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Kurzfassung

Die vorliegende Dissertation befasst sich mit der Charakterisierung der strukturellen und
elektronischen Eigenschaften von zwei Übergangsmetalloxiden, Vanadiumdioxid (VO2)
und Zirkoniumdioxid (ZrO2), mit Hilfe von Dichtefunktionaltheorie (DFT) Rechnungen.

Neue Experimente haben gezeigt, dass auf einem Metallsubstrat gewachsene dünne
VO2(110) Schichten als auch die (110) Oberfläche von VO2 Einkristallen mit Rutilstruktur
(2 × 2) artige Rekonstruktionen aufweisen. Da VO2 als stark korreliertes Material angese-
hen werden kann, wurde zuerst die Genauigkeit und Verlässlichkeit einer Beschreibung
mittels üblichen DFT Funktionalen untersucht. Dies schließt eine Anwendung folgender
Funktionale mit nichtmagnetischer (NM), antiferromagnetischer (AFM) und ferromagneti-
scher (FM) Spinanordnung ein: PBE, PBE+U (U = 2 eV), sowie die kürzlich entwickelten
meta-GGA Funktionale SCAN und SCAN+rVV. Die vorliegende Arbeit zeigt, dass das
SCAN Funktional generell eine bessere Beschreibung der Volumeneigenschaften als PBE
und PBE+U Funktionale liefert. Betreffend die Stabilität von Rutil VO2 Oberflächen
mit verschiedenen niedrig indizierten Orientierungen hängt diese in den meisten Fällen
nicht von der angenommenen Spinanordnung ab, jedoch wurden einige Abweichungen
festgestellt. Zum einem zeigen (NM) Rechnungen für die (001) Oberfläche eine Absenkung
der oberflächennahen V-t2g Zustände, was von einer Verminderung Oberflächenenergie
begleitet wird, zum anderen wurde ein ähnlicher Effekt für alle untersuchten Oberflächenori-
entierungen beobachtet, wenn das PBE+U Funktional zum Einsatz kommt, welches in der
Rutil Volumenphase bei magnetischen Spinanordnungen eine ungewünschte elektronische
Bandlücke öffnet. Anschließend wurden stöchiometrische und nichtstöchiometrische (2 × 1)
und (2 × 2) Rekonstruktionen auf der (110) Rutiloberfläche mit Hilfe von fortgeschrittenen
Techniken zur Strukturoptimierung, wie etwa Simulated Annealing oder der Optimierung
von Zufallsstrukturen einschließlich einer modifizierten V2O5(001) Monolage, untersucht.
Die Berechnungen sagen voraus, dass ringartige polyedrische Terminierungen, die elektro-
nisch und strukturell mit einer V2O5(001) Monolage verwandt sind, äußerst stabil sind.
Diese neuartigen Strukturen weisen eine höhere Stabilität auf der (110) Rutiloberfläche
auf als Adsorptionsphasen von Sauerstoff. Obwohl die Stabilität der vorhergesagten neuen
Strukturen zum Teil vom gewählten Funktional abhängt, gibt das SCAN Funktional in
FM Spinanordnung den besten Kompromiss, da es sowohl eine vernünftige Beschreibung
der strukturellen und elektronischen Eigenschaften der Rutil VO2 Volumenphase als auch
der Reaktionsenthalpie für höhere Vanadium Oxidationsstufen liefert. Die neuen vorher-
gesagten Oberflächenstrukturmodelle stimmen auch deutlich besser mit experimentellen
STM Messungen überein als einfache Sauerstoffstrukturen auf der (110) Rutiloberfläche.

Im Falle des zweiten in dieser Arbeit behandelten Oxids, Zirkoniumdioxid, wurde im
ersten Schritt wieder die Genauigkeit verschiedener DFT Funktionale evaluiert. Experi-
mentell beobachtete und theoretisch vorhergesagte Zirkoniumdioxid Polymorphe wurden
untersucht und die strukturellen und elektronischen Eigenschaften mit Viel- Elektronen
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Benchmark-Rechnungen, die über die DFT Ebene hinausgehen, verglichen. Dabei liefert
das SCAN+rVV Funktional die beste Übereinstimmung mit den Benchmark-Rechnungen,
besser als PBE, PBE+U, und auch Hybrid-funktionale, die sowohl die energetischen
Unterschiede zwischen den stabilen Polymorphen als auch die Stabilität vorhergesagter
metastabiler Phasen überbewerten. Eine abschließende Untersuchung von Sauerstoffdefek-
ten zeigt, dass die Bildungsenergie einer neutralen Sauerstofffehlstelle über 5.5 eV liegt.
Abhängig von Kristallstruktur und verwendetem DFT Funktional kann diese bis auf 6.9 eV
ansteigen. Für positiv geladene Defekte wird die Defektenergie unter der Annahme, dass
sich das Fermi Niveau in der Mitte der Bandlücke befindet, um 2 eV abgesenkt.

Sauerstoffdefekte rufen auch eine rund um den Defekt lokalisierte elektronische Ladungs-
dichte hervor, was sich im Auftreten von Defektzustände in der elektronischen Bandlücke
über der Mitte näher beim Leitungsbandminimum äußert. Dies stimmt recht gut überein
mit aktuellen experimentellen Studien an Sauerstoffdefekten in auf Rh(111) gewachsenen
tetragonalen ZrO2 Filmen.

ii



Abstract

This thesis is focused on a characterization of structural and electronic properties of two
transition metal oxides, vanadium dioxide (VO2) and zirconium dioxide (ZrO2, zirconia),
with the help of Density Functional Theory (DFT) calculations.

Recent experimental findings have revealed that the rutile VO2(110) surface of supported
thin films and single crystals undergo a (2 × 2) surface reconstruction. Since the vanadium
dioxide is classified as a strongly correlated material, the performance and reliability of
standard DFT functionals has been tested including the PBE, PBE+U (U = 2 eV), as
well as the recently developed meta-GGA SCAN and SCAN+rVV functionals, all with
nonmagnetic (NM), antiferromagnetic (AFM) and ferromagnetic (FM) spin ordering. The
present work shows that the SCAN functional generally improves the bulk properties over
PBE and PBE+U and also shows that the calculated stability of low-index VO2 surface
orientations, is in most cases independent of the chosen spin configuration, with several
identified exceptions. First, the nonmagnetic (NM) calculations on the (001) surface show
a lowering of surface-decomposed V-t2g states, accompanied by a lowered surface energy.
Second, a similar effect has been observed for all surface orientations when using the
PBE+U functional, which opens an electronic band gap in the rutile phase when performing
the spin-polarized calculations. Finally, the stoichiometric and off-stoichiometric (2 × 1)
and (2 × 2) surface reconstructions have been characterized with the help of simulated
annealing, an optimization of random structures and the adaption of a V2O5(001)-like
monolayer. Polyhedral ‘ring’-like terminations, electronically and structurally related to a
V2O5(001)-like monolayer are predicted. These proposed novel surface structures are more
stable than pure oxygen adsorption phases on the rutile VO2(110) surface. Unfortunately,
the stability of the predicted phases depends to some extent on the chosen functional, in
which the spin-polarized SCAN functional offers the best compromise, as it gives both a
reasonable description of the structural and electronic properties of the rutile VO2 bulk
phase and the enthalpy of reaction for higher vanadium oxidation states. Furthermore,
the predicted surface oxide models agree much better with experimental STM data than
oxygen only adsorption models for the rutile VO2(110) surface.

As concerns the insulator zirconia, the performance and accuracy of different DFT
functionals was assessed in a first step. Both experimentally observed and theoretically pre-
dicted polymorphs have been treated comparing both structural and electronic properties
to beyond-DFT benchmark calculations. For zirconia, the SCAN+rVV functional agrees
best with the benchmark calculations, better than other (GGA, GGA+U and hybrid)
functionals, which overestimate both energetic differences between the common phases and
the stability of the predicted meta-stable phases. A subsequent investigation concerning
oxygen vacancies in zirconia polymorphs revealed that the cost of forming a neutral oxygen
vacancy is above 5.5 eV, depending on the bulk phase and functional used, which may
raise this value up to 6.9 eV. However, the oxygen vacancy formation energy is lowered by
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2 eV for positively charged defects considering a Fermi level situated in the middle of the
band gap. The oxygen vacancies also leave behind a localized electronic charge density in
vicinity of a defect, which induces electronic states within the electronic band gap found
above mid-gap closer to the conduction band minimum (CBM). This is in agreement with
recent experimental studies of defects in thin tetragonal films grown on Rh(111) substrate.
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Chapter 1

Introduction

Transition Metal Oxides (TMOs) represent a large and fascinating group of compounds
which exhibit a huge variety of technologically important physical properties. For example,
the nature of interatomic bonding ranges from purely ionic (CuO, AgO)[1] to covalent
(OsO4, RuO4)[2] and purely or partially metallic (TiO, Ag2O)[3, 4]. Therefore, they
cover the whole range of electrical conductivity starting from good insulators such as
ZrO2[5] semiconductors (TiO2, Cu2O)[6], conductors (ReO3, crystalline IrO2)[7, 8] and
high-temperature superconductors (cuprates such as YBa2Cu3O7 or La2-xBaxCuO4)[9].
Considering the magnetic properties, examples include diamagnetic materials: V2O5[10],
paramagnetic: Ti2O3[11], antiferromagnetic: NiO[12], ferrimagnetic: Fe3O4[13] or ferro-
magnetic: CrO2[14]. Several TMOs can also form compounds with different stoichiometries.
For example, experimentally observed vanadium oxides exist in many stoichiometries in-
cluding VO, V2O3, VO2 and V2O5 bulk phases, Wadsley phases VnO2n + 1 (n = 1 − 6) and
Magnéli phases VnO2n − 1 (n = 4 − 9)[15]. Different stoichiometries lead to changes both
in crystal structure and in electronic properties.For these reasons they are applied in many
fields of state-of-the-art technology such as lithium-ion batteries[16], supercapacitors[17],
gas sensors[18], solid oxide fuel cells[19] or superconductors[20]. They also play an impor-
tant role as catalysts in preparation of organic and inorganic compounds[21, 22] and hence
tremendous efforts have been taken in experimental and theoretical investigations of these
important materials.

Recent developments of novel technologies involving transition metal oxides rely on an
understanding of the origin behind their physical properties. J. B. Goodenough[23] already
discussed the main general concepts of several mechanisms, which significantly influence
the behaviour of TMOs, as illustrated in following lines. Transition metals are elements
that form groups 3 (IIIb) to 12 (IIb) of the periodic table. Unlike in other elements, the
valence electrons of transition metals interacting with an environment are localized in two
shells, namely s and d. This interaction depends on the overlap with valence electrons of a
transition metal with neighbouring atoms. However, valence electrons from s and p shells
are itinerant so they form chemical bonds easily, f electrons remain localized and they
can therefore hardly interact. The transition-metal d electrons represent a compromise
between itinerant and localized states and thus may exhibit both an itinerant and localized
behaviour, depending on the specific transition element and its environment.

As Goodenough pointed out[23], two effects play a significant role in the type of bonding.
Transition metal oxides form primarily ionic bonds induced by a charge transfer between
the metal and the surrounding oxygen atoms. This process costs a certain energy which
is counterbalanced by the electrostatic Madelung energy between the oxygen anions and
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Fig. 1.1: Effect of the Crystal Field Splitting (CFS) on energy levels of transition metal
d orbitals evoked by octahedral and tetrahedral coordination geometry.

metal cations in the crystal lattice. The created internal electrostatic field stabilizes the
oxygen 2p-states shifting them down in energy and raising the metal d-states above the
oxygen states close to the Fermi energy EF . Since the oxygen 2p and metal d-states are
not too distant in energy, covalent bonding is also present causing a split between the
occupied energetically lowered bonding orbitals stabilizing the system, and the unoccupied
antibonding orbitals which are pushed upwards by the same amount of energy. The
covalent bonding process reduces the ionic bonding by transferring electrons back to the
metal ion and the prevailing effect depends on the specific compound. Experimental and
theoretical evidence[24, 25] shows that an increasing oxidation state of a metal transforms
ionic bonding to covalent.

In an atomic model, the d-shell is composed of five energetically degenerate atomic
orbitals: dxy, dyz, dxz, dx2−y2 , dz2 . However, when the metal atom is placed into the crystal
structure, a static electric field produced by surrounding negatively-charged oxygen atoms
leads to a splitting of the atomic-like energy levels as the atomic d orbitals interact with the
surrounding charge differently. Hence, the way how the degeneracy is broken depends on the
coordination geometry of a metal atom. This process, also called Crystal Field Splitting
(CFS), is depicted together with the atomic d orbitals in an octahedral coordination
geometry in Figure 1.1 where the metal atom is surrounded by six ligands situated at the x,
y, and z axes. The CFS raises the two σ- orbitals with e-symmetry (dx2−y2 , dz2) above the
three π- orbitals with t symmetry (dxy, dyz, dxz). Conversely, in a tetrahedral geometry the
order of the t2g and eg orbitals is reversed and the size of the splitting is 4/9 lower[26]. The
CFS als impacts the electronic properties of transition metal oxides: For example, when
the d orbital is occupied by more than one electron, the exchange energy that stabilizes
high-spin states (more unpaired electrons occupying different d orbitals) competes with
the crystal field splitting. Since the CFS is lower in a tetrahedral coordination, these
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compounds prefer high-spin state, but for an octahedral coordination, the CFS is usually
too large to be counterbalanced by the exchange interaction and therefore low spin states
are observed.

In 1937, Jahn and Teller[27] postulated the theorem that “all non-linear nuclear con-
figurations are unstable for an orbitally degenerate electronic state”. This statement also
holds for crystal structures of transition metal oxides that have degenerated ground states.
This degeneracy leads to geometrical distortions, reducing the symmetry and lowering
the total energy of a system. Another instability that occurs in transition metal oxides
was described by Mott[28], who described metal-to-insulator transitions as the result of
charge screening if the electron density is large. Furthermore, Peierls[29] stated that a
one-dimensional, equally spaced linear chain with one electron per ion will undergo a
distortion which doubles the periodicity of a crystal in the direction of the distortion and
opens the electronic gap. This distortion leads to fluctuations of electron density and
the formation of charge density waves. A Peierls distortion also occurs in 3D systems,
including transition metal oxides, when the electronic conductivity relies on linear chains
in one dimension.

This incomplete list of physical processes already sheds some light on the physical origins
behind the many interesting properties of transition metal oxides. However, due to the
complexity of these systems both an experimental and theoretical characterization of these
materials remains a very challenging task.

1.1 The scope of the thesis

This thesis presents a Density Functional Theory (DFT) study of two transition metal
oxides. The first, vanadium dioxide, has been investigated from two perspectives: First,
the present work covers a procedure that provides structural models for recently discovered
rutile VO2(110) (2 × 2) surface reconstructions identified on both supported thin films[30,
31] and single crystals[32]. Investigations of the single crystal surface provided a deeper
insight into the detailed surface structure and allowed for a comparison with recent
experimental findings. Second, vanadium dioxide is known to be a strongly correlated
material and there is a certain lack of knowledge on the performance of DFT for VO2

surface systems. Hence, a particular focus of this thesis is also the comparison of developed
structural models with STM experiments and a description of the performance that offer
standard (GGA, GGA+U) and recently developed (meta-GGA) DFT functionals on rutile
VO2 surfaces.

The second oxide is zirconium dioxide also known as zirconia (ZrO2), where the present
thesis deals with an ab-initio characterization of bulk phases and the formation of oxygen
vacancies with different charge state. Zirconia has many technologically important appli-
cations including catalysts, gas sensors and solid oxide fuel cells, where both processes
at the surface and bulk defects play an important role. Recent experiments[33–36] have
shown that properties of thin zirconia films are influenced both by the formation of oxygen
vacancies as well as by the Rh(111) substrate. The performance of DFT functionals in
bulk systems has been assessed by a comparison with benchmark post-DFT many-electron
approaches. Two new meta-stable phases predicted by DFT are characterized and then
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the main emphasis is directed towards the formation of oxygen vacancies in the bulk, as
well as in supported and unsupported thin films.

The outline of the thesis is following: In Chapter 2 the computational methods relevant
for this thesis are introduced. Chapter 3 sums up the results of the vanadium dioxide
studies. After a brief introduction, the motivating interesting new experiments on VO2

surfaces are presented. A performance study of various DFT functionals for VO2 bulk
systems follows, which provides useful insights for the subsequent characterization of
unreconstructed low-index rutile VO2 surfaces. The main part of this chapter deals with
the three methods employed in the characterization of the rutile VO2 (2 × 2) surface
reconstructions, namely simulated annealing, an explicit modification of a V2O5 monolayer,
and an optimization of random structures. The structural models obtained in these ways
are subsequently used both in a detailed comparison with recent experimental data[32]
and also in a discussion of the performance of different DFT functionals applied to the
complex VO2 surface systems. The final Chapter 4 focuses on highly precise calculations
on the phase stability of zirconia polymorphs and is concluded by results concerning the
formation of oxygen vacancies in the bulk, in supported and unsupported zirconia films.
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Chapter 2

Theoretical background

One of the elemental problems of computational materials science is a correct description of
basic properties of many-electron systems, including structural parameters, electronic and
magnetic properties, excitation energies, vibrational spectra and many others. Recently,
the rapid development of computing technology and theoretical concepts has allowed
the treatment of more and more complex structures such as multi-layered structures,
surface reconstructions, point defects, dislocations and quasi-crystals, all of them in the
large interest of the frontier technology. A theoretical description of these systems is
therefore extremely useful for a correct understanding of physical processes related to
these materials. Furthermore, experimental investigations at an atomistic level are very
intricate and often the direct observation of a property of interest is not possible. In this
context, computational materials science offers a way to complement the experimental
observations.

The success of the computational methods relies on the correct description of basic
properties of atomistic systems which comprise electrons and nuclei. The first fundamental
property is the electronic structure which describes the state of electronic motion in the
electrostatic field of nuclei. The distribution of electrons in space determines chemical
bonding between atoms and is therefore directly related to the stability of a system which
manifests itself as atomistic, binding or cohesive energy. Furthermore, the electronic
structure also determines other important properties of a system such as electrical conduc-
tivity or magnetic ordering. Furthermore, the electronic structure can also influence the
geometry of the system. The basic property concerning the nuclei is their position in space
which determines the geometry of the system, including bond lengths, bond angles and
symmetries. One of the approaches which offers an access to the theoretical investigation
of these properties is to find out the electronic ground state, which is determined by the
Hamiltonian of the atomistic system. These methods are called ab-initio or from first
principles because they are based on fundamental laws of physics without the need to use
system-dependent empirical parameters. In this chapter the main scope of first-principles
methods as used in this thesis will be introduced and discussed.
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2.1 Introduction

The discussion of basic concepts of the ab-initio methods starts with the non-relativistic
Schrödinger equation which determines the state of a quantum-mechanical system by an
object called the wave function. The equation was postulated in 1925 by the Austrian
physicist Erwin Schrödinger and its time-dependent form can be written in the following
way:

ĤΨ(x1, x2, . . . , xN , t) = i
∂Ψ(x1, x2, . . . , xN , t)

∂t
. (2.1)

This equation comprises the two fundamental objects describing a quantum-mechanical
system. The first of them is called the Hamiltonian operator Ĥ and its eigenvalue
corresponds to the total energy of the system. Hence, the operator contains terms
related to the kinetic energy of all particles in a system, as well as interactions inside
the system and interactions with external fields. The latter object is the wave function
Ψ(x1, x2, . . . , xN , t), which describes the state of the system composed of N particles in
time t. The coordinates xi contain both the position and the spin component, which
emerges directly from a relativistic generalization. Furthermore, other relativistic effects
such as the finite speed of light must be included in case of heavy elements like gold or
mercury to ensure the correct treatment of core electrons. Apart from this, the quantum-
mechanical methods used in the present work suppose that Coulomb interactions are
predominant while other forces are neglected. In contrary to classical mechanics, the state
of a system in quantum mechanics is described by a complex multi-dimensional function Ψ
instead of position and momentum vectors per each particle which are fundamental objects
in classical mechanics. The Hamiltonian operator in a particular system depends on the
distribution of particles which interact with each other constituting usually a many-body
problem. Consequently, the analytic solution of the Schrödinger equation is only known
for elemental systems like the hydrogen or He+ atom, a particle in an (in)finite well or
the quantum harmonic oscillator. Even if more complex quantum mechanical systems
become intractable analytically and several approximations are necessary for solving the
many-body problem, the aforementioned examples and their solutions are crucial for
building the subsequent approximations which help to understand the properties of larger
quantum systems.

The first approximation, that most of quantum-mechanical methods start with in
atomistic systems, rests on the fact that protons are approximately 1800× heavier than
electrons. Hence, the motion of nuclei is much slower than the motion of electrons. One can
therefore safely assume most of the time, that the electrons in a system adapt immediately
to a change in the nucleic positions and that the motion of nuclei is governed by the effective
electric field due to the electrons. In mathematical terms, the many-body wave function Ψ
describing the system of i electrons and j nuclei is decomposed into the electronic wave
function ψ and the wave function of nuclei χ. Omitting the spin components and the time
dimension one can write this as:

Ψ(r1, r2, . . . , ri, R1, R2, . . . , Rj) = ψ{R1,R2,...,Rj}(r1, r2, . . . , ri)×χ(R1, R2, . . . , Rj), (2.2)

where ri and Rj are position vectors for electrons and nuclei, respectively. {Rk} marks
the set of nucleic positions that are considered to be fixed. This separation enables a
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decomposition of the Hamiltonian into two decoupled systems by neglecting cross terms
between electronic and nucleic motion. Many practical examples consider "frozen-in"
nuclei, where the total energy of the system is determined by an electronic Hamiltonian
with an external electric field emanating from a fixed distribution of positively charged
nuclei. This is called the adiabatic or Born-Oppenheimer approximation. In practice, this
approximation is used to find electronic ground states and vibrational modes, but cannot be
used when non-adiabatic effects play a role. This might happen when movements of nuclei
are fast or movements of electrons are slow. Typical examples when the Born-Oppenheimer
approximation breaks down represent transition states in chemical reactions[37], phonon
modes of graphene[38] and electron-lattice coupling effects – essential for the standard
theory of superconductivity or Jahn-Teller distortions[39].

Within the adiabatic approximation, the electronic Hamiltonian Ĥe of an atomistic
system is composed of N electrons and M nuclei at positions {Rj} with charges Zj has
the form:

Ĥe = −1
2

N

i=1

∇2
i

T̂e

+
N

i

N

j>i

1
|ri − rj|

V̂ee

+
N

i

M

j=1

Zj

|ri − Rj|
V̂en

(2.3)

This equation shows that the electronic Hamiltonian includes the kinetic energy operator
T̂e describing the movements of electrons and two potential energy operators – V̂ee and
V̂en standing for electron-electron and electron-nuclei interactions. Note that this equation
does not contain any further physical constants such as or ǫ0, which are no longer present
when switching to the use of atomic units.

In the present work the arrangement of nuclei in a system will often change in order to
obtain the energetically most favorable configuration. This is possible in the framework
of the Born-Oppenheimer approximation by the calculation of the electronic system
separately for each nucleic arrangement. In order to compare the total energies of different
arrangements, on must also add the nuclear repulsion to the total energy of the electronic
system, that is described by operator V̂nn:

V̂nn =
M

i

M

j>i

ZiZj

|Ri − Rj|

Using the Born-Oppenheimer approximation, the Schrödinger equation is also ana-
lytically solvable for the simplest molecular system H+

2 . Despite the simplification that
the Born-Oppenheimer approximation offers, more complex systems are still intractable
analytically because of the electron-electron interaction V̂ee that couples the motion (posi-
tions) of the electrons. Further approximations used in this thesis decouple the electronic
system into a set of independent one-particle systems interacting via and moving in an
variationally optimized average potential. The Hamiltonian for an electron that is moving
in an average potential Vavg. of an atomistic system has the following form:

ĤIP =
∇2

i

2
+ Vavg. ri, {Rj} . (2.4)
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The two following sections describe methods to approximate the electronic Hamiltonian
containing the full electron-electron interactions by an independent-particle Hamiltonian,
where each electron is treated separately and moves in an average potential as described
by equation 2.4.

2.2 Hartree and Hartree-Fock equations

Both methods that are discussed in this section can be considered as variational ap-
proaches where the electronic wave function of the many-electron system ψ(r1, r2, . . . , ri)
is approximated by products of one-electron wave functions. These approximations lead
directly to a simplification of the full-interacting Hamiltonian (eq. 2.3) to the effective-field
single-particle Hamiltonian (eq. 2.4) when neglecting correlation effects and interactions
with other electrons in the system.

The Hartree method starts with an ansatz where the all-electron wave function is written
as a product of one-electron wave functions:

ψ(r1, r2, . . . , ri) = φ1(r1) · φ2(r2) · . . . . . · φi(ri). (2.5)

Consequently, the electrons are independent of each other and interact only via an average
mean-field potential to be determined.

The simple treatment of the many-electron wave function has certain drawbacks that
limit the usability of the Hartree method for real systems. First of all, the probability
density ρ(r1, r2, . . . , ri) is just a product of one-electron densities:

ρ(r1, r2, . . . , ri) = ρ1(r1) · ρ2(r2) · . . . . . · ρi(ri), (2.6)

which means that the probability of finding an electron at a position ri is independent
of the probability of finding another electron at a position rj. However, in real systems
electrons are correlated. The second problem arises from the fact that the simple Hartree
product in eq. 2.5 assumes that electrons are assigned to specific orbitals. Hence, it is
possible to distinguish them by an orbital they are assigned to. However, all fermions
require antisymmetric wave function with respect to particle exchange for their correct
description which also includes the condition that particles are indistinguishable.

To overcome these problems, the Hartree-Fock method can be employed, which correctly
takes into account that N-electron wave functions ψ of N must be antisymmetric with
respect to an exchange of two electrons which leaves the wave function unchanged except
except for a minus sign:

ψ(r1, r2, . . . , rx, . . . , ry, . . . , rN) = −ψ(r1, r2, . . . , ry, . . . , rx, . . . , rN) (2.7)
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A straightforward way to generate an antisymmetric wave function was proposed and
applied to atoms by Fock[40] in 1930. A wave function that is antisymmetric with respect
to any exchange can be written in the form of a Slater determinant:

ψAS(x1, x2, . . . ) =
1√
N !

ψ1(x1) ψ2(x1) . . . ψN(x1)
ψ1(x2) ψ2(x2) . . . ψN(x2)

...
...

. . .
...

ψ1(xN) ψ2(xN) . . . ψN(xN)

(2.8)

Using this expression for the wave function, one can derive the Hartree-Fock equations
using a variational procedure for the solution of the Schrödinger equation. Using the
Dirac’s bra-ket notation the total energy of the electronic system can be written as:

E =
ψAS|Ĥe|ψAS

ψAS|ψAS

(2.9)

The denominator normalizes the wave function and if all one-electron wave functions
are already normalized, ψAS|ψAS becomes 1 due to the pre-factor

√
N ! in the Slater

determinant (eq. 2.8). One also assumes that one-electron wave functions, also denoted as
spin orbitals, are orthogonal and the electronic Hamiltonian Ĥe has the same form as in
equation 2.3. By plugging the expression of the wave function 2.8 into equation 2.9, many
terms cancel out due to orthogonality of the spin orbitals and one arrives at the following
expression for total energy:

E = ψi|Ĥe|ψi =
N

i

ψi| − 1
2

∇2
i |ψi

T

+
N

i

ψi|
M

j=1

Zj

|ri − Rj| |ψi

Ven

+
N

i=1

N

j>i

ψiψj| 1
|ri − rj| |ψiψj +

N

i=1

N

j>i

ψiψj| 1
|ri − rj| |ψjψi

Vee

(2.10)

The total energy is composed of the expectation values of the kinetic energy T , the
electron-nuclei interaction Ven and the electron-electron Coulomb and Exchange interactions
omitting correlation effects as denoted by Vee. Two-electron integrals are introduced which
have the form

ψiψj| 1
|r1 − r2| |ψkψl = δ(σi, σk) dr1dr2ψ

∗
i (r1)ψ∗

j (r2)
1

|r1 − r2|ψk(r1)ψl(r2).

Here, δ(σi, σk) stands for the delta function which gives 0 if spin-orbitals ψi and ψk have
opposite spins, and 1 otherwise. Equation 2.10 can also be considered as the energy
functional for a wave function in the form of the Slater determinant. Hence, one may
apply a variational principle to this expression and define the resulting solution as the set
of one-electron wave functions ψk which yield the minimum energy value, and satisfy
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the orthogonality condition on the orbitals. The problem can be solved by using Lagrange
multipliers, which expresses the constraints for the desired solution as

δE −
kl

ǫkl( δψk|ψl − ψk|δψl ) = 0. (2.11)

Using equations 2.10 and 2.11 we arrive to the expression for the Hartree-Fock equations:

−1
2

∇2
i ψi(ri) −

M

j=1

Zj

|ri − Rj|ψi(ri)+
N

j

|ψj(rj)|2
|ri − rj| drjψi(ri) −

− δ(σi, σj)
ψ∗

j (rj)ψi(rj)

|ri − rj| drjψj(ri) = ǫiψi(ri).

(2.12)

The first three terms stand for the kinetic energy, the electron-nuclei interaction and the
static Coulomb interaction, which also determine the Hartree equations. The fourth term
is the same as the third, except for an exchange of the labels i,j of the one-electron wave
functions ψ and a minus sign and is known as the ’exchange’ interaction. Unlike the static
Coulomb interaction, the exchange term is purely non-local, because the evaluation of
its value at a position ri depends on the values of ψi at all possible values of rj. There
is no analogue in classical mechanics to the exchange interaction. Nevertheless, one
can understand this term first as an electronic interaction which decreases the Coulomb
interactions (repulsion) between electrons with parallel spins, and second as an interaction
which creates an ’exchange hole’ in the vicinity of an electron. This means that the
probability of finding another electron with the same spin close to the considered one is
suppressed. This is in accordance with Pauli’s exclusion principle, which also originates in
the antisymmetry of the wave function.

Equation 2.12 can be classified as a non-linear equation because the one-electron wave
functions ψi are coupled via Coulomb and Exchange interactions. In practice, the one-
electron wave functions are expressed in basis functions that are suitably chosen according
to the considered system. Once the basis set is fixed, the solution of the Hartree-Fock
equations is transformed into a matrix eigenvalue problem that is solved via a self-consistent
iterative procedure. This is described in more detail in the next section.

