% Formal Methods in Computer-Aided Design 2021

Refinement-Based Verification of Device-to-Device
Information Flow

Ning Dong

, Roberto Guanciale

, Mads Dam

KTH Royal Institute of Technology

Abstract—I1/0 devices are the critical components that allow a
computing system to communicate with the external environment.
From the perspective of a device, interactions can be divided
into two parts, with the processor (mainly memory operations
by the driver) and through the communication medium with
external devices. In this paper, we present an abstract model of
I/O devices and their drivers to describe the expected results
of their execution, where the communication between devices
is made explicit and the device-to-device information flow is
analyzed. In order to handle general I/O functionalities, both
half-duplex (transmission and reception) and full-duplex (sending
and receiving simultaneously) data transmissions are considered.
We propose a refinement-based approach that concretizes a
correct-by-construction abstract model into an actual hardware
device and its driver. As an example, we formalize the Serial
Peripheral Interface (SPI) with a driver. In the HOL4 interactive
theorem prover, we verified the refinement between these models
by establishing a weak bisimulation. We show how this result can
be used to establish both functional correctness and information
flow security for both single devices and when devices are
connected in an end-to-end fashion.

Index Terms—Formal verification, Refinement, Serial inter-
face, Device driver, Interactive theorem prover, Information flow

I. INTRODUCTION

I/O devices are indispensable components for interactions
with the external environment (e.g., print documents, transmit
data, and receive user’s commands). Their proper operation
is critical for trustworthiness: Poorly written device drivers
are the predominant reason for operating system crashes [1]-
[3], and devices themselves can be vulnerable to side-channel
attacks [4], [5].

Existing work [6]-[10] mostly focuses on the verification of
functional properties of device drivers, by analyzing the inter-
actions between the controlling software and the I/O device.
In this paper, we present a verification approach that includes
inter-device communication. This allows to establish end-to-
end information flow properties, for example to guarantee the
absence of side channels.

Our strategy is based on refinement. First we define a formal
“concrete” model of a specific I/O device, which formalizes
the device behavior that is observable by the controlling
software and other external devices, and a model of its device
driver. The combination of these two models provides a soft-
ware/hardware subsystem that can interact with other software

This work has been supported by the TrustFull project funded by the
Swedish Foundation for Strategic Research. Ning Dong is supported by the
China Scholarship Council for his doctoral studies.

d https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_21

components and external devices. We then define an abstract
model of this subsystem, which is independent of the actual
device and provides a general blueprint of the subsystem’s
desired behavior and information flows. The goal is that this
abstract model should provide a functionality that is correct
and secure by construction, similar to ideal models used in
cryptography. Our refinement establishes a weak bisimulation
between the concrete and abstract systems.
There are three main benefits of this approach:

« Bisimulation allows to transfer both functional properties
and information flow properties (e.g., progress-sensitive
noninterference [11]) of the abstract model to the concrete
one.

o The same abstract model can be refined by models for
different I/O devices.

o The compositionality of bisimulation allows to preserve
the verified properties when we compose the subsystem
with other components: e.g., we can compose the sub-
system with the other software or subsystems to show
inter-host properties.

We choose the Serial Peripheral Interface (SPI) as the
demonstrating example, and we provide the formal model of
a specific device, the Texas Instruments McSPI device used
in the AM335x family of processors [12], and its driver. The
Serial Peripheral Interface is a synchronous protocol for serial
communication that is mainly used in embedded devices. The
protocol was first introduced in the late 1970s by Motorola
and has become popular because of its simplicity and speed
[13]. SPI devices support both half-duplex and full-duplex data
transmissions, where the latter is used to improve performance
by simultaneously sending and receiving data with external
devices. Although full-duplex is effective in practice, this is to
our knowledge the first example of verification in the literature
of a full-duplex communication device, cf. [6]-[10].

r

Untrusted Guest |  Trusted Guest

‘ RNG ‘

Apps ¢Ad,

[ SPI Driver J

‘ Prosper Hypervisor Arq| Ay

Software
Layer A

[ Adr )
SPI Driver SwW ‘

Ard Awr /
BeagleBone Black| SPI Adev SPI

Camera
Hardware Hardware|

Fig. 1. The architecture of a random number generator

Linux OS

-

Hardware ‘

Layer ‘i

This article is licensed under a Creative
BY Commons Attribution 4.0 International License


https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-0629-4439
https://orcid.org/0000-0002-8069-6495
https://orcid.org/0000-0001-5432-6442
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_21
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_21
https://creativecommons.org/licenses/by/4.0/

We use the refinement to establish several interesting proper-
ties of the system: (1) The driver never leads the device to enter
a configuration that is undocumented by the hardware specifi-
cation; (2) Two interconnected SPI subsystems correctly and
securely exchange data when they are activated by their con-
trolling software; (3) Communications (driver-to-device and
device-to-device) provide progress-sensitive noninterference at
both concrete and abstract levels. The latter is established by
a notion of contextual indistinguishability derived from the
weak bisimulation.

To demonstrate our results, we developed the demonstrator
of Figure 1. We use a BeagleBone Black running the verified
Prosper hypervisor [14] together with an Arducam Shield Mini
2MP Plus camera to capture a physical source of randomness
for, in our case, the Verificatum e-voting system [15]. The
two devices communicate using SPI. The verification allowed
us to slim down the driver by removing some unnecessary
device register operations. The driver model is a direct manual
translation of the driver binary. Formalization of this step is
left as future work. In section X, we discuss our approach to
automate this step by establishing a bisimulation between the
driver model and its binary.

All proofs and models have been formalized in the HOL4
interactive theorem prover [16], which supports specification
and proof in classical higher-order logic. For full definitions
and proofs, we refer the reader to https://github.com/kth-step/
sw-spi-cam-model/releases/tag/fmcad.

II. BACKGROUND

In this work, we model one of the devices of BeagleBone
Black. This is a widely used development board with multiple
peripherals, including SPI, 12C, UART, etc. The board has
a TI AM335x processor [12] that uses the 32-bit ARMv7
instruction set architecture.

