
Coordinated Multi-View Graph
Analysis and Improvement

with Applications
in Cyber-Physical Production Systems Engineering

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Christian Engelbrecht, BSc
Matrikelnummer 01529362

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
Mitwirkung: apl. Prof. Dr.-Ing. habil. Arndt Lüder

Wien, 10. September 2021
Christian Engelbrecht Stefan Biffl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Coordinated Multi-View Graph
Analysis and Improvement

with Applications in Cyber-Physical Production
Systems Engineering

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Christian Engelbrecht, BSc
Registration Number 01529362

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
Assistance: apl. Prof. Dr.-Ing. habil. Arndt Lüder

Vienna, 10th September, 2021
Christian Engelbrecht Stefan Biffl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Christian Engelbrecht, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. September 2021
Christian Engelbrecht

v

Danksagung

Ich bin allen Personen, die mein Studium und meinen akademischen Werdegang beeinflusst
haben, zutiefst dankbar. Mein besonderer Dank gilt meinem Supervisor, Stefan Biffl,
und Co-Supervisor, Arndt Lüder, für ihre wissenschaftlichen Einblicke, ihre detaillierte
Betreuung und ihre allgemeine Unterstützung bei der Erstellung dieser Arbeit.

Weiters möchte ich mich bei allen Beteiligten des MDRE-Forschungsprojekts bedanken,
das den Grundstein für diese Arbeit gelegt hat, speziell bei Kristof Meixner und Dietmar
Winkler.

Mein aufrichtiger Dank gilt meinen Mitstreitern und Freunden, Christoph Burger, Dominik
Kretz, Mustafa Isikoglu und Alexander Prock. Was als eine Gruppe von Studenten
begonnen hat, die (glücklicherweise!) die gleichen Vorlesungen besuchten, hat sich zu
einer großartigen Freundschaft entwickelt, die ich nicht mehr missen möchte. Ich bin
ihnen dankbar für die Unterstützung, die sie mir während meines gesamten Studiums
und beim Verfassen der Thesis zuteil haben werden lassen.

Des Weiteren möchte ich mich bei meiner Familie, meinen Freunden, meiner Partnerin
und allen Personen, die mir nahe stehen, für die fortlaufende Unterstützung bei der
Erstellung dieser Arbeit bedanken, insbesondere während der zeitintensiven letzten
Monate. Besonders möchte ich mich bei meinen Eltern bedanken, die mir mein Leben
lang die notwendige Neugierde und Arbeitsmoral, die für diese Diplomarbeit erforderlich
waren, beigebracht haben und mich über mein ganzes Studium hinweg unterstützt haben.

vii

Acknowledgements

I am profoundly grateful for every person that influenced my studies and research. Special
thanks to my supervisor, Stefan Biffl, and co-supervisor, Arndt Lüder, for their scientific
insights, detailed supervision and overall support in writing this thesis.

Furthermore, I want to thank everyone involved in the MDRE research project, that laid
the foundation for this thesis, namely Kristof Meixner and Dietmar Winkler.

My sincere thanks to my peers and friends, Christoph Burger, Dominik Kretz, Mustafa
Isikoglu and Alexander Prock. What started as a group of students that (luckily!) shared
the same courses, turned into a great friendship and group of mutual support in achieving
our goals. I am eternally grateful for the support you provided me during my studies
and thesis writing.

I further want to thank my family, friends, partner and every person involved in my
life for the ongoing support in writing this thesis, especially during the time-intensive
finishing months. Last, but not least, I especially want to thank my parents, who instilled
the curiosity and work ethic in me that helped me finish this thesis and my master’s
degree.

ix

Kurzfassung

Graphen sind eine allgemeine Klasse von Modellen, die aus Knoten und Kanten beste-
hen. In technischen Bereichen, wie der diskreten Fertigung, modellieren diese Graphen
reale Artefakte. Cyber-Physical Production Systems (CPPS) Engineering, das sich mit
vernetzten Produktionsanlagen befasst, verwendet Graphen mit mehreren Sichten, um
Beiträge aus verschiedenen Ingenieursdisziplinen darzustellen, wie z.B. Pläne für einen
Motor aus den Bereichen Mechanik, Elektrotechnik und Software/Automatisierungs-
technik. Multidisziplinäres Engineering mit Abhängigkeiten zwischen den Modellen, die
mehrere Sichten auf dasselbe reale Artefakt darstellen, erfordert Koordination zwischen
den Ingenieuren, um verknüpfte Multi-View-Graphen zu analysieren und zu verbessern.

Dies führt zu Herausforderungen, die Koordination notwendig machen. Zu diesen Her-
ausforderungen gehören die Darstellung und Verknüpfung gemeinsamer Knoten, z. B.
von Motoren, in mehreren technischen Disziplinen mit gemeinsamen Eigenschaften, z. B.
der Motorleistung. Darüber hinaus bestehen Herausforderungen bei der Koordination
von Tasks in einem Graphen in CPPS Engineering, da die Unterstützung für integrierte
Koordination auf Graphen fehlt.

Diese Arbeit schlägt den Ansatz von Coordinated Model Analysis and Improvement
(CMAI) vor, um die Koordination zwischen Ingenieuren im Bereich des CPPS-Engineering
zu verbessern. Um die Darstellung von Modellen im CPPS-Engineering zu erleichtern,
führt diese Arbeit die CMAI-Domain-Specific Language (DSL) ein. Auf der Grundlage
der CMAI-DSL wird in dieser Arbeit die CMAI Methode vorgestellt. Diese Methode
nutzt die vorgeschlagenen Ansätze zur Verbesserung der Koordination zwischen den
Ingenieuren, indem sie Daten zwischen Modellen automatisch synchron hält und Marker
zur Koordination benutzt. Diese Marker bieten ein effizientes und integriertes Koordinati-
onswerkzeug für Graphen. Darüber hinaus wird in dieser Arbeit ein technischer Prototyp
vorgestellt, der Generic CPPS Modeling (GCM) Editor.

Diese Arbeit zeigt anhand einer qualitativen Evaluierung, wie ausgewählte Anwen-
dungsfälle im Bereich des CPPS Engineering durchgeführt werden können und von der
vorgestellten CMAI-Methode profitieren.

xi

Abstract

Graphs are a general class of models that consist of nodes and edges. In technical
domains, such as discrete manufacturing, these graphs model real-world artefacts. The
field of Cyber-Physical Production Systems (CPPS) Engineering, concerned with inter-
connected production plants, uses multi-view graphs to represent contributions coming
from several engineering disciplines, such as plans for a motor in mechanical, electrical,
and software/automation engineering. Multi-disciplinary engineering with dependencies
between the models, that represent multiple views on the same real-world artefact, require
coordination between engineers for analysing and improving linked multi-view graphs.

This leads to challenges, founding the need for coordination. These challenges include
the representation and linking of shared nodes, e.g., motors, in multiple engineering
disciplines with shared properties, e.g., motor power. Furthermore, challenges exist in
the coordination of tasks in a graph in CPPS Engineering, due to missing support for
integrated coordination on graphs.

This thesis proposes the Coordinated Model Analysis and Improvement (CMAI) approach
to improve coordination between engineers in the field of CPPS Engineering. To represent
models in CPPS Engineering, this thesis introduces the CMAI-Domain-Specific Language
(DSL). Based on the CMAI-DSL, this thesis introduces the CMAI method. This method
leverages the proposed approaches to improve coordination between engineers by providing
an automated way of keeping data in sync between models and introducing coordination
markers. These markers provide an efficient and integrated coordination tool on graphs.
Furthermore, this thesis introduces a technical prototype, the Generic CPPS Modeling
Editor.

This thesis uses a qualitative evaluation to show how selected use cases in the field of
CPPS Engineering can be conducted and profit off the introduced CMAI method.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 4
1.3 Overview on Expected Results . 4
1.4 Reader Guidance . 6
1.5 Thesis Structure . 6

2 State of the Art 9
2.1 Cyber-Physical Production Systems Engineering 9
2.2 Multi-view Graphs in Cyber-Physical Production Systems (CPPS) Engi-

neering . 12
2.3 Model Representation, Storage, and Querying 15
2.4 Requirements Engineering . 17
2.5 Stigmergy and Coordination . 22

3 Research Questions and Approach 29
3.1 Design Science . 29
3.2 Research Questions . 31
3.3 Work Packages . 32
3.4 Requirements . 34
3.5 Evaluation Concept . 35

4 Illustrative Use Cases for Evaluation 39
4.1 Use Case Context . 40
4.2 UC 1: Data Propagation between Model Views 43
4.3 UC 2: Linking of Model Elements to Engineering Artefacts 44
4.4 UC 3: Linking Requirements and Design Networks 50
4.5 UC 4: Coordination with Markers . 55

xv

5 Coordinated Model Analysis and Improvement Approach 61
5.1 CMAI-DSL Metamodel (RQ1) . 61
5.2 CMAI Method (RQ2) . 63
5.3 Software Architecture and Design (RQ3) 66

6 Evaluation 77
6.1 Capability 1: Change Propagation . 77
6.2 Capability 2a: Linking of Model Elements to Engineering Artefacts . . . 81
6.3 Capability 2b: Model Element Properties 83
6.4 Capability 3a: Model Layers by Model Element Type 84
6.5 Capability 3b: Connections between layers 86
6.6 Capability 4a: Coordination with Markers – Manual Setting of Markers 88
6.7 Capability 4b: Coordination with Markers – Program-Based Marker Set-

ting . 91
6.8 Overall Evaluation Results . 93
6.9 Reproducibility of Evaluation Results 93

7 Discussion 95
7.1 RQ1: Domain Specific Lanuage for Coordination 95
7.2 RQ2: Method for Coordinated Analysis and Improvement 96
7.3 RQ3: Editor and Service Architecture for Coordinated Model Analysis

and Improvement . 98
7.4 Limitations . 99

8 Conclusion and Future Work 101
8.1 Conclusion . 101
8.2 Future Work . 103

Bibliography 105

List of Figures 110

List of Tables 113

Listings 115

Acronyms 117

CHAPTER 1
Introduction

1.1 Motivation
Graphs are a general class of models that consist of nodes connected by edges and are
widely used in information systems engineering and business informatics [West et al.,
2001]. In the context of Cyber-Physical Production Systems (CPPS) Engineering [Lasi
et al., 2014; Biffl et al., 2017], multiple engineering disciplines share selected model
elements, often nodes that represent common concepts, such as motors or other parts
of production systems. These multi-disciplinary models are often complex and may
consist of hundreds or even thousands of nodes. Due to their multi-disciplinary nature,
current research calls these graphs multi-view graphs, since they allow multiple views
from different engineering perspectives [Biffl et al., 2021a].

Founded on these multi-view graphs, a minimal, exemplary use case for this thesis can
be defined, introducing the issues and solutions treated in this work.

A typical use case in the field of CPPS Engineering, consists of designing a powertrain to
move a load, e.g., designing a powertrain of a conveyor belt in a production system. For
this, multiple different engineering disciplines have to be considered. Figure 1.1 illustrates
an exemplary use case.

First, a Requirements Engineer needs to model the requirements that need to be
fulfilled by the powertrain. For this, the engineer models requirements related to the
motor, as Figure 1.1 shows. A Mechanical Engineer models all mechanical parts
connecting to the motor, e.g., a transmission. Lastly, an Electrical Engineer is, e.g.,
concerned with designing the power supply for the drivetrain.

This simple use case shows multiple challenges, founding the need for coordination. As
Figure 1.1 shows, a node represents the motor in each model and engineering discipline,
whilst sharing properties in between them e.g., the motor power. This leads to the need

1

1. Introduction

that shared properties on cross-discipline artefacts have to be kept in sync. Since each
engineering discipline uses its own Domain-Specific Language (DSL), these cross-discipline
artefacts may not share all properties across engineering disciplines. Furthermore,
engineers require coordination in their respective engineering view. This is needed to
track the progress of a task on a model element, e.g., tracking the design or validation
status of a model element. The outlined minimal use case shows the strong need for
coordinated analysis and improvement in the context of multi-view graphs.

This need for coordinated analysis and improvement aims at improving efficiency, effec-
tiveness, and correctness of the designed models. As checking and improving a model
requires knowledge of the model and the application domain, in many cases, automated
model checking has to be complemented with human-based reviewing. However, the
coordination of humans and computers for analysing and improving models in CPPS
Engineering requires improved methods and mechanisms to achieve an improvement
in efficiency, effectiveness, and correctness. Furthermore, human-based reviews take
significant effort and are prone to overlook issues. This is especially relevant in cross-
disciplinary domains, where multiple engineering disciplines need to manually review a
big set of relevant nodes, each relevant to multiple engineering disciplines.

To improve on the status-quo, human-human and human-computer based interaction
needs to be improved, when conducting tasks to analyse and improve models, resulting in
an overall increase in efficiency, effectiveness and correctness, freeing resources of domain
experts. Furthermore, enforcing human-computer based interaction allows leveraging
new approaches, such as querying models using a user-friendly model query language,
e.g., Cypher [Neo4J, 2020]. These queries allow domain experts to iteratively explore the
model and analyse relevant subsets of nodes and links for issues. This allows the reviewer
to mark the involved nodes or edges. These marks could allow automated processing, e.g.,
the creation of Model Analysis and Improvement (MAI) tasks based on selected marker
types. Furthermore, these markers could facilitate the coordination of improvement tasks
between the domain experts.

Finally, the results of model analysis and improvement tasks could be input to follow-up
processes and engineers can integrate them into the underlying large multi-view model,
e.g., designing a production plant consisting of potentially hundreds of interconnected
conveyor belts. From this input, improvement tasks could be created that can be
implemented by domain experts to improve the underlying large multi-view model.

In the current state of the art, coordination often happens via external tools, e.g., Issue
Trackers like JIRA 1 or via E-Mail, which leads to a very coarse level of detail and is
detached from the actual, underlying model for which coordination happens. This is very
inefficient and error-prone, further founding the need for improving coordination. The
goal of improving coordination is to make engineering in the field of CPPS Engineering
more agile and efficient, while reducing overall risk and increasing overall quality of
models in CPPS Engineering.

1https://www.atlassian.com/de/software/jira Last accessed: 03/09/2021

2

https://www.atlassian.com/de/software/jira

1.1. Motivation

Figure 1.1: Simple use case outlining main issues addressed by this thesis. The question
marks represent the challenges outlined by the use case.

3

1. Introduction

1.2 Problem Statement
As outlined, the motivation of this thesis lies in the coordinated model analysis and
improvement. Main contributing factors are challenges existing in the field of CPPS
Engineering.

Major challenges in model analysis and improvement include

• C1. Limited analysis and improvement resources, often experts with sufficient
domain/world and modelling knowledge. This is outlined in the above use case.
Domain experts are difficult to obtain and limited in the available time for their
reviews [Biffl et al., 2016].

• C2. Large models and expensive modelling tools that are difficult to use. Existing
modelling tools like AutoCAD 2 are expensive and very complex. Furthermore,
they focus on the designing of artefacts, instead of their analysis and improvement.

• C3. Limited approaches for coordinating analysis and improvement processes of a
group of human experts with automation support. Relating to the use case and C1,
only limited approaches for coordinating analysis and improvement processes exist.
Improving this, and providing automation support, would improve the efficiency of
these processes, freeing up resources for further analysis and improvements [Biffl
et al., 2016].

This work aims at addressing these challenges by designing and evaluating representations
of coordination data in multi-disciplinary multi-view graphs, methods for Model Analysis
and Improvement (MAI) in a team, and software prototypes in MAI application scenarios.
Due to the multi-disciplinary nature of the MAI application scenarios, the term of
Coordinated Model Analysis and Improvement (CMAI) is introduced, specifically focusing
on the coordinated nature of these analysis and improvement tasks.

1.3 Overview on Expected Results
Figure 1.2 represents the expected results of this thesis as outputs in an IDEF0 diagram.

Use Case Descriptions. As a first step, this thesis will elicit use cases in the field of
CPPS Engineering to guide the design and evaluation tasks. These use case descriptions
form part of Chapter 4.

Detailed requirements. Based on the use case descriptions, more detailed require-
ments will be outlined for each use case. The requirements will allow to further settle
the thesis in the field of CPPS Engineering. Section 3.4 defines an initial, high scope, set
of requirements for this thesis.

2https://www.autodesk.de/products/autocad/overview Last accessed: 05/09/2021

4

https://www.autodesk.de/products/autocad/overview

1.3. Overview on Expected Results

A3

Design Use
Case Prototype

A3

Design Use
Case Prototype

A1

Elicit Use Cases
& Survey

Literature+Tech
A1

Elicit Use Cases
& Survey

Literature+Tech

A2

Design Knowl.
Rep. Edit. Func.

Capabilities
A2

Design Knowl.
Rep. Edit. Func.

Capabilities

A4

Evaluate Knowl.
Rep. Edit. Func.

Capabilities
A4

Evaluate Knowl.
Rep. Edit. Func.

Capabilities

Selected
Previous work

Sample Models GCM
Platform

AutomationML
IEC 64...

GCM
PlatformDomain Expert

Scientific building blocks (122)

Scientific gaps that motivate the research (121)

Sci.
Found.

Graph Query
Language
IEC 39075

CPPS Eng.
Modeling
Language

Req.
UCs

IDEF0

System Arch. Design (22)

Case Study
Rep.

GCM
Platform

MDRE Experience

Figure 1.2: Outlook on work results and work packages.

Scientific gaps that motivate the research. The use case descriptions and the
requirements allow identifying gaps in the research to motivate the research in this thesis.

Domain knowledge representation. A major result of this thesis will be the CMAI-
DSL. This DSL allows definition of all needed model elements introduced by the use
cases in Chapter 4.

This thesis will build on strengths of existing approaches for designing applications for
model analysis and improvement powered by coordinated human experts and computers.
To allow for a coordinated analysis and improvement by the domain experts, this thesis
will introduce the concept of coordination markers. Coordination markers can represent
the goals, model issues and improvement tasks to address. These annotations are
configurable and allow the configuration of a set of states, e.g., representing the resolution
state of tasks. Expected strengths of this approach include (a) these markers to be
both usable by the human review team and computer algorithms and (b) enabling the
configuration of markers for users, not only software developers (c) integrated placement
on specific model elements, not relying on external tools.

System architecture design. An expected result of this thesis is to provide a system
architecture design that allows addressing a range of typical use cases. Chapter 5 outlines

5

1. Introduction

these theoretical and technical solutions for the architecture design.

Evaluation & Discussion. Founded on the system architecture design, the technical
feasibility will be evaluated. Based on this evaluation, a report on the technical feasibility
will be compiled and discussed. This will be conducted in Chapter 6 and Chapter 7.

Software Prototype. This software prototype will provide an automation of selected
steps of the CMAI method to make the process more efficient and allow human experts
to focus on contributions that only they can provide, e.g., taking decisions that require
deep domain knowledge. The proposed prototype is the Generic CPPS Modeling (GCM)
Editor. This name ties to the field of application of this thesis, CPPS Engineering.

1.4 Reader Guidance
This thesis provides results for several groups of readers: (1) practitioners in the field of
CPPS Engineering, (2) readers working in management positions, (3) researchers, and
(4) software engineers.

(1) Practitioners in the field of CPPS Engineering can focus on the results of typical use
cases in their fields of CPPS Engineering. This provides new insights and approaches
on real-world applications in the field. Therefore, Chapter 4 and Chapter 6 may prove
helpful to these readers. (2) Readers working in management positions may be interested
in the proposed approaches, that improve overall model quality and coordination, which
may lead to overall better results in real-world CPPS applications. For these readers,
the results evaluated and discussed in Chapter 6 and Chapter 7 may prove helpful. (3)
Researchers may pick up results from this thesis and build their own research on it.
Chapter 8 outlines future work. (4) Software Engineers can use the GCM Editor platform
and architecture as base for further development and augmentations. (Code) Artefacts
developed in this thesis can be found in an external repository 3.

1.5 Thesis Structure
The remainder of this thesis follows this structure: To establish the connection to the
current state of research and state of practice in CPPS Engineering, Chapter 2 introduces
the state of the art.

Based on the state of the art, Chapter 3 outlines the research questions and methodological
approach for this thesis.