The main advantage of the Hartree-Fock method over the Hartree approximation is
the exact cancellation of the self-interaction by the exchange term in eq. 2.12. This can
be illustrated by considering ψj = ψi, and consequently σj = σi. Then, the coulomb and
exchange terms yield:

|ψi(rj)|2
|ri − rj| drjψi(ri) −

1

δ(σi, σi)

|ψi(rj)|2

ψ∗
i (rj)ψi(rj)
|ri − rj| drjψi(ri) = 0

(2.13)

While the Hartree method without a proper consideration of the self-interaction error
is practically useless the Hartree-Fock method, despite the neglect of correlation effects
for electrons of unlike spins yields realistic results and is commonly used in chemistry for
calculations of molecular energies and geometries.
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For systems where the Hartree-Fock theory yields an insufficient accuracy due the neglect
of electronic correlations there are several ways how to improve the solutions. One method
is based on perturbation theory which treats correlations as a small perturbation to the
electronic Hamiltonian. The wave function is then expressed as a power series in artificial
coefficients up to the nth order, where n is usually chosen between 2 and 4. This is called
second, third and fourth order Møller–Plesset perturbation theory. The second approach is
based on the expression of the many-electron wave function in terms of linear combination
of Slater determinants whre each additional Slater determinant includes excited state
orbitals. Since this method works with (many) different electronic configurations, it is
called a Configuration interaction (CI). However, the practical use of these methods is
limited by the size of the studied system due to the unfavourable computational scaling
and immense computational cost for larger systems. In the next section a different way
for treating the exchange and correlation effects is introduced, that requires much less
computational resources.

2.3 Density Functional Theory (DFT)

DFT has become one of the most successful methods used in condensed matter physics
and quantum chemistry. Due to its good performance in predicting various physical
properties and aiding the interpretation of experimental results, it has evolved into a
major tool in computational materials science over the last fourty years. It is frequently
used nowadays in investigations of many physical properties including structural stabilities
and the electronic structure of molecules and solids, atomic and molecular adsorption,
molecular dynamics, STM and AFM simulations and vibrational spectra. It also serves as
a basis for more advanced methods such as the Dynamical Mean-Field Theory (DMFT) for
a determination of electronic structure of strongly correlated materials, the Random Phase
Approximation (RPA) for an improved description of electron-electron interactions by a
screened Coulomb potential, the Time-Dependent Density Functional Theory (TDDFT)
which opens the door for a concise theoretical description of light-matter interactions, or
the Machine Learning (ML) for studying complex datasets. In 2015, Robert O. Jones
published a review on the history, development and prominence of Density Functional
Theory, showing the dramatic increase of published papers related to this topic from ∼600
in 1991 to ∼16000 in 2015[41]. In 2014, twelve out of hundred most ever cited papers
were related to the Density Functional Theory[42]. At the 7th and 8th place two technical
papers introducing two approximate functionals – LYP[43] and B3LYP[44] are found. The
two publications written by P. Hohenberg, W. Kohn and L. J. Sham[45, 46] who laid the
foundation stone of the DFT ranked at the 34th and 39th place.

The success of the DFT lies in its ability to treat quantum mechanical systems quite
accurately with a reasonable computational cost. For example, the scaling behaviour of
DFT for a system treated by a basis set of the size M is, without any further simplifications,
M3. The Hartree-Fock method scales M4 and post-HF methods scale up to M7[47].
Considering its accuracy, DFT more often yields results superior to the Hartree-Fock
method and is therefore widely used not only for solid but also for molecular systems.

The starting point of DFT is the aforementioned work of Hohenberg and Kohn[46] who
postulated the theorem which forms the cornerstone of this method. They have shown
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that the electronic ground state ψ0 is fully determined by the electronic density ρ0 which
is defined as

ρ(r) = dr2dr3 . . . drNψ∗(r, r2, . . . , rN)ψ(r, r2, . . . , rN) (2.14)

To prove this, Hohenberg and Kohn considered the Schrödinger equation in the form

[T̂ + V̂ee + v̂ext

Ĥ

]ψ = Eψ, (2.15)

where the Hamiltonian Ĥ comprise the kinetic energy T̂ , electron-electron interaction V̂ee

and external potential v̂ext, which usually embraces the Coulomb repulsion between nuclei
and the attraction between electrons and nuclei.

The first statement of the Hohenberg-Kohn theorem establishes a one-to-one correspon-
dence between the external potential v̂ext and the ground state wave function ψ0 in the
case of non-degenerate ground states. The same mapping is valid for ψ0 and ground state
density ρ0, except for degenerate ground states. Both statements can be proved by reductio
ad absurdum, as shown here for the second one.

Assume that ρ0 can be generated by two different ground state wave functions ψ0 and φ0

which correspond to external potentials vext and wext, respectively. Then the Ritz principle
yields two inequations for the ground state energies that correspond to wave functions ψ0

and φ0:
E0 = ψ0|T̂ + V̂ee + v̂ext|ψ0 < φ0|T̂ + V̂ee + v̂ext|φ0 , (2.16)

E ′
0 = φ0|T̂ + V̂ee + ŵext|φ0 < ψ0|T̂ + V̂ee + ŵext|ψ0 . (2.17)

By addition and subtraction of ŵext and v̂ext the inequations 2.16 and 2.17 read as:

E0 < φ0|T̂ + V̂ee + ŵext|φ0

E′

0

− φ0|ŵext − v̂ext|φ0 , (2.18)

E ′
0 < ψ0|T̂ + V̂ee + v̂ext|ψ0

E0

− ψ0|v̂ext − ŵext|ψ0 . (2.19)

Now, considering the multiplicative character of v̂ext and ŵext and the presumption that
the ground state wave functions ψ0 and φ0 yield the same ground state density ρ0, one
can rewrite both inequations in an integral form:

E0 < E ′
0 − dr [wext(r) − vext(r)] dr2 . . . drNφ∗

0(r, r2, . . . , rN)φ0(r, r2, . . . , rN)

ρ0(r)

, (2.20)

E ′
0 < E0 − dr [vext(r) − wext(r)] dr2 . . . drNψ∗

0(r, r2, . . . , rN)ψ0(r, r2, . . . , rN)

ρ0(r)

. (2.21)

Finally, adding inequations 2.20 and 2.21 yields

E0 + E ′
0 < E ′

0 + E0, (2.22)
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which is a contradiction. Therefore, the one-to-one correspondence between the ground
state density ρ0 and ground state wave function ψ0 has been proven. This implicates
that the external potential, the ground state wave function and the ground state density
uniquely determine each other. As a consequence, if one can assume that the ground
state wave function is a unique functional of the ground state density, then the same is
true for any observable of the ground state. An especially important quantity of Density
Functional Theory (DFT) is the total energy E which can be written as a functional of ρ:

E[ρ] = ψ[ρ]|Ĥ|ψ[ρ] = F [ρ] + drρ(r)vext(r),

F [ρ] = ψ[ρ]|T̂ + V̂ee|ψ[ρ]
. (2.23)

Another consequence of the aforementioned mapping between the ground state wave
function and ground state density is the possibility to apply the Ritz variational principle to
the total energy functional of the electron density. In other words the ground state energy
is the minimum value of all possible energies that originate from permissible electronic
densities ρ. Consequentially, the electronic density that yields the minimum energy is
the ground state density. In practice, the ground state density is fully determined by the
functional F [ρ] in eq. 2.23 which does not depend on the external potential vext and thus
is universal.

Similar to the Hartree-Fock method the DFT ground state density and the ground state
energy is determined variationally. In DFT the constraint to the ground state density
is the number of electrons contained in the ground state density. Using again Lagrange
multipliers, a variation of the energy functional under the constraint of keeping the number
N of electrons fixed yields

δ

δρ(r)
E[ρ(r)] − µ drρ(r) − N = 0. (2.24)

As mentioned above, the proof of the Hohenberg-Kohn theorem is only valid for non
degenerate ground states. For degenerate ground states one can prove the existence of a
mapping between an external potential vext, and a class of ground state wave functions
respectively a class of ground state densities, which are disjoint for different vext. The
variational principle is therefore still valid, only with a difference that more solutions exist
for the electronic density ρ(r) from equation 2.24.

The Hohenberg-Kohn theorem proves the existence of a density functional for the total
energy, but it does not show the way how to derive its specific expression. Hence, exact
expression for the functional of E[ρ(r)] is unknown and for practical applications must be
approximated by physical reasoning.

2.3.1 Kohn-Sham Scheme

In 1965, Kohn and Sham[45] suggested the mapping of the many-body system defined
by the wave function ψe, or – according to the HK theorem, by the ground state density
ρ0, onto an independent-particle system described by a non-interacting one-electron
Hamitonian like in eq. 2.4, which yields the same ground state density ρ0. According to
the HK-theorem, the system is fully determined by the electronic ground state density and
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therefore both approaches are equal. Thus, the Kohn-Sham scheme replaces the intractable
many-body system by an auxiliary non-interacting one-electron system with the kinetic
energy operator T̂ and a local effective potential Veff(r). The construction of the effective
potential is done by comparing to the interactions in the full interacting system in the
following way. The many-body ground state energy reads:

EMB[ρ] = T [ρ] + Een[ρ] + Eee[ρ]. (2.25)

The contribution from the electron-nuclei interactions Een[ρ] can be expressed exactly in
terms of one-electron densities. The kinetic energy term is decomposed into the kinetic
energy of non-interacting particles Tn[n] and a residue due to correlation effects Tc[n]:

T [ρ] = Tn[ρ] + Tc[ρ]. (2.26)

Subsequently, the electron-electron interaction Eee[ρ] is decomposed into the static Coulomb
or Hartree-term and a residue that contains exchange and correlation effects:

Eee[ρ] = EH [ρ] + Exc[ρ]. (2.27)

By putting both parts together one gets

EMB[ρ] = Tn[ρ] + Een[ρ] + EH [ρ] + Exc[ρ]

Exc[ρ]+Tc[ρ]

. (2.28)

Here an exchange-correlation functional Exc[ρ] is introduced, which contains all the non-
local exchange and correlation effects. Considering the kinetic energy of the non-interacting
electrons Tn[ρ], an expression in terms of the electron density is still unknown. In the
Kohn-Sham scheme it is therefore evaluated in terms of the auxiliary one-electron wave
functions. Note that this step is not mandatory and there exist several attempts to
construct an orbital-free DFT [48, 49] where the kinetic part is calculated directly from
the electron density. In the Kohn-Sham scheme, Tn[ρ] has the form

Tn[ρ] =
N

i

ψi[ρ] −∇2

2
ψi[ρ] . (2.29)

After this step, the mapping onto the non-interacting auxiliary system is complete, because
all terms of the many-body energy functional are expressed by non-interacting wave
functions and the electronic density. Putting equations 2.28 and 2.29 into 2.24 yields the
so-called Kohn-Sham equations:

−1
2

∇2 +
M

j

Zj

|Rj − r| + dr
′ ρ(r′)
|r − r′| +

δExc

δρ(r)


 ψi = ǫiψi. (2.30)
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Here, the electron density ρ(r) is written as the sum of the one-electron densities as
determined from the auxiliary Kohn-Sham one-electron wave functions:

ρ(r) =
N

i

|ψi(r)|2 (2.31)

The first three terms in equation 2.30 on the left side correspond to the kinetic energy,
the electron-nuclear atttraction and the static electron-electron interaction, just as in
the Hartree approximation. The last term contains all the exchange and correlation
interactions which involve not only the electronic exchange and correlation contributions,
but also the correlation contribution to the kinetic energy.

The Kohn-Sham equations are coupled together via the electron density ρ. In order
to solve them, one-electron wave functions are expressed in a finite basis set, which
transforms the problem of solving the set of coupled differential equations into finding
matrix eigenvalues. The following self-consistent iterative procedure is used:

Figure 2.1 displays the procedure of the self-consistent iterative method for solving
the Kohn-Sham equations. As mentioned in the previous section, a similar approach is
used to solve the Hartree-Fock equations. Comparing both methods, the Hartree-Fock
approximation searches for the ground state of a many-body wave function in terms of
Slater determinants, whereas the Kohn-Sham scheme uses one-electron wave functions to
represent the electronic ground state density and subsequently the ground state energy
and other properties of the system. Unlike the Kohn-Sham scheme, the Hartree-Fock
equations are non-local due to the exchange term.

In order to solve the Kohn-Sham equations 2.30 one needs a specific representation of the
exchange-correlation functional Exc[ρ]. The exact form of this term is unknown, but there
have been huge efforts to find proper approximate functionals that would be transferable
between many different atomistic systems. Thus, discussing the main outline of the history
and recent development of the exchange-correlation functionals is appropriate.

2.3.2 Exchange and correlation functionals

The exchange-correlation functional encompasses the differences between the kinetic
energies of non-interacting electrons and fully interacting system, and the difference
between the exact dynamic Coulomb and the static Hartree interaction. The basic idea
behind a construction of the exchange-correlation term is to find an expression only in
terms of the electron density, including the correlation contribution to be added to the
kinetic energy calculated from the Kohn-Sham orbitals. Such a procedure is feasible via
the adiabatic connection as briefly discussed in the following.

The Kohn-Sham picture can be connected to the exact Schrödinger equation via a
tunable electron-electron interaction with an interaction strength λ:

Vee,λ =
N

i=1

N

j>i

λ

|ri − rj| (2.32)
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Initial guess
ρg(r)

Assemble the Hamiltonian

Ĥ = −
1
2
∇2

i + d3r′ρ(r′) 1
|r−r′|

+
M

j=1

Zj

|r−Ri|
+

δExc[ρ]
δρ

Solve KS equations

Ĥψi(ri) = ǫiψi(ri)

Calculate new density
ρn(r) =

i

|ψi(r)|
2

ΔE < ΔESTOP

Converged? YesNo

Energies, forces, stress tensors, ...

Calculate properties

Fig. 2.1: A scheme of the self-consistent DFT cycle. At the beginning a trial electronic
density ρg is assumed to build the Hamiltonian. The Kohn-Sham equations are
subsequently solved and another electronic density ρn is evaluated from resulting
one-electron wave functions. The convergence criterion is usually defined as
the total energy difference between the last two cycles. When it is fulfilled, the
one-electron wave functions are used to calculate ground state properties of the
system.

For λ = 0, this term vanishes, whereas λ = 1 represents the standard Coulomb interaction.
Now one can define the exchange-correlation functional with help of Vee,λ:

Exc[ρ] = (Eee[ρ] + T [ρ])

Fλ=1[ρ]

− Tn[ρ]

Fλ=0[ρ]

−EH [ρ], (2.33)
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where Fλ[ρ] are functionals containing the kinetic energy and the tunable electron-electron
interaction at a fixed density ρ. Now one can express the F functional of the full-interacting
system with help of the non-interacting system using the Hellmann-Feynman theorem[50]:

Fλ=1 = Fλ=0 +
1

0

dFλ

dλ
dλ = Tn[ρ] +

1

0

ψλ|Vee|ψλ (2.34)

The derivative of Fλ with respect to the tuning parameter λ nullifies the kinetic energy
term does not dependend on λ. Plugging equation 2.34 into 2.33 leads to a cancellation of
the kinetic energy terms and one gets the following expression for the exchange-correlation
energy:

Exc =
1

0

dλ ψλ|Vee|ψλ − EH [ρ]. (2.35)

The price to be paid for the removal of the kinetic energy terms is the evaluation of
the integral for all values of the interaction parameter λ between 0 and 1. However,
a big advantage of the adiabatic connection is a certain insight into the properties of
the exchange-correlation functional. Because the kinetic energy term has been replaced,
equation 2.35 can be rewritten in terms of the exchange-correlation hole density ρxc, which
can be defined as a deviation from the average electron density at r due to the presence of
another electron at r

′. The exchange-correlation term is then expressed in the following
way:

Exc = drdr
′ ρ(r)ρxc(r, r

′)
|r − r′| . (2.36)

This expression allows to formulate several constraints to Exc and ρxc, which an exact
expression fulfils and which have to be considered in a construction of approximated forms.
One of the constraints is the summation rule of the exchange-correlation hole density that
can be expressed as

dr
′ρxc(r, r

′) = −1. (2.37)

This constraint arises from the electron-electron repulsion, which reduces the probability
of finding an electron in the vicinity of another one. Thus, the exchange-correlation hole
is a region of space near an electron where other electrons can be hardly found. In the
following paragraphs the most successful ways providing widely used approximations for
the exchange-energy functional will be given.

Local [Spin] Density Approximation (L[S]DA)

The most simple, but still very successful approximation of the exchange-correlation
functional originates in the Homogeneous Electron Gas (HEG) model, for which an exact
analytic expression of the exchange term is known. In this approximation, the exchange-
correlation interaction is expressed in terms of a local exchange-correlation energy density
that is integrated over the whole space. The L[S]DA approximation leads to an exchange-
correlation term that is only a function of the electron density, by evaluating the local
exchange-correlation energy density from the expressions for the HEG at the local density
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at each point in space. For open-shell systems, the spin-up and spin-down densities are
treated separately as given by the expression of the exchange-correlation energy as

ELSDA
xc = drǫxc[ρ↑(r), ρ↓(r)]ρ(r) (2.38)

The expression for the exchange-correlation energy is split into an exchange and a correla-
tion part. This allows to use an analytic expression for the exchange as obtained from the
HEG[51]:

ELSDA
x = −3

2
3

4π

1

3

dr ρ
4

3

↑ (r) + ρ
4

3

↓ (r) (2.39)

This expression shows that the exchange interaction is, as expected from the Hartree-Fock
theory, counting only interactions between parallel spin pairs, as there is no coupling
between the electronic spin-up and spin-down densities. The correlation term that includes
the remaining electron-electron interactions is not known analytically and thus approxima-
tions based on accurate quantum Monte Carlo simulations[52] of the HEG at several values
of the electronic density have been proposed. The most common parametrizations derived
from these data are known as VWN[53], PZ81[54] and PW92[55] LSDA functionals.

L[S]DA was the first successful application of DFT and the Kohn-Sham scheme for the
characterization of electronic and structural properties of many different solid systems.
The accuracy of the L[S]DA functionals depends on the system in consideration. Since
they originate in the expressions of the exchange-correlation energies for the HEG, one
can generally say that the more the electron density approaches a uniform distribution
over all space, the more accurate LDA is. Surprisingly, LDA also works well for many
inhomogeneous systems. This is due on the one hand to the accurate quantum Monte
Carlo results ensuring that the sum rules for the exchange-correlation hole are satisfied to a
large degree, and on the other to a well known cancellation of errors between the exchange
and correlation energy contributions[47]. But LDA also suffers from shortcomings such
as an overestimation of binding energies and an underestimation of bond lengths and
electronic band gaps[56]. Thus, many inhomogeneous systems require corrections to the
local approximations for exchange and correlation energy. A systematic improvement
including such corrections consists considers gradients of the electron density in the
expression of the exchange-correlation functional.

Generalized Gradient Approximation (GGA)

To overcome the shortcomings of the LDA, the expression for the exchange-correlation
energy is augmented by gradients of the electron density leading to the Generalized
Gradient Approximation (GGA) in the following way:

EGGA
xc = drǫxc[ρ↑(r), ρ↓(r), ∇ρ↑(r), ∇ρ↓(r)]ρ(r) (2.40)

Since the LDA method has been established, many generalized gradient functionals
satisfying the normalization condition (sum rule) for the exchange-correlation hole have
been developed. Some of the best-known examples of GGA functionals were developed
by Perdew and Wang – PW86 [57, 58] and PW91 [59]; Lee, Yand and Paar – LYP [43];
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Perdew, Burke, Ernzerhof – PBE[60] and its revised versions[61, 62], including PBEsol
[63] for an improved description of bulk systems.

The inclusion of electronic gradients in the exchange-correlation functional generally
leads to an improved description of properties that are also reasonably well captured by
LDA. A considerable improvement has been found for atomization energies [56, 64–66],
binding energies and structural properties such as bond lengths and angles [51]. The
success of the GGA functionals lies also in a better description of exchange and correlation
energies. Even though the GGA total exchange-correlation energy is not generally superior
to the LDA due to cancellation of errors, GGA functionals offer a more realistic behaviour
of the individual parts. Due to its overall improvements the GGA functionals have become
a very popular and widely used choice, but do not always yield better results than LDA
due to a non-systematic error cancellation in exchange and correlation energy which is
sometimes more effective in LDA.

Generally, the GGA functionals still suffer from a poor description of ionization energies
which is related to an insufficient compensation of the self-interaction contained in the
Hartree energy. As a consequence, electronic properties of unoccupied states, including the
size of the HOMO-LUMO gap might not be sufficiently well described and more advanced
methods are necessary for these purposes.

Meta-generalized gradient approximation

A reasonable extension of the gradient corrections is a consideration of second-order deriva-
tives of the electronic density. Such functionals are classified as meta-GGA functionals. In
this work the recently developed Strongly Constrained and Appropriately Normed (SCAN)
functional [67] developed by Sun, Ruszinsky and Perdew will be considered which is the
first functional that respects all 17 known constraints for proper meta-GGA functionals.
This functional introduces the kinetic energy density τ as an additional parameter

τ{↑,↓} =
1
2

occ.

i

|∇ψi,{↑,↓}(r)|2, (2.41)

in the expression of the exchange-correlation energy (eq. 2.40). The arrows (↑, ↓) tag the
spin-up and spin-down kinetic energy densities, calculated from the one-electron Kohn-
Sham orbitals ψi(r). Considering the performance of the SCAN functional, it generally
further improves properties that are not treated sufficiently well in GGA, such as electronic
band gaps, lattice constants and bulk moduli[68]. The SCAN functional also improves
the energetics in a certain sense: unlike LDA and GGA, it does not overbind the O2

molecule and describes the O2 bond dissociation energy[69] well. On the other hand, a
careful assessment is necessary as, for example, the SCAN functional tends to overestimate
formation enthalpies of binary TMOs[69] and excessively favours localized spin-polarized
states, which leads to an incorrect prediction of the symmetry-broken ground state of 2D
graphene [70] or a wrong description of the stability of Fe phases[71].
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Hybrid functionals

As already mentioned before, the Hartree-Fock method delivers an exact exchange contri-
bution, but correlation effects are completely neglected. The idea behind the construction
of the so-called hybrid functionals is to calculate the exchange contribution with the help
of the Hartree-Fock method. Note, that it is also possible to incorporate the Hartree-Fock
exchange into the Kohn-Sham picture by using auxiliary one-electron wave functions via
the so called optimized potential method [72, 73] and once the energy evaluated, its value
is combined with a DFT functional. Since in a hybrid functional the DFT exchange is
replaced by the Hartree-Fock exchange, the basic formula proposed by Becke [74] for the
total energy reads:

Ehyb.
xc = EDFT

xc + a0(EHF
x − EDFT

x ), (2.42)

where the parameter a0 was adjusted to fit atomization energies. Another way for
determining this parameter was proposed by Perdew, Burke and Ernzerhof[75] who
suggested to rewrite the expression for the total energy to depend on a coupling constant
in an adiabatic connection fashion (eq. 2.35):

Ehyb.
xc,λ (n) = EDFT

xc,λ + (EHF
x − EDFT

x )(1 − λ)n−1, (2.43)

where n is a parameter to be determined. The form of this expression becomes clear when
plugged into the adiabatic connection formula

Ehyb.
xc =

1

0

dλEhyb.
xc,λ (n) = EDFT

xc +
1
n

(EHF
x − EDFT

x ), (2.44)

which reproduces the previous expression (eq. 2.42) proposed by Becke. Now the n
parameter can be determined with the help of perturbation theory in such a way that
Ehyb.

xc,λ matches EDFT
xc,λ in value, slope and the second derivative at λ = 1[75], which happens

for n = 4 and a0 = 0.25. This parameter is used for the PBE0 functional, which mixes
the Hartree-Fock contribution with the PBE GGA functional. The main drawback of the
hybrid functionals is the computational cost due to evaluation of two-electron integrals.
This was improved by Heyd, Scuseria and Ernzerhof [76] who split the Coulomb interaction
into long-range (LR) and short-range (SR) components

1
r

=
1 − erf(ωr)

r
SR

+
erf(ωr)

r
LR

(2.45)

and showed that the long-range contributions for the exchange energy are rather small
and tend to cancel out with the corresponding exchange contribution from the PBE
functional. In equation 2.45, erf(x) is the gaussian error function and ω represents a
tuneable screening parameter. The resulting HSE03 functional reads

EHSE
xc = 0.25EHF,SR

x (ω) + 0.75EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c . (2.46)
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The original value of ω was subsequently revised by Krukau et al.[77], leading to the
HSE06 functional with ω = 0.11a−1

0 that has also been used in this work.
The big success of the hybrid functionals lies in a better description of the band gap

values for semiconducting materials as well as other ground state properties such as lattice
constants[78]. It also offers a reasonable treatment of small molecules.

Van der Waals functionals

The standard Density Functional Theory fails to correctly describe long-range, non-local
interactions such as van der Waals (vdW) forces. This is due to the local or semi-
local character of the exchange-correlation functionals which tend to underestimate the
strength of weakly bound systems. However, some layered materials, where van der Waals
interactions play an important role – such as graphene, hexagonal boro-nitride or transition
metal dichalcogenides – are of profound scientific interest due to their potential technical
applications in novel technologies[79–82]. Furthermore, van der Waals contributions were
also found to be important in adsorption studies of both organic and inorganic molecules
for catalysis[83, 84].

Van der Waals corrections may be incorporated in DFT as a non-local term in several
ways. Grimme et al.[85] introduced so called DFT–D3 dispersion corrections added to the
Kohn-Sham energy. In this method the correction terms for the energies and forces are
both obtained from system-dependent informations, such as cartesian coordinates and
atomic numbers, and from ab-initio pre-calculated atomic dispersion coefficients and cutoff
radii. The great advantage of this method is its applicability not only within the DFT
framework, but also in semi-empirical and force-field methods.

Another approach proposed by Dion et al.[86] considered the van der Waals corrections
as an additional non-local term to the correlation energy Enl

c which enters the Kohn-Sham
self-consistent cycle:

Exc = EDFT
xc + Enl

c . (2.47)

Vydrov and Van Voorhis[87] came up with an expression for the additional term that
was subsequently revised by Sabatini et al. for an efficient evaluation in a plane wave
framework[88]. The expression can be written as

Enl
c = drρ

2
dr

′ρ′Φ r, r
′, ρ, ρ′, |∇ρ|, |∇ρ′| + β . (2.48)

In this expression ρ(r) is the electron density, Φ(r, r
′) denotes the kernel which describes

the density-density interactions and β is a parameter that ensures a zero value for the
resulting Enl

c term for the uniform electron gas. The van der Waals kernel contains
two parameters that are defined empirically. The first one, denoted as C, is related to
the correct long-range interactions between molecules to resemble a −C6/R6 behavior,
resulting in a value of C = 0.0093. The second one, tagged as b is related to the damping
of the Enl

c term for small |r − r
′| values. This parameter was determined as b = 15.7 in the

work of Peng et al.[89] for the meta-GGA SCAN functional. As a side note, the damping
factor is noticeably larger than for the original rVV10 functional that started from PW86
exchange and (GGA) PBE functionals, where b = 6.3. This indicates that the SCAN
functional, which takes the kinetic energy density as an additional input, can also partially
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capture intermediate-range van der Waals interactions. In this thesis the SCAN functional
with van der Waals corrections proposed by Sabatini et al. is marked as SCAN+rVV.

2.3.3 DFT+U

In real materials, DFT often faces the challenging problem to properly describe at the
same time highly delocalized electrons whose electron density is similar to uniform electron
gas, and strongly localized electrons, such as d- or f - states, that rather keep their atomic-
like character and might therefore strongly influence each other due to electron-electron
repulsion. Hence, standard DFT functionals may fail to describe systems where valence
electrons are localized in these shells. This is primarily caused by two effects. First,
according to the aufbau principle, d- and f - electrons are not screened by s- or p- orbitals
from higher shells and therefore are pulled towards the core by the attractive Coulomb
interaction. Second, the effect of localization effect is strong for 3d and 4f orbitals because
the radial parts of these wave functions are nodeless. Thus, a major part of the electron
density is localized in the vicinity of nuclei. As a result, standard DFT theory often
predicts[90] a metallic character for such materials that are experimentally found to be
insulators, as is the for compounds such as Transition Metal Oxides with partially filled
d-shells.

The different behaviour of localized and delocalized states suggests to treat them
differently. The DFT+U approach is one of the simplest models that tries to capture the
physics of the localized states by considering orbital-dependent Coulomb interactions. The
starting point for the description of such interactions is the Hubbard model[91]:

H = t
<i,j>,σ

(c†
i,σcj,σ + h.c.) + U

i

ni,↓ni,↑. (2.49)

t denotes a term that describes the hopping amplitude of particles between neighbouring
sites < i, j > and also represents the single-particle contribution to the total energy, c†

i,σ

and cj,σ are creation and annihilation operators which create (annihilate) a particle with a
spin σ on site i (j). The ni,σ stands for a number operator which counts the number of
particles with spin σ on site i. As outlined above, the Hubbard model is composed of two
terms, where first one describes the hopping between neighbouring sites and the second one
denotes a Coulomb interaction with strength U between electrons that occupy the same
site. This follows the assumption that electrons are localized and the repulsive interaction
between electrons occupying different sites is negligible. In this picture, two limiting cases
can occur: first, if t >> U , the electrons can freely move between the sites and usually
this case is well captured within the standard DFT theory and second, if U >> t, the
electrons do not have enough energy to overcome the repulsive on-site interaction and the
system becomes insulating even when the d- shell is half-filled.

Now, DFT+U treats the localized electrons within the Hubbard model while the
remaining electrons are treated by the chosen DFT functional. Hence, the total energy in
the DFT+U method can be written as

EDFT+U[ρ(r), {ni,σ}] = EDFT[ρ(r)] + EU[{ni,σ}] − EDC[{ni,σ}], (2.50)
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where {ni,σ} represents occupations of local sites expressed in a localized basis, EU is the
energy due to the Hubbard Hamiltonian and EDC marks a correction term to avoid a
double counting of the energy that is already taken into account by the DFT functional.
This double-counting term, however, is not uniquely defined and several expressions have
been developed.

In this work Dudarev’s implementation[92] will be used, that is invariant with respect
to the rotation of the atomic orbital basis set. The final expression for the DFT+U energy
in Dudarev’s approach reads:

EDFT+U = EDFT +
U − J

2 σ m

n̂σ
m,m −

m m′

n̂σ
m,m′n̂σ

m′,m , (2.51)

where an on-site occupancy matrix n̂σ
m,m′ has been introduced. The J parameter stands

for the exchange interaction and proceeds from the double-counting correction but only
the difference U − J is considered in practice. The second term in equation 2.51 can be
considered as an energy penalty to the DFT energy since the term U − J is positive in
practice. This penalty is lowest when n̂σ = n̂σn̂σ, which is the case for either fully occupied
or completely unoccupied energy levels. Hence, unlike standard DFT functionals and in
agreement with the Hubbard model, DFT+U tends to localize electrons on specific sites
and thus facilitates the formation of an electronic gap between occupied and unoccupied
states.

2.4 Ab-initio Thermodynamics

Density Functional Theory as a ground-state theory is a zero-temperature concept while
many real applications such as heterogeneous catalysis and related physical processes like
adsorption, diffusion or dissociation take place at finite temperatures and pressures both
of which need to be considered to describe the experimental evidence. Therefore, finite
temperature and pressure effects must be included in a comparison of DFT results with
real experiments. In this section, the work of Reuter and Scheffler [93, 94] will be followed
who employed an ab-initio, atomistic thermodynamic model to construct a phase diagram
of surface structures of RuO2 as function of temperature and pressure. However, this
procedure is rather universal and their approach can be used not only for different surface
systems, but also for a propere description of the formation of defects such as oxygen
vacancies.

