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Kurzfassung

Aufgrund der starken Nachfrage nach nachhaltigen und umweltfreundlichen Energie-
quellen, ist die Brennstoffzelle wieder in Fokus der Wissenschaft geraten. Wird die
Brennstoffzelle mit grünem Wasserstoff betrieben, so stellt sie eine vollständig CO2-
neutrale Alternative zu den konventionellen Energieerzeugungsmethoden dar. Eine große
Herausforderung beim Betrieb der Brennstoffzelle ist, dass sie sensibel auf bestimmte
Betriebsschwankungen und Störungen reagiert. Um einen effizienten und zuverlässi-
gen Betrieb einer Polymerelektrolyt-Membran Brennstoffzelle (PEM) gewährleisten zu
können, muss der Zustand der Brennstoffzelle ständig überwacht werden. Da die inter-
nen relevanten Zustände nicht gemessen werden können, müssen diese mit Hilfe eines
Zustandsbeobachter rekonstruiert werden. Diese Arbeit befasst sich mit der Entwick-
lung und Implementierung eines Zustandsschätzers auf bewegtem Horizont (engl. mo-
ving horizon estimation, MHE) für ein PEM Brennstoffzellenmodell. Zuerst wird ein
nulldimensionales Modell der Brennstoffzelle erstellt, welches die wesentlichen Effekte
enthält und das grundlegende Systemverhalten abbildet. Anschließend wird eine For-
mulierung des MHEs auf Basis der sukzessiven Linearisierung hergleitet, welche eine
Umsetzung des Beobachterkonzeptes mit gängigen quadratischen Solvern ermöglicht.
Die Validierung der Zustandsschätzmethode erfolgt auf dem PEM Brennstoffzellenmo-
dell und dem 3-Tank Modell, die beide nichtlineare Systeme darstellen. Abschließend
werden verschiedene Eigenschaften des MHEs näher analysiert und der Beobachter
wird mit einem extended Kalman Filter (EKF) verglichen. Die Simulationsergebnisse
zeigen, dass der MHE auf Basis der sukzessiven Linearisierung die Zustände auf beiden
Systemen mit einer zufriedenstellenden Genauigkeit beobachten kann. Weiters zeigen
die Untersuchungen, dass die hergeleitete Formulierung des Beobachters ausreichend
genau ist und dieser auch zur Rekonstruktion des Anfangszustandes bei einer fehler-
haften initialen Schätzung geeignet ist. Der hergeleitete MHE überzeugt durch seine
Konvergenzeigenschaften und die vorteilhafte matrixbasierte Formulierung.
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Abstract

Due to the growing demand for sustainable and environmentally friendly energy sources,
the fuel cell has become the focus of science once again. If the fuel cell is operated with
green hydrogen, it represents an entirely CO2-neutral alternative to conventional energy
generation methods. A major challenge in the operation of the fuel cell is that it is
sensitive to certain conditions and disturbances. In order to ensure efficient and reliable
operation of a polymer electrolyte membrane fuel cell (PEMFC), the condition of the
fuel cell has to be monitored. Since the relevant internal states cannot be measured, they
can be reconstructed, however, with the help of state observers. This thesis deals with
developing and implementing a moving horizon estimator (MHE) for a PEM fuel cell
model. First, a zero-dimensional model of the fuel cell is developed, which contains the
main effects and represents the basic system behaviour. Subsequently, a formulation of
the MHE is derived based on successive linearisation, which enables an implementation
of the observer concept with common quadratic solvers. The validation of the state
estimation method is carried out on the PEM fuel cell model and the 3-tank model,
which are both nonlinear systems. Finally, various properties of the MHE are analysed
in more detail, and the observer is compared with an extended Kalman filter (EKF).
The simulation results show that the MHE can observe the states with satisfactory
accuracy based on successive linearisation on both systems. The investigations further
show that the derived formulation of the observer is sufficiently accurate and that the
MHE can be used to reconstruct the initial state in the case of a poor initial estimation
as well. The derived MHE convinces with its convergence properties and the beneficial
matrix based formulation.
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Chapter 1

Introduction

Global energy demand is increasing every year. Since, on the one hand, the existing
primary energy sources are finite resources and, on the other hand, the increasingly strict
regulations regarding CO2 emissions have to be observed, science, in particular, is called
upon to find solutions in the form of sustainable and environmentally friendly energy
sources. One promising technology to achieve these goals is the fuel cell. Problems
caused by the combustion of fossil fuels, such as air pollution by exhaust gases or fine
dust, would be eliminated with this technology. Only water vapour is produced as a
reaction product during the combustion of hydrogen in the fuel cell. If, in addition,
the hydrogen is produced exclusively through the process of electrolysis with the use of
renewable energy, the result is an entirely CO2-neutral energy source.
Climate targets, such as those of the European Union (EU), which aims to achieve a
climate-neutral Europe by 2050 [3], are also driving research forward in the field of fuel
cells.
For example, the City of Vienna is not only trying to reach these goals set by the EU,
but Austria’s federal capital formulates this target even more ambitiously and wants
to be CO2 neutral in all sectors as early as 2040 [4]. An essential part of this plan is
the fuel cell and the integration of green hydrogen in the energy sector. In the mobility
sector, Vienna wants to gradually switch from buses with conventional diesel engines
to hydrogen and battery-powered buses by 2036.
Also for the world’s largest automotive supplier Bosch, the mobility of the future will
not take place without fuel cells. According to Bosch, the following seven arguments
are the reasons for a changing mobility [5]:

• Neutrality:
By using green hydrogen, the fuel cell results in a completely climate-neutral
energy source.
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• Potential applications:
The field of application is not limited to mobile applications. Fuel cells can also
be used in the form of small decentralised power plants in cities, data centres, or
charging stations for electric vehicles.

• Efficiency:
Fuel cell vehicles are a quarter more efficient than vehicles with combustion en-
gines [5].

• Cost:
The development, expansion of production capacities, and falling prices for re-
newable energy for the production of green hydrogen are expected to halve the
costs of many hydrogen applications in the next ten years.

• Infrastructure:
The hydrogen refuelling station network is being steadily expanded through gov-
ernment funding programmes.

• Safety:
The use of gaseous hydrogen in vehicles is less dangerous than ordinary other car
fuels or batteries. There is also no increased risk of explosion from the tanks.

• Timing:
Both the production of hydrogen is proven and technologically controllable, and
the fuel cell has the technological maturity for industrialisation. Thus, through
investment and political will, the hydrogen economy becomes competitive in the
coming years.

These seven points are reasons why not only Bosch but also many other large manu-
facturers are investing in the research and development of the fuel cell. A great deal
of attention is paid to increasing the service life and ensuring proper operation. This
requires constant observation of the fuel cell’s health, such as monitoring the membrane
humidity. Since, in many cases, it is not possible to measure this condition of the fuel
cell, virtual sensors are used. In this work, a method for such a sensor, which is also
called a state observer in control engineering, is derived and implemented.

1.1 Motivation
There is still a lot of research to be done before the vision becomes reality that fuel cells
will be used in many areas like the automotive industry as a replacement for current
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energy sources. A major challenge here is that the cell reacts sensitively to certain op-
erating conditions and disturbances. To ensure the most stable and efficient operation
possible, the fuel cell must be constantly monitored. Furthermore, critical operating
conditions, such as fuel starvation, membrane flooding or drying, should also be pre-
vented. Since the internal relevant conditions, such as the humidity of the membrane,
cannot be measured for technical or constructional reasons, so-called observers are used.
An observer replicates the reference system as a model and reconstructs the non-
measurable states from known input variables and measured variables of the reference
system. The states contain all the information needed to calculate the present or future
behaviour of a system without taking the past into account. The accuracy of the state
estimator thus also depends on the modeling accuracy, which is, however, limited by
the requirement of real-time capability. State estimation minimises the discrepancy
between the measured output values of a system and the output values calculated with
the reference model. How exactly the minimisation of the difference between the two
outputs is done depends on the observer approach.

With the models for the observer, or in general, in model-based control engineering, it
is essential to find a model that represents a good compromise between accuracy and
computational effort. Low-order models are therefore preferred for these applications.
Often the work of Pukrushpan [6] serves as the basis for such models. With a small
number of states, the dynamic behaviour of the fuel cell system and all its auxiliary
components is described. A model for controlling the hydrogen supply is presented in
[7], which also takes anode recirculation and anode bleeding into account. In [8], the
transport phenomena of gases and liquid water in the gas diffusion layer are modelled
one-dimensionally with the global aim of regulating the air supply system. Furthermore,
the model of [6] can be extended in scope and complexity to 16 states to represent the
dynamic system behaviour even more precisely [9]. This comprehensive model was ex-
tended with effects such as dynamic phase transitions, the transient drying or rewetting
of the membrane or the anode gas recirculation. A real-time capable quasi-2D model
is presented in [10]. However, this model and models of even higher order are not suit-
able for applications of model-based control engineering such as observer design due to
their increased computational effort. For monitoring the internal conditions, on the one
hand, a model is needed that describes the desired effects or states with satisfactory
accuracy. On the other hand, a suitable method for reconstructing the internal states
must be chosen.

Similar to modelling, there are different methods in the literature for state estimation.
One approach is to use the extended Kalman filter [11] for real-time state estimation
on a high-order PEM fuel cell system. The EKF is an extension of the Kalman filter
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(KF)for nonlinear systems, which updates the linear system matrices of the nonlinear
system. Another extension of the Kalman filter for the diagnosis and monitoring of
PEM fuel cell conditions is the Unscented Kalman Filter (UKF). The UKF approxi-
mates the state distribution by carefully chosen sample points (sigma points) and does
not require derivations of the system equations. In [12], the UKF is used for health
prognosis and in [13] for control. For fault diagnosis, sliding-mode observer (SMO)
approaches are common due to their robustness to disturbances, high accuracy and fast
convergence. The nitrogen enrichment on the anode side and the relative humidity in
the channels is estimated in [14] using the SMO and in [15] the SMO is applied for fault
diagnosis in the air supply system.
Moving horizon estimation [16] is another approach to reconstruct the states of a highly
nonlinear system like the fuel cell. The mode of operation of the MHE is similar model
predictive control (MPC). For a certain time horizon, which starts in the past and ends
at the current time, the initial state of a dynamic system and the disturbances acting
on the system are estimated. This estimation is based on maximising the probability of
the estimated states under the condition of the measured outputs. At each time step,
this maximisation is done in the form of a nonlinear optimisation task [17]. The initial
implementation is very time-consuming, and the systematic optimisation process leads
to a high computational effort, but the excellent convergence properties of the observer
and the applicability for complex nonlinear systems, where the noise signals do not need
to have specific stochastic properties, justify this increased implementation effort.
This thesis derives a formulation of the moving horizon estimator based on successive
linearisation to obtain an implementation that is as computationally efficient as possi-
ble. This formulation of the MHE concept should make it possible to implement the
observer with standard quadratic solvers.

This thesis is divided into three chapters. In the first chapter, a model of the PEM
fuel cell is created to represent the fundamental relationship between input current and
output voltage as a function of the essential internal states. In the second chapter,
the formulation of the moving horizon state estimation concept is derived based on
successive linearisation. In the third chapter, the observer concept is validated on the
highly nonlinear model of the fuel cell, which is a SISO model. To demonstrate that the
formulation of the MHE is also applicable to MIMO systems, the MHE is additionally
applied to the nonlinear 3-tank system. Since the matrices of the 3-tank model are
numerically more tractable, some of the general properties of the MHE for this MIMO
system are investigated in more detail.



Chapter 2

Fuel cell modelling

2.1 Introduction to fuel cells
Models are basically used to mathematically represent the essential characteristics of
a real system. In model-based control, they form the basis for realising technical chal-
lenges, such as the design of an advanced control system, the reconstruction or estima-
tion of system states or fault-detection and diagnosis. However, models of real systems
are not only used for control engineering. Modelling and simulation are powerful and
valuable tools for investigating complex systems, such as the fuel cell. Important in-
formation can be derived from simulation results, which can contribute, for example,
to further development of system components or to the understanding of physical phe-
nomena.
How accurate a model has to be, or which effects of the modelled system should be in-
cluded, always depends on the application. In many areas, such as model-based control,
one always has to make an inevitable compromise between accuracy and computational
effort.