We focus on the SPI subsystem. Figure 2 shows the
basic components involved in the SPI protocol: hardware
connection, a controller, and a peripheral. In full-duplex mode,
SPI permits to transmit and receive data simultaneously on
separate data lines, SDI (Serial Data In) and SDO (Serial Data
Out). The SPI controller uses the serial clock (SCK) line to
maintain synchronization with the peripheral device. During
each SPI clock cycle, from the controller’s perspective, one bit
is transmitted from the controller to the peripheral on the SDO
line, while the peripheral sends one bit to the controller on the
SDT line. In half-duplex SPI transmissions, only one data line
is used depending on the controller settings. In transmission-
only mode, only the SDO data line is used, and vice versa for
reception-only. The controller uses the chip select (CS) line to
choose the desired communicating peripheral when multiple
peripherals are connected. In this paper, we consider only
the single peripheral case; extension to multiple peripherals
is straightforward.

Bit transmission on the SDO/SDI lines is governed by the
controller clock signal SCK, depending on configuration (clock
polarity and edge settings). The SPI protocol can transmit
messages of normally up to 16 bits, and delegates all error

SCK

A4

SCK

SDO

A4

SDI
SPI Controller SPI Peripheral

SDI

SDO

A

Ccs

\ 4

Ccs

Fig. 2. Basic SPI connection: a controller and peripheral

detection, flow control, and application adaptation to higher-
layer protocols. A driver can interact with the SPI hardware
by register polling, interrupts, and Direct Memory Access
(DMA). In this work, we rely on polling only. The following
registers of the BeagleBone SPI controller are the ones used
for polling:

1) The CP (controller/peripheral) bit of the MC (module
control) register configures the SPI hardware as a con-
troller (CP = 0) or a peripheral (CP = 1).

2) The channel configuration register (CCF) maintains the
configuration of the communication channel. For in-
stance, the TRM (transmit/receive modes) 2-bits of the
CCF register controls the half and full-duplex modes:
the values 0, 1, and 2 represent full-duplex, receive-only,
and transmit-only respectively. The WL (word length) 5-
bits configures the word length of the transmitted and
received data. In our case, the driver fixes the WL bits
to 7, which means the SPI word is 8-bits long, as all
models transmit and receive bytewise data.

3) The TXO (transmit buffer) register contains the data to
transmit. The RXO0 (receive buffer) register contains the
received message bits.

4) The CST (channel O status) register is a read-only
register and provides information about the status of
TX0 and RXO0 registers. The TXS (transmitter register
status) bit of the CST register indicates if the TXO
register is empty: its value is 1 when the TXO0 register is
empty and can be written with the next word to transmit,
and is 0 when the TXO register is full and should not
be overwritten. Analogously, the RXS (receiver register
status) bit of the same register indicates the status of the
RXO0 register: its value is 1 when the RX0 register is full
when data in the RXO0 register is ready to be fetched and
0 when RXO0 is empty.

III. ARCHITECTURAL MODEL

We model devices and drivers as labelled transition systems
(LTS) in the style of CCS [17], modelling the interaction
between software and driver, driver and device, as well as
between devices (through signals “on the wire”) by the si-
multaneous occurrence of an action « and its dual @, where
a, @ € Ayr UAqU Agey U Ag,.. The top components of
Figure 3 summarize the interfaces among models. Here, A,
is the set of write operations by the CPU, which is represented
by the action wt a v for writing a byte v to the register with
the memory-mapped address a, and the dual action wt a v

124


https://github.com/kth-step/sw-spi-cam-model/releases/tag/fmcad
https://github.com/kth-step/sw-spi-cam-model/releases/tag/fmcad

(a) SPI subsystem

AWI'

. External

sw Agr | SPI Driver SPI Hardware| Agey !
A Device

(b) model A
) Y )

External
sw Agr Abstract Model Agey Device

Fig. 3. The model architecture of SPI subsystem and abstract model

that is the corresponding action of the device. Similarly, A,.4
is the set of read operations by the CPU which is represented
by the action rd a v for reading v from the register mapped
at address a, and the dual action rd a v. Representing this
interaction as a CCS-style synchronous rendez-vous allows to
reflect the potential side effects of register accesses on the
SPI hardware. In the terminology of m-calculus [18], we use
the “early” semantics. For instance, the reading of a memory-
mapped register by the CPU non-deterministically spawns one
transition for every possible resulting value.

The device model uses four additional types of action to
model device-to-device interactions on the wire. The con-
vention needs to take controller/peripheral asymmetry into
account. For transmission-only mode the controller uses tz v
to send a byte v over the wire, and in reception-only mode
tr v to receive a byte from the wire. For synchronous
transfer of the (controller) byte v and (peripheral) byte
v’, the controller uses zfer v v’. The peripheral uses the
dual actions, i.e., tz v (fz v) for reception (transmission)
and always afer v v’ for synchronous transfer. Let Ay, =
{tz v, tx v,zfer v V' afer v v’ | bytes v,v'}. Finally, the
driver uses four additional actions to model invocations of the
driver API by application SW and one additional action for
returning control and result to SW (collected by Ag,.).

The SPI subsystem consists of the SPI hardware running
in parallel with its device driver with internal communication
channels (e.g., 7d a v), made inaccessible to the external
world. In CCS parlance this is (d|s) \ (At U Ayq), where
d and s are states of the driver and hardware, respectively.

IV. SPI HARDWARE MODEL

The state of the SPI hardware is represented by a tuple
s = (regs, sreg, c). Here, regs is a function mapping addresses
of memory-mapped registers to words, and sreg represents the
internal hardware-controlled shift register for data transmission
and reception. The component ¢ captures the control state
of the device and is used to track the progress of its four
functionalities: initialization, transmission, reception, and full-
duplex synchronous transfer.

With the exception of register RX0, register reads are side-
effect free and simply communicate the current value of the

rd a s.regs(a)
_—

register: i.e., for every state s, s s. Transitions

that model register writes (i.e., s wtav, g ) have side effects

and are modeled by early instantiating all possible received
values. Since many register updates are not atomic and require

V'SRST=1
wr SCv regs[SS] =0

T
regs[SS] = 1

wr SCv_~V'SRST= 1

regs[SS] =0

wrayv
va. a € {SC,MC,CCF}.
is_set (regsla])
regsfa] =v

wrav
regsfa] =v

Fig. 4. SPI hardware initialization automaton

some time to take effect (e.g., writing into the transmission
register does not automatically transfer the byte on the wire),

transitions s %% s are usually followed by a silent
transition s’ —» s”, which is the system internal transition
that applies the visible side effects.