To evaluate the research questions, Chapter 4 introduces illustrative use cases in the
field of CPPS Engineering. This section leverages the state of the art on requirements
engineering to define all used use cases.

3Model Configuration Repository: https://bitbucket.org/tuw-qse/
mdre-thesis-cengelbrecht

6

https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht

1.5. Thesis Structure

Founded on the resulting requirements of the research questions and use cases, Chapter 5
introduces the solution approach. This is done first from a theoretical standpoint, to
allow for a conceptual architecture. To evaluate the use cases, these theoretical concepts
then lead to technical implementations, leading to the GCM Editor.

Chapter 6 reports on the evaluation of the use cases.

Chapter 7 discusses this evaluation.

Finally, Chapter 8 concludes the results of the thesis and gives an outlook on future work
in the research field of this thesis.

7

CHAPTER 2
State of the Art

This section summarizes background and related work on Cyber-Physical Production
Systems (CPPS) Engineering, multi-view graphs in CPPS Engineering, model represen-
tation and querying, requirements engineering and the topic of stigmergic coordination.
The goal of this chapter is to provide an overview on these topics and to settle the work
in the current state of the art.

This thesis choses these topics to define the state of the art, that this thesis bases on.
First, this chapter introduces the state of the art in CPPS Engineering to outline the
state of the art in the field of application. Second, this chapter introduces the state of
the art on multi-view models in CPPS Engineering to outline current limitations in the
engineering domain. Third, to aid the definition of the software architecture, this chapter
outlines the state of the art on model representation, storage, and querying. Fourth, to
allow the definition of the illustrative use cases in Chapter 4, this chapter introduces the
state of the art approaches in Requirements Engineering. Lastly, this chapter outlines
the term and state of the art of Stigermgy, with an added focus on existing coordination
approaches in Collective Intelligence Systems (CIS).

2.1 Cyber-Physical Production Systems Engineering

This section introduces the term of Cyber Physical Systems (CPS) and its foundation
for CPPS Engineering. It settles the concept of CPPS Engineering in its current state
of the art, its unique characteristics and its current limitations, leading to gaps in the
research that this thesis aims to fill. It provides an overview of the current state of the
art in CPPS Engineering, allowing to gain insight on the field of application of the use
cases of this thesis.

9

2. State of the Art

2.1.1 Cyber Physical Systems (CPS)
This section introduces the underlying concept of CPPS, the CPS. One of the first
definitions of the concept of CPS can be found in Lee [2006]. Lee [2006] defines CPS as a
combination of computation and the physical processes in the real world. These physical
processes impact the computations, which lead to a reaction in the system, e.g., the
anti-lock braking system in a car continuously reacts to new input of the physical world
to adapt the braking. This leads to a continuous feedback loop between the computation
and the physical world.

The possible applications for CPS that Lee [2006] outlines are numerous. Possible
applications are in the field of transportation logistics, where interconnected autonomous
vehicles could improve safety, networked building control systems or the possibility
to track goods via radio-frequency identification (RFID) chips. All these application
possibilities fall under the broad term of the Internet of Things. Overall Lee [2006]
concludes that with a tight interconnection and integration of CPS in the real world a
“programmable matter” could become a reality.

Based on the introduction of the concept of CPS in Lee [2006], the scientific community
conducted further research and the term of CPS gained traction. This is outlined
by Cardin [2019], that outlines that between 2007 and 2017 the scientific published works
containing the term “cyber-physical” rose from 19 publications in 2007 to over 5000
publications in 2017. This immense growth of publications in the field of CPS also led to
new and improved definitions of the term.

Monostori [2014] defines Cyber Physical Systems (CPS) in the following way: “Cyber-
Physical Systems (CPS) are systems of collaborating computational entities which are
in intensive connection with the surrounding physical world and its ongoing processes,
providing and using, at the same time, data-accessing and data-processing services
available on the internet” [Monostori, 2014]. For Cardin [2019] it is necessary that the
CPS have sensors and actors to react to the environment and take actions. Furthermore,
they need the capability to communicate with humans via interfaces.

Figure 2.1 shows a schematic overview over the different parts of a CPS. As can be
seen, the software and hardware drive the sensors and actuators of the system. Uniting
the software, hardware, sensors, and actuators is the so called embedded system. This
embedded system is a part of the physical system, where the naming of Cyber Physical
Systems (CPS) becomes clear. The system as a whole can then connect and interact
with other systems, but also with humans via human-machine interfaces.

As Cardin [2019] outlines, based on this definition, the term CPS covers a very broad
field of systems and applications. This can be seen as an opportunity, since one broad
term and definition consolidates a large field of possible applications. Similarly to Lee
[2006], Cardin [2019] also sees possible applications based in the field of autonomous
vehicles and building control.

This thesis builds on the term of CPS as introduction into the field of CPPS, which

10

2.1. Cyber-Physical Production Systems Engineering

Physical System

Embedded system

Sensors and Actuators

Hardware

Software

Human - Machine
Interface

Connection to
other systems

Other Systems

Human
Actors

Figure 2.1: Schema of CPS, based on [Monostori, 2014].

represents the application context of the Model Analysis and Improvement (MAI) tasks
and the nature of CPPS Engineering Networks (CENs). Furthermore, due to the nature
of the proposed MAI flow, the flow can also be applied to CPS or any other system that
is represented by a (multi-view) graph.

2.1.2 From CPS to CPPS
As outlined, the field of applications for CPS is extremely wide. This is why the production
domain is very interested in the field of CPS [Cardin, 2019]. Due to this interest of the
production domain on CPS, the term of Cyber-Physical Production Systems (CPPS) is
introduced [Monostori, 2014].

The following definition of a CPPS is suggested by Cardin [2019]. “Cyber-Physical
Production Systems are systems of systems of autonomous and cooperative elements
connecting with each other in situation dependent ways, on and across all levels of
production, from processes through machines up to production and logistics networks,
enhancing decision-making processes in real-time, response to unforeseen conditions and
evolution along time” [Cardin, 2019]. The adaptability and decision-making of CPPS
is especially focused on in this definition. Furthermore, the definition encompasses the
distributed nature of CPPS, where coordination and cooperative elements between the
systems in the production domain are relevant.

Due to these characteristics of CPPS, Monostori [2014] sees many expectations and
applications for these systems, although expectations for CPPS are sometimes exaggerated.
Due to the possibility of communication between humans, products, and machines in

11

2. State of the Art

CPPS the possibilities for applications in the real world are manifold. Possible applications
include production systems, logistical systems and even smart cities, where technology
interconnects all aspects of the cities, which could lead to an improvement in quality of
life [Monostori, 2014].

This thesis builds on the term of CPPS as a field to conduct the use cases in the
Coordinated Model Analysis and Improvement (CMAI) method. The distributed nature
of CPPS, as outlined above, involves multiple engineering disciplines and actors. This
leads to the need of coordinated representation and also coordinated improvement of
graphs in the field of CPPS Engineering.

2.1.3 Foundation of Industry 4.0
As outlined by Monostori [2014] and Cardin [2019], CPPS are a very disruptive concept
in the industry domain. According to Monostori [2014] and Cardin [2019], CPPS could
even lead to the fourth industrial revolution, due to the possibilities of application in the
production domain.

Due to this, the German Government introduces the term Industry 4.0 in an effort to
prepare and to name the next industrial revolution [Vogel-Heuser et al., 2020]. The
goal of the Industry 4.0 is the digitization and linking of production systems in flexible
manufacturing plants [BMBF, 2018]. This is why the term Industry 4.0 strongly builds on
the concept of CPPS. As outlined before, the term CPPS refers to a production system
with full integration between IT systems, the production system, and interconnected
components. The goal is to improve the overall efficiency and effectiveness in modelling
and collaboration in the CPPS context [Lasi et al., 2014].

As shown in the exemplary use case introduced in Chapter 1, the multi-disciplinary
nature and the parallel engineering in the field of Industry 4.0 fuels the need for improved
coordination in the domain.

For this thesis, the disruptive possibilities of CPPS and the development of the term
Industry 4.0 in Germany warrant the conduction of typical use cases in the field of CPPS
Engineering. This shows that the conducted use cases are related to real life issues that
have gained traction in the last years in the research field and build on state of the art
issues.

2.2 Multi-view Graphs in CPPS Engineering
As shown in the exemplary use case in Chapter 1, typical use cases in CPPS Engineering
consist of multiple views on the same real world artifact. These concept of multiple views,
are called multi-view graphs.

As the context of CPPS Engineering is a heterogeneous and a multi-disciplinary engineer-
ing domain, it leads to typical problems in coordination, data exchange and overall data
integration. This is further enforced due to multi-view graphs, e.g., properties of shared

12

2.2. Multi-view Graphs in CPPS Engineering

nodes between different views in multi-view graphs [Biffl et al., 2017, 2021a]. Based on
this, further problems in validation of models and risk-mitigation between engineering
disciplines arise. Typical problems consist of working on stale data, that already was
modified by another engineer in a different view, or missing local coordination approaches
to aid coordination between engineers of one discipline [Biffl et al., 2017, 2021a]. To
improve on this, different approaches have been proposed in the research community.

These approaches, namely CENs and Round Trip Engineering, are introduced in this
section. Chapter 5 uses the introduced concepts as building blocks for the solution
approach of this thesis.

2.2.1 CPPS Engineering Networks (CENs)
The work of Atkinson et al. [2015] works on so called multi-view models. In this approach,
each engineering discipline models their respective domain specific models in their own
views. This leads to one view per engineering discipline, but multiple views per system,
due to the multi-disciplinary nature of CPPS.

A strength of this approach is that engineers can work following their normal working
habits. Since every view has its own Domain-Specific Language (DSL), engineers can
work with their domain-specific modelling tools and representations. This results in
multiple domain specific representations of the system [Atkinson et al., 2015; Lüder et al.,
2019; Biffl et al., 2021a].

These domain specific representations allow to form a network between the engineers
and different parts of the system [Schäffler et al., 2013]. This approach also has its
limitations, especially concerning data exchange between domain experts. Due to the
scattered nature of the domain, data aggregation, integration, and transformation is a
resource intensive and difficult task [Biffl et al., 2021a].

In the context of CPPS Engineering, the term of CPPS Engineering Networks (CENs)
was introduced by Biffl et al. [2021a]. This term describes multi-view models, as defined
by Atkinson et al. [2015], but in the domain of CPPS Engineering. In this thesis, the term
of CENs will also be used when talking about multi-view models provided by different
engineering disciplines.

As outlined above, the multi-view modelling approach has its limitations regarding data
exchange and data transformation. As a way to combat this, work on Round Trip
Engineering has been done and will be introduced in the following section.

2.2.2 Round Trip Engineering
To improve collaboration and to foster interaction between engineering disciplines, a way
to exchange modelling data is crucial, as Lüder et al. [2018] outline. Limitations in this
field result from the diversity of the tools used by engineers, but also by the engineering
habits of the different engineers. These engineers normally use domain specific tools, tool
chains, and optimized processes for their field. The usage of data logistics in general, more

13

2. State of the Art

specifically an approach of round-trip engineering, leads to a disruption of their working
environment. This may lead to backlash by the engineers, since they lose efficiency by
changing their optimal local working environment [Lüder et al., 2018].

For Lüder et al. [2018], the engineering networks in production systems are a data
logistics systems in itself. Due to this, data exchange is necessary in the multi-disciplinary
network. Based on the data exchange and data logistic approach, the research community
conducted works on Model Improvement and Risk Assessment in multi-disciplinary
Engineering [Winkler et al., 2017; Biffl et al., 2020, 2021a].

As a subset of data logistic in multi-disciplinary systems, Round Trip Engineering is a
common use case in the field. It allows distributed and parallel work and collaboration.
In general, this Round Trip Engineering describes a flow where a data provider provides
data, also called data source. Based on this data, an engineer transforms it to its domain
specific data format, works on it, and provides it to the next engineer. This engineer
again transforms the data to its local format, works on it, and provides it again. This
can be done as many times as needed. As a last step, the data can be transformed
into the origin format or be provided to a data sink, which uses the resulting modelling
data [Winkler et al., 2017; Lüder et al., 2019].

This thesis uses the concept of Round Trip Engineering in Chapter 4 and Chapter 5. It
allows to represent the “perfect engineering world”, as outlined by Winkler et al. [2017].
To better understand this concept, see Figure 2.2.

Modeling data
e.g. csv

Requirements
Engineer

Functional
Engineer

Electrical
Engineer

Mechanical
Engineer

Back to
origin format

Transform
to external

tools
Loopback

Loopback

Figure 2.2: Round Trip Engineering flow in the context of a MAI task in the context of
a CEN. Based on Winkler et al. [2017] and Lüder et al. [2019]. Due to the usage of

domain-specific DSLs by each Engineer between each engineer, a transformation step
happens. This allows each engineer to work in its own DSL.

The technical architecture introduced in Chapter 5 leverages the concept of Round

14

2.3. Model Representation, Storage, and Querying

Trip Engineering. Round Trip Engineering furthermore allows settling the technical
architecture into the current state of the art in the engineering world, by allowing import
and export of different formats, e.g., a list of comma-separated values (CSV). The usage
of external tools, such as Neo4J, also leverages this approach. This technical state of the
art will be introduced in the following section.

2.3 Model Representation, Storage, and Querying
To develop the prototype proposed in Chapter 5, the state of the art for model repre-
sentation, storage, and querying needs to be established for this thesis. This allows to
propose technical state of the art solutions while leveraging current developments in
graph storing and querying.

This section outlines the relevant topics as follows: First, this section establishes the
current state of the art solutions for model representation and exchange. Secondly,
it introduces the technical solutions used for Model Storage and Querying. Lastly,
this section reasons the technical decision taken for this thesis in the context of model
representation, exchange, and querying. Chapter 5 then applies these technical solutions.

Model Representation and exchange. A well established approach in the field
of Model Driven Systems Engineering (MDSE) is the Eclipse Modeling Framework
(EMF) [Brambilla et al., 2012]. EMF aims at bridging the gap between modelling and
developers by treating models as first class entities. Based on these models, developers
can create code, which allows for an easier adaption [Steinberg et al., 2008]. While EMF
is strong for code generation from models, multi-disciplinary CPPS Engineering typically
requires a heterogeneous network of discipline-specific engineering tools that require the
integration of multi-view models. Therefore, EMF is more focused on building code
from models automatically. In contrast, CPPS Engineering aims at modelling real world
artefacts, e.g., a production line.

As outlined in Section 2.2.2, the approach of round-trip engineering is common in the field
of CPPS Engineering. To allow for such an approach, model transformation and exchange
forms an important part. In the last years, for model representation and exchange in
the field of CPPS Engineering, Automation Markup Language (AML) has emerged as
the open IEC 62714 standard [IEC 62714-1, 2018] for technology- and vendor-agnostic
industry data representation in an XML Format. It aims at providing a data format that
allows domain and company-wide data exchange by providing a common standard [Biffl
et al., 2017, 2019b; Lüder et al., 2019; Lüder et al., 2020].

Based on the Automation Markup Language (AML) standard, other data logistics and
data exchange approaches have been gaining traction in recent years [Biffl et al., 2019a].
Such an approach has been introduced by Biffl et al. [2019a], the Engineering Data
Exchange (EDEx). The approach aims at providing a more general model exchange
approach, that is not restricted to the AML environment.

15

2. State of the Art

Neo4J MySQL
100 000int 18.0 ms 69.8 ms

Table 2.1: Query time for a structural query in milliseconds. The graph consists of 100
000 nodes. Based on the results of Vicknair et al. [2010].

This work will take into account Automation Markup Language (AML) and other
data exchange approaches and provide an interface, that allows model exchange and
transformation. This allows the integration of the results of this work into existing
round-trip engineering tool chains.

Model storage and querying. To store and query graph-oriented engineering models,
Graph Database Management System (GDBMS) Platforms are a natural match. These
platforms are optimized for storing hierarchical data, e.g., graphs and are based on Not
only SQL (NoSQL) databases [Li, 2019]. To standardize the Graph Query Languages
(GQLs), the GDBMS community continues to develop the proposed standard ISO/IEC
WD 39075. This standardization aims at providing a standard query language for GDBMS,
similar to the SQL standard [ISO/IEC 9075, 2016] for relational databases. ISO/IEC
WD 39075 [2020] develops this standard.

NoSQL databases, such as the platform MongoDB1, use several storage formats, such
as JSON-Objects2. For graph traversal queries, a graph database like Neo4j3 performs
substantially better than “classic” relational databases [Vicknair et al., 2010]. The speed
difference is especially noticeable when working with bigger and more complex graphs,
containing more nodes and edges. The work of Vicknair et al. [2010] measures this speed
improvement. Table 2.1 shows selected values, comparing structural queries on stored
graphs, between Neo4J and an SQL database.

Since the queries aimed at finding nodes on certain levels in the graph, e.g., finding nodes
at a depth of 128, Neo4J performed substantially better. This is more noticeable when
working on bigger graphs, as the runtime in Table 2.1 shows.

This work builds on NoSQL databases to facilitate the efficient and scalable storage and
querying of large multi-disciplinary engineering models. This also influences the chosen
data model for the proposed configuration of DSL as Chapter 5 outlines. The GDBMS
approach used by Neo4J is leveraged as an approach to easily query and traverse graphs.
For this, model transformation from the Generic CPPS Modeling (GCM) editor specific
DSL is necessary. This allows users to use a GQL to semi-automatically modify existing
graphs.

1https://www.mongodb.com/deLast accessed: 05/09/2021
2https://www.ecma-international.org/publications/standards/Ecma-404.htmLast accessed:

05/09/2021
3https://neo4j.com/ Last accessed: 05/09/2021

16

https://www.mongodb.com/de
https://www.ecma-international.org/publications/standards/Ecma-404.htm
https://neo4j.com/

2.4. Requirements Engineering

2.4 Requirements Engineering

As Hofmann and Lehner [2001] outline, Requirements Engineering is an integral part
in achieving success within a software project. Requirements Engineering is especially
useful in software-intensive systems and plays an important part in Software Engineering.
Due to the nature of CPPS Engineering, it can profit off of established approaches of
Requirements Engineering in Software Engineering.

To elicit, validate and verify requirements relevant to the use cases in this thesis, this
section introduces three approaches to requirements engineering. Each of these approaches
allows to elicit a unique view on the requirements in this thesis. This section starts from
a more general, system-wide approach, focusing on agents and processes, represented by
I-Star (I*) and IDEF0, to a more use case specific approach, represented by Restricted
Use Case Modeling (RUCM). The following sections introduce the State of the Art of
these approaches to aid the definition of the use cases elicited and conducted in Chapter 4
and Chapter 5.

2.4.1 I*

I*, also known as I-Star, is a modelling framework for requirement engineering, proposed
by Yu [1997]. Its aim is to focus on and to understand the Why? in the requirement
elicitation process for software, instead of focusing on the What?, e.g., not asking What
features do certain stakeholders need, rather asking Why do stakeholders require certain
features. This modelling framework is especially tailored to be used in the early phases
of requirements engineering. The I-Star approach allows to gain a broad overview over
the involved stakeholders and computer systems, especially when involving multiple
actors and subsystems. Furthermore, I-Star allows an overview over the relations and
dependencies in-between these involved parties [Yu and Mylopoulos, 1994; Yu, 1995,
1997, 2001; Atkinson et al., 2015].

The main concept of the I* modelling approach are the so-called agents. For Yu [2001]
the modelling concept of agents has certain properties, that affect the modelling process:

Intentionality. Each agent in the system has its own goals, abilities, etc. Based on
these goals, each agent acts intentionally according to its own beliefs. Following these
goals and abilities of each agent, it is possible for the modeller to conduct a high-scope
elicitation of requirements in the system.

Autonomy. As outlined by Yu [2001], each agent acts on its own initiative and au-
tonomous from other agents in the system. This means that an agent is not fully
predictable or knowledgeable beforehand to the modeller.

Sociality. Since agents are social, the relationships between the different agents in the
system are very important. These relationships are complex and multilateral, but settle
the agents in a social network.

17

2. State of the Art

Contingent Identity and Boundaries. Agents can be abstract in I*. This allows the
representation of higher-scope agents, e.g., groups and teams of social agents. Furthermore,
the boundaries of responsibility for each agent are changeable and not fixed from the
start. These can be changed as needed, e.g., when the responsibility for a task shifts
between different agents the boundary for responsibility changes as well.