The relevant property to be evaluated in a theoretical description of physical processes
performed at a finite pressure is the Gibbs free energy G(T, p, {N}) of the respective
reaction. Considering one topic of this thesis, an evaluation of the stability of vanadium
dioxide surface reconstructions, the most stable surface shows the lowest surface free energy
γ at a given temperature and pressure. The free energy γ is defined as:

γ =
1
S

G(T, p, NV , NO) − NV · µV (T, p) − NO · µO(T, p) (2.52)
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Usually, bulk vanadium dioxide acts as a reservoir instead of metallic vanadium which
creates a constraint between the chemical potentials of V and O:

µV (T, p) + 2µO(T, p) = gV O2
(T, p), (2.53)

where gV O2
(T, p) is the Gibbs free energy per VO2 unit. The oxygen chemical potential is

usually constrained via molecular oxygen as used in experiments. Thus, the formula for
the evaluation of the surface free energy reads

γ =
1
S

G(T, p, NV , NO) − NV · gV O2
(T, p) + (2NV − NO)

1
2

µO2
(T, p) . (2.54)

The values of the oxygen chemical potential are limited by reduction and oxidation
processes of the bulk. This sets the boundary limits to the oxygen chemical potential
which is relevant for comparison with experiments.

Since DFT calculations are performed for a certain volume V of the unit cell, the
calculated total energies correspond to the Helmholtz free energy F (T, p, NV , NO) at zero
temperature completely neglecting the vibrational energy. To link the desired Gibbs free
energy to the value obtained from the DFT calculations one writes

G(T, p, NV , NO) = EDFT + F vib(T, p, NV , NO)

F (T,p,NV ,NO)

+pV (T, p, NV , NO), (2.55)

where F vib(T, p, NV , NO) includes the vibrational and entropy contributions to the Helmholtz
free energy. The influence of this term on the resulting Gibbs free energy depends on the
temperature and hence on the experimental conditions. At room temperature the size
of its contribution is comparable to the errors introduced by DFT itself. Even though
an approximate value of the vibrational contribution can be extracted with the help
of a frequency analysis, this contribution is supposed to be rather small and will be
therefore neglected in this work. The last term in equation 2.55 is significant only at high
pressures[94] and is omitted as well. Using these approximations, the resulting expression
for the surface free energy yields

γ =
1
S

EDFT
Slab − NV · EDFT

Bulk, VO2
+ (2NV − NO)

1
2

µO2
(T, p) , (2.56)

where NV and NO denote the number of vanadium and oxygen atoms that comprise the
considered system. The temperature dependence of the oxygen chemical potential can be
extracted from thermochemical tables while the dependence on pressure is derived from
the ideal gas equation of state.

2.5 Wannier functions

The one-electron wave functions that enter the Kohn-Shan self-consistent cycle (Figure 2.1)
are in practice expressed in a certain basis set that is chosen according to the considered
atomistic system. For periodic systems Bloch’s theorem is usually applied[95], which states
that the solution of the Schrödinger equation in a periodic system takes the form of a
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function that is periodic over the crystal lattice, modulated by a plane wave. This can be
mathematically written as

ψn,k(r) = eik·r · un,k(r), (2.57)

where the function u(r) is unchanged when the position vector r is translated by a lattice
vector R:

un,k(r) = un,k(r + R). (2.58)

However, such basis is not convenient for an exploration of physical processes such as
chemical bonding, on-site interactions and polarization due to its delocalized character.
As pointed out by Wannier[96], there is an alternative representation of the one-electron
functions that is orthogonal, periodic over the unit cell and spatially localized – Wannier
functions. A Wannier function wn,R(r) that is localized in space and centered on lattice
site R can be obtained from the Bloch states in the following way[97]:

wn,R =
V

2π3

BZ

dk

m

U
(k)
mnψm,k(r) e−ik·R. (2.59)

This equation has the form of an inverse Fourier transform which keeps both the lattice
periodicity of the Wannier functions and their mutual orthogonality. In contrast to the
delocalized Bloch wave functions, Wannier functions are more localized spatially, depending
on the chosen unitary matrix U

(k)
mn that mixes the Bloch states at each k. There is certain

freedom in choosing this matrix and therefore one usually seeks for a transformation that
yields maximally-localized Wannier functions.

In this thesis the method of Marzari and Vanderbilt[98] will be used for obtaining
maximally-localized Wannier functions by minimizing the gauge-dependent spread with
respect to the set of U

(k)
mn, as implemented in the WANNIER90 code[97].
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Chapter 3

Vanadium dioxide (VO2)

3.1 Introduction

Vanadium dioxide is considered to be a strongly correlated material. It undergoes a
metal-to-insulator transition (MIT) at 65 °C from the high-temperature metallic rutile
(R) phase (space group P42/mnm, Fig. 3.1a) to the low-temperature semiconducting
monoclinic (M) phase (space group P21/c, Fig. 3.1b), which is accompanied by the
formation of paired vanadium chains. The drastic change in resistivity goes with changes
in optical, thermal and magnetic properties. Furthermore, the transition temperature can
be modulated by doping either to lower temperatures when using e.g. W6+, Nb5+, Mo6+,
Tb3+, Al3+ [99–104], or to elevated temperatures when doped by Cr3+ or Ge4+[105, 106].
The transition process is categorized as ultrafast, taking only 26 − 500 fs. [107–109]. These
changes that are related to the MIT can be potentially used in many applications such as
optoelectronic switches[110], gas sensors[111], Mott-field effect transistors[112], memristive
devices[113] and smart window coatings[114, 115].

Owing to the numerous potential applications of VO2, the bulk properties have been
studied applying a vast number of theoretical approaches[116]. It has been shown that
standard methods within the DFT framework fail to completely recover the electronic,
structural and magnetic properties of the rutile and monoclinic VO2 phase. For example,
both the local density approximation (LDA) and the generalized gradient approximation
(GGA) fail to open an 0.6 eV band gap in the monoclinic (M1) phase[117, 118]. This
shortcoming might be eliminated either by using the DFT+U variant [119], or meta-GGA
and hybrid functionals, as analyzed by Stahl and Bredow [120, 121]. According to their
findings, DFT+U leads to strong structural distortions of the monoclinic phase and a
wrong energetic ordering of the VO2 phases. Furthermore, conventional hybrid functionals
such as HSE06 or PBE0 lead to a splitting of the conduction band in the metallic rutile
phase and thus the Fock mixing parameter needs to be adjusted to correctly describe the
electronic structure of the rutile and monoclinic phases[121, 122]. Stahl and Bredow also
concluded[120] that the meta-GGA SCAN functional offers a good compromise between
accuracy and computational cost.

The driving mechanism behind the MIT was recently investigated by Brito et al.[123]
by performing combined DFT and embedded dynamical mean-field theory (DMFT)
calculations. Such a combination constitutes a powerful approach to evaluate the many-
body electronic structure of strongly correlated materials[124] and in particular to describe
the MIT between a metal and a Mott insulator, as is the case for the present system,
where the electronic transition can be described as a Mott transition in the presence of
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3.19Å2.86Å

Fig. 3.1: Bulk structures of the (a) Rutile (R) and (b) Monoclinic (M) VO2 phases. Gray
spheres denote the positions of the vanadium atoms in the rutile phase.

strong intersite exchange. This is in agreement with the finding of Zhu et al.[116] who
used the modified Becke-Johnson exchange together with LDA correlation potentials for
both rutile and monoclinic VO2 phases, to show that the MIT can be characterized as a
correlation driven transition.

In contrast to the vanadium dioxide bulk systems, VO2 surfaces and VO2 thin films
have been studied to a much lesser degree. The surface free energy of the bare and oxygen-
covered low-index facets was investigated by Mellan et al.[125] employing the non-magnetic
PBE functional. PBE+U calculations performed by Wahila et al.[30] indicate that the
surface free energy of corresponding surfaces is lower for the rutile than for the monoclinic
phase. Furthermore, they find it necessary to include spin-polarization in order to avoid
negative values for the surface free energies of oxygen-rich reconstructions. In a very recent
study[126], the rutile and monoclinic VO2 surfaces were studied with the hybrid sc-PBE0
functional with an adjusted Fock mixing parameter. Despite its good performance on
both bulk phases, the hybrid sc-PBE0 functional surprisingly fails to describe the surface
energies of rutile VO2 which do not converge upon increasing the thickness of the slab
and even yield negative values for thicker slabs. On the experimental side, recent studies
show the presence of a (2 × 2) reconstruction on the VO2 (110) surface, accompanied by a
change in the surface oxygen content of single crystals[32] and thin films [30, 31].

The aforementioned DFT studies using the PBE(+U) approach on the rutile VO2 (110)
surfaces under oxygen-rich conditions [30, 125] were done only for regular oxygen adsorption
phases. However, a very recent study by Wagner et al. [32] indicates the presence of
(2 × 2) surface reconstructions with tetrahedrally coordinated V atoms. In order to shed
some more light on these findings, a detailed study of various oxygen adsorption phases
and surface reconstructions on rutile VO2 surfaces is presented, and the performance of
common DFT functionals, including GGA, GGA+U,meta-GGA and meta-GGA+U is
evaluated. In agreement with the experimental findings of Wagner et al. [32], we show that
the simple regular oxygen adsorption phases considered in the previous calculations[30,
125] are less stable than surface terminations with tetrahedral V coordination polyhedra
that are structurally and electronically related to a V2O5(001) monolayer. This findings

27



impose another important constraint to the DFT functional used for the description of
off-stoichiometric VO2 surface terminations, namely a correct description of the stability
of the insulating V2O5 phase with respect to VO2.This chapter starts with an investigation
of the bulk properties of both rutile and monoclinic phases where experimental values
pertaining to structural and electronic properties are compared to those obtained by
applying different DFT functionals. These results are used to calculate the stability of
low-index facets of rutile VO2. In the last section the building process of atomistic models
for the experimentally observed VO2(110) (2 × 2) surface reconstructions is presented and
its results are compared to experimental data. The Appendix A contains several notes
on the computational setup used in calculations to obtain the results presented in this
chapter.

3.2 Motivation: Experimental results

The recent experimental results[32] call for a detailed knowledge of the atomic-scale
structure of VO2 surfaces. Here the most important experimental findings as presented in
a combined experimental and theoretical work[32] are summarized, which motivated the
extensive computational studies of VO2 systems in this thesis.

The (2 × 2) surface reconstruction was achieved after annealing at temperatures higher
than 600 °C which resulted into larger terraces than after annealing at 560 °C. Annealing
was performed at oxygen pressures 5 × 10−11 mbar and the surface did not change when
the pressure was increased to 2 × 10−6 mbar. These values correspond to an oxygen
chemical potential between −2.1 eV and −1.7 eV where the (2 × 2) surface reconstruction
is thermodynamically stable.

The XPS measurements of the vanadium and oxygen core levels were acquired with
normal and grazing (surface sensitive) emission as the function of the annealing temperature,
ranging from 350 °C to 700 °C. The normal and grazing emission data have shown distinctly
different peak shapes which indicates that the surface contains an increased concentration
of V5+ and hence, more oxygen as compared to the bulk.

Finally, the atomically-resolved STM experiments have shown, in agreement with
measured LEED patterns, that the most prominent reconstruction is an adlayer with
(2 × 2) symmetry, which was observed in most preparations covering the larger part of
the surface. On the other hand, the rutile (1 × 1) VO2(110) surface was only observed
at step edges or in small holes of the adlayer. The thickness of the reconstructed adlayer
was measured with STM to be ∼1.6 Å. The captured STM patterns are shown in Figure
3.2 with four different contrasts that were tip-related. The superstructure consists of
rectangular double rows made of spots parallel to the [001] direction. Furthermore, the
narrow (‘n’) and wide (‘w’) spacing between these rows was revealed, see white vertical
lines in Figure 3.2. This rectangular pattern is decorated with contrast-independent
additional features. The first of them is a single protrusion sitting in the ‘wide’ row with
a similar apparent height as the spots that form the rectangular pattern. As shown in
panels 3.2a-c (white ellipses), these features often occupy every other site along the rows,
leading to the flower-like pattern. The second feature marked with white arrows is located
on the same site, but with a fuzzy appearance. Both features were stable during the STM
measurements and do not diffuse at 80 °C. The qualitatively different pattern is visible in
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Figure 3.2d which shows the structure containing the domain boundaries. The inset shows
that these domain boundaries feature a zigzag (Z) arrangement of protrusions along the
rows, instead of the expected rectangular (R) pattern. Note that the two rows framing the
wide spacing are always aligned in the [11̄0] direction. This is indicated by connected dots
in the inset in Figure 3.2d and the zigzag pattern is always visible within the double row.

The STM images also reveal that the (2 × 2) double rows are always aligned with
respect to the bright rows of the rutile VO2(110) (1 × 1) surface layer beneath, as shown
in Figure 3.3. The presence of the (2 × 2) surface reconstruction is displayed together
with a small hole exhibiting the unreconstructed (1 × 1) surface. The alignment marks
the yellow line that points along the [001] direction, showing that the dark rows of the
(2 × 2) surface superstructure are centered on bright rows of the VO2(110) (1 × 1) layer
beneath. Similarly, the surface superstructure is also aligned in the [11̄0] direction in the
following way: The dark rows of the rectangular (2 × 2) pattern are placed on top of the
dark rows of the unreconstructed (110) (1 × 1) surface. This is marked in the right panel
with the light blue lines. In addition, bright spots that form the rectangular pattern of the
(2 × 2) superstructure are also centered on the dark rows of the unreconstructed surface.
As it will be shown, the (1 × 1) surface is composed of bright rows separated by 6.43 Å
and agrees with simulated STM images of the bare (110) surface. Considering the (2 × 2)
reconstruction, the light blue and yellow lines determine the (2 × 2) surface supercell which
contains two mirror planes depicted in light green and violet color. Bright spots that form
the (2 × 2) superstructure show the double row structure with the wide (‘w’) and narrow
(‘n’) spacing, see the blue lines.
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Fig. 3.2: STM images and details of the (2 × 2) row structure. White markers in the top
part of each panel indicate the positions of the wide spacing between the double
rows. Comparison of (a) and (b) shows that contrast does not always emphasize
the wide spacing as the main depression. Additional features in the wide sites
are marked by white arrows. (a, b) Most common appearances showing double
rows. The alignment of the wide spacing with respect to the bright rows of the
VO2 surface visible inside the holes is indicated in (a). (c) Square appearance,
i.e., equal spacings in [11̄0] are observed. (d) Distinct double row structure
with domain boundaries (displacements within the double row along [100]),
resulting in lines with zigzag (Z) structure, in contrast to the usual rectangular
(R) arrangement. Image taken from [32].
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Fig. 3.3: STM contrasts and details of the (2 × 2) row structure. Left panel: dark blue
lines indicate the positions of the wide (‘w’) and narrow (‘n’) spacing between
the double rows. The alignment of the (2 × 2) reconstruction with respect to
the unreconstructed VO2(110) (1 × 1) surface visible inside the hole is indicated
by the yellow line, showing that the dark rows of the (2 × 2) reconstruction are
centered on the bright rows of the (1×1) unreconstructed surface. The resulting
pattern of the (2 × 2) reconstruction shows two mirror planes, namely (001)
and (11̄0) that are represented by violet and green lines, respectively. Right
panel shows the alignment of the (2 × 2) reconstruction with respect to the
unreconstructed (110) surface below in [11̄0] direction (light blue lines), showing
that also in this case the dark rows in both area are centered on each other.
Image adjusted from [32].
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3.3 Bulk properties of rutile (R) and monoclinic (M) VO2

phases

Before starting an investigation of the bulk properties of both metallic (R) and insulating
(M) VO2 phases, it is illustrative to recall several experimental findings. The structure of
the high-temperature rutile phase is depicted in Figure 3.1a. The rutile phase exhibits
a tetragonal unit cell with lattice vectors a = 4.55 Å and c = 2.85 Å [127]. Vanadium
atoms are surrounded by six oxygen atoms in the form of edge-sharing octahedra with
oxygen-vanadium distances equal to 1.9 Å. The z axes of the octahedra point either along
the [110] or [11̄0] direction – always perpendicular to the direction of the [001] lattice
vector, making octahedra either straightened (colored in blue) or laid (colored in violet),
see Figure 3.1a. These octahedra are equally separated by the length of the [001] lattice
vector, namely 2.85 Å.

The low-temperature monoclinic phase undergoes a transition that is described by the
transformation matrix[128] shown in Eq. 3.1, where M and R indices denote the M and R
phase, respectively. Therefore, the rutile R[001] axis is parallel to the monoclinic M[100]
direction after the transformation. The same relation also holds for any crystallographic
plane characterized by indices (hkl).


a

b
c




M

=


 0 0 −2

−1 0 0
0 1 1


 ·


a

b
c




R

(3.1)

Apart from the transformation of the unit cell vectors, the most prominent feature of
the monoclinic phase is the occurence of paired vanadium atoms along the rutile [001]
(monoclinic M[100]) direction, which changes the equal V-V distances from 2.85 Å to 2.6 Å
for the shorter distance and to 3.2 Å for the longer distance. Consequently, the octahedra
are distorted and the central vanadium atoms move away from the center of octahedra, as
depicted in Figure 3.1b. The gray spheres represent positions of vanadium atoms in the
symmetric rutile R phase. On a side note, other phases were also indentified in experiments
applying tensile stress along the c direction. Figure 3.4 depicts the stress-temperature
phase diagram for vanadium dioxide, showing the presence of an insulating high-pressure
monoclinic (M2) phase and intermediate trigonal (T) phase. Furthermore, Arcangeletti
et al. detected [129] a metallization of the monoclinic M phase under a large pressure,
leading to the metallic monoclinic (mM) phase.

Changes in the electronic structures induced by the metal-to-insulator transition are
described in detail in the work of Eyert[131]. In the rutile phase, the crystal field splits
the vanadium 3d band in antibonding π∗ orbitals (dxy, dyz, dxz) marked as Vt2g at lower
energies and in antibonding σ∗ orbitals (dz2 , dx2−y2) denoted noted as Veg above, see
Figure 3.7. The structural changes present in the monoclinic (M) phase are accompanied
by a further split of the Vt2g manifold in a single a1g orbital, aligned along the rutile c-axis
(corresponding to the dxy orbital), and in two degenerate dxz, dyz orbitals. In case of the
rutile phase, Vt2g as well as eg orbitals overlap with neighboring d-orbitals which causes a
metallic character. However, the V-V pairing in the monoclinic phase yields a split of the
a1g states into bonding and antibonding states. Furthermore, the hybridization with O2p
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Fig. 3.4: Stress-temperature phase diagram of the vanadium dioxide. Tc denotes the
transition temperature 65.0 °C at the zero tensile stress along the c direction.
Image reprinted from [130].

states is stronger due to distortion of octahedra and the eπ
g states are pushed to higher

energies. Both effects contribute to the opening of the ∼0.6 eV band gap as it is illustrated
in Figure 3.5.

3.3.1 Results: VO2 phases

The performance of the DFT functionals was first assessed for the structural and electronic
properties of the rutile (R) and monoclinic (M) VO2 phases, using ferromagnetic, antifer-
romagnetic and non-magnetic spin configurations. One antiferromagnetic configuration
has been considered for each phase. For the rutile phase antiferromagnetic ordering
is considered along the [111] direction so that vanadium atoms in violet octahedra in
Figure 3.1a have different spin configuration than vanadium atoms in blue octahedra. In
the monoclinic phase the antiferromagnetic ordering is considered along the monoclinic
a direction where the vanadium-vanadium pairing occurs. Table 3.1 shows the respective
performance for the rutile VO2 phase and all spin configurations. The PBE, SCAN and
SCAN+rVV DFT functionals with ferromagnetic spin treatment show a good agreement
with experiment regarding the lattice parameters and volumes of the unit cells, resulting
into maximal errors of about 1 % and 2 % respectively. However, the spin-polarized PBE+U
functional calculates a strong distortion of the unit cell, squeezing and expanding the a and
c lattice parameters respectively, which leads to an overestimation of the c/a ratio by
6.3 %. Furthermore, (FM) PBE+U calculations show an 0.42 eV electronic gap after the
structural optimization. The magnetization energy Emag defined as a difference between
the (FM) and (NM) or (AFM) and (NM) spin configurations shows that all functionals find
the ferromagnetic ordering among all the other considered orderings to be most favourable
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Fig. 3.5: A sketch of the structure of the V3d band in the R and M VO2 phases. Respective
band widths and their approximate positions on the energy axis are taken from
[123].

which is in agreement with a previous report [120]. The antiferromagnetic spin ordering
leads to a minor extension (compression) of the a (c) lattice parameters, which leads to a
larger deviation of the c/a ratio as compared to the ferromagnetic ordering. Considering
the energetic stability of the calculated antiferromagnetic spin ordering this configuration
is 20 meV to 213 meV per formula unit less preferred than the favoured ferromagnetic order.
Non spin-polarized calculations show a similar trend for the calculated unit cell parameters
as the (AFM) calculations. The a lattice vector is extended and c is compressed, resulting
in a worse c/a ratio when compared to the (FM) spin ordering. This effect is even more
pronounced in respect to the (AFM) calculations. Furthermore, (NM) calculations yield
the lowest volumes of the unit cell among the studied spin configurations. All functionals
except the PBE show that the (NM) spin configuration in the rutile VO2 phase is the least
stable. The PBE functional predicts the same stability for the (AFM) and (NM) spin
ordering. All functionals show that the non-magnetic configuration is 79 − 321 meV/f.u.
less stable with respect to the (FM) spin ordering. According to the experimental observa-
tions[132], the rutile VO2 phase is paramagnetic which is difficult to capture with DFT
calculations for two reasons. First, the paramagnetism in VO2 is induced by temperature,
but DFT calculations describe the ground state at 0 K. Second, a calculation of disordered
magnetic moments in paramagnetic materials requires the consideration of large supercells
and a subsequent searching for a correct spin ordering in a large configuration space of
all magnetic moments. This work assumes that surface properties and experimentally
observed reconstructions are not strongly influenced by the paramagnetic spin (dis)order
of the rutile phase and therefore a ferromagnetic spin ordering which appears to be the
most stable in the DFT calculations is used in the following.

Structural parameters of the monoclinic VO2 phase are shown in Table 3.2. The
ferromagnetic calculations give generally the best results when compared to experimental
data. For all other spin configurations the [100] lattice vector is underestimated by
2 % to 3 % with respect to the experiment while the (FM) unit cells reduce the error to
0 % to 2 %. Note that the [100] lattice vector in the monoclinic phase is parallel to the rutile
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a c c/a V Eg Emag

(FM) PBE 4.59 2.84 0.62 29.9 0
(FM) PBE+U 4.50 3.02 0.67 30.6 0.42
(FM) SCAN 4.54 2.83 0.62 29.1 0
(FM) SCAN+rVV 4.53 2.83 0.62 29.0 0

(AFM) PBE 4.62 2.78 0.60 29.7 0 79
(AFM) PBE+U 4.50 3.02 0.67 30.6 0.69 20
(AFM) SCAN 4.56 2.77 0.61 28.8 0 213
(AFM) SCAN+rVV 4.54 2.81 0.62 28.9 0 160

(NM) PBE 4.62 2.78 0.60 29.6 0 79
(NM) PBE+U 4.63 2.79 0.60 30.0 0 321
(NM) SCAN 4.56 2.77 0.61 28.8 0 215
(NM) SCAN+rVV 4.55 2.76 0.61 28.6 0 212

(PM) Exp.[133] 4.55 2.86 0.63 29.6 0
Tab. 3.1: Calculated parameters of rutile VO2 phase with various functionals and spin

orderings: the lengths of the c, a lattice vectors [Å], volume of the unit cell V
[Å3/f.u.], electronic band gap Eg [eV] and magnetization energy Emag [meV/f.u.].

[001] axis along which the vanadium pairing occurs. The resulting size of the monoclinic
[001] lattice vector doesn’t depend on the spin configuration and all functionals and spin
configurations are in a good agreement with the experimental value, yielding a maximal
relative error of about 1 %. On the other hand, the SCAN and the SCAN+rVV functionals
improve the value of the [010] lattice vector in comparison with the PBE and PBE+U
functionals, independent of the spin configuration. The most prominent structural change
in the monoclinic VO2 phase is the occurence of vanadium pairs along the monoclinic
[100] direction as depicted in Figure 3.5b. However, there is no computational setup that
exactly reproduces the experimental values. All ferromagnetic calculations underestimate
the size of the buckling – the shorter dV −V distance is 5 % to 6 % larger, but the longer
pairing distance dV −V ∗ is calculated to be 6 % to 8 % smaller. The antiferromagnetic
spin configuration except for the PBE+U functional slightly improves the shorter pairing
distance dV −V , but the dV −V ∗ is still strongly underestimated as for the (FM) calculations.
Considering the (AFM) PBE+U functional, the pairing almost disappears and also the
monoclinic lattice vectors are almost identical to the rutile unit cell. Both findings indicate
that the monoclinic phase was transformed to the rutile phase during the optimization. The
same effect was also observed for the ferromagnetic spin configuration where the calculation
started from the insulating wave function, in which case the monoclinic phase was also
transformed to the rutile phase. The underestimation of the longer pairing distances (dV-V*)
is improved by non spin-polarized calculations, which is either in a perfect agreement with
the experiment (PBE+U, SCAN, SCAN+rVV), or in better agreement than the (FM)
monoclinic VO2 (PBE). However, using the PBE+U, SCAN and SCAN+rVV functionals
lead to the underestimation of the shorter pairing distance. Hence, all functionals can
describe well only one of the pairing distances. The PBE functional gives an identical
value for the shorter distance, but the longer distance is still 5 % underestimated. On the
other side, the remaining SCAN, PBE+U and SCAN+rVV functionals underestimate the
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shorter pairing distance by 4 % to 5 % while the latter one is in an excellent agreement
with experiment, yielding a relative error up to ∼1 %. Considering the electronic band
gap, the PBE, SCAN and SCAN+rVV functionals in spin-polarized calculations always
give a metallic character for the monoclinic phase. Although the PBE+U functional
opens the electronic band gap, it simultaneously transforms the monoclinic phase to
the rutile phase. On the other hand, the non spin-polarized calculations except the
PBE functional open the 0.3 eV to 0.4 eV electronic band gap which is in a reasonable
agreement with the experimental value of 0.6 eV[134]. Finally, Table 3.2 shows the energy
differences between the rutile and the monoclinic phase with the same spin ordering.
Note that the experimental value 44 meV per formula unit is obtained from calorimetric
measurements[135]. The ferromagnetic spin configuration leads to the wrong order of
stability, showing that the rutile phase is more stable. Even for the monoclinic phase the
most stable spin configuration obtained in this work is the ferromagnetic ordering, except
the aforementioned PBE+U functional which exhibits the bulk instability. The correct
ordering of phase stabilities can be obtained with non-spin polarized PBE+U, SCAN and
SCAN+rVV functionals which also provide a good agreement with the experimental value,
resulting into a 48 meV to 67 meV/f.u. extra stability for the monoclinic phase. Only the
non-magnetic PBE functional shows a different trend: the rutile phase is preferred by
14 meV.

Since the bulk properties of the VO2 phases are described rather inconsistently by the
considered DFT functionals, its electronic structure was looked into in more detail with the
help of Wannier projections on atomic-like vanadium d orbitals. Figures 3.7 and 3.8 show
the total density of states (black dashed line) and projections to vanadium atomic orbitals
calculated with the above set of functionals and spin configurations. Due to the crystal
field the vanadium d bands which are found in the range of −1.6 − 6 eV are split into
lower energetic t2g states (dxy, dxz, dyz) and higher eg states (dx2−y2 , dz2) of the V3d band.
Around −2 eV the upper edge of the O2p band is shown. For each functional and each
phase the projections are calculated for ferromagnetic and nonmagnetic spin ordering using
both relaxed and experimental structures. Regarding the results for the rutile phase that
are depicted in Figure 3.7, the spin-polarized PBE, SCAN and SCAN+rVV functionals
yield qualitatively the same projections, independent of the choice of the experimental or
relaxed structure. This is expected since the calculated structural parameters by these
functionals and (FM) spin configurations are very close to those obtained experimentally,
see Table 3.1. Spin-polarized calculations result in a splitting of the spin-up (↑) and
spin-down (↓) channels, shifting the Vt2g↓ states above the Fermi level. As a consequence,
all electrons of the vanadium 3d band are located in the Vt2g↑ states. The spin-polarized
DFT+U functional shows a subsequent splitting of the Vt2g↓ states, pushing the dxy orbital
apart from the dxz and dxy orbitals, and creating the 0.42 eV energy gap. In this case, all
electrons from the V3d band are located in the dxy orbital which coincides with the edge
of the O2p band. These results can be directly compared with the dynamical mean-field
theory benchmark calculations[123], see Figure 3.6. A comparison with the DMFT results
clearly shows that the spin-polarized PBE+U functional describes the orbital occupancies
improperly, which causes the formation of a monoclinic-like dxy sub-band separated by
0.42 eV from the dxz and dyz orbitals. This behavior is only observed while using larger
values of U (U ≥ 2 eV) and when the electronic structure is calculated at optimized
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a b c c/aR β V dV-V dV-V* Eg ∆ER Emag

(FM) PBE 5.70 4.59 5.39 0.62 122.0 29.96 2.72 2.99 0 5
(FM) PBE+U 5.76 4.60 5.41 0.63 120.1 30.40 2.76 3.01 0 74
(FM) SCAN 5.67 4.54 5.35 0.63 122.1 29.13 2.72 2.96 0 3
(FM) SCAN+rVV 5.66 4.53 5.34 0.63 122.1 28.98 2.74 2.93 0 2

(AFM) PBE 5.65 4.60 5.39 0.61 121.7 29.80 2.69 2.97 0 -2 72
(AFM) PBE+U 6.05 4.50 5.42 0.67 123.7 30.59 3.01 3.05 0.65 1 -53
(AFM) SCAN 5.64 4.54 5.35 0.62 122.0 29.04 2.70 2.95 0 -77 133
(AFM) SCAN+rVV 5.63 4.54 5.33 0.62 121.9 28.88 2.70 2.94 0 -26 132

(NM) PBE 5.60 4.63 5.39 0.61 121.4 29.83 2.60 3.03 0 14 89
(NM) PBE+U 5.64 4.62 5.44 0.61 119.6 30.11 2.50 3.18 0.4 -67 181
(NM) SCAN 5.59 4.55 5.37 0.61 122.0 28.99 2.46 3.17 0.4 -48 165
(NM) SCAN+rVV 5.58 4.53 5.35 0.62 122.0 28.72 2.47 3.14 0.3 -53 157

(NM) Exp. 5.75a 4.53a 5.38a 0.63a 122.6a 29.36a 2.60a 3.19a 0.6b -44c

a ref. [133]
b ref. [134]
c ref. [135]

Tab. 3.2: Structural and electronic parameters of the optimized monoclinic VO2 phase,
calculated with several DFT functionals and ferromagnetic (FM) and non-
magnetic (NM) spin configurations. c/aR marks the ratio of the rutile-like
c and a lattice constants, equal to a/(2b) in case of the monoclinic phase.
Eg denotes the band gap width (in eV), V-V and V-V* mark the size of
the pairing [Å] . Considering the stability of the monoclinic phase, ∆ER

is the energy difference [meV/f.u.] between the rutile and monoclinic phase
with the same magnetic ordering and Emag denotes the magnetization energy
[meV/f.u.] defined as energy difference between the magnetic and nonmagnetic
configuration.

lattice geometries, which means geometries extended along the c direction. Therefore, the
description given by PBE, SCAN and SCAN+rVV functionals is more consistent with the
benchmark data. Considering the non-magnetic calculations, all functionals show similar
projections, also regardless whether the relaxed or the experimental structure is taken.
As shown, non-spin polarized calculations yield a ∼0.3 eV larger band gap between the
O2p and V3d band, but the occupied V3d bandwidth is reduced from ∼0.9 eV to ∼0.6 eV
when compared to the spin-polarized calculations.