A special error state 1 is entered under the following
conditions:

1) The hardware receives read or write requests that violate
the SPI specification [12] (e.g., the RXO0 register is read
when its value is indeterminate);

2) The hardware attempts an operation that is not allowed
by the specification (e.g., to update the shift register
before the initialization is completed);

3) An operation is not supported by the formal model, for
instance, accessing control registers beyond the single
channel modelled here.

The behavior of transitions that have side effects can be
represented by an automaton, which is split into four sub-
automata for the four device functionalities.

1) Initialization: Figure 4 shows the hardware initialization
automaton, where the black, red, and blue annotations describe
the label, enabling conditions and side effects of transitions
respectively. Note that we have omitted all transitions that
lead to L in Figure 4, which applies to the following figures
as well. The initialization is activated when the value 1 is
written to the SRST (software reset) bit of the SC (system
configuration) register. The 7 transition exiting state reset
models the hardware completion of the reset operation and
sets the SS (system status) register to 1. This register can
be used by a driver to detect when the reset process is
finished. In state setregs, the device awaits the set up of
the hardware configuration, which is achieved by writing the
SC, MC, and CCF registers. This step is necessary before
starting data transmissions because the SPI hardware needs
basic parameters, like the CP bit of the MC register and the
WL bits of the CCF register. If one of these register updates sets
a value that does not conform with the specification (e.g., the
value of WL bits should no less than 3), then the model enters
the state L. Once all required registers have been written, the
model enters the ready state rdy. Now the SPI can be utilized
for data transmissions or be reinitialized.

2) Synchronous transfer: Figure 5 depicts the synchronous
transfer sub-automaton. From the ready state, the synchronous

125



regs[TX0,RX0] cleared

regs[CST.TXS] =
VTRM =0 regs[CST.TXS] = 0 egs[CST RXS] =

rdy conf_r xfer_rdy

wr CCF v U wrceT 1 E i

rd RXO0 regs[RX0]

wr TXOv

regs[CST.TXS] =0
regs[TX0] = v

wr CCFv

Fig. 5. SPI hardware synchronous transfer automaton

regs[CST.RXS] =0

data_rdy

xfer sreg v /\ T
sreg=v Uregs[CST.TXS] =1
sreg = regs[TX0]

wrCCT 0

regs[CST.RXS] =1
regs[RX0] = sreg

update

transfer is activated when the TRM bits of the CCF register
are set to 0. Then, updating CCT with 1 activates the state
afer_enb and clears the TXS bit. The following silent tran-
sition makes the side effect of enabling the channel visible:
the registers TX0 and RXO0 are cleared, and the TXS and RXS
bits are set to 1 and O respectively. From zfer_rdy, once the
message v to transmit is written to TX0, the TXS bit is cleared.
The following silent transition transfers the data from the TX0
register to the shift register and the TXS bit is set internally.
The device will now synchronize with an external SPI device,
simultaneously transmitting the shift register and receiving one
byte v, which is copied into the shift register. The following
silent transition makes the communication visible to the driver,
by copying the shift register to RX0 and setting the RXS bit.
Finally, from the state data_rdy, the received data can be
fetched by reading the RX0 register. This also resets the RXS
bit. The transmission process is repeated until the channel is
disabled by writing O to the CCT register in the state zfer_rdy
and then resetting the CCF register to its original value.

As mentioned before, from the diagram in Figure 5, we
have omitted all transitions that lead to L. This happens, for
instance, if TXO is written before the TXS bit is set or when
the model is in the state data_rdy, or if RX0 is read while
RXS is not set.

3) Transmission and reception: The structure of the half-
duplex automata for transmission and reception is similar to
the synchronous transfer automaton. However, there are some
notable differences:

1) The transmission and reception automatons are activated
by setting the TRM bits to 1, resp. 2 for receive-only,
resp. transmit-only mode.

2) In transmission mode, the transmission automaton will
not receive data from the external device, which means
the RXS bit remains unchanged. The EOT (end-of-
transfer status) bit of the CST register is used to indicate
the end of transmission. The EOT bit is cleared when
sreg is updated with the output data, and it is set when
the data is transmitted to the external device. In this way,
a driver can check the EOT bit rather than the RXS bit
when applying the transmit-only mode.

3) After the channel is enabled for the receive-only mode in
the reception automaton, the hardware first receives the
external data and then uploads it to the RXO register.
Therefore, unlike the synchronous transfer automaton,

wrSCv /\ last_read_v =V,

read_stat
rdSSv

check_stat
V'SRST= 1

T

last_read_v =0 T

last_read_v=1

wr MC v U wrSCv

Fig. 6. Driver initialization automaton

settingg

settingy

the TXO register should not be used. A correct driver
should wait for the hardware until the received data is
ready through reading the RXS bit. The TXS and EOT
bits are not applied in the reception automaton.

V. SPI DRIVER MODEL

The driver model is a direct manual translation of the real
SPI driver binary and interacts with the hardware model using
operations on the device registers. The model exposes all
accesses to memory-mapped registers that are performed by
the actual driver.

The driver state is a tuple d = (b1, be, idz, last_read_v, c).
Here, b; is the transmit, and b5 the receive buffer. The variable
idx points to the next byte in b; to be transmitted. The byte
last_read_wv is the last returned value from the hardware, used
for the driver’s internal operations. The last component c is the
driver’s control state. We define sub-automata corresponding
to each of the four device functionalities.

1) Driver initialization: Figure 6 shows the driver initial-
ization automaton. The automaton is invoked by an external
call to the driver initialization function, represented here by
the action call_init. In state ¢nit, the automaton writes the SC
register to reset the hardware. Then the automaton reads the
SS register and updates the d.last_read_v with the returned
value. In the state check_stat, the automaton checks the
fetched value to determine if the hardware finished the reset
process. If the value is 1, the automaton enters the state
setting; , otherwise it returns to the previous state and repeats
this loop. Finally, the automaton enters the ready state by
setting several registers in order (SC, MC, and CCF'), indicating
that the driver model is prepared to process function calls for
data transmissions and reinitialization.