Strategic reflectivity. Agents are capable of reflecting on their own operations. This
means that agents can be involved into the development of requirements and can offer
insights and improvements. Furthermore, each agent has strategic interests in the
operational world. When modelling with the I* modelling approach, these strategic
interests should be reflected upon.

Rational self-interest. As last property, Yu [2001] outlines that every agent acts on
self-interest and according to its own goals. This does not mean that agents act only on
their self-interest, but rather that they try to fulfill their commitments to themselves
and their relation to other agents in the system.

Based on these properties of agents, the I*-framework defines two different model types.
The goal of these model types is to represent distributed intentionality, introduced by
the agents and their properties. These two types are the so-called Strategic Dependency
Model (SD) and the Strategic Rationale Model (SR) [Yu and Mylopoulos, 1994; Yu, 1995,
1997, 2001; Atkinson et al., 2015].

Strategic Dependency Model (SD). The Strategic Dependency Model aims at
representing dependencies between agents in the system. A dependency concerns one
agent depending on the work, input, etc. of another agent to achieve its own goals and
work. Therefore, the SD-Model is able to represent internal structures of the process,
the different stakeholders and their relations, and the dependency chain between the
stakeholders. Based on this model type and the resulting dependency chains one can
analyse vulnerabilities and opportunities for each agent in the system [Yu, 1995, 1997].

Strategic Rationale Model (SR). Whilst the Strategic Dependency Model focuses
on the relationship and the dependencies between the agents, the Strategic Rationale
Model focuses on the agents and their internal goals, tasks, resources and softgoals.
Therefore, the SR-Model allows to analyse the internal interests of stakeholders and
provides a way of exploring alternative approaches, since the SR-Model shows different
ways how stakeholders can achieve their goals [Yu, 1995, 1997].

In summary, Yu and Mylopoulos [1994]; Yu [2001] see advantages in using an agent and
goal-based approach in requirements engineering. This approach is especially beneficial
when developing software processes, which normally have to tackle a high-complexity
field and rely on collaborative problem-solving [Yu, 1997].

This thesis builds on I* as a building block to allow an elicitation of the high-scope
requirements, as shown in Chapter 4 by Figure 4.1. Furthermore, I* allows to gain a
better overview over the goals of each stakeholder taking part in the conducted use cases.

18

2.4. Requirements Engineering

2.4.2 Modelling with the Integration Definition 0 (IDEF0) Standard
Integration Definition 0 (IDEF0) [ISO/IEC/IEEE 31320-1:2012] is a modelling method,
focused on the structured representation of functional flows in the system. Integra-
tion Definition 0 (IDEF0) is therefore a function model, based mainly on the Structured
Analysis (SA) Language, introduced by Ross [1977].

Structured Analysis (SA) Language. Ross [1977] motivates the introduction of
the SA Language with the need for concise, simple and clear communication when
conveying ideas in software engineering. SA is based on the principle of “Everything
worth saying about anything worth saying something about must be expressed in six or
fewer pieces.” [Ross, 1977]

Following this commitment to a simple, structured language, the SA Language uses a
simple building block, the so-called SA box. For visual representation of the main building
block, see Figure 2.3. The SA box is surrounded by arrows, representing the Input,
Output, Control and Mechanism. Ross [1977] sees the SA box as a transformation
function that transforms the Input according to the Control imposing constraints or
restrictions, and taking Mechanisms containing resources to complete the transformation.
The result of this transformation is the Output. This Output can be an Input to other SA
boxes. This property allows interaction and chaining of multiple functional steps [Ross,
1977].

Ross [1977] sees applications of the SA Language beyond requirements engineering. Since
the end result is a structured model, the SA Language can be used in any field that
requires conveying and presenting new ideas in a structured manner. Furthermore, the
SA Language can be used by a single person or a group to approach a problem or idea in
a structured way.

Limitations of the SA Language concern the loss of detailed representation of information.
The SA Language allows a good representation of the high scope view on the system and
flow, while minor details get lost. To represent details, other approaches like RUCM can
be used.

Evolution of the SA Language into IDEF0. The Integrated Computer Aided
Manufacturing (ICAM) Program of the U.S. Air Force identified the need to improve
productivity in its manufacturing process and aimed to achieve this by improving analysis
and communication techniques for the involved engineers. This need introduces the IDEF
(ICAM Definition) family of modelling techniques. The IDEF family contains three
modelling methodologies, IDEF0 - a function model, IDEF1 - an information model and
IDEF2 - a dynamics model. All three model types allow to describe the environment of
the modelled system [Mayer, 1990].

The IDEF0 modelling technique, proposed by the ICAM program, relies mainly on the
work on SA Language by Ross [1977]. Ross was also involved in the development of the
IDEF0 modelling technique [Mayer, 1990].

19

2. State of the Art

Function

Mechanism

Input Output

Control

Figure 2.3: Main building block of IDEF0, the SA box, based on Ross [1977].

In 1993, effort started to standardize IDEF0 in the ISO/IEC/IEEE Standard. IDEF0 is
contained in the ISO/IEEE standard since 1998, when it was introduced by IEEE Std
1320.1-1998. The current valid standard can be found in ISO/IEC/IEEE 31320-1:2012.

This thesis builds on IDEF0 for representing the high scope process flows in the use cases
in Chapter 4 and Chapter 6. As stated above, to provide a more detailed definition of the
use case steps, this thesis uses RUCM to define more fine-grained steps. The following
section introduces this approach in more detail.

2.4.3 Restricted Use Case Modeling (RUCM)
Whilst IDEF0 focuses on an abstract, high level view on the system, mostly focused on
flows between different steps, Jacobson [1993] proposes a different approach. He proposed,
to structure and elicit requirements in a system, a use case driven approach Jacobson
[1993]. A use case can be understood as a description of all interactions that a user has
with the system.

According to Jacobson [2004], the use case driven modelling approach has been adopted
quickly and is widely used in the industry. This is also reported by Dobing and Par-
sons [2006], where practitioners saw the value of use case diagrams especially in fields,
where “verifying and validating requirements with client representatives on the project
team” [Dobing and Parsons, 2006] is of special importance.

Yue et al. [2009] raised the issue of ambiguity in the use case driven approach due to
the predominant textual definition of the use cases. This unstructured textual definition
allows a lot of flexibility, but also leads to ambiguity between use cases, since they do not
comply to the same structure or rules. To address this issue, Yue et al. [2009] introduce
the Restricted Use Case Modeling (RUCM) template, together with restrictions, to define
use cases. The goal is to reduce ambiguity and provide a more structured approach to
model use cases.

20

2.4. Requirements Engineering

Use Case Name The name of the use case
Brief Description Summarizes the use case in a short paragraph
Precondition What should be true before the execution of the

use case.
Primary Actor The actor which initiates the use case.
Secondary Actors Other actors the system relies on to accomplish the

services of the use case.
Dependency Include and extend relationships to other use cases.
Generalization Generalization relationships to other use cases.
Basic Flow Specifies the main successful path, also called

“happy path”. Also contains numbered steps and
the postcondition after the flow.

Specific Alternative Flow Applies to one specific step of the reference flow.
RFS: Reference flow step, where the flow branches
from. Also contains numbered steps and the post-
condition after the flow.

Global Alternative Flows Applies to all the steps of the reference flow. Also
contains numbered steps and the postcondition after
the flow.

Bounded Alternative Flows Applies to more than one step of the reference flow,
but not all of them. RFS: Reference flow step, where
the flow branches from. Also contains numbered
steps and the postcondition after the flow.

Table 2.2: RUCM use case template, based on Yue et al. [2009]

Table 2.2 illustrates a RUCM template. A filled out template can be found in Table 4.1,
defining use case 1 of this thesis. Most steps are self-explanatory and provide the user
with a rigid and structured approach of the definition of the use case.

Furthermore, the RUCM template contains four flows that describe the steps needed
to conduct the use case. First, the Basic Flow contains all steps to define the main
successful path of the use case without branching, e.g., a flow to successfully retrieve
money from the ATM can be represented by the Basic Flow.

Second, the Alternative Path has three subcategories that define all steps of alternative
scenarios, both success and failure [Yue et al., 2009]. The Specific Alternative Flow refers
to a single step of the Basic Flow, e.g., representing an Alternative Flow if the PIN to
retrieve money at the ATM is wrong. The Global Alternative Flow, an Alternative Flow
referencing any step in the Basic Flow, e.g., by finding another ATM if the first ATM
fails at any step in the Basic Flow. The Bounded Alternative Flow refers to multiple
steps of the Basic Flow, e.g., defining an Alternative Flow if the credit-card cannot be
read by the ATM in the first three steps.

21

2. State of the Art

To reduce ambiguities, RUCM imposes constraints on defining use cases. These restrictions
concern either the use of natural language, e.g., using only present tense when defining
the Basic Flow, or to enforce the use of special keywords, e.g., using the term “the system”
when talking about the system under design. A full listing of these Restrictions can be
found in Table 2 of Yue et al. [2009]. The restrictions most relevant for this thesis are:

• R2 - “‘Describe the flow of events sequentially.” [Yue et al., 2009]. This aids the
readability and traceability for readers of this thesis.

• R4 - “Describe one action per sentence. (Avoid compound predicates.)‘” [Yue et al.,
2009]. Aims at reducing complexity by separating multiple actions into different
sentences.

• R7 - “Clearly describe the interaction between the system and actors without omitting
its sender and receiver.” [Yue et al., 2009]. This is especially relevant for this thesis,
due to the multi-disciplinary context of the use cases. This restriction enforces the
explicit definition of interactions between the system and actors.

In summary, the RUCM approach provides a construct to allow a more stringent definition
of use cases and aids users in the correctness of their use cases. As outlined and evaluated
by Yue et al. [2009], the usage of RUCM leads to a higher correctness when deducting
class-diagrams with RUCM.

This thesis uses RUCM for the definition of the flows and steps for each specific use
case, as can be found in Chapter 4. RUCM allows the reader to clearly follow each step
conducted in the use cases and possible alternative flows. Thus, RUCM aids traceability
and verifiably, improving the soundness of the use case representation.

2.5 Stigmergy and Coordination
The multi-disciplinary nature of CPPS Engineering requires approaches for collaboration
and coordination, especially in an asynchronous context. Therefore, this section introduces
the terms of Stigmergy and CIS. The terms of Stigmergy and CIS are introduced to
(1) outline an existing approach that leverages asynchronous communication via traces
in the environment and (2) to outline an existing approach that leverages stigmergic
concepts in existing software platforms.

This section introduces the term Stigmergy by outlining its foundation in the biological
field and its relation to the field of engineering. It also introduces resulting methodologies
and approaches based on the approach of stigmergic behaviour. This stigmergic approach
enforces collaboration, and coordination between engineering disciplines. This section
therefore also introduces approaches on coordination via CIS and coordination artefacts
in the environment, which will be used in Chapter 5.

22

2.5. Stigmergy and Coordination

2.5.1 Introduction to Stigmergy
To allow and guide the coordination between multiple engineers across multiple engineering
disciplines, this thesis requires a method allowing asynchronous communication between
engineers. This allows asynchronous working by multiple engineers on MAI tasks.
Therefore, the approach provided by Stigmergy is introduced.

Stigmergy was first formally defined by the French biologist and zoologist Grassé [1959].
In his work, he analysed the behaviour of termites as an organized social structure. The
goal of his work was to explain how an insect society, like termites, can behave in a
coordinated way while each individual seems to work alone and take decisions for itself.

The term Stigmergy, from the Greek word stigma (engl. sting) and ergon (engl. work),
describes in general mechanisms that enable indirect task coordination and regula-
tion [Theraulaz and Bonabeau, 1999]. It was initially introduced in the context of
coordination of termites in the work of Grassé [1959]. A simple example for this are
pheromones that ants mark in the environment to communicate, e.g., routes to food
sources.

As Theraulaz and Bonabeau [1999] outline, the main principle of Stigmergy is very simple.
Individuals leave traces in the environment, whilst other agents feed back on them and
react to these traces. These traces allow an organized behaviour in between agents,
without direct communication. Therefore, each agent seems to behave independently in
the system, whilst really feeding off of traces left in the environment. As Theraulaz and
Bonabeau [1999] further sketch, this feeding off of traces in the environment allows a
feedback loop in between the agents.

This behaviour can be seen in ants that select new food sources near the hive. If the
path between the hive and the food source is too long, the traces in the environment,
e.g., pheromones, evaporate. This leads to a disappearance of the trail, since no traces in
the environment can be found by other ants. It also leads to a positive feedback loop,
where ants select closer food sources since they frequent the trail more often and the ants
refresh traces in the environment more often. This makes the trail better “visible” to
other ants of the colony.

In general, two main types of Stigmergy can be distinguished [Theraulaz and Bonabeau,
1999]:

Quantitative Stigmergy. In quantitative Stigmergy agents react to a quantitative
stimulus. This means that the agent reacts to an accumulation of, e.g., soil mixed with
pheromones. This is used as an example in Grassé [1959], which outlines the process
of building pillars by termites. In the beginning, termites accumulate soil mixed with
pheromones in an uncoordinated behaviour. This accumulation of soil and pheromones,
triggers a positive feedback loop, in which more and more termites accumulate soil. When
enough workers are available, a coordinated effort happens in between the termites, since
enough pheromones are available. In this example, the positive feedback loop due to the

23

2. State of the Art

Quantitative Stigmergy Qualitative Stigmergy
Marker-based Path following of ants via

pheromones
Combination of pheromones
leads to decisions

Sematectonic Building of pillars by termites Construction of wasp nests

Table 2.3: Distinctions of different Stigmergy types, based on Parunak [2005]

traces in the environment is visible, since it incentivizes other termites to also accumulate
more soil.

Qualitative Stigmergy. In contrast to quantitative Stigmergy, qualitative Stigmergy
is based on qualitative stimuli of the environment. For example, a wasp decides what
nest structure to build according to the nest form around it, therefore a qualitative
aspect [Parunak, 2005].

Theraulaz and Bonabeau [1999] more generally outlines that in qualitative Stigmergy the
Stigmergy types consist of a well-defined set. This means that each specific Stigmergy
stimulus leads to a specific action by the agent.

Parunak [2005] further differentiates between sematectonic stigmergy and marker-based
Stigmergy in a human-human based setting, as two subtypes to quantitative Stigmergy
and qualitative Stigmergy. This can be seen in Table 2.3. Sematectonic Stigmergy
refers to Stigmergy, where actions base on the current solution state. In comparison,
marker-based Stigmergy references Stigmergy where agents communicate indirectly via
markers and traces placed in the environment.

This thesis builds on Stigmergy as a building block in Chapter 5. The aim is to improve
cooperation, coordination, and the quality of the results of CMAI method by using
Stigmergy. This is used in this thesis in Chapter 5. It also will be used to answer RQ2
and RQ3 in Section 3.2 as a possible improvement. The solution approach will focus
mainly on marker-based Stigmergy in a qualitative context. This is due to the domain
experts involved that want to use indirect communication qualitatively and are looking
to analyse and improve models instead of communication via a solution state as is needed
in sematectonic Stigmergy. Furthermore, Parunak [2005] outlines that Stigmergy is a
good fit in structured environments, e.g., graphs. This makes it a good fit in the context
of this thesis, where the goal is to improve Model Analysis and Improvement.

2.5.2 Collective Intelligence Systems (CIS)

In this thesis, the proposed solution approach allows interaction between the engineers
via Stigmergy, as outlined above. This results in collected information in the platform
that is added by each actor in the system. To handle this aggregation and dissemination
of information and to improve the feedback loop between the engineers and the system,
the term of Collective Intelligence Systems (CIS) is introduced.

24

2.5. Stigmergy and Coordination

Musil et al. [2015] reviewed and analysed CIS to provide a framework on how to system-
atically build a CIS architecture. A CIS is a sociotechnical system aimed at collaborative
working between humans. Examples for CIS are wikis in the public and corporate context,
such as Wikipedia4 and Confluence5. The goal of these platforms is to collaboratively
aggregate information on topics and make them available to other users. Musil et al.
[2015] also outlines that approaches exploiting stigmergic concepts in CIS are emerging.

This influence by Stigmergy, outlined by Musil et al. [2015], is due to the indirect
communication between actors that is enforced by CIS. This stigmergic approach in CIS
can be separated in two phases. These are the aggregation phase and dissemination phase.
The aggregation phase is the phase in which actors interact with the artefacts of the CIS.
In the dissemination phase, the CIS makes agents aware of new changes and activity in
the system. This interaction of aggregation and dissemination leads to a perpetual cycle
and a positive feedback loop, as can be found in Stigmergy [Musil et al., 2015].

An example of this is the modification of an existing Wikipedia6 article. Here, users can
collaboratively add changes to an article, to improve its overall quality and include new
information. This is the aggregation phase. The homepage then makes these changes
visible to other users. This is the dissemination phase. Based on these changes, other
users can then review, improve and further modify the article. As can be seen, this leads
to a positive feedback loop as present in Stigmergy, since users are aware of changes,
improve on them while also creating new changes, leading to a perpetual cycle.

This work builds on the main principles of CIS in which multiple different actors work
collaboratively to aggregate and improve knowledge, e.g., engineering models. It also uses
the approach of Stigmergy in CIS to improve the overall result quality and cooperation
between engineers.

2.5.3 Collaboration in Multi-Disciplinary Engineering
As Musil et al. [2016] outline, collaboration between multiple different engineering
disciplines and actors is an important factor in CPPS engineering. Major issues in
this context arise from dispersed information between engineering disciplines. Each
actor has local engineering knowledge that is difficult to share due to heterogeneous
communication channels. This also leads to poor discoverability of information containing
critical know-how to the business.

To address these coordination and knowledge sharing issues, Musil et al. [2016] suggests
using CIS-approaches in the context of CPPS.

The directions in which CIS intermeshed with CPPS engineering could be used are
outlined by Musil et al. [2017]. Musil et al. [2017] sees potential in capability augmenta-
tion, machine-to-machine interaction and multi-disciplinary knowledge integration and
coordination.

4https://www.wikipedia.org/ Last accessed: 14/05/2021
5https://www.atlassian.com/de/software/confluence Last accessed: 14/05/2021
6https://www.wikipedia.org/ Last accessed: 14/05/2021

25

https://www.wikipedia.org/
https://www.atlassian.com/de/software/confluence
https://www.wikipedia.org/

2. State of the Art

Proposed Software Architecture

Models & Attributes

Engineering specific views

Requirements
 Engineering

Mechanical
Engineering

Electrical
Engineering

Functional
Engineering

Knowledge
Sharing
between

Engineers

Knowledge
transfer and
coordination

Knowledge
transfer and
coordination

Figure 2.4: Knowledge sharing and coordination between engineering disciplines using a
software platform, based on Musil et al. [2017].

This thesis makes use of the Coordination aspects of a CIS in the light of improving
knowledge sharing and overall quality of artefacts, as outlined in Musil et al. [2017]. A
visual representation of this can be seen in Figure 2.4. As can be seen, each engineering
discipline adds new knowledge to the platform, which is then transferred and shared back
to the engineers via the system.

2.5.4 Environment and Coordination artefacts
Weyns et al. [2007] introduces the environment of multi-agent systems as an important
part of the system and as key to provide solid coordination support between agents.
Therefore, Weyns et al. [2007] introduced the environment as first-class abstraction
in multi-agent systems. The environment has two critical roles. First, it is the space
with which agents interact, record their results and evaluate their doings. Secondly, it
allows a separation of concerns. It separates the environment strictly from the agents in
the systems. This also aids the reduction of complexity when acting with multi-agent
systems [Weyns et al., 2007].

Weyns et al. [2007] also outlines that the environment can be used as a flexible coordination
medium. Due to the virtual nature of environments in multi-agent systems, it creates
further opportunities for agents to communicate, beyond the real world.

This possibility to use the environment as a coordination medium is an idea shared
by Omicini et al. [2004]. Omicini et al. [2004] defines coordination artefacts to allow
coordination between agents. For Omicini et al. [2004] coordination artefacts must have
three main characteristics.