2.1.1 History of the fuel cell
The fuel cell is a technology that has been researched for some time now. The origins
of this energy conversion method go back to the 19th century. However, it is not
entirely clear who first discovered the basic principle of the fuel cell. According to [18],
the German chemist Christian Friedrich Schönbein was the first to conduct scientific
research on the subject of fuel cells in 1838, which he published in 1839. In [19, 20], Sir
William Groove is considered the inventor of fuel cell technology, which he first described
in 1939. He succeeded in reversing the electrolysis process and building a device that
combines hydrogen and oxygen to produce electricity. This device, later known as
a fuel cell, was initially called a gas battery. An extremely important insight that
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Groove already recognised or discovered is the need for the largest possible contact area
between the electrolyte, the gaseous reactants and the electrocatalytic conductor [20].
To increase this active area, Mond and Langers developed in 1889 a three-dimensional
porous electrode structure. They were the first to observe the voltage loss due to
flooding and that one can increase the voltage output by stacking cells [21]. In 1910,
Emil Baur researched the relationship between the output voltage and the current
density and was the first to visualize the polarization curve of a fuel cell. Although
some researchers like Ostwald were convinced that the 20th century would be the age
of electrochemical combustion, it could not prevail against competitors like the steam
engine despite its better efficiency and remained a niche product. Francis T. Bacon
researched fuel cells as energy storage devices from 1930 onwards. His successes in
research led to the fuel cell being used as an energy source in space travel, especially on
the Apollo Lunar Mission [21]. The development of the reliable perfluorosulfonic acid
proton exchange membrane, Nafion, enables the use of PEM fuel cells in a wide range
of applications.
The oil crisis in 1973, increasingly strict emission laws and the growing demand for
alternative technologies independent of fossil fuels have driven the further development
of fuel cells in recent decades. The following aspects characterised the subsequent
decades of development: Removal of diffusion restrictions in the electrodes to increase
efficiency, reduction in the cost of catalysts, increase in performance and service life.

2.1.2 Basics of the fuel cell
The fuel cell is an energy converter that transforms chemical energy into electrical
energy. A significant difference to other processes for obtaining electrical power from
chemical energy is the number of energy transformations. Figure 2.1 shows the compar-
ison of the energy conversions of an internal combustion engine and the fuel cell. When
fossil fuels are turned into electricity, the chemically bound energy is changed into heat
energy in the first step by burning the fuel. This released heat is now converted into
mechanical work. Typically this is done by using the heat energy to boil water and
drive a turbine with the generated water steam. In the final step, electricity is made
out of mechanical energy using a generator. The fuel cell bypasses all these steps and
converts the energy from chemical to electrical energy in just one step, resulting in
better efficiency. One can therefore compare the fuel cell with a battery. In both forms
of energy generation, chemical bounded energy is converted directly into electrical en-
ergy. The main difference between the two energy sources is that the fuel cell generates
energy as long as fuel is supplied and does not consume itself in generating electrical
power, as a battery does, for example.
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Figure 2.1: Schematic comparison of the energy conversions of a fuel cell and
the combustion engine [1].

The fuel cell generates electrical energy from pure hydrogen and oxygen, which is usually
provided from the ambient air. The principle of action is based on the combustion of
hydrogen

H2 + 1
2 O2 −−→←−− H2O. (2.1)

When the two molecules, hydrogen H2 and oxygen O2 react with each other, the reac-
tion product is water, which has lower bonding energy than the initial products. If this
reaction takes place in an uncontrolled manner, the energy difference, as seen in Figure
2.2, is released in the form of heat.

Breaking of the H2 and O2 molecules and the reconfiguration of the H2O bonds oc-
curs through an electron exchange. The difference in the bonding energy of the initial
molecules and the reaction product, which can be seen in Figure 2.2, results from this
electron transfer and reconfiguration. If this reaction proceeds uncontrolled, the re-
leased energy can only be gained in the form of heat since the electron transfer takes
place within a few picoseconds. Thus, it would again take more than one transforma-
tion step to generate electrical energy.
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Figure 2.2: Schematic of H2 - O2 reaction [1]. (1) Starting with H2 - O2 gases.
(2) bonds must be broken up, requiring energy input. (3,4)
Hydrogen Oxygen are formed, leading to energy output.

The fuel cell attempts to harness this electron transfer by spatially separating the
reactants, thus allowing the electron exchange over a significantly increased length
scale, and this electron exchange can be used as an electric current.
Due to the spatial separation, the original reaction (2.1) can be split into the following
two partial reactions [1]

H2 −−→←−− 2 H+ + 2 e− (2.2)
1
2 O2 + 2 H+ + 2 e− −−→←−− H2O. (2.3)

As the reaction takes place separately, the electrons are forced to move across an ex-
ternal conductor. The partial reactions take place at the electrodes, i.e. at the anode
and cathode. They are separated by an electrolyte, which only conducts protons, i.e.,
positively charged atoms, but not electrons. Figure 2.3 illustrates the partial reaction
of the fuel cell.
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Figure 2.3: Operating principle of a fuel cell [2].

2.1.3 Types of fuel cells
Fuel cells are classified according to the type of electrolyte used. Based on this, one can
distinguish between the following five types of fuel cells [1, 22]:

• Polymer electrolyte membrane fuel cell (PEMFC)

• Phosphoric acid fuel cell (PAFC)

• Alkaline fuel cell (AFC)

• Molten carbonate fuel cell (MCFC)

• Solid-oxide fuel cell (SOFC).

All these variants are based on the same electrochemical principle but differ in their
operating temperatures, what type of fuel can be used, and their performance charac-
teristics.
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PEMFC PAFC AFC MCFC SOFC
Electrolyte Polymer

membrane
Phosphoric
acid

Potassium
hydroxide

Alkali metal
carbonates

Ceramic

Operating
tempera-
ture

80°C 200°C 60-220°C 650°C 600-1000°C

Fuel com-
patibility

H2,
methanol

H2 H2 H2, CH4 H2, CH4,
CO

Applications Automotive,
stat. and
portable
PG

Stat. PG in
container

Space travel Stat. PG Stat. and
portable PG

Table 2.1: Classification of fuel cells [1]. PG is short for power generation.

Table 2.1 shows the most important distinguishing features of the different fuel cell
concepts. Each of these variants has its advantages and disadvantages. Specific con-
sideration must be made for each application for choosing the most suitable variant.
For example, low-temperature fuel cells, such as PEMFC or AFC, are more suitable for
automotive applications due to their fast start-up behaviour.
In this work, a polymer electrolyte membrane fuel cell model is developed, which is the
most suitable variant for the automotive industry.

2.2 PEMFC model

2.2.1 Modelling approaches
There are a lot of different models of polymer electrolyte membrane fuel cells available
in the literature. In the following section, the most important differences are shown
how these models differ from each other [23].

Spatial dimensions

The first characteristic according to which the models can be categorised is the spatial
dimension.

• 0D: Physical equations with scalar variables describe zero-dimensional models.
The spatial change of the system variables cannot be represented, such as the
temperature distribution within the fuel cell stack. The description of the voltage
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drop with increasing current is in most cases described by a zero-dimensional
model, as in [24] for example.

• 1D/2D/3D: Basically, these models only differ in the number of spatial dimen-
sions that are considered when modelling the physical processes. One possible ap-
proach to varying a physical state variable in a spatial dimension is implemented
in [25]. This work considers the temperature distribution between the individual
cells in the stack in the passage plane. In [26], a two-dimensional model of the
Membrane Electrode Assembly (MEA) is used, which considers the variation of
temperature, pressure, humidity and oxygen concentration on the surface of the
MEA. Three-dimensional models can be used to study various phenomena or the
design of components but are not suitable for control engineering applications like
typical CFD models. In [27] a complete three-dimensional model of the MEA and
the gas distribution channels and considers all significant transport phenomena
except phase changes. This model can obtain the three-dimensional distribution
of reactant flows, current density, temperature, and water flows.

In this thesis, a model is created which depicts the fundamental relationship between
the input variable, the stack current Ist, and the output variable, the output voltage of
the fuel cell stack Vst, as a function of the state variable x. Since this relationship is to
be mapped in the simplest possible way, a zero-dimensional model is chosen.

Temporal behaviour

Based on the temporal behaviour, a distinction is made between dynamic and static
models. In static models, the relationship between the physical quantities is indepen-
dent of time. The net water flux per proton is statically mapped in the model [28]. Fun-
damentally, time-dependent phenomena can also be described with quasi-static equa-
tions. If a dynamic process can be modelled statically depends on the respective time
constant of the process and the relationship to the characteristic ones of the system.
For example, according to [6], electrochemical processes reach their steady-state within
an order of O(10−19sec). For comparison, membrane moisture has a time constant of
the order O(100sec), and thus, the transient effects in electrochemical processes can be
neglected and represented by static approaches.
However, most processes are time-dependent and must be modelled dynamically to
achieve satisfactory model accuracy. In [29], a static electrochemical model is extended
by the effects of mass and heat transfer to predict the transient response of the fuel cell
stack during, for example, load steps.
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Types of equations

A model of a PEM fuel cell is built up from physical equations. These equations can
be divided into three categories: analytical, semi-empirical and empirical equations.
Analytical models, which can also be termed white box models, are based on funda-
mental physical equations, such as balance equations. Each of these formulas describes
a physical phenomenon or process. Another feature of analytic equations is that each
variable and parameter has a well-defined meaning. In many cases, the parameters can
be derived from the specific properties of the materials used. However, if the material
characteristics are not known, they can be determined experimentally. Furthermore,
it should be noted that analytical equations are generally valid and not only for the
specific case of the PEM fuel cell. A disadvantage of analytical models is that the basic
equations are often complex, resulting in a computationally intensive model. The two
catalyst layers, the membrane and cathode gas diffuser of a PEM fuel cell, are described
in [30] by a fully analytical model to investigate cell voltage limiting factors and species
transport in complex networks.
In empirical models or black-box models, the equations are derived from experimentally
determined data. In some cases, equations can be derived easily because they are an
interpolation curve of the experimental data. These mathematical expressions can often
be obtained by simplifying the analytical equations and fitting them to the empirically
determined data. This also limits the range of validity of the equations to the content
represented by the experiment. In [31] the electrochemical model is built purely from
experimentally determined formulas.
Semi-empirical models are a combination of analytical and empirical models and are
therefore also called grey-box models. Many phenomena or processes can only be rep-
resented inadequately or not at all by analytic equations. In these cases, a mixture
of both model types can be used, as in [6], which is used as a modelling guideline for
this work. By incorporating the empirical equations, the model thus loses its general
validity.

2.2.2 Model assumptions
Based on these considerations, the model used in this thesis aims to represent the
fundamental relationships between the stack current Ist and the output voltage Vst
based on the necessary state variables. To keep the scope and complexity of the model
manageable, the following assumptions are made for modelling:

• The system boundaries are placed around the stack.

• All gases are assumed to be ideal.
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• The temperature of the entire system is uniform and constant.

• No liquid water is taken into account.

• The anode is in dead-end mode. No purge processes are simulated.

• All additionally required inputs are assumed to be known and combined in a
parameter vector θ.

The basis for modelling the PEM fuel cell in this work is the work of Pukrushpan [6].
The model in [6] represents a linkage of zero-dimensional container models and it in-
cludes the fuel cell stack, the forward and return manifolds and associated auxiliary
components such as compressor, humidifier and cooler. Pukrushpan’s model is devel-
oped from a control engineering point of view, and the system behaviour is mapped with
the help of nine states. In particular, the stack model represents the general system
behaviour of a PEMFC. In the electrochemical model, an attempt is made to replace
some of the empirical equations from [6] with generally valid physical equations from
[1] and [22]. The schematic structure of the applied FC model in block diagram form is
shown in Figure 2.4. Since the system boundaries of the model are placed around the
stack and the auxiliary components are not mapped, the presented model is described
with only 5 states in contrast to [6]. The entire model can be decomposed analogously
to [6] into the four submodels anode, cathode, membrane and electrochemical model,
which are explained in detail in the following.