2) Driver synchronous transfer: The driver synchronous
transfer automaton is shown in Figure 7. With the driver in
state rdy, the automaton is invoked by action call_xfer with
a buffer b; copied to the driver’s internal output buffer (d.b;).
Before starting data transmission, the automaton first prepares
the necessary settings for the hardware by writing the CCF and
CCT registers. Notice that CCF is read prior to writing in order
to maintain other channel configurations (e.g., transmission
speed). At this point, the automaton loops reading the CST
register and checking the TXS bit, as long as the value of TXS
is 0. Once the value 1 is read, the automaton enters the state
write_data. The following step writes the TX0 register with
one byte data that is sent to the external device, leading to the
state read_rzs. Hereafter, the automaton repeatedly reads the

126



prep_1 — prep_2 prep_3
by =by U rd CCF v U wICCFvU wr oCT 1
ba=[]

idx=0

reply d.by last_read_v =v

T
last_read_v' TXS =0

wr CCT 0

~(idx = [b4])
by ++ [last_read_v]

T
last_read_v' TXS =1

7| idx = by

wr TX0 v

v = by[idx]
idx ++

last_read_v=v

last_read_v' RXS =0

Fig. 7. Driver synchronous transfer automaton

CST register as before but checks the RXS bit rather than the
TXS bit, which indicates the hardware transmission is finished
and the received data is available in the RX0 register. If the
RXS bit is 1, then the automaton in the state read_rz0 issues
a read request to the RXO register. Next, the automaton can
fetch the received data and check if all bytes in the output
buffer are transmitted. If there are more bytes to transmit,
the automaton returns to the state read_txs and repeats the
process. Otherwise, the automaton clears the CCT register and
the CCF register to their initial values. Finally, the driver
replies the received data (d.by) to the program that invoked
the driver by using the label reply and returns to the ready
state.

The driver’s transmission and reception automata are similar
and left out.

VI. ABSTRACT SPI SUBSYSTEM SPECIFICATION

In this section, we present an abstract specification of the
combined device and driver subsystem. The model has the
same interface as the concrete SPI subsystem (see Figure 3 (b))
and describes the visible effects of the four functionalities (i.e.,
initialization, full-duplex synchronous transfer, transmission,
and reception) while ignoring all internal states of the SPI
hardware and the memory-mapped device registers. The state
of the abstract model is a pair, a = (¢,¢). The component
t = (b1, ba, idx, v) is the data state, which contains the output
and input buffers b; and bs, the index of the next byte to be
transmitted idz, and the received byte v. The component c is
the control state of the abstract model.

The abstract initialization and synchronous transfer au-
tomata in Figure 8 are largely self-explanatory. The control
structure is the obvious one with bytes in the transmit buffer
a.t.b; being sent one by one and received bytes getting stored
in a.t.bs. Note also that once in the ready state reinitialization
must remain enabled.

VII. REFINEMENT

The refinement is established by exhibiting a weak bisimu-
lation [19]. This approach is useful to allow multiple levels of
concretizations and abstractions through transitivity and com-
positionality (under parallel) of the corresponding equivalence.

call_xfer by

v0 = t.bq[t.idx] T
reply t.bo tidx ++ A(t.idx = |t.bq])
tv=vi t.bp ++ [t.v]

T
tidx = t.bq
tbo ++ [t.V]

Fig. 8. Abstract initialization and synchronous transfer automata

Below we use p ﬁn p’ to indicate an arbitrary number
of 7 transitions, optionally followed by an a transition.

Definition VII.1 (Weak bisimulation). Given two transition
systems (S, —1) and (T, —2), a binary relation R C S x T
is a weak simulation if for every (p,q) € R:
o If p 51 p/ then q T*—a>2 q for some q' s.t. (p',q') € R.
o If p 551 p' then q i)g q for some ¢ s.t. (p',q') € R.
The relation R is a weak bisimulation if both R and R™" are
weak simulations. In the following, we write S ~g T when R

is a weak bisimulation, and S ~ T if there exists R such that
S~pT.

Our weak bisimulation definition is slightly different from
the standard definition that allows arbitrary 7 transitions after

the observation a (e.g., ¢ ———5 ¢). It is easy to show that
our definition entails the standard one.
Weak bisimulation is transitive and compositional:

Theorem VIL1. IfS ~g, Tand T ~g, U then S ~g,or, U,
where p (R1oRs) q < Ir.p Ry rAr Ra g

Theorem VIL2. If S ~p T then S|U ~p T|U, where
plr R gqlr & p Rq.

A. An intermediate model

In order to show a weak bisimulation between the SPI
subsystem and the abstract model A, we introduce an inter-
mediate model B. The intermediate model, still abstracting
from memory operations, has the states b = (¢, sreg, ¢) with
the control state ¢ as in the abstract model, and with ¢ of the
shape (b1, b, idz), i.e., as t, but not including the received
byte v, which is instead represented in an explicit shift register
sreg, as in the SPI hardware model. Figure 9 shows on the
top the full-duplex synchronous transfer automaton of the B
model, and on the bottom demonstrates in part the weakly
bisimilar control states in blue of the SPI subsystem under
a relation R;. For example, the control state update of the
B model is weak bisimilar with two states of the SPI sub-
system, (check_rxs|update) and (read_rxzs|update) (driver
and hardware’s control states respectively). The control state
(check_ras|update) is reached from the (read_ras|update)
by reading the CST register, which is omitted in the B model.
The 7 transitions between two control states that are weakly
bisimilar with the same abstract state are also ignored. In
our example, if the RXS bit is 0 when the SPI hardware

127



S(tidx = Itbql)
t.bp ++ [sreg]

xfer sreg v
sreg =v

SPI ~ _rdCSTy

éheck_rxs“‘ rd CSTV [read_rxs
| update | update /
\ \ )/

f—
-
Fig. 9. Model B synchronous transfer automaton and part weak bisimulation

is in the control state update, the driver will return to the
previous state by internally checking the fetched value. This
stepwise approach makes it much easier to build the desired
bisimulation relation.

