
Object detection with Microsoft
HoloLens 2

A comparison between image and point cloud
based algorithms

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Geodesy and Geoinformation

by

Sophie Herrmann, BSc
Registration Number 01426553

to the Faculty of Mathematics and Geoinformation

at the TU Wien

Advisor: Univ.Prof. Dr.sc. Ioannis Giannopoulos, MSc BSc
Assistance: Univ.Ass. Dr.phil. Markus Kattenbeck, MA

Vienna, 30th August, 2021
Sophie Herrmann Ioannis Giannopoulos

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Sophie Herrmann, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. August 2021
Sophie Herrmann

iii

Acknowledgements

This thesis would not have been possible without a number of persons. First and foremost
I would like to thank the assistant of this thesis, Markus Kattenbeck, who not only
allowed me to work on this topic and to adjust it to my interests, but also kept an open
mind when discussing questions with me and provided practical ideas for in my opinion
complex issues. For me it was extremely helpful that he kept me focused on the general
goals of this thesis when I got lost in details.

Next in line have to be my parents, Doris and Gerold Herrmann, who supported me
throughout my studies, all financially, morally and with their technical knowledge. They
always encourage me to follow and deepen my interests, and never be satisfied with the
simple solution.

A special thanks also goes to my boyfriend, Juri Berlanda, who supported me both
with technological insights and morally throughout the becoming of this thesis. This
combination made him my illuminating benefit, especially during difficult times.

I would like to also thank the advisor of this thesis Prof. Ioannis Giannopoulos, who was
an invaluable source of knowledge and experience especially in the object detection domain.
He provided me useful suggestions for my initial design and consecutive improvements
which continuously guided me into the right direction.

Finally, I would like to thank Bartosz Mazurkiewicz and Negar Alinaghi two assistants
of the Research Unit of Geoinformation, who supported me with the realization of my
data acquisition experiment. This includes both the technological implementation and,
foremost, the physical setup, which would not have been possible without them.

v

Abstract

Object detection is a central task in computer vision, which tries to identify and locate
objects in a scene. After the era of hand-crafted features and limited accuracy, 2014
AlexNet brought the attention to neural networks and deep learning. Accuracy increased
and inference time decreased significantly and it came to a boom of 2D image-based
object detection networks. Nowadays a huge number of 2D object detection algorithms
are available, but they have one main drawback, they only provide two dimensional
bounding boxes. This is an issue as a number of modern applications operate in the three
dimensional world, therefore also require accurate 3D information. Mainly over the last
decade 3D object detection algorithms evolved leveraging deep neural networks. This
thesis focuses on comparing accuracy and inference time of 2D and 3D object detection
algorithms, evaluating whether the additional information provided by 3D algorithms
comes at the cost of lower accuracy and / or slower inference times.

To enable such an evaluation a comparable 2D - 3D dataset is created. Due to the
availability of both a 2D and 3D measurement device and ease of use, head mounted
Augmented Reality glasses are used for data acquisition. Special considerations are
applied to the data acquisition setup, selected categories and environmental / lightning
conditions, to allow detailed analysis of key properties of 2D respectively 3D object
detection algorithms. Acquired data is further processed to clean data and annotate
objects. The comparison is based on one representative object detection algorithm per
domain, YOLOv3 is selected as 2D algorithm, VoteNet as 3D algorithm. Multiple sets of
hyperparameters are tested and the best models are finally compared.

The evaluation shows that 2D and 3D accuracy results are with AP2D−50 = 0.94 and
AP3D−50 = 0.96 very similar and 3D results are even slightly better. The main downside
of 3D compared to 2D algorithms is the inference time which is — though achieving
real-time — with 19.04ms respectively 1.55ms by a factor ten slower in this experiment. A
detailed analysis per category and condition shows that the accuracy of the 3D algorithm
mainly depends on the number of object points and their density, while 2D algorithms
benefit most from large object size.

vii

Contents

Abstract vii

List of Figures xi

List of Tables xiii

Listings xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 3
1.3 Overview . 4

2 Related Work 7
2.1 2D Object Detection . 7
2.2 3D Object Detection . 22
2.3 Object Detection with Augmented Reality 32
2.4 Contribution of this work . 37

3 Data Acquisition 39
3.1 Methodology . 39
3.2 Results . 55
3.3 Evaluation . 66

4 Analysis 71
4.1 Algorithm Requirements . 71
4.2 Algorithm Selection and Training . 72
4.3 Comparison Strategy . 75

5 Results 77
5.1 2D Data . 77
5.2 3D Data . 84

6 Discussion 89

ix

6.1 Object Detection Results per Domain 89
6.2 2D - 3D Comparison . 96

7 Conclusion and Future Work 99

Bibliography 105

Appendix 121
Dataset Structure . 121
Code repositories . 127
Object Detection Results . 127

List of Figures

2.1 Four main computer vision tasks . 8
2.2 Iconic and non-iconic objects . 10
2.3 Basic neural network . 15
2.4 CNN layer types . 18
2.5 RCNN architecture . 19
2.6 YOLO concept . 20
2.7 VoxelNet architecture . 29
2.8 VoteNet concept . 31
2.9 Microsoft HoloLens 2 . 35

3.1 Object configuration for data acquisition 43
3.2 2D data acquisition setup . 47
3.3 3D data acquisition setup . 49
3.4 Problematic images from startup . 50
3.5 Problematic images with hand . 51
3.6 Point cloud transfer and storage times with transmitted data volume . . . 56
3.7 Total number of captured images and point clouds 57
3.8 Sample images and point clouds from the dataset 58
3.9 Mapping loss effect onto spatial mapping 59
3.10 Examples for blurry images . 59
3.11 Four image labeling examples . 61
3.12 Total number of accepted annotated images 62
3.13 Correctly derived 3D bounding boxes . 63
3.14 3D bounding box of incorrect point clouds 64
3.15 Volume analysis effects . 64
3.16 Volume selection properties and results 65
3.17 Similarty between images of the four conditions 67

4.1 VoteNet bounding box coordinates . 75

5.1 YOLOv3 validation accuracy . 78
5.2 YOLOv3 processing and evaluation workflow 80
5.3 YOLOv3 validation accuracy by augmentation level 81
5.4 YOLOv3: Condition specific differences on validation data 82

xi

5.5 YOLOv3: Condition specific differences on test data 83
5.6 YOLOv3: Overall accuracy of best run on validation and test data 83
5.7 VoteNet valication accuracy . 85
5.8 VoteNet: Condition specific differences on validation data 86
5.9 VoteNet: Condition specific differences on test data 86
5.10 VoteNet: Overall accuracy of best run on validation and test data 87

6.1 Average Precision comparison of best YOLOv3 90
6.2 Importance of data augmentation by number of samples 91
6.3 Average Precision comparison of best VoteNet 94
6.4 2D - 3D test accuracy comparison . 97

1 Condition specific variations of full augmentation 128
2 Condition specific variations of medium augmentation 129
3 Condition specific variations of no augmentation 130
4 YOLOv3 test accuracy for best models . 131
5 VoteNet indoor-night variations . 133
6 VoteNet indoor-sun variations . 134
7 VoteNet outdoor-night variations . 135
8 VoteNet outdoor-sun variations . 136
9 VoteNet test accuracy for best model . 137

xii

List of Tables

2.1 2D object detection datasets . 9
2.2 2D object detection accuracy comparison (MS COCO) 22
2.3 2D object detection speed comparison (MS COCO) 22
2.4 3D object detection datasets . 25
2.5 3D object detection accuracy and speed comparison (3D KITTI) 32
2.6 3D object detection accuracy and speed comparison (SUN RGB-D) 32

3.1 Distribution of object properties and intra-category variabilities. 41
3.2 YOLOv3 hyperparam. comparison for manually labeled subset 60
3.3 MS COCO validation accuracy of best label training 61
3.4 PASCAL validation accuracy of best label training 61
3.5 Properties of new 2D AR-2/3 dataset . 62
3.6 Properties of new 3D AR-2/3 dataset . 66

Listings

3.1 HoloLensCameraStream image processing 45
3.2 MeshHandler access and storage of mesh data 46
3.3 Creation of a 3D bounding box based on an input point cloud 53
3.4 Used PointCloudBboxHandler configurations per category 54

xiii

CHAPTER 1
Introduction

1.1 Motivation
A central goal in computer vision is to enable computers to understand scenes [Aziz et al.,
2020]. Object detection is an important piece to reach this goal, as it tries to answer the
question

What objects are where?

Compared to classification it adds additional information about the location of each
object instance. This central computer vision task is the basis for a number of other
computer vision tasks such as image captioning (see e.g. [Karpathy and Fei-Fei, 2015]),
object tracking (see e.g.[Kang et al., 2017]), and instance segmentation (see e.g. [Hariharan
et al., 2014]). Until recent years the main focus of object detection was on images — 2D
data.

To solve the stated question computational models and techniques are developed. Before
the era of deep neural networks 2D object detection was based on hand crafted features
such as scale-invariant feature transform (SIFT) [Lowe, 1999] and histogram of oriented
gradients (HOG) [Dalal and Triggs, 2005] which achieved only limited accuracy. The
modeling strategy changed completely when [Krizhevsky et al., 2012] presented AlexNet
in 2014 — the first neural network for object classification. Shortly after [Girshick et al.,
2014] was able to leverage neural networks not only to classify an image by its content
but also locate specific objects within the image, thereby performing object detection.
From roughly this point onward object detection with deep neural networks developed
fast. Hundreds of networks got developed continuously improving the accuracy and speed
of object detection. Today small and fast networks already achieve reasonable accuracy
and more complex networks provide even more precise results [Xiao et al., 2020] (see
Subsection 2.1.6). The growing interest is also reflected in the increasing number of
publication in the field of object detection. According to the systematic literature review

1

1. Introduction

by [Zou et al., 2019] the number of publications increased from roughly 20 in 1998, over
a bit less then 400 in 2008, to nearly 1200 in 2018. This enormous interest of academia
also facilitated a wide range of real-world application such as autonomous driving, robot
vision and video surveillance.

Hence, this boom of 2D object detection algorithms can be mainly attributed to the
usage of deep neuronal networks. The rapid development is additionally enabled by the
increasing availability of computational resources. Many modern deep neural networks
leverage but also require access to fast processing units and a sufficient amount of memory
[Strubell et al., 2019].

As described above, nowadays 2D object detection is used by a number of applications.
But in recent years for more and more applications 2D information is not sufficient.
Instead accurate 3D locations are required. One central reason for this demand is that
some modern applications — such as autonomously driving cars, automated production
lanes and Augmented Reality (AR) — operated in the three dimensional world. An AR
application requires 3D information to properly place virtual content onto real objects,
or to provide meaningful 3D distance measures for navigation. Motivated by the good
results of 2D object detection and enabled by availability of large scale computational
resources, modern 3D object detection algorithms are often based on deep neural networks.
Although most development happened only throughout the last decade already good
accuracy can be achieved today [Rahman et al., 2019].

Compared to the 2D domain 3D object detection has a number of advantages, most
importantly the additional information about the third dimension. But this additional
information also requires additional considerations. The most practical question examines
available sensing devices. 3D data can be acquired in different way, e.g. with laser
scanners, via 3D point reconstruction from a least two images or a combination of
multiple tools (e.g. used by modern AR devices). Connected to the sensing device is the
data structure, 3D data can be stored in different formats such as point clouds, voxels (3D
pixels), or 2D projections. In most cases 3D data requires more storage and processing
resources because of the additional dimension. Each of the described choices provides
different advantages and disadvantages (see Subsection 2.2.3). Therefore up to now no
standard choices to these options has been defined [Shen, 2019]. Being such a young and
diverse research field makes 3D object detection especially interesting.

3D object detection algorithms evolved because the results of accurate 2D algorithms are
missing required information about the third dimension. With this group of algorithms
3D results can be provided. Still, 3D object detection is a quite young research area
developing into different direction driven by a wide range of applications. Several questions
arise. How good are 3D object detection algorithms compared to their 2D equivalents?
Do we get the additional information about the third dimension at the cost of a lower
accuracy and slower detection, or can 3D algorithms compete with 2D ones?

As stated above Augmented Reality (AR) is one of the applications which would at least
strongly benefit from 3D object detection as it operates in the three dimensional world.

2

1.2. Goals

Generally, AR is able to combine the real world with virtual content (see Subsection
2.3.1). A typical setup is a head mounted device which visualize virtual objects via
AR glasses. Applications range from interactive games over manufacturing purposes
to simplified learning. Interestingly, to the author’s best knowledge, currently only 2D
object detection is used with AR (see e.g. [Lee et al., 2019] and [Mahurkar, 2018]).
This is a waste of resources as many AR systems capture and provide both 2D and 3D
information of their surrounding environment. Those two properties make AR a very
interesting device to realize the aforementioned comparison.

1.2 Goals
As motivated above, the central goal of this thesis is to compare 2D and 3D object
detection leveraging AR. The basis for such a comparison is a comparable 2D - 3D
dataset. Such a dataset is especially important for the comparison between state-of-the-
art object detection algorithms because most of them leverage neural networks [Zou et al.,
2019], [Rahman et al., 2019] which strongly depend on the provided training data [Bengio
et al., 2017, p. 98-100]. Up to now no such dataset exist (see Subsection 2.1.2 and 2.2.2).
Hence, this is the first fine-grain target of this thesis: generating such a dataset.

Although no AR generated dataset exists, AR allows to easily acquired such a dataset —
AR is even seen as a simple mapping device by some applications (e.g. [Hübner et al.,
2020], [Khoshelham et al., 2019]). But, the availability of 2D and 3D data is not the
only advantages of AR devices. As head mounted device it provides useful flexibility.
Hardly any setup is required before starting an observation. AR can easily be used in
different environment, e.g. both in indoor and outdoor, observing objects of varying size.
This allows to easily include acquisitions from multiple environments into the dataset. In
summary, AR is a good choice for creating a comparable dataset.

Based on this new AR dataset 2D and 3D algorithms are evaluated. The focus is on an
accuracy and inference time evaluation. Such an analysis of object detection results in
addition to the availability of a AR dataset supports (3D) object detection developments
in this emerging AR area. The analysis of accuracy results provides insights into the
applicability of AR data to certain object detection algorithms. And, the comparison of
inference times shows whether and how AR and object detection can be combined for
certain applications.

The focus on the AR domain should further show that autonomous driving is not the
only application of 3D object detection. Rather a number of other applications already
exist which could — and maybe even should — consider further development into
this direction. The AR-object detection could even be seen as a prototype for other
applications concentrating on this combination.

Next to support efforts to bring 3D object detection to new applications the focus of this
thesis is to relate 2D and 3D object detection. Two topics are considered in this regard:
First, the overall accuracy of 2D and 3D object detection should be compared. Second,

3

1. Introduction

strength and weaknesses should be analyzed in detail. 2D and 3D data may depict the
same scenario but still provide very different information. Because of different properties
of data from the two domains it is expected that they also perform better respectively
worse on certain categories and / or conditions. The goal of this thesis is to identity key
properties which improve or worsen detection accuracy. In a next step also synergies of
the domains are of interest.

1.3 Overview
This thesis is structured as following: Chapter 2 presents a literature review of the three
important components of this thesis, 2D object detection (Section 2.1), 3D object detection
(Section 2.2), and Augmented Reality (Section 2.3). The first starts with an general
overview and definition of 2D object detection and positions object detection in relation
to other computer vision tasks. Then, publicly available datasets and corresponding
evaluation metrics are presented, especially focusing on widely used accuracy metrics and
their variations. After a short description of the origins of 2D object detection and the era
of hand crafted features, deep learning and convolutional neural networks are presented
in detail. Following this theoretically explanation the most important convoluational
neural networks and their performance are discussed. The 3D object detection section
is structured similarly. It starts with an overview about 3D object detection, including
a motivation for the additional dimension and connected considerations. Then, again
datasets and metrics are discussed, focusing also on the differences and similarities
between the 2D and 3D domain. Important 3D algorithms with their different focuses
are presented and subsequently their accuracy and detection speed are compared. The
last section defines Augmented Reality, connects AR with object detection by presenting
a number of interesting AR applications and finally describes properties of the used AR
device — Microsoft HoloLens 2. The final Section 2.4 details the contributions of this
thesis based on the provided literature review.
The subsequent Chapter 3 explains the acquired dataset. It is divided into three parts,
Methodology (Section 3.1), Results (Section 3.2) and Evaluation (Section 3.3). The first
section details the creation of the new 2D-3D dataset. Firstly, dataset requirements
are stated, mainly focusing on category properties, environmental condition, and the
measurement device. Secondly, a dataset concept is presented fulfilling the before
described requirements. Thirdly, the technical setup is detailed. Selected technology is
described and implemented software is presented. Fourthly, the acquisition configuration
is given. The acquisition process — including physical setup and selected parameters

— is described. Finally, a description of required processing of the 2D respectively 3D
data is given. This includes outlier removal and annotation. In the second section
results of this process are given. First, observations made during the acquisitions are
summarized, resulting images and point clouds are visualized, and key information about
the acquired data is stated. Then, processing results for 2D and 3D data given separately.
The 2D part mainly focuses on the results of the transfer learning for the 2D labeling
process, including accuracy measures and sample images. The 3D part present the results

4

1.3. Overview

of the algorithmic bounding box derivation and volume analysis. In the final section
characteristics of the new dataset are evaluated. It relates the 2D and 3D part of the
dataset of existing standard datasets from the respective domain, discusses results of the
data acquisition setup and analyzes implications of the measurement device HoloLens 2
on the different categories and conditions.

Following the dataset description, Chapter 4 presented the applied object detection
analysis. It focuses on the selection and implementation of the object detection algorithms.
To compare 2D and 3D object detection, one algorithm each should be selected. Therefore,
the chapter is divided into three parts, Algorithm Requirements (Section 4.1), Algorithm
Selection and Training (Section 4.2), and Comparison Strategy (Section 4.3). Based in
the requirements stated in the first section, an algorithm is selected in the latter section.
Algorithm and thraining is described. The chapter closes with a description of the used
comparison strategies, focusing in accuracy and detection speed.

After presenting the method, the results of the experiment are given in Chapter 5. It
summarizes the results of the main object detection experiment. Accuracy values and
inference times for both 2D and 3D domain are shown.

The results are evaluated in the following Chapter 6. First, results of the object detection
experiment are positioned in relation to previous research (Section 6.1), and then 2D
and 3D results are compared (Section 6.2). The discussion of object detection results
per domain focuses — similarly as for the dataset — on positioning and comparing
results to previous research. Additionally, category and condition specific variation are
discussed. For the 2D domain also the effect of data augmentation is discussed. The final
comparison evaluated the accuracy and inference time of the algorithms and describes
implications of the results.

In the final Conclusion and Future Work Chapter 7 first the methodology, results and
evaluation are summarized and most important findings are detailed. Then, remaining
and resulting open questions are stated and possible strategies are described how they
could be further analyzed.

5

CHAPTER 2
Related Work

In this section a literature review of the evolution and current state of object detection
is given. The following sections cover different aspects of object detection especially
focusing on different input data. First, object detection based on 2D data is presented,
then the evolution of 3D data based methods is covered, and in the last section the
connection to Augmented Reality is drawn.

2.1 2D Object Detection
2.1.1 Overview
In computer vision an important goals is understanding images [Aziz et al., 2020]. To
reach this goal one must capture the content of an image. This can be done in different
ways resulting in four main computer vision tasks as show in Figure 2.1. The simplest
task is image classification which identifies important objects in an image and outputs
the relevant categories. The second task object detection not only outputs the relevant
categories but also the location of the detected objects as axis-aligned rectangular
bounding boxes. In other words it combines the tasks of object classification and object
localization. The other two options to retrieve the location of an object is to perform
semantic segmentation or instance segmentation. Both tasks output the relevant class
on a pixel level. The difference between these tasks is that semantic segmentation does
not differentiate between instances of a single category whereas instance segmentation
separates multiple instances of the same category [Sultana et al., 2019].

Next to the above described classification of computer vision task also others exist.
Particularly important for this thesis is object recognition which can have a similar
meaning as object detection [Andreopoulos and Tsotsos, 2013]. For clarity it should be
stated that in this thesis only the wording object detection will be used with the meaning
as defined in [Zhao et al., 2019b, p. 3214]:

7

2. Related Work

Figure 2.1: Four main computer vision tasks, (a) object classification states that there is
an object in the image, (b) object detection classifies and locates objects in an image, (c)
semantic segmentation classifies objects on a per pixel level, and (d) instance segmentation
also returns classification on a per pixel level with additional distinction between separate
instances of the same category. Figure taken from [Xiao et al., 2020, p. 23730].

[...] object detection aims at locating and classifying existing objects in any one image and
labeling them with rectangular BBs [bounding boxes] to show the confidences of existence.

Object detection is further separated into generic and dedicated object detection. The first
one summarizes general methods to detect very different object categories. In contrast,
the second one focuses on one important object category. Examples are face-, pedestrian-
and vehicle detection [Xiao et al., 2020], [Zhao et al., 2019b]. In this thesis the focus will
be on generic object detection.

Independent of the type of object detection one central step is to return bounding boxes
of objects. In 2D object detection bounding boxes are axis aligned and are therefore
unambiguously defined by four parameters. Some representation formats are more
common than others [Sultana et al., 2019]. For instance, a bounding box can be defined
by its upper-left coordinates (x, y) and its absolute width and height in pixels or by
its relative coordinates normalized to the image size (xrel, yrel, widthrel, heightrel). The
most common representation formats today were introduced either by labeling software
or datasets [Padilla et al., 2021].

8

2.1. 2D Object Detection

2.1.2 Datasets and Metrics
Over the last decades many different object detection algorithms evolved both in the area
of generic and dedicated object detection. To compare the performance of new methods
a set of standard datasets together with evaluation methods emerged

Datasets

Next to a number of new object detection algorithms the last 20 years brought up a
number of annotated object detection datasets. Due to the great performance of some
datasets they became important indicators to measure the performance of algorithms.
Using unified input data differences between local datasets can be eliminated and a
comparable evaluation is possible [Xiao et al., 2020].

The size of a dataset can range from some MB to TB of data [Xiao et al., 2020]. To create
such large datasets crowd funding strategies are often applied. The general procedure of
generating a dataset can be summarized as following. First, the object categories are
defined, second, a set of images showing divers instances of the defined categories are
collected and third, the images are annotated [Aziz et al., 2020]. Finally, the dataset is
split into train, validation, and test set.

Most datasets are published within a particular object detection challenge. In the field
of generic object detection five datasets are very popular [Zou et al., 2019]: PASCAL
VOC2007 [Everingham et al., 2007], PASCAL VOC2012 [Everingham et al., 2012],
ImageNet [Deng et al., 2009], Microsoft COCO [Lin et al., 2014], and OpenImages [Krasin
et al., 2017]. Their statistics are summarized in Table 2.1. Next to the above mentioned
generic object detection datasets a number of dedicated object detection datasets exists
focusing for instance on pedestrian or face detection [Sharma and Mir, 2020].

Dataset # Classes train validation test
images objects images objects images objects

VOC-2007 20 2,501 6,301 2,510 6,307 4,652 14,976
VOC-2012 20 5,717 13,609 5,823 13,842 10,991 -
ILSVRC-2017 200 456,567 478,807 20,121 55,502 65,500 -
MS-COCO-2018 80 118,287 860,001 5,000 36,781 40,670 -
OID-2018 600 1,743,042 14,610,229 41,620 204,621 125,436 625,282

Table 2.1: Five most popular 2D generic object detection datasets with their statistics.
Table adopted from [Zou et al., 2019, p. 6].

PASCAL VOC (Visual Object Classes) Challenge1. The pioneer in the field of
algorithm competition, publishing large-scale comparable data, was PASCAL VOC. The
challenge was held from 2005 to 2012 each year. The most popular challenges and

1http://host.robots.ox.ac.uk/pascal/VOC/, accessed 9-April-2021

9

2. Related Work

Figure 2.2: Difference between iconic (left two) and non-iconic objects (right two). It is
argued that the later are more difficult to detect. (Images taken from [Lin et al., 2014].)

datasets are the ones from VOC-2007 and VOC-2012. The first one contains 5k images
respectively 12k annotated objects and the second one 11k images with 27k objects. 20
categories of commodity items are annotated in both datasets [Everingham et al., 2007],
[Everingham et al., 2012]. Although Pascal VOC was a popular dataset at its time,
nowadays its popularity decreases in favor of improved datasets like MS COCO and it is
rather used as a test bed for new algorithms [Zou et al., 2019].

ILSVRC (ImageNet Large Scale Visual Recognition Challenge)2: This challenge was
held from 2010 to 2017. It drastically increased the number of categories, images and
annotated objects, in detail the number of categories was increased by a factor of 10
to 200 categories and the number of images and annotated objects is two orders of
magnitude bigger with about 517k images and 534k annotated objects 2017 [Deng et al.,
2009], [Zou et al., 2019].

MS COCO (Microsoft COCO)3: The currently most challenging dataset is MS COCO.
The corresponding annual competition has been held since 2015. Compared to its
predecessor ImageNet the number of categories is reduced to from 200 to 80. In contrast,
the number of annotated objects strongly increased. The goal of MS COCO is to better
cover real world examples. Therefore the focus is on non-iconic images (see Figure 2.2).
This includes objects which are amid clutter or heavily occluded. Non-iconic also means
that a wide range of object scales are covered with a strong focus on small objects (where
the object covers less then 1% of the image). Including all these challenges MS COCO
currently is the de facto standard for evaluating generic object detection algorithms [Lin
et al., 2014], [Zou et al., 2019].

OpenImages / Open Images Detection (OID) challenge4: The newest dataset in this
list is OpenImages. It was introduced in 2018 and is currently the largest publicly
available dataset with 1,910k images and 15,440k annotated objects from 600 categories
[Krasin et al., 2017].

2http://image-net.org/challenges/LSVRC/, accessed 9-April-2021
3http://cocodataset.org/, accessed 9-April-2021
4https://storage.googleapis.com/openimages/web/index.html, accessed 9-April-2021

10

2.1. 2D Object Detection

Metrics

As mentioned above, standard datasets ensure comparability between algorithms. Com-
parison is performed based on algorithms performance measured by a set of evaluation
criteria. In general two main groups of performance measures can be considered, first,
detection speed and second, the accuracy of the predicted result.

The speed of a detection can either be measured as inference time per image in milliseconds
or as processable frames per second (fps) in Hertz. The detection speed is important for
real-time application, where real-time is defined as a frame rate of 30 or higher or by an
inference time smaller than 33.3 ms [Redmon et al., 2016].

In object detection accuracy can be evaluated matching a given ground-truth bounding
box Bgt to the output of a detection system: a predicted bounding box Bp, its predicted
category and its confidence. First a confidence threshold β must be set to define which
detections are considered [Liu et al., 2020]. To measure the geometrical similarity between
a predicted and ground-truth bounding box of the same category Intersection over Union
(IoU) can be used [Xiao et al., 2020]. According to [Everingham et al., 2010, p. 314] IoU
is defined as following:

IoU = area(Bp ∩ Bgt)
area(Bp ∪ Bgt)

= area of overlap

area of union
(2.1)

The resulting coefficient is between 0 and 1, where higher values indicate a better match.
Object detection metrics use different IoU thresholds ε to identify a correct detection.
The higher the threshold the more restrictive the measure is. With a higher threshold a
predicted bounding box must better match the ground truth to be considered a correct
detection. Therefore a comparison between different thresholds reveals the quality of
predicted bounding boxes [Padilla et al., 2021].

IoU is used to calculate Precision (P) and Recall (R) per category Ci and instance j
[Xiao et al., 2020, p. 23768]. Precision measure whether only relevant object are detected.
Recall measure whether all relevant objects are detected. These metrics are defined using
basic statistical concepts: True Positive (TP - correct detection), False Positive (FP -
incorrect detection) and False Negative (FN - missing detection). True Negatives are
meaningless in the field of object detection as there is an infinite number of correctly not
detected bounding boxes [Padilla et al., 2021].

PCij =
TPCij

TPCij + FPCij

RCij =
TPCij

TPCij + FNCij

(2.2)

One precision value per category is calculated as the Average Precision (AP2D). The
suffix 2D is used to highlight that an accuracy describe 2D metric. This is done to
distinguish between 2D and 3D metrics introduced in following sections. As described in

11

2. Related Work

[Padilla et al., 2021] different implementations are available. Here the general equation
for averaging over all instances is given as presented in [Xiao et al., 2020, p. 23768].

APCi = 1
m

m�
j=1

PCij (2.3)

To then get an average over all categories the mean Average Precision (mAP2D) can be
used [Xiao et al., 2020, p. 23768]:

mAP = 1
n

N�
i=1

APCi (2.4)

Based on IoU threshold, AP2D, and mAP2D a number of variations were introduced.
MS COCO directs the focus towards improving the location of detected bounding boxes.
This is realized by not only evaluating AP2D for an IoU of 0.5 as in PASCAL VOC, but
by using different threshold values for IoU, AP@.5 (AP2D−50), AP@.75 (AP2D−75) and
AP@[.5:.05:.95] are employed. The first two provide AP for a threshold of 0.5 respectively
0.75. The latter averages the AP for 10 IoU thresholds [0.5, 0.55, 0.6, ... 0.95] into a
single new value [Lin et al., 2014]. To consider the effect of object size AP Across Scale
can be used. Mean Average Precision for small (AP2D−S), medium (AP2D−M), and large
(AP2D−L) objects are calculated separately [Lin et al., 2014]. Equivalent to the Average
Precision also the Average Recall can be calculated replacing P with R in Equation 2.3.
AR2D can be calculated separated by the number of detection per image. Often used
values for the maximum number of detection are 1 (AR2D−1), 10 (AR2D−10) and 100
(AR2D−100). Additionally variations based on object scale (AR2D−S , AR2D−M , AR2D−L

- AR Across Scale) and IoU are also possible [Padilla et al., 2021]. All of the above
mentioned measures depend on the selected confidence threshold (β) determining the set
of accepted bounding boxes [Liu et al., 2020].

2.1.3 History of object detection
The initial attempts to recognize simple patterns in images can be dated back to the 1950s
and 1960s. Initially the focus was on geometric representations and pattern matching
[Mundy, 2006]. [Attneave and Arnoult, 1956] were the first to analyzed the human
perception of primitive shapes and patterns. [Roberts, 1963] described 3D reconstruction
and identification of primitive shapes and convex polygons based on contours. Leveraging
the idea of contour based detection, edge filtering became an important tool for early
object detection. [Harris et al., 1988] successfully constructed a 3D description of a more
complex shape, an airplane. Such descriptions are required as templates to match and
detect objects. [Fischler and Elschlager, 1973] detailed a template matching technique
based on 2D geometric features.

In the 1990s the focus shifted towards statistical classifiers based on appearance features
[Mundy, 2006]. [Murase and Nayar, 1995] describes objects as their appearance manifolds

12

2.1. 2D Object Detection

leveraging and combining shape, reflectance, pose and illumination. [Schmid and Mohr,
1997] present local invariant intensity features for object retrieval.
In this era of traditional object detection the detection process can be separated into
three main steps: first, region selection or keypoint detection, second, feature extraction
and third, classification. In the first step the whole image is scanned to find regions with
potential objects. This is required as different objects may appear at different locations,
with different aspect ration or different size. In the second step a descriptive and robust
representation is extracted. And, in the third step a classifier distinguished between the
object categories based on the feature description [Zhao et al., 2019b].
For feature extraction a wide range of handcrafted feature representations and classifiers
were developed. Feature vectors should be robust in the sense of being invariant to
a number of variations like translation, scale, rotation, illumination, background and
occlusion [Liu et al., 2020], [Zhao et al., 2019b]. An important example for a robust
feature vector is the so-called scale-invariant feature transform (SIFT). SIFT combines
multiple scales, using the difference of Gaussians and histogram of gradients [Lowe,
1999], [Lowe, 2004]. The histogram of oriented gradients (HOG) detector is a well-known
advancement of SIFT enabling the user to detect objects of different size [Dalal and Triggs,
2005]. Due to the limited computational resources at the time also the development
of speed up skills was a crucial part. The Viola Jones detectors were the first ones to
achieve a detection speed of 15 fps [Viola and Jones, 2001], [Viola and Jones, 2004].
Between 2010 and 2012 the object detection performance — based on hand-crafted
features — plateaued. Only minor improvements could be achieved by combining existing
systems or proposing variations of successful techniques [Zou et al., 2019]. The ImageNet
Challenge 2012 saw the rebirth of convolutional neural networks (CNNs) with the winning
AlexNet. Image classification error rates could be halved [Krizhevsky et al., 2012]. This
showed that deep neural networks (DNN) are capable of learning robust features. Finally
2014 Region with CNN implemented not only object classification but object detection
with CNNs [Girshick et al., 2014], [Girshick et al., 2015]. This was the starting point for
an era of deep learning and CNN based object detection.
The following subsection gives more details about this game changing idea of machine
learning and (convolutional) neural networks.