The electronic structure of the V3d band in the monoclinic VO2 phase, calculated with
the same computational setup as for the rutile phase, is shown in Figure 3.8. The electronic
structure of: (i) different spin configurations, (ii) calculated and experimental unit cells,
and (iii) the monoclinic and the rutile phase, is compared. First, the Wannier projections
calculated for the experimental structures show that the a1g sub-band composed of the
dxy projections is singled out from the V3d band and pulled below the Fermi level. This
effect is generally weaker in case of the PBE functional which exhibits a certain overlap
of the a1g band with the remaining projections. Again, the (FM) PBE+U functional
shows qualitative differences with respect to the remaining (PBE, SCAN, SCAN+rVV)
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Fig. 3.6: DFT+DMFT-based total (black dashed line) and projected DOS of (a) Rutile
and (b) Monoclinic phase of VO2. The projections to a1g, eπ

g (1), eπ
g (2), and

eσ
g states are shown in blue, red, green, and brown lines, respectively. In the

notation used in this thesis, dxy corresponds to the a1g line, dxz and dyz orbitals
are marked as eπ

g (1) and eπ
g (2) respectively, and the remaining orbitals are

denoted as eσ
g . Image reprinted from [123].

functionals, namely the splitting of the dxy states into two particular sub-bands that are
both shifted below the Fermi level, which is not in agreement with DMFT benchmark
calculations. The relaxed structures also show more significant changes in the electronic
structure than in the rutile phase. This can be expected since the structural changes are
also more prominent as it was discussed before. As shown, the (NM) PBE+U, SCAN and
SCAN+rVV functionals open the electronic band gap in the relaxed monoclinic structure,
0.1 eV larger than in the experimental structure. This correlates with the resulting ∼0.1 Å
shorter vanadium pairing distance dV −V . Although the (NM) PBE functional shows the
larger pairing distance that is in better agreement with experiment, it does not open an
electronic band gap. Considering the electronic structure of the relaxed structures with
spin-polarized functionals, the separation of the dxy projection from the remaining Vt2g

states vanishes when the shorter pairing distance increases. As a result, the occupancies
of the dxz and dyz projections are non-zero which is not in agreement with benchmark
DMFT calculations. However, the dxy projections in the monoclinic phase differ from the
rutile phase in the occupation in close vicinity of the Fermi level: The rutile phase results
in partial occupations of all Vt2g states, but the monoclinic phase shows a clear splitting
of the dxy states into the occupied a1g band and unnoccupied a∗

1g band.
The structural relaxations also lead to a smaller separation of the O2p and V3d bands,

except for the (FM) PBE+U, SCAN and SCAN+rVV functionals, which show larger
changes in the electronic structure but the resulting band separations are approximately
the same.

Considering the bulk calculations, a structural instability of the rutile phase was identified
that was also reported by Kim et al[136]. The PBE functional shows a phonon softening
instability of the R phase at Γ, leading to a collinear displacement of oxygen atoms
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Fig. 3.7: Projected density of states onto Wannier orbitals localized at vanadium atoms
in the rutile (R) phase, calculated with several DFT functionals using relaxed
(two left columns) and experimental structures (two right columns). 0 marks
the Fermi energy, Vt2g states are formed by dxz, dyz and dxy orbitals, dz2 and
d?x2 − y2 form the eg states. Only the upper edge of the O2p band (at ∼−2 eV)
and the whole V3d band is shown.
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Fig. 3.8: Projected density of states onto Wannier orbitals localized at vanadium atoms
in the monoclinic (M) phase, calculated with several DFT functionals using
relaxed (two left columns) and experimental structures (two right columns). 0
marks the Fermi energy, Vt2g states are formed by dxz, dyz and dxy orbitals,
dz2 and dx2−y2 form the Veg states. Only the upper edge of the O2p band (at
∼−2 eV) and the whole V3d band is shown.
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FM NM
PBE PBE+U SCAN SCAN+rVV PBE PBE+U SCAN SCAN+rVV

∆E 12 2 10 10 10 0 11 10
Tab. 3.3: Additional stabilization (in meV/f.u.) of the modified rutile phase. The

modification is a displacement of the oxygen atoms along the rutile-c axis.
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Fig. 3.9: Comparison of the total and projected density of states of the V3d band for the
rutile (R) and displaced rutile (dR) phases, using spin-polarized (FM) and non
spin-polarized (NM) PBE calculations.

along the [001] direction. Since this bulk instability might directly influence the surface
calculations, the properties of the displaced oxygen R phase is briefly discussed. Table 3.3
shows that the displacement stabilizes the VO2 system by 10 meV to 12 meV per VO2 unit
for all bare DFT functionals and spin configurations. The DFT+U method suppresses
this additional stability for both spin-polarized and non-spin polarized calculations in
agreement with Kim’s work[136] which reported that the phonon softening instability at
Γ disappears in this case. Figure 3.9 shows the effect of the displaced oxygen atoms on
the total and projected density of states. Considering the (FM) spin configuration, total
DOS of the rutile phase consists of the lower and higher peaks located at −0.55 eV and
−0.20 eV, respectively. The displacement of the oxygen atoms leads to an exchange of
these peaks and is accompanied by a shift of the dxy and dxz projections to lower values.
Since the displacement direction is perpendicular to the dyz orbital, its projection is almost
unchanged. Non spin-polarized calculations show slightly different projections in the V3d
band. The displaced rutile phase shows one peak with a maximum at −0.1 eV while the
rutile DOS is continuously increasing.
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Fig. 3.10: Structure of the V2O5 phase. Dashed lines mark van der Waals attractive
interactions between interlayer vanadium and oxygen atoms along the c direc-
tions.

3.3.2 Supporting calculations: V2O5 phase

Since the second part of this chapter focuses on the properties of off-stoichiometric surface
terminations, a short overview of the V2O5 phase is given in the following paragraph.
The V2O5 phase has an orthorhombic structure (space group Pmmn, a=11.51 Å, b=3.56 Å,
c=4.37 Å)[137] that is formed by layers perpendicular to the [001] direction bonded with
van der Waals interactions. Note that there is a certain ambiguity in notation of lattice
vectors and in some literature b and c lattice vectors are interchanged. In this work the
V2O5 layers are parallel to the (001) plane. The second significant difference between the
V2O5 and VO2 phases is the coordination geometry of the surrounding oxygen atoms. The
rutile and monoclinic VO2 phases are composed of distorted octahedra, whereas the V2O5

phase shows distorted pyramids. The structure of the V2O5 phase is depicted in Figure
3.10.

In contrast to the vanadium dioxide, the V2O5 phase was only considered in closed-shell
calculations because no unpaired electrons are present in the V3d band. The structural
and electronic properties were analyzed with all aforementioned DFT functionals. The
results are summarized in Table 3.4. As can be seen the a and b lattice parameters of the
vanadium pentoxide phase are in a perfect agreement with experiment, showing relative
errors below 1 %. However, the c lattice vector perpendicular to the layer planes is either
too large (PBE and PBE+U by 6 %), or too small (SCAN, SCAN+rVV by 4 % and 8 %
respectively). A similar overestimation of the b lattice constant with the PBE functional
has already been reported in previous work [138, 139]. The strong underestimation of
the SCAN+rVV functional is caused by taking into account attractive van der Waals
interactions between the V2O5 layers which even more reduce the unit cell in this direction,
when compared to the bare SCAN functional. The volume of the unit cell taken per VO2.5

unit is significantly larger than for the VO2 phases. This is firstly caused by rather ’open’
structure of the vanadium pentoxide phase, as well as by an increased concentration of
oxygen. Additional oxidation and transformation to the layered structure of the vanadium
pentoxide phase leads to the large increase of the volume per formula unit, namely 60 %
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PBE PBE+U SCAN SCAN+rVV Exp.
a 11.57 11.56 11.59 11.66 11.51a

b 3.57 3.60 3.55 3.54 3.56a

c 4.65 4.66 4.20 4.04 4.37a

V 48.0 48.5 43.1 41.7 44.7a

Eg 2.0 2.2 2.0 1.9 2.2-2.4b

(NM) HV2O5

f -2.05 -2.00 -1.90 -1.80
-1.28

(FM) HV2O5

f -1.89 -1.35 -1.47 -1.38
aRef. [141]
bRef. [140, 142–144]

Tab. 3.4: Structural and electronic parameters of the vanadium pentoxide phase, calcu-
lated with several DFT functionals and non-magnetic (NM) spin configurations.
Eg is the band gap width (in eV) and HV2O5

f marks the calculated oxidation
enthalpy of the vanadium pentoxide phase from the rutile VO2. The reference
energy of the rutile VO2 phase was taken from both ferromagnetic (FM) and
non-magnetic (NM) calculations.

(PBE, PBE+U), 50 % (SCAN) and 40 % (SCAN+rVV). The electronic band gap is, unlike
the VO2 phases, very well captured with all DFT functionals which yield a similar value
than those obtained from the experiment that is about 2.3 eV[140] . The performance of
all DFT functionals is comparable, showing that the resulting electronic band gap is 0.1 eV
to 0.4 eV underestimated with respect to the experimental reference.

A relevant property for the following discussion is the oxidation enthalpy of the vanadium
pentoxide phase with respect to the vanadium dioxide HV2O5

f , described by the following
reaction: 2VO2 + 1/2O2 → V2O5. As shown in the Table 3.1, this quantity is closer to the
experimental value when using spin-polarized calculations as reference values for the rutile
VO2 total energies. The non-magnetic calculations overestimate the experimental value
by 0.72 eV to 0.87 eV due to an energy penalty that comes from the suppression of local
magnetic moments. However, spin-polarized calculations reduce this error significantly
as expectated, namely by 0.16−0.65 eV. In case of the PBE+U, SCAN and SCAN+rVV
functionals the calculated oxidation enthalpy is in a good agreement with experimental
value of 1.28 eV, showing an error in the range of 70 meV to 190 meV per V2O5 unit. The
PBE functional overestimates the oxidation enthalpy even when the ferromagnetic spin
treatment is used, which is a consequence of two facts. First, the oxidation enthalpy is
the lowest among the used functionals while performing nonmagnetic spin calculations.
Second, the magnetization energy calculated with the PBE functional is significantly lower
as compared to the PBE+U and SCAN functionals.

3.3.3 Summary

The performance of the Density Functional Theory was studied in several VOx systems:
rutile and monoclinic VO2 phases, the displaced rutile VO2 phase and V2O5 phase. The
structural, electronic and energetic properties of these systems are presented as calculated
with PBE, PBE+U, SCAN and SCAN+rVV functionals. According to the findings in
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the present work there is no computational setup that describes the considered properties
of all these VOx systems at the same time in agreement with experiment. However,
several computational setups have been found that can reasonably well treat the rutile
and monoclinic VO2 phases separately. For example, spin-polarized PBE, SCAN and
SCAN+rVV functionals yield correct values for structural parameters as well as for
electronic properties of the rutile VO2 phase. However, the pairing distances, parameters
of the unit cells, electronic band gaps and stability of the monoclinic VO2 phase was
captured well with the non-magnetic SCAN and SCAN+rVV functionals. Shown as well is
the fact that the bare functionals reveal a phonon softening instability of the rutile phase
at Γ, which is suppressed by the PBE+U functional. However, the on-site corrections lead
to strong distortions of the rutile VO2 phase and open an electronic band gap, which leads
to changes of occupation numbers of respective Vt2g orbitals. Moreover, the spin-polarized
PBE+U functional predicts the wrong energetic order of the ground-state phases and
shows an instability of the monoclinic phase which was transformed to the rutile phase
during the structural relaxation.

In the last section the performance of the DFT functionals for the V2O5 phase was
evaluated, showing that all functionals give a reasonable agreement with experimental data
concerning the structural and electronic properties. However, a large difference between
the spin-polarized and non spin-polarized calculations was identified when calculating
the oxidation enthalpy of the V2O5 phase. In this case the total energy differences
between the non-magnetic and ferromagnetic calculations change the reaction enthalpies
by 0.2−0.65 eV per VO2 unit. Generally, the spin-polarized calculations yield values closer
to the experiment.

3.4 Stoichiometric rutile VO2 surfaces

3.4.1 (1 × 1) surface orientations

To investigate the surface properties of vanadium dioxide the stoichiometric low-index
(011), (110), (001), (100) and (111) surface orientations as depicted in panels 3.11a-e
were considered first for calculations using the PBE, PBE+U, SCAN and SCAN+rVV
functionals with ferromagnetic and nonmagnetic spin configurations. As seen, the different
cutting planes yield different coordination geometries of the surface vanadium atoms. The
whole (011) surface is composed of corner-sharing square pyramids with surface lattice
vectors equal to a and

√
a2 + c2. The topmost oxygen atoms exhibit parallel zig-zag chains

along the [011̄] direction, separated by the length of the a lattice vector, namely 4.55 Å.
The (110) surface is composed of alternating chains of edge-sharing octahedra, which
include the topmost row of oxygen atoms along the [001] direction, and edge-sharing
square pyramids that are interconnected with octahedra by a single oxygen-vanadium
bond. The lengths of the surface lattice vectors are c and

√
2a, which results in a ∼25 %

smaller surface area compared to the (011) surface. The separation of rows is equal to
the latter surface vector, namely 6.43 Å. As on the (011) surface, the topmost oxygen
atoms are coordinated two-fold. Considering the (001) surface, its atomic composition
is made of chains of alternating octahedra and tetrahedra, parallel to the [11̄0] direction
and separated by 1/2

√
2a = 3.22 Å. However, the vanadium atom is not placed in the
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PBE PBE+U SCAN SCAN+rVV

FM

(110) 26 44 36 48
(011) 51 66 71 82
(100) 28 51 47 60
(001) 74 76 97 108
(111) 84 83 114 127

NM

(110) 24 18a 25 22b 40 53
(011) 51 46a 56 30b 76 85
(100) 27 26a 30 29b 50 64
(001) 59 60a 60 59b 76 88
(111) 86 78a 87 110 123

a ref. [125]
b ref. [30]

Tab. 3.5: Calculated surface free energies in meV/Å2 for the rutile VO2 low index facets.

center of tetrahedra, but close to the edge, as shown in panel 3.11c. Here the surface area,
a · a is only ∼12 % larger than for the (110) surface. A (100) termination exhibits the
smallest surface area equal to a · c which is ∼30 % smaller than for the (110) termination.
The (100) surface is composed of the parallel rows made of edge-sharing square pyramids,
separated by the a lattice vector, namely 4.55 Å as in case of the (011) surface termination.
The (111) surface exhibits the most complicated surface termination, composed of the
parallel chains of vanadium tetrahedra with displaced central atoms as in case of the (001)
termination, linked with square pyramids in edge-sharing fashion. The separation of these
rows is equal to 4.30 Å. The surface lattice vectors have the length

√
a2 + c2 and

√
2a, the

angle between them is equal to 53.2°, resulting into the overall surface area very close to
the (001) termination, 12 % higher than the area of the (110) surface unit cell.

The calculated surface energies for these surface terminations, using various DFT
functionals and spin configurations are shown in Table 3.5, referenced to already reported
values for the non-magnetic PBE and PBE+U functionals[30, 125]. In agreement with
previous reports, all present calculations show that the (110) surface termination shows
the highest stability among other low-index facets. Compared to other functionals,PBE
generally yields low surface energies. Especially for the (110) surface the resulting value
24 meV/Å2 is ∼50 % lower than for the TiO2(110) surface, which is calculated to be
46 meV/Å2[145]. This is improved with the SCAN functional or spin-polarized PBE+U
functional. Furthermore, the van der Waals corrections generally increase the surface
energies by 11 to 14 meV/Å2. On the other side, the (111) surface is the least stable,
independent of the chosen functional and spin configuration. In case of the (NM) PBE
functional, the present values differ from the Mellan’s report[125] by up to 25 % for the
(110) termination, the (011) and (111) facets agree within 10 % tolerance and calculated
surface energies for (100) and (001) surfaces are in a perfect accordance. The reason for
the mismatch in these particular cases is a different thickness of slabs used to calculate
the surface free energy. Table 3.5 shows that the spin-polarized and non-spin polarized
calculations yield similar surface energies, that differ significantly (by more than 10 %) only
in some special cases. The first exception is the (001) surface which yields ∼20 % decrease
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(a) 011 (b) 110

(d) 100(c) 001

(e) 111

Fig. 3.11: Surface structures of considered terminations.

for the surface energy when using non-magnetic calculations. The resulting values that
yields the (NM) PBE+U functional are in a perfect agreement with the values reported
by Wahila[30], except for the (011) surface where the present value is, surprisingly, larger
by 90 %. The decrease in the surface energy obtained from (NM) calculations with respect
to (FM) calculations is also visible within all surface orientations except the (111) surface,
when using the PBE+U functional. The (NM) surface energies are in this case lowered by
15 − 43 %.

To investigate the effect that lowers the surface energies for these cases when using non
spin-polarized calculations, the surface-resolved projected density of states onto atomic-like
vanadium d orbitals is drawn. Projections for some particular structures are shown in
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(d) (011), (NM) PBE+U, U=2 eV (left panel), U=3.25 eV (right panel)

Fig. 3.12: Projected density of states near the Fermi level onto atomic-like d orbitals of the
surface and bulk vanadium atoms. Left panels in (a-c) represent the unrelaxed
slabs and the right panels in (a-c) show the projections after the structural
relaxation. The respective surface terminations, used DFT functional and
spin configuration are given in sub-captions. Panel (d) shows a comparison of
Vd projections with the (NM) PBE+U functional in the relaxed (011) slab
while changing U from 2 eV to 3.25 eV. The latter value for U was used in the
reference work[30].
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Figure 3.12. Here only projections that are energetically close to the Fermi level are
shown, namely the projections in the vanadium 3d band, calculated from seven-layered
slabs. In the present notation, the surface projections are considered to originate from
the surface and subsurface layers which gives four layers out of seven in total. The
projections from the three middle-layers are marked as the bulk states. Panels 3.12a
and 3.12b display these projections in (110) slabs, calculated with the (NM) PBE and
(FM) PBE functional, respectively. The left panels show projections of the unrelaxed
slabs and the right ones display projections after the relaxation of atomic positions in the
slab. Independent of the spin configuration, the bulk projections and surface projections
show a similar trend and also the resulting surface energies from the spin-polarized and
non-spin polarized calculations differ only by 2 meV/Å2. However, the qualitative results
differ for the (001) slabs which also yield different results for surface free energies while
using (NM) and (FM) spin configurations. This is shown in panel 3.12c with projections
for the unrelaxed and relaxed slabs on the left and on the right, respectively, calculated
with the non-spin polarized PBE functional. While the unrelaxed slabs result into similar
projections with respect to the (110) surface (panel 3.12a, left side), the relaxed (001)
slabs yield an additional peak around −0.7 eV below the Fermi level that is fully composed
of surface states. Note that this additional peak is not observed in the relaxed (110) slabs
(panel 3.12a, right side). On the other hand, the Vt2g projections on the bulk and surface
vanadium atoms calculated with spin-polarized DFT functionals do not differ significantly
from each other. These results suggest that the decrease of the surface energy in the
non-magnetic calculations is caused by changes in the complex electronic structure that
are imposed by the surface vanadium states. To further support this presumption, the
surface free energy of the unrelaxed slabs was calculated which yield similar projections
onto the surface and bulk vanadium atoms. Indeed, the surface energy of unrelaxed slabs
has changed only slightly from 125 to 129 meV/Å2 between the spin-polarized and non
spin-polarized calculations.

The dependence of the surface free energy on the spin configuration for the PBE+U
functional is due to a split of the Vt2g band in the spin-polarized calculations, which
also changes the occupation numbers of respective V3d orbitals, see the (NM) and (FM)
density of states in Figure 3.7. Since the splitting of the Vt2g band appears in the bulk,
one can expect that (FM) and (NM) calculations yield different values for the surface
energy also in the unrelaxed slabs. In that case one finds out that the non spin-polarized
calculations give ∼13 % lower surface energies. This finding indicates that the origin of
the higher surface energies for all considered terminations, except the (111) surface, is
related to the electronic transition in the bulk when calculated with the spin-polarized
PBE+U functional.

The last difference shown in Table 3.5 is between the (NM) PBE+U (011) surface free
energy, when U was set to 2 eV and 3.25 eV. The latter value was used in the previous
study [30]. The comparison of projections in relaxed (011) slabs is shown in Figure 3.12d.
The most significant difference while using higher value for U, is a separation of both
bulk and surface projections from the V3d band, showing separated peaks at −0.7 eV and
−0.9 eV for bulk and surface projections, respectively. This instability is again surface
dependent and has not been observed on (110) terminations.
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(a) (FM) PBE (b) (NM) PBE (c) (NM) PBE (ref)

(d) (FM) PBE+U (e) (NM) PBE+U (f) (NM) PBE+U (ref)

(g) (FM) SCAN (h) (NM) SCAN

(i) (FM) SCAN+rVV (j) (NM) SCAN+rVV

(110)
(011)

(100)
(001)

Fig. 3.13: Wulff’s construction for the equilibrium rutile VO2 particles, calculated with
different DFT functionals and spin configurations. The reference values of the
surface free energy for the (NM) PBE and (NM) PBE+U Wulff’s constructions
shown in panels (c) and (f) are taken from [125] and [30], respectively.
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In the next step the shapes of equilibrium rutile VO2 particles are drawn using the
Wulff construction as implemented in WulffPack[146], for all functionals and nonmagnetic
and ferromagnetic spin configurations. The present results are also compared to reference
data obtained from reported works[30, 125] where the PBE and PBE+U functionals have
been used. The resulting crystal shapes are displayed in Figure 3.13. In all cases, the
(110) termination dominates in the crystal, accompanied by the (011) surface. In all
present calculations, a minor contributions of the (100) surface is also visible, which is not
the case in the reference (NM) PBE calculations [125]. The most prominent difference
is the presence of the (001) surface in Wulff constructions resulting from non-magnetic
PBE+U, SCAN and SCAN+rVV calculations, compared to the spin-polarized calculations.
A comparison of the reference Wulff shapes with the present results shows significant
deviations, due to the different values of the surface energy resulting from either a different
computational setup (PBE), or from a larger U parameter in the PBE+U calculations.

The LEED measurement for a well-defined VO2 single crystal orientation[32] shows a
rectangular pattern above the transition temperature after annealing single crystals at
600 °C. LEED images allow to extract the ratio of surface lattice constants aS/bS =∼ 2.3.
This value would either fit to the VO2(110) surface which yields the ratio aS/bS =√

2aR/cR = 2.26, or the VO2(011) (1 × 2) surface that yields a ratio of the surface
vectors 2 a2

R + c2
R/aR = 2.36. Thus, one cannot clearly state which surface termination is

observed in the experiment.
To distinguish between the (110) and (011) surfaces STM images have been computed

using the Tersoff-Hamann approximation [147] and compared to experiment data. As
shown in Figure 3.14, the calculated STM images of the VO2(110) terminated surface are
composed of straight, bright chains with a distance of 6.45 Å (for the non spin-polarized
SCAN functional) which are formed by the two-fold coordinated oxygen atoms. This
appearance is different from that of the semiconducting TiO2(110) surface, where the
bridging oxygen rows appear dark [148], but the same as that of RuO2(110), which is
also metallic [149]. Both, the appearance of rows and their separation is in agreement
with experimental STM images of a rutile VO2(110) (1 × 1) termination, as shown in
Figure 3.18. On the other side, bright features on the VO2(011) termination shown in
Figure 3.14d are formed by both vanadium and oxygen atoms, resulting in zig-zag chains.
Therefore, the experimental LEED patterns have been assigned to the rutile VO2(110)
termination.
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Fig. 3.14: Side views and simulated STM images (empty states) with the non-spin
polarized SCAN functional of (a,c) the rutile VO2(110) and (b,d) the rutile
VO2(011) bulk terminations using the Tersoff-Hamann approximation[147]
with the bias voltage of 2 V. Image reprinted from [32].
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3.4.2 Rutile VO2(110) (2 × 1) surface reconstructions

As shown in the previous section, the rutile VO2(110) surface orientation has the lowest
surface energy, independent of the considered DFT functional and spin configuration, and
simulated STM images agree with those obtained from the experiment. Therefore, a closer
look into this particular surface termination is taken.

A simple relaxation of the VO2(110) (2 × 2) surfaces does not result in a broken
symmetry. Therefore, a simulated annealing of the bulk-terminated VO2(110) (2 × 2)
surface was performed to sample the configuration space and the resulting structure was
subsequently relaxed with the PBE, PBE+U, SCAN and SCAN+rVV functionals. The
non spin-polarized calculations show that even for the bare (110) surface the calculated
ground state has a lower symmetry, resulting in the (2 × 1) superstructure shown in the
left panel in Figure 3.15a. The surface displays a buckling in the topmost layer, which is
formed by an unpaired zigzag line as in case of the monoclinic M2 phase[117]. The relative
height difference in this buckled row depends on the respective functional and ranges
from 0.20 Å to 0.43 Å. A tendency towards buckling can already be observed for the bulk
phases of VO2: On the one hand, a monoclinic pairing is present in the [100] direction of
the monoclinic ground state, on the other hand, an imaginary DFT phonon mode of the
rutile structure, also present at the PBE level[136], indicates an instability by shifting the
oxygen atoms along the [001] direction with respect to the vanadium atoms. Therefore,
the stability of the buckled surface was confirmed by two different models. First, fully
relaxed five-layered slabs were considered. Second, five-layered slabs have been used where
the bottom layer was fixed to its bulk structure and the rest of the atoms was clamped in
the [001] and [1-10] direction to separate the surface from the bulk contributions so that
the phonon softening instability at Γ is restricted. Even in case of the partially fixed slabs,
the buckled surface shows a similar behavior: the buckling stabilizes the surface by 40 meV,
15 meV, 9 meV and 11 meV per the (2 × 1) slab using the (NM) PBE, PBE+U, SCAN and
SCAN+rVV functionals, respectively. These results reinforce the above assumption that
this buckling is indeed a surface effect and not driven by instabilities in the bulk phase.
Fully relaxing the slabs increases the stability induced by the buckling by 72 meV, 39 meV,
45 meV and 59 meV per the (2 × 1) slab, respectively, for the functionals above. In this
case the additional energy gain by the buckling is naturally increased due to an additional
possible relaxation in the surface plane, which was restricted in the fixed slabs.

The buckling is accompanied by a change in the projected density of states onto 3d
orbitals of upper vanadium atoms that are situated in the buckled row. The occupation
number of the vanadium 3d band is decreased by ∼0.2−0.6 e− with respect to the unbuckled
surface, depending on the functional used. However, spin-polarized calculations with
ferromagnetic spin ordering show a different trend. The PBE, SCAN and SCAN+rVV
functionals suppress the stability of the buckled surface and transform it into the pure
(110) termination. Thus, the buckling is only present at the PBE+U level, giving 26 meV
extra more stability in case of the fully relaxed slabs. Changes of the electronic structure
driven by the surface buckling were further investigated with help of Wannier projections
onto V3d orbitals on the buckled and unbuckled surface vanadium atoms, see Fig. 3.15c-e.
In the present notation, the x axis of the local coordination system is set parallel to the
[001] lattice vector, y axis is set perpendicular to the surface plane i.e. along the [110]
direction and the z axis points along the [11̄0] direction. Panels 3.15c-e show projections
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Fig. 3.15: Panel (a), buckled (2×1) reconstruction obtained from the simulated annealing
and subsequent optimization. The buckling is accompanied by a change in
the occupation number of the V3d band of the upper vanadium atom (see the
black arrow), that is decreased by 0.3 electrons as calculated with the (NM)
PBE functional. The graph in panel (b) shows the distribution of the height
difference between the V-V pairs during the molecular dynamics simulation
(black line), fit with three Gaussian functions (red, blue and green lines)
which correspond to the up-down, non-buckled and down-up configurations
respectively. Gray line is the sum of all fit functions. Panels (c-d) display
calculated STM images with the (NM) SCAN functional of the buckled and
unbuckled surface, respectively. Yellow rectangles mark the (2 × 1) surface
unit cells. Panels (e-f): comparison of projected density of states onto Wannier
functions localized at vanadium atoms between the bare (110) and the buckled
surface, calculated with the non-spin polarized SCAN functional. Only the
Vanadium 3d band is shown.
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onto the unbuckled, buckled-up and buckled-down surface vanadium sites, respectively.
A comparison of those projections reveals that the dyz orbital in the buckled system is
less occupied with respect to the unbuckled surface and the occupation of the dxz orbital
is dependent on the position of the buckled vanadium atom. Wannier projections also
show a difference between the surface buckling and the monoclinic buckling: while the
monoclinic buckling enhances the occupation of the dxy orbital[117], the dxy occupation in
the surface layer is reduced almost to zero.

The effect of buckling on calculated STM images is shown in bottom panels of Figure
3.15f-g. The most prominent change in calculated STM image of the buckled surface is the
presence of paired bright features that proceed from the topmost two-fold oxygen atoms.

Since the small energy gain due to the buckling might render an experimental verification
difficult, a molecular dynamics (MD) simulation at experimental temperatures was used
to evaluate the thermal stability of the buckling. The simulation for 100 ps was performed
employing the non-magnetic PBE functional, which shows the largest energy difference
between the buckled and the bare (110) surface, a temperature of 350 K and a time step
of 1 fs. The most prominent feature of the buckled surface, namely possible switches in
the z-positions (i.e. along the surface normal) of the V-V pairs was monitored. In order
to decrease the computational cost the thickness of the slabs was reduced to four layers
where the bottom layer atomic positions were frozen and the k-points grid was reduced
to 2 × 2 × 1 points. The results of the MD simulations are shown in Figure 3.15b as the
number of switches at the y axis and the buckling size at the x axis. The plot also shows a
fit of the MD data (black line) with three Gaussian functions, related to the buckled (red
line), non-buckled (green line) and flipped buckled (blue line) configurations. The sum
of the three Gaussian fits (gray line) shows that the buckled configuration is thermally
smeared since there are no maxima at the positions of the Gaussian functions related to
the buckled configurations. Furthermore, the average flipping time from the up-down to
down-up configurations was calculated to be 260 fs. Thus, one may conclude that the time
dependent stability of the buckling is much shorter than the resolution limit of atomically
resolved STM experiments, as imposed by the typical scanning rate.