B. Weak bisimilarity of the abstract and SPI models

The following two lemmas show the weak bisimilarity of
B and SPI models, A and B models respectively.

1) Weak bisimilarity of the intermediate and SPI models:
We define a relation R; for the B and SPI models, which
matches their control states as indicated in Figure 9 and
requires the equivalence of data buffers and records, shift
registers, etc. In addition, the relation R; requires that if b is
not in the error state then neither are the driver and hardware
models, and vice versa.

Lemma VIL1. (d|s)\ {Au-UA.q} ~g, b

Proof: The two models have the same four functionalities,
and the state transitions of the two models can be divided
into the corresponding four sub-automata. We comment on
the full-duplex synchronous transfer automaton, since the
transmission and reception are similar and the initialization
is straightforward. There are four kinds of transitions in this
automaton for both models: call_zfer buf, xzfer v v, T and
reply buf’.

o call_zfer buf: The main point is to guarantee that the
driver model performs the buffer copy and clears the
internal received buffer as prescribed by the intermediate
model.

e zfer v v': When the two models are in the control state
exchange, zfer v v’ is used to exchange single bytes v,
v’ with the external device. In order to guarantee weak
bisimilarity, the driver must guarantee to write the value
v to the TXO register.

o 7: The major concern is to show the equivalence of
data buffers, index and shift registers of the two models.
There are three critical requirements that the driver should
adhere to, otherwise the hardware model enters the error
state and the weak bisimulation condition is violated.

1) The driver should delay writing the TXO register
until the TXS bit is 1, because the value 0 of TXS
bit means the TX0 register is not ready to be written.

T xfer vO v1

—> to_shit ———> exchange ——— > update ——> ...
Ry V.RZ' ‘AR2'
A
= —> xferring —>xlerv0v1 xfer_done ——> -

Fig. 10. Weak bisimulation example of the A and B models

This also means the driver should not immediately
write the next byte after legally writing the TXO0
register.

2) The driver should wait for the RXS bit to become
1 before reading the RX0 register. Otherwise, the
RXO0 register may not contain the received data.

3) To avoid error situations, the driver should read the
CCF register before writing in order to keep the
necessary channel configurations unchanged, such
as WL bits.

o 7reply buf’: When replying, the driver must ensure that
the data in buf’ is identical to the bytes read from the
device.

|
2) Weak bisimilarity of the abstract and intermediate mod-
els: The relation Ry is defined in a similar way for the
abstract and intermediate models. Figure 10 shows the relation
for a part of the synchronous transfer automata of the two
models, where weakly bisimilar control states are coloured
identically. This relation basically matches control states under
the requirement that buffers and records remain unchanged.
The bisimulation condition forces input and output data of the
two models to be the same.

Lemma VIL2. b ~g, a

Proof: Same methodology as for Lemma VII.1. [ ]

From Theorem VII.1, Lemma VII.1 and Lemma VII.2, it

directly follows that there is a relation R3 for the abstract and
SPI models:

Theorem VIL3. (d|s) \ {Awr U Ayq} ~r, a where R3 =
Rl o R2

VIII. SYSTEM PROPERTIES

In order to demonstrate the functional properties of the
system, we verify three theorems for the abstract model. These
theorems transfer easily to the concrete models using the
bisimulation results of Section VII. Additionally, we show that
the abstract (SPI subsystem) model never enters the error state.

The functional correctness of full-duplex synchronous trans-
fer should show that buffers are exchanged correctly between
two devices. To show this property, we define the process
G(ap,a1) = (ag|(ar{zfer v v'/zfer v' v})) \ Agey, Which
composes the abstract model of an SPI subsystem with a
“dual” paired device: if one controller device uses zfer v v’ to
transmit and receive data, the peripheral device uses the dual

128



—> A >
A dev A

dr Ao Aq dr

<«  —

Fig. 11. Composition of two devices

label to synchronize. Figure 11 depicts the composition of two
devices.

Theorem VIII.1 shows the functional correctness of the full-
duplex synchronous transfer. Notice that buffers must have the
same length, otherwise the larger buffer cannot be transmitted
in its entirety.

call_zfer bg

Theorem VIIL1. If 0 < |bo| = |b1], (to,rdy)

call_xfer by 1

ay, then In a}y a} aj of. G(ay,
T reply b reply b
ar) (5)" Glap,a)) A afy ——— af Na}) ——— af

ag, and (t1,rdy)

Proof: We show that the first byte can be exchanged
correctly and then complete the proof by induction. [ |
An analogous theorem shows the correctness of transmis-
sion/reception. In this case, [, the number of bytes to be
received, should be greater than or equal to the length of the
data buffer by, otherwise extra data of the buffer will be lost.

call_tx by

Theorem VIIL2. If 0 < |bo| < I, (to,rdy) ———= ay,
and (t1,rdy) callre by g, then In ay a af. G(ag,a1) (=
reply bo "

)" Glag, ay) Nay ——— af

Finally, we show that the abstract model can never enter an
erroneous state. The bisimulation transfers this property to the
SPI hardware and the driver:

Theorem VIIL3. If ¢ # | and (t,c) — (t',), then ¢ # L

IX. INFORMATION FLOW SECURITY

Formal device and driver verification projects have gen-
erally focused on functional correctness [6]-[10]. However,
the device driver can possibly leak sensitive information and
therefore, for critical applications, information flow analysis
is needed. One of the main benefits of establishing weak
bisimulation instead of a simulation is that the former guar-
antees that two systems have the same information flows (up
to channels that are not modeled here, like timing). We show
that weak bisimilarity is sufficient to capture progress-sensitive
noninterference (PSNI), in the sense of Hedin and Sabelfeld
[11]. Let E be the set of transition labels of the system under
consideration. In our case, we may consider a system as in
Figure 11 with E = Ay U Al , where Ag. and A}, are
distinct driver interfaces that are both high, since the interfaces
are used to communicate sensitive data. We assume a context
C that is allowed to interact with the system using any label
in F. This context is additionally equipped with a public,
distinguished interface of labels P that the context can use
to receive and produce publicly observable stimuli. Then, any
observations using labels in P that can cause the abstract and

concrete models to be distinguished must be due to C' being
able to bring the two systems to states that C' can distinguish.
Of course, if the two systems are weakly bisimilar, this is in
fact not possible, motivating the following definition.