• Operations. Actions possible by the agent on the coordination artifact.

26

2.5. Stigmergy and Coordination

• Operating instructions. Explicit definition on how to use the coordination artefacts.

• Coordination behaviour specification. Explicit definition of the coordinating be-
haviour of the coordination artifact.

For Omicini et al. [2004] these characteristics can be exploited by intelligent agents and
allow even complex coordination scenarios between agents.

This work will build on the state of the art on environments and coordination artefacts to
exploit the virtual environment of the proposed software architecture and aid coordination
between agents with coordination artefacts. This work will build on stigmergic concepts
to aid asynchronous communication between engineers on graphs. Furthermore, the
solution design leverages the concepts introduced by CIS to improve knowledge transfer
and coordination between engineers. The characteristics outlined for coordination arte-
facts will be taken into account when designing the solution approach to marker-based
stigmergy. This aims at filling the gap in the research regarding insufficient tool support
for coordination and collaboration with markers, with a focus on the field of CPPS
Engineering.

27

CHAPTER 3
Research Questions and Approach

The goal of the thesis is to design and evaluate a novel approach for coordination in
modelling for Cyber-Physical Production Systems (CPPS) Engineering by adapting
established models, methods, and mechanisms from informatics by following the design
science approach [Hevner et al., 2004]. The design science approach will be used when
designing the Solution Approach proposed in Chapter 5.

3.1 Design Science
Hevner et al. [2004] outlines that engineers develop information systems to improve the
workflow and efficiency between users in an organization. To aid the design science
research process, Hevner et al. [2004] provide seven guidelines in the research process to
assist researchers, reviewers, editors, and readers in the design science research process.

To further aid understanding of the problems and solutions proposed in this thesis, a
visual abstract, based on Engström et al. [2020], is introduced by Figure 3.1. The Figure
shows the problems, the solutions, the relevance, the rigor, and the novelty of this thesis
and provides a quick overview over the thesis and its results.

This thesis will build on the guidelines of Hevner et al. [2004] as follows.

Design as an artefact. This guideline will be addressed by the Domain-Specific
Language (DSL) and the artefacts needed to answer the research questions defined in
Section 3.2.

Problem relevance. The problem relevance arises from the state of the art and the
real world problems. Furthermore, this thesis takes challenges from the literature into
account to fulfil this guideline. The current state of the art and arising challenges from it
has been outlined in Chapter 2.

29

3. Research Questions and Approach

Qualitative
evaluation using
representative CPPS
Engineering use
cases.

Study the state-
of-the-art
literature on
model analysis
and improvement
on graphs

Design based
on improving
(inter-
disciplinary)
coordination

Due to the multi-disciplinary
nature of CPPS Engineering issues
and limitations in coordination
exist. These issues inhibit the
effective analysis and
improvement of models between
multiple engineers in a parallel
and iterative application field.

Improve coordination through
computer supported, seamless
syncing of models between
engineering disciplines and
leverage stigmergic approaches to
improve discipline specific
coordination on tasks.

CPPS Engineering is gaining more and more relevance. It is important to find effective
methods that support engineeris in analysing and improving their models.

Qualitative evaluation on use cases from literature in the field of CPPS Engineering. These use cases
represent real world use cases and allow a qualitative evaluation of the proposed solutions.

Design an DSL that is specifically tailored for coordinated model analysis and improvement. Propose a
method that leveragas this DSL to improve coordination. Provide a software architecture that allows the
evaluation of the proposed DSL and method.

To improve overall quality and effectivness of multi-view models
in CPPS Engineering use the proposed CMAI method.

Coordinated Multi-View Graph Analysis and Improvement

Figure 3.1: Visual Abstract, based on [Engström et al., 2020].
Template used from online repository1.

Design evaluation. To evaluate the proposed solutions, the use cases introduced in
Chapter 4 will be evaluated by the solution approach proposed in Chapter 5. Chapter 6
conducts the evaluation of the proposed design and Chapter 7 discusses the results. This
qualitative evaluation approach allows to evaluate the proposed design, which is integral
to the design science process as proposed by Hevner et al. [2004].

Research contributions. Since the research questions in Section 3.2 go beyond the
state of the art introduced in Chapter 2, this thesis makes new contributions to the
research field. This way, this thesis creates new knowledge and contributes to the research
field.

Research rigor. This thesis introduces the design and evaluation approach in great
detail in this thesis. This allows the readers to easily verify that this work uses sound
design and evaluation methods. Due to this, this thesis fulfils the need for research rigor

1https://raw.githubusercontent.com/margaretstorey/VASE/master/Template.png Last ac-
cessed: 02/09/2021.

30

https://raw.githubusercontent.com/margaretstorey/VASE/master/Template.png

3.2. Research Questions

in the design science process.

Design as a search process. To allow for a good design and solution, this thesis will
analyse the state of the art, elicit relevant use cases to the problem domain in Chapter 4
and propose and appropriate solution design in Chapter 5. This step wise approach
allows searching for an optimal solution, relying on the elicited problems and use cases.

Communication of research. This master thesis will be made available to researchers
and the public via the library of TU Wien, effectively communicating the research results.

3.2 Research Questions
This thesis aims to answer the following research questions. Chapter 2 introduced the
building blocks and research gaps that these research questions base on.

RQ1 is motivated by the existing need in the State of the Art to define a DSL, allowing for
coordinated model design and improvement approaches in the field of CPPS Engineering.
RQ2 leverages the defined DSL, introduced by RQ1, to define a method that allows users
to conduct Coordinated Model Analysis and Improvement. This is founded in the need
in the State of the Art to provide a method allowing for coordination between users,
while also leveraging stigmergic concepts. RQ3 is concerned with providing a software
architecture, allowing the manipulation of models defined in the DSL of RQ1 and aiding
the conduction of the Coordinated Model Analysis and Improvement (CMAI) method
proposed by RQ2.

RQ1. CMAI-DSL. What domain-specific language (DSL) allows representing
and linking of multi-view graphs for coordinated multi-disciplinary engineer-
ing? Coordinated engineering requires both the visual and data representation of a
multi-view graph of discipline-specific engineering models and markers to represent
engineering tasks and their solution states.

To address RQ1, this thesis plans to design and evaluate a DSL for Coordinated Model
Analysis and Improvement (CMAI), the CMAI-DSL, which allows flexible representation
of engineering models from several engineering disciplines, coordination artefacts - such
as markers - and of the links between these models. These links allow for the propagation
of multi-view model changes that are the result of a resolution of a specific task, such as
improving the design of a model part, modelled in functional, mechanical, and electric
views. Further, markers will provide the foundation for defining and using coordination
artefacts representing tasks and their solution states, both for humans and computers.

RQ2. CMAI method. What method can domain experts use to define design
and validation loops to analyse and improve multi-view graphs, with links
between models in different engineering disciplines? Domain experts require a
method to define a design and validation loop within a multi-view model. To achieve

31

3. Research Questions and Approach

this, this thesis proposes a method allowing for coordination and model analysis and
improvement, the CMAI method.

As a starting state, the CMAI method starts from related models in a multi-view context,
needing design and validation by domain experts. To aid this interdisciplinary design and
validation, the CMAI method leverages the links between models, introduced by RQ1, to
automatically propagate changes in multi-view models. This allows domain-experts to
conduct design and validation loops automatically on the most recent data.

Furthermore, to aid discipline specific coordination in a design and validation loop, the
CMAI method leverages the coordination artefacts introduced by RQ1. This allows
domain experts to track tasks and resolution states in models, leveraging stigmergic
concepts.

The goal of RQ2 and the CMAI method is to provide domain experts with a framework,
allowing for design and validation loops in the context of multi-view models.

RQ3. CMAI Editor and Service Architecture. What software architecture
and solution design can provide the capabilities to efficiently analyse and
improve models? Domain experts require a software architecture to conduct a design
and validation loop within a multi-view model. For this, this thesis designs the Generic
CPPS Modeling (GCM) Editor.

This software architecture needs to allow the storage and visual representation of the
resulting CMAI-DSL from RQ1. Furthermore, the architecture needs to provide an
efficient way for users to manipulate models represented in the CMAI-DSL.

To provide the capabilities to efficiently analyse and improve models, - using the CMAI
method introduced in RQ2 - the GCM Editor must allow the definition of links between
models, including the capability of interdisciplinary property propagation. Furthermore,
it also needs to allow users to use the coordination artefacts introduced by RQ1 and used
by the CMAI Method.

3.3 Work Packages
Figure 3.2, based on Figure 1.2 in Chapter 1, shows a refined summary on the work and
research results of this thesis.

WP1. Elicit Use Cases and Survey Literature and Technology. In WP1, this
thesis elicits use cases, relevant for researchers and practitioners, resulting in Use Case
Descriptions. Chapter 4 outlines these use case descriptions.

This thesis surveys literature in the field of CPPS Engineering, Coordination and Multi
View model analysis and improvement, resulting in Scientific gaps that motivate the
research.

32

3.3. Work Packages

A3

Design Use
Case Prototype

A3

Design Use
Case Prototype

A1

Elicit Use Cases
& Survey

Literature+Tech
A1

Elicit Use Cases
& Survey

Literature+Tech

A2

Design Knowl.
Rep. Edit. Func.

Capabilities
A2

Design Knowl.
Rep. Edit. Func.

Capabilities

A4

Evaluate Knowl.
Rep. Edit. Func.

Capabilities
A4

Evaluate Knowl.
Rep. Edit. Func.

Capabilities

CPPS Engineering

Selected
Previous work

Sample Models GCM
Platform

Research
scope

CMAI-DSL

Generic CPPS Modeling (GCM) Platform

Requirements, Use Cases GCM Prototype for Use Case

AutomationML
IEC 64...

GCM
PlatformDomain Expert

Requirements Engineering

Multi-View Graphs in CPPS
Model representation, storage and querying

Sci.
Found.

Graph Query
Language
IEC 39075

CPPS Eng.
Modeling
Language

Req.
UCs

IDEF0

CMAI Method

Discussion of
results

GCM
Platform

MDRE Experience

Stigmergy and Coordination

GCM Prototype
for Use Case

Figure 3.2: Refined work packages of this thesis, based on Figure 1.2.

This thesis surveys technology on model storing, traversal and querying resulting in
building blocks for the back end of the Model Analysis and Improvement (MAI) system
architecture. Chapter 5 introduces these building blocks.

WP2. Design Knowledge Representation and GCM Editor Capabilities. In
WP2, this thesis designs the CMAI-DSL to allow for knowledge representation in the field
of CPPS Engineering. Furthermore, this thesis designs a system architecture based on the
requirements for MAI editing capabilities. Section 5.3 outlines this system architecture
and its technical aspects. Based on this architecture design, this thesis designs and
implement a GCM platform.

WP3. Design Use Case Prototype. In WP3, this thesis designs a GCM prototype
tailored to the use case, building on the GCM Platform coming from WP2 and the
technical architecture outlined in Section 5.3.

WP4. Evaluate Knowledge Representation and GCM Editor Capabilities.
WP4 aims at evaluating the results coming from the other work packages and the
capabilities of the GCM platform, resulting in an evaluation report. Chapter 6 conducts
the evaluation and Chapter 7 discusses the results.

33

3. Research Questions and Approach

3.4 Requirements

Due to the current shortcomings in the real world and difficulties motivated in Chapter 1
and outlined in the State of the Art in Chapter 2, the following high scope requirements
for the solution approach proposed in Chapter 5 arise. The requirements concern
data representation, method design, and model storage and querying. Chapter 4 cross-
references these requirements for each use case. Furthermore, Chapter 4 defines more
detailed requirements for each conducted use case.

These requirements come from the related literature, outlined in Chapter 2. This thesis
elicited these requirements together with researchers and domain experts, also using the
use cases outlined in Chapter 4 and using the exemplary use case used in Chapter 1.
Overall, the requirements outlined here give a high-scoped overview over the elicited
requirements. For more detailed requirements per use case, relate to Chapter 4.

R1: Representation of domain knowledge. CMAI-Domain-Specific Language
(DSL). The use cases introduced in Chapter 4 require the representation of domain
concepts, such as technical assets and links, to model production systems in the CPPS
Engineering context. These domain concepts can be described in a DSL. This DSL must
allow for Coordinated Model Analysis and Improvement (CMAI), therefore it will be
named CMAI-DSL.

CPPS Engineering Network (CEN) representation. The CMAI-DSL must allow for the
representation of graphs consisting of nodes and edges and their respective properties, e.g.,
name, type, and description. These nodes and edges need to allow for a representation
of nodes and edges of different types and type-specific properties. Furthermore, the
CMAI-DSL must allow the representation of CPPS Engineering Networks (CENs) and
multi-view models. This means that models must have the capability to be linked to
each other directionally. Via these model-to-model links, a propagation of properties for
model elements is possible

Coordination markers. To allow for CMAI it is necessary that the proposed CMAI-DSL
allows for the representation of markers as coordination artefacts. These coordination
markers aim at leveraging stigmergic methods on models, improving coordination in
parallel CPPS Engineering. Furthermore, these coordination markers can be used for
model design and model improvement, tracking the solution states of tasks in the model.

The representation of markers should not only be visual, it should also be possible to
define a finite set of states that a marker can take on. The markers allow tracking and
coordination of the status of nodes and edges in the CMAI method for better coordination
between domain experts and the computer. This allows human to human interaction,
but also human to machine interaction.

34

3.5. Evaluation Concept

R2: Method for interactive Model analysis and improvement. Task-oriented
visual representation and easy manipulation of the models. This capability concerns
browsing the model, representation of properties on nodes and edges, querying of models
and annotating models and model elements with markers to allow for coordination. This
requires that users can intuitively manipulate the existing model and easily augment the
model.

Furthermore, providing a method for annotation of the models and model elements, allows
users to track design and improvement lifecycle states on models via these coordination
markers

Coordination between users in CENs and the CMAI method. This capability concerns
notifying users of changes to a CEN to create awareness of ongoing changes and CMAI
activities in the team. This can, for example, be achieved by listing updates made to the
model by the system or other engineers.

Web architecture. The user interface should be available online without local installation
of software. The architecture should also take into consideration further connectivity
to external systems, e.g., a ticketing system or a human computation system. This
requirement aims at more easily introducing the GCM Editor into an existing (software)
ecosystem.

R3: Data storage and querying methods to support Model analysis and im-
provement. The back-end of the proposed software architecture requires capabilities
for storing the graphs and for computational tasks regarding the models.

Model transformation and selection. Sequential collaboration between domain experts
capabilities for the import and export of models from the internal data representation
to common external formats, e.g., JavaScript Object Notation (JSON), including data
transformation to DSLs, e.g., Automation Markup Language. This would allow treating
subsets of a bigger model, represented in Automation Markup Language (AML), both
in the MAI front-end editor and MAI back-end. This subset may be a set of nodes and
edges to review as a CMAI task.

Model configuration and storage. A persistence capability is to store and query the model
configurations and the concrete model instances. To allow an effective and responsive
representation, manipulation, and querying of big and complex models in the MAI editor,
the storage format should be capable of handling the typical use-case.

3.5 Evaluation Concept
This section introduces the evaluation approach as a foundation for the evaluation
reported in Chapter 6. First, this section outlines the general approach used for the
evaluation. Secondly, this section refers to the online resources used in the evaluation.

35

3. Research Questions and Approach

This aims at providing the reader with the appropriate background knowledge to verify
the evaluation.

3.5.1 Technical feasibility study

The evaluation approach consists of a technical feasibility study. For this, this work
conducts the illustrative use cases introduced in Chapter 4 using the software prototype
introduced in the solution approach in Chapter 5. After conducting the use cases, this
thesis checks the fulfilment of the introduced requirements for each use case. Chapter 6
outlines and discusses the strengths and weaknesses for the proposed solution approach

The use cases used for the evaluation will be defined in the context of multi-disciplinary
multi-view models. Due to the nature of multi-disciplinary models, the models are fairly
big and complex in a real world CPPS Engineering application. To analyse and improve
the models a goal will be defined, e.g., applying changes to an existing production system,
such as a solar energy park or improving the production line of a drive-chain. There are
two relevant steps on how this can be achieved, represented by the illustrative use cases
used for evaluation in this thesis:

Model Analysis. Model analysis aims at marking model elements that are relevant
for the defined task. The marking of model elements can either come from an automated
system or from human domain experts. Based on these marked elements, a domain
expert can systematically define tasks to achieve the goal, and set further markers to
define the status of model elements regarding the task goal, e.g., whether a model element
requires improvement.

Model Improvement. The results of the model analysis step define goals for model
improvement tasks. These model improvement tasks can be conducted by a team of
domain experts specialized in the discipline of the assigned task, e.g., improving a design
aspect. Depending on the state of the task, the domain experts set new markers for
improved coordination in the team. After finishing the model improvement task, changes
to the model elements will be iteratively checked in a model analysis step. The goal of
this iterative approach is to check whether the applied changes achieved the overall goal
or require further improvement.

To allow for a validation of the results of this thesis, the following section introduces
online resources containing the software artefacts and tutorials.

3.5.2 Online evaluation resources

To allow for a verification of the results, this thesis points the reader to three online
resources.

36

3.5. Evaluation Concept

Software artefact. The GCM Editor, resulting from the solution approach introduced
in Chapter 5, is stored in a code repository. It is separated into the GCM Editor
Frontend 2 and the GCM Editor Backend 3.

Documentation and DSLs for Software artefact. The documentation for the
resulting software artefact and resulting DSLs of the use cases in Chapter 4 can be
found also be found online. 4. This documentation also includes the models used in the
Evaluation in this thesis in Chapter 6.

Documentation on external tools. Chapter 6 uses external tools for the evaluation.
To get to know the Cypher language used by Neo4J, the reader should refer to the
Get Started guide of Neo4J 5. To better understand the Import/Export format used in
Chapter 6 the reader can refer to RFC-4180 6.

2GCM Editor Frontend Repository: https://bitbucket.org/tuw-qse/mdre-frontend
3GCM Editor Backend Repository: https://bitbucket.org/tuw-qse/mdre-backend
4Model Configuration Repository: https://bitbucket.org/tuw-qse/

mdre-thesis-cengelbrecht
5https://neo4j.com/developer/get-started/ Last accessed: 30/6/2021
6https://www.ietf.org/rfc/rfc4180.txt Last accessed: 30/6/2021

37

https://bitbucket.org/tuw-qse/mdre-frontend
https://bitbucket.org/tuw-qse/mdre-backend
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://neo4j.com/developer/get-started/
https://www.ietf.org/rfc/rfc4180.txt

CHAPTER 4
Illustrative Use Cases for

Evaluation

This chapter introduces four use cases to illustrate and evaluate the solution approach
described in Chapter 5. Chapter 6 evaluates these conducted use cases and Chapter 7
discusses the results.

This chapter consists of two main sections. The first section introduces the context, setting
and engineering setting of the use cases with I-Star (I*) and Integration Definition 0
(IDEF0) models [Mayer, 1990; Yu, 1997]. This allows to settle the use cases in possible
applications in the field of Cyber-Physical Production Systems (CPPS) Engineering.

The second section introduces the use cases that concern (1) connected CPPS-Modelling,
(2) Product-Process-Resource (PPR) applications, (3) PPR Asset Network (PAN) appli-
cations, and (4) marker-based coordination. For each use case, its motivation, context,
and goals are provided. Therefore, this thesis builds on the Restricted Use Case Modeling
(RUCM) template, which allows a step by step definition of the use case, as a foundation
for defining requirements [Jacobson, 1993]. These requirements influence the solution
approach proposed in Chapter 5 and the evaluation of fulfilling these requirements in
Chapter 6.

The use cases provide multi-disciplinary engineering process scenarios that are conducted
by engineers from multiple domains during CPPS planning. The use cases were elicited
from published scientific work in the area of CPPS Engineering [Drath et al., 2020; Biffl
et al., 2020; Meixner et al., 2021; Biffl et al., 2021b]. All use cases in the referenced
publications were elicited together with CPPS Engineering companies, mainly in the
domain of automotive manufacturing. This allows conducting use cases relevant to
stakeholders in the domain of multi-disciplinary CPPS Engineering. UC1 to UC3 raise
the need for coordination and cooperation concerning CPPS Engineering and in the

39

4. Illustrative Use Cases for Evaluation

concepts introduced by the State of the Art in the field of Stigmergy, outlined in
Section 2.5. This need motivates the fourth use case UC4.