2.1.4 Deep learning and Convolutional Neural Networks
In recent years, machine learning has become an omnipresent technology with a range
of applications in science, business, and government, alike. Examples include object
classification and detection [Krizhevsky et al., 2012], [Szegedy et al., 2015], speech
recognition [Hinton et al., 2012], [Sainath et al., 2013], and medical analysis [Ma et al.,
2015], [Helmstaedter et al., 2013]. Machine learning both powers web search engines and
can be found in consumer products like smartphones [LeCun et al., 2015].
One of the most important concepts behind it is supervised learning. Both input and
expected output are given and the application learns the relation or mapping between

13

2. Related Work

those. This is achieved by finding and learning interesting patterns in the data, e.g.
reoccurring geometries, intensity distributions or combinations of color features. In other
words most machine learning algorithms are nowadays learning from data [Bengio et al.,
2017, p. 98-100].

Today more and more data is accessible, including large-scale annotated datasets. Previous
machine learning algorithms could not benefit from this ever growing supply of data.
Therefore bigger and more complex algorithms were required, establishing the field of
deep learning. No unique definition of deep learning exists but the common idea is to learn
feature representations in a hierarchical manner, exploiting the idea that higher-level
feature can be composed of lower-level features [Zhang et al., 2018].

One central property of the hierarchical mapping is non-linearity [Deng and Yu, 2014].
Only a non-linear mapping can be a robust feature descriptor, meaning that the mapping
can be sensitive to small details in e.g. geometry while being insensitive to large irrelevant
variations such as background, scale or illumination. The non-linearity distorts the
feature space from lower-level to higher-level features to make the target features linearly
separable at the highest level [LeCun et al., 2015].

The advantage of deep learning compared to hand-crafted features is that feature de-
scriptors are learned automatically from data. Before, a good data — and specifically
image — representation was missing. Therefore sophisticated feature representations
were developed as presented in Section 2.1.3. With deep learning this is not required
anymore. Applications find the best data and feature representation by themselves,
removing the limiting dependency on manual human interaction and domain specific
expert knowledge in the field of feature extraction [Zou et al., 2019].

In machine / deep learning a wide range of algorithms can be used to model data and
find the best mapping between input and output. A popular choice are neural networks
which model data as graph of neurons or units. It can be summarized as multi-layer
stack of so-called layers grouping together a set of units. Generally, a neural network
is composed of an input layer, a set of hidden layers and an output layer [LeCun et al.,
2015]. Figure 2.3 shows a very simple neural network. Deep neural networks employ a
high number of hidden layers [Bengio, 2009, p. 16].

In the field of neural networks the learning process is called training. It requires multiple
steps. First, in the forward propagation the network gets input data and predicts an
output. Then an objective function — called cost or loss function — is calculated to
compare the predicted with the true output. During backward propagation the network
parameters are adjusted to reduce the distance between true and predicted output and
therefore optimize the cost function [LeCun et al., 2015].

In detail, network parameters are floating point values which defined the relation between
consecutive layers and their units as presented in Figure 2.3. The input to a unit yj is
calculated as the weighted sum of all units in the previous layer plus a bias (Equation
2.5) to which a non-linear function is applied (Equation 2.6) [Liu et al., 2020, p. 268]. In
the first part the trainable parameters — weights and bias — are applied. Each unit

14

2.1. 2D Object Detection

Figure 2.3: The basic structure of a neural network with an input, two hidden and an
output layer. The arrows symbolize the relation between the units in a forward pass. To
derive an unit in one layer from its predecessors, weights and bias are needed (Equation
2.5). Inverting the arrows would show the direction and relations during backward
propagation. (Based on [LeCun et al., 2015, p. 437])

has its own weight vector and bias. The second part ensures a non-linear input - output
mapping [Liu et al., 2020].

zj =
n�

i=1
wijxi + bi (2.5)

yj = σ(zj) (2.6)

The non-linear function is often called activation function as its output is the input
or activation of another unit. Currently the most popular activation function σ is the
Rectified Linear Unit (RELU) (Equation 2.7) [LeCun et al., 2015]. Compared to other,
previously used alternatives — like sigmoid or hyperbolic tangent — it can be calculated
faster and therefore increases training speed significantly [Glorot et al., 2011].

σ(z) = max(0, z) (2.7)

The whole optimization task of training parameters is nowadays mostly implemented
as Stochastic Gradient Descent (SGD). The error between predicted and true output is
reduced by descending along the gradient of the cost function (e.g. cross entropy loss or
mean squared error [Xiao et al., 2020]). SGD calculates the required weight changes by
applying the chain rule of derivatives from the output to the input layer and propagates
the gradients through the layers. Inverting the arrows depicted in Figure 2.3 shows the
relation between the single units in backpropagation. Compared to other, more elaborate
optimization strategies the simple SGD finds a good set of network parameters quickly
[Bottou and Bousquet, 2011].

15

2. Related Work

Before updating weights and bias a fixed number of input - output pairs are computed.
This number is called batch size. A batch size smaller than the number of all examples
may be required due to computational resource limitations. Furthermore, progress on
parameters optimization is made faster with a smaller batch size. Still a too small batch
size may slow down training as available storage and processing resources may not be used
exhaustively and software optimization and acceleration techniques can only exploit their
full potential for large batches. Hence, it is important to find a meaningful value between
one and all examples [Peng et al., 2018]. When the network has seen all examples once,
also if they were in different batches, one so-called epoch of training has been completed
[Breuel, 2015].

Different improvements of SGD have been developed. One enhancement is Adaptive
moment estimation (Adam). Compared to other extensions empirical tests showed that it
works well for many different algorithms [Dogo et al., 2018]. It makes the learning more
robust and can increase learning speed [Kingma and Ba, 2014]. SGD and Adam must be
parameterized. Both depend on the so-called learning rate α which determines the step
size in the direction of the steepest gradient descent. Too big values may overshoot the
optimal solution, while too small values lead to slow training [Breuel, 2015].

The learning rate and batch size are examples of hyperparameters. Compared to the
network parameters weights and bias, hyperparameters are not learned during training
but must be defined before training. Hyperparameters describe the network architecture
and parameterize the training process. A non-extensive list includes: number of hidden
layers, number of units per layer, used activation function, learning rate, additional
parameters for Adam, batch size and number of epochs [Breuel, 2015]. Currently no
automatic procedure exits to obtain an optimal set of hyperparameters for a given
network. Hence, finding a good set of hyperparameters requires empirical testing of
different hyperparameter combinations [Claesen and De Moor, 2015].

When optimizing hyperparameters like number of hidden layers and number of units one
also has to consider the effects on the trainable parameters. Due to the higher number of
trainable parameters in neural networks the issue of overfitting may arise. Overfitting
means that the network not only learns the characteristics of the target but also random
noise of the training samples. This reduces the effectiveness of the network on new
samples. The network searches in new samples not only for the target feature but also
for the surrounding noise which does not match. Different regularizations strategies have
been introduced to reduce the effect of overfitting. One option is to extend the cost
function to not only measure the distance between predicted and true output but also to
ensure that weights are kept small. This is called L1 or L2 regularization depending on
the used metric in the cost function [Kukačka et al., 2017]. Another widely used strategy
is dropout which randomly removes single units during training. The idea is to make
every single unit replaceable and no higher layer units solely depend on a small number
of lower layer units with extremely high weights [Srivastava et al., 2014]. A third option
is to ensure that the network sees enough different sample during training so it does not
learn random noise. This can be achieved by either creating a significant amount of new

16

2.1. 2D Object Detection

training samples or altering existing training samples. The first may be expensive and not
always feasible, while the second — also called data augmentation — is usually a cheap
and simple process. Examples of data augmentation in the field of image processing are
flipping, cropping, random noise injection and color space transformations [Shorten and
Khoshgoftaar, 2019].

In some domains it can be challenging to create even a large annotated dataset to get
meaningful results from data augmentation. In e.g. bioinformatics or robotics data
acquisition and data annotation can be quite costly or time consuming. To overcome
this problem of too small training datasets transfer learning can be used. The idea is to
transfer or extent knowledge from one problem to another. In practice this means using a
model already pre-trained on e.g. a standard dataset such as MS COCO as starting point
for another domain specific training. According to the concept of hierarchical feature
representations lower level feature are useful for a wide range of higher level feature.
Depending on the size of the domain specific dataset only the last layer’s parameters or
even all parameters may be improved during the domain specific training [Tan et al.,
2018].

The concepts presented so far describe the architecture and functionality of general neural
networks which expects an one-dimensional input vector. Covolutional neural networks
are designed to operate on multi-dimensional arrays such as a 2D image with three color
channels, called feature maps [LeCun et al., 2015]. The basic building blocks of CNNs are
convolutional (conv.), pooling (pool.) and fully connected (FC) layers. Weights in a conv.
layer are grouped together into filter kernels which are used by each unit of the layer. A
filter kernel defines for each unit a local patch of units in the previous layer which are
used for its computation. More precisely, a unit is calculated as a local weighted sum
plus bias to which an activation function is applied. Compared to Equation 2.5 and 2.6
not all units in the previous layer are used and the same weights are applied to all units
of the current layer. Multiple m filter kernels can be used in a single layer resulting in m
feature maps in the next layer [Liu et al., 2020]. In other words the number of feature
maps can be adopted by defining a correct number of filter kernels. To change the size of
a feature map pooling layers are used. Pooling merges multiple features into one. The
most popular type of pooling is max pooling which keeps only the highest and supposedly
most important feature in a neighborhood. This way the dimension can be reduced
but the relative location between features are kept. Figure 2.4 shows an often applied
structure in CNNs. First one or multiple conv. layers followed by a max pool. layer. A
network is often composed of multiple of these blocks which continuously increase the
number of feature maps while reducing the size of the feature maps. In the end some
FC layers are applied. FC layers are standard neural network layers as described before
which are used for fine-tuning in CNNs. Due to their structure FC layers are responsible
for a significant amount of weights [LeCun et al., 2015].

As CNNs only extend the principals of standard neural networks they can similarly be
trained with forward and backward propagation applying SGD. Also, the same strategies
to reduce overfitting and similar hyperparameters need to be selected, but in CNNs also

17

2. Related Work

Figure 2.4: A typical group of the two most important layer types in CNNs. First a conv.
layer with two filter kernels is applied to a color image. This results in two feature maps.
Then a pooling layer follows reducing the size of the feature maps. Concept taken from
[Bengio et al., 2017, p. 305]

the number of filter kernels and their properties need to be defined [Bengio et al., 2017,
p. 328f].

Deep convolutional neural networks have important advantages especially for the task
of object detection. It applies the idea of a hierarchical composition of features. Filter
kernels in the first layers could extract edges. Then those edges are combined to simple
geometries by higher level filter kernels, which are then in turn combined to even more
complex motifs like faces. This example directly shows another effect, deeper networks
provide higher expressive capabilities [Zhao et al., 2019b]. One major difference between
standard and convolutional neural networks is the idea of persisting local connections.
The probability that geometrically close pixels are related is higher then for pixels which
are further apart. CNNs keep and use this information. Additionally, filter kernels — as
shared weights — realize the concept of location invariance. Simplified, a filter kernel
which detects faces, will detect a face independent whether it is positioned centrally or
in a corner of the image [LeCun et al., 2015].

These advantages, availability of huge annotated dataset and the continuously growing
amount of computational resources ensured fast advance of CNNs in the field of object
detection.

2.1.5 CNN-based Object Detection Algorithms
The basis for successful object detection are informative and distriminative feature
representations. Those representations are generated in backbone networks. To improve
those feature representations deeper networks with an increased number of parameters
have been developed. Important examples are AlexNet, VGGNet, ResNet and GoogLeNet.
As winning algorithm at the ImageNet Challange 2012 AlexNet [Krizhevsky et al., 2012]
was the beginning of the deep learning era in object detection. It combines different
technologies presented in Section 2.1.4: data augmentation, RELU activation functions,
dropout and parallel computing with multiple GPUs. VGGNet [Simonyan and Zisserman,
2014] increased drastically the number of layers and parameters compared to AlexNet.

18

2.1. 2D Object Detection

Figure 2.5: RCNN steps to perform object detection. 1. an input image is provided, 2.
around 2000 ROIs are extracted, 3. for each ROI features are computed with a CNN, 4.
Each ROI is classified based on the features. Figure taken from [Girshick et al., 2014,
p. 1]

The most used version is VGG-16 defining 16 uniform layers. With an increasing number
of layers and parameters the problem of vanishing and exploding gradients arises. To allow
deep networks and therefore be able to learn complex features while keeping meaningful
gradient values [He et al., 2016] introduced residual blocks. Another idea to support
many layers with many units is to reduce the number of parameters. This can be done
with the 1x1 filter kernel [Lin et al., 2013]. They were first implemented in GoogLeNet
as Inception modules [Szegedy et al., 2015]. The usage of 1x1 filter kernels allows to
increase depth and width of a network while keeping the computational complexity low.

Based on backbone networks different object detection algorithms have been developed.
Object detection algorithms can be separated into two general groups, two-stage and
one-stage detectors. Two-stage detectors follow the traditional workflow of first scanning
the whole scene and in a second step focusing on a set of regions of interest (ROI). One-
stage detectors directly map pixel values to bounding box coordinates and classification
probabilities in a single step. This fully integrated workflow allows one-stage detectors to
achieve real-time inference, while two-stage detectors achieve higher localization accuracy
[Zhao et al., 2019b]. In the following first the most important two-stage and one-stage
detectors are presented and then their accuracy evaluation and time-analysis is discussed.

Two-stage detectors: As mentioned in Subsection 2.1.3 RCNN was the first object
detection algorithm leveraging CNNs [Girshick et al., 2014]. It follows the traditional
setup as shown in Figure 2.5: first generate region proposals, then run feature extraction
based on CNNs and finally perform classification and localization. With this setup
RCNN could improve PASCAL VOC 07 mAP2D by 30%. But, due to the multiple steps,
employing quite different technologies end-to-end training is no possible. Additionally,
RCNN is very expensive in both time and storage and requires fixed size ROI. The last
one implying that ROI are clipped or distorted before providing them to the CNN for
feature extraction. SPPNet (Spatial Pyramid Pooling) [He et al., 2015] solved this by
extending RCNN with an additional SPP layer which generates a fixed size representation
independent of the size of a ROI. Fast RCNN [Girshick, 2015] combines RCNN and
SPPNet using a special version of SPP layer called ROI pooling. Additionally it allows
to train classification and bounding box regression simultaneously. With this Fast RCNN

19

2. Related Work

Figure 2.6: General structure of YOLO. For each grid cell, bounding boxes with confidence
value and class probabilities are combined to object detections. Figure taken from
[Redmon et al., 2016, p. 780]

could further improve PASCAL VOC 07 mAP2D by 20% and it is over 200 faster then
RCNN. Still, its bottleneck on detection is the proposal generation. This issue was solved
by Faster RCNN [Ren et al., 2015] using Region Proposal Network (RPN) for proposal
generation based on convolutional layers. With RPN proposal generation is nearly cost
free, which improves detection speed by achieving even slightly better accuracy results
on PASCAL VOC 07 / 12. Additionally with Faster RCNN the first end-to-end system
was developed. A remaining issue with Faster RCNN was its poor detection performance
on multi-scale and especially small objects. FPN (Feature Pyramid Network) [Lin et al.,
2017a] addressed this using not only the top layer for detection but also features from
deeper layers. Due to the functionality of CNNs feature pyramids are automatically
generated during forward propagation. This idea increased accuracy to state-of-the-art
standards and is nowadays also used in backbone networks [Zou et al., 2019]. An example
is the FPN RFCN algorithm [Lin et al., 2017a].

One-stage detectors: Due to the handling of different components real-time detection
is difficult to achieve with two-stage detector. The solution is to combine the multiple
stages into a single regression and classification based system. YOLO (You Only Look
Once) [Redmon et al., 2016] was the first CNN based one-stage detector. The idea is to
split the input image into a SxS grid of regions. Each region is responsible for predicting
bounding boxes with their confidence and class probabilities for all objects whose center
is located inside the region. Computing this simultaneously for all regions allows to
execute the complete object detection task within a single step. With this setup detection
times could be decreased extremely, but it also decreases accuracy compared to two-stage
detectors. Later version YOLOv2 [Redmon and Farhadi, 2017] and YOLOv3

20

2.1. 2D Object Detection

[Redmon and Farhadi, 2018] especially focus on accuracy issues with dense and small
objects. One remaining problem with this version is the decrease of accuracy with
increasing IoU thresholds. Recently another update YOLOv4 [Bochkovskiy et al., 2020],
was published leveraging additional features to significantly increase detection accuracy.
Starting from YOLO also other one-stage detectors developed. The second group of
one-stage detectors is SSD (Single Shot MultiBox Detector) [Liu et al., 2016]. Its focus

— compared to YOLO first version — was to improve detection accuracy for multi-scale
and small objects in dense images. SSD uses anchor boxes with different aspect ratio
and size to split the input. Additionally, differently then other networks, SSD detects
all object scale on the top layer. Despite important advances one-stage detectors have
problems reaching the same accuracy as two-stage detectors. RetinaNet [Lin et al.,
2017b] addresses this issue by introducing focal loss. The scientists explain the lower
accuracy by an imbalance between the extremely high number of candidate location and
a relative low number of locations containing objects. This imbalance can be managed
with the proposed loss function. RetinaNet reaches two-stage detector accuracy but also
detection time increase compared to other one-stage detectors such as YOLO.

2.1.6 Algorithm Comparison

Table 2.2 and Table 2.3 summarize accuracy and speed of different networks evaluated
on the MS COCO dev-test dataset. As described above two-stage detectors generally
reach a high accuracy while one-stage detectors are faster. RetinaNet and YOLOv4 are
an exception to this rule as this one-stage detectors reach the highest accuracy. But,
RetinaNet is also the slowest in this comparison.

Comparing the accuracy by object size it can be observed that larger objects are easier
to detect than smaller ones. Similarly the accuracy decreases with increasing IoU
threshold. AP2D−50 reaches the highest results, followed by AP2D−75 and finally AP2D

which includes AP values for IoU thresholds from 0.5 to 0.95.

It should be mentioned that there a multiple different versions of the presented networks
using e.g. bigger or smaller input sizes. This can result in significantly better or
worse results in the different categories. An example is YOLOv3-320, YOLOv3-416 and
YOLOv3-608, which scales the input image to an input size of 320×320, 416×416, or
608×608 respectively. Depending on the input size AP2D−50 ranges from 51.5% to 57.9%
and the time ranges from the very low value of 22 ms to 51 ms [Redmon and Farhadi,
2018].

Even though 2D object detection algorithms have reached great accuracy and detection
times the resulting bounding boxes can only locate objects in the 2D space. This can be
a limiting factor for applications operating in the three dimensional world. Hence, 3D
object detection gained more and more attention over the last decade.

21

2. Related Work

Algorithm Backbone AP2D AP2D−50 AP2D−75 AP2D−S AP2D−M AP2D−L

Two-stage
Fast RCNN VGG-16 19.7 35.9 - - - -
Faster RCNN VGG-16 21.9 42.7 - - - -
FPN RFCN ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
One-stage
SSD513 ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8
DSSD513 ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1
YOLOv2-544 Darknet-19 21.6 44.0 19.2 5.0 22.4 35.5
YOLOv3-608 Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9
YOLOv4-512 CSPDarknet-53 43.0 64.9 46.5 24.3 46.1 55.2
RetinaNet-101-800 ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

Table 2.2: Accuracy comparison between object detection networks on MS COCO test set.
Metrics are defined as described in Subsection 2.1.2 besides AP2D which corresponds to
AP2D@[.5:.05:.95]. Table created from [Lin et al., 2017b, p. 2987], [Redmon and Farhadi,
2018, p. 3], [Bochkovskiy et al., 2020, p. 11], and [Aziz et al., 2020, p. 170484].

Algorithm AP2D−50 time [ms]
FPN RFCN 59.1 172
SSD513 50.4 125
DSSD513 53.3 156
YOLOv2-544 44.0 25
YOLOv3-608 57.9 51
YOLOv4-512 64.9 32
RetinaNet-101-800 57.5 198

Table 2.3: Speed (ms per images) comparison between object detection networks on MS
COCO test set. Table created from [Lin et al., 2017b, p. 1], [Redmon and Farhadi, 2018,
p. 1], and [Bochkovskiy et al., 2020, p. 11]

2.2 3D Object Detection

2.2.1 Overview

3D object detection is a quite young research domain. The complex and not standardized
representation of 3D data, its demanding computational and memory requirements and
the need for special sensing devices strongly restricted scientific work. But especially over
the last decade one can observe an ever-growing need for 3D solutions. New technologies
such as autonomously driving cars, augmented reality, and automated production lines
operate in the 3D world. They can not be satisfied with 2D object detection but
require accurate 3D information to account not only for the direction of the object
but also the distance between sensing device and object. Recent years also saw an
increasing availability of computational resources and low-cost measurement devices

22

2.2. 3D Object Detection

as well as important advances in deep learning. Due to these positive developments
there is an increasing scientific interest and notable progress in deep learning based 3D
object detection [Rahman et al., 2019]. According to the systematic literature review by
[Friederich and Zschech, 2020] the number of publications in this domain increased from
a single one in 2012, to 36 in 2019.

The basic computer vision problem to solve is the understanding of three dimensional
scenes, similar to the 2D case presented in Subsection 2.1.1. 3D object detection can be
defined analogously to the 2D domain [Rahman et al., 2019]. Adopting the above cited
definition from [Zhao et al., 2019b, p. 3214] it can be stated:

[... 3D] object detection aims at locating and classifying existing objects in any one [...
3D scene representation] and labeling them with [... oriented rectangular cuboid]
BBs [bounding boxes] to show the confidence and existence.

Also the computer vision tasks object classification, semantic segmentation and instance
segmentation and the differentiation between generic and dedicated object detection can
be transferred in an analogous manner [Shen, 2019].

As it can be seen from the adopted definition the resulting bounding box is now three
dimensional. Compared to the 2D case additional size, orientation and position parameters
are required. In other words 3D compared to 2D bounding boxes have six instead of
three degrees of freedom. Therefore a minimum of seven parameters are required to
describe 3D bounding boxes [Friederich and Zschech, 2020]. A widely used method is to
store the center and its offset [Song and Xiao, 2016]. It defines a bounding box as its
center coordinates (x, y, z), their offsets (Δx, Δy, Δz) and the yaw angle (Δθ). The
bounding box is considered parallel to the x − y plane, therefore pitch and roll angle are
set to zero. Other encoding methods include storing absolute coordinates of all 8 corners
[Chen et al., 2017] or defining four coordinates and two heights [Naseer et al., 2018].

The other highlighted difference between 2D and 3D object detection — presented in the
definition — is the input data. Instead of images any type of 3D scene representations
can be used. This representation is often defined by the sensing technology. Commonly
used technologies are stereo cameras, LIDARs, RGB-D cameras, Radars and Ultrasonics.
Stereo cameras are standard RGB camera capturing the color, texture and appearance
of objects from two orientations simultaneously. Their disadvantages is that they require
external light — as they are a passive system —, are weather dependent and the derived
depth accuracy decreases exponentially with distance. LIDARs (Light detection and
ranging) are active sensors which emit infrared light. The distance to objects is calculated
by measuring the elapsed time between emitting and receiving a signal. As active
sensors LIDARs are illumination independent and are hardly affected by different weather
conditions. Due to their signal strength they can measure accurate absolute distances up
to 200 meters. The result is a sparse point cloud without color or texture information.
RGB-D cameras are a combination of RGB cameras and ToF (Time of Flight) depth
cameras. Therefore they return color, texture and depth information per pixel. As
they provide only accurate depth information up to 8 meters they are mainly used in

23

2. Related Work

indoor applications. Radars (Radio Detector And Ranging) actively emit radio waves
and are therefore also illumination and weather independent, but they can interfere with
other systems and only provide a low resolution due to their long wavelength. Similar
considerations apply for ultrasonic sensors which emit high frequency sound waves.
Ultrasonic is often used for close-range object detection [Rahman et al., 2019], [Arnold
et al., 2019]. After data acquisition 3D data can be represented in a number of different
formats. Popular formats are stereo images, depth images, voxel-grids, unstructured
point clouds and polygonal meshes [Singh et al., 2019].

Each acquisition technology and data format has different properties and may therefore
be better or worse for specific applications or even whole domains. One distinction is
especially popular, the one between indoor and outdoor scenes. An example are bird-eye-
view images (BEVs). In an outdoor scene, for instance a traffic situation, they are a useful
data representation as it is easy to identify instances, their location and extend. This is
possible because objects are hardly above one another. This assumption is not valid for
indoor scenes like an office room where a book shelf can be above an office desk with
monitor. Due to the large amount of possible 3D representations algorithms developed
differently and domain driven. This quite independent, domain driven development
resulted in heterogeneous 3D object detection approaches [Rahman et al., 2019].

2.2.2 Datasets and Metrics

To compare 3D object detection algorithms similar to the 2D domain a set of standard
dataset and metrics evolved.

The difference to the 2D domain is that acquisition and annotation of 3D data can be an
expensive and demanding task as special tools and software solutions are required. But,
deep learning based algorithms strongly depend on the availability of large annotated
datasets. Publicly available annotated datasets are therefore not only important to
compare detection algorithms but also to support and advance the development of new
ones [Rahman et al., 2019].

Datasets

As mentioned above 3D object detection evolved in a very domain specific manner. This
can also be seen in the presented standard datasets as they can generally be grouped into
indoor and outdoor datasets. Due to the especially high impact of autonomous driving
outdoor datasets often focus mainly on this application [Geiger et al., 2012]. Over the
last years also other dedicated object detection datasets have been created, focusing
e.g. on industrial scenes (see e.g. [Drost et al., 2017], [Hodan et al., 2017]) or object
parts (see e.g. [Yi et al., 2016]). Due to application and sensor driven development one
can observe that indoor datasets mainly rely on RGB-D and sometimes 3D models and
outdoor datasets often also include LIDAR point clouds (see Table 2.4). In the following
five popular datasets are presented in more detail.

24

2.2. 3D Object Detection

Dataset Scene type Sources # Classes train validation test
NYU-Depth V2 Indoor RGB-D 40 795 - 654
SUN RGB-D Indoor RGB-D 800 2,666 2,619 5,050
KITTI Urban(Driving) RGB & LIDAR 8 7,481 - 7,518
FAT Indoor RGB & 3D models 21 61,500 - -
nuScenes Urban(Driving) Camera & LIDAR 23 1.4M - -

Table 2.4: Five popular 3D object detection datasets with their statistics. Table adopted
from [Rahman et al., 2019, p. 2950].

NYU-Depth V2 [Silberman et al., 2012]5: One of the first 3D datasets published in
2012 was NYU-Depth V2. It contains 1449 densely labeled pairs of aligned RGB and
depth images which were captured by Microsoft Kinect. Those pairs show 464 different
scenes from three cities. They are classified into 40 indoor categories and split in 795
training and 654 test samples.

SUN RGB-D [Song et al., 2015]6: The first large-scale 3D datasets — comparable to
PASCAL VOC for 2D data [Everingham et al., 2012] — was SUN RGB-D. It is composed
of three other datasets: NYU-Depth V2 [Silberman et al., 2012], Berkeley B3DO [Janoch
et al., 2013] and SUN3D [Xiao et al., 2013] and was captured by four different sensors.
In total it contains 10,335 RGB-D images with both 2D and 3D annotations, including
146,617 2D bounding boxes and 64,595 3D bounding boxes. There are 47 scene and 800
object categories. It should be mentioned that the frequency of single object categories
might be quite different. There are nearly 20,000 annotation for the most frequent object
category chair, but most categories like plant, tv or bench have less then 500 samples. To
reduce the number of categories, often either the 19 categories with the highest number
of annotations, or the so called 10-class set (bathtub, bed, bookshelf, chair, desk, dresser,
nightstand, sofa, table, toilet) are used for algorithm evaluation. Due to the diversities of
different sensors and object category frequency, the data is carefully divided into training,
validation and test set. SUN RGB-D enabled important progress in different computer
vision tasks [Rahman et al., 2019].

FAT (Falling Things) [Tremblay et al., 2018]7: A completely synthetic dataset for object
detection and 3D pose estimation is FAT. It was generated by placing 3D household
object models in front of virtual backgrounds. It provides aligned mono, stereo and
depth images annotated with 3D pose, per-pixel category segmentation, and 2D as well
as 3D bounding boxes. Over 60k images annotated with 21 categories are available. The
dataset is composed of two parts, the first half of the images feature exactly one object,
the second half show between 2 and 10 objects sampled randomly. With this another
even larger but synthetic indoor dataset was created.

5https://cs.nyu.edu/ silberman/datasets/nyu_depth_v2.html, accessed 9-April-2021
6http://rgbd.cs.princeton.edu, accessed 9-April-2021
7https://research.nvidia.com/publication/2018-06_Falling-Things, accessed 9-April-2021

25

2. Related Work

KITTI [Geiger et al., 2012]8: KITTI is one of the most important and popular datasets
used for autonomous driving. It is composed of stereo color images, LIDAR point clouds
and GPS coordinates, all synchronized in time. As a number of different input data
types are provided KITTI can be used for a wide range of computer vision tasks. For
object detection in total 7,481 training and 7,518 test samples are provided annotated
with a total of 80,256 objects. It further divides the data into easy, moderate and hard
samples based on object size, occlusion and truncation level. As it focuses on the urban
driving scenario its main categories are car, pedestrian, and cyclist though there is a
strong category frequency imbalance, as there are 75% cars, 15% pedestrians and only
4% cyclists annotations. Moreover, the data was acquired mainly during daytime and
sunny conditions. To overcome these restrictions a synthetic extension called Virtual
KITTI [Gaidon et al., 2016] was proposed.

nuScenes [Caesar et al., 2020]9: One of the largest currently available datasets in the
autonomous driving domain is nuScenes. Compared to the popular KITTI datasets it
contains significantly more samples. Data was captured with six cameras, five RADAR
and one LIDAR all having a 360 degree view. This results in approximately 1.4M images,
390K LIDAR point clouds, 1.4M RADAR scans and 1.4M bounding boxes annotating 23
categories. Data was acquired in two cities during day and nighttime and under various
weather conditions.

Compared to datasets presented in Subsection 2.1.2 3D datasets are currently still a lot
smaller, contain less scenes and also annotated objects, but cover a wide range of input
data formats.

Metrics

Comparison between algorithms is based on a set of evaluation criteria, which are defined
similarly in the 3D and 2D domain. A general distinction is made between detection
speed and accuracy measurements. The first is defined in a complete analogous manner
as in Subsection 2.1.2. The latter requires some extension compared to the 2D case to
cover the additional dimension.

The standard accuracy evaluation metric is also in the 3D domain Average Precision
(AP3D) per category (Equation 2.3) and mean Average Precision (mAP3D) (Equation
2.4). Both are based on 3D volume Intersection over Union (IoU) [Song and Xiao, 2014].
As mentioned above 3D bounding boxes are assumed to be oriented parallel to the x-y
plane but may be rotated around the z-axis, which is described as the orientation of
a bounding box. Due to the additional degrees of freedom it is more difficult to get
perfectly matching predicted and true bounding boxes in the 3D domain. Therefore
usually the IoU threshold to accept a bounding box is lower — in the 3D domain a
standard value of 0.25 is used, whereas in the 2D domain a standard value of 0.5 is used
[Rahman et al., 2019].

8http://www.cvlibs.net/datasets/kitti, accessed 9-April-2021
9https://www.nuscenes.org, accessed 9-April-2021

26

2.2. 3D Object Detection

In more detail there are multiple extensions and modification for AP3D and mAP3D

to better describe the 3D domain. Due to the used data representation or projections
also 2D average precision are used. An example for a 2D based metric is Average
Orientation Similarity (AOS). For this the orientation similarity per recall is calculated as
AP2D in the image plane weighted with the cosine similarity between true and predicted
orientation. AOS is then the average over the orientation similarities [Geiger et al.,
2012]. Especially for outdoor scenes a better description can be achieved by using APBV

bird’s eye view metric [Chen et al., 2017]. Employing AP3D removes distortion effects
because of projection and properly accounts for 3D bounding box size and localization.
The disadvantages of pure AP3D is its insensitivity to the orientation as long as the
overlapping area between predicted and true bounding box are large enough. This issue
is addressed with the Average Heading Angle (AHS) metric. It is an extension to AOS
using AP3D instead of AP2D, calculating the orientation similarity as AP3D weighted
cosine similarity between true and predicted orientation [Ku et al., 2018].

2.2.3 3D Object detection by input data
Based on publicly available datasets 3D object detection systems evolved. As stated
in Subsection 2.2.1 the system gets a 3D scene representation as input and outputs
3D bounding boxes, class labels and their confidence. Based on the different types of
3D scene representations 3D object detection algorithms can be grouped into image-,
volumetric- and fusion-based methods [Rahman et al., 2019].