Definition IX.1 (Contextual indistinguishability). Two states
s1 and so are contextually indistinguishable, s1 =~ so, if for
every context C, (s1 | C)\E ~ (s2 | C)\E.

We use the term contextual indistinguishability instead of
contextual equivalence, as the former considers only contexts
of very specific shapes. It is not the case that contextual
indistinguishability implies contextual equivalence in general,
as the latter is a congruence, specifically under CCS sum,
which is former is not. However, weak bisimulation is a
congruence under parallel composition and restriction. Thus, if
s1 and s are weakly bisimilar, then they are also contextually
indistinguishable. The converse implication, of course, does
not hold. It also follows directly that ~ is transitive.

The concept of contextual indistinguishability is related to
Focardi et al.’s nondeducibility of composition (NDC) [20],
which in our setting would be the condition (s | C)\H ~ s\H
on s, where H represents the high labels and C' is restricted to
interact using only H. However, it is not clear how to adapt the
NDC condition to our refinement-based setting, and also, in
contrast to contextual indistinguishability, the NDC condition
is not able to accommodate systems such as ours that obtain
low observability only through the use of the context.

For the definition of PSNI, a run 7 is any sequence of
transitions starting from an initial state. Such a run is complete
if it cannot be extended, i.e., it is either unbounded or ends
in a final state. For a run 7, we let O(7) be the list of public
labels in m. We can now define PSNI adapted to our setting
of reactive systems as follows:

Definition IX.2 (PSNI). Tio states s1 and ss are PSNI, if for
every complete run w1 starting from s1, there exists a complete
run Ty starting from s such that O(m) = O(m2), and vice
versa.

The definition can be seen to be equivalent to the one in
[11], or in terms of termination only, with the notion of weakly
termination-sensitive noninterference of [21] !.

Contextual indistinguishability is a sufficient condition for
PSNI, because it guarantees the existence of traces for two
transition systems with the same observable labels.

Theorem IX.1. If s = t, then s and t are PSNI

If s and ¢ are not PSNI, then we find a complete run 7 from
s such that all complete runs 7o starting from ¢ have different
low observations from ;. Clearly, this allows a context c using
labels in L U H to steer s, possibly nondeterministically, into
a state s’ that cannot be matched by ¢, in the sense of weak
bisimilarity. Here L represents low labels.

'In fact, at our low level of modelling, with weak bisimulation, the
adversary does not have any model-external means (such as exhausting the
memory) at its disposal to prevent progress. Hence our account is also strongly
termination-sensitive in the terminology of [21].

129



:Ou!gut: v
SOutgut: V'

Input

:Ou!gut: v
EOutgut: V'

Input ; SPI Device
”| SPI Driver

SPI Device
SPI Driver

£l

: “Output: V'
Input - SPI Device - e
SPI Driver

SPI Device
SPI Driver

i

Fig. 12. Information flow security example

We can also show that PSNI transfers under ~:

Theorem IX.2. Suppose s =~ s’ and s’ and t are PSNI. Then
s and t are PSNI.

We cannot in general replace weak bisimulation by the
corresponding notion of simulation in the definition of contex-
tual indistinguishability. A device driver may leak a sensitive
boolean s by either terminating execution conditionally on s
or by entering a diverging loop (e.g., while (s) {}), but still
be (weakly) simulated by the abstract model. In this case, an
external attacker may discover the value of the secret boolean
by observing the impossibility of transmission of a buffer.

Also, establishing bisimulation allows to compose the sys-
tem with non-deterministic components safely. For instance,
we can introduce a faulty communication medium (MFED)
between two devices that can indeterminately deliver wrong
values. Figure 12 (A) represents the abstract model where
two abstract devices (our A model) are connected through
the given medium. As a result of the medium, the final output
of the abstract model is non-deterministically v or v'. The
compositionality of the weak bisimulation guarantees that
in the system where the two concrete SPI subsystems are
interconnected by the same medium (see Figure 12 (B)), the
final output is also non-deterministically v or v’: the system
has the same information flows. On the other hand, the system
(Figure 12 (C)), where the receiving device driver decides the
value according to a secret value, leaks a secret value via the
final output. This model cannot be validated using contextual
indistinguishability, but it can be when weak bisimulation is
replaced by a corresponding notion of weak simulation.

X. APPLICATION: SECURING A RANDOM NUMBER
GENERATOR USING SPI

As a demonstrating application, we developed a secure ran-
dom number generator (RNG) that relies on the SPI hardware
for sourcing entropy. The architecture of the system is depicted

in Figure 1. The blue components are the software components
not including the SPI driver(s). The SPI driver interacts with
the SPI hardware through operations on memory-mapped
registers (A,.4 and A,,.). We use a BeagleBone Black to
connect with an Arducam Shield Mini 2MP Plus camera
through SPI. The RNG captures images of the floating material
in a lava lamp. This has been shown to be a good source of
physical randomness [22], [23].

In order to prevent vulnerabilities of other software affecting
the RNG, we develop a bare-metal application that integrates
the SPI driver and that is executed on top of the Prosper
hypervisor [14]. This is a hypervisor for ARMv7-A processors
that provides provable separation between different guests and
can be configured to grant accesses to the SPI registers to a
dedicated partition only, running our driver. This allows an
untrusted partitioned Linux guest (such as in our case, the
Verificatum e-voting application [15]) to harden the built-in
Linux RNG with physical randomness through a hypercall
interface provided by the hypervisor with strong end-to-end
security guarantees. In this scenario, the SPI subsystem plays
an important role. Additionally to failing to function, a faulty
device driver may reduce the entropy of the system by simply
returning predictable buffers or it could communicate, directly
or indirectly, internal data to the external device. Formal
verification of the driver model allows us to rule out these
problems. Moreover, it helped to identify redundant operations
of the driver. For example, the initial version (extracted from
the u-boot library) sets up the WL bits of the CCF register
whenever the transmission functions are used, however it is
enough to set them once in the initialization function.