Ist . . . Stackcurrent
Vst . . . Stackvoltage
ξO2,ca,in . . . Mass fraction O2 of the ambient air
ΛO2 . . . Stoichiometric ratio
φca,in . . . Relative humidity of the ambient air
pca,in . . . Cathode input mass flow pressure
Tst . . . Stack temperature
mO2,ca . . . Mass O2 cathode
mv,ca. . . Mass water vapour cathode
mH2,an. . . Mass H2 anode
mv,an . . . Mass vapour anode
λm . . . Average membrane humidity
pO2,ca . . . O2 partial pressure cathode
pH2,an . . . H2 partial pressure anode
φca . . . Relative humidity in the cathode
φan . . . Relative humidity in the anode
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pca . . . Pressure cathode
Wv,membr . . . Membrane water vapour mass flow

Electrochemical
model

mO2,ca

mv,ca

mH2,an

mv,an

Ist

ΛO2

ξO2,ca,in

φca,in

Tst

pca,in

pca

Vst

λm

Wv,membr

Wv,membr

φan

pH2,an

φca

pO2,ca

λm

TstIst

Cathode

Anode

Membrane

Figure 2.4: Block diagram of the PEMFC model

2.2.3 Cathode model
The cathode model maps the mass flows in the cathode and relates the mass flow’s tran-
sient effects to the static electrochemical model. The behaviour of the state variables
in the cathode is determined by the mass balance and the thermodynamic properties
of the gases, as in the zero-dimensional models in [6] and [32]. Balancing the input and
output mass flow rates results in the following system equations for the cathode
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dmO2,ca

dt
= WO2,ca,in − WO2,ca,out − WO2,ca,reacted (2.4)

dmN2,ca

dt
= WN2,ca,in − WN2,ca,out (2.5)

dmv,ca

dt
= Wv,ca,in − Wv,ca,out + Wv,ca,gen + Wv,membr (2.6)

where mO2,ca (kg) is the oxygen mass in the cathode, WO2,ca,in (kg/s) the input mass
flow of oxygen into the cathode, WO2,ca,out (kg/s) the output mass flow of oxygen from
the cathode, mN2,ca (kg) is the nitrogen mass in the cathode, WN2,ca,in (kg/s) the input
mass flow of nitrogen into the cathode, WN2,ca,out (kg/s) the output mass flow of ni-
trogen from the cathode, WO2,reacted (kg/s) the mass flow of reacted oxygen, mv,ca (kg)
the water vapor mass in the cathode, Wv,ca,in (kg/s) the input mass flow of water va-
por into the cathode, Wv,ca,out (kg/s) the output mass flow of water vapor from the
cathode, Wv,ca,gen (kg/s) the water vapour mass flow generated by the reaction and
Wv,membr (kg/s) the water vapour mass flow across the membrane.
The partial pressures of oxygen pO2,ca, the partial pressures of nitrogen pN2,ca and water
vapour pv,ca in the cathode are obtained from the ideal gas equation

pO2,ca = mO2,caR Tst

VcaMO2

(2.7)

pN2,ca = mN2,caR Tst

VcaMN2

(2.8)

pv,ca = mv,caR Tst

VcaMv
(2.9)

where Tst (K) is the stack temperature, which is constant for the entire system, R (J/ (mol K))
the universal gas constant, Vca (m3) the volume of the cathode, MO2 (kg/mol) the molar
mass of oxygen, MN2 (kg/mol) the molar mass of nitrogen and Mv (kg/mol) the molar
mass of water vapour.
The total pressure of dry air in the cathode pa,ca (Pa) and humid air pca (Pa) are com-
posed of the individual partial pressures

pa,ca = pO2,ca + pN2,ca (2.10)
pca = pa,ca + pv,ca. (2.11)

One output of the cathode submodel is the relative humidity φca which is defined as
follows
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φca = pv,ca

psat(Tst)
(2.12)

where psat (Pa) is the saturation vapour pressure at stack temperature Tst.

On the cathode side, the fuel cell is supplied with ambient air. This mass flow is usually
provided by a compressor, cooled and brought to the desired humidity. In this simplified
representation of the fuel cell, it is assumed that this mass flow of humid air is given as
an input variable at any time and that the mass flow is adjusted accordingly depending
on the operating point or the stack current Ist. To calculate this cathode input mass
flow, the stoichiometric coefficient ΛO2 is required, which defines the mass flow ratio
between the inflowing and consumed oxygen

ΛO2 = WO2,ca,in

WO2,ca,reacted
. (2.13)

The input mass flow Wca,in is set as a function of the input current Ist and the parameter
ΛO2 . The mass flow of reacted oxygen in the cathode WO2,ca,reacted in equation (2.15)
can be determined using Faraday’s law

Wca,in = ΛO2 · (1 + ωca,in)
ψO2,ca,in

· WO2,ca,reacted (2.14)

WO2,reacted = MO2 · ncellsIst

4F
(2.15)

ψO2,ca,in = ξO2,ca,in · MO2

ξO2,ca,in · MO2 + (1 − ξO2,ca,in) · MN2

(2.16)

ωca,in = Mv

Ma,ca,in

pv,ca,in

pa,ca,in
(2.17)

Ma,ca,in = ξO2,ca,in · MO2 + (1 − ξO2,ca,in) · MN2 . (2.18)

In equations (2.14) to (2.18), is ωca,in the humidity ratio, ψO2,ca,in the oxygen mass
fraction of the input mass flow, ncells the number of cells, F (C/mol) Faraday constant,
ξO2,ca,in the oxygen mole fraction of the inlet air (i.e. the ambient air), Mv (kg/mol)
the molar mass of water vapour, Ma,ca,in (kg/mol) the olar mass of air, pv,ca,in (Pa) the
water vapour partial pressure of the inlet air and pa,ca,in (Pa) the partial pressure of dry
incoming air.
The incoming mass flow of humid air can be split into the specific mass flows needed
for the state equations (2.4) and (2.6)
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Wa,ca,in = 1
1 + ωca,in

Wca,in (2.19)

Wv,ca,in = Wca,in − Wa,ca,in (2.20)
WO2,ca,in = ψO2,ca,inWa,ca,in (2.21)
WN2,ca,in = (1 − ψO2,ca,in) Wa,ca,in (2.22)

ψO2,ca,in = ξO2,ca,in · MO2

ξO2,ca,in · MO2 + (1 − ξO2,ca,in) · MN2

(2.23)

pv,ca,in = φca,in · psat(Tst) (2.24)
pa,ca,in = pca,in − pv,ca,in (2.25)

where φca,in is the relative humidity of the incoming ambient air, pv,ca,in (Pa) the wa-
ter vapour partial pressure of the cathode input mass flow, pa,ca,in (Pa) dry air partial
pressure of the cathode input mass flow and pca,in (Pa) the total pressure of the cathode
input mass flow.

The output mass flow Wca,out (kg/s) is assumed to be proportional to the pressure
difference between the cathode and the environment. Another assumption is that there
is ambient pressure at the exit of the cathode. As in [6], a linear orifice equation is used
to calculate the output mass flow Wca,out as

Wca,out = kca,out (pca − patm) . (2.26)

With the state variables,the partial pressures and the specific properties of the gases,
the output mass flow is divided into the specific mass flows for state equations (2.4)
and (2.6)

ξO2,ca = pO2,ca

pa,ca
(2.27)

ψO2,ca = ξO2,ca · MO2

ξO2,ca · MO2 + (1 − ξO2,ca) · MN2

(2.28)

Ma,ca = ξO2,ca · MO2 + (1 − ξO2,ca) · MN2 (2.29)

ωca,out = Mv

Ma,ca

pv,ca

pa,ca
(2.30)

Wa,ca,out = 1
1 + ωca,out

Wca,out (2.31)
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Wv,ca,out = Wca,out − Wa,ca,out (2.32)
WO2,ca,out = ψO2,caWa,ca,out (2.33)
WN2,ca,out = (1 − ψO2,ca) Wa,ca,out (2.34)

where ξO2,ca is the oxygen mole fraction in the cathode, ψO2,ca the oxygen mass fraction
in the cathode, Ma,ca (kg/mol) the dry air molar mass in the cathode, ωca,out humidity
ration of the cathode output mass flow and Wa,ca,out (kg/s) the dry air cathode output
mass flow.

Faraday’s law describes the relationship between electric charge and the turnover of
substances in electrochemical reactions. From this basic law, it can be derived that the
current density is proportional to the transferred charges and the consumption of the
reactants [22]. The mass flows of reacted oxygen in the cathode WO2,ca,reacted and the
water vapour formed in the process Wv,ca,gen are calculated as a function of the current
Ist as follows

WO2,reacted = MO2 · ncellsIst

4F
(2.35)

Wv,ca,gen = Mv · ncellsIst

2F
(2.36)

where ncells is the number of cells placed in series.

2.2.4 Anode model
The structure of the anode submodel is the same as for the cathode. The dynamics of
the model are determined by the mass balance of the specific mass flows. It is assumed,
as in the work of Pukrushpan [6], that the anode is operated in dead-end mode, and
the hydrogen and water vapour can only escape from the fuel cell through a cyclically
opening valve, the so-called purge valve. This purge process drains the accumulated
liquid water and nitrogen from the anode during operation, causing the hydrogen con-
centration to rise again. In this simplified model and the associated simulation, only
the scenarios in which the purge valve is closed are dealt with.
The dynamic behaviour of the submodel is determined by the hydrogen mass mH2,an (kg)
and water vapour mass mv,an (kg). As in the cathode, these states are defined by
balancing the input and output flows as follows
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dmH2,an

dt
= WH2,an,in − WH2,an,out − WH2,an,reacted (2.37)

mv,an

dt
= −Wv,membr − Wv,an,out (2.38)

where WH2,an,in (kg/s) is the input mass flow of pure dry hydrogen, WH2,an,reacted (kg/s)
is the mass flow of oxidized hydrogen in the anode. WH2,an,out (kg/s) and Wv,an,out (kg/s)
are the output mass flows of hydrogen and water vapour, respectively, which are set to
zero in this simplified representation of the fuel cell. This means, that the amount of
hydrogen that is currently being consumed is fed into the anode.
Using the thermal equation of state for ideal gases, the partial pressures of hydrogen
pH2,an (Pa) and water vapour pv,an (Pa) and the resulting total pressure in the anode
pan (Pa) can be calculated

pH2,an = mH2,anRTst

VanMH2

(2.39)

pv,an = mv,anRTst

VanMv
(2.40)

pan = pH2,an + pv,an (2.41)

where Van (m3) is the volume of the anode and MH2 (kg/mol) is the molar mass of
hydrogen. Another assumption to simplify the model is that the anode is supplied
directly with pure dry hydrogen from a pressurised bottle. This mass flow is adjusted
via a proportional controller so that the pressure difference between anode and cathode
is minimised. The anode input mass flow Wan,in which represents a pure hydrogen mass
flow WH2,an,in results as follows

Wan,in = WH2,an,in = kan,in · (pan − pca) (2.42)

where kan,in is the controller gain.
The consumed mass flow of hydrogen can be derived and calculated in the same way
as the two equations (2.35) and (2.36). Using Faraday’s law, the mass flow of hydrogen
WH2,reacted consumed in the electrochemical reaction can be calculated as follows

WH2,reacted = MH2

ncellsI

2F
. (2.43)
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2.2.5 Membrane model
The zero-dimensional submodel of the membrane represents the average water content
of the membrane. As with the cathode and anode model, no spatial change in the state
variable, the mean membrane humidity λm, is taken into account here.
The material of the membrane was assumed to be Nafion 117 as in [6]. Nafion is a
material that can absorb a considerable amount of water due to its pore structure.
According to [1], the volume can increase by 22% due to water absorption. Since the
conductivity of the membrane correlates strongly with the water content, the water
content must be determined in order to calculate the conductivity.