All introduced UCs are used for the evaluation of RQ1, since the representation of any UC
requires the usage of the Coordinated Model Analysis and Improvement (CMAI)-Domain-
Specific Language (DSL). The CMAI method, planned as contribution to RQ2, is built
up using UC2 and UC3, and evaluated using UC4. RQ3 is evaluated by conducting every
proposed UC in the software architecture that will be proposed in Chapter 5, thereby
showing the fulfilment of the requirements posed onto the software architecture.

4.1 Use Case Context
This section aims to introduce the setting of the use cases in CPPS Engineering. The
goal of this section is to outline the dependencies between stakeholders involved in the
engineering process and provide a high-level view on the information flows between
actors. These generalized views onto the use cases abstract main concepts and ideas.
Therefore, the I* and IDEF0 model do not represent each use case specifically, but
provide an introduction and overview over the challenges and resulting requirements
in multi-disciplinary engineering. These generalized I* and IDEF0 views concern all
introduced use cases.

For the description of the models, selected stakeholders were chosen that take part in a
CPPS Engineering Process. This subset was taken from the State of the Art in Chapter 2,
e.g., Biffl et al. [2017]. A minimum subset of stakeholders has been chosen for these
use cases, since a CPPS Engineering Process consists of at least 8 to 10 engineering
views [Biffl et al., 2020]. Since the research questions introduced in Section 3.2 aim at
coordinated analysis and improvement of models in CPPS Engineering, representative
engineering disciplines, like Requirements Engineering or Electrical Engineering, from
this field were chosen.

4.1.1 Strategic stakeholder goal modelling I*
To conduct a high scope elicitation of the dependencies between actors in the conducted
use cases, this thesis uses the I* modelling approach. This allows to gain insights on
internal goals and requirements of actors in the context of CPPS Engineering.

Figure 4.1 represents the modelled actors and their dependencies. In the identified
use cases, four types of engineers are involved. These engineers are the Requirements
Engineer, the Functional Engineer, the Mechanical Engineer and the Electrical Engineer.
Due to this multi-disciplinary aspect, engineers need to exchange data of their models in
a cross-disciplinary manner, to work on the same underlying data. Figure 4.1 models
this required data exchange by a softgoal.

Furthermore, the engineers need to be provided with data representing the building
blocks for CPPS Engineering models. The Data Curator takes on this task in providing
this data.

40

4.1. Use Case Context

Figure 4.1: Dependencies between actors in the conducted use cases, modelled using the
I* framework [Yu, 1997].

Lastly, a Quality Manager is interested in providing feedback to the engineers to improve
the overall quality of the CPPS Engineering models. Figure 4.1 also depicts this aspect.

The I* approach provides a good overview over each actor’s goals in the context of
multi-disciplinary, multi-view graphs. However, I* has its limitation when depicting the
flow of information and steps taken by each actor. Therefore, Figure 4.2 shows the data
flows of the use cases modelled in IDEF0 notation.

4.1.2 Process overview with IDEF0 diagram
Figure 4.2 shows an overview over the data flows in the conducted use cases. They
different parts of the model are explained in the following paragraphs.

The process step A0, see top left part of the diagram, serves as entry point into the
IDEF0 diagram. In this process step, the requirements for the domain-specific CPPS
engineering model (of a particular stakeholder) and its unstructured data are provided.
As output, this process step provides the curated data, usable for CPPS modelling by
each engineer.

41

4. Illustrative Use Cases for Evaluation

Figure 4.2: Flow of the conducted use cases, modelled using the IDEF0 framework.

For each engineering discipline introduced in Figure 4.1, a process step, A1 - A4 exists.
Here, the curated data works as an input. Furthermore, existing modelling data from
other engineering disciplines can be used as input. Finally, feedback from quality reviews
is incorporated as input. As a result from these inputs, a discipline-specific view on the
CPPS is created.

Process step A5 uses these specific views as input. This allows the quality manager to
provide feedback on each discipline-specific view. This feedback is the output of process
step A5. Figure 2.2 (cf. Chapter 2) depicts such a round-trip and feedback loop.

As represented in Figure 4.2, the use cases depend on the controls of modelling languages
in general, their formalisms and related modelling standards. Furthermore, the use cases
depend on the mechanisms and engineering tools of each engineering role. The use cases
also depend on possibilities for model storage, to allow a persistence of model instances.

42

4.2. UC 1: Data Propagation between Model Views

The arrows at the top and the bottom of the IDEF0 model represent these dependencies.

4.2 UC 1: Data Propagation between Model Views
This use case results from the analysis of the whitepaper for Automation Markup Language
(AML) by Drath et al. [2020]. The whitepaper outlines a use case for AML, namely, a
powertrain driving a linear drive. This use case represents the multi-disciplinary nature
of such a CPPS engineering and modelling process and the relation to CPPS Engineering.
This use case supports RQ1 (see Section 3.2): which DSL allows linking of different
engineering models.

4.2.1 Context and Motivation

Figure 4.3: CPPS Powertrain Design: Multi-view model elements and dependencies.

This use case concerns the field of multi-disciplinary CPPS Engineering. It is a typical
modelling use case where multiple engineering disciplines take part in designing, analysing,
and improving a “real world” artefact, in this case a powertrain powering a linear
drive [Drath et al., 2020]. To better understand the need for coordination, Figure 4.3
shows a mockup of the goal state of this use case with views from four different disciplines,
i.e., the requirements, functional, mechanical, and electrical view. Model elements, like
the motor or the transmission, are present in multiple, discipline-specific views, while still
referring to the same artefact. To allow each engineer to work on the same underlying
data this use case outlines the requirement to link these shared artefacts and propagate
changes to element properties between the views.

The goal of this use case, therefore, is to aid such a coordination via an automated
process, avoiding errors that result from outdated or not shared data instances between

43

4. Illustrative Use Cases for Evaluation

different engineering disciplines. This use case concerns fulfilling requirements R1 and
R2, outlined in Section 3.4. Special focus is put on fulfilling the requirements for CPPS
Engineering Network (CEN), defined by Requirement R1, since in this use case multiple
different engineering disciplines work in their own view and local DSL. Section 4.2.3
outlines more fine-grained requirements resulting from this use case.

4.2.2 Use Case variants represented in RUCM
Table 4.1 outlines the steps to execute the described use case of connected CPPS modelling.
Each step will be executed using the solution approach described in Chapter 5. The
fulfilment of the requirements of this use case by the proposed prototype will be evaluated
in Chapter 6.

4.2.3 Elicited Requirements
Elicited requirements from this use case are concerned with cooperation across discipline-
specific boundaries. These requirements represent the need for different engineering
disciplines to exchange data with other engineers. A difficulty is that each engineering
discipline works in their own local toolset, like spreadsheets or CAD drawing, in the
context of this work the DSL.

RQ.UC1.1: Each engineering discipline uses a DSL. This allows the engineer
to work in their known environment, e.g., known representation of nodes.

RQ.UC1.2: Allow import and export of model elements from different engi-
neering disciplines. This allows to take over existing model elements across disciplines
that refer to the same real world element.

RQ.UC1.3: Linking of models to represent a CEN. This allows linking multiple
views that reference the same modelled domain.

RQ.UC1.4: Propagation of changes to model element properties across dis-
cipline boundaries. This results in each engineer having the most up-to-date infor-
mation for each model element automatically. This propagation must not only copy
values, but also consider different representations of nodes and properties across discipline
boundaries.

4.3 UC 2: Linking of Model Elements to Engineering
Artefacts

The concept of a Product-Process-Resource (PPR) Asset describes a modelling approach,
where the model consists of three types of nodes, namely the product, the production
process, and the resource node that automates the production process. This allows the

44

4.3. UC 2: Linking of Model Elements to Engineering Artefacts

Use Case Name UC-1 Connected CPPS modelling
Brief Description Goal of this UC is to facilitate efficient cooperation of engineers

across discipline boundaries. This is achieved via data prop-
agation and import/export of elements to other engineering
disciplines. The goal is to design a drive chain with contribu-
tions coming from four engineering disciplines.

Precondition A local DSL for each engineering discipline exists.
Primary Actor 1. Functional Engineer

2. Mechanical Engineer
3. Electrical Engineer
4. Requirements Engineer

Secondary Actors Further engineers and actors that work with one of the mod-
els. Mostly in a passive role, e.g., viewing and extracting
information

Dependency No related use cases.
Generalization This use case can be generalized by viewing and conducting it

independently of specific engineering disciplines.
Basic Flow 1. Requirements Engineer starts modelling requirements for

the drive chain in its local DSL.
2. Functional engineer starts modelling the drive chain and

its components in local DSL.
3. Mechanical Engineer imports nodes and edges that are

relevant to its blank canvas in mechanical engineering
specific DSL.

4. Mechanical Engineer continues modelling the drive chain
in specific view using the imported models.

5. Electrical Engineer imports nodes and edges that are rel-
evant to its blank canvas in electrical engineering specific
DSL.

6. Electrical Engineer continues modelling the drive chain
in specific view using the imported models.

7. Requirements Engineer imports nodes and edges that
are relevant to its blank canvas in electrical engineering
specific DSL.

8. Requirements Engineer associates imported elements to
existing requirements.

9. Due to the linking of the models, the system propagates
the changes in shared elements and makes them visible
to all engineers.

Alternative Flows This use case can be augmented easily. Further engineering
disciplines can take part in this process, increasing the amount
of dependencies between models increases.

Table 4.1: RUCM table, representing UC1 - Connected CPPS modelling.
45

4. Illustrative Use Cases for Evaluation

modelling of production lines. The work of Schleipen et al. [2015] introduces this concept.
This modelling concept allows representing a production process together with the CPPS
production line that automates the process as required in the following use cases.

4.3.1 UC2a: PPR Asset Directory
This use case relies on the concept of a PPR Asset Directory, introduced by Biffl et al.
[2021c]. The paper outlines the representation of a PPR asset directory, a use case
from CPPS Engineering. This work selects this use case due to its relation to CPPS
Engineering and the foundation it provides for the following use cases.

4.3.2 Context and Motivation
The context of this use case is a PPR Asset Directory [Biffl et al., 2021c]. In this Asset
Directory, Biffl et al. [2021c] link the PPR Assets to Engineering artefacts. This link
establishes a relation of each PPR Asset to an Engineering artefact, representing valid
CPPS configurations and the Engineering artefacts that define a CPPS configuration.
This allows efficiently querying related Engineering artefact and Assets. This establishes
the name PPR Asset Directory, since a lookup like in a directory is possible to the user.

This concept aims at improving the traceability and transparency between Engineering
artefacts and the assets representing them in the model. Figure 4.4 represents a mock-up
representation of a PPR Asset Directory. This model bases on [Biffl et al., 2021b] and
models the “Mounting dashboard to car body” use case. This task represents a typical
task when assembling a car in a CPPS production line. An integral part of the car, in
this case the dashboard, is screwed onto the car frame. For this, different drills, screws,
and robots are necessary, which are modelled in Figure 4.4. Figure 4.4 models a mock
up the “Mounting dashboard to car body” use case, introduced by [Biffl et al., 2021b].

This use case aims at fulfilling requirements R1 and R2 (see Section 3.4). Here, the main
focus lies on R2, especially allowing model analysis since the links between Engineering
artefacts and PPR Assets will be analysed by engineers. More fine-grained requirements,
based on the requirements from Section 3.4, are outlined in Section 4.3.4.

4.3.3 Use Case variants represented in RUCM
Table 4.2 outlines all steps conducted to execute the described use case of a PPR Asset
Directory. Each step will be executed using the solution approach described in Chapter 5.
The fulfilment of the requirements of this use case by the proposed prototype will be
evaluated in Chapter 6.

4.3.4 Elicited Requirements
The requirements elicited from this use case mainly concern the representation of links
between different nodes. This is needed to allow an association of real world artefacts to
nodes in the model.

46

4.3. UC 2: Linking of Model Elements to Engineering Artefacts

Figure 4.4: Paper mockup of the models to be modelled in UC2a and UC2b. The Figure
shows the assets and links between the assets. Based on [Biffl et al., 2021b].

RQ.UC2a.1: Flexible representation of nodes and links, defined by a DSL.
This capability allows the actors to choose their visual representation of nodes and links,
e.g., using PPR Assets.

RQ.UC2a.2: Linking of nodes. This capability allows the actors to visually represent
links between the nodes.

RQ.UC2a.3: Placement of nodes and links on canvas. This capability allows
the actors to freely place nodes on the modelling canvas, which aids the representation of
real world concepts in a modelling world.

4.3.5 UC2b: PPR Asset Network (PAN)
An augmentation of UC2a in Section 4.3, is based on [Meixner et al., 2021], introducing
the term PPR Asset Network (PAN). A PAN consists of nodes and links, in particular
PPR Assets. In contrast to UC2a, nodes and links in a PAN can contain properties,
which allows more complex data structures for model elements.

4.3.6 Context and Motivation
As outlined, the context of this use case is a PAN. In a PAN, edges link multiple nodes
to each other, while also containing properties to each model element. This allows, like
in UC2a, the linking and traceability between nodes while having the added benefit of

47

4. Illustrative Use Cases for Evaluation

Use Case Name UC-2a PPR Asset Directory
Brief Description Goal of this UC is to represent a PPR Asset Directory. This

means that PPR Assets can be linked to Engineering artefacts.
Precondition A DSL containing PPR Assets and Engineering artefacts exists.
Primary Actor Modelling Engineer
Secondary Actors Further engineers and actors that work with one of the models

in a passive role, e.g., viewing and extracting information.
Dependency UC2b, Section 4.3.5.
Generalization No generalization.
Basic Flow 1. Modelling engineer starts modelling a model consisting

of the PPR Assets.
2. Modelling engineer introduces nodes, representing the

Engineering artefacts to the model.
3. Modelling engineer links Engineering artefacts to PPR

Assets.
4. Modelling engineer finishes complete model with links to

all Engineering artefacts.

Alternative Flows An alternative approach would be to model the PPR Assets
after the Engineering artefacts have been added to the model.

Table 4.2: RUCM table, representing UC2a - PPR Asset Directory

storing properties to selected elements, which may be relevant to the modelled real world
artefact.

The goal of PANs is to improve the representation of scattered knowledge in the CPPS
Engineering domain, by allowing the representation of nodes and links and collecting
properties to each model element, including dependencies between PPR Assets.

This use case aims at fulfilling requirements R1 and R2 (see Section 3.4). Here, this
use case splits the focus between Requirement R1 and Requirement R2, aiming at a
representation of different links and node types, while still allowing the representation of
properties for each model element. Section 4.3.8 outlines more fine-grained requirements,
based on the requirements from Section 3.4.

To better visualize the relation of UC2a and UC2b, the same underlying model, represented
in Figure 4.4 will be used.

4.3.7 Use Case variants represented in RUCM

Due to the relation to UC2a, some steps outlined in Table 4.3 are similar to Table 4.2.
UC2b can be seen as evolution of UC2a. As in UC2a, each step will be executed using

48

4.3. UC 2: Linking of Model Elements to Engineering Artefacts

Use Case Name UC-2b PPR Asset Network (PAN)
Brief Description Goal of this UC is to represent a PAN.
Precondition A DSL containing PPR Assets and Engineering artefacts exists.

Furthermore, the DSL must allow the definition of properties
for each node.

Primary Actor Modelling Engineer
Secondary Actors Further engineers and actors that work with one of the models

in a passive role, e.g., viewing and extracting information.
Dependency UC2a, Section 4.3.
Generalization No generalization.
Basic Flow 1. Modelling engineer starts modelling a model consisting

of PPR Assets and other node types.
2. Modelling engineer introduces nodes representing the

Engineering artefacts to the model.
3. Modelling engineer links Engineering artefacts to PPR

Assets.
4. Modelling engineer links remaining nodes in between each

other where applicable.
5. Modelling engineer adds properties to relevant model

elements.
6. Modelling engineer finishes complete model with links to

all Engineering artefacts.

Alternative Flows An alternative approach would be to model the PPR Assets
and other node types after the Engineering artefacts have been
added to the model.

Table 4.3: RUCM table, representing UC2b - PAN.

the solution approach described in Chapter 5. The fulfilment of the requirements of this
use case by the proposed prototype will be evaluated in Chapter 6.

4.3.8 Elicited Requirements

Requirements elicited in Section 4.3.4, are also relevant to this use case. This is why only
extending requirements, compared to Section 4.3.4, are listed here. The requirements
from UC2a are still relevant to this use case.

RQ.UC2b.1: Flexible definition of properties on model elements by a DSL.
This capability allows the actors to define a set of properties that can be set for each
model element.

49

4. Illustrative Use Cases for Evaluation

RQ.UC2b.2: Manipulation of model element properties. This capability allows
the actors to manipulate the model element properties, e.g., changing the description
contained in a node.

4.4 UC 3: Linking Requirements and Design Networks
Based on the context of PANs, Biffl et al. [2020, 2021b] introduces different real world
applications based on such model networks. This work choses this use case due to the
different representation of modelling nodes and layering in the models. The goal is to
provide a use case leveraging requirements R1 and R3 of Section 3.4, improving the
state of the art in the proposed solution approach in Chapter 5. To aid traceability,
this chapter is divided into two sub-use cases. First, UC3a presents a simpler approach
of modelling risk mitigation. Secondly, UC3b outlines a more complex approach of
modelling requirements networks.

This use case relies on UC2, and also aims at answering RQ2 from Section 3.2. As UC2,
it focuses on design and validation in a more complex application scope.

4.4.1 UC3a: PAN Application Risk Mitigation

The work of Biffl et al. [2020] introduces the concept of Multi-Aspect Risk Exploration
(MARE). This proposed method aims at representing risk exploration and risk mitigation
in a multi aspect environment. Due to this nature of the method, it is chosen as a
representative use case for this thesis.

4.4.2 Context and Motivation

This use case builds on the concept of Multi-Aspect Risk Exploration (MARE). This
concept aims at exploring and mitigating risks in the field of CPPS Engineering, e.g.,
when designing a drive chain. This is achieved by designing an overlay application
model as extension to the underlying technical PAN model, derived from data in CPPS
engineering artefacts. This overlay application model does not affect the existing model,
it aims at providing additional information that is not needed for the production process.

Such an overlaying MARE network can be seen in Figure 4.5. The Figure visualizes
that the underlying PAN exists independently of the overlying Cause, Detection, and
Mitigation nodes. Such a second layer of nodes allows analysing possible risks in the
network, their causes and their possible mitigations, increasing the overall quality of the
underlying network [Biffl et al., 2020].

Figure 4.5 represents a 4-color printer. The aim of a 4-color printer is to allow printing of
pages consisting of (max.) four different colours. To allow printing, multiple mechanical
steps, e.g., a printing plate or a motor, are necessary. Risks that can arise in such a use
case span from missing colours in the print to bad overall print quality.

50

4.4. UC 3: Linking Requirements and Design Networks

Dx

Mx

Cause

Legend:

MPFQ

Function
Asset

Process
Asset

Resource
Asset

Link Types:

Product
AssetAsset Types:

Risk:

Mitigation: Dependency

1-color wet
paper

Color 1

Print x+1
color

Fan

Paper

[...]

n-color
printed paper

Drive

Spindle

Heater

1-color
printed
paper

Printing
plate

Drive
chain

Drive

Spindle

Joint context:
Positioning

Mechanic

Electrical

Function

Automation

Dry first
color

Print first
color Printer

Controller

Printing
plate

Controller

Annotations:

M1

M2b

Printer

Joint context:
vibration, heat

Color Clarity

D1 D2

Printing
unit

Dryer

Printing
unit

Process-
Resource

Product-
Process

Process-
Resource

Product-
Process

Cable

Mechanic

Cable

Mechanic

Valve

Plate

Compact
Drive

Motor

Gear

Transformer

Transformer
Drive
chain

Dx

Mx

Cause

Legend:

MPFQ

Function
Asset

Process
Asset

Resource
Asset

Link Types:

Product
AssetAsset Types:

Risk:

Mitigation: Dependency

1-color wet
paper

Color 1

Print x+1
color

Fan

Paper

[...]

n-color
printed paper

Drive

Spindle

Heater

1-color
printed
paper

Printing
plate

Drive
chain

Drive

Spindle

Joint context:
Positioning

Mechanic

Electrical

Function

Automation

Dry first
color

Print first
color Printer

Controller

Printing
plate

Controller

Annotations:

M1

M2b

Printer

Joint context:
vibration, heat

Color Clarity

D1 D2

Printing
unit

Dryer

Printing
unit

Process-
Resource

Product-
Process

Cable

Mechanic

Cable

Mechanic

Valve

Plate

Compact
Drive

Motor

Gear

Transformer

Transformer
Drive
chain

Figure 4.5: Paper mockup of the use case presented in UC3a and UC3b.
Represents a 4-color printer, based on [Biffl et al., 2020].