Since the occupation of the V-3d states is quite sensitive to buckling, it is advisable to
determine to what extent a varying oxygen coverage influences the size of the buckling,
by comparing bare (clean), 50 % and 100 % covered VO2 surfaces as depicted in Figures
3.16a-c. Figure 3.17 clearly shows that all non-magnetic functionals predict a stable
buckled surface and that its stability increases with oxygen coverage. The energy gain
due to the buckling ranges from 39 meV (PBE+U) to 72 meV (PBE) for the bare surface,
as already discussed above, and increase with oxygen coverage, adding further stability
which ranges from 61 meV (PBE+U, SCAN) to 83 meV (SCAN+rVV) per the (2 × 1)
slab for a fully-covered surface. Quite evidently van der Waals interactions included in
the SCAN+rVV functional have only a negligible impact on the stability of the surface
buckling.

Since all spin-polarized functionals except PBE+U predict an unbuckled surface, these
(negative) values are omitted in Figure 3.17, and only the (FM) PBE+U value of 26 meV
is included. However, the trend changes with increasing the oxygen coverage to 50 %,
which compared to non-magnetic runs yields a further 20 % (PBE), 60 % (PBE+U), 70 %
(SCAN), and 40 % (SCAN+rVV) stabilization of the surface buckling, which ranges from
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(a) (b)

(c)

Fig. 3.16: Perspective views of (2 × 1) supercells showing (a) the bare 110 surface, (b)
50 % covered and (c) 100 % covered rutile VO2(110) surface. The black lines
show the surface are of the (110) (2 × 1) supercell

100 meV to 140 meV per the (2 × 1) slab on an absolute scale. Increasing the oxygen
coverage to the fully-covered limit, the buckled surface is most preferred for the (FM)
PBE+U functional which adds a 510 meV extra stability per the (2 × 1) slab. The other
functionals, PBE, SCAN and SCAN+rVV also prefer a buckled surface by 104 meV to
137 meV per the (2 × 1) slab without any significant difference between the non-magnetic
and ferromagnetic spin configurations. The comparably large energy gain for the (FM)
PBE+U functional is attributed to the opening of the gap in the bulk and hence to
a reduced screening of the induced charge imbalances upon oxygen adsorption. Thus,
this buckling might play a non-negligible role for the stabilization of oxygen-rich surface
reconstructions proposed in recent experimental studies[30, 31] and even more on surfaces
of the insulating M phase of VO2.

3.4.3 Summary

The performance of the density functional theory for various rutile VO2 surface orientations
has been evaluated. A surface instability has been found on the (110) surface, which breaks
the 1 × 1 symmetry and leads to a (2 × 1) superstructure. Among all studied surfaces, the
(110) termination exhibits the lowest surface energy independent of the DFT functional
and spin configuration and also matches best with LEED and STM experiments. The
(111) surface is calculated to be the least stable and is not present in calculated shapes of
the equilibrium rutile VO2 particles.
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Fig. 3.17: Additional stabilization (in meV per the (2 × 1) slab) induced by buckling in a
VO2(110) surface, determined with several DFT functionals for non-magnetic
(NM) and ferro-magnetic (FM) spin configurations. (FM) PBE, (FM) SCAN
and (FM) SCAN+rVV predict no buckling for bare VO2(110) and therefore
these points are not included.
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A comparison of the performance of different DFT functionals and spin configurations
has also revealed that the resulting surface free energies for low index facets can be
influenced in some particular cases by surface states or by the splitting of the V3d band in
the bulk. The (001) termination calculated with the non-spin polarized DFT functionals
show a 15−21 meV/Å2 decrease compared to the spin-polarized calculations, which induces
a presence of the (001) termination in the Wulff shapes. However, LEED measurements
on single crystals[150] revealed that the VO2(001) surface shows faceting, which indicates
that this surface termination is rather unstable. The spin-polarized PBE+U calculations,
which open the band gap in the bulk rutile phase, yield higher surface energies compared
to the non-spin polarized calculations. Finally, the influence of the size of the on-site
Coulomb repulsion has been investigated and a dependence of the surface energies for
the (011) surface orientation on the chosen value for U has been found. For this reason
the present Wulff shape for the (NM) PBE+U functional differs significantly from the
reported PBE+U results [30]. Since the Wulff shape obtained from the (NM) PBE+U
calculations contains the unstable (001) surface, one may assume that increasing U to
higher values leads to a better description of surface energies of VO2 surface orientations.

Wannier projections onto surface vanadium atoms that form the buckled chains have
revealed that the V-dxy orbitals are unoccupied, in contrast to the bulk rutile and monoclinic
VO2 phases. This finding indicates that the surface buckling effect is not related to the bulk
transitions. The additional stability of the buckled surface has also been investigated as
the function of oxygen coverage, showing a continuous increase with higher concentration
of oxygen adatoms. The highest stability of the buckled surface is obtained for the (FM)
PBE+U functional which increases the adsorption energy by 0.33 eV compared to the
unbuckled surface. Thus, this effect might also influence the stability of more complex
surface reconstructions.

3.5 Oxygen-rich rutile VO2(110) (2 × 2) surface

reconstructions

The previously discussed rutile VO2(110) (2×1) reconstructions for the bare surface cannot
explain the experimentally observed (2 × 2) reconstructions. Therefore, the aim of this
section is the identification of stable off-stoichiometric surface models which can provide
a deeper insight into the structural and electronic properties of surface reconstructions
observed in experiments[30, 32].

The first attempt to find the structural model for this surface reconstruction is the
extension of the previously discussed (2×1) adsorption phases to (2×2) surface terminations
while taking into account that the most preferred adsorption sites on the rutile VO2(110)
surface are square pyramids where the adsorbed oxygen forms a vanadyl bond with the
surface vanadium atom [125]. Since the rutile VO2(110) (2 × 2) slab contains in total
four adsorption sites, there are two ways how to build the surface reconstruction with
no translational symmetry inside the (2 × 2) slab that would result into more simple
surface reconstruction: adsorption of a single oxygen adatom, or three adatoms. Here, one
additional oxygen atom adsorbed on the buckled surface in the (2 × 2) slab is considered.
Its structure in perspective and top views are shown in Figure 3.18 together with calculated
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STM image using the (NM) SCAN functional. As it is depicted, the additional oxygen
atom causes two bright spots inside the dark row in the calculated STM image. Considering
the experimentally observed symmetries, the calculated STM simulation shows a mirror
symmetry along the rutile [001] axis, but the second symmetry axis parallel to the [11̄0]
direction hasn’t been reproduced. The hole in the adlayer with the unreconstructed
(110) (1 × 1) surface that is observed in experimental STM images can be explained
by removal of a surface layer and therefore the layer below is observed. However, this
structural model reproduces neither the wide and narrow spacing nor the additional bright
features in the center of bright rows. Thus, a direct modification of this surface model
that would reproduce these experimental findings is unclear. Note that this problem also
holds for other (2 × 2) surface reconstructions obtained from oxygen adsorption on the
rutile VO2(110) surface.

In conclusion, these findings indicate that adsorption phases are not appropriate struc-
tural models that match the experimental findings. Therefore, a more involved way was
chosen to find the stable structural model that can recover the experimental STM images
as discussed in the next sections.

Fig. 3.18: Perspective view, top view and simulated STM image (with the SCAN func-
tional) of the VO2(110) buckled surface. The black rectangle marks the (2 × 2)
surface unit cell.

3.5.1 Simulated annealing: tetrahedral terminations

In a first step simulated annealing has been used. The whole process consisted of ∼104 ionic
steps with the time step 1 ps with the initial temperature 2500 K, cooled down to 0 K
using the Nosé-Hoover thermostat[151, 152] to regulate the temperature fluctuations.
In the simulated annealing procedures the spin-polarized PBE functional was used for
four-layered slabs where all layers except the surface layer were frozen to prevent structural
changes in the bulk part. Once the simulated annealing was finished, the final structure
was taken, the thickness of the slab increased by two additional layers and the structure
relaxed. During the final relaxation process atoms in two additional layers were kept fixed
at their bulk positions. The SCAN functional was excluded from the simulated annealing
process due to too large computational costs. Simulated annealing was also done with
non-magnetic PBE and PBE+U functionals which gave qualitatively similar structures to
the spin-polarized PBE functional results and therefore these structures are not presented
here.
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In the simulated annealing calculations several surface stoichiometries have been con-
sidered, defined as the number of oxygen and vanadium atoms that comprise the surface
layer. Here, the two most-stable superstructures are discussed which represent well the
general properties of the structures obtained by this approach. The first structure is
derived from the fully-covered (110) surface depicted in Figure 3.16. The second structure
was created by a removal of two vanadium atoms and two oxygen atoms from the bare
VO2(110) surface layer. Considering the (2 × 2) slab, one O-V-O trilayer has an overall
stoichiometry V8O16. Hence, the first structure has the surface stoichiometry equal to
V8O20 and the latter V6O14.

The resulting structures obtained from the simulated annealing procedure are shown
in top and side views, together with simulated STM images in Figure 3.19. Both final
surface structures are composed of corner-sharing tetrahedra with a drastically inflated
thickness of the surface layer from 3.2 Å that corresponds to the thickness of the bulk
trilayer to 7.2 Å and 4.9 Å for the V8O20 and V6O14 surface stoichiometries, respectively.
The larger thickness of the surface layer is also visible from the perspective views, showing
that the tetrahedral terminations are rather open. In contrast to the bulk part, empty
channels are formed in the subsurface layer. The V6O14 structure shows an empty row
in the subsurface layer made of square pyramids, which can be used for adsorption of
additional oxygen atoms. Also one oxygen atom occupying every second vanadium site
was added, which leads to an overall surface stoichiometry of V6O15. This structure was
also subsequently relaxed. Thereafter, its stability was compared to other tetrahedral
terminations. Regarding the simulated STM images, both structures yield bright features
located at the topmost oxygen atoms, which is consistent with the calculated STM images
of the rutile VO2(110) surface where oxygen rows also appeared as bright spots.

To compare the stability of all aforementioned tetrahedral terminations, the calculated
surface free energy is drawn against the oxygen chemical potential which is depicted
in Figure 3.20. In the evaluation of the surface free energy the stability of the initial
structures before the simulated annealing procedure was also considered, see the dashed
lines. The total energy for the relaxed systems with surface stoichiometries V8O20 and
V6O14 after annealing are 1.5 eV and 0.5 eV per the (2 × 2) slab lower than the respective
initial structures. As a result, the effective adsorption energies of excess oxygen atoms that
are incorporated in these superstructures are lowered by 0.38 eV and 0.25 eV respectively,
as shown in the graph 3.20. Among all studied surface reconstructions with the simulated
annealing technique, the most stable structure is the tetrahedral V8O20 reconstruction that
would be preferred up to a chemical potential of µ = −1.91 eV. This value for the oxygen
chemical potential is close to the ultra high vacuum conditions at 900 K; µexp. = −2.07 eV
at which the single crystals were annealed in the experiment[32]. In even more reducing
conditions related to the chemical potentials lower than −1.91 eV, the unreconstructed
(1 × 1) surface is thermodynamically most stable.

Even though the tetrahedral terminations are more stable than the adsorption phases,
they still do not match the experimental STM images. A comparison of calculated STM
images (Figure 3.19) with the experiment (Figure 3.3) reveals several differences. First, the
tetrahedral terminations do not reproduce the double row pattern observed in experiments.
Second, the simulated STM patterns do not show a symmetry axes along the [001] and
[11̄0] directions and therefore the match with experimental results is rather poor. Another
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Fig. 3.19: Perspective views, top views and calculated STM images of the relaxed struc-
tures with the overall surface stoichiometries V8O20 (top panel) and V6O14

(bottom panel) obtained from the subsequent relaxation of the structures
after a simulated annealing procedure. Yellow rectangles mark the rutile VO2

(110) (2 × 2) surface unit cell. Both structures show surface reconstructions
composed of corner-sharing tetrahedra. In the STM simulations the bright
features originate from the topmost oxygen atoms.

peculiarity of the tetrahedral terminations was identified while employing other DFT
functionals with ferromagnetic spin ordering. The stability of the tetrahedral terminations
was investigated in more detail by relaxing the tetrahedral termination with the surface
stoichiometry V6O14 (Figure 3.19b) using spin-polarized PBE+U, SCAN and SCAN+rVV
functionals. From the relaxed structures one can extract again surface free energies as a
function of oxygen chemical potential. In these supporting calculations the supercells were
adapted to the parameters of the rutile bulk obtained from the respective functionals. The
performance of the additional functionals for the tetrahedral termination is depicted in
Figure 3.21. Here, only the crossing points between the surface free energies obtained from
the V6O14 tetrahedral termination with the unreconstructed (110) surface (horizontal line)
are shown. Note that these crossing points represent the effective adsorption energies of
excess oxygen atoms incorporated in the tetrahedral termination.

The results that are depicted in Figure 3.21 show a strong dependence of the calculated
crossing points and consequently on the stability of the tetrahedral terminations on the
used functional. The PBE, SCAN, SCAN+rVV and PBE+U functionals yield values
for the effective adsorption energies equal to −1.88 eV, 1.07 eV, −0.56 eV, and 0.07 eV,
respectively. Hence, these tetrahedral terminations are stable only at the PBE level which
was also used for the simulated annealing procedure.
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Fig. 3.20: Calculated surface free energy for the tetrahedral terminations as the function
of chemical potential, using the spin-polarized PBE functional. The dashed
lines represent the calculated surface free energies of the initial structures before
the annealing procedure. The yellow line represents the surface free energy of
the oxidized V6O15 tetrahedral termination (Fig 3.19, bottom panel), where
the additional oxygen atom was subsequently placed into the subsurface layer
above the vanadium atom with the square-pyramidal coordination geometry.
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Fig. 3.21: Calculated crossing points (effective adsorption energies) of the surface free
energies between the bare rutile VO2 (110) surface and the tetrahedral termi-
nation with the V6O14 surface stoichiometry (Fig 3.19, bottom panel), using
the spin-polarized PBE, PBE+U, SCAN and SCAN+rVV functionals. The
surface unit cells were adapted according to the relaxed bulk rutile phase with
the respective DFT functional.
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3.5.1.1 Summary

Performing the simulated annealing procedure with the PBE functional leads to the
formation of tetrahedral reconstructions that are more stable than the adsorption phases of
the VO2 (110) surface. These structures have an open structure which causes an enhanced
thickness of the surface layer. The large energy gain (1.5 eV) from the formation of the
tetrahedral structures indicates that also other arrangements using same building blocks
could be more stable than the adsorption phases. However, using simulated annealing for
the prediction of the surface structure of VO2(110) (2 × 2) reconstructions has several
shortcomings. First, simulated annealing is computationally expensive due to the necessity
of using high initial temperatures and a proper sampling of time which results into a large
number of ionic steps. These consequences exclude performing the simulated annealing
with more advanced functionals such as SCAN or SCAN+rVV. Second, stabilities of
structures yielded by the simulated annealing strongly depend on the chosen functional,
differing up to 3 eV in calculated crossing points. Also the mismatch between the calculated
and experimental STM images indicates that these tetrahedral terminations are either
a PBE artefact, or the simulated annealing has not been successful in finding the most
stable surface termination at the given surface stoichometry.

However, these findings concerning the properties of tetrahedral terminations can be
used to find another ways to describe these complex surface terminations.
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3.5.2 Educated guess: V2O5-like monolayer

Another hint guiding towards an appropriate atomic model for (2 × 2) superstructure
can be derived from experimental findings: XPS measurements indicate an increased
concentration of oxygen on the surface and the presence of V5+ cations[32]. In addition,
the experimental STM images of the (2×2) superstructure (see Fig. 3.2) resemble patterns
found on the V2O5 (001) surface as characterized by Blum et al. [153], suggesting that a
vanadium pentoxide monolayer might be a good starting point for the development of an
atomic model.

One takes the orientation of the V2O5 lattice such that the cleavage plane is (001), i.e.,
the V=O vanadyl bonds are roughly parallel to [001]. To fit to the VO2(110) substrate in
a (2 × 2) configuration, the unit cell of the V2O5(001) monolayer needs to be expanded
in [100] direction from 11.50 Å to 12.86 Å (i.e., by 12 %), breaking up the structure along
the dashed symmetry plane, and in [010] direction from 3.56 Å to 5.70 Å (i.e., by 60 %),
see Figure 3.22a. This strong distortion leads to the rearrangement of the V2O5 building
blocks, namely a change from edge-sharing pyramids to corner-sharing tetrahedra. The
dark vanadium polyhedra pointing away from the surface (towards the vacuum) shift along
the [010] direction, and the inverted (bright) polyhedra are pulled towards each other in
[100] direction. This is marked by yellow arrows in Figure 3.22a. The result is a hexagonal
ring of vanadium tetrahedra as shown in Figure 3.22b. A similar structure consisting of
corner-sharing up- and down-pointing VO4 tetrahedra has already been confirmed for
vanadium oxide on a Pd(111) surface [154]. For the unsupported model layer (Figure
3.22b), the lateral distance between the oxygen atoms at the top of the tetrahedra along
[11̄0] is 3.8 Å. When this layer is supported by the rutile (110) surface as shown in Figure
3.22c and 3.22d, the distance is slightly decreased to 3.7 Å and 3.6 Å, respectively. In both
cases, the surface has an overall stoichiometry of V4O13. Figures 3.22c and 3.22d show two
different configurations indicating how the structure could be placed on the VO2 substrate
underneath. In the first case, panel (c), the ring termination is bound in a corner-sharing
fashion, i.e., with just with one oxygen bond, forming a purely tetrahedral termination,
and leaving half of the undercoordinated O atoms of the substrate unterminated. These
atoms, colored in orange, can be also partly or fully removed, which leads to V4O12 and
V4O11 surface stoichiometries. In Figure 3.22d, the ring termination is shifted by a half of
the (1 × 1) rutile [001] lattice vector as marked with the yellow arrow. The additional
bond to the undercoordinated O atoms of the substrate layer converts the lower tetrahedra
to square pyramids, see black circles in panels 3.22c-d. This shift stabilizes the surface
termination by 0.24 eV per (2 × 2) supercell. Figure 3.22e shows a simulated STM image
of the ring structure from the Figure 3.22d. The image consists of pairs of spots with a
separation of 3.6 Å, in agreement with the experimental data for the narrow distances of
the bright features from panel 3.3. Furthermore, the simulated STM image shows a proper
symmetry, namely the mirror axes parallel to the [001] and [11̄0] direction. Furthermore,
the rectangular rows are centered on the oxygen row from the VO2 trilayer beneath,
which is in agreement with the experimentally observed alignment of the (2 × 2) surface
termination, see the yellow line in Figure 3.3. Hence, the ring termination results into
the simulated STM patterns that are in a much closer agreement with experiment when
compared to the tetrahedral ring terminations obtained from the simulated annealing. As
well as the ring terminations obtained from the simulated annealing, both ring structures
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Fig. 3.22: Conceptual steps towards the rutile VO2(110) ring terminations. (a) A vana-
dium pentoxide (001) monolayer. The yellow arrows mark the displacement
direction of the vanadium atoms, which causes the transformation to the tetra-
hedral ’ring superstructure’ that fits the VO2(110)-(2 × 2) supercell, shown
in (b). Panels (c, d) show side views of two possibilities how this ring struc-
ture could connect to the underlying VO2(110) lattice, resulting in an overall
stoichiometry of V4O13. The purely tetrahedral ring termination (panel c)
contains in the subsurface layer V=O vanadyl bonds that can be subsequently
removed, see oxygen atoms colored in orange. The difference between these
structures is a shift along the [001] direction as it is pointed with the yellow
arrow in panel (d), changing the coordination geometry of marked vanadium
atoms from tetrahedra to square pyramids. The configuration in (d) is lower
in energy. Figure (e) shows a calculated STM image of the ring structure in
(d). Image reprinted from [32].

depicted in Figs. 3.22c-d, are thicker (5.5 Å, 5.4 Å, respectively) than a VO2(110) rutile
layer with thickness of 3.2 Å.

The ring termination with the surface stoichiometry V4O13 can also be modified. The
most promising candidates were created by adding another vanadium tetrahedron between
the rows of the original ring structure with the surface stoichiometry V4O13 as it is shown
in Figures 3.23a-b, forming V5O14 and V5O15 rings. The structure in panel (a) with the
surface stoichiometry V5O14 connects the rings with another vanadium tetrahedron that
is bound to the subsurface layer. The vanadium rings are connected in this case by a
single V-O bond to the subsurface layer, as the ring termination in the Figure 3.22c. The
V5O14 configuration is therefore structurally similar to the SrTiO3(110) termination that
is shown as the (3 × 1) surface structure in ref. [155], but with two major differences. The
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Fig. 3.23: Top views, calculated STM images and perspective views of the relaxed modi-
fications of two ring terminations. In panel (a) the V4O13 rings are connected
via an additional tetrahedron that is bound to the substrate, leading to an
overall V5O14 surface stoichiometry. In panel (b) one connecting tetrahedron
per (2 × 2) cell is flipped, resulting in adsorption of an additional oxygen.
Image reprinted from [32].

first difference is related to the bonding of the superstructure to the bulk termination.
In the case of VO2, vanadium tetrahedra are bound only with a single V-O bond to the
VO2 bulk, i.e., this superstructure is more open compared to the titanium tetrahedra that
terminate the SrTiO3(110) surface. Secondly, some vanadium tetrahedra are additionally
oxidized with another oxygen atom, which results into a disconnection from the (110)
surface and the formation of vanadyl bonds on top, as it can be seen by comparing the
side views of the structures in the Figure 3.23.

Simulated STM images also show patterns that are close to the experimental findings.
The shorter distance between the topmost oxygen atoms of the ring structure on the left
side is reduced from 3.6 Å to 3.3 Å which causes a small overlap between the bright spots.
The additional oxygen atom in the structure in panel 3.23b forms a weak protrusion that
sits between the double rows.

To assess the stability of various surface terminations, symmetric five-layered slabs
were built with all aforementioned ring superstructures and adsorption phases, relaxed
with the (NM) SCAN functional and the resulting surface free energy evaluated as a
function of the oxygen chemical potential. The resulting lines representing the surface
free energy as the function of oxygen chemical potential are shown in Figure 3.24. The
black, horizontal line represents the stoichiometric buckled VO2(110) surface. Green
lines denote (2 × 2) supercells of this buckled surface with 1, 2 or 4 additional O atoms
adsorbed as shown previously in Figures 3.18 and 3.16. For the latter two cases the present
preferred structures agree with the models of an earlier DFT study by Mellan et al. [125].
Decreasing the coverage from 1/2 to 1/4 ML (1 adsorbed oxygen atom) every second oxygen
atom is removed from the remaining oxygen row. Blue, orange, pink and red lines mark
the oxygen-rich ring-superstructures, including V4O13, V5O14 and V5O15 stoichiometries,
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Fig. 3.25: Calculated crossing points (effective adsorption energies) of the surface free
energies between the bare rutile VO2 (110) surface and the V4O13 ring ter-
mination shown in Figure 3.22d, using the non-spin polarized PBE, PBE+U,
SCAN and SCAN+rVV functionals. The surface unit cells were adjusted to
the relaxed bulk rutile phase with the respective DFT functional.

depicted in Figures 3.22d, 3.23a-b respectively. Furthermore, gray dashed lines represent
the reduced V4O13 ring structure depicted in Figure 3.22c, where the undercoordinated
oxygen atoms in the subsurface layer (colored in orange) were subsequently removed from
both rows, leading to the V4O12 and V4O11 surface stoichiometry. The plot also shows
the stability limit of the VO2 phase with respect to the vanadium pentoxide as vertical
black solid line defined as the enthalpy of the following reaction: 2VO2 + 1/2O2 → V2O5.
For calculating this phase boundary, the experimental heats of formation of the VO2 and
V2O5 phases with respect to vanadium metal [140, 156] were used.

Over a wide range of chemical potentials, the ring structures with V4O13 and V5O14

surface stoichiometry are the most stable configurations. An unreconstructed, buckled
VO2(110) surface, partially covered with O atoms, is only stable under strongly reducing
conditions (oxygen chemical potential less than −2.05 eV).

To test whether stabilities of these ring structures are functional dependent as found
for the tetrahedral terminations obtained from simulated annealing, the crossing points
between the lines that correspond to the bare VO2(110) surface and the V4O13 ring
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termination were calculated, using non-spin polarized PBE, PBE+U and SCAN+rVV
functionals. The resulting dependencies on these functionals are shown in Figure 3.25.
Unlike for the tetrahedral terminations obtained from simulated annealing, the calculated
stability of the V4O13 ring termination is not functional-dependent and all functionals
yield values for the crossing points at oxygen chemical potentials corresponding to the
UHV region, yielding almost constant values for the effective adsorption energies, namely
−2.03 eV −2.01 eV −2.00 eV and −1.97 eV while using (NM) PBE, PBE+U, SCAN and
SCAN+rVV functionals, respectively.

3.5.2.1 Summary

It turned out that the energetic ground state of the VO2 surface over a wide range of
oxygen chemical potentials is a reconstruction, distinctly different from a bulk-terminated
surface. In contrast to the tetrahedral terminations, the ring model that was built by
a modification of the vanadium pentoxide monolayer can explain the main features of
the STM images. The non-magnetic SCAN calculations show that the aligned, bright
spots are related to the ring structure, which is the most stable surface termination at
an oxygen chemical potential of −1.87 eV and higher. The V4O13 ring model assigns
the experimental double rows in Figure 3.3 to oxygen atoms, which are connected to
vanadium tetrahedra. Another hint that points to the conclusion that the ring model
is better than the tetrahedral terminations acquired from the simulated annealing is
the functional-independent value for the effective adsorption energy of excess electrons
incorporated in the structure. Considering that a simple adsorption phase cannot explain
the atomically resolved STM measurements either, the following conclusion is appropriate:
The ring terminations are central building blocks for an atomistic understanding to the
rutile VO2(110) surface termination.

However, not all experimental features are captured in the present model. First,
experimental STM images show the presence of additional bright spots between the
double rows that are not explained by the V4O13 ring termination (yellow circle in Fig.
3.3). Second, the double rows in the experiment are always aligned with respect to the
neighboring row like in Fig. 3.3), but the present model also allows the hexagonal rings
that form the double row pattern to be shifted by half of the rutile bulk unit cell in [001]
direction, which is not observed in experiment. The effect that would restrict the observed
structure just to the aligned pattern is not evident from the DFT model; probably the
alignment is caused by the entities forming the additional bright spots.

The basic V4O13 ring termination was obtained intuitively, but it was also shown that
its subsequent intuitive modifications that were presented in Figures 3.23 are not stable.
Therefore, the next section introduces yet another approach used for finding the proper
surface reconstructions.
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3.5.3 Optimization of random structures: Ring terminations

Before starting a discussion of the results obtained from an optimization of randomly
generated structures used to obtain further structural models to explain the experimental
STM pattern, several conclusions from the previous methods should be stressed, that are
worth to be taken into consideration.

• The simulated annealing calculations revealed the presence of a large number of
tetrahedral terminations whose stability is dependent on the chosen functional.
Therefore, one needs to use also other functionals in the creation process.

• Apart from the functional-dependent tetrahedral terminations, the ring structure
that was created from the vanadium pentoxide monolayer is stable on the VO2(110)
substrate independent of the chosen functional. Therefore, one should look mainly for
the structures whose stability does not strongly depend on the specific computational
setup, as has been observed for the structures obtained from simulated annealing.

• Experimental XPS measurements revealed an increased oxidation states of vanadium
atoms at the VO2(110) surface. However, the exact surface stoichiometry of the
experimental VO2(110) (2 × 2) superstructure has not been resolved yet. Thus, one
proceeds from the obtained V4O13 ring model, which is energetically stable and
also provides a good match with the experimental STM images. Modified surface
stoichiometries are also investigated in further calculations.

Taking these conclusions into account, the stability of a large set of surface reconstructions
was examined (with the size of ∼10000 structures) by a direct structural relaxation.
Different surface stoichiometries similar to V4O13 were also studied, namely VnO2n+2 to
VnO2n+5 for n ranging from 4 to 8 which corresponds to more than a half of an additional
VO2 trilayer. Nevertheless, in case of surface terminations with n ≥ 6, one observes
the formation of the second surface layer which turned out to be unstable with respect
to the oxygen adatoms on the bare VO2(110) surface. Therefore, the focus will be laid
particularly on the results concerning the following surface stoichiometries: V4O11, V4O13,
V5O12, V5O13, V5O14, and V5O15. Atoms that form the surface layer in the ring structure
with the V4O13 surface stoichiometry, are depicted in Figures 3.26a-d, colored in gray and
violet. In total, the unit cells contain four vanadium atoms and thirteen oxygen atoms.
The whole optimization procedure is composed of the following steps:

• At the beginning random structures are generated at a given surface stoichiometry
with the USPEX package[157–159]. 1000 initial structures have been generated
separately for the PBE, PBE+U and the SCAN functional. The samples consisted of
the surface layer fixed to the bulk positions and one bottom layer, see Figure 3.26a.

• The initial structures were pre-optimized within 170 ionic steps with the electronic
loop converged to the 10−3 eV, using strictly non-spin polarized calculations. The
energy cut-off was set to 400 eV and the k-point grid was downgraded just to the Γ
point. PBE, PBE+U and SCAN functionals were used in the optimization steps.

• One choses the 100 most stable structures from the previous step, which were relaxed
using the accurate settings: 450 eV energy cut-off, 2 × 1 × 1 k-points grid, electronic
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Fig. 3.26: Optimizaton process of the random structures. At the beginning, a set of 1000
random structures was generated with the USPEX[157] package as shown in
panel (a). After that, all of them were pre-optimized, and the 10 % most stable
ones fully relaxed, which led to a set of 100 structures, similar to the one from
panel (b). At the next step, an additional substrate layer was added as shown
in panel (c). Since two substrate layers were too thin according to performed
convergence studies, the last step consisted of adding two more substrate
layers, as shown in panel (d). Concluding, a full and accurate relaxation with
all functionals using both spin-polarized (FM) and non-spin polarized (NM)
electronic configurations was performed.
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loop converged to 10−5 eV. Ionic optimization was stopped when all residual forces
were smaller than 10−2 meV/Å. The representative structure obtained from this step
is shown in Figure 4.8b

• The 30 most stable structures were selected from the previous step and improved
by an additional substrate layer as depicted in Figure 3.26c. In these calculations,
only the first layer was fixed to its bulk positions, surface and sub-surface layer were
allowed to relax.

• Since different functionals resulted in different structures, the 10 most stable struc-
tures obtained from all respective functionals were chosen. These structures were
subsequently optimized with the remaining functionals and compared with the ac-
quired structures in the previous step. Hence, the stability of 40 structures has been
compared in total for all functionals.