For the membrane model the normalised current density i (A/cm2) is used, which is
defined as

i = Ist

Afc
(2.44)

where Afc (cm2) is the active area of the fuel cell.
The humidity conditions are evaluated using the water activities av,ca of the cathode
and av,an of the anode

av,an = pv,an

psat(Tst)
(2.45)

av,ca = pv,ca

psat(Tst)
. (2.46)

Since no spatially varying membrane humidity is considered, the mean of the water
activities am of cathode and anode is used to calculate the mean membrane humidity
based on [6] and formula

am = av,an + av,ca

2 . (2.47)

Basically, the water content of the membrane λm is defined as the ratio of water
molecules to charged (SO3

−H+) sites [1]. λm can take values from zero, for completely
dehydrated Nafion, to 22, completely saturated membrane. When calculating the mean
membrane humidity, a distinction is made in [1] between the unsaturated (am <= 1)
and the saturated areas (am > 1). For this model, however, only the first range is
relevant, as no liquid water is considered. The average membrane humidity can be
determined with the following empirical equation from [1]

λm = 0.043 + 17.81am − 39.85a2
m + 36a3

m. (2.48)
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To be able to reproduce the transient rewetting of the membrane during current steps in
the model, a PT1 element with a time constant τ = 2 seconds is connected downstream
as in [9]

GPT1(s) = KPT1

1 + τ · s
(2.49)

where KP T 1 is the proportional part, which is set to 1. These effects during input steps
are also called over- or undershoot effects. One explanation for this is that water is
produced during the steps, but needs some time to diffuse into the membrane.
The mass flows of water vapour that pass between the anode and cathode through
the membrane are determined by two effects. One phenomenon that triggers a water
vapour mass flow is the electroosmotic drag. When protons migrate through the porous
structure of the Nafion membrane, they drag several water molecules with them. This
effect is quantified by the electroosmotic drag coefficient nd, which describes how many
water molecules are dragged along by the movement of a proton. The calculation of
this coefficient is done as in [6] with the empirical formula from [33] in dependence of
the mean membrane humidity

nd = 0.0029λ2
m + 0.05λm − 3.4 · 10−19. (2.50)

The molar flux of water vapour through the membrane due to the electro-osmotic
resistance Nv,osmotic (mol/ (s cm2)) can be calculated as follows [1]

Nv,osmotic = nd
i

F
. (2.51)

Due to the electro-osmotic drag, water vapour migrates from the anode to the cathode.
In addition, water vapour is formed in the cathode by the electrochemical reaction.
The resulting differences in the concentration of water vapour between the anode and
the cathode cause water to diffuse back again. This phenomenon is also called back
diffusion. The rate of water diffusion Nv,diff (mol/ (s cm2)) is [22]

Nv,diff = Dw
dcv

dz
= Dw

(cv,ca − cv,an)
tm

(2.52)

where Dw is the diffusion coefficient of water in the membrane, cv,ca and cv,an the water
concentration in the cathode respectively anode and tm (cm) the membrane thickness.
The diffusion coefficient Dw is calculated as in [33] as a function of the mean membrane
humidity
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Dw = Dλ exp
�

2416
� 1

303 − 1
Tst

��
(2.53)

Dλ =

������������

10−6 , λm < 2
10−6 (1 + 2 (λm − 2)) , 2 ≤ λm ≤ 3
10−6 (3 − 1.67 (λm − 3)) , 3 ≤ λm < 4.5
1.25 · 10−6 , λm ≥ 4.5.

The water concentration in the membrane for the cathode cv,ca and for the anode cv,an
is calculated based on [22]

cv,an = ρm,dry

Mm,dry
λan (2.54)

cv,ca = ρm,dry

Mm,dry
λca (2.55)

where ρm,dry (kg/cm3) is the density of the dry membrane, Mm,dry (kg/mol) is the dry
equivalent weight of the membrane. λca and λan are the membrane humidities, with the
difference that they are not calculated with the mean water activity am as in equation
(2.48), but with the respective water activities of the cathode aca and anode aan.

The difference between the two molar fluxes yields the absolute molar flux across the
membrane Nv,membr. This is further converted into a mass flow for the state equations
(2.6) and (2.38)

Nv,membr = nd
i

F
− Dw

(cv,ca − cv,an)
tm

(2.56)

Wv,membr = Nv,membr · Mv · Afc · ncells (2.57)

where Afc (cm2) is the active area of the fuel cell.

2.2.6 Electrochemical model
In the electrochemical model, the output voltage of the fuel cell is calculated from the
states and the resulting partial pressure. The zero-dimensional sub-model is based on
the polarisation curve, in which the theoretical open-circuit voltage and the three loss
voltages (activation loss, ohmic voltage drop and concentration loss) result in the actual
output voltage.
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As mentioned in Section 2.1.2, the fuel cell converts chemically bonded energy into
electrical energy. The following overall reaction takes place in a PEM fuel cell

H2 + 1
2 O2 −−→ H2O. (2.58)

In electrochemical systems, such as the fuel cell, the Gibbs free energy indicates the
maximum amount of energy that can perform electrical work. At constant temperature,
the Gibbs energy can be expressed in molar form Δĝ (J/mol) as follows [1]

Δĝ = Δĥ + TΔŝ (2.59)

where Δĥ (J/mol) is the difference in enthalpy between reactants and products, Δŝ (J/ (mol K))
is the difference in entropy between reactants and products and T (K) the temperature.
The electrical work Wel (J/mol) performed by the two electrons per hydrogen molecule
in the external electrical conductor is defined as [22]

Wel = 2FE (2.60)

where E (V) is the potential. This electric work is equal to the negative of the Gibbs
free energy difference for a process with constant pressure and temperature [1]

Δĝ = −2FE. (2.61)

From Equation (2.61), the reversible voltage E0 (V) of the fuel cell given standard
conditions (25 °C unit temperature and 1 atm unit pressure) is obtained for a hydrogen-
oxygen fuel cell [1]

E0 = −Δĝ0

2F
= 1.23V (2.62)

where Δĝ0 (J/mol) is the standard-state free-energy change. If, as in [1], the influences
of temperature, pressure and concentrations on the Gibbs energy are also taken into
account, the following description of the reversible fuel cell voltage is obtained

E = E0 + Δŝ

nF
(Tst − T0) − RTst

2F
ln

�
avi

products�
avi

reactants
(2.63)

where T0 (K) is the standard-state temperature (25°C), ai the activities of the gases,
which can be replaced by the partial pressures in atm and vi are the corresponding
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stoichiometric coefficients. The entropy change can be assumed to be constant because
the variation of the specific heat at the assumed stack temperature is minimal. By
inserting the entropy at standard state condition and further extending the equation,
the following formulation is obtained from [34] for the reversible cell voltage [6] as

E = 1.229 − 0.85 · 10−3 · (Tst − 298.15) + 4.3085 · 10−5 · Tst

�
ln(pH2,an) + 1

2 ln(pO2,ca)
�

(2.64)

where the partial pressure pO2,ca and pH2,an are in atm.

However in practice the actual cell voltage deviates from the theoretical potential and
is typically smaller. The following factors can cause such voltage losses in a fuel cell
[22]:

• kinetics of the electrochemical reactions

• internal electrical and ionic resistance

• difficulties in getting the reactants to reaction site

• internal (stray) currents

• crossover of reactants

To keep the model’s scope manageable, only the following three significant losses are
considered in this thesis.

Activation loss

The activation loss is caused by breaking and reforming of chemical bonds. This energy
cannot be used and is therefore perceived lost. These losses occur at the cathode as
well as at the anode, but the oxygen reduction requires a higher overvoltage than the
hydrogen oxidation. In [1], the activation loss Vact (V) is calculated using a simplified
form of the Butler-Volmer equation

Vact = RTst

α2F
ln

�
i

i0

�
(2.65)

where i0 (A/cm2) is the exchange current density, which is constant and a measure of
the reactivity at the electrode surfaces and α is the transfer coefficient.



2.2 PEMFC model 25

Ohmic loss

The transport of charges causes a further voltage drop in the fuel cell. A distinction
is made between ionic and electronic charge transport, whereby the ionic one is the
dominant resistance [1]. Therefore, only the ionic charge transport is considered in
the simplified model. The voltage drop Vohm (V) caused by the charge transport is
calculated similarly to Ohm’s law [1]

Vohm = i
tm

σ
(2.66)

where tm (cm) is the membrane thickness and σ (G/m) the proton conductivity of the
membrane. The ionic conductivity of the membrane depends on the water content and
the temperature. The empirical formulae for determining the conductivity of the Nafion
membrane are taken from [1], which are also used in [6].

σ = σ303K(λm) · exp
�
1268

� 1
303 − 1

Tst

��
(2.67)

σ303K(λm) = 0.005193λm − 0.00326. (2.68)

Concentration loss

The third loss considered in this model is the concentration loss Vconc (V). This effect
occurs when the reactants are rapidly consumed, such as at high current densities,
resulting in concentration gradients. The estimation of these voltage drops is analogous
to [6] based on the following empirical formula [35]

Vconc = i ·
�

a
i

ilim

�2
(2.69)

where ilim (A/cm2) is the limiting current density and a is a constant, which is deter-
mined empirically and depending on the partial pressures and the temperature. The
calculation of the constant a is [6]

a =

������������

(7.16 · 10−4Tst − 0.622)
�

pO2,ca
0.1173 + psat

�
+ (−1.45 · 10−3Tst + 1.68) for

�
pO2,ca
0.1173 + psat

�
< 2 atm

(8.66 · 10−5Tst − 0.068)
�

pO2,ca
0.1173 + psat

�
+ (−1.6 · 10−4Tst + 0.54) for

�
pO2,ca
0.1173 + psat

�
≥ 2 atm.
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Based on the reversible cell voltage of Equation (2.64) and the three loss voltages from
Equations (2.65), (2.66) and (2.69), the actual cell voltage Vcell is calculated as

Vcell = E − Vact − Vohm − Vconc. (2.70)

The total voltage of the fuel cell stack Vst, which again represents the main output of
the fuel cell model, results from the multiplication of the ncells fuel cells connected in
series, given by

Vst = ncellsVcell. (2.71)

Since the mass of nitrogen in the cathode turns out to be unobservable in this model
configuration, it is represented via a static relation. Criteria for the observability of
state-space models are discussed in more detail in Section 3.1.3. If one sets the change
in nitrogen mass in Equation (2.5) to zero and uses the Equations (2.22) and (2.34)
accordingly, the following expression for the nitrogen partial pressure in the cathode
can be derived

pN2,ca = WN2,ca,in

kca,out (1 − ψO2,ca) − pO2,ca − pv,ca − patm (2.72)

where kcaout a constant value coefficient is.
For the derivation and implementation of the state observer in Chapter 3, the model of
the PEM fuel cell is summarised in the following non-linear state space representation

ẋ = f (x, u, Θ) (2.73)

x =
	
mO2,ca mv,ca mH2,an mv,an λm

�T
(2.74)

θ =
	
ξO2,ca,in ΛO2 φca,in pca,in Tst

�T

u = Ist

y = Vst

2.3 Simulation of the PEMFC system
Since this model of the PEM fuel cell is used to validate the observer concept, the model
is not parametrised for a specific fuel cell stack. It is intended to represent the funda-
mental relationship between the states, input and output. The characteristic system
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parameters used for modelling are taken from various sources. The parameters are used
for the system simulation, shown in Table 2.3.

Parameter Unit Value Reference

pca,in 1.5 · 105 Pa
psat(Tst) 4.6693 · 104 Pa
patm 101325 Pa
ξO2,ca,in 0.21
φca,in 0.4
F 96485.332 F
R 8.311463 J/(mol K)
ΛO2 2
MO2 31.9988 · 10−3 kg/mol
MN2 28.0134 · 10−3 kg/mol
MH2 2.01588 · 10−3 kg/mol
Mv 18.01528 · 10−3 kg/mol
Mm,dry 1.1 kg/mol [6]
Van 0.005 m3 [6]
Vca 0.01 m3 [6]
Tst 353.15 K
ncells 381 [6]
Afc 280 cm2 [6]
tm 0.01275 cm [6]
kca,out 1.5239 · 10−6

ρm,dry 2 · 10−3

i0 10−4 A/cm2 [1]
α 0.5 [1]

Table 2.3: Simulation parameters for the FC model

The simulation of start-up processes is not included in the scope of this work. The
initial states of the system simulation are chosen such that the simulation at time
t = 0 s represents typical operation and not a "cold start" at ambient conditions. The
following initial states are chosen for the simulation:
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x1(t = 0) = 2.09785 · 10−3 kg,

x2(t = 0) = 1.14592 · 10−3 kg,

x3(t = 0) = 1.87539 · 10−4 kg,

x4(t = 0) = 1.43240 · 10−3 kg,

x5(t = 0) = 5. (2.75)

2.3.1 Dynamic behaviour
In order to test the dynamic behaviour of the PEM fuel cell model, different steps of
the input current are chosen. Figure 2.5 shows the simulation of states and output tp
the corresponding input signal. The transient effects of the mass flow in the cathode
and anode and those of the downstream PT1 element on the membrane humidity can
be seen well, increasing or decreasing slowly after input steps.