Image-based methods work on monocular images without depth information. To predict a
3D bounding box normally first a 2D bounding box is predicted, then the third dimension is
estimated based on neural networks [Chen et al., 2016], geometric constraints [Mousavian
et al., 2017] or 3D model matching [Xiang et al., 2015]. The opposite to this quite data
limited set of methods are fusion-based methods which use a combination of 2D and
3D data. Fusion-based methods benefit from using both color and texture information
provided by images as well as accurate depth measurements available in point clouds.
Examples are MV3D [Chen et al., 2017], AVOD [Ku et al., 2018] and F-PointNet [Qi
et al., 2018]. Both image- and fusion-based methods are not covered in detail here as this
thesis focuses on the comparison between pure 2D and 3D based algorithms. In following
the different volumetric methods are presented.

Volumetric-based methods solely use 3D information as input. Based on the exact input
data representation they can be further divided into three subcategories. First, the 3D
data can be projected to a 2D plane. Those methods are summarized as projection
or view-based methods. Second, data can be stored in a structured 3D format — a
voxel-grid. Third, raw unstructured point clouds can be used [Singh et al., 2019].

View-Based Methods

Using view-based methods 3D data is first projected to a 2D plane. Popular options
are front view, top view (also called bird’s eye view, BEV) or range view. The idea of

27

2. Related Work

converting 3D to 2D data is motivated by the good object detection results achieved with
state-of-the-art 2D algorithms and the availability of large-scale datasets and benchmarks
as presented in Section 2.1. The projected data can then simply be handled like any 2D
input. In other words it can be processed using conventional deep neural networks. To
obtain a 3D bounding box from 2D results, they are regressed in position and dimension
[Arnold et al., 2019].

VeloFCN [Li et al., 2016] and LMNet [Minemura et al., 2018] are two examples of
frontal view cylindrical projections. Both use a fully convolutional network for detection
but VeloFCN inputs 2D depth maps and LMNet five different frontal-view representations:
reflection, range, forward, side, and height. To avoid occlusion problems immanent to
frontal view projections, recently bird’s eye view representations received a lot of attention.
Using BEVs object length and width as well as the position on the ground plane can easily
be obtained. Two examples are DoBEM [Yu et al., 2017] and BirdNet [Beltrán et al.,
2018]. Again the 3D representation is encoded into a three channel 2D representation.
DoBEM transforms it into an elevation map, namely maximum, median and minimum
height, BirdNet uses height, intensity and density.

All methods presented so far are two-stage detectors, so first a set of region proposals is
derived, then a refinement step calculates the final classification scores and bounding
boxes. To improve inference time a set of one-stage detectors evolved. These detectors
directly map the input to the final classification scores and bounding boxes. Up to now
only BEV based one-stage detectors are available. PIXOR [Yang et al., 2018] uses height-
encoded BEVs similar to DoBEM and outputs pixel-wise predictions in a single step,
but is applies the assumptions that all objects are one the ground. Complex-YOLO
[Simony et al., 2018] and YOLO3D [Ali et al., 2018] are both based on the popular
2D YOLOv2 [Redmon and Farhadi, 2017] algorithm focusing especially on efficiency.
Both employ BEVs, but Complex-YOLO extends the architecture by a specific complex
regression strategy and YOLO3D extends YOLOv2’s loss function to cover the additional
parameters required for 3D object detection.

Generally, 3D information stored in a 2D format can reduce memory requirements
and computational costs. Additionally it enables the usage of existing 2D algorithms
on 3D data or at least simplifies implementation of new algorithms. But, view-based
representations often suffer from poor orientation angle regression. Currently this
group especially focuses on BEV based algorithms which can be very useful for outdoor
applications such as autonomous driving but are not applicable for indoor environments
featuring multiple objects above each other [Rahman et al., 2019]

Voxel-Grid-Based Methods

To overcome the limitations of 2D representations 3D voxel-grid representations can be
used. In that case data is stored in a regular 3D grid, called voxel-grid. Each voxel is
either defined by binary occupancy or continuous point density and can have a number

28

2.2. 3D Object Detection

Figure 2.7: VoxelNet architecture: Derivation of 3D bounding boxes from raw point
cloud leveraging a voxel-grid. First, the feature learning network partitions the input
point cloud into a voxel-grid and generates a representative vector per voxel describing
the shape. Second, the convolutional middel layer aggregates spatial context. Third, the
region proposal network calculates the final 3D detections. Taken from [Zhou and Tuzel,
2018, p. 4491s].

of attributes or dimensions. This regular structure allows to apply concepts developed
for 2D data such as CNNs by simply adding one dimension [Rahman et al., 2019].

An example is 3DFCN [Li, 2017] which is based on VeloFCN [Li et al., 2016]. It reuses
2D mechanisms on a 3D grid. 3DFCN is a single-shot detector which inputs a 4D binary
encoded voxel-grid with length, width, height and channel dimension and directly outputs
objectness and bounding boxes. Although 3DFCN is a single-shot detector the time
performance is limited due to the use of expensive 3D convolutions.

A more efficient algorithm is Vote3Deep [Engelcke et al., 2017] which is a modification
of Vote3D [Wang and Posner, 2015]. Vote3D discretizes the 3D representation into fixed
resolution voxels, calculates a fixed size handcrafted feature vector per voxel and then
runs object search which is realized as sliding window with a Support Vector Machine
(SVM). Due to the feature-centric approach Vote3D is already quite efficient. To improve
it even further Vote3Deep replaces the SVM with a 3D CNN. Vote3Deep exploits the
sparsity to point clouds by using a sparse CNN and L1 regularization together with
RELU to preserve the sparsity. Its downside is that object sizes are fixed which limits
detection performance.

A neural network example designed for indoor environments is cloud of oriented gradients
(COG) [Ren and Sudderth, 2016] proposing the Manhatten voxel representation. It was
later improved to latent support surfaces (LSS) [Ren and Sudderth, 2018]. The main
downside of these models is their long inference time of 10 to 30 minutes.

A completely end-to-end trainable algorithm is VoxelNet [Zhou and Tuzel, 2018] depicted
in Figure 2.7. It uses raw point clouds as input and does not require any manual
feature engineering. It can be separated in three steps: 1. feature learning network,
2. convolutional middle layers, 3. region proposal network. In the first step the point
cloud is converted to a voxel-grid and a feature vector - called voxel feature encoding -
is calculated per voxel. This is based on PointNet [Qi et al., 2017a] described in more
detail in the next part. In the second step features are aggregated and additional context
information is added. In the last step the final 3D object detection results are obtained.
Similar to Vote3Deep VoxelNet utilize the sparsity of the data but also suffer from

29

2. Related Work

the high computational costs of 3D convolutions. SECOND [Yan et al., 2018] further
improves VoxelNet. It tries to reduce computational costs by converting the 3D data to
a 2D representation in the convolutional middel layers. Additionally, a new angle loss
regression strategy is used to improve the orientation estimation.

As mentioned above voxel-grid-based methods have the advantages of explicitly encoding
and preserving 3D shape information. Moreover, the structured representation allows
to apply the same principals used in 2D object detection. But, the structured data
representation is also a disadvantages. Most voxels are empty but still require storage
space and need to be processed which reduces efficiency. Generally, voxel-grid-based
methods employ 3D convolutions which drastically increase computational costs, this in
turn constraints the processable resolution [Arnold et al., 2019].

Point Cloud-Based Methods

Typical CNNs require a regular structure, input data must have a fixed size. To use
such CNNs on point clouds often a transformation is applied to the data to get either
a 2D projection (view-based) or a 3D regular grid (voxel-grid-based). Any of those
transformations leads to a loss of information. To overcome this drawback it is possible
to work directly on raw point clouds [Arnold et al., 2019].

The seminal idea was presented in PointNet [Qi et al., 2017a] which focuses on object
classification and part segmentation. PointNet uses raw point clouds as input. For all n
input points local features are inferred. This is achieved by point-wise transformation
with fully connected layers. Then this local feature descriptors are aggregated to a
global one with a max-pooling layer which works as symmetric function and ensures
independence of the point order. The main disadvantage of PointNet is that it misses
local structures as it strongly focuses on global features. PointNet++ [Qi et al., 2017b]
addresses this issue by explicitly learning local structures. The n input points are split
into overlapping sets. For each set local features are extracted. In a hierarchical approach
simple features are then grouped into more complex ones.

PointNet and PointNet++ are object classification but not object detection algorithms.
Over the last years a number of methods evolved utilizing PointNet. One example is
VoxelNet presented before which uses PointNet per voxel. Most published methods
require both image and point cloud data. Examples are F-PointNet [Qi et al., 2018],
PointFusion [Xu et al., 2018] and RoarNet [Shin et al., 2019]. Due to the requirement
of multiple input data types they are categorized as fusion-based methods and are not
relevant for this thesis.

To the authors best knowledge the only purely 3D data based network leveraging PointNet
is VoteNet [Qi et al., 2019]. Next to PointNet VoteNet adopts Hough Voting. VoteNet’s
basic architecture can be split into four main steps presented in Figure 2.8. First, find
points of interest. Second, generate votes — basically new points close to the object
center augmented with an additional feature vector. Third, aggregate vote clusters based
on features. Fourth, return object proposals as classification scores and 3D bounding

30

2.2. 3D Object Detection

Figure 2.8: VoteNet architecture: First, the n input points are sampled to m seed points
leveraging PointNet++. Then the voting model generates one vote per seed point. The
votes are grouped to clusters which are in the following used to create object proposals.
Figure taken from [Qi et al., 2019, p. 3].

boxes. All of these steps are combined into an end-to-end trainable network. Recently
an extension was proposed called ImVoteNet [Qi et al., 2020] combining point cloud data
with images.

Point cloud-based methods fully leverage the sparsity of point clouds. Calculations
are solely performed on measurements (points) and not in empty space such as for
voxel-grid-based methods. Moreover, 3D geometric details are preserved and used. New
concepts such as PointNet have the potential to overcome traditional requirements for
structured data and provide mechanisms which are better applicable to this irregular
input data [Qi et al., 2019].

2.2.4 Algorithm Comparison
View-, voxel-grid- and point cloud-based methods can all be evaluated on the datasets
presented in Subsection 2.2.2. Due to the domain driven development and the different
requirements defined by applications it is not meaningful to evaluate every method on
every dataset. Most algorithms are evaluated either on KITTI (Table 2.5) or SUN RGB-D
(Table 2.6).

View-based methods achieve quite poor results on 3D object detection KITTI test set.
This can be explained as many bird’s eye view based methods primary focus on KITTI
BEV test set results during development not presented here. LMNet is with 6ms the
fastest presented method but also the one with the lowest mAP3D. Most results are
available for voxel-grid-based methods. Vote3Deep achieves the highest accuracy with
a mAP3D value of 66.15 on KITTI test set but it is also the slowest on this dataset.
SECOND reaches good results both in respect to accuracy and speed being the second
best in both categories. The only point cloud-based algorithm VoteNet reaches the best
results in both accuracy and speed on SUN RGB-D.

A direct comparison between 2D (Table 2.3 and Table 2.3) and 3D algorithms (Table
2.5 and Table 2.6) is not possible as different datasets and metrics are used. But one
can observe that 2D and 3D accuracy values already have the same magnitude while 2D
algorithms are still faster. This similarities and differences are especially interesting for
applications providing access to both data sources such as Augmented Reality.

31

2. Related Work

Algorithm car pedestrian cyclist mAP3D Speed [s]
view
VeloFCN 50,20 - - - 1.000
LMNet 15.24 11.46 3.23 9.98 0.006
DoBEM 6.95 - - - 0.600
BirdNet 13.41 12.22 14.22 12.56 0.110
voxel-grid
Vote3D 49,12 37,98 33,76 40,28 0.500
Vote3Deep 69,42 58,78 70,26 66,15 1.100
VoxelNet 65.11 33.69 48.36 49.05 0.230
SECOND 74.33 43.64 57.09 56.69 0.038

Table 2.5: Performance comparison of state-of-the-art 3D object detection based on 3D
KITTI test set. Table created from [Rahman et al., 2019, p. 2958], [Engelcke et al., 2017,
p. 1360], and [Minemura et al., 2018, p. 32]

Algorithm bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP3D Speed
voxel-grid
COG 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 47.6 10-30m
LSS 76.2 73.2 32.9 60.5 34.5 13.5 30.4 60.4 55.4 73.7 51.0 10-30m
point cloud
VoteNet 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7 0.10s

Table 2.6: Performance comparison of state-of-the-art 3D object detection based on
10-class evaluation on SUN RGB-D dataset. Table created from [Rahman et al., 2019,
p. 2958] and [Qi et al., 2019, p. 6]

2.3 Object Detection with Augmented Reality

2.3.1 What is Augmented Reality?

Ever since the first computers were available the goal has been to improve the human
computer interaction to make it more intuitive. Digital interaction should be as simple
as interacting with real objects. Augmented Reality (AR) realizes this idea by removing
the separation between digital and real world. This allows enhanced communication, new
information presentation possibilities and intuitive digital interaction [Billinghurst et al.,
2015].

Augmented Reality combines the real and virtual world. In detail it can be defined by
three key requirements: first, it is a combination of real and virtual content, second, it
works interactively in real-time, and third, it is registered in 3D [Azuma, 1997]. The
idea is to superimpose virtual objects — so-called holograms — onto real world-objects.
This should enhance the real world with additional information required or requested
by the user [Van Krevelen and Poelman, 2010]. The aforementioned requirements also

32

2.3. Object Detection with Augmented Reality

define the main three technical components, namely, a display to visualize virtual objects
onto the real world, user interaction in real-time, and a tracking system to derive user
position and orientation in the real world [Billinghurst et al., 2015].

AR can be categorized by the used display. The most common ones are head mounted
displays (HMD), wearable devices such as glasses or helmets. This group can be further
classified into optical and video see-through systems. Optical see-through systems present
the user the real world through a half-transparent mirror which allows to additionally
reflect virtual objects into the user’s eyes. Video see-through systems first digitize the real
world, then combine it with virtual content and finally show the user this combination on
an opaque display [Azuma, 1997]. Another more recent display option are mobile screens,
such as smartphones or tablets. Similar to video see-through HMDs the real world is
captured, combined with virtual objects and then visualized on the screen [Nishihara and
Okamoto, 2015]. The third option are Spatial Augmented Reality systems (SAR) which
use projectors to display virtual content directly onto real objects [Azuma et al., 2001].

To properly superimpose virtual onto real objects the precise user position and orientation
in the real world are required. The simplest method to achieve this is by using markers in
the real world. The markers are identified by the camera and their pattern is compared to
previous ones to estimate position and orientation [Khan et al., 2015]. Physical markers
may not always be feasible. Two methods independent of physical markers are Natural
Feature Tracking (NFT) and Simultaneous Localization and Tracking (SLAM). NFT
detects characteristic points instead of markers in images to estimate the pose in real-time
[Fraga-Lamas et al., 2018]. SLAM creates a 3D feature map which is used to estimate
the pose based on the currently visible part. This information then also enhances the
initial map [Billinghurst et al., 2015].

Since the first reference of Augmented Reality by [Thomas and David, 1992] AR systems
have proven their helpfulness in main domains. Examples range from education [Dünser,
2008], [Bacca Acosta et al., 2014] over medicine [Park et al., 2020a], [Birkfellner et al.,
2002] to manufacturing [Funk et al., 2017], [Chu et al., 2020]. Different studies showed
that AR systems can support learning new tasks, reduce execution times, and improve
product quality [de Souza Cardoso et al., 2020]. An important base task — required in
all aforementioned domains — is object detection.

2.3.2 Object Detection Systems
Most AR based systems must capture and understand a set of objects in their surrounding
environment. Similar to user tracking, such technologies often rely on physical markers
positioned in the real world. This is a limiting factor especially in dynamic environment
such as industrial manufactures [Park et al., 2020c] or in uncontrolled outdoor environment
where it is not possible to properly place markers [Rao et al., 2017]. A number of AR
systems already leverage other technologies such as object detection. [Wang et al., 2013]
tracked index finger and thumb without additional markers to support manual assembly
design and [Radkowski, 2016] could tracked a single object based on point cloud matching.

33

2. Related Work

In recent years a number of studies successfully directly combined AR and object detection
and evaluated the results. They can generally be grouped into completely embedded
systems and setups separated into a client and server. Many AR systems such as wearable
or mobile devices only provide limited computational resources which limits the use of
expensive deep neural networks.

Embedded systems [Rao et al., 2017] therefore leverage efficient and small backbone
networks such as MobileNet [Howard et al., 2017] and fast object detection algorithms
such as SSD [Liu et al., 2016] or YOLOv2 [Redmon and Farhadi, 2017]. Most introduced
systems are designed for mobile devices and integrate additional components to improve
their results. [Lee et al., 2019] presented DeepMobileAR, an Android application. It
combines SSD-MobileNet object detection with visual SLAM. SLAM handles virtual object
pose calculation, camera matrix estimation and mapping of the surrounding environment.
[Mahurkar, 2018] integrated TinyYOLOv2 (lightweight YOLOv2 implementation) and
AR into an iOS application. [Rao et al., 2017] developed an Android application which
utilizes a lightweight SSD implementation and enhances the detections with additional
data from Global Positioning System, Inertial Measurement Unit and magnetometer to
properly localize objects in the real world.

Client-server systems extend the limited on device resources of AR by connecting it
to a server or cloud. This allows the usage of more complex approaches and avoids a
possible lack of detection accuracy. The drawback of this setup are communications delays
between client and server. A combination of the HMD Microsoft HoloLens [Microsoft,
2021a] and YOLOv2 running on an external server was presented by [Eckert et al., 2018].
It is a system for the blind to localize wanted objects. [Farasin et al., 2020] achieved
even real-time responses by integrating high accuracy object detection (Faster-RCNN
[Ren et al., 2015], R-FCN [Dai et al., 2016] and SSD [Liu et al., 2016]) in the cloud with
fast object tracking on the device (Microsoft HoloLens). A combination of AR, object
detection and pose estimation presented by [Kästner et al., 2021] showed positive effects
such as reduced error rates and increased time efficiency.

Images captured with wearable AR devices often have a very different perspective then
images available in standard datasets such as MS COCO [Lin et al., 2014]. In standard
datasets the image orientation is often object dependent, elongated objects are often
captured in landscape. To compensate for this [Li et al., 2020] presented a system which
accounts for the orientation and also uses the additional available scale information
provided by AR systems. These steps improved generic object detection accuracy by 12%.
This shows two things. First, available datasets are not optimized for AR applications,
and second, already simple 3D information has the potential to significantly improve
performance. But to the author’s best knowledge AR has only been combined with 2D
and not 3D object detection even though a number of systems provide 3D information.
An interesting example in this category is Microsoft HoloLens.

34

2.3. Object Detection with Augmented Reality

Figure 2.9: Microsoft HoloLens 2. a) Overview with processors. b) Available sensors.
Adopted from [Ungureanu et al., 2020, p. 1 / p. 3].

2.3.3 Microsoft HoloLens

Microsoft published in 2016 their first AR system called Microsoft HoloLens [Microsoft,
2021a]. In 2019 its successor HoloLens 2 [Microsoft, 2021b] was announced. Both versions
have been adopted in different domains, such as surgery (see e.g. [Schneider et al., 2021],
[Park et al., 2020b]), engineering (see e.g. [Zhang et al., 2019]) and education/training
(see e.g. [Asgary et al., 2020], [Serrano Vergel et al., 2020]).

Specification

HoloLens 2 is an enhancement of HoloLens first generation with new and improved
features, such as a larger field of view and fully articulated hand and eye gaze tracking.
Both are head mounted wearables which allow to move freely [Microsoft, 2021b]. As this
thesis focuses on HoloLens 2 in the following it is described in more detail.

Two processors are available (see Figure 2.9a). In the front part second generation
Holographic Processing Unit (HPU 2.0) is located. It is designed to handle all low-power,
real-time computer vision tasks on the system, such as head, hand and eye gaze tracking
as well as spatial mapping. In the rear part a Qualcomm SnapDragon 850 is mounted.
As all computer vision tasks are handled by the HPU this is a pure application processor
[Terry, 2019]. HoloLens 2 comes with 4 GB memory and 64 GB storage. Connectivity is
possible over Wi-Fi, Bluetooth or USB [Microsoft, 2021b]. The system is equipped with
a depth, RGB and four gray scale cameras, called visible-light tracking cameras (VLC).
Additionally, an Inertial Measurement Unit (IMU) and a five channel microphone are
available (see Figure 2.9b) [Ungureanu et al., 2020].

Available Data Sources

As mentioned in Section 2.1 and Section 2.2 object detection can be performed based on
different input data types. HoloLens offers 2D and 3D data describing its surrounding
environment [Ungureanu et al., 2020], [Khoshelham et al., 2019].

35

2. Related Work

2D object detection requires either RGB or grayscale images as input. 3D object detection
is either also based on images, point clouds or depth information. RGB data is accessible
either as video stream or single picture covering a field of view of 40◦ × 25◦. Different
resolutions are available from 896 × 504 to 1408 × 792 pixels all with a 30 fps [Hübner
et al., 2020].

To extend available data sources HoloLens 2 provides a dedicated Research Mode API
which allows access to the different sensors. The four grayscale VLC are available at 30
fps. The depth camera operating in two modes, either at a high framerate of 45 fps in
near-depth (used for hand tracking) or at a low framerate of 1 to 5 fps in far-depth (used
for spatial mapping). Additionally, the same two depth modes are also available for the
infrared system which is independent of lightning condition. The drawback of using these
streams is that the development mode needs to be activated on the device. Therefore
application which utilize the Research Mode API can not be used in production systems
but only in a research environment [Ungureanu et al., 2020].

Another possibility to access 3D data is the generated spatial mesh. HoloLens automati-
cally maps its surrounding environment with the so-called spatial mapping capability. This
capability calculates a 3D sparse triangular mesh of the environment. This is required to
allow a proper combination of the real and virtual world and to locate itself within it.
The spatial mesh is used implicitly when for example interacting with a hologram. To
fine tune the spatial mesh to the user’s needs it can be calculated at different resolutions.
It must be considered that a higher resolution mesh requires a more expensive calculation
which may constraint response times [Zeller, 2018].

The spatial mapping algorithm is largely unpublished and part of Microsoft’s proprietary
software. Likely it is a combinations of the SLAM algorithms developed for KinectFusion
[Izadi et al., 2011] and enhancements such as large-scale reconstruction based on voxel-
hashing [Nießner et al., 2013] and RGB-D camera relocalization [Glocker et al., 2014]
which improve scalability and robustness. The mesh is calculated based on depth and
VLC tracking data, RGB images are not used [Hübner et al., 2020]. Therefore HoloLens
has problems mapping objects with a reflecting surface, as a single instance may appear
differently depending on the viewing angle. In particular, dark, translucent and shiny
objects are problematic [Zeller, 2018].

Due to the simple accessibility of the spatial mesh HoloLens can also be considered a
simple mapping tool. Compared to laser scanners or range cameras HoloLens is more
flexible and efficient as it can easily be moved around and view objects from different
directions and angles. Therefore it is especially suitable for complex and changing
environments. Additionally, already HoloLens first generation achieves a good accuracy
of about 5 cm compared to a terrestrial laser scanner in indoor environments [Khoshelham
et al., 2019], [Hübner et al., 2020]. The spatial mapping capability has already been
exploited for building modeling [Hübner et al., 2019] and roboter setup configuration
[Puljiz et al., 2020]. But the available 3D data has not yet been leveraged for object
detection.

36

2.4. Contribution of this work

2.4 Contribution of this work
The previous sections describe the current status of 2D and 3D object detection as well
as the concept of AR. For both object detection domains theoretical background is given,
datasets and metrics are presented, and state-of-the-art algorithms are described and
compared by accuracy and inference time. Based on these previous findings, this thesis
focuses on the combination of 2D and 3D object detection with AR. In detail the following
three open topics are addressed:

1. Creation of a comparable AR 2D / 3D datasets: There are already a number
of 3D datasets available. Those often also contain 2D image data, but compared to
2D datasets they are still limited in size. SUN RGB-D combined multiple other
datasets to achieve a size comparable to the popular PASCAL VOC. But PASCAL
VOC appears small compared to recent 2D datasets such as MS COCO. One of
the largest and most recent 3D dataset, FAT, is synthetically created and does not
contain real pictures. Additionally, due to the domain driven development of 3D
object detection available data either covers solely indoor scenes or in the outdoor
domain has a strong focus on the autonomous driving application. But there is
no dataset containing both indoor and outdoor scenes. Hence, there is no real
generic dataset available. Moreover, there is none for the AR domain, depicting
the unusual perspectives especially popular with wearable AR devices. To fill this
gap an AR generate dataset covering commodity items in both indoor and outdoor
environment is created and introduced. In the following it is called AR-2/3.

2. 3D object detection with AR: Already a number of systems exist combining
2D object detection with AR. Although recent research showed the usefulness
of 3D information for AR object detection 3D AR data has not yet been used
for object detection. Some AR devices such as Microsoft HoloLens even provide
3D data automatically. Especially for technologies operating in the 3D world 2D
bounding boxes are not always sufficient but the accurate 3D extend of objects is
required. AR scene understanding, navigation, and virtual interactions may depend
on 3D information. In this thesis AR is combined with a representative 3D object
detection algorithm.

3. Comparison between 2D and 3D object detection: 2D object detection is
a well-research field nowadays leveraging the power of deep neural networks and
the availability of large, public datasets. In comparison is the 3D pendant a quite
young research area originating from the need of 3D localization in specific domains.
But recent years saw significant progress in 3D object detection. Different data
representations and algorithms have been used to constantly improve accuracy and
speed. The main advantage of 3D over 2D object detection is that it provides
information about an additional dimension. An open question is how 3D algorithms
perform compared to 2D ones. Up to now only rough estimates have been possible
as no comparable 2D / 3D dataset has been available. Based on the newly created

37

2. Related Work

dataset mentioned above it is possible to compare the maybe more elaborated 2D
techniques with the more recent and more informative 3D algorithms. For this next
to the setup of a 3D object detection system also a 2D algorithms is implemented
and results are compared. In detail accuracy and inference time are evaluated. This
highlights shortcomings and advantages of current algorithms in the context of a
different number of applied dimensions.

All data acquired and processed throughout this thesis is available under //GEO/geoin-
fo/Data/Sophie/masterarbeit_backup and licensed under the terms of Creative
Commons Attribution 4.0 International (CC BY 4.0)10. In the Appendix 7 a detailed
description of the structure of the data is given. Similarly developed code is available
at git.geo.tuwien.ac.at and, if not stated differently, MIT11 licensed. An overview of all
developed and updated repositories is given in the Appendix 7.

10https://creativecommons.org/licenses/by/4.0/legalcode, accessed 15-August-2021
11https://mit-license.org/, accessed 15-August-2021

38

CHAPTER 3
Data Acquisition

The principal goal of this thesis is to setup and compare 2D and 3D object detection
algorithm based on AR generated data. To achieve this goal, first such a comparable 2D
- 3D dataset must be generated. This chapter details the creation of the new, so called
AR-2/3, dataset. The first section describes the applied methodology, including the data
acquisition concept, setup, realization, and required processing steps. The second sections
presents the results both for the data acquisition itself and for the applied processing
step. The third and final section evaluate AR-2/3 and positions it in respect to current
2D and 3D state-of-the-art datasets.

3.1 Methodology

3.1.1 Dataset Requirements
Already a number of 2D and 3D datasets are available, but none covers the scenario
detailed below. The focus of AR-2/3 is twofold. The first open issue is the lack of a
comparable, general purpose 2D / 3D datasets. Where the term general purpose stands
for not domain specific and applies to both, presented objects and the surrounding
environment. Popular 2D datasets such as PASCAL VOC or MS COCO (see Subsection
2.1.2) cover the general-purpose-requirements but obviously only contain 2D data. 3D
datasets often also provide 2D data, supporting 2D / 3D comparison, but do not comply
to the idea of general purpose. There are 3D datasets such as KITTI (see Subsection
2.2.2) covering the outdoor driving domain with samples of cars, pedestrians and cyclist
and there are datasets such as SUN RGB-D or FAT (see Subsection 2.2.2) depicting
commodity objects but only in an indoor environment. Hence, the new dataset should
bridge the gap between indoor / outdoor environments, generic object categories and the
possibility of 2D / 3D comparison. The second topic addressed in AR-2/3 is the absence
of a AR generated datasets. Available standard datasets have two disadvantages when it

39

3. Data Acquisition

comes to applicability to the AR domain. First, the image perspective as recorded by
a wearable AR device might be quite different to images available in standard dataset
which are often taken by hand [Li et al., 2020]. Second, despite 3D datasets provide a
number of different 3D data representations, none of them is AR generated. AR 3D data
might including automatic data accumulation or internal preprocessing steps which affect
the user accessible data [Hübner et al., 2020].

Based on these two foci some general requirements are derived.

1. Generic object categories must be employed.

2. Both indoor and outdoor environment must be included.

3. Both 2D and 3D data must be acquired. The same conditions must apply.

4. Data must be acquired with an AR device.

To create a meaningful generic dataset a careful selection of object categories, object
instances and environment conditions is required. Based on this selection it should
additionally be possible to properly evaluate AR sensing capabilities and to analyze the
effect of a set of properties and conditions on detection algorithms. For this the selected
object categories need to cover a set of object properties and defined intra-category
variabilities. In detail considered object properties should be size, geometric complexity,
and surface characteristics. These three properties include different degrees of difficulty
for both data acquisition and object detection.

Object size should range from large objects where only parts are visible in some images,
to quite small objects which may cover only a small part of the scene. This setup tests on
one hand the sensing capability of small objects and on the other hand the used object
detection algorithm is required to understand both the overall, big picture of a scene but
also small, maybe non-iconic details.

Geometric complexity should have values from simple (e.g. cuboid objects) to complex.
Complex objects include difficultly ascertainable (e.g. thin) structures, irregular shapes
which are complicated to describe with standard geometries, and / or layovers of multiple
structures. Especially geometrically complex objects offer valuable information about
the sensing capabilities of the different methods - is it possible to capture thin structures
or not? Geometrically simple objects can be seen as reference measurements. Next to
sensing capabilities also the potential of detection algorithms to handle multiple levels of
geometric complexity are covered.

Surface characteristics include two main properties: color and reflectivity. Color is
especially important in the 2D image domain, as detection algorithms are solely based
on RGB input [Zou et al., 2019]. Reflecting surfaces may appear differently depending
one position, viewing angle, and lightning. This can affect the measured 3D data [Zeller,
2018], but also introduce variability in 2D object representations. To account for this,
both highly reflective and non-reflective object categories should be included.

40

3.1. Methodology

properties intra-category variability
object size geom. comp. reflectivity object size geom. comp. reflectivity

chair rather large rather complex rather refl. low low rather low
cup small simple rather refl. low low low
monitor rather small simple refl. low low low
pottedplant small complex non-refl. rather high rather high low
table large simple non-refl. high low low

Table 3.1: Distribution of object properties and intra-category variabilities within the
selected categories.

Intra-category variabilities describe effects due to diversity of the aforementioned object
properties within a single category. Variabilities are possible for each object property,
such as size or reflectivity. High intra-category variability may imply the requirement for
more complex abstraction in the detection algorithm and therefore different variability
levels can describe an algorithm’s abstraction capability.

Next to object centric effects also the impact of the environmental conditions — indoor vs.
outdoor — and lightning is of interest. On one hand 2D algorithms are normally evaluated
on standard datasets which often do not distinguish between indoor and outdoor but
include images from both environments, on the other hand 3D algorithms normally focus
either on indoor or outdoor scenes. Moreover, environment and lightning can affect
reflectivity which is an additional concern for 3D AR generated data. Therefore it may
be more difficult for a 3D algorithm to handle both environments.

To eliminate interaction effects between categories each scene should include only a single
object instance. Moreover, the direct surrounding environment should be controlled.
This should ensure that no disregarded, systematic effects are introduced. Consider the
following example: Large objects are placed on the ground and small ones on a platform.
The platform surface is consistently flat and smooth, the ground may also be flat and
smooth for the indoor conditions, but in the outdoor conditions it could be for instance
grass and therefore rough and inhomogeneous. This could introduce a correlation between
the large object categories and rough surfaces. Hence, to allow an easier and more exact
analysis of the different characteristic and conditions these two additional restrictions
are applied.

3.1.2 Dataset Concept
Based on the required properties above five object categories are selected: chair, cup,
monitor, pottedplant, and table. Each category is composed of ten unique instances. The
categories cover different values of the described object properties and intra-category
variabilities as shown in Table 3.1.

To evaluate lightning and environmental effects four conditions are defined. Two indoor
and two outdoor environments with four different lightning conditions are considered.