• The 10 most stable structures for all functionals were selected and their slab thickness
increased by additional 2 layers where the bottom layer was fixed to the bulk positions
as shown in Figure 3.26d. The lattice vectors were adjusted to the bulk proportions
obtained by the respective functional, the k-points grid was set to 4 × 2 × 1 and
energy cut-off was increased to 500 eV. At this point also spin-polarized calculations
have been performed for a ferromagnetic spin ordering and also the SCAN+rVV
functional with a ferromagnetic and nonmagnetic spin ordering has been employed.

• In a final step, symmetric five-layered slabs were built to overcome errors induced
by the presence of dipole moments induced by asymmetric slabs. Here, the same
computational settings as in the previous step were used.

The splitting of the whole optimization procedure into several steps allows for an
exclusion of those structures that are obviously unstable. This saves computational time,
which is especially important for the SCAN functional, because it can now be used with a
reasonable time cost. An advantage of this process compared to the simulated annealing is
that one can massively parallelize the procedure since the relaxation of random structures
is independent of each other. Naturally, the described procedure of optimization of random
structures has also some limitations and shortcomings. A closer look into the functionality
of the chosen settings is provided in section A.4. On a side note, there is a certain similarity
between the optimization of random structures and simulated annealing: the first one can
be understood as a simulated ’explosion’ of the surface layer with a neglect of temperature
effects. Generally, these methods can be combined together, e.g, by starting the simulated
annealing from the ’exploded’ surface structure which has not been considered in this
work.

3.5.3.1 Results

Independent of the chosen functional and spin configuration, the five most stable termi-
nations which resulted from optimizing the preselected random structures are depicted
in Figures 3.27b-e. All of them are based on a general pattern shown in Figure 3.27a
which displays a V5O12 surface stoichiometry and is structurally similar to the (3 × 1)
surface reconstruction of SrTiO3(110)[155]. This reconstructed surface superstructure

72



consists of alternating octagonal and hexagonal rings made of VO2+x polyhedra as most
easily visible in the top view of panel 3.27a. However, the surface free energy that results
from this termination is too high so that a further oxidation is required to stabilize this
superstructure by adding oxygen atoms in between the octahedral rows of the subsurface
layer (see the blue circle). The first stable (2 × 2) ring superstructure that has been
obtained by the optimization of random structures with the V4O13 surface stoichiometry
is shown in Figure 3.27b. Note that this structure is identical to the ring termination
presented in the previous section (Figure 3.22c). The modification proceeds in two steps:
First, the bridging vanadium tetrahedra (see the green circles) are removed and second,
two additional oxygen atoms are adsorbed on the ring pattern, which pushes the vanadium
tetrahedra towards the vacuum as indicated by the the blue arrow. These modifications
lead to the formation of a stable, disconnected ring structure with a V4O13 surface stoi-
chiometry and showing only VOx tetrahedra. This ring termination is quite flexible and
can be easily shifted by a quarter of the c-bulk lattice vector as indicated by the black
arrow in Figure 3.27c. As a result, the lower VOx tetrahedra are additionally bound to a
second oxygen ad-atom which changes their coordination geometries to square pyramids.
This change is most easily visible by comparing the features within the black circles in
Figures 3.27b and c. The relative stability of these ring structures depends on the choice
of the functional and will be discussed further below. Proceeding with the ring structures,
another variant is shown in Figure 3.27d, which descends from the general pattern in the
following way: First, the ring structure is shifted by a quarter of the [11̄0] bulk lattice
vector (see the red arrow in the top view) so that the bridging tetrahedra are aligned with
upright octahedra of the subsurface layer as marked by the orange circle. Second, this shift
of the ring termination relative to the subsurface layer is accompanied by the oxidation of
different vanadium tetrahedra. All together this leads to a termination with an overall
V5O15 surface stoichiometry displaying a zig-zag STM pattern (see Figure 3.31). The next
stable superstructure shown in Figure 3.27e is generated by shifting the previous structure
by an additional quarter of the [001] bulk lattice vector (see orange arrow), which again
causes the bridging tetrahedra to bind to two subsurface octahedra, as easily seen by
comparing the features inside the orange circles in Figures 3.27d,e. However, here, one
oxygen atom is removed changing the overall surface stoichiometry to V5O14 and causing
the tetrahedral coordination geometry not to switch to a square pyramid as has been the
case for the V4O13 ring structures.

Since the ring terminations are supported on a bare surface, also oxygen atoms might
be missing in the connecting subsurface layer which changes the local coordination of the
affected vanadium atoms from octahedra to square pyramids. This is shown in Figure 3.27f
where one considers a ring structure similar to the shifted V4O13 ring (see Figure 3.27c)
where the hexagonal rings are connected by bridging tetrahedra. The side view shows
the stepwise removal of subsurface oxygen atoms surrounding two vanadium sites (see
the green and violet circles in Figure 3.27f, which leads to a V5O13 and a V5O12 surface
stoichiometry, respectively.

The present results reveal that the relative stability of the two V4O13 surface terminations
shown in Figures 3.27b,c dependends on the chosen functional. The energetic differences
shown in Table 3.6 clearly indicate that the (FM) spin-polarized PBE and PBE+U
functionals prefer the purely tetrahedral ring structure 3.27b by 114 and 385 meV per
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PBE PBE+U SCAN SCAN+rVV
FM -114 -385 97 137
NM 4 108 230 324

Tab. 3.6: Total energy differences (in meV per the (2 × 2) supercell) of the disconnected
ring terminations, depicted in panels 3.27b-c. Negative number means that the
stability of the purely tetrahedral ring structure (panel 3.27b) is preferred with
the respective calculation setup.

(2 × 2) supercell while all the other functionals find the shifted modification 3.27c as more
stable by 4 meV to 324 meV.

Ring superstructures obtained by a subsequent modification, namely by the removal
of undercoordinated oxygen atoms from the subsurface layer are also taken care of. This
modification changes the local coordination of vanadium atoms from octahedra to square
pyramids, as shown in Figure 3.27f: the green and violet circles mark two vanadium sites
(panel 3.27f) from which an oxygen atom was stepwise removed, changing the surface
stoichiometry to V5O13 and V5O12, respectively. The stability of these superstructures is
functional-dependent.

In order to compare the stability of the superstructures with different surface stoi-
chiometries, the surface free energy of the most stable terminations is drawn in Figures
3.28 and 3.29 for ferromagnetic (FM) and nonmagnetic (NM) calculations, respectively.
Furthermore, the ring terminations with a bare (110) surface (black line) and simple
oxygen ad-atom (110) surface models shown in Figure 3.16 are compared. The green ‘1O’,
‘2O’, ‘4O’ lines indicate the number of oxygen ad-atoms in the (2 × 2) supercell, namely
one oxygen (Figure 3.18), two oxygen (Figure 3.16b) and four oxygen atoms (Figure
3.16c), respectively. Orange vertical lines mark the calculated and experimental oxidation
enthalpy to V2O5 below which the bulk VO2 is thermodynamically stable.

Oxygen adsorption on a rutile (110) surface has been already studied by Mellan et
al.[125] performing non spin-polarized PBE calculations. In their work, the Γ = +1 and
Γ = +2 surfaces are identical to the present 50 % and fully covered VO2 (110) terminations
depicted in Figures 3.16b,c. However, the present calculated adsorption energies for both
coverages are ∼0.46 eV larger than the corresponding (i.e. the uncorrected) values for the
Γ = +1 and Γ = +2 surfaces (see Figure 8 in ref.[125]). This rather large discrepancy in
adsorption energy is caused again mainly by a different computational setup. The use
of differing PAW potentials causes a 0.26 eV difference and the different slab thickness
increasing this value by another 0.07 eV. Furthermore, the models in the present work
are additionally stabilized by the surface buckling, which has been neglected in the work
of Mellan et al.[125] which increases the difference by ∼0.06 eV for both coverages. The
remaining small discrepancy is attributed to other effects emerging from the different
computational setup.

Figures 3.28 and 3.29 show the calculated surface free energies of the bare VO2(110)
surface (black lines), the oxygen ad-atom phases with different oxygen coverage (green
lines) and the ring terminations depicted in Figures 3.27b-f for varying oxygen chemical
potential. Concerning the V4O13 ring structure only the surface free energy of the most
stable variant is included. Independent of the chosen spin configuration all graphs show
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Fig. 3.27: Perspective and top views of the resulting (2×2) superstructures obtained from
an optimization of random structures with different surface stoichiometries.
The structures descend from an underlying pattern shown in panel (a) which
is structurally similar to the (3 × 1) reconstruction of the SrTiO3(110) surface
[155].
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Fig. 3.28: Calculated surface free energies as a function of the oxygen chemical potential
for various (2 × 2) VO2(110) surface terminations and a FM spin configuration.
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Fig. 3.29: Calculated surface free energies as a function of the oxygen chemical potential
for various (2×2) VO2(110) surface terminations and a NM spin configuration.
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that all the functionals considered determine the ring terminations to be more stable than
(PBE, PBE+U, SCAN) or at least similarly stable (SCAN+rVV) as the oxygen ad-atom
phases over the wide range of chemical potentials. However, the relative stability of the
ring terminations with respect to the oxygen ad-atom phases is functional dependent. To
quantify this dependency one may look at the difference between the crossing points of
both the fully covered oxygen ad-atom (110) surface (light green line) and the V5O14

ring phase (cyan line) with the bare stoichiometric (110) surface, which determine the
effective adsorption energy of the additional oxygen atoms that are incorporated in the
superstructure. Independent of the spin treatment, the PBE and PBE+U functionals
places this difference between 0.4 eV to 0.5 eV, SCAN prefers the V5O14 ring by 0.1 eV and
the SCAN+rVV functional renders the difference in crossing points to below 0.01 eV. The
graphs also show that the (FM) PBE, (NM) PBE and (NM) PBE+U functionals prefer
the ring structures over the whole range of the oxygen chemical potentials while the other
functionals and spin configurations yield an energy window in the low oxygen chemical
potential region where the oxygen ad-atom phases would be preferred. On the other hand,
the (FM) SCAN, (FM) SCAN+rVV and (NM) SCAN+rVV functionals show a preference
for the ring terminations only in regions where the VO2 bulk phase is calculated to be
thermodynamically unstable. The strong stabilization of the ring structures for the PBE
and PBE+U functionals also hints towards an existence of additional polyhedral surface
terminations that are more stable than the ad-atom phases. Regarding the V4O13 and
V5O15 rings, most of the functionals do not exhibit a significantly different stability values
except for the (NM) SCAN, SCAN+rVV and (FM) PBE. While the V5O15 ring is more
stable by 50 meV (SCAN) and 80 meV (SCAN+rVV) than the disconnected ring, the (FM)
PBE functional prefers the connected V5O15 ring by 50 meV.

For the ring structure on the reduced oxygen missing subsurface layer (panel 3.27f
again a strong dependency on the chosen functional is evident. The graphs 3.28 and 3.29
find no additional stability at the SCAN or SCAN+rVV level, while these structures are
preferred at the PBE and PBE+U level under strongly reducing conditions, see yellow
dashed lines. Particularly the (NM) PBE+U functional prefers this structure for oxygen
chemical potentials in the range of −1.5 eV to −2.8 eV. An enhanced stability is also
found at the (NM) and (FM) PBE level, showing that a doubly reduced subsurface layer
would be stable for an oxygen chemical potential below −1.9 eV and −1.8 eV respectively.
A stability window ranging from −1.23 eV to −1.89 eV is also found for (FM) PBE+U
setups. The qualitative agreement between the PBE and PBE+U functionals can be
understood by considering the existence of an electronic gap for states connected with
the surface layer which will be discussed in the following section. The other functionals
determine these reduced subsurface layer structures to be unstable with respect to both the
other ring structures and ad-atom phases. Comparing the reduced V5O13 and V5O12 ring
terminations reveal yet another functional dependent property. Considering their crossing
points with the bare (110) surface line, the PBE and PBE+U functionals show crossing to
occur at a lower oxygen chemical potential for the more reduced ring termination with
a V5O12 surface stoichiometry. However, these crossing points are found either roughly
at the same oxygen chemical potential (SCAN) or they are even reversed (SCAN+rVV),
revealing a counter-intuitive opposite trend with respect to the ad-atom phases, see green
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Fig. 3.30: Vanadium and oxygen projected DOS of the VO2, V2O5 phases, and projections
to surface atoms of a VO2(110) surface fully covered with oxygen ad-atoms
and of the V4O13 ring termination. The projected DOS was calculated with
the non-magnetic PBE functional and is both normalized to a single atom and
aligned at the upper edge of the O-2p band.

lines in Figures 3.28 and 3.29. Vacancies at PBE and PBE+U level stabilize the surface
which is not the case for the SCAN functional.

One of the most striking differences between the spin-polarized and non spin-polarized
calculations for the surface free energies concerns the absolute values of the effective
adsorption energies. This difference can be illustrated best for the ring termination with a
V5O14 surface stoichiometry (Figure 3.27e). While the non-magnetic calculations yield
effective adsorption energies, depending on the chosen functional, between −1.88 eV to
−2.06 eV, (FM) spin-polarized calculations shift the resulting values by 0.20 eV, 0.60 eV,
0.61 eV and 0.57 eV to the right (less negative values) using PBE, PBE+U, SCAN or
SCAN+rVV. Note that similar shifts (±0.1 eV) are also observed for the ad-atom phases
(green lines in Figures 3.28 and 3.29). This energy shift can be attributed to higher energies
for bulk rutile VO2 when performing non-spin polarized calculations which are due to the
neglect of local magnetic moments, see Table 3.1.

Considering a possible opening of a gap in the surface DOS of the oxygen rich ring
terminations it is tempting to inspect the relation between the V2O5 bulk phase and the
ring terminations more closely. In Figure 3.30 the projected density of states of the bulk
VO2 and V2O5 phases are compared to the oxygen ad-atom phase at full coverage (Fig.
3.16c) and the V4O13 ring. The major difference between the electronic structure of VO2

and V2O5 bulk phases is found for the occupation of the V-3d states. While the Fermi
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level cuts the V-3d bands in the VO2 phase, the V2O5 phase shows an electronic band
gap of about 2.0 eV between the O-2p and V-3d states. As can been seen in Figure 3.30,
the projected surface DOS of the ring structure resembles rather closely the DOS of the
V2O5 bulk phase, revealing an unoccupied V-3d band and hence this surface termination
cannot form local magnetic moments. Figure 3.30 also shows that the terminating ring
layer is insulating with a 1.9 eV band gap, which is in a good agreement with the 2.3 eV
obtained for the V2O5 bulk (see Table 3.1). It should also be noted that the surface
free energies of the ring terminations correlate with the calculated oxidation enthalpy of
bulk VO2. As visible from the surface free energy graphs above, the difference between
the effective adsorption energy of the V5O15 ring phase and the reaction enthalpy for a
V2O5 formation by oxidizing VO2 is below 0.1 eV in all cases, while the absolute errors in
calculated oxidation enthalpies range from 0.1 eV to 0.79 eV. These facts indicate, that
the ring terminations are related to a monolayer of V2O5(001) in agreement with the
previous work [32]. This finding also implies that a correct evaluation of the stability for
both phases is important to properly describe the energetics of the oxygen rich surface
terminations, a criterion which seems to be matched best by spin-polarized PBE+U, SCAN
and SCAN+rVV calculations. However, the application of the (FM) PBE+U functional
yields wrong orbital occupations and strongly overestimates the c/a ratio of the bulk rutile
VO2 phase. From this perspective the spin-polarized SCAN and SCAN+rVV functionals
seem to be a better choice for performing calculations on VO2 surfaces.

3.5.3.2 Experimental and Calculated STM images

The experimental STM images of the (2 × 2) surface reconstruction were introduced at
the beginning of this Chapter in Section 3.2. In the following the validity of the present
models are tested by a comparison to experiment. The calculated STM images of the
superstructures obtained from the optimization of random structures (Figures 3.27b-f)
exhibit two distinct patterns that are displayed in Figure 3.31. The rectangular pattern
has also been presented in the previous section (Figure 3.31, left panel) and it is resembled
from structures 3.27b,c,f. The second pattern, zig-zag rows, is recovered from structures
3.27d,e, which was also revealed in experiments at the domain boundaries, see 3.31 (right
panel). The rectangular pattern that was more common in experiments is aligned with
respect to the surface layer beneath in both [001] and [11̄0] directions and the rectangular
STM pattern has also mirror axes in these directions (see Figure 3.3). All rectangular
patterns fullfill these particularities, except the alignment in the [11̄0] direction that is
discussed further.

As pointed out in Fig. 3.3, the dark rows that shows the experimental (2 × 2) recon-
struction in STM images along the [11̄0] direction (the light blue line in Figure 3.31) are
centered on the dark rows present in the unreconstructed VO2(110) surface. The respective
alignment of the structures that show the rectangular STM pattern is shown in Figure 3.32.
The light blue and the green lines denote positions of the dark rows in the reconstructed
surface layer and in the unreconstructed surface layer beneath, respectively. They show
that the best match between the simulated and experimental STM images provides the
shifted V4O13 ring superstructure. On the other hand, the remaining surface terminations
mismatch the alignment by a half of the lattice vector in [001] direction.
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The geometrical thickness of the reconstructed double layer ranges from 5.4 Å to 5.8 Å,
which is with respect to the experimental apparent height in STM (1.6 Å) 3× higher.
However, this large mismatch can be explained by the insulating nature of the V4O13

double layer.
However, not all experimental features are captured in the present models. First, the

experimental STM images show the presence of additional bright spots between the double
rows that are not explained by the V4O13 ring termination (see Section 3.2). Second, the
double rows in the experiment are always aligned with respect to the neighboring row as
in Figures 3.3a-b, but the present model also allows the hexagonal rings that form the
double-row pattern to be shifted by half of the unit cell in [001] direction, which is not
observed in the experiment. The effect that would restrict the observed structure just to
the aligned pattern is not evident from the DFT model; probably the alignment is caused
by the entities forming the additional bright spots. Furthermore, the experimental zig-zag
row always neighbors a rectangular row (see Fig. 3.31), which is not captured by the
present model because of the limited periodicity of the considered (2 × 2) supercell.

Regarding the stability of ring terminations at the chemical potential −2.07 eV that
represents annealing conditions, namely the annealing temperature and pressure, the
interpretations of the surface free energy diagrams 3.28 and 3.29 are rather inconsistent.
The spin-polarized SCAN and SCAN+rVV calculations predict a pristine (110) surface
which is clearly observed neither in XPS spectra nor with STM measurements. Another
peculiarity of the (FM) SCAN and SCAN+rVV calculations is the comparison of the
calculated phase boundary of the VO2 (red solid vertical lines) with the stability of the
V5O14 ring termination (cyan line) that evinces the zig-zag STM pattern, showing that
this ring superstructure is stable at the values of oxygen chemical potential beyond the
phase boundary, i.e, where the VO2 phase is thermodynamically unstable. The same
interpretation also holds for the (NM) SCAN+rVV functional although the effective
adsorption energies are shifted to the lower values. The interpretation of the (NM) SCAN
functional is slightly different, but still in a disagreement with the experiment: the V5O14

ring termination is also stable below the phase boundary at values of oxygen chemical
potential close to the experimental value −2.07 eV. Therefore, one could expect the
predominance of the zig-zag pattern with respect to the rectangular pattern in experiment
which is not observed. With this regard the PBE and PBE+U functionals yield different
results: the reduced ring termination with the V5O12 surface stoichiometry (yellow dashed
line) is stable at values of oxygen chemical potential of −2.07 eV regardless of the spin
configuration. Therefore, these functionals predict the presence of rectangular STM
pattern, in agreement with the experiment. Nevertheless, the ring structures with the
V4O13 and V5O14 surface stoichiometries can be seen as a structural basis that explains
the most prominent features of the experimentally observed surface reconstruction.

3.5.3.3 Reliability of the DFT results

The qualitatively different results obtained for different functionals raise the question on
their reliability concerning the stability of the ring termination. Several aspects important
for this question will be discussed in the following.

The surface free energies are calculated according to equation A.4. As shown, three
different atomic systems are part of the calculations: a slab, VO2 bulk and the oxygen
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Fig. 3.31: Calculated rectangular (left) and zig-zag pattern (middle) using the super-
structures obtained from optimization of random structures. The rectangular
pattern recover structures 3.27b,c,f, whereas the latter evince structures 3.27d,e.
The right panel contains the experimental STM image showing the zig-zag
pattern observed at the domain boundaries (the rows marked with ‘Z’). Right
panel reprinted from [32].

(a) V4O13 (b) V4O13 (shifted)

(c) V5O13 (d) V5O12

Fig. 3.32: Alignments of the obtained ring structures with respect to the (110) surface
beneath (purple area). The blue and green lines denote the positions of the
dark rows in the [11̄0] direction of the reconstructed and unreconstructed
surface, respectively. The experimental STM images (Figure 3.3) revealed that
the dark rows are aligned with respect to each other, i.e., the blue and the
green lines overlap.
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molecule. Hence, one should consider the errors that can be expected in DFT calculations
on these systems and look first at three separate regions in the slabs. The inner part of
slabs remains bulk-like and therefore one may expect cancellation of errors therein. The
second part of the slab is the surface layer with the polyhedral coordination geometry. The
present results indicate that the correct description of total energies of the surface layer
might be related to the good performance on the vanadium pentoxide system due to their
similar electronic structure. However, structural differences between the ring termination
and a vanadium pentoxide monolayer are quite large, i.e. the change of coordination
geometry of vanadium atoms from distorted pyramids to tetrahedra. It is therefore still
questionable whether the good performance on the stability of both vanadium oxide
phases ensures a good description of ring terminations. The third region is the interface
between the ring termination and the inner part of the slabs – the subsurface layer. Here
one might expect correlation effects that proceed from the d electrons that form the V
3d band. Since the number of electrons localized at vanadium atoms is dependent on
the adsorbed species, one might also expect that DFT would lead to errors that would
not be cancelled by the bulk reference. To quantify this expectation one may consider
the dependence of the number of V 3d electrons in the subsurface layer on the type of
the surface layer as calculated by an integration of the projected density of states onto
vanadium atoms in the subsurface layer over the occupied states that form the V-3d band.
The pristine VO2(110) surface contains the largest amount of d electrons and this number
decreases with increasing concentration of oxygen adatoms, which can be explained by the
formation of vanadyl V=O bonds. Furthermore, the buckling also leads to a decrease of
the occupation numbers. The ring terminations show a similar trend: higher concentration
of oxygen leads to lower occupation numbers. It has been shown that V4O13 and V5O15

rings yield a comparable value for the occupation number as the buckled surface covered
with 2 additional oxygen (2O@110B). Furthermore, the reduced ring terminations yield a
comparable value to the pristine (110) surface. Therefore, this implies that DFT must
describe the energetics of this systems also at reduced occupation numbers of correlated
3d electrons.

3.5.3.4 Summary

In this section the off-stoichiometric surface phases obtained from an optimization of random
structures were studied. First of all, the previously described ring terminations produced by
a modification of the vanadium pentoxide monolayer by other structurally-related ring layers
exhibiting the zig-zg pattern in STM images have been complemented. The performance
of PBE, PBE+U, SCAN and SCAN+rVV functionals for spin polarized and non spin-
polarized configurations have been studied, showing that the absolute values of surface free
energies depend on the choice of DFT functional and spin configuration. Three important
parameters that influence the calculated stability of the VO2 (110) superstructures were
identified. First, the PBE and PBE+U functionals prefer open tetrahedral terminations.
Such a behavior has already been seen in the structural parameters of the vanadium
pentoxide phase where the separation between the V2O5 layers is overestimated while
SCAN and SCAN+rVV functionals underestimate the distances (see Table 3.4). Therefore,
one may expect the existence of a large number of polyhedral superstructures that are
stable at the PBE level but unstable for the SCAN functional. Second, a correlation
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(NM) (FM)
PBE PBE+U SCAN PBE PBE+U SCAN structure

VO2(110) 5.48 5.24 5.44 5.76 6.36 6.12 3.16a
VO2(110)B 4.62 4.92 5.16 – 4.76 – 3.15
2O@110 3.54 3.44 3.6 4.14 3.68 4.26 3.16b
2O@110B 3.05 3.00 3.38 3.26 3.2 3.38 –
4O@110a 1.80 1.60 1.80 2.36 1.80 2.32 3.16c
4O@110a

B 1.46 1.50 1.78 1.16 1.30 1.16 –
V4O13 2.76 2.79 2.94 2.92 3.01 3.15 3.27b
V4O13 shift 2.63 2.75 2.76 2.92 2.55 2.78 3.27c
V5O15 (zig-zag) 3.19 3.26 3.21 3.15 2.49 3.56 3.27d
V5O14 (zig-zag) 4.35 4.39 4.46 3.95 3.96 4.05 3.27e
V5O13 5.27 4.16 5.46 4.71 5.17 5.52 3.27f
V5O12 5.37 4.78 4.93 6.12 6.21 6.16 3.27f
a calculated on (2 × 1) slabs.

Tab. 3.7: Occupation numbers of the V3d band per (2×2) slab, localized in the subsurface
layer. The right column shows the reference to the respective structure. The
subscript (‘B’) denotes the buckled surface.

between the calculated reaction enthalpy for the vanadium pentoxide and the V5O15

ring termination has been established, which indicates that a correct description of the
stabilities of the rutile VO2 and V2O5 phases is necessary for reliable results concerning the
calculated surface free energies. In this context the spin-polarized calculations are superior
to the non-spin polarized calculations, yielding in all cases (except the SCAN+U) values
closer to the oxidation enthalpy determined from experimental heats of formation[140,
156] for both phases. It could also be shown that the occupation numbers of V3d band in
the subsurface layer changes with respect to the structure of the ring termination above.
Unfortunately, no reference data are available to either prove or disprove the importance
of potential correlation effects that might emanate from changing the occupation number
in the surface V3d band. The third effect that influences the resulting surface free energy
is the surface buckling which plays the most significant role in case of the (FM) PBE+U
functional. The buckling reduces the occupation number of the Vt2g electrons in the
buckled row which is mainly preferred for functionals including Hubbard-like on-site
Coulomb interactions. In case of the fully-covered (110) surface, the buckling effect raises
the additional adsorption energy by ∼0.3 eV. However, the remaining functionals find
the buckling effect to be much weaker. All DFT functionals independent of the spin
treatment also predict that the ring structures are either more preferred or as stable as the
adsorption phase at high oxygen chemical potential. Judging from this rather extensive
use of different computational setups, one must conclude that the reaction enthalpy for
the vanadium pentoxide with respect to vanadium dioxide is an important property for a
correct description of the off-stoichiometric surface terminations because of its correlation
with the effective adsorption energies.

Regarding the experimental STM images, the main features that have been identified
in the experiment[32], namely the rectangular and zig-zag patterns have been recovered.
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However, additional protrusions that form the flower-like pattern have not been sufficiently
clarified yet.

3.6 Conclusion

The electronic and structural properties of the VO2 bulk phases (rutile, monoclinic),
low-index rutile VO2 surface orientations and off-stoichiometric rutile VO2(110) (2 × 2)
superstructures have been investigated with Density Functional Theory using different
functionals, namely PBE, PBE+U, SCAN and SCAN+rVV. It could be shown that he
non-magnetic (NM) SCAN and SCAN+rVV functionals offer the best performance in
the bulk system, and describes the basic properties of the monoclinic and rutile phases
in a qualitative agreement with experimental findings, such as an electronic band gap,
occupation numbers of orbitals that comprise the V-t2g band, lattice vectors and positions
of atoms in the unit cell and relative stability between these phases. In contrast to the
(NM) SCAN and SCAN+rVV functionals, other functionals exhibit a qualitatively wrong
description of either the rutile or the monoclinic phase. For example, the PBE functional
finds the monoclinic VO2 phase to be metallic instead of opening a ∼ 0.6 eV band gap,
while the (FM) PBE+U functional opens a 0.42 eV electronic band gap for the metallic
rutile phase.

Considering the low-index surfaces, the (110) termination exhibits the lowest surface
energy independent of the DFT functional and spin configuration and also matches best
with LEED and STM experiments. The (111) surface turned out to be least stable and
is even missing in calculated shapes of equilibrium rutile VO2 particles. Surface energies
for the remaining low-index orientations are independent of whether the spin-polarized
or non-spin polarized calculations are used, except for the (001) orientation where (NM)
calculations yield lower surface energies than ferromagnetic (FM) ones. Moreover, the
PBE functional yields on average 50 % lower surface energies than the SCAN functional.
However, one may assume that the (NM) PBE surface energy of the (110) orientation
24 meV/Å2 is rather too small and also in this case the results from the SCAN functional
are more applicable.

The off-stoichiometric rutile VO2(110) (2 × 2) superstructures have been investigated by
three methods, namely by simulated annealing, proper adjustment of a V2O5 monolayer
and optimization of random structures for different surface stoichiometries. The PBE and
PBE+U functionals evidently favor tetrahedral terminations for the adsorption phases,
whereas the SCAN and SCAN+rVV functionals show that adsorption phases are stable
at very low oxygen chemical potentials (< −1.4 eV, depending on the functional and
spin configuration). Furthermore, the absolute values of the surface free energies of
the resulting ring terminations are correlated with the calculated oxidation enthalpy of
vanadium pentoxide with respect vanadium dioxide. In contrast to (NM) calculations,
this phase boundary is always captured by (FM) calculations in better agreement with
the experimental value of −1.28 eV[140, 156]. The adsorption energies of the (2 × 2)
reconstructions might be also influenced by two other effects. First, a surface buckling
which stabilizes the surface by up to 150 − 550 meV per the (2 × 1) slab. Second, oxygen
adatoms as well as polyhedral terminations induce changes in the occupation number of
the V3d band localized at the subsurface layer. This might also invoke correlation effects
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that could influence the resulting stability of superstructures. However, due to the lack of
benchmark calculations or experimental results, one cannot decide which DFT functional
gives the best performance for the absolute values of surface free energies.

The suggested ring terminations were also assessed by a comparison with experimental
STM images. As easily seen, the proposed ring models that are based on corner-sharing
tetrahedra and square pyramids show an agreement with experiment[32] data superior
to simple adsorption phases. Even though the proposed models do not provide a full
explanation of all experimental STM details, they can be seen as a structural basis that
explains the most prominent features, namely the rectangular and zig-zag patterns on top
of the VO2(110) surface.
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Chapter 4

Zirconium dioxide (ZrO2)

In recent years, zirconium dioxide (ZrO2, zirconia) has been intensively studied because of
its large technological interest. For example, zirconia ceramics is a promising alternative for
the gate insulator in Metal Oxide Semiconductor Field Effect Transistors (MOSFET) [160,
161] and High Electron Mobility Transistors (HEMT)[162] because of its high dielectric
constant (ǫr ∼23 [163]), large electronic band gap (Eg = 5 − 6 eV[164, 165]) and thermal
stability on Si or GaN substrates. The large value of Eg also allows to use this material as
an insulator in electronic devices [166, 167]. High thermal stability among other refractory
ceramics makes zirconia usable as a thermal insulator in high temperature and high
pressure experiments [168]. Since oxygen vacancies can diffuse through this (perfectly
insulating) material, zirconium dioxide is also used as an ionic conductor. The formation of
oxygen vacancies is further improved by doping, e.g. with yttria[169], making this material
usable as an electrolyte in Solid Oxide Fuel Cells (SOFC)[170–172] and gas sensors[173].
Zirconia is also well known as a biocompatible material and it has therefore found use e.g.
in orthopedics as femoral heads for total hip replacement [174] and in medicine as dental
fixed prostheses [175], even though an ageing effect in the human body has been reported
[176]. Moreover, zirconia is being studied for its catalytic properties, e.g. for methanol
synthesis via CO2 hydrogenation [177].