Comparing the simulation results of the PEMFC model with those of Pukrsuhpan [6],
similarities can be observed. In particular, the behaviour of the output voltage Ust
and the oxygen mass mO2,ca on the steps of the stack current Ist is comparable to the
work of Pukrushpan. The effects of the downstream PT1 element can be seen in the
output voltage. Due to this first-order lag element, the fuel cell needs some time until
the voltage adjusts after input steps. The mass of hydrogen in the anode hardly shows
any dynamic behaviour, as the supply of the fuel is solved with a P-controller and thus
exactly the right amount of hydrogen is supplied.
The fuel cell model represents the basic system behaviour well and can thus be used as
a basis for the moving horizon state observer.
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Figure 2.5: Simulation of the PEMFC Model
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2.3.2 Polarization curve
The polarisation curve provides information about the performance and characteristics
of a fuel cell. This diagram represents the steady-state relationship between cell voltage
Vcell (V) and the current density i (A/cm2). The current is normalised to allow the
comparison of fuel cells of different sizes or power. This graph describes the voltage
drop or the voltage deviation from the ideal (thermodynamic) fuel cell voltage E0 with
increasing current.
In [1] the (V − i)-curve is divided into three areas along the x-axis, as can be seen in
Figure 2.6. In the low current density range, the activation losses are mainly responsible
for the voltage drop, which is shown in Figure 2.7a. For this reason, the area is also
called the activation region. In the ohmic region (the middle region), the voltage drop is
mainly caused by the approximately linearly increasing ohmic voltage drop Vohm, which
is shown in Figure 2.7b. The voltage drop Vconc, which results from the concentration
differences of the reactants, dominates the last section. This behaviour is shown in
Figure 2.7c. For this reason, this section is also called the mass transport region.

Figure 2.6: Polarization curve

The figure 2.7a to 2.7c show the polarisation curve split into its 3 components, which
coincide with the expected theoretical results from [1]. The properties of the static
relationship between current and voltage are very similar to the two polarisation curves
in [6, 1]. Only in the range of higher current densities does the model deviate from
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the references. This deviation can be explained because the fuel cell model is not
parametrised for a specific fuel cell stack. In addition, parameter values from different
sources were used for the simulation. However, since this model is mainly intended to
validate the concept of the moving horizon estimation and not calibrated to an existing
stack, this deviation will not be discussed further.

(a) Activation loss Vact (b) Ohmic loss Vohm

(c) Concentration loss Vconc

Figure 2.7: Polarisation curve divided into its components



Chapter 3

Moving horizon state estimation

3.1 Introduction to state observers
To be able to guarantee stable and efficient operation of the fuel cell system, states
like the membrane humidity of the fuel cell must be constantly monitored. Since the
relevant internal states cannot be measured, so-called observers are used. Observers use
models and available measurements to reconstruct the non-measurable or non-measured
quantities. This important model-based instrument from control engineering is there-
fore intended to support the fuel cell’s operation, especially model-based control, and
can be used to indicate undesired behaviour at an early stage.
State observers, especially nonlinear state observers, are a wide-ranging and complex
subject. Each individual type of observer represents a separate field of research. For lin-
ear systems with Gaussian noise signals as process and measurement noise, the Kalman
filter (KF) for example is the optimal state observer [51].
Probably the best known and widely used nonlinear observer concept is the extended
Kalman filter. The EKF represents the nonlinear version of the KF, linearised around
the current state estimate. In [36] the most common nonlinear forms of observers are
compared.
In this thesis, the concept of the moving horizon state estimation will be applied, de-
rived and implemented on the fuel cell system presented in Chapter 2. State estimation
with a moving horizon is also sometimes referred to as receding horizon estimation.
Compared to the optimal observer, not all available information is used, but instead,
an attempt is made to combine the information of the past output measurements in a
limited horizon. The information from past measurements is to be included in the state
estimation to increase the quality of the estimation.
In MHE, the initial state of a dynamic system and the disturbances acting on the sys-
tem are estimated for using a limited time horizon in the past. The state estimation is
based on minimising the discrepancy between the measured values of the system output
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and the output values calculated with the model. This estimation requires the solution
of a dynamic optimisation task at each time step and is performed recurrently at dis-
crete points in time. The optimisation task to be solved is written for a time horizon
that begins in the past and ends at the current time. For the recurrent estimation, this
horizon must be moved forward in time.

3.1.1 History of MHE
The origin of state observers dates far back in the history. The development of the
first methods was influenced by very prominent scientists such as Gauss, Lengendre
and Maxwell [37]. The least-squares method represents the first approach that returns
the optimal estimate from a noisy measurement signal. This approach was developed
as scientists searched for solutions to navigate the world’s oceans.
However, systematic research on state estimators did not begin until the 1940s. Rudolph
Kalman made a breakthrough in state observation in 1960 with the Kalman filter named
after him. Even today, the Kalman filter is used in many areas such as space and air-
craft navigation, GPS, the chemical process industry, economics, weather and air quality
forecasting, communication networks and much more [37]. The connection between the
Kalman filter and optimisation was demonstrated by Bryson in 1963 [38].
Although the computational implementation of a real-time solution was not yet possi-
ble, the first papers on moving horizon estimation were published in the 1960s. This
limitation also led to the development of recursive methods for solving the optimisa-
tion tasks. [39] makes the approximation that extends the Kalman filter and linearises
the nonlinear model around the current estimated state using a first-order Taylor series.
With the increasing availability of powerful computers, the development of optimisation-
based control engineering methods, such as the moving horizon state estimation, was
advanced. Jang [40] published the first unconstrained nonlinear MHE, but he neglected
the process noise. Jang’s work has been taken as a basis and extended by many re-
searchers. For example, [41] investigated the moving horizon strategy for state esti-
mation as an extension to model predictive control. Subsequently, intensive research
was carried out in the field of MHE to gain a better understanding of the method and
to be able to make statements on stability [42, 43]. Robertson [44, 45] investigated
the effects of constraints and the probabilistic interpretation, respectively. Rao and
Rawlings published work on stability for both the linear constrained MHE [46], and the
nonlinear constrained MHE [16]. Especially the paper [16] will serve as a basis for the
derivation of the MHE in the further course of this work.
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3.1.2 Advantages of the MHE
In addition to the very computational effort that results from the dynamic optimisation
task at each time step, moving horizon state estimation has several advantages. The
MHE is well suited for systems that have the following properties [17]:

• systems whose states are subject to constraints

• nonlinear systems

• disturbances and noise signals do not need to have specific stochastic properties

• systems where the initial state x(0) must be reconstructed.

All these advantages have to be weighed, since implementing the estimation proce-
dure with the corresponding solution procedure for the optimisation task for the first
time means a considerable additional effort compared to simpler methods such as the
extended Kalman filter.

3.1.3 Observability
Before designing a state observer, one must first check whether the states of the desired
system are observable. Observability in general means that one can uniquely reconstruct
the modelled states x of the system with the help of the measured outputs y. In general
terms, observability can be defined as follows [47]

Definition 3.1: Observability

A system

ẋ = f (x, u) with x(t0) = x0

y = h (x, u)

Let x ∈ Dx ⊆ Rn and u ∈ Cu ⊆ Cn−1 be defined and let y ∈ Rr. If then
all initial vectors x0 ∈ Dx from the knowledge of u(t) and y(t) are in the time
intervall [t0, t1 < ∞] can be uniquely determined for all u ∈ Cu , then the system
is called observable.

Here Cn−1 is the space of (n − 1) - times continuously differentiable vector functions
and the function u(t).
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The observability of the fuel cell system from Chapter 2 is checked with a linear criterion.
As already mentioned, the mass of the nitrogen mH2,ca is modelled algebraically since
it has no influence on the output. Thus, it would lead to a model with non-full rank
of the observability matrix based on the Kalman criterion. This observability check
criterion for linear systems is defined as follows:

Definition 3.2: Kalman’s observability criterion

A system is fully observable, if the observability matrix SB has full rank

SB =



C

CA

CA2

...
CAn−1

 rank (SB) = n. (3.1)

n represents the number of states of the system. The observability matrix of the PEM
fuel cell system around the starting point x0 has full rank and thus all states of the
system are fully reconstructable by measuring the output voltage y = Vst.

3.2 Probabilistic derivation of the MHE
The Moving Horizon Estimator attempts to reconstruct the evolution of the states of
the system {x(t); t > 0} at time T using the measured outputs {y0, y1, . . . , yT }. It is
assumed that the system has the following non-linear discrete-time representation

xk+1 = f (xk, uk) + wk (3.2)
yk = h (xk, uk) + vk (3.3)

x ∈ Rn×1 u ∈ Rm×1 y ∈ Rp×1

w ∈ Rn×1 v ∈ Rp×1

w ∼ N (0, Q) v ∼ N (0, R)

where k denotes discrete time, v is a normally distributed mean-free process noise with
variance R, w is a normally distributed mean-free process noise with variance Q, n

number of states, m number of inputs and p number of outputs.
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In the following section, the problem of state estimation is formulated from the per-
spective of probability theory. The derivation is analogous to the work by Rao [43].
Further probabilistic interpretation can be found in [39, 48, 49, 17], which are also used
in this thesis.
In [43], the evolution of the states is modelled as a Markov process, which is equivalent
to the process perturbations wk being independent. Since the output measurements
{y0, y1, . . . , yT } depend on the states {x0, x1, . . . , xT }, respectively correlate, the con-
ditional probability density function is the property of interest in this observer form

p (x0, x1, . . . , xT | y0, y1 . . . , yT ) . (3.4)

The optimal estimate at time k is now obtained by maximising the conditional proba-
bility density function (3.4), yielding a maximum a posteriori estimator (MAP)

{x̂0|T , x̂1|T , . . . , x̂T |T } = arg max
x0,{w}T −1

0

p (x0, x1, . . . , xT | y0, y1, . . . , yT ) . (3.5)

x̂i|j is the estimated state xi calculated at time j and {w}T −1
0 is the simplified notation

for the process disturbances {w0, w1, . . . , wT −1}. In order to solve (3.5), an expression
for the conditional probability density function (3.4) must be found. Analogous to [39],
one can exploit the Markov properties and express the joint probability of the states as
follows

p (x0, x1, . . . , xT ) = px0(x0)
T −1�
k=0

pwk
(xk+1 − f(xk, uk)) (3.6)

where px0 contains the prior information about the state x0 and pwk
the probability

density function of the process disturbance. Assuming that the measurement noise vk

is independent, the following relationship can be written, taking into account equation
(3.3)

p (y0, y1, . . . , yT |x0, x1, . . . , xT ) =
T�

k=0
pvk

(yk − h(xk, uk)) (3.7)

where pvk
is the probability density function of the measurement noise. If Bayes’

theorem is now applied, the following expression for the conditional probability density
function is obtained
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p (x0, x1, . . . , xT |y0, y1, . . . , yT ) ∝

px0(x0)
T�

k=0
pvk

(yk − h(xk, uk)) ·
T −1�
k=0

pwk
(xk+1 − f(xk, uk)) . (3.8)

If one applies the logarithm to equation (3.5), it can be formulated as follows due to
the properties of the logarithm

arg max
x0,{w}T −1

0

p (x0, x1, . . . , xT | y0, y1, . . . , yT )

= max
x0,{w}T −1

0

log p (x0, x1, . . . , xT | y0, y1, . . . , yT )

= arg max
x0,{w}T −1

0

log px0(x0) +
T�

k=0
log pvk

(yk − h(xk, uk)) +

T −1�
k=0

log pwk
(xk+1 − f(xk, uk)) (3.9)

By assuming that the probability density functions px0 , pwk
and pvk

are normally
distributed with the covariances P 0, Q and R, the maximisation of the probability
density function in equation (3.9) can be transformed into the following minimisation
task

arg max
x0,{w}T −1

0

p (x0, x1, . . . , xT | y0, y1, . . . , yT ) =

arg min
x0,{w}T −1

0

�x0 − x0�2
P −1

0
+

T�
k=0

�yk − h(xk, uk)�2
R−1

+
T −1�
k=0

�xk+1 − f(xk, uk)�2
Q−1 (3.10)

where �z� = zT Az and x is the mean of density px0 . The optimisation task (3.10) is
also called the full information (FI) problem. The state estimation task at time T can
be rewritten into the following mathematical problem

min
x0,{w}T −1

0

ΦT

�
x0, {w}T −1

0

�
subject to

xk−1 = f (xk, uk) + wk ∀k = 0, . . . , T − 1
yk = h (xk, uk) + vk ∀k = 0, . . . , T
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where

ΦT

�
x0, {w}T −1

0

�
=

T�
k=0

�v�2
R−1 +

T −1�
k=0

�w�2
Q−1 + �x0 − x0�2

P −1
0

(3.11)