41

3. Data Acquisition

The indoor environments are controlled and static. There are no environmental changes
between object instances. In contrast the outdoor environments are not completely static,
small changes in the background and lightning conditions are included.

1. indoor-night (IN): Controlled indoor environment with constant artificial light from
the ceiling. To ensure that no additional natural light is present, data is acquired
on cloudy days or after sunset. Windows are additionally darkened with blinds.
This setup ensures constant lightning conditions for all object instances.

2. indoor-sun (IS): Controlled indoor environment with natural light from windows.
No artificial light is used. Therefore lightning and lightning effects such as shadows
vary between object instances randomly.

3. outdoor-night (ON): Although the condition is called outdoor-night for naming
consistency, it is not acquired during night time but describes the darker outdoor
condition. It shows an outdoor environment with no direct sunlight. Objects are
placed in shade. The setup ensures that all object instances are captured similarly
and constantly illuminated. This shade condition is preferred over a real night
condition as for the latter again constant artificial light must be used, which in
turn would make the two night conditions very similar.

4. outdoor-sun (OS): Sunny outdoor environment. Direct and changing sun light
introduces randomly varying illumination between object instances.

These four conditions include indoor and outdoor scenes, different lightning conditions
(artificial illumination, direct and indirect sun light) and different variability in object
illumination.

To capture only one object instance at a time and ensure a controlled and comparable
environment all object instances are placed on top of the same platform as shown in
Figure 3.1. All object instances are placed centrally and oriented into the same direction.
This should eliminate directional effects related to the relative placement on the platform.
A rectangular platform is used to allow observations over multiple distances. This includes
observing the object instances while walking on the ground but also while walking on
top of the platform. For the latter a large enough platform extend with 3.6×2.4m is
selected. As the platform is present in all observations it is made as neutral as possible.
It is completely covered in light brown paper. The color is neutral in RGB images and
the material — non-reflecting, opaque and light — provides optimal conditions for 3D
depth measurements, required for the spatial mesh generation.

In summary, the dataset consists of 2D and 3D measurements. A measurement includes
only one annotated object located centrally on top of a platform. Each object belongs
to one of five categories (chair, cup, monitor, pottedplant, and table). Each category
is composed of ten instances. Each instance is observed in four different conditions
(indoor-night, indoor-sun, outdoor-night, outdoor-sun). Hence, in total 50 different object
instances observed in four conditions are included in the dataset.

42

3.1. Methodology

Figure 3.1: Object configuration for data acquisition: Each object instance is placed
centrally on top of a 3.6×2.4m platform.

3.1.3 Technical Setup
The presented dataset concept already covers most stated requirements. To fulfill the
requirement of an AR generated dataset Microsoft’s AR glasses HoloLens 2 [Microsoft,
2021b] are used for data acquisition. HoloLens 2 is capable of capturing both 2D and 3D
data detailed in Subsection 2.3.3. In this thesis RGB images acquired with HoloLens 2’s
frontal RGB camera are used. Multiple 3D data sources are available either leveraging
Research Mode API or the spatial mapping capability. Research Mode offers a wide
range of depth information but has the drawback of being only available when the device
is in development mode [Ungureanu et al., 2020]. As this is an infeasible requirement
Research Mode is neglected here. In contrast the spatial mapping capability is always
accessible also in a production environment [Zeller, 2018]. Therefore the triangular mesh
provided by the spatial mapping capability is used as 3D data source.

HoloLens 2 provides only limited storage and processing resources. In detail only 64
GB of storage are available on the device [Microsoft, 2021b]. Initial tests showed that
about 300 MB of data are acquired within 100 sec. Based on this information within
an hour more than 10 GB of data could be acquired and need to be stored. For data
acquisition consistent and large enough storage is a central requirement. Hence, to
allow continuous and stable data acquisition, data is directly transferred to an external
server. With the separate server the storage could be arbitrarily increased. It should be
mentioned that aforementioned advantages presume the server to run on a machine with
higher specifications than HoloLens 2. Moreover, this is a useful setup for latter object
detection, overcoming the restricted processing capabilities, allowing processing on GPUs
and thereby enabling support of more complex algorithms (see e.g. [Eckert et al., 2018],
[Farasin et al., 2020]).

In summary, processing and data management is separated into two components: server
and client. A number of frameworks are available both on server and client side. Centrally
an adequate web application framework has to be selected. Considered frameworks should
be free of charge, well documented, actively maintained and ensure quick prototyping.

43

3. Data Acquisition

Next to server and client side frameworks a communication protocol must be selected.
Here the setup leverages the internet protocol suite, composed of four layers: link,
internet, transport and application layer. For the bottom link layer Ethernet is employed.
Ethernet provides both lower latency and higher throughput compared to other forms of
communication support by HoloLens 2 such as Bluetooth or WiFi. Addressing on the
network layer is done using IPv6 link local addresses to avoid the need for a DHCP server
on the same network. To have an a-priori known IP on the HoloServer EUI-64 is used to
generate the IPv6 link local address based on the MAC address ot the device. TCP is used
as transport layer. For the top application layer http is used due to good library support
both on client and server size. This also increases the development speed compared to
using plain, TCP or UDP sockets. Http comes with a small protocol overhead. As big
data volumes are expected to be transferred this overhead can be neglected.

For the server implementation — called HoloServer1 — the Python2 programming
language is selected, fulfilling above mentioned framework requirements. Additionally
the author has some experience with this programming language, promising fast results.
On top of Python the web framework Flask3 is selected as it is lightweight and open
source. The main responsibility of HoloServer is to consistently and persistently store
2D and 3D data. In detail 2D images are persisted as RGB images in PNG format and
3D scenes are stored as OBJ files. This storage capabilities are accessible via a REST
API. Endpoints are tailored to data acquired by HoloLens 2 but may also be accessed by
other systems providing the same data formats.

• /
– Method: GET
– Parameters: None
– Returns: Health signal, whether the server is up and running

• /store/img
– Method: POST
– Parameters: Image byte stream
– Returns: The filepath to the stored PNG image.

• /store/mesh
– Method: POST
– Parameters: Object byte stream
– Returns: The filepath to the stored OBJ file.

To acquire data with HoloLens 2 two clients — referred to as HoloClient4 — are developed,
one to handle 2D data acquisition and one to handle 3D data acquisition. As clients must
be running on HoloLens 2 both are implemented as Unity5 scenes and use C#6 for scripting.

1https://git.geo.tuwien.ac.at/markus-kattenbeck/holo2_server, accessed 14-April-2021
2https://www.python.org/, accessed 13-April-2021
3https://flask.palletsprojects.com/en/1.1.x/, accessed 13-April-2021
4https://git.geo.tuwien.ac.at/markus-kattenbeck/holo2_client, accessed 14-April-2021
5https://unity.com/, accessed 13-April-2021
6https://docs.microsoft.com/en-us/dotnet/csharp/, accessed 13-April-2021

44

3.1. Methodology

To simplify interaction with HoloLens 2 Microsoft’s Mixed Reality Toolkit (MRTK) 2.37

is employed. HTTP communication is based on Windows.Web.Http.HttpClient8

leveraging that HoloLens 2 is a Universal Windows Platform device.

Microsoft also provides HoloLenForCV 9, a toolkit to facilitate computer vision research
with HoloLens. Although this is an interesting project to retrieve and process im-
age data it is only compatible with HoloLens first generation. The successor project
HoloLens2ForCV 10 was not available at the time of prototyping. Therefore the 2D client
is based on the currently not actively maintained, but stable HoloLensCameraStream11

project. This minimalist package provides the required functionality to access HoloLens
2’s RGB camera images. Camera parameters such as resolution and frame rate can
be easily configured. Once setup OnFrameSampleAcquired method is called when a
frame is ready. Listing 3.1 shows how to access the current frame and send it to the
server.

Listing 3.1: HoloLensCameraStream image processing
1
2 public class CameraStreamRunner : MonoBehaviour
3 {
4 ...
5 private void OnFrameSampleAcquired(HoloLensCameraStream.VideoCaptureSample

sample)
6 {
7 // prepare image bytes
8 if (_latestImageBytes == null || _latestImageBytes.Length < sample.

dataLength)
9 _latestImageBytes = new byte[sample.dataLength];

10 sample.CopyRawImageDataIntoBuffer(_latestImageBytes);
11
12 // Send image to server
13 httpClientHandler.StoreImage(_latestImageBytes);
14 }
15 ...
16 }

The 3D data client uses MRTK spatial mapping observer to access the spatial mesh.
Listing 3.2 summarizes the storage procedure of a spatial mesh. On access all parts of the
current spatial mesh are collected and serialized. As no 3D object detection algorithm
can currently handle triangular mesh data, only the points are serialized, converting the
mesh into a point cloud. This has the additional advantage of decreasing the data volume
of each 3D scene. Then the serialized content is send to the server. As data transfer
times depend on the transmitted data volume and the size of the mesh increases with

7https://github.com/Microsoft/MixedRealityToolkit-Unity, accessed 13-April-2021
8https://docs.microsoft.com/en-us/uwp/api/windows.web.http.httpclient, accessed 14-April-2021
9https://github.com/Microsoft/HoloLensForCV, accessed 14-April-2021

10https://github.com/Microsoft/HoloLens2ForCV, accessed 14-April-2021
11https://github.com/VulcanTechnologies/HoloLensCameraStream, accessed 13-April-2021

45

3. Data Acquisition

longer observation times, it is decided to not use a fixed frame rate. Instead a new mesh
is only accessed and send once the last request finished.

Listing 3.2: MeshHandler access and storage of mesh data
1 public class MeshHandler : MonoBehaviour
2 {
3 ...
4 public async void SendMesh()
5 {
6 IMixedRealitySpatialAwarenessMeshObserver meshObserver = GetMeshObserver()

;
7
8 // get all mesh parts
9 var targets = new HashSet<Transform>();

10 foreach (SpatialAwarenessMeshObject meshObject in meshObserver.Meshes.
Values)

11 {
12 targets.Add(meshObject.GameObject.transform.parent);
13 }
14
15 // Serialize mesh
16 foreach (var target in targets)
17 {
18 string content;
19 content = await ObjPointWriterUtility.CreateOBJFileContentAsync(target.

gameObject, true);
20 }
21
22 // Send mesh to server
23 httpClientHandler.StoreMesh(content);
24 }
25 ...
26 }

This setup allows a seamless data acquisition. Data is acquired by the clients running on
HoloLens 2, then sent to the server via HTTP and finally stored on the server. In the
following the physical setup and configuration of the data acquisition is described.

3.1.4 Configuration
Three distinct locations are selected for data acquisition. The same room is selected for
both indoor conditions and the two lightning conditions are implemented as described in
Subsection 3.1.2. For the two outdoor conditions two spatially close but separate location
are selected to ensure long enough periods with shade as well as direct sunlight. Due to
technical reasons first all indoor, then all outdoor data is collected.

The usage of two clients implies the separate acquisition of 2D and 3D data. Therefor first
2D, then 3D data is collected. But — to ensure nearly equal conditions — directly one
after the other. This separation allows to account for the different data characteristics

46

3.1. Methodology

Figure 3.2: Setup configuration for 2D data acquisition: Each object instance is observed
1.5 minutes, surrounding it three times clockwise, each time focusing on a different
distance and observation angle. In Route A the object instance is captured from far
distances, therefor images generally show the whole object instance and also include the
surrounding environment. In Route B the distance to the object is smaller and a detailed
view of all sides of the object instances is acquired. In Route C the focus is on the top
view. The observer walks — different then in Route A and B — on top of the platform.

by creating two slightly deviating setup configurations. Common to both configuration is
that object instances are always placed centrally on top of the platform, oriented into the
same direction and that object instances are observed with HoloLens 2 while surrounding
the platform.

2D Data

One advantage of 2D data is, that it can be acquired quickly. HoloLens 2 provides RGB
images at 30 fps and the transferred data volume is small especially for low resolutions.
Although this high frame rate is available initial tests showed that only 7 to 8 fps give
meaningful results even when using the lowest resolution of 896 × 504 pixels. This has
two main reasons. First, a certain amount of time is required to send and store data on
the server. Even with an ethernet connection bandwidth is limited. Second, succeeding
images should still provide some differences otherwise the object detection algorithm
does not benefit from a large number of samples. When walking too fast HoloLens 2’s
autofocus fails and images get blurry. Hence, it is required to walk slowly and in turn
use a lower frame rate to capture different views of an object instance.

The requirements state that object instances must be observed from different perspectives,

47

3. Data Acquisition

this includes changing distance between HoloLens 2 and object instances and varying
observation angles. To account for this, each object instances is observed from three
different, clockwise running routes depicted in Figure 3.2. While walking along the routes
the observer is constantly looking at the object instance. Route A focuses on far field
observation. The distance between HoloLens 2 and object instance center ranges from
2.7 to 3.8m. In this setup object instances may only cover a small part of the images and
large parts depict the surrounding environment. In Route B the observer walks directly
along the platform. Hence, the distance to the object instance center is between 1.2 and
1.8m. The focus of this route is to capture detailed side, frontal and backward views of
object instances. This also includes images showing only object parts in case of large
object instances. In the last route, Route C, the observer walks on top of the platform, to
capture the top view. Due to the small distance between object instance and HoloLens
2 — constraint by the platform extend — also observations from this route include a
detailed and sometimes only partly view of object instances.

To capture approximately the same number of images per route, the same amount of
time is spent on each route. Considering the risk of blurry images when walking too fast,
observation time per route is fixed to 30 seconds. This sums up to a total observation
time for 2D data of 1.5 minutes per object instance and condition. As the observation is
a manual task these times are only target values and may vary slightly between single
observations. With this target observation time and a frame rate of 7.5 fps over 600
images are acquired per object instance and condition. This results in approximately
120,000 images.

3D Data

The spatial mesh representation used as 3D representation has some fundamental different
properties than 2D image data. The first important difference is that the spatial mesh
can not be created instantaneously, but in a continuous and cumulative manner. First
some initial parts of the mesh are calculated and then it is further extended or updated.
These initial parts should already contain object instances or at least parts of them.
Mesh data not containing any object instances must be discarded as there is nothing to
be detected by an object detection algorithm. The second significant difference is that
measured point locations are absolute. Therefore, the distance between two measured
points is independent of the distance to the measurement device (HoloLens 2). But
the location and orientation of the device defines for which area the spatial mesh gets
generated or updated.

To generate or update the mesh in practice calm and slow movement is required. Even
a walking speed as used for the 2D data acquisition is not possible. If a mesh already
exists, too fast movement can lead to mapping loss events. This is a phenomenon where
HoloLens 2 cannot locate itself within the previously captured mesh. The mesh looses its
anchors in the real world and seems to be floating around. New measurements are added
at possibly wrong locations which results in a corrupt mesh.

48

3.1. Methodology

Figure 3.3: Setup configuration for 3D data acquisition: Each object instance is observed
6 minutes, surrounding it clockwise. While walking around the object instance the
observer constantly changes between the frontal or side view visible from the ground to
the top view perspective captured standing on top of the platform.

Based on these restrictions of HoloLens 2, 3D data acquisition firstly focuses on generating
a meaningful mesh containing the object instances or parts of it. According to this main
focus the 3D data acquisition route is defined as presented in Figure 3.3. Compared to
2D data acquisition it is based only on a single route depicted in yellow and gray. Before
observing an object instance the old mesh is deleted to ensure independent measurements.
Then observation starts at the lower left corner of the platform looking directly towards
the object instances. This ensures that already the first versions of the spatial mesh
includes the current object instance.

In contrast to the 2D data acquisition, the observer does not simply walk along the
predefined route but rather follows a stop-and-go behavior. At the yellow circles the
observer stops and looks at the object instances slightly moving its head and upper body
to allow small variation in the viewing geometry and eliminate for HoloLens 2 difficult
perspectives e.g. due to reflections. These movements are adopted on a per instance base
to get an optimal mesh representation. To further extend HoloLens’ field of view the
observer constantly switches between frontal / backward / side and top view by stepping
onto the platform and back down again. Some object instances may be difficult to capture
from a frontal / backward / side or top view therefore these continuous changes ensures
that constantly both viewing angles are available and also a number of different mesh
representations of the object instance are generated.

3D data acquisition is a lot more time consuming then 2D data acquisition, on one
hand because the mesh generation is more expensive and on the other hand because the
next dataset is only transferred once the previous one succeeded — hence no parallel
processing. Therefore an observation time of 6 minutes is selected. Within this time
frame more than 300 different mesh representations can be acquired, resulting into about
60,000 3D scenes in total. The exact number per object instance strongly depends on

49

3. Data Acquisition

Figure 3.4: Comparison between standard images (left), ones with incorrect settings
(middle) and corrupt captures (right). The latter two can be the result of the initial
adjust period of HoloLens 2.

the generated data volume as the next mesh is only transferred once the predecessing
request returned.

Each of the 50 object instances are observed twice in four conditions, once for 2D and
once for 3D data acquisition. 2D data is acquired along 3 routes over 1.5 minutes
covering different observation distances and angles. 3D data acquisition is based on a
stop-and-go setup continuously integrating different viewing geometries to optimize the
mesh representation of the object instance. It is with 6 minutes more time consuming.
After describing data acquisition the focus now shifts towards processing the generated
2D and 3D datasets.

3.1.5 Processing
The raw data acquired with HoloLens 2 and stored at HoloServer requires some processing
before meaningfully using it to train object detection algorithms. Some unsuitable scenes
are still included e.g. captured during startup or cool-down. Additionally, the raw data
only contains classification information — only the correct category but not the bounding
box is know. Therefore object instances have to be annotated. As 2D and 3D data must
be handled differently, in the following also the processing steps are detailed separately.
First 2D and then 3D data preparation is described.

2D Data

In the initial data cleaning step all unplanned or unsuitable images are removed from
the dataset. Such images are created either when starting or stopping the application.

When starting the 2D data acquisition client, images captured with HoloLens 2’s RGB
camera are directly sent to HoloServer. Experiments show that HoloLens 2 requires some
milliseconds to adjust to environmental / lightning conditions. This applies to all tested

50

3.1. Methodology

Figure 3.5: Two examples of images containing the hand gesture to stop 2D data
acquisition.

conditions. During this time up to ten images are captured which are different than all
other images acquired afterwards. Two examples are depicted in Figure 3.4. The upper
row is an example from the indoor-night condition, the bottom row from the outdoor-sun
condition. The left column shows images as acquired most of the time. The middle
and right column presents images acquired during startup. To get a consistent dataset,
images as in the middle and right column are manually removed.

Also stopping the 2D client creates problematic images. The client is ended by a hand
gesture. While doing this hand gesture images are still captured and stored on HoloServer.
Two examples are shown in Figure 3.5. As images with a hand could add additional
unplanned and uncontrolled effects which are also not present in 3D data, all images
containing hands are manually removed. Moreover, as data acquisition is a manual
process some images exist not depicting any object. For consistency reasons also those
ones are manually removed.

After data cleaning the remaining images are annotated. Different options for labeling
are considered. Manually labeling the whole dataset is due to the number of images —
about 120,000 — not possible. No simple algorithms solution is available and even using
networks such as YOLOv3 trained on MS COCO does not achieve convincing results.
Finally the idea is to label images by applying transfer learning and slight overvfitting.
Hence, pre-trained weights of a neural network are used as a starting point to retrain the
network. This way the network already starts of with knowledge how to solve a similar
problem. The network is retrained with a manually labeled subset of the new dataset.
The resulting weights can then be used to label the whole dataset. As images are quite
similar — acquired with 7.5 fps while walking slowly, showing a consistent scenario —
a meaningfully selected subset should be enough to cover most cases. Additionally, no
data augmentation is applied so only the observed lightning conditions and perspectives
are learned.

In total 6,000 images are labeled manually with Microsoft VOTT12. The manually labeled
data is composed of 30 random images per instance and condition (see InputData-
Manager13). Hence, a completely equal distribution between instance and condition

12https://github.com/Microsoft/VoTT, accessed 16-April-2021
13https://git.geo.tuwien.ac.at/markus-kattenbeck/holo2_server/-

/blob/master/app/resources/yolov3/input_file_manager.py#L11, accessed 17-May-2021

51

3. Data Acquisition

is employed, while accounting for systematic effects due to perspectives by randomly
selecting the image per instance and condition. The 6,000 annotated images are dis-
tributed into 5,000 training and 1,000 validation samples. To keep the equal distribution
25 images per instance and condition are used for training and 5 samples per instance
and condition are used for validation.

YOLOv3 is selected as neural network, as it achieves sufficient accuracy in a reasonable
amount of time and a simple and well-documented implementation is available: yolov3-
tf214. Also pre-trained weights on the current stat-of-the-art 2D dataset MS COCO are
accessible. The network is trained with different hyperparameters, especially focusing
onto different learning rates, batch size and initial weights. Learning rates between 0.1
and 0.00001 are considered. Batch size values range from 4 to 128. Different constellations
of initial and fixed weights are tested. In detail either all weights are initialized randomly
(none), only DarkNet weights are transferred from pre-training on MS COCO (darknet),
all weights are transferred besides the output layer (no_output) or DarkNet (darknet-
freeze) respectively all (no_output-freeze) weights are transferred and fixed. Additionally,
both the full YOLOv3 implementation and YOLOv3-tiny are tested. All tests are
implemented on up to five NVIDIA GeForce GTX 1060 based graphics cards with 6GB
of RAM each.

The weights achieving the lowest AP2D (also written as AP2D@[.5:.05:.95]) on the
validation set are then used to label the whole dataset. This measure is selected as it
is the state-of-the-art comparison metric and not only considers an IoU threshold of
50% but IoU thresholds up to 95%. A good bounding box accuracy is essential, as the
result of this labeling process is the input to the actual object detection experiment. In
the labeling procedure15 an additional check is included to ensure each image contains
only a single annotation — as always only one object instance is captured — and the
correct category is assigned. Therefore the labeling process includes another data cleaning
step, removing all incorrectly labeled images. Solely the exact location of the resulting
bounding box can obviously not be checked.

3D Data

After describing processing steps to clean and annotated the 2D datasets, in this part the
processing of the 3D dataset is detailed. In contrast to the tedious, manual data cleaning
process required for the 2D dataset, 3D data processing is based on an algorithmic
approach which automatically finds non-fitting scenes such as point clouds not containing
any objects or ones created after a mapping loss event. Therefore no manual data cleaning
step is required.

Due to the geometrically well defined structure of each scene, 3D bounding boxes — but
no category labels — can be retrieved algorithmically. As depicted in Figure 3.1 each
object instances is placed on top of a large platform. The focus of 3D data acquisition is

14https://github.com/zzh8829/yolov3-tf2, accessed 16-April-2021
15https://git.geo.tuwien.ac.at/sherrmann/yolov3-tf2/-/blob/master/label.py, accessed 17-May-2021

52

3.1. Methodology

on capturing the object instance. Hence, the observer’s focus is constantly on the object
instance. Thereby also the the platform is constantly observed. This means all measured
3D scenes contain the large, smooth plane of the platform top. In most cases it is even
the largest connected plane in the scene, which makes it easy to detect. Based on the
detection of the platform plane also the location of the object instance can be defined.
According to the setup, only the wanted object instance is place above the platform plane.
The algorithm leverages these two central assumptions: 1) the platform top is the largest
plane and 2) the object instance is the only object above the platform plane.

For implementation again the Python programming language is selected, due to the
author’s experience with it. Moreover, the Python library Open3D16 provides simple and
intuitive functionalities for point cloud processing. Leveraging Open3D bounding boxes
can be retrieved as presented in Listing 3.3. First, the platform is retrieved from the
input point cloud. For this RANSAC [Fischler and Bolles, 1981] is used to segment the
plane containing most points. Then all points located above the platform — possible
object points — are extracted. In this step outliers are removed. A given number of
points must be located within a given radius from a point, so it is kept. After this step
only point clouds with a minimum number of object points are considered. x and y
extent is defined by these object points. For the z extent the highest object point and
the lowest platform point is used. The latter ensures that each object is standing on
something and not floating in free space.

Listing 3.3: Creation of a 3D bounding box based on an input point cloud
1 class PointCloudBboxHandler:
2 ...
3 def get_object_with_below_platform_bbox(self, pcd: PointCloud) -> Optional

[OrientedBoundingBox]:
4 # Get platform
5 platform_bbox = self.get_platform_top_bbox(pcd)
6
7 # Get and check object points
8 object_pcd = self.get_object_points(pcd, platform_bbox)
9 object_points = np.asarray(object_pcd.points)

10 num_points = object_points.shape[0]
11 if 0 < num_points < self.min_num_object_points:
12 return self.handle_not_enough_points(object_pcd)
13
14 # Get z extend
15 zmax = np.max(object_points, axis=0)[2]
16 _, _, zmin = platform_bbox.get_min_bound()
17 return self._get_oriented_bbox_from_points(object_pcd, zmin, zmax)
18 ...

To further improve the bounding box retrieval the a-priori known category labels are
integrated into the procedure. Different geometric properties of categories are accounted
for by leveraging — or not leveraging — some additional functionalities accessible by

16http://www.open3d.org/, accessed 16-April-2021

53

3. Data Acquisition

parameters. Due to the category based configuration a factory class is defined. Listing
3.4 provides insights into required configurations per category. Given parameters have
the following effects: The considered object point space above the retrieved platform can
be restricted with relevant_platform_percentage (in the x,y-plane) and max_-
obj_height (in z-direction). These parameters are useful to automatically remove
most outliers centered above the object or along the edges of the platform. To also
check the plane with the second largest amount of points check_sec_plane can be
used. In special cases outlier removal can be skipped with outlier_criteria and the
RANSAC parameter can be adopted with ransac_distance_threshold.

Listing 3.4: Used PointCloudBboxHandler configurations per category
1 class PointCloudBBoxProvider:
2
3 def get(self, class_name: str) -> Optional[PointCloudBboxHandler]:
4 """Return a configured PointCloudBboxHandler."""
5 if class_name == "chair":
6 return PointCloudBboxHandler(
7 relevant_platform_percentage=0.75,
8 max_obj_height=1.5, # chair height << 1.5m
9)

10 if class_name == "pottedplant":
11 return PointCloudBboxHandler(
12 relevant_platform_percentage=0.75,
13 max_obj_height=1.0, # plant height << 1m
14)
15 if class_name == "monitor":
16 return PointCloudBboxHandler(
17 relevant_platform_percentage=0.75,
18 max_obj_height=0.5, # monitor height << 50cm
19)
20 if class_name == "table":
21 return PointCloudBboxHandler(
22 # the table top may contain more points then the platform top
23 # plane with second most point must be checked too
24 check_sec_plane="lower_bigger",
25 relevant_platform_percentage=0.85,
26 max_obj_height=1.0, # table height << 1m
27)
28 if class_name == "cup":
29 return PointCloudBboxHandler(
30 # Object is so small - could be identified as outliers
31 outlier_criteria=None,
32 max_obj_height=0.2, # cup height < 20cm
33 # with higher value most of the object is identified as platform
34 ransac_distance_threshold=0.02,
35)
36 print(f"The class_name {class_name} is not supported!")
37 return None

To automatically check the derived bounding boxes a volume analysis is performed. As

54

3.2. Results

3D measurements are absolute ones, the volume of a single instance in a given condition
should be stable over all observations. A large deviation in the bounding box volume
indicates that an incorrect bounding box is derived or the point cloud is corrupt. In any
case that sample should not be used. In practice volumes of the derived bounding boxes
are calculated and compared per instance and condition. For simplicity outliers detection
is performed based on box plot analysis introduced by [McGill et al., 1978]. Outliers
are defined based on the quartil Q1 and Q3 and the interquartile range IQR = Q3 − Q1.
Values bigger than Q3 + 1.5IQR or smaller than Q1 − 1.5IQR are discarded as outliers.
Samples which bounding box volumes are within the defined range are assumed to be
correct combinations of a valid point cloud and a bounding box locating the object
instance within it.

3.2 Results
After the detailed description of the applied data acquisition and processing methodology,
this section focuses on the results. First, observations made during data acquisition and
its results are described, then, the processed 2D and 3D data is presented.

3.2.1 Acquisition
Data acquisition worked smoothly both in the indoor and outdoor environments. With
the setup detailed in Subsection 3.1.4 it took between 4 and 6 days per condition, resulting
in a total of 15 days — on 5 days two distinct conditions were observed consecutively.

Each acquired 2D image has an approximate size of 500 to 600kB depending on the
compressibility of the content. Transfer and storage procedure at HoloServer took on
average 0.2214s with a standard deviation of 0.2016s. Acquired 3D data has an average
data volume of approximately 45.5kB but with a high standard deviation of nearly
90.0kB. These large deviation in 3D data size arise because of the growing mesh from
the beginning of the observation to its end. Figure 3.6 lower part depicts the increasing
data volume as well as the sharp drop in size when the mesh is cleaned and the spatial
mapping is started from scratch. A comparison between the upper and lower graphic
shows that the varying data volume is also correlated with changing transfer times. For
3D data transfer and storage on average 4.005ms with standard deviation of 3.695ms are
required.

In total more than 150,000 images and nearly 75,000 point clouds are acquired. As
expected approximately twice as much images as point clouds are collected. Figure 3.7
details the distribution between categories and conditions. The largest number of images

— with over 8,000 — are observed in the outdoor-night condition for categories monitor,
pottedplant, and table, and in the outdoor-sun condition for category monitor. The least
images about 7,000 or less, are acquired for category chair in all four conditions and for
category table in both indoor conditions. Most point clouds — in detail over 4,000 — are
collected for condition indoor-sun and category chair, and for condition outdoor-sun and

55

3. Data Acquisition

Figure 3.6: Store point cloud process example from 2020-09-14: The upper graph shows
the required time for retrieving, writing and completing the whole process. The lower
graph shows the data volume of the corresponding point cloud. It can be observed that
the transfer time increases with the data volume and is — especially for large point
clouds — the limiting factor.

category table. Less than 3,500 point clouds are observed in condition indoor-night for
categories monitor and pottedplant, and in condition outdoor-sun for categories cup and
pottedplant. Besides the slightly low number of acquired images of chairs no systematic
effects are apparent.

Examples for each category and conditions are presented in Figure 3.8. Image and
corresponding point cloud depict the same object instance captured in the same condition,
solely the perspective may differ. The condition can best be differentiated from the left
image column. From top to bottom the following conditions are shown: indoor-night,
outdoor-sun, outdoor-night, outdoor-sun, indoor-sun. As intended the illumination appears
constant in the indoor-night and outdoor-night condition. Particularly large changes in
illumination and therefore variations in object shade and shadows created by the observer
can be observed in the outdoor-sun condition.

Next to lightning effects also the planned object properties size, geometric complexity and
surface properties and their intra-category variabilities could be captured as planned. For
instance object size ranges for images from the small cup depicted in the second row, to
the only partly and images filling depicted table in the last row. These size variations are
also evident in the 3D representation. The cup is only described by less than ten points
while most points of the last point cloud are on the table surface. A visualized example

56

3.2. Results

Figure 3.7: Total number of captured images (left) and point clouds (right) per condition
and category. Conditions are symbolized by color: indoor-night (dark gray), indoor-sun
(light gray), outdoor-night (dark green), and outdoor-sun (light green).

of a geometric complex structure is the pottedplant in the second last row. As shown
in the images on the left side the leaves are thin and long, but HoloLens 2 captured a
rougher and less structured representation. Also the geometrically simple object monitor
is rarely captured perfectly. Most problematic are sharp and accurate edges, as this
requires point measurements directly on the edge. Geometric complex parts which also
have a reflective surfaces are especially difficult for HoloLens 2. For instance looking at
the top row, points on the thin and shiny chair legs could not be acquired. In contrast
object instance with non reflecting surfaces such as office chairs covered with fabric are
particularly simple for HoloLens 2. The mesh generation works faster and more accurate
even compared to slightly reflecting instances such as wooden chairs.

Demanding object size and lightning conditions also led to mapping loss events during
3D data acquisition. An example is presented in Figure 3.9, showing the correct mesh
in green and the result of a mapping loss event in red. As it can be seen previously
mapped surfaces are kept — though being incorrectly located — and new content is
added. To ensure a meaningful and consistent spatial mesh, the acquisition is interrupted
on mapping loss, the current mesh deleted, and acquisition is restarted from the origin
corner. It is observed that most mapping losses happened after passing the second
corner and looking into the direction of the starting point. This occurred equally in all
conditions. Possibly, this happened because the observation angle changed for the first
time by 90◦ around the z-axis and some previously visible orientation points could no
longer been observed by HoloLens 2. The outdoor-sun condition is additionally difficult,
in particular in combination with the smallest category - cup. An explanation could be
the demanding lightning condition, due to direct sunlight and changing shadows of the
observer. Moreover, it could be especially difficult for HoloLens 2 to anchor the spatial
mesh — mainly consisting of the flat platform top — onto a single, small geometric
structure such as a cup.