In order to guarantee the absence of vulnerabilities at
the code level, the refinement should be pushed down to
the binary code of the device driver. We extract the driver
model by manual inspection of the driver binary. This step
has yet to be formalized. We don’t view this as a major
weakness, however, given that the memory-mapped registers
use uncached memory only. We have experimented with the
usage of the binary analysis tool HolBA [24] for verifying
weak bisimilarity of the driver’s assembly code and the driver
model. The weak bisimulation relates fragments of binary
instructions (i.e., program counter addresses) to a state of the
driver’s automaton. Each fragment has a single entry point,
and either (1) consists of one single instruction accessing a
device register or (2) does not access the device. In the former
case, the instruction directly corresponds to a transition of
the driver model. In the latter case, the fragment corresponds
to a finite sequence of silent transitions. We then translate
the relation into pre/post conditions for the fragments, which
can be analyzed via HolBA weakest precondition tool and a
Satisfiability Modulo Theories (SMT) solver.

XI. RELATED WORK

Some previous work has applied the bisimulation methodol-
ogy for verification in a theorem prover context [25], [26]. For
example, Rockl et al. [25] verified the correctness of several
communication protocols by proving weak bisimilarity. We

130



prove the equivalence of the abstract and SPI models using
the same approach.

Several projects of formal verification of low-level software
have focused on the operating system (OS), like selL4 [27]
and CertiKOS [28]. However, the functional correctness of
device drivers usually is not considered. For example, the
seL.4 microkernel [27] only guarantees the isolation of device
drivers located in the user space, where the correctness of
drivers is ignored. CertiKOS [28] initially did not verify
the drivers as well. Based on CertiKOS, Chen et al. [10]
developed a verified interruptible operating system with device
drivers. They proposed a general device model with several
instantiations and a realistic formal model of device interrupts.
Although their device model has similarities with the one
presented here, there are notable differences:

1) Their device model only contains events that can be
observed by the CPU and ignores events that the external
environments can observe. Our models consider device-
to-device operations and properties (e.g., data transmis-
sions);

2) Their device model covers only half-duplex communi-
cation (e.g., sending and receiving data over the UART
port), while we also model full-duplex data transmission
in both the abstract and concrete models;

3) In their case, device drivers are implemented inside the
OS kernel and each device driver is treated as running
independently on its own logical CPU. This requires a
different isolation property of the OS kernel to guarantee
the separation between different devices and the kernel,
which is not provided by most OS kernels. Here, we
describe the device driver as a normal process that can
be embedded either inside or outside of the OS kernel.

Other previous work on verifying the functional correctness
of device drivers studied various I/O devices, like UART
[7], hard disk [8], and USB OHCI [6]. In their work, there
is no abstract I/O device model to represent the general
behaviours of different I/O devices, and it is too restrictive
to extend their work on other hardware devices. Duan et al.
[9] proposed an abstract device model that is plugged into the
formal model of ARMv4 instruction set architecture and later
extended it to support interrupts with respect to the ARMv7
architecture [29]. However, the device state is merged into
the machine state in their model, which requires to carefully
handle the interleavings between the execution of the device
and processor. Because of the complexity, it is difficult to apply
their model to verify I/O devices.

XII. CONCLUSION AND FUTURE WORK

We modeled and verified an SPI subsystem that consists of
the device hardware and its driver. The verification establishes
a weak bisimulation between this model and an abstract spec-
ification, which is used to transfer functional and information
flow properties of the abstract model to the concrete one.

Our methodology can be reused to verify other SPI sub-
systems by establishing a refinement with the abstract model

presented in this paper. There are some valuable lessons we
have learned from this project:

1) Reading the hardware technical reference manual is not
sufficient to understand the usage of real hardware. For
instance, the order of some operations is unclear. Since
the concrete hardware design is usually unavailable, lots
of experiments are needed to properly account for the
actual functionalities of different I/O registers.

2) The abstract model must capture the intended informa-
tion channels. For example, our initial driver model did
not have the reply label. It prevents the indented leakage
of the received bytes to the software invoking the driver
and makes it impossible to establish a refinement with
the actual implementation.

3) It is usually inconvenient to build an abstraction of the
device without taking the driver into account. Indeed the
very purpose of the driver is to provide a tractable and
efficient abstraction of the generally highly configurable
hardware. This turns out to be useful not only for
programming but also for verification.

In order to complete the binary verification of the device
driver, we plan to follow the strategy of Section X, which
establishes a bisimulation between the SPI driver model and
its binary code using contract-based verification of the HolBA
platform [24]. Moreover, we are planning to address two
limitations of the current models: The absence of DMA and
interrupts. While these can be encoded via explicit synchro-
nizations processor/device-memory or processor-device, we
think that explicit treatment of these features can simplify
models and proofs [30]. Currently, our models are shallowly
embedded in HOL4. This allows us to partially automate our
proof via the HOL4 standard tactics. For example, large parts
of the proof search are fully automated using METIS_TAC.
Our work can give insight for deeply embedding the models
in HOL4. This can provide a general framework for modeling
multiple types of I/O devices and increase automation by
implementing decision procedures for checking bisimilarity.

Finally, our information flow analysis does not deal properly
with side channels. How to do this is an open challenge,
even for uncached memory, as here. For instance, precisely
modelling timing is infeasible for real systems since we do
not have accurate timing information of the underlying hard-
ware. A more successful strategy consists in defining abstract
leakage models in the form of observations (e.g., accessed
memory addresses affect caches that in turn affect the timing)
and preventing timing side channels by proving observational
equivalence. We are currently working on validating [31] such
models and defining methodologies to handle different side
channels at each refinement step [32].

REFERENCES

[1] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” in Proceedings of the eighteenth
ACM symposium on Operating systems principles, 2001, pp. 73-88.

[2] A. Ganapathi, V. Ganapathi, and D. A. Patterson, “Windows XP kernel
crash analysis.” in LISA, vol. 6, 2006, pp. 49-159.

131



[3]

[4]

[5]

[6]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

V. Orgovan and M. Tricker, “An introduction to driver quality,” in
Microsoft Windows Hardware Engineering Conf, 2003.

J.-M. Schmidt, T. Plos, M. Kirschbaum, M. Hutter, M. Medwed, and
C. Herbst, “Side-channel leakage across borders,” in International Con-
ference on Smart Card Research and Advanced Applications. Springer,
2010, pp. 36-48.