However, this formulation is not practically for an online implementation since the size
of the problem grows with time. To realise the possibility of an online implementation
and to limit the size of the optimisation task, ΦT is divided into the following two
sections

ΦT

�
x0, {w}T −1

0

�
=

T�
k=T −No

�v�2
R−1 +

T −1�
k=T −No

�w�2
Q−1

+
T −No−1�

k=0
�v�2

R−1 +
T −No−1�

k=0
�w�2

Q−1�x0 − x0�2
P −1

0
(3.12)

where No is the length of the observed horizon. The first expression

T�
k=T −No

�v�2
R−1 +

T −1�
k=T −No

�w�2
Q−1

depends on the state at the beginning of the horizon xT −No , the process disturbances
occurring in the section {w}T −1

T −No and the sequence of measured outputs {y}T
T −No . The

optimality principle allows the state observation to be performed on a fixed horizon.
Thus, the optimisation task originally extended over the entire data can be reduced to
the following mathematical problem

min
xT −No ,{w}T −1

T −No

T�
k=T −No

�v�2
R−1 +

T −1�
k=T −No

�w�2
Q−1 + ZT −No (xT −No) (3.13)

with the system and output equation as constraints. This formulation represents the
basic structure of the moving horizon estimator, which uses only the last No + 1 output
measurement to estimate the current state xT . ZT −No represent the arrival cost (AC).
The AC are a fundamental part of the MHE, since it transforms the unconstrained
full information problem into a constrained optimisation task. By means of the ar-
rival cost term, all the information that is not included in the optimisation horizon is
summarised. The influence of the initial measurements {y}T −No

0 on the state at the
beginning of the horizon xT −No are included in the state estimate in compressed form
ZT −No . From a probabilistic point of view, the arrival cost can also be interpreted as
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the conditional probability density function p(xk−No |yo, y1, . . . , yk−No). Proceeding in
the same way as in the derivation of the FI problem, maximising the conditional prob-
ability p(xk−No |yo, y1, . . . , yk−No) is equivalent to minimising the negative logarithm of
p(xk−No |yo, y1, . . . , yk−No). An exact calculation of the arrival costs ZT −No is not pos-
sible, therefore the AC must be approximated. A very common assumption, as made in
[16, 48], is that the conditional probability density function is approximated by a nor-
mal distribution p(xk−No |yo, y1, . . . , yk−No) ∼ N

�
x̂T −No|T −No , P T −No

�
. In this case,

the model is approximated by a first-order tailor series around the solution trajectory
generated by the MHE {x̂}T −No

0 . The covariance matrix P T −No is updated analogously
to the EKF [16].

Thus, the following optimisation problem results for the state estimation at time T

x̂T |T = f
�
x̂k−No|T , {ŵ}T −1|T

T −No|T
�

= (3.14)

min
xT −No ,{w}T −1

T −No

�xT −No − x̂k−No|k−No�2
P −1

k−No

+
T�

k=T −No

�v�2
R−1 +

T −1�
k=T −No

�w�2
Q−1

subject to
xk−1 = f (xk, uk) + wk ∀k = T − No, . . . , T − 1

yk = h (xk, uk) + vk ∀k = T − No, . . . , T.

By minimising the cost function, one obtains the estimated state at the beginning of
the horizon x̂T −No|T and the estimated process disturbances in the horizon {ŵ}T −1|T

T −No|T .
Using the results of the optimisation task and the system equation (3.2), the estimate
of the current state x̂T |T can be calculated. The weighting matrix for the arrival cost
is determined by solving the Riccati equation

P j+1 = Q + AjP jA
T
j − AjP jC

T
j

�
R + CjP jC

T
j

�−1
CjP jA

T
j (3.15)

where j denotes discrete time and P0 is the initial condition.

Stability investigations are not carried out in this work, as it would exceed the scope
of this thesis, but proofs of the stability of the Moving Horizon Estimator concept are
presented in [16].

3.3 Successive linearisation
The moving horizon estimator is to be implemented using the method of successive
linearisation. With this method, the offsets δx and δy resulting from linearisation are
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taken into account in the system equation as well as in the output equation. The system
matrices are created by linearising around the solution trajectory x̂ generated by the
MHE. The linearisation at time k is based on the optimal estimate x̂k|k at that time.

xk+1 = Akxk + Bkuk + δx,k + wk (3.16)
yk = Ckxk + Dkuk + δy,k + vk (3.17)

Ak = Ak|k := ∂f(x, u)
∂x

     x̂k|k
uk

Bk = Bk|k := ∂f(x, u)
∂u

     x̂k|k
uk

Ck = Ck|k := ∂h(x, u)
∂x

     x̂k|k
uk

Dk = Dk|k := ∂h(x, u)
∂u

     x̂k|k
uk

δx,k = δx,k|k := f
�
x̂k|k, uk

�
− Akx̂k|k − Bkuk

δy,k = δy,k|k := h
�
x̂k|k, uk

�
− Ckx̂k|k − Dkuk.

3.4 Derivation of the MHE formulation
In the following chapter, the concrete implementation of the moving horizon state es-
timation concept is derived with the help of successive linearisation. The observation
horizon extends from the current time k and No time steps back into the past. In
principle, the MHE can be implemented as a filter and as a predictive observer [17].
The only difference between these two forms is whether the current measurement of the
output yk is still used to estimate the state x̂k. The MHE in this thesis is implemented
as a filter, i.e. No + 1 output measurements are used to estimate the current state.
In the first step, the system equations for the entire horizon in which the optimisation
task is formulated are written down as a function of the optimisation variables xk−No

and {w}k−1
k−No .
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xk−No+1|k = Ak−Noxk−No + Bk−Nouk−No + δx,k−No + wk−No

xk−No+2|k = Ak−No+1xk−No+1 + Bk−No+1uk−No+1 + δx,k−No+1 + wk−No+1

= Ak−No+1Ak−Noxk−No + Ak−No+1BK−Nouk−No + Bk−No+1uk−No+1

+ Ak−No+1δx,k−No + δx,k−No+1 + Ak−No+1wk−No + wk−No+1
...

xk|k =
 k−No�

i=k−1
Ai

 xk−No +
k−No+1�

i=k−1
Ai

 Bk−Nouk−No (3.18)

+
k−No+2�

i=k−1
Ai

 Bk−No+1uk−No+1 + . . . + Ak−1Bk−2uk−2 + Bk−1uk−1

+
k−No+1�

i=k−1
Ai

 wk−No +
k−No+2�

i=k−1
Ai

 wk−No+1 . . . + Ak−1wk−2 + wk−1

+
k−No+1�

i=k−1
Ai

 δx,k−No +
k−No+2�

i=k−1
Ai

 δx,k−No+1 . . . + Ak−1δx,k−2 + δx,k−1

In the next step, the output equations of the observer for the horizon are formulated
using the linearisation presented in Section 3.3.

yk−No+1|k = Ck−No+1xk−No+1 + Dk−No+1uk−No+1 + δy,k−No+1 + vk−No+1

yk−No+2|k = Ck−No+2xk−No+2 + Dk−No+2uk−No+2 + δy,k−No+2 + vk−No+2

...
yk−1|k = Ck−1xk + Dk−1uk−1 + δy,k−1 + vk−1

yk|k = Ckxk + Dkuk + δy,k + vk (3.19)

Substituting the observer’s system equations into the output equations yields the mea-
sured outputs as a function of the MHE’s optimisation variables.
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yk−No+1|k
yk−No+2|k
yk−No+3|k

...
yk−1|k
yk|k


� �� �

(Nop×1)

=



Ck−No+1Ak−No

Ck−No+2Ak−No+1Ak−No

Ck−No+3Ak−No+2Ak−No+1Ak−No
...

Ck−1
��k−No

i=k−2 Ai

�
Ck

��k−No
i=k−1 Ai

�


� �� �

(Nop×n)

xk−No� �� �
n×1

+



Ck−No+1Bk−No 0 0 · · · 0
Ck−No+2Ak−No+1Bk−No 0 0 · · · 0
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The formulation of the measured outputs can be summarised in the following compact
matrix notation

Y = F xk−No + ΦuU + ΦwW + ΦxΔx + Φd + Δy + V . (3.20)

With Equation (3.20) an expression for the discrepancy of the measured data to the
estimated output is obtained depending on the variables to be optimised xk−No and
{w}k−1

k−No . This expression is substituted into the cost function Φk of the moving horizon
observer’s optimisation task (3.14)

Φk =
�
xk−No − x̂k−No|k−No

�T
P −1

k−No

�
xk−No − x̂k−No|k−No

�
+ V T R−1V + W T Q−1W

=
�
xk−No − x̂k−No|k−No

�T
P −1

k−No

�
xk−No − x̂k−No|k−No

�
+ (Y − F xk−No − ΦuU − ΦwW − ΦxΔx − Φd − Δy)T R−1

(Y − F xk−No − ΦuU − ΦwW − ΦxΔx − Φd − Δy) + W T Q−1W .

To make the derivation clearer, all known quantities are summarised in the vector Ω

Ω := Y − ΦuU − Φd − ΦxΔx − Δy� �� �
known

Φk =
�
xk−No − x̂k−No|k−No

�T
P −1

k−No

�
xk−No − x̂k−No|k−No

�
+ (Ω − F xk−No − ΦuW )T R−1 (Ω − F xk−No − ΦuW ) + W T Q−1W .

In state estimation with the moving horizon state observer, the cost function Φk is min-
imised at each time step with respect to the optimisation variables xk−No and {w}k−1

k−No .
This solution of the optimisation task can be done with common quadratic solvers such
as the Quadprog solver in Matlab®. For this reason, the minimisation task of the state
estimation is restructured into the following quadratic form

x̂k|k = f
�
x̂k−No|k, {ŵ}k−1|k

k−No|k
�

= min
xk−No ,W

J =

min
xk−No ,W

2 ·
	
xT

k−No W T
� 


P −1
k−No + F T R−1F F T R−1Φw

ΦT
wR−1F ΦT

wR−1Φw + Q−1

� 

xk−No

W

�

+
	
−x̂T

k−No|k−NoP −1
k−No − x̂T

k−No|k−NoP −1
k−No

T − 2ΩT R−1F −2 ΩT R−1Φw

� 

xk−No

W

�
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The generation of the linearised system matrices at a time k is always done by linearisa-
tion around the optimal estimated state x̂k|k at the current time. These system matrices
Ak, Bk, Ck, Dk and the offsets of the linearisation δx and δy are stored and used for this
time step k, which is presented in Figure 3.1. Considering the horizon as a fixed window,
the stored matrices are shifted backward by one time step after each state estimation
until the horizon’s end. The matrices are stored until they fall out of the window. Thus,
at any given time k, those matrices are used for state estimation which are linearised
around the estimated state x̂k|k, based on the last No + 1 output measurements. The
solution trajectory of the MHE x̂ consists of the estimates x̂k|k obtained from the local
solution trajectory at each time step {x̂k−No|k, x̂k−No+1|k, . . . , x̂k−1|k, x̂k|k}.
An alternative approach would be to linearise the system matrices at time k around the
most recent solution trajectory {x̂k−No|k, x̂k−No+1|k, . . . , x̂k−1|k, x̂k|k}. However, this
would mean that the information of the output measurements
{yk−2·No , yk−2·No+1, . . . , yk−No−2, yk−No−1} is not included in the horizon, since the
system matrices are linearised around that solution which results from taking into
account the output measurement {yk−No , yk−No+1, . . . , yk−1, yk}. Therefore, the lin-
earisation method presented is used in this work to capture as much information as
possible in the observation horizon.
Through the linearisation around the own solution trajectory a certain error arises,
which is investigated in more detail in Section 4.1.2.

Figure 3.1: Concept for filling the horizon of the MHE with the linearised
system matrices.



Chapter 4

Results and discussion

In the following chapter, the results of the moving horizon state estimation are presented
and discussed and the observer is applied to two different systems. In the first step,
the observer concept is applied to the FC model derived in Chapter 2, which represents
a SISO system. To make further statements regarding possible applications in MIMO
systems and the properties of the state estimator, the MHE concept is also validated
on the nonlinear 3-tank system. The 3-tank system is characterised by its simplicity
and numerical properties despite the two inputs and outputs and is therfore frequently
used for research purposes.
The implementation and simulation are performed with Matlab. Output measurements
and reference states are not taken from an experimental setup but are simulation based.
First, the validation of the MHE concept on the fuel cell model is presented in this
chapter. In addition, the effects of the perfect linearisation and the comparison with
the EKF on the fuel cell model are introduced. In the second section, the validation
of the MHE is carried out on the 3-tank model. Further properties of the observer,
such as the basic validation of the MHE system matrices, effects of horizon length, and
reconstruction of the initial state are investigated in more detail on the MIMO system.