The goal of this use case is therefore to allow a representation of an overlaying network,
improving the quality of PANs. This provides quality engineers with an additional
method in representing risks on models.

This use case aims at fulfilling the requirements R1 and R2 from Section 3.4. It relates
to the representation of domain knowledge (R1) and also to the task-oriented visual
representation of models (R2). Section 4.4.4 outlines further requirements resulting from
this use case.

4.4.3 Use Case variants represented in RUCM
Table 4.4 outlines all steps conducted to execute the described use case of a PAN
Application in the field of Risk Mitigation. Each step will be executed using the solution
approach described in Chapter 5. The fulfilment of the requirements of this use case by
the proposed prototype will be evaluated in Chapter 6.

51

4. Illustrative Use Cases for Evaluation

Use Case Name UC-3a PAN application - Risk mitigation
Brief Description Goal of this UC is to represent an application of PANs, with

the focus on risk mitigation.
Precondition A DSL containing PPR Assets and Engineering artefacts exists.

Furthermore, the DSL must allow the definition of properties
for each node. Also, the DSL must contain nodes representing
risk artefacts, e.g., causes and mitigations.

Primary Actor Quality Engineer
Secondary Actors Further engineers and actors that work with one of the models

in a passive role, e.g., viewing and extracting information.
Dependency No related use cases.
Generalization Can be generalized and used in other applications, as outlined

in Section 4.4.5.
Basic Flow 1. Different CPPS Engineers model a multi-view model, e.g.,

a CPPS production chain.
2. CPPS Engineers inform Quality Engineer of a pending

review.
3. Quality Engineer adds a new layer to the model.
4. Quality Engineer models risks, causes, mitigations etc.

to existing nodes of model.
5. Quality Engineer informs that he finished the review.
6. CPPS Engineers can toggle risk mitigation layer as

needed.

Alternative Flows An alternative approach would be to model the risks directly
to each node, instead of building a second layer to the model.
This approach will be outlined in Section 4.5, leveraging the
concept of markers.

Table 4.4: RUCM table, representing UC3a - PAN application, risk mitigation

52

4.4. UC 3: Linking Requirements and Design Networks

4.4.4 Elicited Requirements

Requirements elicited from this use case concern mainly the representation of different
layers to the models, allowing to build a “sub-model” to the existing model.

RQ.UC3a.1: Flexible addition of layers via the DSL. This capability allows the
quality engineer to place its risk artefacts on a separate layer.

RQ.UC3a.2: Toggling of layers. This capability allows stakeholders, especially
apart from the quality engineer, to toggle the layer containing risk artefacts. This allows
a more clutter-free visual representation in cases where the risk layer is not relevant to
the model.

4.4.5 UC3b: PAN Application Requirements Network

A different application approach for PANs is the usage in a requirements network, as
outlined in Biffl et al. [2021b]. This augments the UC3a, presented in Section4.4.1. In
contrast to UC3a, in this use case actors do not model risks but a network of requirements
concerning the specific model elements.

4.4.6 Context, motivation and goals

As outlined, this use case aims at modelling a requirements network, relating to existing
assets in a PAN. This requirements network aims at providing a better traceability for
engineers, leading to an overall better model quality. This is achieved by having the
requirements related to modelled assets in the PAN and allowing traceability between
requirements, e.g., tracking changes to other affected parts of the models via links.

Since this use case is related to UC3a, UC3b uses the same underlying model for this
demonstration. A mock-up of this model can be seen in Figure 4.5.

This use case is related mainly to requirements R2 and R3. It relates to the visual repre-
sentation, aiding model analysis and improvement (R2) and the data storage, concerned
with the capability of storing information to assets in models. Also, requirements resulting
of UC3a in Section 4.4.1 are relevant to this use case, together with the requirements
outlined in Section 4.4.8.

4.4.7 Use Case variants represented in RUCM

Table 4.5 outlines the RUCM steps. As in UC3a, each step will be executed using the
solution approach described in Chapter 5. The fulfilment of the requirements of this use
case by the proposed prototype will be evaluated in Chapter 6.

53

4. Illustrative Use Cases for Evaluation

Use Case Name UC-3b PAN application – Requirements Network.
Brief Description Goal of this UC is to represent an application of PANs, with

the focus on building a requirements network, linking assets to
requirements and requirements between each other.

Precondition A DSL containing PPR Assets and Engineering artefacts exists.
Furthermore, the DSL must allow the definition of properties
for each node. Also, the DSL must contain requirements nodes,
with properties for each requirement asset, to allow the storage
of requirement specific properties.

Primary Actor Requirements Engineer
Secondary Actors Further engineers and actors that work with one of the models

in a passive role, e.g., viewing and extracting information.
Dependency Relates to UC3a.
Generalization Can be generalized and used in other PAN applications.
Basic Flow 1. Requirements Engineer models requirements and the re-

lation between requirements. These requirements are
modelled on a separate layer

2. Different CPPS Engineers model a multi-view model, e.g.,
a CPPS production chain on a separate layer.

3. CPPS Engineers inform Requirements Engineer of fin-
ished model.

4. Requirements Engineer links CPPS Assets to require-
ments between layers.

5. Requirements Engineer informs that he finished the mod-
elling of requirements.

6. CPPS Engineers can toggle the Requirements layer as
needed.

Alternative Flows As in UC3a, an alternative approach would be to model the
requirements directly to each node instead of building a second
layer. This approach will be outlined in Section 4.5, leveraging
the concept of markers.

Table 4.5: RUCM table, representing UC3b - PAN application – requirements network.

54

4.5. UC 4: Coordination with Markers

4.4.8 Elicited Requirements

The elicited requirements in this use case relate strongly to the requirements elicited in
UC3a, Section 4.4.1. Therefore, the requirements outlined in this use case can be seen as
an addition to the already outlined requirements of UC3a.

RQ.UC3b.1: Linking of nodes existing in different layer. This capability allows
the requirements engineer to model trace links between assets and requirements existing
on different layers.

RQ.UC3b.2: Storing of properties on nodes not existing in the main layer.
To aid the information storage and consolidation, it must be possible to store properties
on nodes not existing in the main layer, e.g., the requirements layer of a model.

RQ.UC3b.3: Import/Export of the whole model, independently of layers.
To allow an external manipulation and analysis of the model, all information of the
model, independently of layers, must have the possibility to be exported.

4.5 UC 4: Coordination with Markers

This use case aims at improving the precision and efficiency of communication and
coordination between engineers working on their engineering models by browsing, querying,
and manipulating makers on model elements. As a foundation to achieve this capability,
Chapter 2 introduces the concept of coordination markers. To better leverage the markers
as coordination artefacts, the use case is divided into two sub - use cases. First, UC4a
represents a guided task with markers, which aims at augmenting the existing model
using markers as an asynchronous coordination tool between engineers. As a second use
case, UC4b uses markers as a feedback tool on models. These two use cases show the
possibilities that markers provide as an asynchronous coordination and cooperation tool.

As the final use case, this use case aims at answering RQ2 and RQ3 from Section 3.2.
It relies on external tools to allow a more efficient analysis and improvement of models,
whilst fully integrating the design and validation loop of RQ2.

4.5.1 UC4a: Guided Task with markers

This use case leverages the concept of coordination artefacts, introduced in Section 2.5.
Furthermore, it uses the concept of Stigmergy, in this case of qualitative Stigmergy, since
the actors taking part in this use case take decisions based on qualitative traces in the
environment.

55

4. Illustrative Use Cases for Evaluation

4.5.2 Context and Motivation
As outlined, this use case leverages the concept of Stigmergy by placing coordination
artefacts, so-called markers, in the environment. This means that CPPS Engineers can
use markers to leave asynchronous traces for other engineers on the model.

Figure 4.6 outlines such a model containing markers. As can be seen, different markers in
different states allow the asynchronous transportation of information between engineers.
To better define the relations between the illustrated use cases, the same underlying use
case as in UC3a and UC3b is chosen. The model in Figure 4.6 represent a 4-color printer,
as introduced by UC3. Figure 4.6 again shows a printer that is able to (max.) print in 4
colours.

This use case aims to improve the asynchronous coordination and communication between
different engineering disciplines in the CPPS Engineering field. This use case focuses on
the model improvement part of the CMAI process.

Requirements R2 and R3 of Section 3.4 mainly motivate this use case. It specifically
focuses on fulfilling the requirement of coordination between users in the CMAI process.
Section 4.5.4 outlines more detailed requirements resulting from this use case.

4.5.3 Use Case variants represented in RUCM
Table 4.6 outlines all steps conducted to execute the described use case of guided tasks
with markers. Each step will be executed using the solution approach described in
Chapter 5. The fulfilment of the requirements of this use case by the proposed prototype
will be evaluated in Chapter 6.

4.5.4 Elicited Requirements
The elicited use cases from this use case focus on the concept of markers and their
handling. This thesis elicits the following requirements:

RQ.UC4a.1: DSL must allow definition of a marker with different states.
This capability allows the lead engineer to place a marker for each node. Further, it
allows base engineers to cycle through states while conducting their work. This allows
the tracking of design and improvement lifecycle states, as is commonly used in agile
software engineering.

RQ.UC4a.2: Manipulation of marker states. It must be possible for the users to
cycle between the states of a marker defined in the DSL.

RQ.UC4a.3: Export/Import of markers. It must be possible to import and export
markers from the Generic CPPS Modeling (GCM) Editor. This capability allows to
leverage the data logistics approach introduced in Chapter 2. This thesis needs an export

56

4.5. UC 4: Coordination with Markers

Use Case Name UC-4a Guided task with markers.
Brief Description Goal of this UC is to guide further engineers in improving and

augmenting the existing model. This is achieved by setting
corresponding markers and using Stigmergy in the coordination
of tasks.

Precondition A model exists that should be improved and augmented.
Primary Actor Lead Engineer. This engineer sets the corresponding markers

to initiate the guided tasks.
Secondary Actors Base Engineer. Engineer that conducts the guided tasks and

works on the improvement and augmentation of models.
Dependency Builds upon and is applicable to all previous use cases.
Generalization This UC can be adapted easily to fit any type of model that

needs extension.
Basic Flow 1. Lead engineer develops base models that will be extended

in the further steps.
2. Lead engineer sets markers on nodes that should be

extended. These markers signal “to-do” to the base
engineers. Each marker provides a short explanation of
the task.

3. Base engineers see a “To-Do” marker, reads the task
explanation and takes on the task. To signal to its peers
that the basic engineer started the task, the engineer
switches the marker state from “To-Do” to “In-Progress”.

4. Base engineer fulfils the task.
5. After fulfilment, the base engineer sets the marker state

to “Done” and notifies the Lead engineer.
6. The lead engineer can then send the extension to a review,

or rerun the whole use case from the beginning if the
models needs further extensions.

Alternative Flows This use case can be augmented to fit multiple base engineers,
taking up work as available and improving the model.

Table 4.6: RUCM table, representing UC4a - Guided task with markers

57

4. Illustrative Use Cases for Evaluation

Cause

Legend:

MPFQ

Function
Asset

Process
Asset

Resource
Asset

Link Types:

Product
AssetAsset Types:

Dependency

1-color wet
paper

Color 1

Print x+1
color

Fan

Paper

[...]

n-color
printed paper

Drive

Spindle

Heater

1-color
printed
paper

Printing
plate

Drive
chain

Drive

Spindle

Joint context:
Positioning

Mechanic

Electrical

Function

Automation

Dry first
color

Print first
color Printer

Controller

Printing
plate

Controller

Markers:

Printer

Joint context:
vibration, heat

Color Clarity

Printing
unit

Dryer

Printing
unit

Process-
Resource

Product-
Process

Process-
Resource

Product-
Process

Cable

Mechanic

Cable

Mechanic

Valve

Plate

Compact
Drive

Motor

Gear

Transformer

Transformer
Drive
chain

Cause

Legend:

MPFQ

Function
Asset

Process
Asset

Resource
Asset

Link Types:

Product
AssetAsset Types:

Dependency

1-color wet
paper

Color 1

Print x+1
color

Fan

Paper

[...]

n-color
printed paper

Drive

Spindle

Heater

1-color
printed
paper

Printing
plate

Drive
chain

Drive

Spindle

Joint context:
Positioning

Mechanic

Electrical

Function

Automation

Dry first
color

Print first
color Printer

Controller

Printing
plate

Controller

Markers:

Printer

Joint context:
vibration, heat

Color Clarity

Printing
unit

Dryer

Printing
unit

Process-
Resource

Product-
Process

Cable

Mechanic

Cable

Mechanic

Valve

Plate

Compact
Drive

Motor

Gear

Transformer

Transformer
Drive
chain

Prio

OK

Def
ect

Def

Defect

Prio

Task Priority:

Error Marker:

OK

OKOK

OK

OK

OK OK

OK

OK

Figure 4.6: Mock-up of a model containing markers as coordination artefacts, based
on Biffl et al. [2020].

and import to a Goal Question Metric (GQM) Editor, to allow the semi-automatic
manipulation of markers via an external tool.

4.5.5 UC4b: Feedback with markers

As outlined in UC4a, this use case leverages the concept of Stigmergy and coordination
artefacts. The use case relates strongly to UC4a, but shows a different field of application
for coordination artefacts, leveraging the usage of semi-automatic marker placement.

4.5.6 Context and Motivation

To improve the overall quality of models, feedback is important for CPPS Engineers. To
achieve this, this use case introduces an approach to provide feedback via markers.

58

4.5. UC 4: Coordination with Markers

This use case is related to UC4a in Section 4.5. Therefore, the sketch of markers on
model elements in Figure 4.6 is also relevant to this use case.

Goal of this use case is to provide feedback and improving the overall quality of CPPS
models, by leveraging the stigmergic approaches outlined in Section 2.5.

Requirement R2 and R3 of Section 3.4 mainly motivates this use case, like UC4a. It
focuses on allowing markers to be set semi-automatically by external tools, e.g., Neo4J.
Section 4.5.8 outlines further requirements.

4.5.7 Use Case variants represented in RUCM
Table 4.7 outlines the RUCM definition of this use case. As in UC4b, each step will
be executed using the solution approach described in Chapter 5. The fulfilment of the
requirements of this use case by the proposed prototype will be evaluated in Chapter 6.

4.5.8 Elicited Requirements
This use case is related to UC4a in Section 4.5.1. Therefore, the requirements outlined
here are an augmentation to the requirements outlined in Section 4.5.4.

RQ.UC4b.1: Properties in markers. This capability aids the asynchronous trans-
portation of information between engineers. Furthermore, it helps in providing more
accurate feedback that can not be implemented by markers themselves.

RQ.UC4b.2: Set markers semi-automatically, e.g., with a database query
language. This capability allows users to leverage graph queries like provided in Neo4J
to semi-automatically set a larger amount of markers to model elements.

59

4. Illustrative Use Cases for Evaluation

Use Case Name UC-4b Feedback with markers.
Brief Description Goal of this UC is to provide another engineer with feedback.

To achieve this, model querying, e.g., via Neo4J is leveraged to
semi-automatically set markers for feedback in the environment.

Precondition Engineer finishes with modelling the model and requires feed-
back.

Primary Actor Modelling Engineer, that modelled the model that is reviewed.
Secondary Actors Quality engineer, reviewing the model provided by the primary

actor.
Dependency Builds upon and is applicable to all previous use cases.
Generalization This UC can be adapted easily to fit any type of model that

needs review.
Basic Flow 1. Engineer provides the model in the local DSL to the

quality engineer.
2. Quality Engineer begins visual reviewing in the GCM

Editor.
3. Quality Engineer transforms the existing model into a

different DSL, in this case into the Cypher language of
Neo4J.

4. Quality Engineer imports transformed model into Neo4J.
5. Quality Engineer writes Cypher queries to better analyse

and review the model.
6. Quality Engineer sets markers in Neo4J on the results if

feedback is appropriate.
7. Quality Engineer exports results from Neo4J and imports

them to the GCM Editor. The system transforms the
model on import into the local DSL.

8. GCM Editor shows set markers on model.
9. Quality Engineer notifies Engineer on completion of re-

view.
10. The engineer can now improve model based on feedback.

Alternative Flows Alternatively, any other engineering disciplines capable of pro-
viding feedback can form part of this use case.

Table 4.7: RUCM table, representing UC4b - Feedback with markers

60

CHAPTER 5
Coordinated Model Analysis and

Improvement Approach

This chapter aims at providing concepts that allow answering the requirements and
research questions outlined in Chapter 3 and Chapter 4. The goal is to provide concepts
that allow coordinated model analysis and improvement, with special focus on applications
in the Cyber-Physical Production Systems (CPPS) Engineering context.

The first section aims at answering RQ1, by providing a Domain-Specific Language (DSL)
allowing for Model Analysis and Improvement (MAI), the Coordinated Model Analysis
and Improvement (CMAI)-DSL. The second section introduces, based on the CMAI-DSL,
a method to conduct coordinated model analysis and improvement, the CMAI method.
The second section aims at answering RQ2. The last section introduces the software
architecture and design, aimed at answering RQ3. This software architecture applies
the results for RQ1 and RQ2 and designs a suitable software architecture around the
research questions.

5.1 CMAI-DSL Metamodel (RQ1)
Table 5.1 represents the key concepts needed to fulfil the approach of coordinated model
analysis and improvements.

To address these requirements this thesis introduces the Coordinated Model Analysis
and Improvement (CMAI) concepts, starting with a Model, consisting of Nodes, Markers
and Links. The paragraphs below introduce each concept in more detail, relating to the
research questions and requirements:

Node. A node represents a real world artefact, e.g., a motor in a CPPS chain. Each
node is of a certain type t. For each node, properties can be defined to store data, e.g.,

61

5. Coordinated Model Analysis and Improvement Approach

Concepts Concept Description
N; Nt A Node of type t.
L; Lt(N1, N2) A Link of type t between two Nodes N1 and N2.
M; Mt A Marker of type t.
MO; MO(N, L, M) A Model, consisting of Nodes, Links and Markers.
ML; ML(MO1, MO2) A model link existing between models MO1 and MO2.
p(N), p(L), p(M) Property of a Node, Link or Marker.
s(M) A state of a Marker.
ma(N), ma(L) A Marker related to a Node or a Link.

Table 5.1: Key concepts to address the requirements introduced in Chapter 3 and
Chapter 4, based on Biffl et al. [2020].

storing a name and a description. Figure 5.1 represents a node with tag number 1.

Link. Based on nodes, the concept of links can be introduced. Like nodes, each link
is of a certain type t. A directional link connects two Nodes, N1 and N2. To aid data
storage, properties can also be defined on links. Figure 5.1 represent a link with tag
number 2.

Marker. As introduced in Chapter 3 and in UC 4 in Section 4.5, coordination via
artefacts in the environment plays an important part in asynchronous communication
and coordination. Therefore, this thesis introduces the concept of markers. Each marker
can consist of multiple states, but each marker can only be in exactly one state at each
time. Markers can be set on Nodes and Links. To aid coordination, properties can also
be set on markers to store important information for coordination between engineers.
Figure 5.1 represents a Marker with tag number 3.

This concept relies on the foundations laid by Grassé [1959] regarding Stigmergy by
leaving markers in the environment. This work introduces markers, allowing usage
directly on graphs and aiding coordination, while leveraging stigmergic concepts.

Model. A Model describes the sum of Nodes. Links and Markers describing a real
world artefact. Relating to the requirements introduced in Section 3.4, a model is the
smallest subset of the concepts that must provide the capability to be imported and
exported. This allows the approach of data logistics and round-trip engineering, as
introduced in Chapter 2.

