic model checking. The
most relevant work is [4], which predicts a high-level strategy
(or configuration) of an SMT solver based on static statistics
of a verification instance. In contrast, our approach learns from

93

https://nhamlv-55.github.io/Ropey/training_time
https://nhamlv-55.github.io/Ropey/training_time

dynamic runs and provides guidance for decisions in a finer
granularity. Two other related work are [24] and [42]. The
former also uses deep learning to guide numerical analysis,
where the soundness is not a concern as imperfect prediction
results in less precise (but still acceptable) numerical approxi-
mations. Like our problem, the latter also faces the soundness
issue and proposes an end-to-end reinforcement learning based
approach, which however suffers from scalability issues.

VIII. CONCLUSION

In this paper, we explore how deep neural networks can
be used in IC3. We chose inductive generalization because
it is (a) a common bottleneck; and (b) seemed suitable to
optimize with NNs. We view this as a first step in using data-
driven NNs to guide IC3. Specifically, we propose a data-
driven approach to improving inductive generalization, which
effectively embeds symbolic formulas in fixed-length vectors
and uses a hierarchical recurrent neural network to guide
inductive generalization (i.e., predict which literals of a lemma
should be kept or dropped). We build a prototype, ROPEY, and
evaluate it on KIND2 benchmark suite. We observe promising
predictive power of neural networks in inductive generalization
and modest improvement in terms of absolute running time
over the state-of-the-art SMC engine, SPACER, which boosts
the solving time for non-trivial instances by 25%.

Our work shows that it is possible for NNs to learn complex
symbolic patterns in IC3, and such learned patterns can be
used to improve IC3. ROPEY’s pure performance does not
show a strong gain yet, but is still encouraging. We envision
the performance gain would be much more significant by
improving ROPEY with better engineering effort or leveraging
advanced hardware acceleration for deep learning models in
the future (like TPUs). Another orthogonal improvement is
to explore more advanced transformer-based language models
like GPT-3 [9] to further improve the prediction accuracy.

REFERENCES

[1] M. Allamanis, P. Chanthirasegaran, P. Kohli, and C. A. Sutton, “Learning
continuous semantic representations of symbolic expressions,” in ICML
2017, vol. 70, 2017.

[2] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” POPL, vol. 3, 2019.

[3] T. Ball, “Secrets of software model checking,” in AGP 2002, 2002.
[4] M. Balunovic, P. Bielik, and M. T. Vechev, “Learning to Solve SMT

Formulas,” in NeurIPS, 2018.
[5] J. Barnat, L. Brim, A. Krejci, A. Streck, D. Safranek, M. Vejnar, and

T. Vejpustek, “On parameter synthesis by parallel model checking,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 9, no. 3, 2012.

[6] N. Bjørner, A. Gurfinkel, K. L. McMillan, and A. Rybalchenko, “Horn
clause solvers for program verification,” in Gurevich 75, 2015.

[7] A. R. Bradley, “Sat-based model checking without unrolling,” in VMCAI,
2011.

[8] A. R. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang, “An incremental
approach to model checking progress properties,” in FMCAD, 2011.

[9] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in NeurIPS,
vol. 33, 2020, pp. 1877–1901.

[10] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Computers, vol. 35, no. 8, 1986.

[11] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli, “The Kind 2
Model Checker,” in Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II, ser. Lecture Notes in Computer Science,
S. Chaudhuri and A. Farzan, Eds., vol. 9780. Springer, 2016, pp. 510–
517. [Online]. Available: https://doi.org/10.1007/978-3-319-41540-6 29

[12] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo, “Incremental
formal verification of hardware,” in Proceedings of the International
Conference on Formal Methods in Computer-Aided Design, ser. FMCAD
’11. Austin, Texas: FMCAD Inc, 2011, p. 135–143.

[13] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” Formal Methods Syst. Des., vol. 19, no. 1,
2001.

[14] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in CAV, 2000.

[15] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of
Model Checking, 1st ed. Springer Publishing Company, Incorporated,
2018.

[16] E. M. Clarke, K. L. McMillan, S. V. A. Campos, and V. Hartonas-
Garmhausen, “Symbolic model checking,” in CAV, 1996.