4.1 PEM fuel cell system

4.1.1 MHE results
The moving horizon state estimation is tested on the fuel cell system for a standard
operating cycle. In order to check the dynamic behaviour of the observer, different
current steps are used as input signal. The simulations are performed starting from the
operating point as defined in (2.75). This means, that no start-up or cold start of the
fuel cell system is simulated. All simulations performed on the PEM fuel cell system
are carried out with a sampling time of Ts = 1 ms.
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At the beginning of the test run, the actual initial value x0 is passed to the observer
as an inertial estimate x̂0|0. The behaviour of the observer in the case of a deviating
initial value or poor estimation x̂0|0 is examined in detail in Section 4.2.3. First, the
functionality of the state estimator is investigated under favourable conditions. Since
the observer is given the actual state at the beginning of the simulation, the weighting
matrix of the initial estimate P 0 is also chosen to be correspondingly small. A low
weighting in absolute numbers is equivalent to a small variance of the initial estimate
x̂0|0. The weighting matrix of the process noise Q and the measurement noise R are
tuned for the specific model and set as follows

P 0 =



10−10 0 0 0 0
0 10−10 0 0 0
0 0 10−10 0 0
0 0 0 10−10 0
0 0 0 0 10−3

 ,

Q =



2 · 10−11 0 0 0 0
0 2 · 10−11 0 0 0
0 0 2 · 10−13 0 0
0 0 0 2 · 10−12 0
0 0 0 0 2 · 10−5

 , R =
	
5

�
. (4.1)

By choosing these three weighting matrices, which are also the tuning parameters of
the observer, the behaviour and performance of the MHE can be specifically influenced.
A rule of thumb for choosing the length of the observation horizon No is given by Rao
and Rawlings [50], which states that the horizon should be chosen twice as large as the
number of states of the system. In this implementation, a slightly larger horizon length
of No = 15 is chosen compared to the number of states, which is five. Furthermore, one
should make sure that as many time constants of the system as possible can be mapped
within the horizon. In the case of the fuel cell with a sampling time of 1 ms, however,
it is not possible to cover all time constants in the horizon, as the largest is two seconds.

The measured outputs y and the actual states x do not come from an experiment but
are generated by a simulation with the model from Chapter 2. To ensure that the
observer’s investigation is as close to reality as possible, both measurement and process
noise are considered when generating the data.
The first state estimation is performed for the time index k = 1. If the state estimation
is started, the horizon of the MHE must first be filled step by step with the output
measurements and the system matrices belonging to this time step. For the time steps
k ≤ No+1, all information available up to time k is used for the state estimation in each
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case. Therefore, the optimisation task (3.11) is also referred to as the full information
problem. Only from the time step k > No + 1 does the estimation on the receding
horizon begin with the dynamic optimisation task (3.14).

This initialisation at the beginning of the simulation, where the equilibrium state is
established, is not shown in Figure 4.1.
Figure 4.1 shows that the moving horizon estimator based on successive linearisation
works on the highly nonlinear system of the fuel cell and estimates the states with
satisfactory accuracy. Even with large changes in the input variable, the estimated
states x̂ follow the actual states x without significant deviations. Furthermore, one can
see that the moving horizon state estimation smoothes the states and does not precisely
reproduce every noise signal. States like the mean membrane moisture λm, which
have a significant influence on the output voltage Vst, are reproduced more accurately
than other states. In the case of the estimated states in the cathode and anode, by
contrast, one can see that these mainly rely on the model. Deviating behaviour is hardly
estimated by the cathode and anode states or in a strongly damped form. Through
the tuning parameters of the MHE, one can adjust the behaviour of the observer. If,
for example, the process noise is weighted with higher values in Q, the state estimator
allows more significant deviations from the model.
Concerning the convergence behaviour, no issues or oscillating behaviour of the observer
are detected. Even at the beginning of the simulation, when the horizon of the moving
horizon estimator is not yet filled, the state estimator shows excellent convergence
properties. Since the identical models are used in the creation of the reference data y

and x and in the observer, this behaviour was basically to be expected. Nevertheless,
this basic validation shows that the derived formulation of the MHE based on successive
linearisation works well on the complex model of the fuel cell.
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Figure 4.1: Results of the MHE with No = 15 on the PEMFC system
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4.1.2 Effect of perfect linearisation
In this section, the effects of the inaccuracies arising from the linearisation of the sys-
tem matrices are examined and compared with the results of the theoretically perfect
linearisation.
The horizon of the MHE concept derived in Chapter 3 is filled with system matrices
which are linearised around the solution trajectory x̂ generated by the MHE. Since
the output data for the state observation is simulation based, the perfect theoretical
solution x is known. The theoretically perfect solution x means those states which
are generated by simulation of the model created in Chapter 2 under consideration of
process and measurement noise.
Therefore, the presented MHE implementation is compared with the one where the
horizon is filled with the theoretically perfect system matrices. The state estimation
procedure of the perfect MHE is identical to the one presented in Chapter 3. The
only difference between the presented MHE and the perfect MHE is that at the current
time step k the system matrices are not linearised around the estimated state x̂k|k but
around the theoretically perfect solution xk obtained from the reference model.
All results of the theoretically perfect MHE concept are given the index "perfect", such
as the estimated states x̂perfect.

This comparison is carried out on the PEMFC system. All simulation settings, as well
as weighting matrices, initial estimate x̂0|0 and output data of the simulation (y, x

and u), are chosen similar to Section 4.1.1 and are equal for both MHEs. In the Table
4.1 corresponds x̂ to the results of the presented MHE. The relative estimation error
related to the theoretically perfect solution x was used in Table 4.1 as a criterion to
compare the results of the MHE and the perfect MHE.

Horizon length No
|x−x̂|

|x| · % |x−x̂pefect|
|x| · %

No = 1 1.3047 1.2861
No = 5 1.2920 1.2867
No = 10 1.2913 1.2882
No = 20 1.2910 1.2898
No = 30 1.2909 1.2911

Table 4.1: Effects of horizon length on the estimation result

The quantitative comparison in Table 4.1 shows that the influence of the linearisation
error on the performance of the observer decreases with increasing horizon length. For a
horizon length of No = 5 or higher, there is hardly any difference in the performance of
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the two estimation results. This investigation is a purely theoretical analysis in which
the reference states x are generated with the same model as used in the MHE. In real
applications, a more significant discrepancy between the model in the observer and the
actual model of the system is to be expected and therefore, deviations such as those
between the MHE and the perfect MHE can therefore be neglected. It can be concluded,
that the formulation of the MHE derived in Chapter 3 has sufficient accuracy.

4.1.3 Comparison of MHE and EKF
In the following, the moving horizon estimator is compared with the extended Kalman
filter, which is characterised by a significantly lower computing time and more straight-
forward implementation. The fundamental relation between the MHE with horizon
length one and the EKF is presented in [43].
The comparison is made with an EKF formulation, which is also based on successive
linearisation [11]. In this formulation, the required Jacobians are generated by ana-
lytically deriving the system equations and the linearisation offsets are included in the
observer equations as well.
The comparison of the two types of observers is carried out on the PEMFC model. In
order to make statements about possible differences between the two state estimators,
both receive the same weighting matrices. As with the MHE, the EKF weights the
initial estimate with P 0, the process disturbances with Q and the measurement noise
with R. If the MHE and the EKF receive the same weighting matrices, it is ensured
that both observer concepts have equal confidence in the model, respectively, the out-
put measurements. These weighting matrices are the same as in Section 4.1. Other
simulation parameters, such as the initial values for y and x also remained unchanged.
In this investigation, an alternative input signal u is used compared to Section 4.1.1.
At the beginning of the simulation, the state estimators receive the actual initial value
x0 as an initial estimate x̂0|0. The observation horizon of the moving horizon observer
in this case is set to No = 15 again.
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Figure 4.2: Comparison of MHE with No = 15 and EKF, both observers
based on successive linearisation
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Figure 4.3: Evolution of the relative estimation error of MHE with No = 15
and EKF in the case if a sudden change of the stack current Ist

The comparison of the time signals of the state estimation is shown in Figure 4.2.
Visually, no qualitative difference between the two observer concepts can be detected.
This statement is also confirmed by Table 4.2, where the relative estimation errors of
the estimation results are compared. The relative estimation error refers in each case
to the reference states x.

rel. error in %

MHE wih No = 15 1.7165
EKF 1.7256

Table 4.2: Comparison of the relative estimation error of the MHE with
No = 15 and the EKF

The time signals and the quantitative comparison of the error show hardly any differ-
ences in the performance and dynamic behaviour for both observers. The advantage
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of including past output measurements in the state estimation is only evident in the
behaviour on abrupt changes in the input variable. As shown in Figure 4.3 in the course
of the relative estimation error, the MHE reacts minimally better to steps in the input
variable u. In steady-state, both observers follow precisely the same solution trajectory.

A similar comparison between the moving horizon estimator and the extended Kalman
filter is made in [51]. This work shows the differences in the convergence behaviour of
the two observer concepts. The EKF converges to a false solution or diverges if multiple
states satisfy the steady-state measurements, or the observer is given a poor estimate of
the initial state. The MHE, on the other hand, shows excellent convergence properties
in these two cases. For the variant of the MHE presented in this thesis, however, it
should be noted that these statements are not generally valid. An essential condition
for the MHE based on successive linearisation is that the system can also be linearised
at critical points, which may lead to singular system matrices.

The previous investigations in this chapter have shown that the MHE based on suc-
cessive linearisation runs on the highly nonlinear model of the fuel cell and estimates
the states with sufficient accuracy. However, statements on the general applicability to
nonlinear MIMO systems cannot be made since the model of the fuel cell from Chap-
ter 2 is a SISO system. Furthermore, it should be mentioned again that some of the
time constants of the fuel cell are too large to capture them in the observation horizon
since the computational effort increases strongly with long observation horizons. For
this reason, the validation of the MHE concept in the next section is performed on the
nonlinear 3-tank system, which represents a MIMO system.
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4.2 3-tank system
The 3-tank is a nonlinear system with two inputs and two outputs in the considered
configuration and is described by three states. Figure 4.4 shows the schematic config-
uration of the system.
The water levels h1, h2 and h3 of the three containers, which have the same diameter,
represent the three states of the system. On the one hand, water can enter the tanks
through the two inputs mass flows V̇in,1 and V̇in,2, which also represent the inputs of
the system u1 and u2. On the other hand, water can get into and out of the tanks
through the outflows or connections between the tanks. How large these outflows and
mass flows between the tanks are depends on the respective filling levels in the tanks.
This relations gives the 3-tank system its nonlinear characteristic.
The goal is to estimate the development of the states based on the two output measure-
ments y1 = h1 and y2 = h3. These two output measurements are subject to uncertainty
and measurement noise.

u1 = V̇in,1 u2 = V̇in,2

h1 = x1

= y1

h2 = x2 h3 = x3

= y2

Figure 4.4: Schematic illustration of the 3-tank system

The time constants of the system range from 13 to 120 seconds. Therefore, a sampling
time of Ts = 2 s is chosen for all simulations with the 3-tank system.
As with the fuel cell system, the measured outputs and the states to be observed of
the 3-tank system do not originate from measurements of an experimental setup but
were generated by a simulation with the corresponding noise signals in Matlab. When
generating the output data, noise signals are added to both the system and the output
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equation to represent the process or measurement noise. The model parameters are
also changed by a few percent when generating y and x. This measure is intended to
get a slight deviation between the model in the simulation and the model of the MHE
to challenge the observer.

MHE results

In this section, the MHE concept derived in Chapter 2 is validated on the nonlinear
3-tank syste, where the horizon length can be chosen to capture all time constants of
the system with acceptable computational effort.