Figure 5.1 introduces the metamodel of model elements forming part of a model. As is
outlined in Figure 5.1, a Model consists of Nodes, Links and Markers. Each Model can
consist of multiple Nodes. Each Node can have multiple incoming and outgoing Links,
that connect the Nodes to each other.

62

5.2. CMAI Method (RQ2)

Node Link

Property

Incoming

Outgoing

Marker

1 2

3

4

Figure 5.1: CMAI metamodel, based on Biffl et al. [2021c].
following the Entity-Relationship Diagram standard;

Legend: cardinality between entities: an open arrow end
means Can have zero to many entities.

Furthermore, Figure 5.1 outlines that each Node and each Link can have multiple Markers.
Finally, Nodes, Links and Markers can have multiple properties.

This metamodel can be used to elaborate a configuration format to allow a definition
of DSLs. It shows that a DSL that fulfils the research questions and requirements
illustrated in Chapter 3 and Chapter 4, must allow the definition of at least these three
model elements, each with their own respective properties. This DSL is founded by R1
- Representation of domain knowledge. This requirement outlines that typical CPPS
Engineering Networks and coordination markers must be supported by the designed
DSL. A technical introduction on the implementation of the metamodel can be found in
Section 5.3.

5.2 CMAI Method (RQ2)
This section introduces the solution approach for the CMAI method. For this, the CMAI
method uses concepts for change propagation and round trip engineering in a parallel and

63

5. Coordinated Model Analysis and Improvement Approach

iterative engineering approach. This allows to lay out the theoretical concepts needed
for conducting the CMAI method, which are then leveraged and used in Section 5.3,
introducing the technical architecture. This section aims at answering RQ2 of Chapter 3.

5.2.1 Change propagation in multi-view model

To allow for coordinated model analysis and improvements, links between models play
an important part. This concept of links between models aims at answering RQ2 of
Section 3.2.

This concept goes beyond the current state of the art, by allowing a seamless and auto-
matic transformation and propagation of properties in a cross-cutting, multi-disciplinary
engineering field. These model links are directional links, allowing propagation of proper-
ties in between different models.

To achieve this, the CMAI-DSL holds a list of other CMAI-DSLs, each DSL is identified
by a unique UUID. This represents a directional link between these DSLs. These links
allow propagation, since the origin DSL can iterate over all linked DSLs and find matching
model elements. The systems then compares the shared properties and updates them if
needed. Furthermore, the system writes a change log, so that information reaches the
engineers if changes to their models happen resulting from automatic change propagation.

5.2.2 Round-trip engineering

Resulting from RQ2 and R3 from Chapter 3, the need for an import and export of models
arises. This is founded in the need to allow external manipulation and querying, apart
from the DSL for the technical solution approach proposed in Section 5.3. Furthermore,
it allows for data logistics approaches and round-trip engineering as introduced in
Chapter 2. Parallel and iterative engineering especially needs round-trip engineering,
where engineering involves multiple users.

Following the ideas put forward by Biffl et al. [2019b] this means that artefacts modelled
in the context of a local DSL must be transformed to an external format and vice versa
when importing. This capability allows handling models and model elements in external
tools, allowing external enrichment of the model elements. This capability furthermore
allows each engineering discipline to work in their own DSL and not relying on a single
format across all disciplines.

This approach aims at allowing cooperation between different engineering tools and
disciplines. Furthermore, it aims at avoiding divergence of data between different formats,
if easy import and export is possible. Section 5.3 leverages this concept of round-trip
engineering, to provide a semi-automatic way of setting markers on big models. This
approach can be used in the CMAI method flow, proposed in the following subsection.

64

5.2. CMAI Method (RQ2)

Reviewed Multi-
View Graphs

Multi-View
Graphs with

links

Propagate
changes

automatically
via links

Inform
engineers of
propagated

changes

Updated
Multi-View

Graphs with
links

Design,
Analyse and

Improve
Multi-View

Graphs

Set task
marker(s)

Conduct task
and improve

graph

Incorporate
changes into

graph

CPPS Engineering Usecase

Further analysis and
improvement needed?

Yes

Figure 5.2: CMAI method flow. Modeled using a flowchart based on Hering [1984].

5.2.3 CMAI method flow

5.2 represents the proposed CMAI method flow. It provides the capabilities for CPPS
Engineers to conduct a design and validation loop in a Multi-View Graph Environment.
It unites the proposed concepts of RQ1 and uses them in the CMAI method flow.

Graph Representation and Manipulation (CMAI-DSL). To represent typical
graphs and models, the CMAI-DSL is used. This is shown by the purple quadrants in
Figure 5.2. It furthermore allows CPPS Engineers to update and manipulate models in
the CMAI-DSL.

Property Propagation between Graphs. Using the links between multiple CMAI-
DSLs, proposed in Section 5.1, updates to graphs can be propagated to models of other
engineers. This is shown in green in Figure 5.2. This makes property changes accessible
to all engineers, improving the graphs by avoiding working on stale data.

Integrated Markers on Graphs. Propagated changes — or models in general —
need to be reviewed. For this, this thesis proposes the concept of markers as integrated
coordination tool, providing a stable way of describing tasks on graphs. This is shown in
the orange rectangles in Figure 5.2. Since these tasks themselves may result in changes,
the CMAI method flow results in a loop. The resulting changes are propagated, may
need further review, which themselves may create new changes. This results in a design
and validation loop, increasing overall quality and reducing risks in Multi-View Graphs.

65

5. Coordinated Model Analysis and Improvement Approach

5.3 Software Architecture and Design (RQ3)
This section maps the theoretical concepts outlined in Section 5.1 and Section 5.2 onto
specific technical solutions. The technical solution provides an implementation that
allows the evaluation of the use cases introduced in Chapter 4. Based on the evaluation,
the research questions of this thesis can be answered.

This section structures the topics as following: First, this section introduces the proposed
technical architecture. Secondly, this section discusses the definition of a DSL. Finally,
this section provides an outline for the import and export from and to the technical
prototype.

5.3.1 Technical architecture
R2 of Section 3.4 strongly influences the technical architecture of the proposed Generic
CPPS Modeling (GCM) editor. The need for a web architecture, avoiding a local
installation, is founded in the ease of use for users of the Generic CPPS Modeling
(GCM) editor. Furthermore, the architecture has to take into account the possibility of
connectivity to external systems.

Frontend

Backend

MongoDB FileSystem LDAP Postgres

1

2

3

Figure 5.3: Technical architecture of the GCM editor.

To allow a reusage of the resulting technical architecture, an important concern was
to choose an architecture that clearly separates the technical aspects by their concerns.
Furthermore, state of the art software engineering approaches influenced the chosen
architecture. To access and work on the resulting GCM Editor, readers can refer to a
repository for the Frontend1 and the Backend2.

1GCM Editor Frontend Repository: https://bitbucket.org/tuw-qse/mdre-frontend
2GCM Editor Backend Repository: https://bitbucket.org/tuw-qse/mdre-backend

66

https://bitbucket.org/tuw-qse/mdre-frontend
https://bitbucket.org/tuw-qse/mdre-backend

5.3. Software Architecture and Design (RQ3)

Figure 5.3 introduces the technical architecture of the GCM editor. It relies on the
concept of separation of concerns, where each part of a system focuses on a specific
concern. This is why the architecture separates itself into the following three layers:
Frontend, Backend, and Persistence Layer. This layered architecture represents the state
of the art in Software Engineering. Its clear separation of concerns aids in reducing
the dependencies between each layer and increases overall comprehensibility for other
engineers [Schatten et al., 2010]. This is why this thesis chooses this architectural
approach.

Frontend. The frontend solely focuses on the representation and manipulation of
models. It needs to represent the nodes, links, and markers to the users and needs to
allow easy manipulation (R2). Furthermore, it needs to run in the web browser of the
user, without requiring additional installation (R2).

Due to this requirement profile, VueJS 3 was chosen. This is due to the fact that VueJS
is currently becoming more popular and works as a single page web application. This
leads to a very small performance footprint, which is especially important when running
the frontend in the browser of the user. Furthermore, VueJS integrates well with different
Scalabale Vector Graphic (SVG) libraries, an important aspect in the representation of
model elements in the editor, as will be outlined in Section 5.3.2. Figure 5.3 depicts the
frontend layer with Tag 1.

Backend. The backend of the GCM editor validates the models and relays them to
the persistence layer. Furthermore, it relays additional metadata, e.g., the creation date
of a model, to the persistence layer. It also provides the capability of import and export,
as outlined in R3, since models can be transformed easily in the backend layer. External
systems can be integrated in this layer.

To fulfil the requirements for the backend, Kotlin 4 was chosen as programming language.
Strengths of this language are that it integrates with the Java Runtime whilst providing
functional programming approaches to the developer. To aid the development, the Spring
Boot 5 framework was chosen. Amongst other things, it provides a simpler integration of
the Persistence Layer and aids development by abstracting boilerplate code. Figure 5.3
depicts the backend layer with Tag 2.

Persistence Layer. The persistence layer stores the CMAI-DSLs and further informa-
tion created by the GCM editor. The need for storing models is defined in Requirement
R3.

3vuejs.org Last accessed: 05/07/2021
4kotlinlang.org Last accessed: 05/07/2021
5spring.io Last accessed: 05/07/2021

67

vuejs.org
kotlinlang.org
spring.io

5. Coordinated Model Analysis and Improvement Approach

Due to the multitude of different data formats that need to be stored, this solution
approach choses a polyglot persistence 6 layer. The persistence layer provides a MongoDB 7

database, a Not only SQL (NoSQL) database, to store the models. Additionally, the
solution approach uses the File System to store images related to models. LDAP 8 is used
to store user data and permissions for the GCM editor. Finally, this solution approach
uses the Postgres 9 database to store metadata to the models and further information
needed for the GCM editor. Existing approaches in the field partly influence the chosen
persistence technologies, e.g., LDAP, on the other hand the need of storing non-relational
data influences the chosen solution, as Chapter 2 introduces. Figure 5.3 depicts the
persistence layer with Tag 3.

5.3.2 Definition of DSLs
The flexible definition of DSLs is an integral part to answer the research questions of
this thesis. R1 of Section 3.4 strongly influences the proposed DSL design. The idea
of Automation Markup Language (AML), a neutral, XML based format to represent
engineering data, influences the proposed solution [IEC 62714-1, 2018]. This thesis picks
up this concept for a neutral data representation format, but uses JSON as underlying
language, as will be outlined in the following paragraph. The metamodel for these DSLs
has already been discussed. Therefore, this section focuses on the concrete implementation
of this metamodel.

To allow a flexible definition of DSLs, the solution needs a data format that is human-
readable, but also machine-readable. Due to this, the proposed solution choses JavaScript
Object Notation (JSON) as data format to store a DSL. This provides a rigid data format,
whilst still allowing human manipulation.

The following paragraphs provide an introduction into the data format of a DSL in the
GCM editor:

Basic model elements (Abstract). All Nodes and Links in the GCM editor share
basic properties, since they need to conform to similar requirements. Listing 5.1 outlines
such an abstract basic model element.

The concept of a basic model element is abstract and does not form part of the DSL in the
GCM editor. It is provided to the user as an abstract concept to aid the understanding
of shared properties between Nodes and Links.

The shared properties are:

• typeName: The field typeName defines the type of the defined model element, e.g.,
a node of type Product. This property has to be unique across the DSL.

6https://martinfowler.com/bliki/PolyglotPersistence.html Last accessed: 05/07/2021
7https://www.mongodb.com/ Last accessed: 05/07/2021
8https://ldap.com/ Last accessed: 05/07/2021
9https://www.postgresql.org/ Last accessed: 05/07/2021

68

https://martinfowler.com/bliki/PolyglotPersistence.html
https://www.mongodb.com/
https://ldap.com/
https://www.postgresql.org/

5.3. Software Architecture and Design (RQ3)

1 {
2 "typeName":"Product",
3 "attributeTypes":[
4 {
5 "variableName":"id",
6 "displayName":"ID",
7 "type":" string "
8 }
9] ,

10 " layer" : "ProductLayer"
11 "display" :"<svg width='100' height='100'><circle cx='50%' cy='50%' r='48' stroke='black' stroke−width

='4' fill−opacity='1' fill='white'/><text x='50%' y='50%' text−anchor='middle' fill='black' font−size='
12'>{{attribute_id}}: {{name}}</text></svg>"

12 }

Listing 5.1: Properties shared by Nodes and Links in the DSL.

• attributeTypes: Defines attributes for the given model element. Consists (1) of
a variableName, that can be referenced in the display of the model element. (2)
of a displayName, which will be shown to the user (3) of a type, which allows
“string”, “text” or “boolean” as types.

• layer: Allows the representation of a model element on a specific layer. All model
elements will be placed on the defined layer. Layers can be toggled visually by the
user in the GCM frontend. If the user omits this property, the system places the
model element on a default general layer.

• display: To allow a flexible representation of nodes and links, the GCM editor
leverages the concept of SVGs. Any SVG can be provided and will be displayed
by the GCM editor. This allows different engineering disciplines to represent
their domain specific model elements flexibly. Furthermore, the variableName
can be referenced in the display string, to allow the representation of dynamic
properties. Such reference onto a variable name needs to be defined by using double
leading and trailing double curly brackets, e.g., {{attributes_variableName}}.
Furthermore, the prefix attributes_ needs to be set.

Furthermore, by default, each model element has a name and description. These
are provided by the GCM Editor and do not need to be defined in the DSL. Based on
this basic model element, this section introduces the concepts of Nodes and Links. To
aid variability, this section abbreviates shared properties like the attributeTypes to
maintain readability.

Nodes. To represent nodes in the GCM editor, the properties defined in Listing 5.2
can optionally be defined.
The additional property serves the following purpose:

• connectPoints: To aid a consistent representation of links on nodes, connect-
Points can be defined in the DSL. Links only will connect to these connectPoints.

69

5. Coordinated Model Analysis and Improvement Approach

1 {
2 "typeName":"Product",
3 "attributeTypes":[] ,
4 "connectPoints": [
5 {
6 "x":50,
7 "y":105
8 },
9 {

10 "x":50,
11 "y":−10
12 }
13] ,
14 " layer" : "ProductLayer",
15 "display" : "PLACEHOLDER"
16 }

Listing 5.2: Properties optionally defined on Nodes in the DSL.

The coordinates are relative to the middle of the SVG. If the user defines no con-
nectPoints on a node, links find the closest path between the linked nodes.

To connect nodes, the following paragraph introduces the concept of link.

Links. Links allow the connection of two nodes in the GCM editor. To achieve this,
Listing 5.3 outlines the additional properties on links in the DSL.

The additional properties on links serve the following purpose:

• connects: Defines rules on which connections the link can be used. If the user omits
connects, links can connect any node. To further aid the visual representation
to/fromAllowedConnectPoints allows binding specific connect points to each
link.

• bidirectional: Allows the definition if this link is uni- or bidirectional. By
default, all links in the GCM editor are unidirectional.

Based on the nodes and links, a DSL allowing the modelling of a graph can be defined.
To answer the research questions aimed at asynchronous cooperation between engineering
disciplines, the following paragraph introduces the concept of markers.

Markers. Markers can be defined additionally for each model element. Listing 5.4
outlines the properties needed to define a marker.

Each marker consists of the following properties:

• typeName: As with other model elements, it defines the type of marker.

70

5.3. Software Architecture and Design (RQ3)

1 {
2 "typeName":"Directional Dashed Arrow",
3 "attributeTypes":[] ,
4 "connects": [
5 {
6 "from":"Resource",
7 "fromAllowedConnectionPoints":[
8 {
9 "x":−5,

10 "y":50
11 },
12 {
13 "x":105,
14 "y":50
15 }
16] ,
17 "to" : "Process",
18 "toAllowedConnectionPoints":[
19 {
20 "x":−10,
21 "y":50
22 },
23 {
24 "x":105,
25 "y":50
26 }
27]
28 }
29] ,
30 " bidirectional " : false ,
31 "display" : "PLACEHOLDER"
32 }

Listing 5.3: Properties optionally defined on Links in the DSL.

1 {
2 "typeName":"ReviewMarker",
3 "markerStates":[
4 {
5 "stateName":"In Review",
6 "display" :"<svg width='40' height='40'><rect width='40' height='40' stroke='black' stroke−width='

2' fill='white' /><text x='50%' y='50%' text−anchor='middle' font−weight='bold' fill='black'>IR</
text></svg>"

7 },
8 {
9 "stateName":"Approved",

10 "display" :"<svg width='40' height='40'><circle cx='50%' cy='50%' r='19' stroke='black' stroke−
width='2' fill='green' /><text x='50%' y='50%' text−anchor='middle' font−weight='bold' fill='black'>
A</text></svg>"

11 },
12 {
13 "stateName":"Discussion",
14 "display" :"<svg width='40' height='40'><circle cx='50%' cy='50%' r='19' stroke='black' stroke−

width='2' fill='white' /><text x='50%' y='50%' text−anchor='middle' font−weight='bold' fill='black'>
D</text></svg>"

15 }
16]
17 }

Listing 5.4: Properties defined on Markers in the DSL.

71

5. Coordinated Model Analysis and Improvement Approach

1 {
2 "modelType": "Complete−Model",
3 "version" : "1.0.0",
4 "nodeTypes": [
5 /∗ NODE TYPE PLACEHOLDER ∗/
6] ,
7 "edgeTypes": [
8 /∗ EDGE TYPE PLACEHOLDER ∗/
9] ,

10 "markerTypes": [
11 /∗ MARKER TYPE PLACEHOLDER ∗/
12] ,
13 layers : []
14 }

Listing 5.5: Shortened example of a model DSL

• markerStates: Contains a list of marker states. Each marker can only be in one
state at one time. A marker state consists of the following properties:

– stateName: Defines the name of the marker that is shown to the user in the
GCM editor frontend.

– display: As with model elements, any given SVG can be used to represent
a marker.

To further aid coordination via markers between different engineers, markers, by default,
have a name and description property. Via the description, additional information can be
transported between users. Furthermore, to avoid cluttering of the GCM editor frontend,
the GCM Editor automatically places each marker type on a distinct layer, so each
marker type can be toggled individually.

In the following paragraph, a complete DSL is outlined, containing all mentioned concepts.

Models. Finally, all model elements can be summarized into the model DSL. Listing 5.5
depicts such a configuration.

As is visible in Listing 5.5, the DSL contains further metadata such as a modelType, to
define a name for the DSL and a version, to allow a versioning of DSLs. In the field
layers, all referenced layers in model elements have to be outlined.

Based on the configured DSL, concrete models can be modelled. To allow the concept of
round trip engineering, as outlined in Chapter 2, import and export of models is crucial
and is introduced in the following section.

5.3.3 Import and Export from and to different data formats
As introduced in Chapter 2, import and export of data into the Generic CPPS Modeling
(GCM) editor plays an important part in settling the proposed software architecture
in the state of the art. A known approach in this field is the round trip engineering

72

5.3. Software Architecture and Design (RQ3)

MERGE (`Magnet`:`Product Asset`{`mdreId`:"4ead4476-b553-48c0-8392-50
ab2e1b45b1",`mdreDescription`:"Magnet",`mdreXPosStart`:"296",`
mdreYPosStart`:"323",`mdreXPosEnd`:"149",`mdreYPosEnd`:"-4",`id`:"x.ppr.
PD2",`name`:"Magnet",`type`:"x.ppr.pd01",`note`:"Product type"})

MERGE (`Grundaufbau`)-[:`Process-Resource`{`mdreId`:"d2218ce1-dd10-40ae-a410-
d872bb28edde",`mdreEdgeStartNode`:"c558d97b-62a8-409d-bda4-cf6a71af179e
",`mdreEdgeEndNode`:"2114af0b-d982-4d64-abaf-6f71e75fd183"}]->(`Modul 4`)

Listing 5.6: Example export from the GCM editor to cypher. Some properties omitted
for readability.

approach Lüder et al. [2018]. In this approach, multiple engineering tools and disciplines
work sequentially on the artefact, while transforming the artefact into their own data
model between each step. To integrate the GCM editor into the existing approaches
and tools, it must provide its own import and export interface. This approach strongly
relates to R3 in Section 3.4.