17https://www.meshlab.net/, accessed 20-April-2021

57

3. Data Acquisition

Figure 3.8: One example image and point cloud per category depicted in different
conditions and from different perspectives. (Image and point cloud condition and instance
match but perspective may be different.) From top to bottom: 1) chair, indoor-night,
2) cup, outdoor-sun, 3) monitor, outdoor-night, 4) pottedplant, outdoor-sun, 5) table,
indoor-sun. Point cloud images use MeshLab17for visualization.58

3.2. Results

Figure 3.9: Result of a mapping loss event. The green points visualize a correct mesh
representation, the red ones the point cloud after a mapping loss. In the left graphic
the large horizontal and vertical surface depicts the platform, points within the black
rectangle are object points — in this case a cup. Visualizations are created with Mesh

Figure 3.10: Three examples for blurry images. The left two are acquired in the indoor-
night, and the right one in the indoor-sun condition.

Object properties did not have any obvious effect onto the acquired 2D data, but the
different conditions did. In both indoor environment the number of blurry images is
higher than in the two outdoor conditions, despite the slow walking behavior in all
conditions. In detail approximately half of the indoor-night and a few indoor-sun images
are at least partly blurry. Three examples are shown in Figure 3.10.

3.2.2 Processing

2D Data

After the manual data cleaning 143,587 images remain. Less then 6% — in detail 8,731
— of the acquired images are removed. 6,000 of these images are manually labeled and
used to train YOLOv3, split into 5,000 train and 1,000 validation samples. To reach
a good accuracy a number of different hyperparameter combinations are tested. A
selection, sorted by network configuration and AP , is presented in Table 3.2, the given
accuracy measures corresponds to the results after 100 epochs. In particular both the
full YOLOv3 network and also its smaller tiny-YOLOv3 variation are considered. In
general a comparable accuracy level is reached.

Initializing, but not freezing, weights works best in both configurations. Transferring only
DarkNet weights or using all weights but the ones from the output layer does not seem
to have a large effect on the final accuracy (see run 18 - 19 and run 29 - 32). The best
runs starting from random weights (run 20 and 27) reached a lower accuracy. Freezing
transferred weights makes the network less flexible and learning stagnates quickly.

59

3. Data Acquisition

Run config. transfer learning rate batch size AP AP50 AP75

18 full darknet 0.001 20 68.56 96.54 85.55
16 full no_output 0.001 20 66.93 97.22 82.89
20 full none 0.001 20 57.61 91.41 67.47
12 full no_output-freeze 0.01 64 57.21 89.09 68.28
10 full darknet-freeze 0.01 32 51.21 82.91 55.49
4 full darknet-freeze 0.01 64 49.55 79.56 56.78
5 full darknet-freeze 0.0001 64 45.85 75.94 50.37

15 full darknet 0.01 20 35.19 70.43 29.35
29 tiny no_output 0.001 32 62.03 96.37 72.62
32 tiny darknet 0.0001 4 60.67 96.43 71.57
28 tiny darknet 0.001 32 59.88 96.44 69.22
27 tiny none 0.001 4 55.87 93.38 62.49
33 tiny no_output 0.0001 4 54.39 92.34 58.69
30 tiny darknet-freeze 0.001 128 40.37 80.02 32.28
24 tiny none 0.1 32 40.07 74.73 38.72
26 tiny none 0.00001 32 14.51 38.24 7.05

Table 3.2: A comparison between hyperparameter sets training YOLOv3 with manually
labeled subset. Data is sorted by network configuration and AP accuracy in descending
order. The accuracy values refer to the results after 100 epochs.

Best learning rate values are between 0.01 and 0.0001 for both network configurations,
higher values overshoot the minimum and oscillate around it (e.g. run 24) and with lower
values progress is made only very slowly and only an insufficient accuracy is reached (e.g.
run 26). In both configurations the best results could be reached with a learning rate of
0.001 (see run 18 and 29).

Also a number of batch size values are tested. Due to the high number of trainable
parameters full YOLOv3 could only be trained with a maximum batch size of 4 when not
freezing any weights. Using 5 machines in parallel batch size increased to 4*5=20. The
lower number of trainable parameters of tiny-YOLOv3 allowed to test a higher number
of batch sizes in a short period of time.

Optimal transfer strategy, learning rate and batch size are strongly connected. Results
with frozen weights on the full network can be improved by using higher learning rates
with smaller a batch size (see run 10, 4, and 5). The learning rate - batch size relation
gets also clear comparing run 32 and 28. Similar accuracy values can be reached when
increasing both learning rate and batch size. But this does not automatically apply to
all hyperparameter combinations (see run 29 and 33).

The best hyperparameter combination is implemented in run 18 — full YOLOv3, initial-
izing DarkNet weights from MS COCO, with a learning rate of 0.001 and a batch size

60

3.2. Results

(a) pottedplant (b) cup (c) chair (d) table

Figure 3.11: Four image labeling examples: The left two bounding boxes are identified
perfectly. The right two bounding boxes fit less perfectly.

of 20 — and achieves an Average Precision AP of 68.56%. Additional accuracy metrics
calculated from the manually labeled validation set are given in Table 3.3 and 3.4.

Run AP APS APM APL AR1 ARS ARM ARL

18 68.56 47.37 64.86 71.27 73.99 53.52 69.88 76.17

Table 3.3: MS COCO validation accuracy of best label training. AR10 and AR100 are
omitted as only one object per image is present and therefore they are identical to AR1.

Run mAP chair cup monitor pottedplant table
18 96.54 98.44 97.97 99.09 93.50 95.50

Table 3.4: PASCAL validation accuracy (AP50) per category and overall of best label
training.

Resulting weights from this training are then used to label the complete dataset. Four
examples are shown in Figure 3.11. In all four the category is predicted correctly, only
the bounding box fits the object better in the left two than in the right two images. In
nearly all images only one object is detected, and the predictions and bounding boxes
match well even for such low scores as 0.3 as for example in Figure 3.11b. Therefore
all results with a score above 0.2 are accepted as long as the category is correct. But,
the median score per category and condition is always between 0.8 and 1.0. In the rare
case of two detections such as in Figure 3.11d only the detection with the higher score is
considered, again only if the category is correct.

Figure 3.12a shows the final number of accepted image-annotation combinations. The
chair and partly table category consists of the least number of images per condition.
Images captured in the outdoor-night condition provide the most number of images for
almost all categories. Looking at the number of rejected images — visualized by the bar
length — no systematic effects comparing categories or conditions can be observed. For
instance, although a comparable number of table images is rejected per condition, Figure
3.12b shows that these rejected images per condition are randomly distributed over the
single instances. Over 100 table image from instance 08 in the outdoor-sun condition are

61

3. Data Acquisition

(a) Per category (b) Per instance for category table

Figure 3.12: Total number of accepted annotated images. The bar symbolizes the number
of rejected image-annotation combinations, e.g. for category monitor condition outdoor-
night nearly 8,000 images are acquired — top of bar — a bit less than 500 images are
rejected and approximately 7,500 images are accepted — main symbol and bottom of
bar.

rejected, while nearly all are kept from the indoor-night condition. In contrast hardly
any table images of instance 04 are rejected.

In total 140,514 annotated images are accepted. These images are separated into train,
validation, and test set. To ensure an equal distribution of categories and conditions in
the validation and test set, they are each composed of 70 images per instance in a given
condition (e.g. each includes 70 different images from chair 01 in condition indoor-night).
All remaining samples are grouped into the train dataset. Table 3.5 summarized the final
split. As each images contains exactly one object the number of images and objects is
identical.

Classes train validation test
images objects images objects images objects

5 112,514 112,514 14,000 14,000 14,000 14,000

Table 3.5: Properties of new 2D AR-2/3 dataset.

After detailing the results of 2D data processing and considering the final cleaned and
annotated dataset the focus is now shifted towards the results 3D data processing.

3D Data

With the procedure presented in Section 3.1.5 it is possible to algorithmically derive 3D
bounding boxes from the acquired point clouds. Two examples are depicted in Figure

62

3.2. Results

Figure 3.13: Two correctly detected objects, identified object points are colored in
magenta, similar to the derived bounding box, remaining points are colored dark gray.
Due to category based algorithm fine tuning correct results could be achieved also for
demanding examples such as detecting the small cup the right point cloud (Image is
zoomed to object points for better readability).

3.13. The left graphic visualizes the perfect case, the platform top is the plane with the
highest number of points, a large number of points describe the object instance and no
points beside object points are located above the platform. The right example shows a
more complex scenario, only five points describe the object instance, but a number of
additional, partly erroneous points are positioned above the platform. For such cases,
object size restrictions per category and outlier detection are important. Both examples
show correctly derived bounding boxes.

To account for somehow incorrect bounding boxes and erroneous or still incomplete point
clouds the subsequent volume analysis is performed. Figure 3.14 shows two examples.
The left graphic depicts the derived chair bounding box of a point cloud after a mapping
loss event and the right graphic presents a table bounding box of this hardly mapped
object instance. When comparing such volumes to all other volumes acquired for this
object instance and condition incorrect ones can be easily identified. An example of the
effect of the volume analysis is given in Figure 3.15. While all volumes vary between
0.05 and 0.45m3 after the volume analysis only the ones between 0.11 and 0.15m3 are
accepted. This volume range appears logic for a potted plant.

Figure 3.16 shows the results of such an analysis by example of the category pottedplant.
Figure 3.16a presents the total number of correctly annotated point clouds. The in
color matching bar symbolizes the number of rejected point clouds. Figure3.16c gives an
example how the volume distribution of a single instance and condition affects the number
of not accepted point clouds. It depicts box plots per condition for pottedplant instance
03. Almost all point clouds of the outdoor-sun condition are accepted, as volumes are
quite distributed from less than 0.1 to over 0.3m3. Due to this large distribution quartil
Q1 and Q3 and in turn the interquartil range IQR are large. Hence, most volumes
are within the given range, even though single volumes may vary. In contrast, volumes
in condition indoor-sun are extremely similar, this causes strict constraints — or in

63

3. Data Acquisition

Figure 3.14: Two examples of derived bounding boxes not passing the volume selection.
Points within the bounding box are highlighted in pink. The left graphic shows a chair
point cloud after an mapping loss event, the right graphic one of the initial observations
of a table.

Figure 3.15: Effect of volume analysis on the example of pottedplant instance 04 indoor-
night. The left graphic shows the original volume box plot including volumes from 0.05
to 0.45m3. The right graphic show the box plot of accepted volumes, only ranging from
0.11 to 0.15m3.

other words all accepted volumes must be very similar — and many point clouds are
discarded. Additionally Figure 3.16b and 3.16c show that the mean (and median) volume
per instance is similar between the four conditions, standard deviation can differ. But,
no systematic effects are detected.

After applying the volume constraint in total 64,862 annotated point clouds are accepted.
On average 300 point clouds are available per instance and condition. Point clouds are
separated into a train, validation, and test dataset. As in the 2D domain validation
and test set contain equally distributed samples and the train dataset summarizes all
remaining ones. The dataset properties are summarized in Table 3.6. Again the number
of available point clouds and objects is equal.

64

3.2. Results

(a) Number of accepted pottedplant point clouds
per condition and instance. The symbol defines
the final number, the corresponding bar above
the number of rejected point clouds.

(b) Mean (symbol) and standard deviation (bar).

(c) Volume box plot pottedplant 03.

Figure 3.16: Volume selection properties and results: The box plot and number of
accepted point clouds describe together the relation between the volume distribution
and the number of rejected point clouds. Both mean/std and box plot show matching
volumes between conditions.

65

3. Data Acquisition

Scene type Sources # Classes train validation test
Indoor / Outdoor Point Cloud 5 50,862 7,000 7,000

Table 3.6: Properties of new 3D AR-2/3 dataset.

3.3 Evaluation
The previous section presents the results of the data acquisition and data processing
steps of the two main parts — 2D / 3D — of the dataset separately. Also the evaluation
starts by discussing properties of the 2D respectively 3D part of the dataset separately.
The main focus is to position the newly created, AR-2/3 dataset in respect to existing
standard datasets. After this domain based evaluation the two parts are analyzed as a
whole and 2D - 3D feature with their possibilities and restrictions are detailed.

3.3.1 2D Dataset Comparison

For 2D generic object detection the most important standard datasets are presented
in Subsection 2.1.2 with their properties detailed in Table 2.1. The properties of the
2D part of AR-2/3 are summarized in Table 3.5. It should be mentioned that most
datasets focus on specific aspects of object detection. The two PASCAL VOC datasets
are only of interest because of their historic importance. ILSVRC provides a very large
number of fine-grain categories, OID makes available an even larger number of images,
annotated object and categories. This allows to analyze the capability of object detectors
to distinguish very similar object categories. MS COCO is composed of real world
examples, providing realistic context and annotations for non-iconic objects. Because of
this MS COCO is the most challenging but maybe also most realistic dataset today.

AR-2/3 has a lot less categories, in detail only 5 in comparison to 80 for MS COCO,
200 for ILSVRC and even 600 for OID. Even the nowadays outdated PASCAL VOC
dataset includes 20 different categories. In contrast, the number of images is with over
140k approximately the same as for MS COCO, but is again significantly less than for
ILSVRC and OID, and significantly higher than for the historic PASCAL VOC datasets.
Nevertheless the number of annotated objects is considerably less than for the three
current datasets. This is mainly attributed to the fact that in AR-2/3 exactly one
object is annotated per image. In contrast MS COCO has on average more than 7
annotated object per images. ILSVRC is more similar to AR-2/3 with a bit more than
one annotated object per category in the training dataset but about 2.7 annotated objects
in the validation dataset. Due to the small number of categories the average number of
annotated object per category is with more than 28,000 twice as large as for MS COCO.
Hence, due to the relation of the number of images, number of annotated object, and
number of categories AR-2/3 provides more samples per category than current standard
datasets. Additionally, the object detector has to differentiate less categories. These
properties should simplify learning and improve training results of neuronal networks.

66

3.3. Evaluation

(a) indoor-night (b) indoor-sun (c) outdoor-night (d) outdoor-sun

Figure 3.17: Instance chair 04 from a similar perspective in the four conditions.

The used data acquisition configuration further simplifies object detection on AR-2/3.
As described in Subsection 3.1.4 the same setup is used for all object instances and
environment / lightning conditions. In detail an object instance is position on top of a
platform and surveyed from different perspectives, following a predefined route. Due to
using a frame rate of 7.5 fps and the requirement of moving slowly to prevent blurry
images, consecutive images are extremely similar. Moreover, the same object instance
is observed from the same route four times — once per condition. Figure 3.17 shows
an examples of the category chair instance 04. Even though generally in the two sun
conditions some variations in the direction of the light and consequently in the shade
are possible, brightness and contrast are constant within a condition for a given object
instance. This means that each object instance is very well captured — from a number of
different perspective and in different, static environments. But this also implies that for
most acquisitions (images) there are a number of very similar ones available — images
captured directly before or after a given acquisition and images captured under a different
condition but from the same or at least a very similar perspective (as visualized in
Figure 3.17). Assuming that only images acquired throughout this campaign make up
the population, it is extremely homogeneous. Due to the structured distribution between
train, validation, and test split, and the large share of about 80 % of the train split, it is
in addition very likely that the train split contains a number of very similar samples for
each sample in the validation respectively test split.

The setup of measuring only a single object positioned on top of a platform has additional
implications. The main one is, mostly images with one, iconic object are acquired.
According to [Lin et al., 2014] (creators of MS COCO) such iconic objects are less
frequent in real world samples — therefore in contrast to its predecessor ILSVRC, MS
COCO focuses on non-iconic and small objects (see Figure 2.2 for an example). As
accuracy results suggest such non-iconic objects are more difficult to detect, or, seeing it
from the opposite side, iconic objects are easier to detect. Hence, this is another indication
that detection accuracy results should be higher on AR-2/3 than on MS COCO.

As described before, data is acquired in a controlled environment to enable a meaningful
comparison between the different categories and environment / lightning conditions.
One important difference especially to the real world focused MS COCO dataset is that
objects are not captured in context, but rather isolated. Therefore object detectors must
use object properties only to identify the different categories. This allows interesting
conclusions about the importance of context information for specific categories. Namely,

67

3. Data Acquisition

is the context information equally important for all categories, or is it maybe more
important for e.g. small categories? Moreover, the controlled environment ensures that
approximately the same number of acquisitions are available per category and even per
object instance and condition. Using web crawled data this property is difficult to achieve.
Summarizing the implications of the data acquisition configuration it can be stated that
the dataset does not describe real world situations, but is acquired under laboratory like
conditions. This enables a meaningful comparison between categories, conditions and
finally between 2D and 3D results.

As mentioned before no systematic differences between the number of images respectively
annotated objects per category could be observed (see Figure 3.12). Hence, category and
condition specific differences cannot be explained by a varying number of training samples
for the respective category / condition. Although not considered as systematic effect,
it should be mentioned, that the least images (25,786) are available for category chair.
More interesting is the fact that approximately every second image in the indoor-night
condition and some images in the indoor-sun condition are blurry (see e.g. Figure 3.17a).
In contrast nearly all images in the two outdoor conditions are perfectly sharp. This
could be an effect of the used artificial light in the indoor-night condition. As data
for the two indoor conditions is collected first this effect may also be attributed to
the increasing experience of the observer. Interestingly HoloLens 2 does not have any
problems capturing images in the outdoor environment even with direct sunlight. All
auto focus, auto white balance and auto exposure work fine even in this more demanding
condition.

3.3.2 3D Dataset Comparison
In the 3D domain currently datasets are mainly developed for specific applications with
a strong separation into indoor and outdoor (mainly autonomous driving) datasets. To
the author’s best knowledge, no real generic dataset exists at the moment. 2D standrad
datasets differ in the sense of focusing on some general properties such as better fain-grain
distinction between a large number of categories or provide real world samples with
non-iconic objects. 3D datasets rather provide samples for one specific application. For
this application then in turn maybe multiple datasets exist to cover the different general
foci. Most important 3D datasets are presented in Subsection 2.2.2 and the datasets
specifications are summarized in Table 2.4. The specification for the newly created,
AR-2/3 3D dataset are listed in Table 3.6.

Comparing the two tables one observes that AR-2/3 has the lowest number of categories.
But, it should be considered that KITTI is often evaluated only on its three main
categories (car, pedestrian, and cyclist) and similarly for most evaluations on SUN RGB-
D only the 10-class version is used. In this sense five can be seen as acceptable number of
categories in comparison to current 3D standard datasets. AR-2/3 provides a bit more
3D scenes as the large, synthetically generated FAT dataset. It is significantly larger than
SUN RGB-D and KITTI, but not as large as nuScenes. Similarly to the 2D domain this
is not valid for the number of annotated objects as also in the 3D domain each object is

68

3.3. Evaluation

captured in isolation. With on average more than 6 annotated objects per scene SUN
RGB-D provides more than 64k annotations and KITTI includes with approximately
5.3 annotations per scene more than 80k annotations. Therefore the total number of
annotated objects is similar in KITTI, SUN RGB-D, and AR-2/3. In summary, AR-2/3
has similar specifications — number of categories and number of annotated objects — as
the current standard dataset KITTI and SUN RGB-D.
An interesting feature of AR-2/3 is that it already provides a meaningful split into train,
validation, and test split. This complete split is only provided by SUN RGB-D. The
others either only split into train and test, or provide only a single dataset, to be split by
the user. Additionally, AR-2/3 allows a fair comparison between the different categories
as approximately the same number of annotations are provided per category. Both SUN
RGB-D and KITTI have the disadvantage that for some categories a significantly larger
amount of annotations are available than for others. For instance the KITTI dataset is
composed of 75% car and only 4% cyclist annotations. This creates an imbalance and
hinders a meaningful accuracy comparison between the different categories.
Also for the 3D data the controlled data acquisitions implies a homogeneous dataset.
Although 3D data is captured less frequently than 2D data, consecutive scenes are
still similar. There are two main reasons for this. First, the spatial mesh is build
up continuously. In each step parts are added or updates. This is possible because
3D scenes contain absolute distance measurements, therefore also the position of each
measured point is absolute and does not change in respect to the viewing angle. Second,
creating the 3D spatial mesh is more complex and thereby time consuming than capturing
the current RGB view of the camera. Although larger time ranger are between two
consecutive acquisitions, the changes in the spatial mesh may be small. In fact because
of the absolute measurements the 3D data may be even more homogeneous than the 2D
data. There are no different perspectives for a given object. Observing an object from
different perspectives may only lead to some additional points or an update of existing
point locations. That is why largest difference between acquisitions of the same object
instance can be attributed to not yet full captured objects.
The dataset uniformity is further ensured by the data acquisition setup. To best capture
the currently observed object instance even from the beginning and in different variations,
one requirement for the data acquisition is that the observer constantly focuses on the
object. In combination with the well defined data acquisition configuration of always
placing exactly one object on top of the platform, most acquired point clouds contain a
limited number of points and only depict the object in an iconic manner on top of the
platform. Hardly any environment is captured. Beside indirect effects of the measured
point locations, acquisitions of a single object instance result into similar point clouds for
the different environment / lightning conditions. This uniformity should make it easy to
learn the different categories by a neural network. Hence, it is expected that better object
detection results can be achieved than for other datasets with comparable specifications.
In an analogous manner to the 2D dataset also the 3D equivalent is designed for academic
usage. The controlled data acquisition configuration restricts its applicability to real

69

3. Data Acquisition

world samples. Instead it allows to properly analyze effects due to the four environment
/ lightning conditions and object detection characteristics of the five categories. For the
latter it is important to mention that the setup removes all possible context information
and detection results can be solely attributed to the retrieval of object features. The main
difference between the categories in the 3D domain is the number of points available per
object. While a table object can be easily described by half of all points composing an
acquired point cloud (e.g. see Figure 3.8-5), as less as three points can depict a cup. (The
cup in Figure 3.8-2 is the largest used instance.) This makes the cup category especially
important to analyze an algorithm’s capacity to locate small and hardly captured objects.
The main observed difference between the four conditions is that most tracking loss
events happened in the outdoor-sun condition. A possible explanation for this effect is
the difficult lightning in this condition. Reflections occur regularly because of the direct
sun light. The number of mapping loss events also seems to correlate with the observed
category. Most difficult is the cup category. This can most likely be explained by the
challenging geometry. As stated above the point cloud often only contains the object and
the platform below. With such a small object as a cup the point cloud mainly describes
a flat surface. Having hardly a third dimension makes it difficult to anchor the point
cloud within the real world and loosing or changing only a single point may therefore
result into a mapping loss event.

3.3.3 2D - 3D Dataset properties
After comparing the 2D and 3D part of AR-2/3 with standard datasets from their
respective domain, this Subsection discusses the similarities and differences between the
2D and 3D part. Most oft them have already been defined when detailed the dataset in
Subsection 3.1.1 and 3.1.2.

As defined the number of categories is equal for the 2D and 3D part. The number of
images is approximately twice as large as the number of point clouds, therefore also twice
as much 2D than 3D objects are annotated. As most current 2D standard datasets are
comprised of a significantly larger number of images and annotated objects than 3D
datasets, this difference reflects the current state-of-the-art. Still the specifications of the
3D part are rather high, while the specification of the 2D part are rather low, thereby
defining an acceptable compromise. Both datasets have the controlled environment and
thereby the equally distributed number of annotations per category and condition as
well as the high similarity between consecutive acquisitions in common. Condition and
category specific variations are strongly domain specific (see subsections above) and no
direct correlation can be observed.

70

CHAPTER 4
Analysis

Based on the presented the AR-2/3 dataset the comparison between 2D and 3D object
detection can be performed. This chapter presents the applied methodology. Subsequently,
first detection algorithm requirements are described, then the algorithm selection and
tested configurations are presented, and finally, the comparison strategy is specified.

4.1 Algorithm Requirements
The general goal is to compare 2D and 3D object detection leveraging AR data. This
comparison should be realized by setting up one representative 2D and one representative
3D object detection algorithm. Where the term representative stands for state-of-the-art
algorithm in both accuracy and speed. As detailed in Section 2.1 and 2.2 best results in
both the 2D and 3D domain are currently achieved by deep neural networks. Therefore
DNNs should be used. Good algorithms are defined by high detection accuracy and low
inference time. For the comparison between DNNs results on standard dataset — such
as MS COCO (see Subsection 2.1.2) for 2D algorithms and KITTI / SUN RGB-D (see
Subsection 2.2.2) for 3D algorithms — should be used. In detail for 2D comparison the
MS COCO AP2D value should be used as reference, as it summarizes Average Precision
results for IoU values between 0.5 and 0.95. For the comparison performed in this thesis
multiple IoU values should be employed (see Subsection 4.3) so the selected algorithm
should perform well with different IoU values. In the 3D domain no multi IoU accuracy is
available, in fact even multiple standard datasets are used. Therefore the mean Average
Precision mAP3D IoU 0.25 calculated either from KITTI or SUN RGB-D test set should
be used. Single category results should be neglected as no global comparison between all
describe algorithms is possible. Due to the domain driven development in the 3D domain
it is also important to account for the selected categories. An algorithm developed for
indoor detection may achieves better results on commodity object — as used in this
experiment — than an algorithm developed for autonomous driving.

71

4. Analysis

Additionally, the target application – real-time object detection with HoloLens 2 – must
be considered. Therefore the selected algorithm should perform object detection in
real-time. But, this does not imply that the algorithm has to run directly on HoloLens
2. A similar client-server setup as used for data acquisition (see Subsection 3.1.3) is
conceivable. This would allow access to more processing capabilities than available on the
device and — maybe most importantly — this would enable the usage of GPUs. Hence,
more complex and resource demanding algorithm are an option, if they are fast enough.

To allow quick prototyping an easy to use, open-source implementation of the selected
DNN should be available. An easy to use implementation should be well documented,
actively developed, and use recent dependencies. Therefore enabling fast setup and
access to support, in case of bugs or issues. Only open-source implementation should
be considered as they are free of charge and the source code is publicly accessible. This
allows for adaptations or extensions if required. Python implementations are preferred
due to the author’s experience with this programming language.

4.2 Algorithm Selection and Training

According to the defined requirements a 2D and 3D algorithm are selected and trained.
The basis to realize the following comparison is the AR-2/3 dataset. In other words to
allow a fair comparison both 2D and 3D algorithm must only use the respective data.

2D Data

The basis for 2D algorithm selection is the accuracy and speed comparison of state-of-the
are CNNs shown in Table 2.2 and 2.3. In this comparison YOLOv4 reaches the highest
accuracy in all categories and is also the second fastest algorithm behind YOLOv2. But,
the original YOLOv4 paper was only published during test time of this master thesis.
Therefore no easy to use implementation was available at that time. Hence, YOLOv4 is
not considered in this thesis.

Second best algorithms are RetinaNet and YOLOv3. RetinaNet achieves better accuracy
than YOLOv3, but is also significantly slower. Due to the real-time constraint RetinaNet
is not suitable. In contrast, even YOLOv3’s biggest version YOLOv3-608 reaches an
acceptable inference time of 51ms. Additionally, the smaller — and faster — versions
YOLOv3-416 and YOLOv3-320 reach better interference times of 29ms and 22ms respec-
tively [Redmon and Farhadi, 2018]. For even faster processing YOLOv3-tiny [Huang
et al., 2018] can be used. It is a lighter version of the full model containing less layers,
only 23 instead of 106. Therefore inference is faster, only 1 GB instead of 4 GB of GPU
RAM are required for training and it can be deployed to portable devices which do not
have access to a GPU. The drawback is that it may miss some small objects [Yang et al.,
2019]. At test time already a number of YOLOv3 open-source implementations were
available.

72

4.2. Algorithm Selection and Training

Hence, YOLOv3 is selected as representative 2D object detection algorithm, achieving
the best accuracy while also fulfilling the real-time constraint and the availability of an
easy to use, open-source implementation. In detail both YOLOv3 and YOLOv3-tiny
should be tested to additionally allow the comparison between an accuracy-focused
and speed-focused implementation of a state-of-the-art 2D real-time object detection
algorithm.

After evaluating a number of YOLOv3 implementations yolov3-tf21 is selected. It
is a Python 3 - Tensorflow 2 implementation of both YOLOv3 and YOLOv3-tiny. The
package is selected due to the author’s experience with Python and Tensorflow which
allowed the author to easily improve and extend the package e.g. by including data
augmentation and parallelism of the training. Additionally, recent versions of package
dependencies are used and the package itself is actively developed, allowing for support
and bug fixes by the community.

yolov3-tf2 is set up at Vienna Scientific Cluster 3. Up to 20 NVIDIA GeForce GTX
1080 based graphics card with 8GB of RAM each are used. The following configuration
is used: Adam optimizer with β = 0.9, weight decay of 0.0005 and learning rate decay on
plateau. Data augmentation is used for all training runs, implemented using tf-image2.
In detail the following augmentation strategies were randomly applied: cropping, aspect
ration distortion, quality reduction, erasing of image parts, rotation up to 45◦, horizontal
flipping, and color distortion (changing brightness, contrast, saturation, hue).

Leveraging this base configuration and AR-2/3, a number of hyperparameters are tested.
In detail in this thesis different values for learning rate, batch size and input size are
considered for both YOLOv3 and YOLOv3-tiny. Most studies training YOLOv3 and /
or YOLOv3-tiny find that the best learning rates are 0.001 and 0.0001, see e.g. [Benjdira
et al., 2019], [Ammar et al., 2019], and [Valiati and Menotti, 2019]. Therefore also this
thesis focuses onto these two learning rates, but also tests 0.01 and 0.0001. For the batch
size selection hardware constraints due to the available GPU RAM must be considered.
Even though the original paper uses a batch size of 64 [Redmon and Farhadi, 2018], a
number of other realizations also achieve good results with smaller values such as 24
[Thipsanthia et al., 2019], 4 [Rajendran et al., 2019] or even 2 [Valiati and Menotti, 2019].
Hence, due to the available GPU RAM of 8 GB, YOLOv3 focuses on training with the
maximal possible batch size of 8 on a single GPU. To realize the large batch size of
64 training is parallelized onto eight GPUs. YOLOv3-tiny can — because of its lower
requirements — easily be trained with a batch size of 64 even on a single GPU. Next to
the batch size also the input size can affect the required GPU RAM. Most realizations
use an input size of 416 as it is often a good trade-off between high accuracy and low
inference times, see e.g. [Ammar et al., 2019]. That is why, this thesis focuses on an input
size of 416, but also employs values of 320 and 608 to evaluate the effect. In addition to
the discussed hyperparameteres, the usage of YOLOv3 and YOLOv3-tiny can be seen as
another hyperparameter, as it varies the number of layers.

1https://github.com/zzh8829/yolov3-tf2, accessed 16-April-2021
2https://github.com/Ximilar-com/tf-image, accessed 14-May-2021

73

4. Analysis

3D Data

For the selection of a representative 3D object detection algorithm Table 2.5 and 2.6
are used. Vote3Deep reaches the highest accuracy, but requires more then a second for
inference. Therefore it does not fulfill the real-time constraint and is neglected. The
second best algorithms are SECOND and VoteNet. The former is significantly faster
while the latter achieve a slightly better accuracy. Another important difference between
them is that SECOND is developed focusing on the autonomous driving application

— evaluated on KITTI — while VoteNet development is mainly looking at commodity
objects — evaluated on SUN RGB-D and ScanNet. Similar to VoteNet this thesis also
focuses on commodity objects. Therefore, it is expected that VoteNet is able to better
describe the dataset used in this thesis and achieves a higher accuracy. The original
VoteNet implementation — votenet3 — already covers all implementation requirements.
Hence, VoteNet is used as 3D object detection algorithm.

The votenet package is a Python 3 - Pytorch 1.1 implementation. It has to be extended
with an additional dataset class describing the AR-2/3 dataset (see HoloexpDetec-
tionVotesDataset4 and HoloexpDatasetConfig5). VoteNet expects point clouds
and bounding boxes to be in a specific structure. The point cloud must be in an upright
coordinate system, z-axis pointing upwards, y-axis pointing forward, and x-axis pointing
to the right. Therefore HoloLens 2 point clouds — in forward coordinate system —
are transformed. Also the data structure of VoteNet bounding boxes is defined clearly.
They are described by the center coordinates (X, Y, Z), size (length, width, height) and
heading angle around z-axis from positive x-axis to negative y-axis. Deriving the center
coordinates is trivial. For the derivation of bounding box size and heading angle it must
be considered that length and width can be defined arbitrarily, as long as the matching
heading angle is selected. Figure 4.1 shows a 3D bounding box from top view. If v1
is used as length, α must be used as heading angle, if v2 is used as length β must be
used as heading angle (see VotenetLabelConverter6). Based on the point cloud and
bounding box votes are calculated.