Depending on pressure and temperature, zirconium dioxide exists in many different
phases [178]. At low temperatures and low pressures, zirconia crystallizes in a mono-
clinic phase (space group P21/c)[179], also known as baddeleyte which is stable up to
1270 °C. Thereafter, it undergoes a phase transition to the tetragonal phase (space group
P42/nmc)[180, 181]. At about 2650 °C the tetragonal phase is transformed into the cubic
phase (space group f m3̄m)[180]. Application of a compressive stress at room temperature
leads to a phase transition from the monoclinic ground state to two orthorhombic phases,
first at transition pressures of ∼10 GPa forming the orthorombic I phase (space group
Pbca)[182], second at elevated pressure >25 GPa[182] which transforms the zirconia into
the orthorhombic II phase (space group Pnma)[183]. Müller et al.[184] reported a discovery
of the field-driven ferroelectric phase transition in ultrathin ZrO2 thin films (space group
Pca21). In agreement with experimental data, the applied electric field necessary to cause
the phase transformation was calculated to be in order of 1 MV/cm[185].

Surfaces of zirconium dioxide have also received an increased attention in the last years
from both theoretical and experimental sides. One obvious difficulty that hinders the use
of surface science techniques in the investigation of this interesting system is its insulating
nature. Therefore, measurements that use charged particles for analysis, e.g. Scanning
Tunnelling Microscopy (STM) or Low-Energy Electron Diffraction (LEED) are limited
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to ultra-thin zirconia films on a metal support to avoid a charging effect. Nevertheless,
several important findings have been reported over the past ten years.

First, thin zirconia films on the Pt(111) substrate were prepared by Physical Vapour
Deposition (PVD) of zirconium in an O2 atmosphere and by a subsequent annealing
by Meinel et al. [186–188]. It was shown that the quality of thin films depends on
deposition annealing temperature. Depending on preparation conditions, namely number
of monolayers and annealing temperature, various superstructures have been identified
with LEED and STM. For example, The ZrO2(111)-(1 × 1) film exhibits a rotation by ±6°
regarding the Pt(111) substrate. In addition, Maurice et al.[189] have observed a (2 × 2)
superstructure, which had been attributed to the (

√
7 × √

7) reconstruction of the Pt(111)
support by the DFT calculations performed by Eichler et al.[190]. Sub-monolayer films
show a (4 × 4) and (2

√
3 × 2

√
3) superstructure after annealing which fits to the (5 × 5)

and (
√

19 × √
19)R±36.6° superstructure of the Pt(111) substrate, respectively. Another

important finding revealed by Meinel is the fact that thin zirconia films break up at high
annealing temperatures, i.e. >1000 K, which shows their meta-stable character[188]. A
similar finding had been reported by Lou et al.[191], who reported that thin zirconia films
grown on Au(111) and annealed at temperatures >1025 K lead to a decrease in the Auger
signals of both Zr and O, and an increase for Au.

Ultrathin zirconia films have also been prepared by oxidation of zirconium alloys – Pt3Zr
and Pd3Zr[192–194], leading to the formation of a single zirconia monolayer. As pointed
out, the diffusion of zirconium atoms in Pt3Zr is slow so that a zirconia trilayer (O-Zr-O)
is interfacing a pure Pt(111) layer. The formed ZrO2 trilayer shows a (

√
19 × √

19)R23.4°
superstructure with respect to the substrate, identical to one reported by Meinel[186]. On
the other hand, on a Pd3Zr substrate a large superstructure (

√
217 × √

217)R10.16° is
formed.

Finally, thin zirconia films were grown with the help of a UHV-compatible sputter
source which allows the growth of films layer by layer. The films with a thickness of 2-10
monolayers (ML) were deposited and analyzed by LEED and STM by Lackner et al.[34,
35] using the Rh(111) as substrate. It was shown that the structure of the film depends
on thickness and annealing temperature. A film with a thickness of 2 ML shows a ‘rosette’
pattern with a (

√
21 × √

21)R10.9° superstructure. The lattice constant related to the
zirconia film was measured to be 3.41 Å, shrunken by ∼6 % with respect to the cubic ZrO2

lattice. This was attributed to the fact that ZrO2 films might be oxygen-deficient, which
would reduce the O-O repulsion and therefore lead to the more compressed film. Thicker
films evince a (2 × 1) or a distorted (2 × 2) superstructure corresponding to tetragonal and
monoclinic zirconia, respectively, depending on the annealing temperature. Annealing at
high temperatures result in a monoclinic phase, breaking up the zirconia film as pointed out
before. A subsequent study revealed[34] that the tetragonal and monoclinic films exhibit
a 1.8 eV difference in core level binding energy, which was explained by the presence of
positively charged oxygen vacancies in tetragonal films which cause a band bending because
of the large electronic gap of zirconia. This agrees with DFT calculations [195], which
showed a reduction of the oxygen vacancy formation energy at the metal-oxide interface by
3 − 5 eV compared to the bulk or unsupported surface. A similar effect has been reported
for positively charged oxygen vacancies which show increased stability when lowering the
Fermi level with respect to Valence Band Maximum (VBM)[196], which are more preferred
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than Zr3+ species. Moreover, it has been concluded[34] that oxygen vacancies stabilize the
tetragonal film and if they are filled via oxygen spillover, the monoclinic film is formed.

In the first part of this chapter we present a thorough examination of the performance of
DFT for the description of pure zirconium phases relevant to aforementioned experiments
– namely monoclinic, tetragonal and cubic ZrO2. During our investigation, we have also
found two meta-stable phases that have not been reported in experiments. The first
one is denoted meta-monoclinic due to observed transitions to the monoclinic phase on
supported thin films (see Appendix B), and the second one anatase as its crystal structure
is structurally related to the TiO2 phase with the same name. Both phases are included
in this comparison. The present DFT results are compared to results of beyond-DFT
methods, such as RPA calculations – performed by W. Mayr-Schmölzer[197], and MP2
and CCSD calculations by A. Grüneis[197]. The second part of this chapter is focused on
a characterization of oxygen vacancies: (i) in bulk systems, (ii) in unsupported slabs and
(iii) at the interface of a metal support.

Computational details

All calculations presented in this chapter were performed with the Vienna Ab-initio
Simulation Package (VASP). For oxygen 6 valence electrons (2s22p4) and for zirconium
12 valence electrons (4s24p65s24d2) were expanded in a plane basis set with an energy
cut-off 600 eV to 800 eV, depending on the calculated structure to ensure the convergence
of total energies to 1 meV/atom. The Brillouin zone was sampled with a Γ-centered
Monkhorst-Pack grid using the 3 × 3 × 3 k-points for the monoclinic phase and adjusted
grids that ensure a similar sampling for remaining phases. Bulk equilibrium volumes were
obtained from a parabolic fit of calculated bulk energies at several volumes around the
equilibrium value.

4.1 Pristine ZrO2 bulk systems

In this work ZrO2 phases are studied that are relevant for experiments regarding supported
thin zirconia films. Therefore, the focus is on low-pressure phases, namely monoclinic,
tetragonal and cubic ZrO2. Apart from that, meta-stable meta-monoclinic and anatase
ZrO2 are also considered. All these phases are depicted in Figures 4.1a-e. The most simple
structure has the cubic phase depicted in Figure 4.1a in the body-centered tetragonal
lattice with the lattice parameter a = 3.60 Å. The unit cell is composed of two ZrO2

formula units, which form O-Zr-O layered structure. All zirconium atoms are eight-fold
and oxygen atoms four-fold with the Zr-O bond length of 2.20 Å and O-O distances of
2.55 Å[198]. The cubic phase undergoes a phase transition to the tetragonal phase when
cooled down below 2650 °C. The main structural change is shown in Figure 4.1b as a
buckling of oxygen atoms, which are situated in case of the cubic phase in a single plane.
The buckling in the tetragonal phase is measured to be 0.51 Å[199]. Consequently, the [001]
lattice vector is increased as well as the volume of the tetragonal unit cell. Furthermore,
the buckling also changes the bond lengths to zirconium atoms, forming shorter and longer
bonds with lengths 2.39 Å and 2.09 Å, respectively. Moreover, oxygen-oxygen distances are
changed to 2.60 Å. The structure of the monoclinic phase that is thermodynamically stable
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Fig. 4.1: (a) Cubic, (b) tetragonal, (c) monoclinic, (d) metamonoclinic and (e) anatase
ZrO2 phases that were considered in this work. Zirconium atoms are colored in
green, three-fold oxygen in yellow and four-fold oxygen in red.

below 1270 °C is illustrated in Figure 4.1c, which shows two significant changes compared
to the tetragonal bulk: first, the volume of the unit cell is expanded by ∼6.7 % with
respect to the tetragonal phase, which is accompanied by bond breaking. All zirconium
atoms are coordinated seven-fold while the coordination of half of oxygen atoms changes
from four-fold tetragonal (colored in red) to three-fold planar (in yellow). Second, the unit
cell undergoes a distortion, which leads together with an increased volume of the unit cell
to a change of the average O-O distance to 2.86 Å while Zr-O distances remain short, on
average 2.16 Å – shortest among these phases. This also explains why the monoclinic phase
is the most stable at the room temperature: oxygen atoms are negatively charged and
repel each other while the shorter bonds in the monoclinic phase indicate larger stability.

The meta-stable meta-monoclinic phase has been introduced by Thomas et al. [200]
as an intermediate structure between the tetragonal-to-monoclinic phase transition. In
our calculations we have identified this phase after the relaxation of tetragonal ZrO2(101)
multilayer slabs which is discussed more in detail in Appendix B. The relations to the
monoclinic phase are the following: the meta-monoclinic structure is composed of the
same amount of three-fold and four-fold oxygen atoms as well as the presence of seven-fold
coordinated Zr atoms, see Figure 4.1d. Moreover, the monoclinic distortion is present
which yields the similar volume of the unit cell per formula unit compared to the monoclinic
phase. However, the coordination of three-fold oxygen atoms is not planar and the unit cell
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is formed only by two ZrO2 formula units. The second meta-stable phase called anatase
is characterized by an uniform expansion of the monoclinic phase, which results into an
additional breaking of bonds. Hence, all Zr atoms are six-fold coordinated and all oxygen
atoms exhibit a planar three-fold coordination, see Figure 4.1e. More information about
the identification of anatase ZrO2 is presented in Appendix B.

In the following the performance of various DFT functionals will be studied for these ZrO2

polymorphs, including PBE, PBE+U, SCAN and SCAN+rVV that were also used in the
previous chapter. Additional functionals included were the optB88[201] and optB86b[202]
van der Waals density functionals, the hybrid HSE06[76, 77] functional and the (GGA)
PBEsol[63] functional. Considering the DFT+U functional, the same value for the on-site
interaction parameter in Dudarev’s implementation (U −J = 4 eV) was used as in [195, 203].
This computational setup will be marked as PBE+U. Moreover, the U parameters for O2p
and Zr4d states were calculated by Wolloch[204] from constrained RPA calculations, which
yielded U(O2p) = 4.86 eV and U(Zr4d) = 3.53 eV. Calculations using these parameters
for the on-site coulomb interaction for Zr4d and O2p states will be denoted as PBE+U*.

Calculated structural properties of the ZrO2 phases are shown in Table 4.1. Considering
the cubic phase, errors in the calculated a lattice parameter are below 1 % for all functionals
except PBE, PBE+U and PBE+U*, which overestimate both lattice parameters and
volume of the unit cell. An overestimation of lattice constants for the PBE functional is a
known phenomenon that was also observed in other systems, see e.g. [206]. Regarding the
tetragonal phase, a poor description of the buckling in the oxygen layer (dz parameter) for
PBE+U, PBE+U* and optB86b functionals was found which underestimates the reference
value by 33 %, 24 % and 16 %, respectively. Furthermore, the PBE+U and PBE+U*
functionals also underestimate the c/a ratio from 1.443 to 1.427 and 1.431 respectively.
Note that these values are similar to the cubic c/a =

√
2 = 1.414. Structural properties of

the monoclinic ground state are described well with all functionals. The largest deviations
show PBE, PBE+U and PBE+U* functionals which again overestimate the volume of
the unit cell, namely by 3 %, 7 % and 5 %, respectively. The meta-stable meta-monoclinic
phase yields almost identical volume of the unit cell compared to the monoclinic phase
with differences up to 0.2 Å3/f.u., except the PBE+U and PBE+U* functionals which
show a different trend: the distortion angle β is reduced to ∼60° and the volume of the
unit cell is similar to the tetragonal phase. A detailed analysis has also revealed that the
three-fold coordinated oxygen atoms were transformed to four-fold. Thus, the PBE+U
and the PBE+U* functionals have transformed the meta-monoclinic phase to tetragonal
during the relaxation process. The remaining functionals show no significant differences
in average Zr-O bond lengths, but O-O distances differ. For example, the SCAN+rVV
functional predicts an increase of the average value for the Zr-O bond from 2.155 Å to
2.165 Å and average O-O distance changes from 2.784 Å (monoclinic) to 2.760 Å. The last
phase treated in this study is anatase ZrO2, where the volume of the ground state is ∼20 %
larger. The SCAN+rVV functional predicts average bond length to be 2.09 Å and O-O
distance 2.87 Å. Note that all Zr atoms are six-fold coordinated and thus additional bonds
are broken with respect to the monoclinic ground state.

Regarding the calculated stability of these ZrO2 phases, all DFT functionals find the
monoclinic phase to be the energetic ground state. Figure 4.2 shows the calculated
energy penalties with respect to the monoclinic phase for the remaining ZrO2 structures
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Fig. 4.2: Calculated stabilities of the tetragonal, cubic, meta-monoclinic and anatase
ZrO2,with respect to the monoclinic ground state.

including the beyond-DFT results (RPA, DMC) and experimental findings. Regarding the
high-temperature phases (tetragonal, cubic), all functionals describe, in agreement with
experimental findings, the tetragonal phase to be more stable than the cubic ZrO2. The
PBE functional overestimates the stability of the monoclinic ground state by 61 meV/f.u.
and by 38 meV/f.u. with respect to the experimental values for high temperature tetragonal
and cubic phases[208]. Underestimated stability of the tetragonal phase is fixed with
all remaining functionals giving a closer value to the experimental reference. Regarding
the PBE+U and PBE+U* functionals, the stability of the tetragonal phase (76 meV
and 79 meV) is in a good agreement with the experimental value, but the cubic phase is
calculated to be too stable. The small difference in the calculated stability between the
tetragonal and the cubic phase can be attributed to the structural changes in the tetragonal
phase after the relaxation, namely underestimation of the c/a ratio and size of the buckling
that represent the main differences between the tetragonal and the cubic phase. On the
other side, the best performance regarding the stability of the high temperature phases is
found for the SCAN+rVV functional, which differs only by 3 meV and 18 meV per f.u. from
the reference values for the tetragonal and the cubic phase, respectively. Also the SCAN
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Fig. 4.3: Calculated band gaps of the ZrO2 polymorphs using various DFT functionals.
The horizontal line represents the lowest value of the experimental band gap
related to the tetragonal phase.

and the PBESol functionals show a good performance. However, they underestimate the
stability of the cubic phase by 40 meV/f.u. and 20 meV/f.u. respectively.

Considering the stability of the meta-monoclinic phase, the RPA benchmark calculations
describe it to be 10 meV/f.u. less stable than the tetragonal phase. A qualitative agreement
with the RPA benchmark is recovered only by the SCAN+rVV functional, which yields
the tetragonal phase to be more stable by 3 meV/f.u. However, this can be improved
by including zero-point vibrational energies, which yield a decreased stability of the
meta-monoclinic phase by additional 19 meV/f.u.[197]. The second metastable phase,
anatase ZrO2, is calculated with RPA to be the least stable. However, our results show a
strong dependency of the calculated stability on the DFT functional used. PBE, PBE+U,
PBE+U* and HSE erroneously favour this phase and is determined to be as stable as the
meta-monoclinic (HSE), or even more stable. On the other side, all the other functionals
describe this phase to be similarly stable or less stable than the cubic phase. This finding
indicates that the preference of the anatase phase is a PBE artefact which is compensated
neither by considering the on-site interactions in PBE+U and PBE+U* nor by the HF
exchange in HSE. Note that the HSE functional is based on PBE exchange and correlation.
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The SCAN and SCAN+rVV functionals significantly improve the stability of all phases
with respect to standard GGA and GGA+U functionals. Moreover, the electronic structure,
in particular the size of the electronic band gap, is described better compared to GGA and
is on the level of DFT+U. Figure 4.3 shows calculated electronic band gaps in comparison
with reference G0W0 calculations[197] and the experimental value for the (yttria-stabilized)
tetragonal phase of ∼5.8 eV, which was reported to have the smallest band gap[164]. Even
though the SCAN functional systematically enlarges the electronic gap compared to PBE,
the resulting values are still too small. The experimental value can only be reproduced by
G0W0 or by HSE while the remaining functionals underestimate this value by 1 − 2 eV. It
should also be noted that van der Waals corrected DFT functionals (OptB88, OptB86b)
do not yield better results than the PBE functional.
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4.2 Neutral oxygen vacancies in the ZrO2 bulk

As already pointed out, oxygen vacancies play an important role in zirconia for applications
such as an electrolyte in solid oxide fuel cells. Furthermore, they influence properties
of thin zirconia films on a metal support. For example, they stabilize the tetragonal
phase with respect to the monoclinic phase[34, 35]. In this section, the stability of oxygen
vacancies in the stable and metastable zirconia polymorphs is discussed. The oxygen
vacancy formation energy Ef – the energy that is necessary to create the oxygen vacancy,
can be calculated as

Ef = Ebulk − Evac
bulk − 1

2
EO2

, (4.1)

where Ebulk and Evac
bulk are total energies of the system without and with an oxygen vacancy,

respectively. EO2
denotes the total energy for an oxygen molecule in the triplet state. All

calculations were performed with supercells to avoid interaction between oxygen vacancies
due to the periodic boundary conditions. 4 × 4 × 4 supercells were used for the cubic ZrO2

phase and adjusted supercells for the remaining phases to achieve a similar separation
of the oxygen vacancies. These supercells ensure the convergence of the oxygen vacancy
formation energies up to 50 meV. The stability of oxygen vacancies has been studied with
the subgroup of DFT functionals that were already used for the pristine bulk systems.
Most of the DFT functionals used in the study of the bulk systems, namely the PBE,
PBE+U, PBE+U*, OptB86b and SCAN have been considered. HSE and SCAN+rVV
calculations were omitted due to a higher computational cost and remain as tasks for the
near future.

The resulting oxygen vacancy formation energies are depicted in Figure 4.4. All
functionals describe the formation energy to be very high – between 5.5 eV and 6.9 eV,
revealing that the formation of oxygen vacancies in all ZrO2 bulk phases is strongly
unfavourable. However, Figure 4.4 shows that the absolute values of calculated formation
energies depend on both the crystal structure and the chosen functional. In the following
lines, the dependence of the vacancy formation energy with respect to the crystal structure
will be discussed.

All functionals show the same trend: Oxygen vacancies are easiest to form in the
cubic phase, followed by the tetragonal phase with an energy penalty 12 − 120 meV and
meta-monoclinic phase (∆Ef = 12 − 120 meV). On the other side, monoclinic and anatase
polymorphs disfavour the formation of oxygen vacancies by ∼ 0.2 − 0.7 eV compared to
the cubic phase. Formation energies in the monoclinic and meta-monoclinic phases depend
on the coordination geometry of the oxygen that is removed from the unit cell. These
phases show a reverse behaviour: All DFT functionals prefer a removal of the four-fold
coordinated oxygen atom from the monoclinic phase, whereas in the meta-monoclinic
phase an oxygen vacancy at a three-fold coordinated oxygen site is preferred.

Regarding the dependence of the formation energies on a particular DFT functional, the
results are qualitatively similar for all phases. The highest formation energies are predicted
by the SCAN functional (6.3 − 6.9 eV), followed by the OptB86b (6.3 − 6.7 eV). Compared
to the PBE functional, the SCAN and the OptB86b functionals yield ∼0.5−0.7 eV and
∼0.3−0.5 eV higher values for the oxygen vacancy formation energy. The increase of
the vacancy formation energy is related to the calculated binding energy (EB) of the
O2 molecule used as the reference system in calculations, see formula 4.1. The SCAN
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Fig. 4.4: Calculated oxygen vacancy formation energies in stable and meta-stable ZrO2
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functional yields the lowest EB(O2) (EB = 5.15 eV[69]), which is closest to the experimental
value EB = 5.12 − 5.23 eV[69]. The values for OptB86b and PBE are EB 5.69 eV and
6.23 eV, respectively[209]. Considering the differences in calculated binding energy of the
oxygen molecule with respect to the PBE functional one finds ∼0.3 eV and ∼0.5 eV for the
OptB86b and the SCAN functionals, respectively. These values are comparable to lower
limits for the calculated differences in the oxygen vacancy formation energies. Thus, the
correct binding energy of the oxygen molecule is an important parameter for the oxygen
vacancy formation energy. Seen from this perspective, the SCAN functional yields the
most reliable results.

Interestingly, compared to PBE, PBE+U and PBE+U* show a reversed trend in the
calculated formation energies: PBE+U (including only Zr4d on-site interactions) leads
to higher vacancy formation energies by ∼0.1−0.3 eV, but PBE+U* (including Zr4d and
O2p on-site corrections) lowers them approximately by the same value. The increase of
formation energies with the PBE+U functional could be caused by an increased polarization
of Zr-O bonds in the vicinity of an oxygen vacancy. On the other side, lower values of
the oxygen vacancy formation energies for the combined corrections at both Zr and O
sites (PBE+U*) are presumably caused by a different oxidation state of oxygen in the
ZrO2 bulk and in an oxygen molecule. Hence, the oxygen atom in the ZrO2 bulk with an
oxidation state of −2 is penalized by DFT+U* with respect to an oxygen atom in a O2

molecule with an oxidation state of zero.
The influence of the oxygen vacancy on the electronic structure has been studied with

the SCAN functional. Formation of a neutral oxygen vacancy in the bulk ZrO2 leaves
two electrons behind. Thus, the most prominent change in the electronic structure is the
formation of occupied vacancy states localized between the valence and the conduction
band, as shown in Figure 4.5a by a black solid vertical line, which represents the calculated
Fermi level. Independent of the ZrO2 phase, the gap state is always found in the upper
half of the electronic band gap, i.e. closer to the conduction band minimum, as shown
in Table 4.2. As a result, the calculated valence band maximum is pushed from the edge
of the O2p band much closer to the Zr4d band. This finding corresponds to rather high
values for the formation energies because of the necessity to fill rather unfavourable gap
states.

The influence of the size of the supercell on the calculated formation energy has been
studied with the PBE+U functional in cubic 1 × 1 × 1 to 4 × 4 × 4 supercells. While the
energy cut-off was kept same, the k-points grid was correspondingly adjusted to the size of
the supercell, starting from the 4 × 4 × 4 grid for the smallest cell to 1 × 1 × 1 grid for the
largest. The result is depicted in Figure 4.5b as a function of the reciprocal value of the
shortest distance between oxygen vacancies. Extrapolation to zero (i.e. infinite distance
between oxygen vacancies) shows that 4 × 4 × 4 supercells yield formation energies with
an error of 50 meV.

Lastly, the charge distribution of the vacancy states inside the electronic gap is shown
in Figure 4.5c for the tetragonal phase, but a similar behaviour has also been observed
in the other phases. As shown, most of the left behind electrons are localized inside the
oxygen vacancy and also to a much lesser degree at surrounding Zr atoms. Some charge is
also visible at the surrounding nearest and next-nearest neighbour oxygen atoms.
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Fig. 4.5: Panel (a), calculated SCAN electronic structure of the cubic ZrO2 4 × 4 × 4
supercell in presence of the oxygen vacancy, which induces states inside the
electronic gap marked by a black solid vertical line. Vacancy states are magnified
by a factor of 20 for a better visualization. The convergence of the oxygen
vacancy formation energy with respect to the size of the supercell using the
PBE+U is shown in panel (b). The gray line marks a linear fit of calculated
values using different sizes of supercells. Errors in calculated vacancy formation
energies are below 50 meV. Panel (c) displays the charge density corresponding
to vacancy states marked by the black arrow.

mono (3f) mono (4f) tetra cubic meta (3f) meta (4f) ana

Evac [eV] 2.99 2.55 3.04 2.73 3.14 2.95 3.12
Rel. [%] 72 62 66 70 66 62 79

Tab. 4.2: Calculated positions of the induced oxygen vacancy states in ZrO2 polymorphs
with respect to the upper edge of the O2p band (upper line) and relative
position in the band gap (lower line). 0 % correspond to the valence band
maximum and 100 % to the conduction band minimum.
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4.3 Charged oxygen vacancies

In real systems the formation of oxygen vacancies can be accompanied by a charging of the
vacancy, which would make the oxygen vacancy either negatively charged when an oxygen
vacancy behaves like an electron acceptor, or positively charged – an oxygen vacancy is
an electron donor. In this section, the stability of charged oxygen vacancies and their
influence on the electronic structure in the tetragonal and in the cubic ZrO2 phases will
be discussed.

The stability of the charged oxygen vacancy is usually considered as a function of the
Fermi energy that varies over the range of the electronic band gap[210]. Thus, one needs
to modify Eq. 4.1 into the following form[196]:

Ef
chg(EF ) = Evac

bulk − End
bulk + µO + q(EV + EF ) + Ecorr., (4.2)

where Evac
bulk and End

bulk are total energies of the supercell with and without a charged
vacancy, respectively. The formation of oxygen vacancies was calculated for an oxygen
chemical potential µO = 1/2EO2

fixed at the energy of the oxygen molecule in the triplet
state. The next two terms – EV and EF , mark the energy of the valence band maximum
in the unperturbed supercell and the Fermi energy, respectively. In this notation, the
Fermi energy EF is taken with respect to valence band maximum, i.e. it ranges from zero
(valence band maximum) to the size of the band gap (conduction band minimum). The last
term – Ecorr. denotes the correction energy that considers the finiteness of the calculated
supercell containing the charged defect, when using periodic boundary conditions. Since
the present supercells are converged to 50 meV with respect to oxygen vacancy formation
energy as demonstrated above, this correction term is assumed to be rather small and is
neglected. In the following calculations for cubic and tetragonal 3 × 3 × 3 supercells using
PBE and the SCAN functionals will be discussed. Five different charge states have been
considered: positively charged (−2e− and −1e−), neutral and negatively charged (+1e−

and +2e−) oxygen vacancies for each phase and functional.
Considering the tetragonal phase, the influence of defects with different charge state on

the surrounding atoms and on the electronic structure is depicted in Figure 4.6. Panel 4.6a
shows that the negatively charged oxygen vacancy with two excess electrons (the black dot)
attracts the surrounding zirconium atoms and oxygen atoms are repelled. The average
distance between the center of the oxygen vacancy and the nearest-neighbour oxygen atoms
changes from 2.51 Å (neutral supercell) to 2.55 Å in the charged supercell while the average
distance between the oxygen vacancy and surrounding zirconium atoms is shortened from
2.21 Å to 2.07 Å. On the other side, the positively charged oxygen vacancies with two
electrons lost attract oxygen atoms and repel zirconium atoms, see panel 4.6b. In this case
the average distances of the oxygen – oxygen vacancy and zirconium – oxygen vacancy
change to 2.34 Å and 2.41 Å, respectively. This finding indicates that the extra charge
induced by a point defect is localized in vicinity of an oxygen vacancy so that the positively
charged defect attracts negatively charged oxygen atoms and repels positively charged
zirconium atoms and vice versa.

Panels 4.6c-h show the electronic structure of the (c) unperturbed supercell, and (d-h)
supercell with an oxygen vacancy with different charge state, ranging from +2 (−2e−) to -2
(+2e−). As shown, the most prominent changes in the electronic structure are extra states
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Fig. 4.6: Calculated electronic structure (SCAN) of the tetragonal ZrO2 3×3×3 supercell.
Panels (a-b) show the displacement of the nearest Zr and O atoms neighbouring
negatively and positively charged oxygen vacancies. Panels (c-h) show the
electronic structure of: (c) unperturbed unit cell and the unit cell containing:
(d-e) positively charged (−2e−, −1e−), (f) neutral, and (g-h) negatively charged
(+1e−,+2e−) oxygen vacancy. Inset figures show the relaxed structure in vicinity
of the oxygen vacancy, offset figures represent the charge distribution of vacancy
states marked with black arrows. Vacancy states are magnified for a better
visualization.
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Fig. 4.7: Electronic structure of the negatively charged cubic cell with two excess electrons
and the charge distribution of the gap states. The states in the electronic band
gap are magnified (5×) for a better visualization.

within the electronic band gap. Starting from a supercell with two electrons lost (charge
+2, panel 4.6d), the gap states are removed and the original band gap is recovered. When
the charge state is changed and more electrons are put into the supercell, the gap states
appear inside the electronic band gap, again in its upper half closer to the conduction band
minimum, as shown in the previous section. The presence of the gap states is accompanied
by a shift of the calculated valence band maximum (see gray lines) into the electronic band
gap. In this respect, the major difference between the positively and negatively charged
defects is the formation of an additional vacancy level in the band gap and the shift of
the calculated Fermi energy almost into the conduction band minimum. The offset panels
show its charge distribution to be always localized in the vicinity of the oxygen vacancy.

Regarding the cubic ZrO2 phase, the neutral and positively charged oxygen vacancies
show a similar trend for the electronic structure and the surrounding atoms. However,
excess electrons (charge states +1e− and +2e−) are not localized near an oxygen vacancy.
As shown in Figure 4.7, the excess charge related to the second peak in the band gap
is delocalized over all zirconium sites in the supercell. This finding indicates that the
localization of excess charge in the tetragonal cell is possible because of the broken
symmetry.

Figure 4.8 displays the evaluated stability of the charged and neutral oxygen vacancies
as a function of the Fermi energy, which ranges from 0 (valence band maximum) to 5.8 eV
corresponding to the experimental value of the band gap[164]. The black vertical line
marks the calculated conduction band minimum. In these calculations tetragonal and
cubic phases have been treated with PBE and SCAN. For the tetragonal phase, both DFT
functionals show that the negatively charged oxygen vacancies are only stable for a state
very close to the conduction band minimum. This agrees with the electronic structure,
which shows that additional gap states are located approximately at the same position.
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(a) Tetragonal ZrO2
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Fig. 4.8: Calculated stability of a charged oxygen vacancy using the PBE and SCAN
functionals as a function of the Fermi energy relative to the valence band
maximum. The horizontal line marks the formation energy of a neutral oxygen
vacancy and the black vertical line the position of the conduction band minimum.
Numbers in a legend denote the charge state of an oxygen vacancy.