[17] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
TACAS, 2008.

[18] N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT, 2003.
[19] R. Evans, D. Saxton, D. Amos, P. Kohli, and E. Grefenstette, “Can

neural networks understand logical entailment?” in ICLR, 2018.
[20] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and

R. Stata, “Extended static checking for java,” in PLDI, 2002.
[21] A. Griggio and M. Roveri, “Comparing different variants of the ic3

algorithm for hardware model checking,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 35, no. 6, 2016.

[22] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The seahorn
verification framework,” in CAV, 2015.

[23] Z. Hassan, A. R. Bradley, and F. Somenzi, “Better generalization in
IC3,” in 2013 Formal Methods in Computer-Aided Design, 2013, pp.
157–164.

[24] J. He, G. Singh, M. Püschel, and M. T. Vechev, “Learning fast and
precise numerical analysis,” in PLDI, 2020.

[25] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997.

[26] K. Hoder and N. Bjørner, “Generalized property directed reachability,”
in SAT, vol. 7317, 2012.

[27] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljic, D. L. Dill, M. J. Kochenderfer, and C. W.
Barrett, “The marabou framework for verification and analysis of deep
neural networks,” in CAV, 2019.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.”
CoRR, vol. abs/1412.6980, 2014.

[29] A. Komuravelli, A. Gurfinkel, and S. Chaki, “Smt-based model checking
for recursive programs,” in CAV, 2014.

[30] A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke, “Automatic
abstraction in smt-based unbounded software model checking,” in CAV,
2013.

[31] H. G. V. Krishnan, Y. Chen, S. Shoham, and A. Gurfinkel, “Global
guidance for local generalization in model checking,” in CAV, 2020.

[32] K. L. McMillan, “Lazy abstraction with interpolants,” in CAV, 2006.
[33] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their composi-
tionality,” in NeurIPS, 2013.

[34] ——, “Distributed representations of words and phrases and their com-
positionality,” in Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, 2013.

[35] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in DAC, 2001.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in NeurIPS, 2019.

94

https://doi.org/10.1007/978-3-319-41540-6_29

[37] V. K. S, R. Aggarwal, S. Jain, M. S. Desarkar, R. Upadrasta, and
Y. N. Srikant, “Ir2vec: A flow analysis based scalable infrastructure
for program encodings,” CoRR, vol. abs/1909.06228, 2019.

[38] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681,
1997.

[39] D. Selsam and N. Bjørner, “Guiding High-Performance SAT Solvers
with Unsat-Core Predictions,” in SAT, 2019.

[40] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill,
“Learning a SAT Solver from Single-Bit Supervision,” in ICLR, 2019.

[41] O. Sheyner, J. W. Haines, S. Jha, R. Lippmann, and J. M. Wing,
“Automated generation and analysis of attack graphs,” in SSP, 2002.

[42] X. Si, H. Dai, M. Raghothaman, M. Naik, and L. Song, “Learning loop
invariants for program verification,” in NeurIPS, 2018.

[43] J. P. M. Silva and K. A. Sakallah, “GRASP – a new search algorithm
for satisfiability,” in ICCAD, 1996.

[44] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” in ACL,
2015.

[45] H. Tsai, J. Riesa, M. Johnson, N. Arivazhagan, X. Li, and A. Archer,
“Small and practical BERT models for sequence labeling,” in
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 3632–3636.
[Online]. Available: https://www.aclweb.org/anthology/D19-1374

[46] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

[47] X. Zhang and H. Wang, “A joint model of intent determination and
slot filling for spoken language understanding,” in Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
ser. IJCAI’16. AAAI Press, 2016, p. 2993–2999.

95

https://www.aclweb.org/anthology/D19-1374

	Introduction
	A motivating example
	Overview
	Representation learning
	Representing and normalizing symbolic formulas
	Embedding features of an AST node

	Learning to generalize
	Lemma Labeling Problem
	Model
	Discussion

	Empirical Evaluation
	Benchmarks and environment setup
	Predictive power
	Running time
	Training time
	Ablation study

	Related work
	Conclusion
	References