Similar to yolov3-tf2 also votenet is set up at Vienna Scientific Cluster 3 leveraging
its NVIDIA GeForce GTX 1080 based graphics cards. The votenet implementation
uses Adam optimizer with β = 0.9 and batch norm decay rate of 0.5 with a step size of 20.
The network is trained for 180 epochs with learning rate decay at epoch 80, 120 and 160
with a decay rate of 0.1 each time. AR-2/3 is used as input dataset. Data augmentation
is applied in an analogous manner as in the original paper [Qi et al., 2019]. This means,
point clouds are randomly sub-sampled, randomly flipped in both horizontal directions,

3https://github.com/facebookresearch/votenet, accessed 17-May-2021
4https://git.geo.tuwien.ac.at/sherrmann/votenet/-/blob/master/holoexp/holoexp_detection_-

dataset.py, accessed 17-May-2021
5https://owly.duckdns.org/gitea/sophie/votenet/src/branch/master/holoexp/model_util_holo-

exp.py, accessed 17-May-2021
6https://git.geo.tuwien.ac.at/markus-kattenbeck/holo2_server/-

/blob/master/app/resources/mesh/label_fmt_converter.py#L16, accessed 17-May-2021

74

4.3. Comparison Strategy

Figure 4.1: Definition of VoteNet bounding box size (v1 / v2) and heading angle (α / β)
depend on each other. length = v1, width = v2 require heading angle = α while length
= v2, width = v1 require heading angle = β.

points are randomly rotated around the z-axis (between -5◦ and 5◦) and randomly scaled
(between 0.9 and 1.1).

To optimize the model a number of hyperparameters combinations are tested. In detail
different values for learning rate, batch size and number of input points are tested. In
line with existing implementation learning rate values of 0.01 or 0.001 (see e.g. [Xie et al.,
2020], [Qi et al., 2019]) as well as slightly bigger and smaller values (0.01 and 0.00001)
are considered. A standard batch size of 8 — as used by all existing implementations
(see e.g. [Xie et al., 2020], [Chen et al., 2021]) — is selected. Due to the limited GPU
RAM of 8 GB no bigger batch size values can be tested, but also smaller values of 4 and
2 are taken into account. To describe the effect of point cloud size — alike the input
size for YOLOv3 — the number of input points is varied. A standard value of 20,000
[Qi et al., 2019] as well as half (10,000) and double (40,000) the number is checked. To
modify the network size, not only VoteNet, but also its simplified version BoxNet is
used. In comparison to VoteNet BoxNet skips the voting step and infers categories and
bounding boxes directly from the seed points [Qi et al., 2019]. Even though VoteNet
achieves better results than BoxNet in the original paper, it seems that in special cases
BoxNet performs better7.

4.3 Comparison Strategy
Before comparing object detection accuracy results, the best 2D respectively 3D run,
or the best set of hyperparameters, has to be identified. This decision is made based

7https://github.com/facebookresearch/votenet/issues/33, accessed 17-May-2021

75

4. Analysis

on the achieved accuracy on the validation set of each model. In the 2D case again
MS COCO’s AP2D is used, in the 3D case mAP3D IoU 0.25 is leveraged. As yolov3-
tf2 only returns YOLOLoss but no accuracy metrics the package review_object_-
detection_metrics 8 [Padilla et al., 2021] is employed to calculate both PASCAL
VOC AP2D per category as well as MS COCO metrics AP2D, AP2D−25, AP2D−50, and
AP2D−75. Minor improvements in the package are required to make it work with AR-2/3
9. votenet automatically calculates accuracy metrics, therefore no separate calculation
is required.

The best 2D and 3D accuracy are then compared with results on standard datasets
within the respective domain. In other words 2D results are set in relation to YOLOv3
results on MS COCO and 3D results are evaluated in contrast to VoteNet results on
SUN RGB-D. This can give some insights into training success but may also describe
the difficulty of the dataset. As the dataset shows a quite simple and constant scenario
probably a higher accuracy can be achieved than on MS COCO and SUN RGB-D.

Finally, 2D and 3D object detection algorithms are evaluated. The comparison strategy
focuses on two parts: accuracy and speed evaluation. Speed comparison can be easily
done across the 2D and 3D domain. The mean inference time of all validation samples
are calculated and compared. Such an across domain comparison is more demanding for
accuracy values. As no previous research exists in across domain, 2D - 3D object detection
accuracy comparison this thesis focuses on existing measures defined per domain. Most
measures are defined equivalently across the domains, extending them with an additional
dimension when moving from 2D to 3D. This implies, that for all comparison results it
must be considered that 3D bounding boxes may be more difficult to derive and provide
information about an additional dimension in respect to 2D bounding boxes.

In particular, again MS COCO metrics AP25, AP50, and AP75 are used as a basis. The
central difference between the 2D and 3D implementation is that 2D accuracy is based
on 2D IoU and 3D accuracy on 3D IoU. Because of the additional degrees of freedom
high 3D accuracy is therefore more difficult to achieve than 2D accuracy. This strategy
is selected even though also for 3D bounding boxes 2D accuracy metrics are available.
But, the goal of thesis is to compare 2D and 3D object detection results and the first
operates in the 2D domain and the latter in the 3D domain. It is argued that also the
accuracy metric should therefore operated in the respective domain.

To evaluate effects of object properties and intra-category variabilities, PASCAL VOC
AP2D and AP3D per category are used, again applying different IoU thresholds from
0.25 to 0.75. The per category results can give insights into effects due to object size,
geometric complexity, and surface scale. Next to object centric effects also accuracy
results per environment and lightning condition are presented and discussed.

8https://github.com/rafaelpadilla/review_object_detection_metrics, accessed 17-May-2021
9https://git.geo.tuwien.ac.at/sherrmann/review_object_detection_metrics, accessed 17-May-2021

76

CHAPTER 5
Results

The following chapter focuses on the results of the object detection experiment. As
detailed in the previous chapter the 2D algorithm YOLOv3 and the 3D algorithm VoteNet
are setup with 24 sets of hyperparameters each. For those setups validation accuracies are
given. In particular, the overall accuracy as well as accuracy per category and condition
are shown. For the best setup per domain also test accuracy and inference time are
presented. First result for the 2D then for the 3D domain are given.

5.1 2D Data
To select the best set of hyperparameters for YOLOv3 accuracy metrics are calculated
on validation data for each run. The results are presented in Figure 5.1, better values
are visualized in green, worse in red. The best AP can be achieved with YOLOv3-tiny, a
learning rate of 0.0001, a batch size of 64, and an input size of 416. Accuracy decreases
with increasing IoU, though AP25 and AP50 are often quite similar, whereas AP75 is
considerably below those. As AP is calculated from IoUs between 0.50 and 0.95 it focuses
on rather high IoUs and reaches thereby lower results. Looking at the accuracy metrics
per category most obvious is the high accuracy of the category table compared to all
other categories. For IoU 0.25 and 0.5 the best six sets of hyperparameters achieve an
average precision of over 0.9 for this category. Second best categories are most often cup
and pottedplant. The most difficult category is chair. This is especially true for a large
IoU of 0.75, where even the best set of hyperparameters reaches only an accuracy value
of 0.1131. Evaluating the best sets of hyperparameters one can observed that smaller
learning rates, larger batch sizes, and the medium input size achieve the best results.

As YOLOv3 is also trained with the smaller labeling dataset for the labeling procedure
(discussed in Subsection 3.2.2) the validation accuracy are compared for initial evaluation.
The best results for the labeling-dataset are summarized in Table 3.3 and 3.4. A first
comparison shows that the achieved accuracy of the full dataset is considerably below

77

5. Results

Fi
gu

re
5.

1:
Va

lid
at

io
n

ac
cu

ra
cy

m
et

ric
Y

O
LO

v3
fo

rd
efi

ne
d

24
se

ts
of

hy
pe

rp
ar

am
et

er
ss

or
te

d
by

A
P

in
de

sc
en

di
ng

or
de

r.
Co

lo
r

sc
al

e:
re

d
≤

0.
4,

ye
llo

w
=

0.
7,

gr
ee

n
≥

1.
M

os
t

ru
ns

ac
hi

ev
e

on
ly

a
ve

ry
po

or
ac

cu
ra

cy
.

78

5.1. 2D Data

the one of the labeling dataset, even though the full dataset includes a higher number of
samples (more then 112,000 vs 5,000 train samples). To better describe possible causes of
this difference three variations between the training with the labeling dataset and training
with the full dataset are considered. First, bounding boxes in the labeling dataset are
defined manually and not through an automatic labeling process based on YOLOv3 itself.
Therefore bounding boxes are likely more precise in the labeling dataset. But, as also
mean average precision with an IoU of 0.25 is significantly lower of the full dataset this
difference can be neglected. Second, for the training with the labeling dataset transfer
learning is used, thereby accelerating training as previously learned knowledge can be
used. This could have an effect on the result, but to achieve 2D - 3D comparable results
transfer learning is not an option for this experiment. Third, no data augmentation is
used for the labeling dataset. Due to the well defined data acquisition setup the dataset
is quite homogeneous. Therefore, the application of data augmentation could affect the
final accuracy.

To evaluate the effect of data augmentation on the accuracy, the best five sets of
hyperparameter are trained with two additional levels of data augmentation medium and
no. In this thesis medium data augmentation includes random erasing, random rotation
by up to 15◦, and random color distortion (changing brightness, contrast). For the no
data augmentation level only the original images are used. The originally applied level
of data augmentation is called full data augmentation. After training the additional
models, again the validation accuracy per category and per condition are calculates.
For the model with the highest accuracy per data augmentation level then also the test
accuracy per category and per condition are calculated. This complete YOLOv3 workflow
is visualized in Figure 5.2.

The validation accuracy results per category are shown in Figure 5.3. The same color
scale as in Figure 5.1 is used, visualizing better values in green and worse values in
red. Generally, one can observe an accuracy increase from full, to medium and no data
augmentation. Considering all five sets of hyperparameters applying no augmentation
seems to achieve the best results. But, the overall best model is trained in run 53 with
medium data augmentation. It is slightly better than the best no data augmentation in
all four mean Average Precision values (AP , AP25, AP50, AP75) presented. Interestingly
the best set of hyperparameter is equal for all three levels of data augmentation and it is
the tiny version of YOLOv3. In an analogues manner to full data augmentation AP25
and AP50 achieve similar results also with the additional two levels of data augmentation.
Different is the accuracy distribution over the categories especially for the best runs. For
an IoU of 0.25 and 0.5 nearly all categories achieve Average Precision of over 0.9, only
the category chair - medium data augmentation reaches with 0.8453 a value below (run
53). With the largest IoU of 0.75 there are also larger differences between the accuracy
values per category. Most obviously is again the lower accuracy of category chair. This
is similar to the behavior observed for full augmentation. In summary, category chair
seems to be most difficult to detect, especially with a large IoU.

Next to the possibility to evaluate accuracy per category, with this dataset it is also

79

5. Results

Fi
gu

re
5.

2:
Y

O
LO

v3
pr

oc
es

sin
g

an
d

ev
al

ua
tio

n
wo

rk
flo

w.
D

ue
to

th
e

po
or

re
su

lts
ba

se
d

on
th

e
in

iti
al

se
to

fa
ug

m
en

ta
tio

n
ta

sk
s

in
to

ta
lt

hr
ee

le
ve

ls
of

da
ta

au
gm

en
ta

tio
n

ar
e

ev
al

ua
te

d.

80

5.1. 2D Data

Fi
gu

re
5.

3:
Va

lid
at

io
n

ac
cu

ra
cy

of
be

st
fiv

e
se

ts
of

hy
pe

rp
ar

am
et

er
sf

or
th

re
e

le
ve

ls
of

au
gm

en
ta

tio
n

(fu
ll,

m
ed

iu
m

,n
o)

.
Th

e
re

su
lts

ar
e

so
rt

ed
pe

r
au

gm
en

ta
tio

n
lev

el
by

A
P

.
Ru

n
53

(m
ed

iu
m

au
g.

)
ac

hi
ev

e
th

e
be

st
ac

cu
ra

cy
.

G
en

er
al

ly,
m

ed
iu

m
an

d
no

da
ta

au
gm

en
ta

tio
n

pe
rfo

rm
sig

ni
fic

an
tly

be
tt

er
th

an
fu

ll
da

ta
au

gm
en

ta
tio

n.

81

5. Results

Figure 5.4: Differences between the four conditions and overall accuracy results on the
validation dataset. Negative values denote worse, positive values denote better condition
results. (dark-grey: indoor-night, light-grey: indoor-sun, dark-green: outdoor-night,
light-green: outdoor-sun) Results are given for all three level of augmentation, order
from left to right: full - medium - no augmentation per accuracy metric. Indoor-night
generally seems to be the most demanding and outdoor-sun the simplest condition.

possible to examine the effect of four environmental and lightning conditions (indoor-night,
indoor-sun, outdoor-night, and outdoor-sun, see Subsection 3.1.2). To better visualize
changes in accuracy between the different conditions Figure 5.4 shows the difference
between the condition specific accuracy results and the overall validation accuracy results
for the best run per augmentation level (order from left to right full - medium - no
augmentation). Negative values, therefore, denote that the condition specific accuracy is
lower / worse than the overall one, and positive values denote that the condition specific
accuracy is higher / better than the overall one. Detailed results for the best five runs
per augmentation level can be found in the Appendix 7 Figure 1, 2, and 3.

One apparent observation is that for all data augmentation levels — but most pronounced
on data augmentation level full (left most bar per accuracy and condition) — mAP
values are better for the condition outdoor-sun and worse for the condition indoor-night.
The indoor-sun and outdoor-night condition are quite close to the overall results. Looking
at the per category accuracy values one can observe more variations. For nearly all
categories and IoUs indoor-night is the worst and outdoor-sun is the best condition for
all augmentation levels. The results for the two other conditions vary more than for
mAP results and may differ strongly between the augmentation levels (e.g. condition
indoor-sun, category table, IoU 0.75).

For the best model per data augmentation level also the test accuracy is calculated. Test
accuracy is extremely similar to validation accuracy for all different IoU values, categories
and conditions (see Figure 5.6). Interestingly run 11 (no data augmentation) reaches

82

5.1. 2D Data

Figure 5.5: Differences between the four conditions and overall accuracy results on the
test dataset. Negative values denote worse, positive values denote better condition results.
(dark-grey: indoor-night, light-grey: indoor-sun, dark-green: outdoor-night, light-green:
outdoor-sun) Results are given for all three level of augmentation, order from left to
right full - medium - no augmentation per accuracy metric. Generally, results from the
indoor-night condition are worst and results from the outdoor-sun condition are best.

Figure 5.6: Overall accuracy of best run on validation and test data. For each accu-
racy validation (light) and test (dark) results are shown, full: blue, medium: purple,
no: turquoise. Full augmentation performs worse, medium and full augmentation are
considerable better and are quite similar.

slightly the highest test accuracy, run 53 (medium data augmentation) is only second
best. Figure 5.5 shows the differences from the overall to the condition specific results
for the test dataset. Those results for the test dataset are very similar to the validation
dataset ones. On NVIDIA GeForce GTX 1080 based graphic cards and an input size of
416 an inference time of 0.0155 seconds could be reached for YOLOv3-tiny, YOLOv3
requires 0.0516 seconds per image.

83

5. Results

5.2 3D Data
Also for the 3D data, validation accuracy is calculated for each set of tested hyperparam-
eters. The results are shown in Figure 5.7 sorted from highest to lowest AP25. Run 21
achieves with configuration votnet, learning rate 0.001, batch size 8 and 40,000 input
points the highest AP25 and AP50. Only in AP75 run 1 — configuration votenet, learning
rate 0.001, batch size 8, number of point 20,000 — reaches better results. Similar to
the 2D domain accuracy decreases with increasing IoU and while AP25 and AP50 are
quite close, there is a larger difference to AP75. For the first two, nearly always values
above 0.9 are achieved. In comparison the best AP75 is 0.7191 (run 1). Looking at the
per category results one can observe that the category cup achieves always the worst
accuracy. With an IoU of 0.25 also the cup category can reach an accuracy of 0.9662,
but with an IoU of 0.75 even the best model achieves only a value of 0.2001 (run 1). All
other four categories achieve similar and good results for IoU 0.25 and 0.5. Difference
between those categories can only be observed for results based on IoU 0.75. Even with
this high IoU the detection of category pottedplant performs well. The categories chair
and monitor are second best, and the category table performs a bit worse compared to
those two.

Differences between the overall accuracy and the per condition results are very similar for
the different runs, therefore only the results for the best run 21 are shown in Figure 5.8.
The complete set of deviations can be found in the Appendix 7 Figure 5 - 8. Different
than in the 2D domain no systematic effect due to the conditions can be observed, but
rather only larger variations per category - condition combinations. For example, the
overall most difficult cup category performs better in the two indoor conditions and worse
in the outdoor condition, while the table category performs worst in the indoor-night
condition and better in the other three. Interestingly there can also be variations between
the results for different IoU values. For the cup category the variations are largest for an
IoU of 0.5. In contrast, for the other four categories hardly any variations are observed
for IoU 0.25 and 0.5, but large variations are apparent for an IoU of 0.75.

For the best model (run 21) accuracy is calculated on the test set. Overall accuracy
results and deviations for the four conditions are summarized in Figure 5.10 respectively
5.9. Overall results are similar but mostly slightly worse than validation accuracy. Only
some categories for some IoU values reach a bit higher accuracy values, e.g. category
chair for IoU 0.5 and 0.75 performs slightly better on the test than on the validation set.
Condition specific differences show a similar distribution on the test as on the validation
set. The inference time is again tested on NVIDIA GeForce GTX 1080 based graphic
cards. The best VoteNet model reaches a value of 0.1904 seconds.

84

5.2. 3D Data

Fi
gu

re
5.

7:
Va

lid
at

io
n

ac
cu

ra
cy

Vo
te

N
et

fo
r

de
fin

ed
24

se
ts

of
hy

pe
rp

ar
am

et
er

s
so

rt
ed

by
A

P
25

in
de

sc
en

di
ng

or
de

r.
C

ol
or

sc
al

e:
re

d
≤

0.
4,

ye
llo

w
=

0.
7,

gr
ee

n
≥

1.
Fo

r
m

os
t

ru
ns

ac
cu

ra
cy

is
go

od
.

C
at

eg
or

y
cu

p
pe

rfo
rm

s
wo

rs
e

th
an

al
lo

th
er

ca
te

go
rie

s.

85

5. Results

Figure 5.8: Differences between the four conditions and overall accuracy results on the
validation dataset. Negative values denote worse, positive values denote better condition
results. (dark-grey: indoor-night, light-grey: indoor-sun, dark-green: outdoor-night,
light-green: outdoor-sun). Largest variation can be observed for category cup, for this
category indoor conditions are considerably better than outdoor conditions.

Figure 5.9: Differences between the four conditions and overall accuracy results on the
test dataset. Negative values denote worse, positive values denote better condition results.
(dark-grey: indoor-night, light-grey: indoor-sun, dark-green: outdoor-night, light-green:
outdoor-sun)

86

5.2. 3D Data

Figure 5.10: Overall accuracy of best run on validation and test data. Results are very
similar between validation and test set.

87

CHAPTER 6
Discussion

After the presentation of the results of the object detection experiment the following
chapter discusses those results. The first part focuses on a per domain evaluation and the
second part, finally, takes a close look at the comparison between the 2D and 3D domain.

6.1 Object Detection Results per Domain
The following section evaluates the object detection results for the 2D and 3D domain
separately. The focus is on the comparison to results of the algorithms on standard
datasets and variations between categories as well as conditions.

6.1.1 2D Data
The results are first evaluated in comparison to results on MS COCO. Figure 6.1 shows
test AP25, AP50, AP75, and AP for the three applied data augmentation levels and the
results for MS COCO (taken from [Redmon and Farhadi, 2018, p. 3]). For all data
augmentation levels an IoU of 0.25 and 0.5 achieve similar accuracy results. As the
smallest used IoU in the 2D domain is normally 0.5, models are probably designed to at
least provide acceptable results with this minimum IoU. The drop in accuracy for higher
IoU values is in accordance to the original paper, also identifying a drop in accuracy
when increasing the IoU. Due to the simplicity of the new dataset AR-2/3, accuracy
results are expected to be higher on this dataset than on MS COCO — as also achieved
on the labeling dataset — but for full augmentation results are similar to the results
achieved with MS COCO. Medium and no data augmentation are similar and higher by
a value of approximately 0.3.

This effect of decreasing accuracy for full augmentation level is also visible from the more
extensive validation results (see Figure 5.3) and the test results (see Figure 5.6). Such
results are unexpected as data augmentation is normally used to improve generalization

89

6. Discussion

Figure 6.1: Average Precision of best YOLOv3 test results for different data augmentation
levels on AR-2/3 in comparison with results on MS COCO. Augmentation level medium
and no perform considerably better than augmentation level full and evaluation on MS
COCO.

capabilities of a network. Strong empirical evidence has been provided for the positive
effects of data augmentation on image classification in a variety of studies (e.g. [Perez
and Wang, 2017] or [Mikołajczyk and Grochowski, 2018]). Data augmentation for object
detection is especially for geometric distortions more challenging but nowadays a number
of publications exist describing the advantages also for this task (e.g. [Shorten and
Khoshgoftaar, 2019] or [Zhong et al., 2020]). Nevertheless researches apply different
numbers of data augmentation techniques. For instance YOLO [Redmon et al., 2016]
and its successor models YOLOv2 [Redmon and Farhadi, 2017] and YOLOv3 [Redmon
and Farhadi, 2018] leverage a large number of data augmentation techniques such as
random crops, color shifting, and translations. In contrast, RetinaNet [Lin et al., 2017b]
applies solely horizontal flipping.

[Zoph et al., 2020] analyze whether it is possible to further improve RetinaNet’s accuracy
by just optimizing the applied augmentation tasks. They are able to achieve an accuracy
increase of 2.3 on mAP . This and other studies (e.g. [Cubuk et al., 2018]) show that
the best set of augmentation tasks often depends on the data itself. To automatically
determine the best set of augmentation tasks for a given dataset before training, a
number of algorithms have been developed (e.g. [Zoph et al., 2020], [Lim et al., 2019]).
In this thesis’ experiment no prior evaluation of the best set of data augmentation task
is performed neither for full nor for medium data augmentation. Therefore, it is possible
that — by chance — the medium augmentation level defines a better set of augmentation
tasks. Though the difference in this experiment is by a factor of ten higher than in [Zoph
et al., 2020] analysis, it could be a contributing factor.

It is argued that the main reason for the low accuracy of the full augmentation level
is the very high number of augmentation tasks applied to each image. As described in
4.2 all used augmentation tasks are applied with a probability of 50% per image and
epoch. Hence, with ten augmentation tasks — as used in full augmentation — it is very

90

6.1. Object Detection Results per Domain

Figure 6.2: The importance of data augmentation decreases with increasing number of
input samples. Additionally it is more important for higher IoU values. (Figure taken
from [Zoph et al., 2020, p. 578]

unlikely that no augmentation task is applied to a single image. That is why, the model
sees hardly any original / not augmented image during the training process. In most
cases both geometric and color distortions are leveraged. This makes it hard for the
model to generalize category properties to not augmented representations. Therefore,
detecting them in the validation or test dataset is difficult for the model. In contrast,
using medium data augmentation only four augmentation tasks are used, thereby some
properties of the original images are most often preserved and the accuracy significantly
increases. Also research focusing on data augmentation optimization often only apply a
low number of augmentation tasks per image. E.g. [Zoph et al., 2020] and [Cubuk et al.,
2020] apply two augmentation tasks with a probability of 50% each per image. Though
it should be mentioned that — different than in this thesis — they pick those two from a
larger pool of augmentation tasks.

Moreover, previous research shows that data augmentation is most important and
efficient for originally small datasets and difficult detections [Zoph et al., 2020]. The
reduced importance of data augmentation for an increasing number of training samples
is visualized in Figure 6.2. At this point it is important to notice that in the Figure a
maximum number of 20,000 training samples were used, but the experiment presented in
this thesis uses more then 112,000 training samples. Considering the graph suggest that
with such a large number of sample even a good set of augmentation tasks achieves only
a small accuracy improvement. This explains the extreme similarity between medium
and no data augmentation. Moreover, Figure 6.2 documents that the importance of data
augmentation increases for more strict IoUs. This effect is also apparent for results of this
dataset, AP75 — the highest considered IoU — benefits most from data augmentation
and therefore medium performs better than no data augmentation (see Figure 6.1).

Another important characteristic of the dataset in this context is its simplicity because of
the small number of categories, the large number of samples, and the static observation
scenario. This generally explains the higher accuracy results achieved on this dataset

91

6. Discussion

compared to MS COCO. It is also a starting point to further discuss the bad results of
the full data augmentation level. Because of the size of the dataset and its homogeneity
the necessity and usefulness of data augmentation is questionable. As validation and test
datasets contain structurally very similar samples like the training dataset it could be
argued that the model can learn the most for this population from the original samples.

An evaluation of the best hyperparameters shows that all augmentation levels perform
best with the same set of hyperparameters. Interestingly the simpler tiny version performs
better than full YOLOv3. This can again be explained by the simplicity of the dataset.
The smaller network is sufficient to describe but also to abstract the — only — five
categories with its iconic objects. Larger batch size (64) and small learning rate (0.0001
and 1e-5) perform best. One possible explanation is that there are many very similar
images in that dataset so it is better to see a large number of images before updating
network weights. Additionally, it is better to perform rather small updates especially if
the batch size is smaller. With 416 the best input size is the medium option which is
also preferred by most previous studies, see e.g. [Ammar et al., 2019]. The lower input
size of 320 apparently does not provide enough information. The higher input size of 608
is limited by the original resolution of the images (896 × 504 pixels) and does not add
important information. Moreover for the larger input size the training time increases
significantly.

After discussing the best hyperparameters the accuracy results per category are evaluated.
Category table could be learned best by all levels of augmentation. This is an expected
behavior as it is the category with the significantly largest instances. Because of the
data acquisition configuration object instances of this category also cover large parts of
acquired table-images and large objects on images are easier to detect for YOLO than
small ones [Redmon and Farhadi, 2018]. Cup, monitor, and pottedplant achieve similar
results considering all five best sets of hyperparameters. Only the accuracy of category
chair is quite low for most runs. This is unexpected as chair is a quite big category,
which should ensure good detection results. An exception to the low chair accuracy is
run 11 (no augmentation) where the accuracy of category chair is comparable to the
other categories and mAP s. As shown in Figure 3.12a category chair is described by the
least number of images. Moreover, it is the only category which looks different from each
side — neglecting the handle of a cup as it is not sure whether the handle is considered
for detecting cups and neglecting pottedplants which are not perfectly symmetric but the
rough structure is consistent. Depending on the perspective a chair’s backrest changes
the overall geometry of a chair. Some chair instances are made of thin planks. Looking
at such instances from a side view, the chair is despite its size only described by thin
structures which may be difficult to distinguish from the background. Neutral colors
such as brown or gray further support this theory. To confirm this assumptions more
research is required analyzing object properties of this category (see Chapter 7).

Category level evaluation allows conclusions about the importance of some object proper-
ties and intra-category variabilities defined in Subsection 3.1.1 and 3.1.2. Object size
only seems to have a positive effect for large objects (see category table), but does not

92

6.1. Object Detection Results per Domain

seem to have a negative effect for small categories such as cup or pottedplant. The author
believes that objects which are describes by a higher number of neighboring pixels are
easier detected, because the probability is higher that such objects are not lost in an
aggregation step. In such a step the pixels are rather combined and persisted into an
object. Apparently also the smaller categories are depicted large enough in this dataset.
Geometric complexity is important in the context of non-symmetric categories such as
chair but not for categories with just a very large surface in comparison to their volume
(e.g. category pottedplant). In the author’s opinion, geometric complex object such
as pottedplants still provide a high number of — maybe not neighboring — but close
pixels showing the object. In an aggregation step those pixels can be easily grouped
together into an object. Geometric complex objects with large,thin structures such as
chairs may be depicted on a large number of pixels but they are distributed over a larger
area, which makes grouping — and thereby detection — more difficult. Reflectivity and
intra-category variability does not have a significant effect on the final accuracy. Due to
the high number of images per instance variations are well described and can be easily
learned by YOLOv3.

Despite category specific differences systematic differences between the four conditions
can be observed. Observable in all augmentation levels is that the lowest accuracy is
reached in the indoor-night condition. This accuracy variation can be explained by the
high number of blurry images in this condition. The highest accuracy is achieved in the
outdoor-sun condition — where blurry images are an exception. Additionally, because of
the direct sun light the images have a very high contrast. The other two conditions reach
similar results as the overall evaluation. Observed variations for condition - category
- augmentation level combination are random. Hence, the largest deviations from the
overall results are due to dataset characteristics and not due to indoor - outdoor variations.
The main properties to improve accuracy results of YOLOv3 are sharp images and high
contrast.

In summary, the dataset characteristics strongly affect detection results, this includes the
best level of data augmentations, the best set of hyperparameters, and category as well as
condition specific results. The different results for the three levels of data augmentations
demonstrate the importance of selecting a set of augmentation task which matches the
data. Additionally, it shows that over-augmentation is possible, if the network never sees
original data, then properties can not be generalized to the original data and accuracy
results are unsatisfactory. With matching data augmentation significantly better accuracy
results can be achieved on this dataset than on MS COCO with YOLOv3. Next 3D
accuracy results are evaluated.

6.1.2 3D Data
For 3D object detection evaluation the accuracy results of VoteNet on AR-2/3 are
compared to results from the original paper [Qi et al., 2019]. Figure 6.3 visualizes
validation mAP for different IoU values. On AR-2/3 by 0.4 and 0.6 higher accuracy
results could be achieved. AP25 and AP50 of AR-2/3 are similar as for SUN RGB-D, but

93

6. Discussion

Figure 6.3: Average Precision of best VoteNet validation results on SUN RGB-D, ScenNet,
and AR-2/3. VoteNet performs best on AR-2/3.

accuracy drops for AP75 though staying above IoU 0.25 and 0.5 results of SUN RGB-D
and ScanNet. Due to the additional degrees of freedom in the 3D space achieving good
accuracy results for an IoU of 0.75 is quite difficult and therefore often not even evaluated.
Hence, those results are satisfactory.

SUN RGB-D has similar specifications as AR-2/3 considering the number of scenes and
number of annotated objects, as discussion in Subsection 3.3.2. Therefore, the accuracy
improvement from SUN RGB-D to AR-2/3 can be described by two main point cloud
properties of AR-2/3. First, a very consistent environment - object setup is used — object
is always placed on top of a platform. Second, hardly any additional environment is
included in the point cloud (see Subsection 3.3.2). Moreover, a large number of this very
consistent scenes is available for training. All of these properties make it easy for the
network to learn this specific setup. That is why those better accuracy results can be
achieved.

Most tested hyperparameter combinations achieve very good and similar accuracy results
(see Figure 5.7). This is another indicator that — partly independent of the hyperparam-
eters — VoteNet is able to learn the training dataset very well or that the dataset is easy
to capture for the network. Interestingly for the best run (sorted by AP25) with AR-2/3
nearly the same hyperparameters are used as for SUN RGB-D in the original paper. The
only difference is that for this experiment 40,000 instead of 20,000 input points yield the
best results. Although the benefit of a larger number of input points could be explained
by the additional information provided by more points, it can be argued that the number
of input points is of secondary importance. Within the top five runs are also run 1 and
run 17 using the exact same hyperparameters as the best run 21 despite the number of
input points (20,000 respectively 10,000). Run 1 has even a higher AP75 than run 21.
Therefore learning rate, batch size and the usage of VoteNet instead of BoxNet seem to
be more important hyperparameters.

The comparison between the best VoteNet (run 21) and best BoxNet (run 19) does not
show the large accuracy improvement for IoU 0.25 as in [Qi et al., 2019] (improved by

94

6.1. Object Detection Results per Domain

0.05 for SUN RGB-D and 0.13 for ScanNet). In contrast in this experiment for IoU
0.25 the improvement is only 0.0086, for larger IoU values of 0.5 and 0.75 the absolute
improvement increases to similar values as in the original paper (0.0328 respectively
0.0751). This effect may be due to the overall high accuracy results, especially for small
IoU values, which makes it difficult to achieve high absolute improvements because of the
voting step. Hence, the results of this experiment confirm that the voting step improves
the accuracy.

An analysis of the category accuracies (see Figure 5.7 and 5.10) shows that the most
difficult category for VoteNet is cup, for which accuracy decreases rapidly with increasing
IoU value. A category with such small extent has not been tested so far as neither SUN
RGB-D nor ScanNet provide a comparable category. Because of the small object size
and limited measurement capabilities of HoloLens 2 cups may be described by as less as
three points in AR-2/3. The small number of points makes them quite difficult to detect
and accordingly it is even more difficult to perfectly align a bounding box to achieve high
accuracy for large IoU values. For IoU 0.25 and 0.5 the other four categories perform
equally well. For category pottedplant the best AP75 can be achieved. It can be argued
that due to their large surface despite their small volume bounding boxes are easy to
align. The other three categories show a reasonable accuracy decrease due to the more
demanding IoU. Hence, the main object property to consider for high accuracy is the
number of object points and their density. Object size is only a limiting factor if the
number of object points decreases strongly such as for category cup. Small objects with
a high number of object points perform well (see pottedplant). The number of points
depends next to the object size also on the geometric complexity. Geometrically more
complex objects with a large surface perform even better than simpler categories such as
monitor. Object reflectivity does not affect the results in this experiment, as HoloLens
two was able to capture all object in all conditions. Also no intra-category effects can be
observed. It can be argued that enough samples of all variations are available for training
and VoteNet is able to learn all of them.