The stability of the negatively charged oxygen vacancies is even more suppressed in the
cubic phase: PBE and SCAN functionals predict a stable vacancy only for a Fermi energy
above the calculated conduction band minimum (CBM). The slightly better stability of
a negatively charged oxygen vacancy in the tetragonal phase can be attributed to the
localization of its charge and additional structural relaxations as pointed out above. Both
functionals show that over the wide range of Fermi energies, positive oxygen vacancies with
a charge state +2 (−2e−) are the most stable species. The high stability of the positively
charged defect also shows that the large formation energy of neutral oxygen vacancies is
due to the formation of rather unstable gap states localized in the vicinity of an oxygen
vacancy.
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60°

(a) (b)

Fig. 4.9: Top view (panel a) of the interface between a t-ZrO2 (101) slab and the Rh(111)
substrate. Only one monolayer of both materials is shown. Blue vectors denote
the original surface vectors of the Rh(111) (4×8) superstructure and the adjusted
t-ZrO2 (3 × 3) unit cell. The black rectangle marks the unit cell considered in
calculations, created by the transformation of the original lattice. Panel (b)
marks the side view of the supported t-ZrO2 (101) slab after the structural
relaxation. Rhodium, zirconium and oxygen atoms are colored in gray, green
and red, respectively. The violet sphere represents the oxygen atom that was
subsequently removed for studying the properties of defects in the supported
slabs.

4.4 Vacancies in (un)supported t-ZrO2(101) films

In this section the influence of a metallic support as used in experimental measurements[35]
on the formation of oxygen vacancies in thin t-ZrO2 films is studied. For these purposes
the most stable termination of tetragonal ZrO2, namely the (101) surface in a (2 × 1)
superstructure on the Rh(111) substrate[35] has been investigated. The experiments
[35] also show that depending on annealing temperatures and slab thickness different
superstructures are obtained. Therefore, the calculations were restricted to five-layered
slabs with a tetragonal structure that occurs when the thin film is annealed at temperatures
below 730 °C.

A Rh unit cell with a lattice parameter aRh = 3.8 Å[211] creates a Rh(111) surface with a
surface unit cell with the size

√
2/2aRh = 2.7 Å. The tetragonal ZrO2 (t-) (101) surface with

in-plane vectors with lengths 3.61 Å and 7.30 Å can be matched to the Rh(111) substrate
by considering t-(101) (3 × 3) and Rh(111) (4 × 8) supercells with a lattice mismatch
of 0.8 % and 1.8 %, respectively. In the present calculations the lattice parameters of
the t-ZrO2(101) film were adjusted to fit the Rh(111) (4 × 8) supercell which created an
interface as depicted in Figure 4.9a. The Rh(111) lattice vectors are denoted by the blue
arrows and the rectangular unit cell used in the calculations is shown in black. Figure
4.9b shows a side view of the resulting interface between the Rh(111) substrate and the
t-ZrO2 (101) slab after the relaxation, the most prominent changes are apparent at the
interface layers which are strongly buckled due to the interaction between t-ZrO2 and the
Rh substrate.
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(a) (b)

(c) (d)

Fig. 4.10: Relaxed structures of (a-b) the unsupported t-ZrO2 slab without and with an
oxygen vacancy (violet sphere), and (c-d) supported t-ZrO2 slab without and
with an oxygen vacancy, calculated with the SCAN functional.

The influence of the metal support on the formation of an oxygen vacancy has been
considered just for a single case. An oxygen vacancy both in supported and unsupported
t-ZrO2 (101) films has been calculated so that changes in the geometry of the system,
electronic structure and oxygen vacancy formation energies can be directly compared. In
order to minimize the influence of the surface and the interface on the formation energy of
an oxygen vacancy, an oxygen atom was removed from the middle of the slab as shown by
a violet sphere in panel 4.9b.

Figure 4.10 shows relaxed structures of the supported and unsupported thin zirconia films
with and without an oxygen vacancy. As shown, the main structural differences caused
by an oxygen vacancy are an attraction of surrounding oxygen atoms and repulsion of
zirconium atoms, as has been observed for neutral and positively charged oxygen vacancies
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Bulk Unsupported Supported
PBE 5.77 5.70 3.56
SCAN 6.34 6.41 4.39
PBESol[195] 6.16 - 0.95 - 3.28a

a calculated with the 1ML t-ZrO2 (101) film on Pt(111) support.

Tab. 4.3: Calculated oxygen vacancy formation energies (neutral) in the tetragonal ZrO2

bulk, and in the thin t-ZrO2 (101) film with and without a metallic support.

above. However, this effect is much more prominent in the supported slab: while the
average distance between neighboring oxygen atoms and the oxygen vacancy is calculated
to be d(O − Ovac) = 2.50 Å in unsupported slabs, the supported slabs lower this value to
2.32 Å. Similarly the average distance between the surrounding zirconium atoms and the
oxygen vacancy is d(Zr − Ovac) = 2.21 Å and 2.42 Å for unsupported and supported slabs,
respectively. Note that the distances in the supported film are in a perfect agreement
with the previously discussed average distances for positively charged bulk supercell with
two loss electrons: d(O − Ovac) = 2.34 Å, d(Zr − Ovac) = 2.41 Å. These findings indicate a
change in the charge distribution of the gap states in case of the supported zirconia films.

To investigate the influence of the surface and the metallic support on the electronic
structure, the density of states for the (un)supported films with(out) an oxygen vacancy is
shown, see Figure 4.11. Starting from the electronic structure of the unsupported slab
without a defect – panel 4.11a, the presence of the surface causes an additional peak at
the valence band maximum. A partial charge decomposition confirms that these states
are localized at the surface, predominantly at the uppermost oxygen sites. If the (neutral)
oxygen vacancy is formed – panel 4.11b, the electronic structure shows vacancy states
inside the electronic band gap, closer to the conduction band minimum as in case of the
neutral oxygen vacancy in the bulk. Regarding the metal supported slabs, the Fermi
energy is now defined by the metallic substrate, located approximately in the middle of
the electronic band gap. In contrast to the unsupported thin films, the presence of an
oxygen vacancy does not show any significant change in the electronic structure. In both
cases, neither the surface states nor the gap states are apparent. Thus, charge related
to the surface states and to the localized vacancy states are transferred to the metallic
substrate and the oxygen vacancy is in the charge state (+2). This is also in agreement
with stronger structural relaxations in supported films compared to the floating films,
where the oxygen vacancy is neutral.

Since the positively charged vacancies were calculated to be more stable, one can expect
a decrease of the vacancy formation energy in presence of the metallic support. Indeed,
as shown in Table 4.3, the oxygen vacancy formation energies are decreased by ∼2.1 eV
and ∼2.0 eV as calculated with the PBE and the SCAN functionals, respectively. The
absolute values can also be compared with the formation energy of the charged defect,
as calculated in the previous section, see Figure 4.8. In the case of supported slabs the
Fermi energy is calculated to be 2.2 eV and 2.5 eV above the valence band maximum with
PBE and SCAN. If one uses these values to evaluate the stability of the oxygen vacancy
in the bulk with the charge state (+2), one gets 3.79 eV and 3.97 eV for PBE and SCAN,
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(a) unsupported, without a defect
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(b) unsupported, with a defect; gap states at
the Fermi level are magnified
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(c) supported, without a defect
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Fig. 4.11: Density of states (SCAN functional) of the (un)supported t-ZrO2 films with(out)
an oxygen vacancy as depicted in Panels 4.9a-d, respectively. Total density
of states is colored in black, projections onto oxygen, zirconium and rhodium
sites are colored in red, green and blue, respectively. The gray vertical line
represents the Fermi energy.
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respectively. These values are in good agreement with the calculated formation energies of
an oxygen vacancy in the supported thin film, namely 3.56 eV and 4.39 eV.

4.5 Conclusion

In this chapter, the performance of various DFT functionals on the stable and meta-stable
ZrO2 polymorphs is presented first. Regarding the known phases, the monoclinic ground
state, high-temperature tetragonal and cubic phases have been considered. In addition,
meta-stable meta-monoclinic and anatase ZrO2 predicted by DFT have been investigated
as well. Together with accurate beyond-DFT benchmark calculations these systems form
an excellent environment for a critical assessment of the performance of the various state-
of-the-art functionals. Standard functionals such as PBE, PBE+U and HSE overestimate
the stability of the meta-stable phases. Thus, if these functionals are used in investigations
like phase transitions, one should expect a potential occurrence of DFT artifacts. First,
the formation of three-fold coordinated oxygen atoms present in meta-stable phases is
overestimated. Second, the buckling of the oxygen layer in the tetragonal phase (PBE+U,
PBE+U*) is too small. Third, calculated band gaps are only comparable with benchmark
results when using the hybrid HSE functional. On the other side, the meta-GGA SCAN
and SCAN+rVV functionals have been found as an excellent compromise between the
accuracy and computational cost. They resolve all aforementioned issues except the
underestimated band gap.

Thereafter, the oxygen vacancy formation process is studied. This includes the influence
of different charge states of an oxygen vacancy on the geometry around the vacancy, on the
electronic structure and its stability in bulk polymorphs, as well as in thin films with and
without a metallic support. The calculated formation energies of neutral oxygen vacancies
were always higher than 5.5 eV. However, the absolute value depends on the bulk phase
and DFT functional used. These parameters cause differences in the calculated formation
energies by up to 1.4 eV. Concerning the electronic structure, oxygen vacancies induce
extra states in the upper half of the band gap. In the tetragonal phase, these states are
always localized in the vicinity of an oxygen vacancy. However, the gap states in the cubic
phase are only localized for a neutral or for a positively charged (+1) defect. Regarding
the geometrical changes, oxygen vacancies with a negative and positive charge attract
zirconium and oxygen atoms, respectively. Regarding the stability of these defects, neutral
and negative oxygen vacancies yield high values for the formation energies, which are
much lower for positively charged vacancies. Specifically, this has been investigated in
two ways. First, positive oxygen vacancies in the cubic and tetragonal bulk have been
formed. Second, a Rh(111) support has acted as an acceptor of extra electrons that were
transferred into the substrate. In both cases, a large decrease in the formation energy of
an oxygen vacancy was observed. In addition, the stability of oxygen vacancies in the
unsupported slabs agreed with those in the bulk, and remain rather unstable.

The present results agree with experimental studies[34, 35], which reported a presence
of oxygen vacancies in thin tetragonal films that are stabilized by a charge transfer of the
gap states to the metallic substrate. If these defects are removed by an oxygen spillover
from Rh to zirconia films[34], the thin film is transformed into the monoclinic structure.
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Therefore, the next step in the investigation of this interesting system should include the
properties of point defects in the supported monoclinic films.
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Appendix A

Computational setup (VO2)

All calculations were performed with the Vienna Ab initio Simulation Package (VASP)
[212, 213]. The projector augmented wave (PAW) method [214, 215] for treating the core
electrons has been used. The orbitals for 6 and 13 valence electrons, (2s22p4) for oxygen
and (3s23p63d44s1) for vanadium, were expanded in a plane wave basis set. Calculations
using a smaller dataset for vanadium atoms that contained only five valence electrons
(3d44s1) showed differences of the projected density of states in the O2p band. The
projected densities of states obtained from these datasets are depicted and compared in
Figure A.1, showing that the smaller PAW dataset yields identical results in the V3d band,
but the vanadium contributions in the O2p band are more localized on the vanadium sites
as compared to the larger PAW dataset.

A.1 Bulk Calculations

The energy cut-off for the plane waves basis set and the density of the k-points grid was
determined separately for the Rutile and Monoclinic VO2 phases to ensure a convergence
within the accuracy 1 meV per atom. A Γ-centered Monkhorst-Pack scheme [216] was
used for all calculations and k-point grids. Spin-polarized and non spin-polarized PBE
and SCAN functionals have been tested and as an outcome neither the spin configuration
nor the functional has a significant effect on the final values for the energy cut-off and
k-points grid. The energy cut-off that reaches the convergence criterion was determined as
750 eV for both rutile and monoclinic VO2 phases and the k-point grids were estimated as
6 × 6 × 9 and 4 × 4 × 4 for the rutile and the monoclinic VO2 phases, respectively. Hence,
these parameters have been used for all bulk calculations. The electronic optimization
self-consistent loop was converged to 10−5 eV and the ionic relaxation was stopped when
residual forces were smaller than 10−2 eV/Å. In this work, several DFT functionals were
considered to describe the exchange-correlation energy, namely the PBE, the PBE+U,
the SCAN[67] and the SCAN+rVV10 [89]. The influence of the Hubbard Ueff within
Dudarev’s implementation [92] on the properties of VO2 phases has been studied in the
work of Stahl et al [120], showing that the values of Ueff between 1.4 eV to 2.6 eV open a
band gap in the monoclinic phase, but not in the rutile phase when using experimental
structures, i.e. experimentally determined lattice constants. A value of Ueff = 2 eV
was employed in the present work, a value also used in point defect calculations [217].
All together non spin-polarized calculations (NM), spin-polarized calculations with a
ferromagnetic spin order (FM) and spin-polarized calculations with antiferromagnetic
(AFM) spin order have been performed for both rutile and monoclinic VO2 phases.
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Fig. A.1: Projected density of states on oxygen and vanadium sites in the bulk Rutile
VO2 phase using two different PAW datasets for vanadium. The oxygen 2p
and vanadium 3d bands are shown in ranges (-8, -1.5) eV and (-1.5, 4) eV,
respectively.

Since the energy cutoff and k-point grids are absolutely converged and therefore the
results should not be influenced by the Pulay stress, the bulk phases were optimized by a
direct optimization of cell shape, cell volume and ionic positions as implemented in VASP.
The experimental structures served as starting point and the appropriateness of such
an optimization procedure was checked by a comparison of equilibrium volume obtained
from a quadratic polynomial interpolation fitted to a set of total energies calculated at
fixed volumes. The results are depicted for spin-polarized and non spin-polarized SCAN
calculations in Figure A.2, showing that both methods yield unit cells for which the
scaling factor differs by less than 0.2 % and the energy difference is always within the
accuracy 1 meV per atom. Since the same trend was also found for the PBE functional,
the direct optimization procedure was also used for the other DFT functionals and spin
configurations.

The local electronic structure was studied with the help of the Wannier90 code [218].
All subbands that comprise O2p and V3d bands were projected onto the same number
of Wannier functions. The local coordinate system of the Wannier functions localized at
vanadium atoms was rotated by 45° around the z−axis of vanadium octahedra as proposed
by Eyert [117] to ensure that y and z axes of all local coordinate systems of vanadium
atoms are perpendicular to the rutile c axis. This rotation implies an interchange of dxy
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Fig. A.2: Calculated total energies of VO2 phases at fixed volumes given by the scaling
factor (ǫ) of the unit cell vectors (the blue lines). The scaling factors are
normalized with respect to the directly optimized bulk structures and respective
spin configurations for the SCAN functional. The orange line is the quadratic
polynomial fitted to the respective energy values at fixed volumes and is used
to evaluate ǫopt. In case of the (FM) calculations of the monoclinic phase the
bulk instability at ǫ = 1.05 is visible. Therefore, the compressed part was used
for quadratic polynomial interpolation.
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Fig. A.3: Wannier projections in the local coordinate system (x, y, z) of the rutile VO2

phase as proposed by Eyert [117]. The global coordinate system is marked with
(X, Y, Z). In this notation, V-t2g states are formed by dxy, dxz and dyz whereas
dx2−y2 and dz2 comprise the V-eg band.
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and dx2−y2 orbitals, but in the present work, the same notation of the orbitals as in the
original basis was kept. The Wannier d-orbitals are depicted with respect to the local and
the global coordinate systems in Figure A.3.

A.2 Stoichiometric surface calculations

All slab calculations were performed at bulk optimized lattice constants for the correspond-
ing DFT functional and spin ordering. The stability of a VO2 termination was determined
via an evaluation of the surface free energy, calculated by linear regression from total
energies of 5 to 8-layered slabs, as described in the following scheme. The surface energy
of a slab that is composed of N bulk formula units having a surface area S is extracted
from DFT calculations according to the formula:

σ =
Eslab − N · Ebulk

2 · S
, (A.1)

where Eslab and Ebulk are total slab and bulk energies obtained from DFT calculations. In
the calculations the energy of both unrelaxed slabs and relaxed slabs was considered. In
the first case atoms in a slab are kept at bulk positions, whereas the relaxed slabs undergo
subsequent relaxation of all atomic positions until all forces were smaller than 0.01 eV/Å.
A direct evaluation of σ requires different sampling of the Brillouin zones for bulk and slab
models. In order to avoid this drawback, this formula can be rewritten for a slab energy
as a function of the number of layers,

Eslab = Eslab(N) = k · N + q. (A.2)

A comparison of these equations yields the expression for the surface energy:

σ =
q

2S
, (A.3)

where q is a parameter that is obtained from a linear regression of slab calculations for
several number of layers.

For all surface calculations the value for the cut-off energy was reduced to 500 eV which
yielded a good convergence with respect to the interpolated energy of the bulk and the
surface energy of both unrelaxed and relaxed slabs. The dependence of these values on
the chosen energy cut-off is shown in Figure A.4. As can be seen, the interpolated surface
energy of the unrelaxed slabs does not show a significant dependence on the chosen energy
cut-off, varying from 73.966 meV/Å2 to 73.802 meV/Å2. The surface energy of the relaxed
slabs using the cut-off energy 500 eV shows a relative error of 0.15 meV/Å2 with respect
to the reference cut-off energy 800 eV. A further decrease of the cut-off energy induces
larger errors in the obtained surface energy up to ∼0.4 meV/Å2. The convergence of
the interpolated bulk energies shows a similar trend: a cut-off energy 400 eV induces a
32 meV difference between the reference value calculated with a cut-off energy 800 eV. A
further comparison of the interpolated value for the bulk energy with respect to the total
energy obtained from the bulk calculation is shown as a red line in panels A.4(c,d). Both
interpolated bulk energies converge to values lower than the reference real-bulk value,
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Fig. A.4: Dependence of the interpolated bulk and surface properties on the chosen
cut-off energy calculated with the (NM) PBE functional. Panels (a,b) show the
surface energy obtained for unrelaxed and relaxed (110) surfaces. Panels (c,d)
display the dependence of the interpolated energy of the bulk obtained from
the unrelaxed and relaxed slabs respectively. The red line marks the energy
obtained from a rutile bulk unit cell.

more prominently visible for the interpolated bulk energy from relaxed slabs. This energy
difference can be blamed on the slab thicknesses considered in the interpolation. Even
when the computational cost limits the usage of thicker slabs for surface calculations, this
can be partially improved by using the interpolated energies from the slabs rather than
those calculated directly from the bulk, which leads to a cancellation of errors due to a
finite slab thickness.
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A.3 Off-stoichiometric calculations on VO2 (110) surfaces

A.3.1 Finding an appropriate computational setup

To find an appropriate computational setup for a calculation of the surface free energies, the
impact of several parameters on the oxygen adsorption energies were considered that are in
the main focus of the Chapter 3. This study sticks with the rutile VO2(110) (2 × 1) surface
covered with oxygen atoms by 50 % and 100 % as depicted in Figure 3.16. The following
parameters of the computational setup impacting adsorption energies were considered:

Type of the slab

Since off-stoichiometic (2 × 2) surface reconstructions will be studied, a computational
setup as simple as possible is searched which captures the adsorption energies within a
reasonable range of accuracy. In the present study two types of slabs have been employed
and used for the extraction of adsorption energies and surface free energies. Both of them
are depicted in Figure A.5. First, partially fixed asymmetric slabs were used and in a
second step, their fully symmetric varieties. In the first case atoms forming the bottom
layer are fixed at their bulk-like positions, the middle of the slab was fixed laterally to
avoid the observed bulk instabilities (see Section 3.4.2) . Finally, the surface layer was
relaxed in all coordinates. This is depicted in Figure A.5 (left panel). The second type –
symmetric slabs, contain a mirror plane in the middle of the slab. In this case, all atoms
were fully relaxed.
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Fig. A.5: Structures of fixed slabs (left panel) and symmetric slabs (right panel). The
horizontal lines in the fixed slab separate the bottom layer that was kept in
bulk-like positions and the middle layer which was relaxed only in direction
perpendicular to the surface plane. The arrows show directions along which
the atoms were relaxed.
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Fig. A.6: Dependence of the adsorption energies on the thickness of a symmetric slab,
calculated with the (NM) PBE functional. Here we considered 50 %, 100 %
oxygen coverage and a tetrahedral (2 × 2) superstructure.
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Fig. A.7: Dependence of the adsorption energies on the thickness of a fixed slab, calculated
with the (NM) PBE functional. Here we considered 50 %, 100 % oxygen coverage
and a tetrahedral (2 × 2) superstructure.
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Thickness of the slab

The dependence of adsorption energies on the thickness of the slab was studied with
the non-magnetic PBE functional. Considering the symmetric slabs, the values for the
adsorption energies obtained from the four-layered slabs deviate by 0.06 eV as shown in
Figure A.6. However, the five-layered slabs lower this value to 0.02 eV and 0.01 eV in
the 50 % and 100 % covered slabs, respectively. Therefore the latter computational setup
was used in the final calculations. Figure A.6 also shows the convergence of the effective
adsorption energy of a tetrahedral termination, showing the same trend as adsorption
phases. Another important finding is the fact that the adsorption energies do not show a
strong dependency on a choice of even- or odd-layered slabs.

The convergence of adsorption energies in the fixed slabs displayed in Figure A.7 shows
a dependency on the surface system. While the fully-covered (110) surface and the ring
termination is already converged to 0.02 eV for four-layered slabs, 50 %-covered slabs yield
the error of 0.06 eV in the adsorption energy. However, converged adsorption energies with
respect to the thickness of slabs, resulting from fixed and symmetric slabs are different:
while the 50 % covered (110) surface show 0.05 eV lower adsorption energies for symmetric
slabs, the fully-covered (110) surface is lower by 0.09 eV. Therefore, the differences in
adsorption energies are much lower in calculations using fixed slabs. This difference can be
associated with the constraints of the middle part of the fixed slabs. On the other side, ring
terminations yield similar adsorption energies in both systems, differing only by 0.04 eV.
A further analysis revealed that this holds only true when the subsurface layer misses no
oxygen atoms. Superstructures with a reduced subsurface layer show significantly different
adsorption energies when calculated with fixed and symmetric slabs.

These results show that the comparison of surface free energies of polyhedral superstruc-
tures with adsorption phases requires the use of more complex symmetric slabs while for a
comparison between polyhedral superstructures the fixed four-layered slabs are in most
cases sufficient, yielding an error of 0.04 eV. In the thesis either five-layered symmetric
slabs or four-layered fixed slabs are used for a comparison of adsorption energies and
surface free energies.

Energy cut-off and the k-points grid

The decreased energy cut-off was also checked with respect to the oxygen adsorption
energy. The results are shown in Figure A.8 for energy cut-off values that range from
500 eV to 800 eV. Figure A.8 displays two lines for the adsorption energies referring to
50 % and 100 % oxygen-covered (2 × 1) slabs, and showing that in both cases the resulting
adsorption energy is well-converged even for the lowest 500 eV energy cut-off, which yields
only 0.01 eV difference with respect to the reference 800 eV energy cut-off calculations.
Therefore, the energy cut-off was kept to 500 eV in all final calculations. These results are
shown for the symmetric slabs. However, the fixed slabs show the same dependence on
the cut-off energy.

To keep a similar sampling of the first Brillouin zone as in the bulk calculations, a
4 × 4 × 1 k-points grid was chosen for the rutile VO2 (110) (2 × 1) slabs. This sampling was
checked by considering denser grids which, however, gave changes in adsorption energies
lower than 0.01 eV.
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considered.
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A.3.2 Surface free energy calcuations

To calculate the surface free energy of the most stable off-stoichiometric terminations
the procedure described in the work of Reuter [94] is followoed. The Gibbs free energy
is approximated by the total DFT energies of the slabs and reference systems in the
oxygen-rich limit so that all vibrational contributions are neglected. The formula used to
extract the surface free energy from a slab that consists of NV vanadium atoms and NO

oxygen atoms as a function of oxygen chemical potential µO reads

γ(µO) =
Eslab − NV · EVO2

− (NO − 2NV) · 1
2
EO2

+ µO

2S
, (A.4)

where EVO2
and EO2

are reference energies for the total energy of the rutile VO2 bulk and
oxygen molecule respectively, Eslab marks the total energy of the slab with the surface
area S.

In several calculations, mainly in those presented in simulated annealing results (section
3.5.1) one needs to extract the surface free energy from the fixed slabs which are not
symmetric. In this model atoms in the bottom layer were fixed to bulk positions and
therefore one may approximate the surface energy of the bottom part of fixed slabs by
a surface energy of unrelaxed slabs (σunrel.), obtained from a linear regression of five to
eight-layered slabs. The formula for the surface free energy therefore changes to:

γ(µO) =
Eslab − NV · EVO2

− (NO − 2NV) · 1
2
EO2

+ µO

S
− σunrel. (A.5)

The oxygen chemical potential is considered in the range of energies where the VO2 phase
is thermodynamically stable. Its oxygen-rich limit is approximately given by the reaction
enthalpy of the oxidation reaction of the VO2 phase:

2VO2 + 1/2O2 → V2O5. (A.6)

The experimental value −1.28 eV is given by the formation enthalpies of the VO2[156]
and V2O5[140] while the calculated value is considered in the 0 K temperature limit.
Neglecting vibrational and entropic contributions yields an 1.3 % error in the experimental
heat of formation of vanadium pentoxide as compared to the value obtained at room
temperature[140]. The enthalpy of reaction is therefore calculated using the total energies
of bulk systems and oxygen molecule as

HDFT
f (V2O5) = Ebulk

V2O5
− (2Ebulk

VO2
+ 1/2EO2

). (A.7)
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A.4 Optimization of random structures

The steps that make up the optimization procedure for the generated random structures
have been described in Section 3.5.3. Here, the performance of this procedure and its
limitations is assessed. The first finding is that increasing the number of layers of the slab
influences the reactivity of the surface. This is illustrated in Figure A.9 that shows the
dependence of oxygen adsorption energy on the thickness of slabs, compared to the values
obtained from the last step of the optimization procedure, marked as red lines. As shown,
the adsorption energy is lower when using thinner slabs, indicating that the VO2(110)
surface is too reactive in the first two steps of the optimization procedure running on
two-layered slabs, while four-layered slabs yield adsorption energies close to the reference
value. Since the number of substrate layers is changed stepwise after the relaxation,
the final superstructures tend to be compressed despite the fact that more stable open
structures might exist. This is illustrated by two examples, both having a V5O12 surface
stoichiometry, already presented in Figures 3.27a and 3.27f and shown in this section in
Figure A.10. A comparison of these structures reveals that the more open ring (Figure
A.10a) is composed of vanadium tetrahedra while the more compact structure depicted in
Figure A.10b has a surface layer composed of corner-sharing tetrahedra and polyhedra.

Now the stability of these structures is compared. Since both of them have the same
surface stoichiometry, the difference in the total energy per the calculated slab that is
composed of two layers and four layers is directly shown, see Table A.1. While the
compressed ring termination is calculated to be more stable for all DFT functionals
when using a two-layered substrate, the difference in total energies calculated for four-
layered slabs is either flipped (PBE and PBE+U) or dramatically decreased (SCAN). As a
consequence, the more open structures might not be found with the present optimization
procedure due to optimization of all structures on the more reactive two-layered substrate.

Another natural limitation lies in an incomplete sampling of the configuration space.
First of all, this procedure deals with the surface terminations with a fixed stoichiometry.
Moreover, even at the chosen stoichiometry one cannot guarantee that the most stable
surface termination would be found. The range of this limitation can be demonstrated
in one specific example, namely for superstructures with a V8O18 surface stoichiometry
related to a one VO2 (2 × 2) monolayer with two additional oxygen ad-atoms. In this
specific case one might expect six different combinations of adsorption phases, created by
the adsorption of two oxygen atoms on four different vanadium sites present in (2×2) slabs.
Out of these six combinations three of them have been found. Therefore the conclusion is
that structures obtained by this procedure might not recover the ground state, but the
most stable structures found will be related to the real ground-state structure at the given
surface stoichometry.
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Fig. A.9: Dependence of the calculated oxygen adsorption energies in the fully covered
VO2(110) surface on the thickness of slabs used for the stepwise optimization of
the random structures. Spin-polarized PBE, PBE+U, SCAN and SCAN+rVV
calculations are shown. Red lines mark the reference value from the last
optimization step, where symmetric five-layered slabs were used.
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(a) (b)

Fig. A.10: Side views of two ring terminations with the V5O12 surface stoichiometry. The
left panel shows more open structure with the partially reduced subsurface
layer while the latter structure (right panel) is composed of the fully-covered
subsurface layer while the surface layer is more compressed.

# layers PBE PBE+U SCAN
2 -267 -426 -1319
4 484 714 -221

Tab. A.1: Differences in the total energy (in meV per slab) between the ring terminations
shown in Figures A.10a and A.10b. Negative values mean that the open ring
termination (Figure A.10a) is less stable.
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Appendix B

Meta-stable ZrO2 phases

It is certainly instructive to see how the meta-stable zirconia phases may bias calculated
results in bulk systems, unsupported slabs and supported slabs when the PBE functional
is used. Actually, the meta-stable meta-monoclinic and anatase ZrO2 phases discussed in
Chapter 4 have been identified by such calculations.

Fig. B.1: Total energy of the zirconia polymorphs as a function of the unit cell volume.
The monoclinic phase is transformed to the anatase phase when the unit cell is
expanded by ∼ 20 %.

125



(a)

(b)

(c)

Fig. B.2: Calculated transition of a thin tetragonal ZrO2(101) slab (panel a) to the
meta-monoclinic structure (panel b). The structural transition is accompanied
by bond breaking and expansion of the slab, see both black arrows and the
grey lines marking the unit cell of the slabs. Panel (c) presents the energy of
the slab/f.u. as a function of surface area. Black line denotes the surface area
(vertical) and energy/f.u. (horizontal) as calculated for a tetragonal bulk unit
cell. One immediately seen that even thicker slabs converge to a ∼ 10 % lower
value.
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(a)

(b)

(c)

Fig. B.3: Calculated phase transition in supported slabs. Panel (a) shows the initial
structure of a meta-monoclnic (-111) slab. As seen in panel (b), a four-layered
meta-monoclinic film undergoes a structural transition to the monoclinic (-111)
film. When relaxing thicker slabs (panel c), all four-fold coordinated oxygen
atoms are changed to three-fold, which indicates a transformation to the anatase
phase. These findings indicate that the barrier for a phase transformation from
the meta-monoclinic phase to either monoclinic or anatase phases is rather
small.
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