M. Li, Y. Zhang, Z. Lin, and Y. Solihin, “Exploiting unprotected I/O
operations in AMD’s secure encrypted virtualization,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019, pp. 1257-1272.

D. Monniaux, “Verification of device drivers and intelligent controllers:
a case study,” in Proceedings of the 7th ACM & IEEE international
conference on Embedded software, 2007, pp. 30-36.

E. Alkassar, M. Hillebrand, S. Knapp, R. Rusev, and S. Tverdyshev,
“Formal device and programming model for a serial interface,” in Pro-
ceedings, 4th International Verification Workshop (VERIFY), Bremen,
Germany, vol. 259, 2007, pp. 4-20.

E. Alkassar and M. A. Hillebrand, “Formal functional verification of
device drivers,” in Working Conference on Verified Software: Theories,
Tools, and Experiments. Springer, 2008, pp. 225-239.

J. Duan and J. Regehr, “Correctness proofs for device drivers in
embedded systems.” in SSV, 2010.

H. Chen, X. Wu, Z. Shao, J. Lockerman, and R. Gu, “Toward compo-
sitional verification of interruptible OS kernels and device drivers,” in
Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2016, pp. 431-447.

D. Hedin and A. Sabelfeld, “A perspective on information-flow control,”
in Software safety and security. 10S Press, 2012, pp. 319-347.
AM335x and AMIC110 Sitara Processors Technical Reference Manual.
Texas Instruments, 2019. [Online]. Available: https://www.ti.com/lit/ug/
spruh73q/spruh73q.pdf

S. Choudhury, G. Singh, and R. Mehra, “Design and verification
serial peripheral interface (SPI) protocol for low power applications,”
International Journal of Innovative Research in Science, Engineering
and Tecgnology, pp. 16 750-16 758, 2014.

R. Guanciale, H. Nemati, M. Dam, and C. Baumann, “Provably secure
memory isolation for Linux on ARM,” Journal of Computer Security,
vol. 24, no. 6, pp. 793-837, 2016.

“Open Verificatum project.” [Online]. Available: http://verificatum.org/
K. Slind and M. Norrish, “A brief overview of HOL4,” in International
Conference on Theorem Proving in Higher Order Logics.  Springer,
2008, pp. 28-32.

R. Milner, A Calculus of Communicating Systems, ser. Lecture Notes
in Computer Science. Springer, 1980, vol. 92. [Online]. Available:
https://doi.org/10.1007/3-540-10235-3

R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes,
1’ Inf. Comput., vol. 100, no. 1, pp. 1-40, 1992. [Online]. Available:
https://doi.org/10.1016/0890-5401(92)90008-4

R. Milner, Communication and concurrency, ser. PHI Series in computer
science. Prentice Hall, 1989.

R. Focardi, R. Gorrieri, and F. Martinelli, “Non interference for the
analysis of cryptographic protocols,” in Automata, Languages and
Programming, 27th International Colloquium, ICALP 2000, ser. Lecture
Notes in Computer Science, vol. 1853.  Springer, 2000, pp. 354-372.
V. Kashyap, B. Wiedermann, and B. Hardekopf, “Timing-and
termination-sensitive secure information flow: Exploring a new ap-
proach,” in 2011 IEEE Symposium on Security and Privacy. 1EEE,
2011, pp. 413-428.

L. C. Noll, R. G. Mende, and S. Sisodiya, “Method for seeding a pseudo-
random number generator with a cryptographic hash of a digitization of
a chaotic system,” Mar. 24 1998, US Patent 5,732,138.

J. Liebow-Feeser, “Lavarand in production: The nitty-gritty technical
details,” Apr 2021. [Online]. Available: https://blog.cloudfiare.com/
lavarand-in-production- the-nitty- gritty-technical-details/

A. Lindner, R. Guanciale, and R. Metere, “Trabin: trustworthy analyses
of binaries,” Science of Computer Programming, vol. 174, pp. 72-89,
2019.

C. Rockl and J. Esparza, “Proof-checking protocols using bisimulations,”
in International Conference on Concurrency Theory. Springer, 1999,
pp. 525-540.

P. Manolios, K. Namjoshi, and R. Sumners, “Linking theorem proving
and model-checking with well-founded bisimulation,” in International
Conference on Computer Aided Verification. Springer, 1999, pp. 369—
379.

(27]

(28]

[29]

[30]

[31]

[32]

132

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “selL4:
Formal verification of an OS kernel,” in Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, 2009, pp.
207-220.

R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu, S.-C. Weng,
H. Zhang, and Y. Guo, “Deep specifications and certified abstraction
layers,” ACM SIGPLAN Notices, vol. 50, no. 1, pp. 595-608, 2015.

J. Duan, Formal verification of device drivers in embedded systems. The
University of Utah, 2013.

0. Schwarz and M. Dam, “Formal verification of secure user mode de-
vice execution with DMA,” in Haifa Verification Conference. Springer,
2014, pp. 236-251.

H. Nemati, P. Buiras, A. Lindner, R. Guanciale, and S. Jacobs, “Val-
idation of abstract side-channel models for computer architectures,” in
International Conference on Computer Aided Verification. — Springer,
2020, pp. 225-248.

C. Baumann, M. Dam, R. Guanciale, and H. Nemati, “On composi-
tional information flow aware refinement,” in JEEE Computer Security
Foundations Symposium, 2021.


https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf
https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf
http://verificatum.org/
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(92)90008-4
https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/
https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/

	Introduction
	Background
	Architectural Model
	SPI Hardware Model
	Initialization
	Synchronous transfer
	Transmission and reception


	SPI driver model
	Driver initialization
	Driver synchronous transfer


	Abstract SPI Subsystem Specification
	Refinement
	An intermediate model
	Weak bisimilarity of the abstract and SPI models
	Weak bisimilarity of the intermediate and SPI models
	Weak bisimilarity of the abstract and intermediate models


	System Properties
	Information flow security
	Application: Securing a random number generator using SPI
	Related work
	Conclusion and future work
	References