Evaluating the effect of the four conditions (see Figure 5.8 and 5.9) the low accuracy of
category cup can be further differentiated. There is a difference of nearly 0.2 between the
two indoor and two outdoor conditions. The significantly lower results in the outdoor
conditions can be explained by the high number of mapping loss events with category
cup in those conditions (see Subsection 3.3.2). Because of those events data acquisition
was interrupted sometimes even multiple times per instance, the mesh was cleared, and
acquisition continued from an empty mesh. That is why cup instances are often described
only by a very low number of points. Moreover, the least number of point clouds are
available for that category and those conditions, which makes it even more difficult for
the network to learn such demanding scenes. Similar to the per category evaluation also
per condition hardly any variations are observable for low IoU values of 0.25 and 0.5,
only for the large IoU of 0.75 more variations appear. Generally, the outdoor condition
is more difficult. It can be argued that this is again connected to the more demanding
lightning conditions for HoloLens 2’s 3D data acquisition in an outdoor environment.

95

6. Discussion

Interestingly the opposite effect can be observed for category table and chair. For these
categories and IoU 0.75 the indoor-night condition reaches by far the lowest accuracy.
The origin of this effect can not be explained by the available data, further research is
required to fully understand the origins of this effect (see Chapter 7).

To sum up, on AR-2/3 VoteNet achieves good accuracy results, which are significantly
higher than on SUN RGB-D. Most demanding is the very small cup category which
performs especially for high IoU values considerably worse than the other categories.
This shows that the number of objects points and their density are the most important
properties to achieve a good accuracy. Besides mapping issues with the cup category
in the two outdoor conditions, VoteNet shows no direct effects cause by the different
environment / lightning conditions even though it was originally developed for an indoor
dataset. In the following the result of both 2D and 3D object detection are compared.

6.2 2D - 3D Comparison
As describes in Subsection 4.3 no previous research is available directly comparing 2D
and 3D object detection. For simplicity, the comparison is therefore based on MS COCO
metrics leveraging 2D respectively 3D IoU calculation.

To facilitate the comparison between the accuracy results Figure 6.4 summarizes test
accuracy values for the best run for the select 2D and 3D algorithm. 2D and 3D mAP
values are similar, but interestingly the 3D results are slightly better, even though 3D
instead of 2D IoU metric is used. In other words VoteNet achieves with the more
demanding 3D metric a higher accuracy as YOLOv3 with the simpler 2D metric. For
both the accuracy drops with the highest IoU of 0.75. The derived bounding boxes of
about a quarter of the detections contain between 50% and 75% of the original bounding
box. Hence, the location accuracy is limited. It should be mentioned that a major
advantage of YOLOv3 is its fast inference speed, which is a central requirement for the
domain of this work, but which also comes at the cost of sightly worse accuracy measures
compared to other 2D algorithms such as RetinaNet. Such other algorithms may also
reach higher accuracy values in this comparison.

Also per category performs VoteNet generally better than YOLOv3 and accuracy results
drop for IoU 0.75 compared to the lower IoU values. The decrease in accuracy with
increasing IoU is expected as it is common to most state-of-the-art object detection
algorithms in both domains (see e.g. [Aziz et al., 2020], [Rahman et al., 2019]). Besides
this general trend there are no similarities between better and worse categories between
the 2D and 3D domain. The 3D results are mainly limited by the number of object
points and therefore by the category cup. Although this is also the smallest category in
the 2D domain the cup category performs well with YOLOv3. Most demanding is in
this domain the geometric complex chair category. The low accuracy for IoU 0.75 is in
the 2D domain the summary of multiple categories with a lower accuracy. In contrast
for the 3D domain the extremely low accuracy results for the cup category dominates
it. Hence, besides the cup category 3D results are significantly better. Next to the

96

6.2. 2D - 3D Comparison

Figure 6.4: Comparison between 2D and 3D test accuracy. Results are generally very
similar.

great performance of VoteNet the higher accuracy can be partly attributed to maybe a
bit more homogeneous 3D dataset. As no different perspectives of a 3D scenes exist —
absolute point locations are measured —, the largest variations in the measured mesh are
observable while building the mesh. After creating a first mesh including all object parts,
only minor updates are applied, meaning the location of single points change. Hence, a
large number of 3D scenes are quite similar, probably even more than in the 2D dataset
part.

Condition specific variations are generally independent between the 2D and 3D domain.
2D results are dominated by the best outdoor-sun condition with the highest contrast
and by the worst indoor-night condition with the highest number of blurry images. In
contrast 3D results — especially category cup — performs better in the two indoor
conditions than in the two outdoor conditions. The natural light and in detail direct sun
light is no problem for HoloLens 2’s RGB camera, but is more problematic for anchoring
and creating a spatial mesh especially for very small objects such as cups.

The overall comparison shows that 3D object detection algorithms can compete on an
accuracy level with their 2D equivalent. On this dataset the 3D algorithm even achieves
a higher accuracy than the 2D one. In addition to the higher accuracy 3D bounding
boxes provide with a three dimensional location, extend and rotation more information
than 2D bounding boxes. As discussed before this information is required by a number
of applications often operating in the three dimensional world.

The main downside of 3D algorithms is the inference time. VoteNet requires with 19.04ms
by a factor ten longer than YOLOv3-tiny which needs 1.55ms seconds. YOLOv3-tiny is
optimized to achieve fast inference times but even the full equivalent YOLOv3 returns
results within 5.16ms seconds only, which is a bit more than a quarter of the time VoteNet

97

6. Discussion

needs. Nevertheless all three algorithms — including VoteNet — achieve the defined
real-time goal of 33.3ms on NVIDIA GeForce GTX 1080 based graphic cards. Focusing on
AR real-time applications both algorithms are capable of providing fast enough responses
to facilitate a smooth real-time experience for a user. Although the difference appears
very large it is therefore insignificant and the algorithms can be considered equivalent
under this criterion.

In summary, 3D object detection algorithms and in detail VoteNet achieve comparable
and better accuracy results then 2D algorithms, here YOLOv3(-tiny). Although 3D
algorithms are significantly slower than 2D ones — because of the added complexity —
they detect objects in real-time and are therefore also suitable for an AR object detection
application. The realization of the experiment — especially the implementation of 3D
object detection with AR data — shows that it is possible to combine AR with 3D
object detection. The comparison results further demonstrate the advantages of such a
combination, resulting 3D bounding boxes do not only provide additional information
but also achieve at least a comparable accuracy.

98

CHAPTER 7
Conclusion and Future Work

In this thesis the accuracy of 2D and 3D object detection algorithms are compared. To
enable a fair comparison first a 2D - 3D dataset is acquired. A number of requirements
are considered for the dataset concept. Most important are three considerations. First,
the provided 2D and 3D data should structurally be as similar as possible to enable a
meaningful comparison. Second, generic object categories (chair, cup, monitor, pottedplant,
table) are selected covering a number of different object properties such as size, geometric
complexity, and reflectivity. Third, both indoor and outdoor environment and different
lightning conditions should be included resulting into four different conditions (indoor-
night, indoor-sun, outdoor-night, outdoor-sun). To not only allow a fair comparison
between 2D and 3D but also between the categories and conditions the same setup is
used in all conditions and for all categories. In detail this includes observing each object
instance in isolation, placed on top of a platform, with the head mounted AR device
HoloLens 2. To optimize data acquisition to the different data characteristics of 2D
respectively 3D data one dedicated observation configuration each is developed, defining
the exact routes around the platform, walking speed, and measurement frequency. The
data acquisition results in approximately 150,000 images and 75,000 3D scenes.

After data acquisition raw data is cleaned from outliers and scenes not containing any
object. To use the dataset for object detection with neural networks, objects have to be
annotated in the images and 3D scenes — point clouds are used as 3D data representation.
2D data is first manually cleaned. For annotation a small number of images are annotated
manually. Those are then used as input for transfer learning on YOLOv3. The resulting
weights can in turn be employed to label the complete dataset. Because of the well defined
structure of 3D data, objects can be annotated algorithmic. To validate the resulting
bounding boxes, their volumes are compared with the bounding box volumes of the same
object instance and condition. Outlier are removed. This allows to effectively detect
only partly mapped objects and corrupt point clouds automatically. The structured
data acquisition and annotation process results in approximately the same number of

99

7. Conclusion and Future Work

annotated images respectively point clouds per category and condition, with the 2D
dataset containing roughly twice as many samples as the 3D dataset. All 2D and 3D
samples show a homogeneous scenario with a single, mostly iconic object and without
any real world context — because of the controlled and static acquisition setup. This
homogeneity together with the similarity between consecutive acquisitions, the large
number of samples, and the small number of categories makes the new dataset easy to
learn. Hence, in comparison to standard datasets detection accuracy is expected to be
higher. Further, the equal distribution in combination with the well defined, homogeneous
scene content induces that the new dataset is well suitable for academic comparison but
is not meant for real-world applications.

To finally compare 2D and 3D object detection algorithms, first one representative
algorithm each is selected. For this the test accuracy and inference time on standard
datasets as well as the availability of an implementation is considered. YOLOv3 is selected
as 2D algorithm VoteNet as 3D algorithm. Both are then trained on the new dataset
testing 24 well defined sets of hyperparameters. As initial 2D results are unsatisfactory
in total three levels of data augmentation are tested. For the set performing best on
validation data test accuracies and inference time are determined and compared to both
standard datasets from their respective domain and between each other.

The evaluation of the three levels of data augmentation applied to 2D data shows
interesting and unexpected results. Applying most augmentation results in the lowest
accuracy, while applying medium or no data augmentation results in very similar and
considerably better accuracy. This behavior is explained by three main reasons: First,
as previous research shows, the best set of augmentation tasks depends on the used
dataset. The set of augmentation tasks selected for medium data augmentation may just
better fit the new dataset. Second, it is understood that over-augmentation occurs in
the experiment, meaning that each training sample is augmented by a number of task,
thereby not showing the network any original sample. The network can not generalize to
original samples, which makes it extremely difficult to then detect object in validation
and test samples. Third, the very small difference between medium and no augmentation
is explained by the large dataset size. Previous research shows that the importance of
data augmentation decreases with increasing number of samples. Additionally, it must
be mentioned that due to the homogeneity of AR-2/3 the importance and necessity of
data augmentation is expect to be low. All these points underline the importance of
data augmentation both to improve object detection results, but also its capability to
significantly decrease accuracy results. The author argues that in future object detection
learning processes either the best set of augmentation task should be evaluated before
training, based on the dataset, or the set of applied data augmentation tasks should be
considered as hyperparameter.

On the new, simple dataset both 2D and 3D algorithms achieve AP25 and AP50 above
0.9 and AP75 close to 0.7. Because of the dataset’s simplicity all results are significantly
higher than on standard datasets such as MS COCO or SUN RGB-D. Independent of
the absolute accuracy result the main finding is that 2D and 3D mAP results are very

100

similar, with 3D results being even slightly better than 2D results. Hence, neglecting
inference time and only considering accuracy there is no reason to prefer 2D algorithm
but rather the opposite. The downside of 3D algorithms in comparison to their 2D
equivalents is the inference time. The 3D algorithm VoteNet is with an inference time of
19.04ms by a factor ten slower then the best 2D model leveraging YOLOv3-tiny. But,
it still reaches the real-time goal of 33.3ms. 3D algorithms are currently significantly
slower then 2D algorithms but they achieve at least comparable accuracy results with
the advantage of providing more information — not only a 2D but a 3D bounding box.
This finding should be on one hand a starting point to further improve especially the
speed of 3D object detection but on the other hand proof that currently existing 3D
algorithms already provide good results. They can — and maybe even should — be used
more widely in real world applications.

An accuracy evaluation by category and condition shows that 2D and 3D algorithms
depend on completely different object and environmental properties and thereby offer
advantages and disadvantages in very different areas. The most important property for
3D algorithms is the number and density of object points. The very small cup category is
by far the worst one. In contrast the also rather small category pottedplant performs best.
The central difference is that it has a large, easy to map surface and therefore is describe
by a large number of dense points. 2D algorithms are less dependent on the object size

— though the biggest category table performs best — but they are also affect by other
properties such as geometric complexity — e.g. category chair as non-symmetric object
perform worst. Similar observations are made for condition specific result. While for 2D
algorithms the indoor-night condition with its relatively high number of blurry images is
most difficult, for 3D algorithms the outdoor conditions with its high number of mapping
loss events is most difficult.

Based on those observations three questions are develop to facilitate the selection of an
appropriate object detection method for the AR domain. The following questions assume
that 2D and 3D bounding boxes provide sufficient information for the given use case. If
3D information is required the author suggests to directly focus on 3D algorithms.

1. What is the maximum possible response time? Although both methods
work in real-time, 2D methods are with approximately 1.55ms significantly faster
than 3D methods which require 19.04ms.

2. In which environment do you plan to work? If you expect direct sunlight 2D
methods should be preferred, while in an indoor environment with artificial light
only, 3D methods may outperform 2D methods. In case of natural light sources
in an indoor environment or no direct sun light in an outdoor environment the
methods work equivalently.

3. Which object categories do you want to detect? / Which 3D mapping
resolution is used? Geometric complex objects with blank like structures — thin
in one direction, large in another — are easier to detect with 3D methods. But if

101

7. Conclusion and Future Work

small object categories (with a small surface) are included the mapping resolution
has to be high enough to ensure each object is mapped by a large enough number
of points. If this cannot be guaranteed 2D methods are significantly better for
small categories.

From an scientific point of view the different downsides of both domains should be
further optimized. One solution to those problems can be to tackle them separately,
e.g. increasing the number of measured points to better describe small objects (3D)
or use improved sensors to reduce the number of blurry images (2D). Another more
general solution would be to combine 2D and 3D. Both algorithm could benefit from
the respective other one and a combined solution is expected to outperform each single
algorithm. Future work should, therefore, not only focus on evaluating other 2D (e.g.
RetinaNet or YOLOv4) or 3D algorithms (e.g. VoxelNet, SECOND) to validate or
falsify the findings of this thesis but also consider algorithms leveraging both 2D and 3D
data. Possible candidates are Frustrum PointNet [Qi et al., 2018], SIFRNet [Zhao et al.,
2019a], and ImVoteNet [Qi et al., 2020]. To enable the implementation of such combined
algorithms 2D and 3D data must be aligned and therefore acquired together. From a
technical perspective this requires a combined 2D - 3D client and for the acquisition
of such a datatset a new, common acquisition configuration — route, walking speed,
measurement frequency. One possibility to realize such a data acquisition would be to
map the object in advance with HoloLens 2’s spatial mapping capability. During the data
acquisition then a roughly complete 3D model is already available and e.g. a similar route
as leveraged for 2D data acquisition could be used. Each acquisition is then composed
of an image, a point cloud and the current transformation between image and world
coordinate system to align image and point cloud.

Further research testing additional models, should also focus on not fully explainable
properties of some categories, conditions and category-condition combinations observed
in this experiment. The most interesting category would be chair for 2D algorithms.
As described before category chair performs for most hyperparameter combinations
significantly worse than all other categories on YOLOv3, although it is a rather large
category. Three possible explanations are given in this thesis which should be further
validated. First, the least number of samples are available for this category. The
importance of this property could be evaluated by capturing and adding additional
training samples. Second, chair instances are composed of thin structures which may be
difficult to distinguish from background. This theory could be proven by testing other
categories with similar properties (e.g. pipes or bicycles). Third, chairs are the only not
symmetric categories which makes chair detection more demanding. Also this assumption
could be analyzed by testing other categories with this property (e.g. animals like dogs).

The most interesting category-condition combination which accuracy deviation could
not be explained fully is category table and chair, condition indoor-night. Although
3D data seems to perform better in indoor conditions — due to the more demanding
lightning situation in an outdoor environment — those two categories perform worst in

102

the indoor-night condition. One possible explanation is that two different effects act in
parallel. In the outdoor conditions the effect of mapping loss events must be considered.
In the indoor-night condition the RGB autofocus is unreliable and many images are
blurry. As for the 3D mesh generation also 2D images are used, blurry images could
affect the spatial mesh in the indoor-night condition. Depending on which effect is the
dominant one — mapping loss for category cup, blurry images for category table — one
condition is better than another one. In this thesis it could not be identified which
properties determine which is the dominate effect for a given category. A further analysis
including more categories is required to first verify this argument and then identify key
properties.

The performed experiment exposes not only the status of 2D and 3D object detection
— and left effects of certain categories open — but also demonstrates for the first time
how Augmented Reality can be combined with 3D object detection. This could be the
starting point for more AR applications leveraging the advantages of 3D object detection.
In the experiment only pre-acquired data is used, but the setup used for data acquisition
could easily be extended to work in real-time — VoteNet as tested 3D algorithm also
achieves the real-time goal. One option to perform real-time 3D object detection using
the results of this thesis would be to add an additional endpoint to the server which
expects a point cloud, evaluates it on e.g. VoteNet and returns the resulting categories,
bounding boxes and optionally scores as JSON. As all 3D coordinates are absolute no
additional transformation must be considered. For the 2D case such transformations are
required, to visualize bounding box coordinates retrieved in the image coordinate system
in the world coordinate system.

In summary, it was possible with the performed experiment to answer the research question
on the status of 3D object detection in comparison to its 2D equivalent. State-of-the-art
3D object detection algorithms can achieve comparable results as 3D object detection
algorithms even applying the more demanding 3D metrics. Their only downside is the
inference time which is still significantly higher. Next steps should focus on accelerating
3D object detection algorithms, further improving accuracy for higher IoU values in
both domains, the combination of 2D and 3D data, and the more detailed analysis of
some categories and conditions which results can not yet be explained fully. Additionally,
this thesis should be seen as proof-of-concept of the combination of Augmented Reality
and 3D object detection and as starting point for a stronger integration of these two
technologies.

103

Bibliography

[Ali et al., 2018] Ali, W., Abdelkarim, S., Zidan, M., Zahran, M., and El Sallab, A.
(2018). Yolo3d: End-to-end real-time 3d oriented object bounding box detection from
lidar point cloud. In Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, pages 0–0.

[Ammar et al., 2019] Ammar, A., Koubaa, A., Ahmed, M., and Saad, A. (2019). Aerial
images processing for car detection using convolutional neural networks: Comparison
between faster r-cnn and yolov3. arXiv preprint arXiv:1910.07234.

[Andreopoulos and Tsotsos, 2013] Andreopoulos, A. and Tsotsos, J. K. (2013). 50 years
of object recognition: Directions forward. Computer vision and image understanding,
117(8):827–891.

[Arnold et al., 2019] Arnold, E., Al-Jarrah, O. Y., Dianati, M., Fallah, S., Oxtoby,
D., and Mouzakitis, A. (2019). A survey on 3d object detection methods for au-
tonomous driving applications. IEEE Transactions on Intelligent Transportation
Systems, 20(10):3782–3795.

[Asgary et al., 2020] Asgary, A., Bonadonna, C., and Frischknecht, C. (2020). Simulation
and visualization of volcanic phenomena using microsoft hololens: Case of vulcano
island (italy). IEEE Transactions on Engineering Management, 67(3):545–553.

[Attneave and Arnoult, 1956] Attneave, F. and Arnoult, M. D. (1956). The quantitative
study of shape and pattern perception. Psychological bulletin, 53(6):452.

[Aziz et al., 2020] Aziz, L., bin Haji Salam, S., and Ayub, S. (2020). Exploring deep
learning-based architecture, strategies, applications and current trends in generic object
detection: A comprehensive review. IEEE Access.

[Azuma et al., 2001] Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., and
MacIntyre, B. (2001). Recent advances in augmented reality. IEEE computer graphics
and applications, 21(6):34–47.

[Azuma, 1997] Azuma, R. T. (1997). A survey of augmented reality. Presence:
Teleoperators & Virtual Environments, 6(4):355–385.

105

[Bacca Acosta et al., 2014] Bacca Acosta, J. L., Baldiris Navarro, S. M., Fabregat Gesa,
R., Graf, S., et al. (2014). Augmented reality trends in education: a systematic review
of research and applications. Journal of Educational Technology and Society, 2014,
vol. 17, núm. 4, p. 133-149.

[Beltrán et al., 2018] Beltrán, J., Guindel, C., Moreno, F. M., Cruzado, D., Garcia,
F., and De La Escalera, A. (2018). Birdnet: a 3d object detection framework from
lidar information. In 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), pages 3517–3523. IEEE.

[Bengio, 2009] Bengio, Y. (2009). Learning deep architectures for AI. Now Publishers
Inc.

[Bengio et al., 2017] Bengio, Y., Goodfellow, I., and Courville, A. (2017). Deep learning,
volume 1. MIT press Massachusetts, USA:.

[Benjdira et al., 2019] Benjdira, B., Khursheed, T., Koubaa, A., Ammar, A., and Ouni,
K. (2019). Car detection using unmanned aerial vehicles: Comparison between
faster r-cnn and yolov3. In 2019 1st International Conference on Unmanned Vehicle
Systems-Oman (UVS), pages 1–6. IEEE.

[Billinghurst et al., 2015] Billinghurst, M., Clark, A., and Lee, G. (2015). A survey of
augmented reality.

[Birkfellner et al., 2002] Birkfellner, W., Figl, M., Huber, K., Watzinger, F., Wanschitz,
F., Hummel, J., Hanel, R., Greimel, W., Homolka, P., Ewers, R., et al. (2002). A head-
mounted operating binocular for augmented reality visualization in medicine-design
and initial evaluation. IEEE Transactions on Medical Imaging, 21(8):991–997.

[Bochkovskiy et al., 2020] Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020).
Yolov4: Optimal speed and accuracy of object detection. arXiv preprint
arXiv:2004.10934.

[Bottou and Bousquet, 2011] Bottou, L. and Bousquet, O. (2011). 13 the tradeoffs of
large-scale learning. Optimization for machine learning, page 351.

[Breuel, 2015] Breuel, T. M. (2015). The effects of hyperparameters on sgd training of
neural networks. arXiv preprint arXiv:1508.02788.

[Caesar et al., 2020] Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q.,
Krishnan, A., Pan, Y., Baldan, G., and Beijbom, O. (2020). nuscenes: A multimodal
dataset for autonomous driving. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 11621–11631.

[Chen et al., 2016] Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., and Urtasun, R.
(2016). Monocular 3d object detection for autonomous driving. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2147–2156.

106

[Chen et al., 2017] Chen, X., Ma, H., Wan, J., Li, B., and Xia, T. (2017). Multi-view
3d object detection network for autonomous driving. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, pages 1907–1915.

[Chen et al., 2021] Chen, Y., Ma, H., Li, X., and Luo, X. (2021). S-votenet: Deep hough
voting with spherical proposal for 3d object detection. In 2020 25th International
Conference on Pattern Recognition (ICPR), pages 5161–5167. IEEE.

[Chu et al., 2020] Chu, C.-H., Liao, C.-J., and Lin, S.-C. (2020). Comparing augmented
reality-assisted assembly functions—a case study on dougong structure. Applied
Sciences, 10(10):3383.

[Claesen and De Moor, 2015] Claesen, M. and De Moor, B. (2015). Hyperparameter
search in machine learning. arXiv preprint arXiv:1502.02127.

[Cubuk et al., 2018] Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V.
(2018). Autoaugment: Learning augmentation policies from data. arXiv preprint
arXiv:1805.09501.

[Cubuk et al., 2020] Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. (2020). Ran-
daugment: Practical automated data augmentation with a reduced search space.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 702–703.

[Dai et al., 2016] Dai, J., Li, Y., He, K., and Sun, J. (2016). R-fcn: Object detection via
region-based fully convolutional networks. arXiv preprint arXiv:1605.06409.

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients
for human detection. In 2005 IEEE computer society conference on computer vision
and pattern recognition (CVPR’05), volume 1, pages 886–893. Ieee.

[de Souza Cardoso et al., 2020] de Souza Cardoso, L. F., Mariano, F. C. M. Q., and
Zorzal, E. R. (2020). A survey of industrial augmented reality. Computers & Industrial
Engineering, 139:106159.

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.
(2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee.

[Deng and Yu, 2014] Deng, L. and Yu, D. (2014). Deep learning: methods and applica-
tions. Foundations and trends in signal processing, 7(3–4):197–387.

[Dogo et al., 2018] Dogo, E., Afolabi, O., Nwulu, N., Twala, B., and Aigbavboa, C.
(2018). A comparative analysis of gradient descent-based optimization algorithms on
convolutional neural networks. In 2018 International Conference on Computational
Techniques, Electronics and Mechanical Systems (CTEMS), pages 92–99. IEEE.

107

[Drost et al., 2017] Drost, B., Ulrich, M., Bergmann, P., Hartinger, P., and Steger, C.
(2017). Introducing mvtec itodd-a dataset for 3d object recognition in industry. In
Proceedings of the IEEE International Conference on Computer Vision Workshops,
pages 2200–2208.

[Dünser, 2008] Dünser, A. (2008). Supporting low ability readers with interactive aug-
mented reality. Annual review of cybertherapy and telemedicine, 6(1):39–46.

[Eckert et al., 2018] Eckert, M., Blex, M., Friedrich, C. M., et al. (2018). Object detection
featuring 3d audio localization for microsoft hololens. In Proc. 11th Int. Joint Conf.
on Biomedical Engineering Systems and Technologies, volume 5, pages 555–561.

[Engelcke et al., 2017] Engelcke, M., Rao, D., Wang, D. Z., Tong, C. H., and Posner, I.
(2017). Vote3deep: Fast object detection in 3d point clouds using efficient convolutional
neural networks. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 1355–1361. IEEE.

[Everingham et al., 2012] Everingham, M., Van Gool, L., Williams, C., Winn,
J., and Zisserman, A. (2012). The pascal visual object classes chal-
lenge 2012 (voc2012) results (2012). In URL http://www. pascal-network.
org/challenges/VOC/voc2011/workshop/index. html.

[Everingham et al., 2007] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and
Zisserman, A. (2007). The pascal visual object classes challenge 2007 (voc2007) results.

[Everingham et al., 2010] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and
Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International
journal of computer vision, 88(2):303–338.

[Farasin et al., 2020] Farasin, A., Peciarolo, F., Grangetto, M., Gianaria, E., and Garza,
P. (2020). Real-time object detection and tracking in mixed reality using microsoft
hololens. In 15th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications, VISIGRAPP 2020, volume 4, pages
165–172. SciTePress.

[Fischler and Bolles, 1981] Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395.

[Fischler and Elschlager, 1973] Fischler, M. A. and Elschlager, R. A. (1973). The rep-
resentation and matching of pictorial structures. IEEE Transactions on computers,
100(1):67–92.

[Fraga-Lamas et al., 2018] Fraga-Lamas, P., Fernandez-Carames, T. M., Blanco-Novoa,
O., and Vilar-Montesinos, M. A. (2018). A review on industrial augmented reality
systems for the industry 4.0 shipyard. Ieee Access, 6:13358–13375.

108

[Friederich and Zschech, 2020] Friederich, J. and Zschech, P. (2020). Review and system-
atization of solutions for 3d object detection. In Proceedings of the 15th International
Conference on Wirtschaftsinformatik (WI), pages 1699–1711.

[Funk et al., 2017] Funk, M., Bächler, A., Bächler, L., Kosch, T., Heidenreich, T., and
Schmidt, A. (2017). Working with augmented reality? a long-term analysis of in-situ
instructions at the assembly workplace. In Proceedings of the 10th International
Conference on PErvasive Technologies Related to Assistive Environments, pages 222–
229.

[Gaidon et al., 2016] Gaidon, A., Wang, Q., Cabon, Y., and Vig, E. (2016). Virtual
worlds as proxy for multi-object tracking analysis. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4340–4349.

[Geiger et al., 2012] Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for
autonomous driving? the kitti vision benchmark suite. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 3354–3361. IEEE.

[Girshick, 2015] Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1440–1448.

[Girshick et al., 2014] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich
feature hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
580–587.

[Girshick et al., 2015] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2015). Region-
based convolutional networks for accurate object detection and segmentation. IEEE
transactions on pattern analysis and machine intelligence, 38(1):142–158.

[Glocker et al., 2014] Glocker, B., Shotton, J., Criminisi, A., and Izadi, S. (2014). Real-
time rgb-d camera relocalization via randomized ferns for keyframe encoding. IEEE
transactions on visualization and computer graphics, 21(5):571–583.

[Glorot et al., 2011] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rec-
tifier neural networks. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 315–323. JMLR Workshop and Conference
Proceedings.

[Hariharan et al., 2014] Hariharan, B., Arbeláez, P., Girshick, R., and Malik, J. (2014).
Simultaneous detection and segmentation. In European Conference on Computer
Vision, pages 297–312. Springer.

[Harris et al., 1988] Harris, C. G., Stephens, M., et al. (1988). A combined corner and
edge detector. In Alvey vision conference, volume 15, pages 10–5244. Citeseer.

109

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Spatial pyramid pooling
in deep convolutional networks for visual recognition. IEEE transactions on pattern
analysis and machine intelligence, 37(9):1904–1916.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778.

[Helmstaedter et al., 2013] Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V.,
Seung, H. S., and Denk, W. (2013). Connectomic reconstruction of the inner plexiform
layer in the mouse retina. Nature, 500(7461):168–174.

[Hinton et al., 2012] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly,
N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural
networks for acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6):82–97.

[Hodan et al., 2017] Hodan, T., Haluza, P., Obdržálek, Š., Matas, J., Lourakis, M.,
and Zabulis, X. (2017). T-less: An rgb-d dataset for 6d pose estimation of texture-
less objects. In 2017 IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 880–888. IEEE.

[Howard et al., 2017] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.

[Huang et al., 2018] Huang, R., Pedoeem, J., and Chen, C. (2018). Yolo-lite: a real-
time object detection algorithm optimized for non-gpu computers. In 2018 IEEE
International Conference on Big Data (Big Data), pages 2503–2510. IEEE.

[Hübner et al., 2020] Hübner, P., Clintworth, K., Liu, Q., Weinmann, M., and Wursthorn,
S. (2020). Evaluation of hololens tracking and depth sensing for indoor mapping
applications. Sensors, 20(4):1021.

[Hübner et al., 2019] Hübner, P., Landgraf, S., Weinmann, M., and Wursthorn, S. (2019).
Evaluation of the microsoft hololens for the mapping of indoor building environments.
Proceedings of the Dreiländertagung der DGPF, der OVG und der SGPF, Vienna,
Austria, pages 20–22.

[Izadi et al., 2011] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli,
P., Shotton, J., Hodges, S., Freeman, D., Davison, A., et al. (2011). Kinectfusion: real-
time 3d reconstruction and interaction using a moving depth camera. In Proceedings
of the 24th annual ACM symposium on User interface software and technology, pages
559–568.

[Janoch et al., 2013] Janoch, A., Karayev, S., Jia, Y., Barron, J. T., Fritz, M., Saenko,
K., and Darrell, T. (2013). A category-level 3d object dataset: Putting the kinect to
work. In Consumer depth cameras for computer vision, pages 141–165. Springer.

110

[Kang et al., 2017] Kang, K., Li, H., Yan, J., Zeng, X., Yang, B., Xiao, T., Zhang, C.,
Wang, Z., Wang, R., Wang, X., et al. (2017). T-cnn: Tubelets with convolutional
neural networks for object detection from videos. IEEE Transactions on Circuits and
Systems for Video Technology, 28(10):2896–2907.

[Karpathy and Fei-Fei, 2015] Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic
alignments for generating image descriptions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3128–3137.

[Kästner et al., 2021] Kästner, L., Eversberg, L., Mursa, M., and Lambrecht, J. (2021).
Integrative object and pose to task detection for an augmented-reality-based human
assistance system using neural networks. In 2020 IEEE Eighth International Conference
on Communications and Electronics (ICCE), pages 332–337. IEEE.

[Khan et al., 2015] Khan, D., Ullah, S., and Rabbi, I. (2015). Factors affecting the design
and tracking of artoolkit markers. Computer Standards & Interfaces, 41:56–66.

[Khoshelham et al., 2019] Khoshelham, K., Tran, H., and Acharya, D. (2019). Indoor
mapping eyewear: geometric evaluation of spatial mapping capability of hololens.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

[Krasin et al., 2017] Krasin, I., Duerig, T., Alldrin, N., Ferrari, V., Abu-El-Haija, S.,
Kuznetsova, A., Rom, H., Uijlings, J., Popov, S., Veit, A., et al. (2017). Openimages:
A public dataset for large-scale multi-label and multi-class image classification. Dataset
available from https://github.com/openimages, 2(3):18.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural networks. Advances in neural
information processing systems, 25:1097–1105.