The length of the observation horizon is set to No = 70 to capture all time constants
of the system. The weighting matrices P 0, Q and R, which represent the tuning
parameters of the observer in addition to the horizon length No, represent the covariance
matrices of the initial estimation and the noise signals. The following weights are chosen
for the validation of the MHE

P 0 =

1 0 0
0 1 0
0 0 1

 , Q =

0.05 0 0
0 0.05 0
0 0 0.05

 , R =


6 0
0 6

�
. (4.2)

The results of the state estimation with these settings are illustrated in Figure 4.5.
On the 3-tank system, a satisfactory accuracy could be achieved with the moving
horizon state estimation concept based on successive linearisation, especially for the
non-measurable state h2. One can observe smoothing effects of the MHE at the states,
similar to the fuel cell. No significant deviations of the estimated state trajectory can
be detected with this nonlinear MIMO system, as is the case for the fuel cell model,
even with abrupt input variable changes. As with the fuel cell, it was to be expected
that the MHE converges fast since almost the same model is used in the MHE and in
generating the initial data y and x. The estimated states in Figure 4.5 show that the
MHE based on successive linearisation also works on the MIMO system and estimates
the non-measurable states without significant deviation.
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Figure 4.5: Results of the MHE with No = 70 on the nonlinear 3-tank system
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4.2.1 Validation of the MHE system matrices
For a state estimator to work generally on a real system with modelling inaccuracies,
process and measurement noise, a fundamental requirement is that the observer can
reproduce the model numerically accurately in the undisturbed case. In this section,
this accuracy of the observer is checked. Ideally, the MHE should reproduce the system
numerically exactly so that the state estimator does not need to make any correction.
As a reference, the nonlinear 3-tank model is simulated over time based on the standard
ODE45 Solver of Matlab, which is based on the Runge-Kutta method. When simulat-
ing the system with ODE45, no process and measurement noise are taken into account,
because this validation only concerns the model itself.

To check the accuracy of the formulation of the MHE derived in Chapter 3.14, all
weighting matrices are chosen as unit matrices and the true state x0 is passed to the
observer as an initial estimate x̂0|0. A horizon length No = 70 is chosen when estimat-
ing the states with the MHE. As with the previous analysis, a sampling time of two
seconds is selected.

Figure 4.6 shows the comparison of the two results of the simulation with the ODE45
method and the estimation with the MHE. It can be seen that the moving horizon
observer can reproduce the model with the same accuracy. Even with abrupt changes
of the states, the solution trajectory of the MHE does not deviate from the result simu-
lated in Matlab, which means that the solution proved by the MHE is the exact solution
of the undisturbed model itself.
This basic validation proves that the formulation of the MHE concept derived in Chap-
ter 3.14 has sufficient accuracy for nonlinear MIMO systems.
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Figure 4.6: Comparison of MHE with No = 70 for simulation purposes to the
model simulated with ODE45
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4.2.2 Effects of horizon length
One problem of the MHE on the fuel cell system is that not all time constants can
be captured within a manageable horizon. On the 3-tank system this is possible be-
cause the time constants are in the range of 13 to 120 seconds. This section therefore
investigates the effect of the horizon length on the observer’s performance.
From a probabilistic point of view, the result of the MHE should converge to the ac-
tual state of the system as the horizon length increases. If one extends the observation
horizon to the extreme case No = 1 : k, one obtains optimal estimation result in theory.

For comparison of the MHE with different horizon lengths, the exact same simulation
parameters and weighting matrices are used as in Section 4.2. To be able to compare
the results, the same initial data y, x and u are used in each run. As in the simulation
in Section 4.2, the actual state x is passed to the MHE as an initial estimate x̂0|0.
Table 4.3 shows the quantitative comparison of the moving horizon estimator results
with different horizon lengths No on the 3-tank system. The performance of the state
estimation is evaluated in each case with the relative estimation error related to the
reference state x.

Horizon length No
|x−x̂|

|x| · %

No = 1 1.0982
No = 10 1.0980
No = 50 1.0981
No = 100 1.0981
No = 150 1.0981

Table 4.3: Effects of horizon length No on the estimation accuracy

The results in Table 4.3 show that there is only a minimal improvement in the estimation
results with increasing horizon length. Moreover, even for horizon lengths where the
information can be obtained for all time constants, there is no significant improvement in
the estimation accuracy. One explanation is that linearisation produces a certain error,
which accumulates with increasing horizon length and thus reduces the advantages of
the larger optimisation horizon.
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4.2.3 Reconstruction of initial states
In some technical applications, such as estimating the battery state of charge, not only
the knowledge of the current state of the system is important, but also the reconstruc-
tion of the initial state x0. The moving horizon observer is suitable for such applications
since it estimates the states at the beginning of the horizon at every time step. In this
section, this property is investigated in detail. For this reason, the observer is given an
initial value x̂0|0, which differs from the actual initial state x0.
To assess the behaviour of the observer and exclude the influence of the noise signals,
the simulation is carried out without interfering signals. This means that no process or
measurement noise is considered when generating the output measurements y, and the
reference states x.

The results of the reconstruction of the initial state on the 3-tank system are illus-
trated in Figure 4.7. In this figure, x̂ is the solution trajectory of the MHE, which
represents the estimated solution at each time step k based on the initial measurements
{y0, y1, . . . yk−1, yk}. The solution trajectory of the full information optimisation
problem at time step j is given by {x̂}j|j

0|j, which is equal to {x̂0|j, x̂1|j . . . x̂j−1|j, x̂j|j}.
The same notation is used here as in the probabilistic derivation in Section 3.2. The
estimate of the state xi at time j obtained from the optimisation task (3.11) is x̂i|j.
The weighting matrices of the process and measurement noise Q and R are chosen
the same as in Section 4.2. This analysis focuses on the reconstruction of the initial
state and not on the performance of the observer. Therefore, the following modified
weighting matrix P 0 is used in this investigation

P 0 =

20 0 0
0 40 0
0 0 20

 . (4.3)

Figure 4.7 shows that the MHE can reconstruct the states and especially the non-
measurable state h2 after a few sampling intervals with good accuracy. The measurable
states h1 and h3 can already be estimated correctly after a few time steps, as was
expected. Depending on the choice of weights, the MHE can be optimised both in
terms of performance and fast reconstruction of the initial state.
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Figure 4.7: Reconstruction of the initial state x0 on the 3-tank system for
different horizon lengths



Chapter 5

Conclusion

Due to the growing demand for sustainable and environmentally friendly alternative
energy sources, the fuel cell has moved into the focus of scientific interest in recent
years. A significant challenge is to ensure the stable and efficient operation of the fuel
cell. In order to achieve this objective, the relevant internal states, which in most cases
cannot be measured, must be observed. The reconstruction of states based on output
measurements is done with such observers. Thus, for this important instrument in en-
gineering, the proper method and an appropriate system model have to be available
and analysed to guarantee reliable monitoring of the states.

To reach real-time state estimation, it is essential to find a mathematical representation
of a system that offers a good compromise between accuracy and computational effort.
Zero-dimensional system models are chosen thesis to achieve this goal. As with many
other PEMFC models in literature, the model introduced in Chapter 2 is based on the
work of Pukrushpan [6]. Fundamental effects such as transient effects of mass flow in
the cathode and anode, electroosmotic drag, back diffusion and voltage losses due to
ohmic resistance, activation losses and concentration losses are considered in this model.
To obtain a generally valid fuel cell model, some empirical calculation formulas are re-
placed by basic equations. To represent the fundamental relationship between the input
current Ist and the output voltage Ust, the model was additionally extended with the
effect of transient rewetting of the membrane, as in [9]. Although the PEMFC model
is not parametrised to a specific fuel cell stack, the basic system behaviour matches
with the simulation results of [6] and thus represents an interesting model for testing
the nonlinear state estimation method.

In the presented formulation of the MHE concept derived in Chapter 3, the focus is on
a straightforward matrix based and low-computation implementation. To meet these
requirements, the nonlinear system is linearised in each time step. The particularly
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high accuracy is achieved by considering the linearisation offsets as well. Through the
implementation based on successive linearisation, a compact matrix structure is derived
for the dynamic optimisation task of the MHE, which can be solved in each time step
with common quadratic solvers.

The first validation of the state estimation method was done on the nonlinear system
of the fuel cell. The simulation results in Section 4.1.1 show that the moving horizon
observer based on successive linearisation estimates the states for the complex system
with satisfactory accuracy. A positive feature of the moving horizon estimator is that
the states are not only well estimated but also smoothed at the same time. This means
that the estimated state can be passed on to the controller for calculation of the control
variable without further filtering. Furthermore, no behaviour indicating poor conver-
gence could be conducted neither at the beginning of the simulation nor for input steps.

The investigations on the fuel cell in Section 4.1.2 show that there is only a minimal
improvement in the performance of the MHE if the system matrices in the observer’s
horizon are generated around a theoretically perfect solution x instead of linearising
around the solution trajectory of the MHE. The implication is that the formulation of
the MHE derived in Chapter 3 has sufficient accuracy.

Comparing MHE and EKF on the PEMFC system, minimal differences in the perfor-
mance of the two observers could be detected. In steady-state, both state estimators
follow the same solution trajectory. Only in the case of abrupt changes in the input
variables slight differences in the simulation in Section 4.1.3 are detected in favour of
the MHE. However, there are differences in the convergence properties. In the case of
a poor inertial estimate or if there are several states of the system satisfying measure-
ments, the EKF in many instances does not converge or converges against the wrong
solution [51]. In the EKF, the state distribution is approximated by a Gaussian random
variable, which is then propagated through the linearised system. This assumption can
result in deviations from the true posterior mean and variance, which in the worst case
can lead to a divergence of the EKF [52]. Although the same assumptions are made in
the arrival cost term of the MHE, these deviations do not affect convergence as much
due to the longer observation horizon.
Other advantages of the moving horizon state estimation are that the assumption of
Gaussian noise signals does not have to be fulfilled for the implementation of the MHE
[17]. Furthermore, the generated and stored system matrices can be used for the control
concept.

In the second part of Chapter 4, the observer concept is validated on the nonlinear
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3-tank system. Compared to the fuel cell model, the poles of the 3-tank are close
together and thus the MHE can capture all time constants of the system with an ap-
propriate horizon length. The results in Section 4.2 show that the MHE based on
successive linearisation estimates the states of the multivariable 3-tank without signifi-
cant deviations. The non-measurable fill level of the three tanks are also observed with
satisfactory accuracy. Although a discrepancy between the observer’s model and the
one used when generating the reference data is created by slight parameter variation,
the MHE converges towards the true state from the beginning of the simulation.

According to the probabilistic interpretation in Section 3.2, the result of the MHE
should be converging to the actual states as the horizon length increases. However, the
investigations on the 3-tank system in this thesis show that the horizon length has only
a minimal influence on the performance of the moving horizon state estimation. Even
for horizon lengths where all time constants of the system are captured, no significant
improvements in the estimation result are observed. One explanation for this is that
due to the stepwise linearisation of the system, the linearisation errors add up with in-
creasing horizon length and thus cancel out the positive effects of a longer observation
horizon.

Another possible application of the MHE is shown in Section 4.2.3 for the 3-tank system.
An alternative weighting of the initial estimate P 0 decisively influences the convergence
behaviour of the observer in this analysis. If the moving horizon observer receives a poor
initial estimate, the reconstruction of the initial state is done within a few sampling in-
tervals with sufficient accuracy. This property can be helpful in technical applications,
such as estimating the state of charge of a battery. Thus, it can be concluded that the
MHE can be optimised and driven in terms of performance as well as convergence.

The further development of this moving horizon state estimation concept can be done
by an alternative formulation of the arrival costs. The arrival costs are a fundamental
element of the MHE as they summarise data not contained in the horizon. In this
work, the arrival costs are calculated based on the assumption that the conditional
probability density function of the state at the beginning of the horizon approximates
based on a normal distribution. Nonlinearities of the system and constraints can cause
this distribution to become non-Gaussian, introducing an error in the arrival cost term.
This error can be compensated by extending the observation horizon. However, this
measure would lead to a significantly higher computation time and thus hamper the
implementation of online applications. Sample-based approaches such as the particle
filter [53] could be used to estimate the parameters of the arrival costs. With the help
of this filter method, which is based on the Monte Carlo method, a non-Gaussian prob-
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ability density function can also be approximated. The more accurate approximation
of the data not included in the horizon can increase the state estimation quality.
Furthermore, state estimation could be extended by constraints on the states or noise
signals. Model errors can be compensated for by constraining the states, or model sim-
plification can be achieved. However, care must be taken when constraining the states.
Unlike a controller, a state estimator cannot enforce compliance with bounds in the real
system. A wrong choice of bounds can therefore lead to unphysical acausalities [17]. On
the other hand, the observer can also estimate states that represent a solution to the
optimisation task but are not physically possible, such as negative masses. Therefore,
constraints are probably necessary for implementation.
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