[Ku et al., 2018] Ku, J., Mozifian, M., Lee, J., Harakeh, A., and Waslander, S. L. (2018).
Joint 3d proposal generation and object detection from view aggregation. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1–8. IEEE.

[Kukačka et al., 2017] Kukačka, J., Golkov, V., and Cremers, D. (2017). Regularization
for deep learning: A taxonomy. arXiv preprint arXiv:1710.10686.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.
nature, 521(7553):436–444.

[Lee et al., 2019] Lee, S., Lee, S., Lee, K., and Ko, J. G. (2019). Deepmobilear: A mobile
augmented reality application with integrated visual slam and object detection. In
SIGGRAPH Asia 2019 Posters, pages 1–2.

111

[Li, 2017] Li, B. (2017). 3d fully convolutional network for vehicle detection in point
cloud. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1513–1518. IEEE.

[Li et al., 2016] Li, B., Zhang, T., and Xia, T. (2016). Vehicle detection from 3d lidar
using fully convolutional network. arXiv preprint arXiv:1608.07916.

[Li et al., 2020] Li, X., Tian, Y., Zhang, F., Quan, S., and Xu, Y. (2020). Object
detection in the context of mobile augmented reality. In 2020 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pages 156–163. IEEE.

[Lim et al., 2019] Lim, S., Kim, I., Kim, T., Kim, C., and Kim, S. (2019). Fast autoaug-
ment. arXiv preprint arXiv:1905.00397.

[Lin et al., 2013] Lin, M., Chen, Q., and Yan, S. (2013). Network in network. arXiv
preprint arXiv:1312.4400.

[Lin et al., 2017a] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Be-
longie, S. (2017a). Feature pyramid networks for object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2117–2125.

[Lin et al., 2017b] Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017b). Fo-
cal loss for dense object detection. In Proceedings of the IEEE international conference
on computer vision, pages 2980–2988.

[Lin et al., 2014] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755. Springer.

[Liu et al., 2020] Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X.,
and Pietikäinen, M. (2020). Deep learning for generic object detection: A survey.
International journal of computer vision, 128(2):261–318.

[Liu et al., 2016] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y.,
and Berg, A. C. (2016). Ssd: Single shot multibox detector. In European conference
on computer vision, pages 21–37. Springer.

[Lowe, 1999] Lowe, D. G. (1999). Object recognition from local scale-invariant features.
In Proceedings of the seventh IEEE international conference on computer vision, vol-
ume 2, pages 1150–1157. Ieee.

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant key-
points. International journal of computer vision, 60(2):91–110.

[Ma et al., 2015] Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E., and Svetnik, V. (2015).
Deep neural nets as a method for quantitative structure–activity relationships. Journal
of chemical information and modeling, 55(2):263–274.

112

[Mahurkar, 2018] Mahurkar, S. (2018). Integrating yolo object detection with augmented
reality for ios apps. In 2018 9th IEEE Annual Ubiquitous Computing, Electronics &
Mobile Communication Conference (UEMCON), pages 585–589. IEEE.

[McGill et al., 1978] McGill, R., Tukey, J. W., and Larsen, W. A. (1978). Variations of
box plots. The American Statistician, 32(1):12–16.

[Microsoft, 2021a] Microsoft (2021a). HoloLens (1st gen) hardware. https://docs.
microsoft.com/en-us/hololens/hololens1-hardware. [Online; accessed
25-March-2021].

[Microsoft, 2021b] Microsoft (2021b). HoloLens 2. https://www.microsoft.com/
en-us/hololens/hardware. [Online; accessed 23-March-2021].

[Mikołajczyk and Grochowski, 2018] Mikołajczyk, A. and Grochowski, M. (2018). Data
augmentation for improving deep learning in image classification problem. In 2018
international interdisciplinary PhD workshop (IIPhDW). IEEE.

[Minemura et al., 2018] Minemura, K., Liau, H., Monrroy, A., and Kato, S. (2018).
Lmnet: Real-time multiclass object detection on cpu using 3d lidar. In 2018 3rd
Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pages 28–34. IEEE.

[Mousavian et al., 2017] Mousavian, A., Anguelov, D., Flynn, J., and Kosecka, J. (2017).
3d bounding box estimation using deep learning and geometry. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 7074–7082.

[Mundy, 2006] Mundy, J. L. (2006). Object recognition in the geometric era: A retro-
spective. Toward category-level object recognition, pages 3–28.

[Murase and Nayar, 1995] Murase, H. and Nayar, S. K. (1995). Visual learning and
recognition of 3-d objects from appearance. International journal of computer vision,
14(1):5–24.

[Naseer et al., 2018] Naseer, M., Khan, S., and Porikli, F. (2018). Indoor scene under-
standing in 2.5/3d for autonomous agents: A survey. IEEE Access, 7:1859–1887.

[Nießner et al., 2013] Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M. (2013).
Real-time 3d reconstruction at scale using voxel hashing. ACM Transactions on
Graphics (ToG), 32(6):1–11.

[Nishihara and Okamoto, 2015] Nishihara, A. and Okamoto, J. (2015). Object recogni-
tion in assembly assisted by augmented reality system. In 2015 SAI Intelligent Systems
Conference (IntelliSys), pages 400–407. IEEE.

[Padilla et al., 2021] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L., and da Silva,
E. A. (2021). A comparative analysis of object detection metrics with a companion
open-source toolkit. Electronics, 10(3):279.

113

https://docs.microsoft.com/en-us/hololens/hololens1-hardware
https://docs.microsoft.com/en-us/hololens/hololens1-hardware
https://www.microsoft.com/en-us/hololens/hardware
https://www.microsoft.com/en-us/hololens/hardware

[Park et al., 2020a] Park, B. J., Hunt, S. J., Nadolski, G. J., and Gade, T. P. (2020a).
3d augmented reality-assisted ct-guided interventions: System design and preclinical
trial on an abdominal phantom using hololens 2. arXiv preprint arXiv:2005.09146.

[Park et al., 2020b] Park, B. J., Hunt, S. J., Nadolski, G. J., and Gade, T. P. (2020b).
3d augmented reality-assisted ct-guided interventions: System design and preclinical
trial on an abdominal phantom using hololens 2. CoRR, abs/2005.09146.

[Park et al., 2020c] Park, K.-B., Kim, M., Choi, S. H., and Lee, J. Y. (2020c). Deep
learning-based smart task assistance in wearable augmented reality. Robotics and
Computer-Integrated Manufacturing, 63:101887.

[Peng et al., 2018] Peng, C., Xiao, T., Li, Z., Jiang, Y., Zhang, X., Jia, K., Yu, G., and
Sun, J. (2018). Megdet: A large mini-batch object detector. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 6181–6189.

[Perez and Wang, 2017] Perez, L. and Wang, J. (2017). The effectiveness of data augmen-
tation in image classification using deep learning. arXiv preprint arXiv:1712.04621.

[Puljiz et al., 2020] Puljiz, D., Krebs, F., Bösing, F., and Hein, B. (2020). What the
hololens maps is your workspace: Fast mapping and set-up of robot cells via head
mounted displays and augmented reality. arXiv preprint arXiv:2005.12651.

[Qi et al., 2020] Qi, C. R., Chen, X., Litany, O., and Guibas, L. J. (2020). Imvotenet:
Boosting 3d object detection in point clouds with image votes. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 4404–4413.

[Qi et al., 2019] Qi, C. R., Litany, O., He, K., and Guibas, L. J. (2019). Deep hough
voting for 3d object detection in point clouds. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9277–9286.

[Qi et al., 2018] Qi, C. R., Liu, W., Wu, C., Su, H., and Guibas, L. J. (2018). Frustum
pointnets for 3d object detection from rgb-d data. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 918–927.

[Qi et al., 2017a] Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 652–660.

[Qi et al., 2017b] Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Pointnet++:
Deep hierarchical feature learning on point sets in a metric space. arXiv preprint
arXiv:1706.02413.

[Radkowski, 2016] Radkowski, R. (2016). Object tracking with a range camera for
augmented reality assembly assistance. Journal of Computing and Information Science
in Engineering, 16(1).

114

[Rahman et al., 2019] Rahman, M. M., Tan, Y., Xue, J., and Lu, K. (2019). Recent
advances in 3d object detection in the era of deep neural networks: A survey. IEEE
Transactions on Image Processing, 29:2947–2962.

[Rajendran et al., 2019] Rajendran, S. P., Shine, L., Pradeep, R., and Vijayaragha-
van, S. (2019). Real-time traffic sign recognition using yolov3 based detector. In
2019 10th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), pages 1–7. IEEE.

[Rao et al., 2017] Rao, J., Qiao, Y., Ren, F., Wang, J., and Du, Q. (2017). A mobile
outdoor augmented reality method combining deep learning object detection and
spatial relationships for geovisualization. Sensors, 17(9):1951.

[Redmon et al., 2016] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016).
You only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 779–788.

[Redmon and Farhadi, 2017] Redmon, J. and Farhadi, A. (2017). Yolo9000: better,
faster, stronger. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7263–7271.

[Redmon and Farhadi, 2018] Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.

[Ren et al., 2015] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn:
Towards real-time object detection with region proposal networks. arXiv preprint
arXiv:1506.01497.

[Ren and Sudderth, 2016] Ren, Z. and Sudderth, E. B. (2016). Three-dimensional object
detection and layout prediction using clouds of oriented gradients. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1525–1533.

[Ren and Sudderth, 2018] Ren, Z. and Sudderth, E. B. (2018). 3d object detection with
latent support surfaces. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 937–946.

[Roberts, 1963] Roberts, L. G. (1963). Machine perception of three-dimensional solids.
PhD thesis, Massachusetts Institute of Technology.

[Sainath et al., 2013] Sainath, T. N., Mohamed, A.-r., Kingsbury, B., and Ramabhadran,
B. (2013). Deep convolutional neural networks for lvcsr. In 2013 IEEE international
conference on acoustics, speech and signal processing, pages 8614–8618. IEEE.

[Schmid and Mohr, 1997] Schmid, C. and Mohr, R. (1997). Local grayvalue invariants
for image retrieval. IEEE transactions on pattern analysis and machine intelligence,
19(5):530–535.

115

[Schneider et al., 2021] Schneider, M., Kunz, C., Pal’a, A., Wirtz, C. R., Mathis-Ullrich,
F., and Hlaváč, M. (2021). Augmented reality–assisted ventriculostomy. Neurosurgical
Focus, 50(1):E16.

[Serrano Vergel et al., 2020] Serrano Vergel, R., Morillo Tena, P., Casas Yrurzum, S.,
and Cruz-Neira, C. (2020). A comparative evaluation of a virtual reality table and a
hololens-based augmented reality system for anatomy training. IEEE Transactions on
Human-Machine Systems, 50(4):337–348.

[Sharma and Mir, 2020] Sharma, V. and Mir, R. N. (2020). A comprehensive and
systematic look up into deep learning based object detection techniques: A review.
Computer Science Review, 38:100301.

[Shen, 2019] Shen, X. (2019). A survey of object classification and detection based on
2d/3d data. arXiv preprint arXiv:1905.12683.

[Shin et al., 2019] Shin, K., Kwon, Y. P., and Tomizuka, M. (2019). Roarnet: A robust
3d object detection based on region approximation refinement. In 2019 IEEE Intelligent
Vehicles Symposium (IV), pages 2510–2515. IEEE.

[Shorten and Khoshgoftaar, 2019] Shorten, C. and Khoshgoftaar, T. M. (2019). A survey
on image data augmentation for deep learning. Journal of Big Data, 6(1):1–48.

[Silberman et al., 2012] Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012).
Indoor segmentation and support inference from rgbd images. In European conference
on computer vision, pages 746–760. Springer.

[Simony et al., 2018] Simony, M., Milzy, S., Amendey, K., and Gross, H.-M. (2018).
Complex-yolo: An euler-region-proposal for real-time 3d object detection on point
clouds. In Proceedings of the European Conference on Computer Vision (ECCV)
Workshops, pages 0–0.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

[Singh et al., 2019] Singh, R. D., Mittal, A., and Bhatia, R. K. (2019). 3d convolutional
neural network for object recognition: a review. Multimedia Tools and Applications,
78(12):15951–15995.

[Song et al., 2015] Song, S., Lichtenberg, S. P., and Xiao, J. (2015). Sun rgb-d: A rgb-d
scene understanding benchmark suite. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 567–576.

[Song and Xiao, 2014] Song, S. and Xiao, J. (2014). Sliding shapes for 3d object detection
in depth images. In European conference on computer vision, pages 634–651. Springer.

116

[Song and Xiao, 2016] Song, S. and Xiao, J. (2016). Deep sliding shapes for amodal 3d
object detection in rgb-d images. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 808–816.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958.

[Strubell et al., 2019] Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and
policy considerations for deep learning in nlp. arXiv preprint arXiv:1906.02243.

[Sultana et al., 2019] Sultana, F., Sufian, A., and Dutta, P. (2019). A review of
object detection models based on convolutional neural network. arXiv preprint
arXiv:1905.01614.

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1–9.

[Tan et al., 2018] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018).
A survey on deep transfer learning. In International conference on artificial neural
networks, pages 270–279. Springer.

[Terry, 2019] Terry, E. (2019). Silicon at the heart of hololens 2. In 2019 IEEE Hot
Chips 31 Symposium (HCS), pages 1–26. IEEE Computer Society.

[Thipsanthia et al., 2019] Thipsanthia, P., Chamchong, R., and Songram, P. (2019).
Road sign detection and recognition of thai traffic based on yolov3. In International
Conference on Multi-disciplinary Trends in Artificial Intelligence, pages 271–279.
Springer.

[Thomas and David, 1992] Thomas, P. C. and David, W. (1992). Augmented reality:
An application of heads-up display technology to manual manufacturing processes. In
Hawaii international conference on system sciences, pages 659–669.

[Tremblay et al., 2018] Tremblay, J., To, T., and Birchfield, S. (2018). Falling things:
A synthetic dataset for 3d object detection and pose estimation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages
2038–2041.

[Ungureanu et al., 2020] Ungureanu, D., Bogo, F., Galliani, S., Sama, P., Duan, X.,
Meekhof, C., Stühmer, J., Cashman, T. J., Tekin, B., Schönberger, J. L., et al. (2020).
Hololens 2 research mode as a tool for computer vision research. arXiv preprint
arXiv:2008.11239.

117

[Valiati and Menotti, 2019] Valiati, G. R. and Menotti, D. (2019). Detecting pedestrians
with yolov3 and semantic segmentation infusion. In 2019 International Conference on
Systems, Signals and Image Processing (IWSSIP), pages 95–100. IEEE.

[Van Krevelen and Poelman, 2010] Van Krevelen, D. and Poelman, R. (2010). A survey
of augmented reality technologies, applications and limitations. International journal
of virtual reality, 9(2):1–20.

[Viola and Jones, 2001] Viola, P. and Jones, M. (2001). Rapid object detection using a
boosted cascade of simple features. In Proceedings of the 2001 IEEE computer society
conference on computer vision and pattern recognition. CVPR 2001, volume 1, pages
I–I. IEEE.

[Viola and Jones, 2004] Viola, P. and Jones, M. J. (2004). Robust real-time face detection.
International journal of computer vision, 57(2):137–154.

[Wang and Posner, 2015] Wang, D. Z. and Posner, I. (2015). Voting for voting in online
point cloud object detection. In Robotics: Science and Systems, volume 1, pages
10–15607. Rome, Italy.

[Wang et al., 2013] Wang, Z., Ong, S., and Nee, A. (2013). Augmented reality aided inter-
active manual assembly design. The International Journal of Advanced Manufacturing
Technology, 69(5):1311–1321.

[Xiang et al., 2015] Xiang, Y., Choi, W., Lin, Y., and Savarese, S. (2015). Data-driven 3d
voxel patterns for object category recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1903–1911.

[Xiao et al., 2013] Xiao, J., Owens, A., and Torralba, A. (2013). Sun3d: A database
of big spaces reconstructed using sfm and object labels. In Proceedings of the IEEE
international conference on computer vision, pages 1625–1632.

[Xiao et al., 2020] Xiao, Y., Tian, Z., Yu, J., Zhang, Y., Liu, S., Du, S., and Lan, X.
(2020). A review of object detection based on deep learning. Multimedia Tools and
Applications, 79(33):23729–23791.

[Xie et al., 2020] Xie, Q., Lai, Y.-K., Wu, J., Wang, Z., Zhang, Y., Xu, K., and Wang, J.
(2020). Mlcvnet: Multi-level context votenet for 3d object detection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 10447–
10456.

[Xu et al., 2018] Xu, D., Anguelov, D., and Jain, A. (2018). Pointfusion: Deep sensor
fusion for 3d bounding box estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 244–253.

[Yan et al., 2018] Yan, Y., Mao, Y., and Li, B. (2018). Second: Sparsely embedded
convolutional detection. Sensors, 18(10):3337.

118

[Yang et al., 2018] Yang, B., Luo, W., and Urtasun, R. (2018). Pixor: Real-time 3d
object detection from point clouds. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 7652–7660.

[Yang et al., 2019] Yang, S., Zhang, J., Bo, C., Wang, M., and Chen, L. (2019). Fast
vehicle logo detection in complex scenes. Optics & Laser Technology, 110:196–201.

[Yi et al., 2016] Yi, L., Kim, V. G., Ceylan, D., Shen, I.-C., Yan, M., Su, H., Lu, C.,
Huang, Q., Sheffer, A., and Guibas, L. (2016). A scalable active framework for region
annotation in 3d shape collections. ACM Transactions on Graphics (ToG), 35(6):1–12.

[Yu et al., 2017] Yu, S.-L., Westfechtel, T., Hamada, R., Ohno, K., and Tadokoro, S.
(2017). Vehicle detection and localization on bird’s eye view elevation images using
convolutional neural network. In 2017 IEEE International Symposium on Safety,
Security and Rescue Robotics (SSRR), pages 102–109. IEEE.

[Zeller, 2018] Zeller, M. (2018). Spatial mapping. https://docs.microsoft.
com/en-us/windows/mixed-reality/design/spatial-mapping. [Online;
accessed 18-January-2021].

[Zhang et al., 2018] Zhang, W., Yang, G., Lin, Y., Ji, C., and Gupta, M. M. (2018). On
definition of deep learning. In 2018 World automation congress (WAC), pages 1–5.
IEEE.

[Zhang et al., 2019] Zhang, Y., Li, D., Wang, H., and Yang, Z.-H. (2019). Application
of mixed reality based on hololens in nuclear power engineering. In International
Symposium on Software Reliability, Industrial Safety, Cyber Security and Physical
Protection for Nuclear Power Plant, pages 9–20. Springer.

[Zhao et al., 2019a] Zhao, X., Liu, Z., Hu, R., and Huang, K. (2019a). 3d object detection
using scale invariant and feature reweighting networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 9267–9274.

[Zhao et al., 2019b] Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. (2019b). Object
detection with deep learning: A review. IEEE transactions on neural networks and
learning systems, 30(11):3212–3232.

[Zhong et al., 2020] Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y. (2020). Random
erasing data augmentation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 13001–13008.

[Zhou and Tuzel, 2018] Zhou, Y. and Tuzel, O. (2018). Voxelnet: End-to-end learning
for point cloud based 3d object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4490–4499.

[Zoph et al., 2020] Zoph, B., Cubuk, E. D., Ghiasi, G., Lin, T.-Y., Shlens, J., and Le,
Q. V. (2020). Learning data augmentation strategies for object detection. In European
Conference on Computer Vision, pages 566–583. Springer.

119

https://docs.microsoft.com/en-us/windows/mixed-reality/design/spatial-mapping
https://docs.microsoft.com/en-us/windows/mixed-reality/design/spatial-mapping

[Zou et al., 2019] Zou, Z., Shi, Z., Guo, Y., and Ye, J. (2019). Object detection in 20
years: A survey. arXiv preprint arXiv:1905.05055.

120

Appendix

Dataset Structure

A large number of data sample are acquired, including raw images, raw point cloud data,
auxiliary data, and intermediate as well as final results. Subsequently, important folders
are explained.

There is a main separation into images, pointclouds, and things generated by or needed
for the VSC setup. Additionally the configuration and documentation file train_run_-
params.ods is available in the main folder. For easier usage with Microsoft Excel this
file is also provided as .xlsx. Next, first image data, then pointcloud and finally vsc
files are explained.

//GEO/geoinfo/Data/Sophie/masterarbeit_backup

img

pointcloud

vsc

The most important image data are the acquired and cleaned images (see masterar-
beit_backup/img/raw). Data is organized per condition (indoor-night, indoor-sun,
outdoor-night, outdoor-sun), per category (chair, cup, monitor, pottedplant, table) and
per object instance (from 01 to 10). Each folder contains png images. Below an example
of of the condition indoor-night and category chair is given.

121

/masterarbeit_backup/img/raw

indoor_night

chair

01 - acquired png images - already cleaned

02

03

04

05

06

07

08

09

10

As described in Subsection 3.1.5 the 2D labeling process includes multiple step. Data
generated throughout this process is available under masterarbeit_backup/img/la-
bel (see folder structure below). It is separated into multiple folders: manual includes
input and output data of Microsoft VOTT, used for manually labeling images. In detail,
the two source and source_val sub-folder store raw png files — the first one is
composed of 5000 train samples and the latter of 1000 validation samples. The two
target and target_val sub-folders provide Microsoft VOTT json descriptions per
image, the exported Pascal VOC description and the final tfrecords per split.

Based on the manually labeled subset, YOLOv3 is trained with different sets of hyperpa-
rameters. Each set of hyperparameters is named by the execution datetime (see train_-
run_params.ods for mapping). Resulting checkpoint files and logs are available under
masterarbeit_backup/img/label/yolov3-tf2. Checkpoints for each epoch are
stored. Those are then used to calculate accuracy results. For this the checkpoints
of the final epoch are copied to masterarbeit_backup/img/label/acc_check-
points and the validation dataset is labeled with each checkpoint file. Results per
datetime in YOLO format are available under masterarbeit_backup/img/label/-
metric/<datetime>. Those labeled files are used as input for review_object_de-
tection_metrics to determine the final validation accuracy. Results are available in
the main train_run_params.ods. The best run is then used to label all images.

The folder auto and auto2 provide the final output of the labeling process of all images.
This includes Pascal VOC xml files and tfrecords. The difference between the two folders
is that auto includes all accepted images — which means the train split contains 112,514

122

samples — and auto2 includes only 112,500 images. The latter is required for distributed
training of YOLOv3 with Tensorflow 2.1 and Tensorflow 2.3. For distributed training
the number of training and validation samples must divide evenly by the number of
used GPUs. Hence, the latter dataset is used for hyperparameter sets which can only be
trained on multiple GPUs.

/masterarbeit_backup/img/label

manual

source

source_val

target

target_val

tfrecord_final

yolov3-tf2

checkpoints

<datetime>

logs

<datetime>

acc_checkpoints

metric

<datetime>

auto

auto2

The labeled data is then split into train, validation, and test set. Validation respectively
test images and Pascal VOC xml files are available in two formats, either including all
conditions or per condition (see masterarbeit_backup/img/final_split). Those
are required to latter calculate accuracy metrics on the respective (sub-) dataset.

123

masterarbeit_backup/img/final_split

val_img

val_xml

val_condition

img

indoor_night - outdoor_sun

xml

indoor_night - outdoor_sun

test_img

test_xml

test_condition - as val_condition

Leveraging the fully labeled dataset YOLOv3 is trained again with multiple sets of
hyperparameters. The object detection experiment is performed on VSC3. Scripts, logs
and checkpoints are stored under masterarbeit_backup/vsc/yolov3-tf2. Similar
to the training for the labeling process, hyperparameter sets are again named by there
execution datetime. The mapping can again be found in train_run_params.ods.

masterarbeit_backup/vsc/yolov3-tf2

scripts

logs

<datetime>

checkpoints

<datetime>

Per run accuracy results are calculated. For this validation respectively test set is
labeled. Detected objects are stored per images and per run in YOLO format (see
masterarbeit_backup/img/accuracy) to be used as input for review_object_-
detection_metrics. Validation accuracy is calculated for all runs, test accuracy only
for the best run per augmentation level — three in total. Final results are summarized
in train_run_params.ods.

124

masterarbeit_backup/img/accuracy

val

<datetime>

val_condition

indoor_night - outdoor_sun

<datetime>

test

<datetime>

test_condition

indoor_night - outdoor_sun

<datetime>

After detailing the 2D data structure the organization of the 3D data is described
subsequently. Acquired point clouds are available under masterarbeit_backup/-
pointcloud/raw, equivalent to raw 2D data they are organized per condition, category
and object instance. The 3D labeling process includes less steps than the 2D one so
also the masterarbeit_backup/pointcloud/label folder is simpler. It is com-
posed of one .npy file per accepted point cloud. It describes detected objects and their
bounding boxes in the format as expected by VoteNet. Folders are again structured by
condition, category and instance. The final input for votenet (see masterarbeit_-
backup/pointcloud/votenet_input) includes the point clouds (.npz), bounding
boxes (.npy), and votes (.npy) in the format as expected by Votenet. Data is separated
into train, val, and test split. For condition specific evaluation validation and test split
are also available per condition (see masterarbeit_backup/pointcloud/condi-
tion_split).

125

masterarbeit_backup/pointcloud

raw - point clouds

indoor_night - outdoor_sun

chair - table

01 - 10

label - bounding boxes

experiment

indoor_night - outdoor_sun

chair - table

01 - 10

votenet_input - point clouds, bounding boxes, and votes

train

val

test

condition_split - point clouds, bounding boxes, and votes

indoor_night - outdoor_sun

Training results of the object detection experiment realized at VSC3 are available
under masterarbeit_backup/vsc/votenet/log. Each set of hyperparameters is
assigned a so called run number (for mapping see train_run_params.ods). Per run
training logs, test logs, evaluation metrics, and the checkpoint file of the final epoch are
available. As accuracy metrics are calculated directly no additional setup — and no
additional folders — are required.

masterarbeit_backup/vsc/votenet/log

<run>

train - logs, including accuracy metrics

test - logs, including accuracy metrics

eval - additional evaluation, including sample point clouds

time - dedicated time evaluation

checkpoint.tar

126

Code repositories
Throughout this thesis five main code repositories are created or edited. Subsequently a
general description for each repository is given. Detailed descriptions and setup instruc-
tions are available in the README.md in each repository. The latter three repositories
are forks from other repositories which are extended to special needs of this thesis.

• HoloServer1: Python 3 Flask REST server to communicate with HoloClient and
utilities to support the labeling process of 2D and 3D data for object detection
training.

• HoloClient2: C# (Visual Studio 2019) Unity 2019.4 implementation of REST
client to extract and send 2D and 3D scenes to HoloServer.

• yolov3-tf23: Python 3 Tensorflow 2 implementation of YOLOv3 and YOLOv3-
tiny. Original training process is extended with data augmentation. A labeling tool
is added to simplify the labeling of a complete dataset with YOLOv3.

• votenet4: Python 3 Pytorch 1.1 implementation of VoteNet. An additional
dataset class is added to add support for the newly created AR-2/3 dataset. This
implementation automatically returns accuracy measures.

• review_object_detection_metrics5: Python 3 implementation of 2D ob-
ject detection accuracy metrics (including MS COCO and Pascal VOC). Used to
calculate accuracy metrics for 2D data. Only a minor bug fix is added.

Object Detection Results
During the object detection experiment condition specific validation accuracy is calculate
for all runs. Resulting table are to extensive to be shown in Chapter 5, that is why they
are available here.

2D Object Detection
To evaluate the difference between the overall and the condition specific accuracy, results
are calculated for the best five runs per augmentation level. Then the difference between
the overall and the condition specific accuracy is calculated. The results are show in
Figure 1, 2, and 3. In comparison higher accuracy values are colored green, lower ones
in red. Detailed results for the best run per augmentation level on the test dataset are
summarized in Figure 4.

1https://git.geo.tuwien.ac.at/markus-kattenbeck/holo2_server, accessed 1-August-2021
2https://git.geo.tuwien.ac.at/markus-kattenbeck/holo2_client, accessed 1-August-2021
3https://git.geo.tuwien.ac.at/sherrmann/yolov3-tf2, accessed 1-August-2021
4https://git.geo.tuwien.ac.at/sherrmann/votenet, accessed 1-August-2021
5https://git.geo.tuwien.ac.at/sherrmann/review_object_detection_metrics, accessed 1-August-2021

127

Fi
gu

re
1:

D
iff

er
en

ce
be

tw
ee

n
ov

er
al

lv
al

id
at

io
n

ac
cu

ra
cy

an
d

co
nd

iti
on

s
sp

ec
ifi

c
on

es
fo

r
fu

ll
au

gm
en

ta
ti

on
.

128

Fi
gu

re
2:

D
iff

er
en

ce
be

tw
ee

n
ov

er
al

lv
al

id
at

io
n

ac
cu

ra
cy

an
d

co
nd

iti
on

s
sp

ec
ifi

c
on

es
fo

r
m

ed
iu

m
au

gm
en

ta
ti

on
.

129

Fi
gu

re
3:

D
iff

er
en

ce
be

tw
ee

n
ov

er
al

lv
al

id
at

io
n

ac
cu

ra
cy

an
d

co
nd

iti
on

s
sp

ec
ifi

c
on

es
fo

r
no

au
gm

en
ta

ti
on

.

130

Fi
gu

re
4:

Y
O

LO
v3

te
st

ac
cu

ra
cy

fo
r

be
st

m
od

el
pe

r
da

ta
au

gm
en

ta
tio

n
le

ve
l.

U
pp

er
pa

rt
pr

es
en

ts
th

e
ab

so
lu

te
ov

er
al

la
cc

ur
ac

y.
H

ig
he

r
(g

re
en

)
va

lu
es

ar
e

be
tt

er
.

T
he

lo
we

r
th

re
e

pa
rt

s
sh

ow
th

e
di

ffe
re

nc
e

be
tw

ee
n

th
e

ov
er

al
la

cc
ur

ac
y

an
d

co
nd

iti
on

sp
ec

ifi
c

re
su

lts
.

Lo
we

r
va

lu
es

(g
re

en
)

ar
e

be
tt

er
.

131

3D Object Detection
Similar to the 2D domain also for all 3D runs overall - condition specific accuracy
differences are calculated and presented in Figure 5 to 8. Test results for the best run
are shown in Figure 9.

132

Fi
gu

re
5:

D
iff

er
en

ce
be

tw
ee

n
ov

er
al

lv
al

id
at

io
n

ac
cu

ra
cy

an
d

in
do

or
-n

ig
ht

co
nd

iti
on

.

133

Fi
gu

re
6:

D
iff

er
en

ce
be

tw
ee

n
ov

er
al

lv
al

id
at

io
n

ac
cu

ra
cy

an
d

in
do

or
-s

un
co

nd
iti

on
.

134

Fi
gu

re
7:

D
iff

er
en

ce
be

tw
ee

n
ov

er
al

lv
al

id
at

io
n

ac
cu

ra
cy

an
d

ou
td

oo
r-

ni
gh

t
co

nd
iti

on
.

135

Fi
gu

re
8:

D
iff

er
en

ce
be

tw
ee

n
ov

er
al

lv
al

id
at

io
n

ac
cu

ra
cy

an
d

ou
td

oo
r-

su
n

co
nd

iti
on

.

136

Fi
gu

re
9:

Vo
te

N
et

te
st

ac
cu

ra
cy

fo
r

be
st

m
od

el
pe

r
da

ta
au

gm
en

ta
tio

n
le

ve
l.

U
pp

er
pa

rt
pr

es
en

ts
th

e
ab

so
lu

te
ov

er
al

la
cc

ur
ac

y.
H

ig
he

r
(g

re
en

)
va

lu
es

ar
e

be
tt

er
.

T
he

lo
w

er
th

re
e

pa
rt

s
sh

ow
th

e
di

ffe
re

nc
e

be
tw

ee
n

th
e

ov
er

al
la

cc
ur

ac
y

an
d

co
nd

iti
on

sp
ec

ifi
c

re
su

lts
.

Lo
we

r
va

lu
es

(g
re

en
)

ar
e

be
tt

er
.

137

	Abstract
	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	Goals
	Overview

	Related Work
	2D Object Detection
	3D Object Detection
	Object Detection with Augmented Reality
	Contribution of this work

	Data Acquisition
	Methodology
	Results
	Evaluation

	Analysis
	Algorithm Requirements
	Algorithm Selection and Training
	Comparison Strategy

	Results
	2D Data
	3D Data

	Discussion
	Object Detection Results per Domain
	2D - 3D Comparison

	Conclusion and Future Work
	Bibliography
	Appendix
	Dataset Structure
	Code repositories
	Object Detection Results