This section introduces import and export via cypher and comma-separated values (CSV).
Due to the architecture of the GCM editor, the chosen solution allows an easy addition
of further import and export formats. The two introduced formats serve as examples on
how such a behaviour can be achieved.

Import/Export via Cypher

The import and export to the cypher format, used by Neo4J, aims at answering RQ3 of
Section 3.2. This interface allows the modification of properties via an external tool in a
semi-automatic manner. To achieve this, this thesis leverages Neo4J as an external tool,
due to its leading role in the field of Graph Query Languages (GQLs).

Export from the GCM editor. To achieve this, the data format introduced in the
preceding section needs to be transformed into the cypher language, which is used by
Neo4J.

Listing 5.6 outlines two exemplary Cypher statements, exported from the GCM Editor.

The first statement shows a MERGE statement for a node. MERGE allows the creation of a
new element. If the specified node already exists, the new data gets added when using
MERGE. The statement consists (1) of the name of the node, (2) of the type, and (3) of
the properties from the node. In the properties, the properties defined in the DSL get
stored.

The second statement represents the creation of a link. (Startnode)-[Link]-(Endnode)
specifies a link. As with nodes, the definition of a link consists of (1) a name, (2), the
link type, and (3) the properties of the link.

73

5. Coordinated Model Analysis and Improvement Approach

Figure 5.4: Exemplary graph from the GCM Editor, represented in Neo4J. This graph
will be reused in Chapter 6

When exporting from the GCM editor, the GCM Editor sets these properties according
to the stored data automatically. For each stored node and link, the GCM Editor creates
the cypher MERGE statements and can be used to transfer an existing model to Neo4J. To
further understand the possibilities of cypher, the Neo4J homepage 10 provides a further
introduction. Figure 5.4 shows a graph represented in Neo4J. Chapter 6 goes into more
detail showing use cases conducted using Neo4J.

Modifications via Cypher. The aim of using Neo4J as an external tool is to allow
semi-automatic modification of the models, e.g., setting new markers or changing proper-
ties. Using a GQL may be easier than using the GCM frontend when handling bigger
and more complex models.

After exporting a model from the GCM editor, cypher queries can be written that modify
the model. Listing 5.7 outlines such a query.

The query matches all nodes, where the Change State is set to changed. For all
matching nodes, the query modifies the related nodes. On the related nodes, the
ValidationLifeCycleState is set to To Validate. Such a query may prove useful

10https://neo4j.com/developer/get-started/ Last accessed: 09/07/2021

74

https://neo4j.com/developer/get-started/

5.3. Software Architecture and Design (RQ3)

MATCH (startnode)<-[edge*1..1]-(endnode)
WHERE startnode.`Change State` = "changed"
SET endnode.ValidationLifeCycleState="To Validate"

Listing 5.7: Example query to modify a model via cypher.

when tracking changes to a model, that require further validation. In this example, the
new value of ValidationLifeCycleState is visible in the GCM editor after reimporting
the model.

Cypher further allows path queries or other path traversal queries. This allows many
potential use cases of such modifications on models.

Import to the GCM editor. To allow a stable import to the GCM editor from
cypher as an external data source, some defined steps have to be followed. To match the
expected data format of the GCM editor, the query in Listing 5.8 needs to be used.
MATCH (startnode) OPTIONAL MATCH (startnode)-[edge]->(endnode)
WITH startnode, edge, endnode
RETURN startnode, edge, endnode

Listing 5.8: Export query for Neo4J.

Neo4J allows the export of the result of the query as JSON. The GCM Editor allows the
import of this exported JSON file. Any modifications that were undertaken while using
Neo4J will be imported to the GCM editor and will be visible in the GCM frontend.

This approach focuses on models that were already modelled in the GCM editor. To
improve the usability when creating a model from scratch, the following section introduces
an import and export via CSV.

Import/Export via CSV

To better establish the GCM editor in the State of the Art, a CSV import and export
is possible. This allows large quantities of nodes to be imported, which may prove
helpful when setting up new models. Furthermore, it helps to connect existing tools
and approaches, since CSV is a well established approach that has been formalized in
RFC-4180 11.

Import via CSV. The import via CSV needs a header line. After the header line,
each record has to be placed on a separate line.

Listing 5.9 outlines such a CSV import. Before defining the nodes, Node Data must be
part of the imported file, to aid the GCM editor which part of the file is relevant for the
import. After this block, the first line represents the header. It contains all properties

11https://www.ietf.org/rfc/rfc4180.txt Last accessed: 09/07/2021

75

https://www.ietf.org/rfc/rfc4180.txt

5. Coordinated Model Analysis and Improvement Approach

Node Data:

"NodeType","name","Description","ValidationLifeCycleState","Change State"
"Asset","M.Torque","Screw & Measure","designed","no_change"

Listing 5.9: Example for a CSV import into the GCM editor.

"EdgeType","Name","ConnectFromId","ConnectToId","Description"
"Function","Name","b365f599-95e2-444d-8e9e","c1829e49-f079-40dd-900e",""

Listing 5.10: Example for a link CSV export.

that were defined in the DSL. For each node type, a block with a header and the concrete
instances below it needs to be created, to allow an import into the GCM editor.

This approach allows a fast and easy import, since it allows copying of instances in bulk,
without having to use the GCM frontend.

Export via CSV. Similar to the import, the export exports all nodes and edges - and
their properties - of a model in the CSV format. To achieve this, the GCM Editor uses
the same data format as for the import. This allows to incorporate the GCM editor in
an engineering tool chain, when relying on the CSV format.

Listing 5.10 outlines a link, contrary to the input. Providing a link during import in the
shown format is possible, but isn’t intuitively to use in more complex models. Therefore,
it is suggested to use the GCM frontend to place links between nodes.

The following chapter evaluates the research questions using the introduced technical
solution. To guide the evaluation, the following chapter uses the use cases introduced in
Chapter 4.

76

CHAPTER 6
Evaluation

Goal of this chapter is to evaluate the research questions and requirements outlined
in Chapter 3. To achieve this, this chapter uses the technical solutions proposed in
Section 5.3. Using these technical solutions, this thesis conducts the illustrative use
cases of Chapter 4. These use cases then allow an evaluation and discussion of research
question and requirements in Chapter 7.

The remainder of this chapter treats the relevant topics as follows: This chapter deals
with each use case outlined in Chapter 4 in a separate section. Each section introduces
the test cases used for the evaluation and documents the execution of the test cases with
screenshots and explanations. Lastly, each section gives an outlook on variants of the use
case. To define the goals of each use case, this chapter uses the Goal Question Metric
(GQM) approach as introduced by Caldiera and Rombach [1994]. The GQM provides a
structured approach on how to measure (software) metrics, by dividing the measurement
on three levels, the goal level, the questions level, and the metric level. Due to this
simple template, it will be used in the evaluation of each use case, to define the goals
and metrics. Chapter 7 outlines the discussion of the evaluation results.

6.1 Capability 1: Change Propagation

This use case analyses data propagation between engineering disciplines while using differ-
ent local Domain-Specific Languages (DSLs). This is done for the purpose of improving
data flows between engineering disciplines in fields of multi-disciplinary engineering, with
respect to reducing effort of data dissemination and aggregation between disciplines and
improving overall model quality. This thesis conducts this use case from the view point
of engineers in their respective disciplines in the application context of Cyber-Physical
Production Systems (CPPS) engineering.

77

6. Evaluation

Nr. Name Relates to
UC1.1 Import of model elements RQ.UC1.1, RQ.UC1.2
UC1.2 Propagation of data RQ.UC1.3, RQ.UC1.4

Table 6.1: Test cases used for evaluation of UC1

6.1.1 Test cases
Table 6.1 introduces the two test cases used to evaluate the use case.

Test case number 1 focuses on the possibility of allowing engineers to import shared
model elements from other CPPS models. These model elements can possibly be defined
in a different DSL, which proves as a challenge in existing approaches.

Test case number 2 works on an existing network of related CPPS models. To improve
overall quality and reduce errors, shared properties on model elements in related model
elements get automatically propagated, and the Generic CPPS Modeling (GCM) Editor
informs users of these external changes.

6.1.2 Use case execution
To document each use case this section uses screenshots and explanations for each step.
The underlying models used for this use case can be found, together with other materials
of this thesis, in an external repository 1.

Test case 1 Relating to the Restricted Use Case Modeling (RUCM) steps for this
use case outlined in Table 4.1, this test case relates to all steps, where an engineering
discipline imports existing model elements into its own view. In this specific case, the
evaluation represents the import of a Gear box model element into the requirements view.
This allows a requirement engineer to trace existing requirements onto a shared model
element, in which the system updates properties if they change in other engineering
disciplines.

In Figure 6.1 shows the import of a shared model element from the Mechanic view. The
left-hand side (red), represents all model elements present in the Mechanic view. Here,
model elements can be shown and selected for import. The Figure shows all selected
model elements for import on the right-hand side (blue). The GCM Editor automatically
translates the representation of the model element into the local DSL. Furthermore, the
two models get linked, so that the GCM Editor can keep each shared property on the
imported node up to date automatically between the two views.

Figure 6.2 shows the resulting model of the import. The imported model element Gear
box is selected and its properties shown (blue rectangle). The left-hand side (red) shows

1Model Configuration Repository: https://bitbucket.org/tuw-qse/
mdre-thesis-cengelbrecht

78

https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht

6.1. Capability 1: Change Propagation

Figure 6.1: Import of model elements in the GCM Editor.

the editor canvas of the GCM editor. This canvas allows the requirements engineer to
link the imported model element to existing requirements. The properties shown on the
right-hand side (blue) are shared (partly) with the mechanic view, so the GCM Editor
propagates any change, which may lead to a violation of the requirement, in this case
the translation ratio.

Figure 6.2: Result of import of model element into requirements view.

79

6. Evaluation

(a) Requirements View (b) Functional View

(c) Mechanic View (d) Electric View

Figure 6.3: The four engineering disciplines specific views represented in the GCM editor. They
are for the evaluation of UC1 and relate to the paper mock-up in Figure 4.3.

Test case 2 Test case 2 focuses on the automatic propagation of information between
engineering views on shared model elements.

Figure 6.3 shows the four engineering views, introduced in the mock-up in Figure 4.3.
As can be seen, the model element Gear box exists in three independent views. To
keep shared information up-to-date between these models, an automated propagation is
relevant to improve overall quality and consistency of the models.

Figure 6.4 shows this automatic propagation. First, the model element GearBox is
modified in the Functional View and its property TranslationRatio changed to 1:800.
Since the Requirements View and the Functional View share this model element, the
GCM Editor propagates this change on save. Albeit the Requirements View using
a different DSL, the GCM editor can propagate this information across engineering
disciplines. The GCM Editor adds an entry into the Model History to inform the user
of external changes. The entry contains all changed properties, in this case the model
history informs the user that the GearBox was changed: GearBox.TranslationRatio:
1:500 -> 1:800. This entry in the model history is visible in Figure 6.4b.

6.1.3 Advanced Application Options

The possibility of linking models between them is easily scalable. The GCM editor
theoretically allows an endless amount of different linked models. This method allows
possible different applications, e.g., when designing different versions of the same model.
By linking these models, the GCM Editor propagates all property changes to all different
versions of the same model, keeping the models consistent in-between them automatically.

80

6.2. Capability 2a: Linking of Model Elements to Engineering Artefacts

(a) Gear Box properties in
Functional View. The property

TranslationRatio (red) was changed
in this use case.

(b) Model History in the
requirements view showing

external changes

Figure 6.4: Screenshots showing property propagation between related models in the GCM
editor.

6.2 Capability 2a: Linking of Model Elements to
Engineering Artefacts

Using the GQM approach, the goals of this use case can be outlined as following.

This use case analyses linking of nodes, building a Product-Process-Resource (PPR)
Asset Directory. This is done for the purpose of improving traceability and transparency
between the modelled Engineering Artefacts. This section conducts the use case from
the view point of engineers that aim to improve the traceability and linking of artefacts
in their model.

6.2.1 Test cases
Table 6.2 outlines one test case used for the evaluation of this use case.

Test case number 1 Test case number 1 focuses on linking nodes to build a PPR
Asset Directory. For this, Engineering Artefacts get linked to an existing model, building

81

6. Evaluation

Nr. Name Relates to
UC2.1 Link Nodes for traceability RQ.UC2a.1, RQ.UC2a.2, RQ.UC2a.3

Table 6.2: Test cases used for evaluation of UC2a

links to the existing model. This allows tracing model elements to Engineering Artefacts
via the added links.

6.2.2 Use case execution
Relating to the RUCM steps outlined in Table 4.2, this use case portrays the step of
linking Engineering Artefacts to PPR Assets in the model.

Figure 6.5: PPR Asset Directory modelled in the GCM Editor. Based on mock-up in
Figure 4.4.

This is shown in Figure 6.5. Figure 6.5 derives from the paper mock-up in Figure 4.4, by
leveraging the import/export function of the GCM Editor via CSV. This allowed to easily
import all nodes. To model the links between nodes, this use case uses the GCM Editor
Frontend. On the left-hand side of the model, the GCM Editor Frontend shows existing
linked PPR Assets. On the right-hand side, Figure 6.5 introduces Engineering Artefacts,
depicted by a black icon. As is visible, these Engineering Artefacts are then linked to the
existing PPR Asset model via links, modelled via dashed bidirectional arrows.

These links now allow stakeholders to relate existing PPR Assets to Engineering Artefacts,

82

6.3. Capability 2b: Model Element Properties

Nr. Name Relates to
UC2b.1 Manipulate properties on model elements RQ.UC2b.1, RQ.UC2b.2

Table 6.3: Test cases used for evaluation of UC2b

building a PPR Asset Directory in the process.

6.2.3 Advanced Application Options
The basic concept of this use case is the linking of nodes to each other, to convey
information. This concept can be applied to different use cases, and is not restricted to
PPR Asset Directories. The following section proposes an augmentation of this use case
that stores properties with each node, to convey even more information and to allow
modelling of more complex real world scenarios.

6.3 Capability 2b: Model Element Properties
Using the GQM approach, the goals of this use case can be outlined as following. These
goals relate closely to UC2a, since UC2b is an augmentation of the existing approach in
UC2a.

This use case analyses the linking of nodes, each containing properties and information, to
build a PPR Asset Network (PAN). This is done for the purpose of improving traceability
and transparency between the modelled Engineering Artefacts and storing additional
information. This section conducts the use case from the view point of engineers that
aim to improve the traceability and linking of artefacts in their model.

6.3.1 Test cases
Table 6.3 outlines one test case to evaluate UC2b.

Test case number 1 Since UC2a outlines the linking of model elements, this use
case focuses on storing additional data with each model element, resulting in a PPR
Asset Network (PAN). This test case evaluates the flexible definition and manipulation
of properties.

6.3.2 Use case execution
To allow for a definition of properties on model elements, these properties have to be
defined in the DSL, as outlined in Chapter 5.

Listing 6.1 outlines such a property definition. The DSL defines each required property
explicitly. In the provided snippet, this is done exemplary for the model element Engi-
neering artefacts, but can be applied to any other model element in the GCM Editor.

83

6. Evaluation

1 {
2 "typeName": "Engineering artefacts",
3 "attributeTypes": [
4 {
5 "variableName": "type",
6 "displayName": "Type"
7 },
8 {
9 "variableName": "ea_type",

10 "displayName": "ea_type"
11 },
12 {
13 "variableName": "storage_location",
14 "displayName": "storage_location"
15 },
16 {
17 "variableName": "note",
18 "displayName": "Note"
19 }
20]
21 }

Listing 6.1: Definition of properties for UC2b in the DSL. Some properties omitted for
brevity.

Figure 6.6 shows the defined properties in the GCM Editor Frontend. The left-hand
side shows the editor canvas and show the selection of an Engineering Artefact. The
right-hand side shows each defined property and can be manipulated. The GCM Editor
stores any change to these property values and shows them to other engineers working
on the same model. As introduced in Chapter 4, this is the main difference between
Figure 6.6 and Figure 6.7. UC3b in Figure 6.7 allows the definition of properties on nodes
and links, which is not possible in UC3a. This allows to build a PAN and overall improve
traceability in models, while being able to model more complex real-world scenarios by
using properties on nodes.

6.3.3 Advanced Application Options

The same outlooks, that are outlined for UC2a, are also applicable to this use case. In
general, any real-world use case that would profit of modelling of nodes and links and
storing information to each of these model elements, are applicable to the use case. This
is also a result of the architecture chosen for the GCM Editor that allows a flexible
definition of properties via a DSL as configuration language.

6.4 Capability 3a: Model Layers by Model Element Type
Using the GQM approach, the goals of this use case can be outlined as following.

This use case analyses the representation of nodes on different layers. This is done for the
purpose of improving coordination and cooperation, while adding additional knowledge

84

6.4. Capability 3a: Model Layers by Model Element Type

Figure 6.6: PPR Asset Network (PAN) modelled in the GCM Editor. Based on mock-up
in Figure 4.4 and Figure 6.5.

Nr. Name Relates to
UC3a.1 Adding layers to DSL RQ.UC3a.1
UC3a.2 Toggle layers to declutter editor RQ.UC3a.2

Table 6.4: Test cases used for evaluation of UC3a

to the models. This section conducts the use case from the view point of CPPS engineers
that aim to represent additional information in their models.

6.4.1 Test cases

Table 6.4 shows the two test cases used for the evaluation of this use case.

Test case number 1 As is outlined in Chapter 5, the proposed approach allows the
flexible definition of additional layers via the DSL. To outline this, test case 1 aims at
representing this possibility.

Test case number 2 Based on these layers, the GCM Editor must allow the toggling
of additional layers, to avoid cluttering of the GCM Frontend to the user. This is outlined
by test case 2.

85

6. Evaluation

6.4.2 Use case execution
To use additional layers in the GCM Frontend, new layers need to be defined in the DSL.

To achieve this, the corresponding layer needs to be added to the concerned model
elements. This is shown in Listing 6.2.

1 {
2 "modelType": "4−Color−Printer",
3 "version" : "1.0.0",
4 "nodeTypes": [
5 {
6 "connectPoints": [] ,
7 "insidePlacementRules": [] ,
8 "typeName": "Risk",
9 "attributeTypes": [] ,

10 "display" : "<svg width='50' height='50'></svg>",
11 " layer" : "Risk"
12 }
13] ,
14 "edgeTypes": [] ,
15 "markerTypes": [],
16 "active" : true,
17 " layers " : [
18 "General",
19 "Risk"
20]
21 }

Listing 6.2: Defined layer in the DSL for the Risk node. Some properties omitted for
brevity.

When the user defines a new layer in the underlying DSL, it is then shown in the GCM
Editor Frontend, as is visible in Figure 6.7a. All existing layers in the DSL are shown on
the left-hand side of the editor, see the red rectangle with Tag 1.

As outlined by test case number 2, these layers need to provide the possibility of being
toggled in the frontend. Figure 6.7 shows this possibility. When a layer gets toggled in
the GCM Editor Frontend, the defined nodes are not visible to the user. This is outlined
by the blue rectangles and Tag 2 in Figure 6.7b.

6.4.3 Advanced Application Options
The possibility to define layers and make parts of the model invisible to the users can be
applied freely to many use cases. Due to the flexible definition of layers for each model
element type in the DSL, even each node type could be placed on its own layer, without
limiting the user in the GCM Editor Frontend.

6.5 Capability 3b: Connections between layers
Using the GQM approach, the goals of this use case can be outlined as following. UC3b
is closely related to UC3a, which is why some goals are similar.

86

6.5. Capability 3b: Connections between layers

(a) All defined layers visible in the GCM
Editor Frontend and toggleable.

(b) Risk layer toggled, resulting in visibility
changes in the GCM Editor.

Figure 6.7: Figures showing the toggling of layers in the GCM editor.

Nr. Name Relates to
UC3b.1 Link nodes across layers RQ.UC3b.1, RQ.UC3b.2

Table 6.5: Test cases used for evaluation of UC3b

This use case analyses the representation of nodes on different layers and linking nodes
across different layers. This is done for the purpose of improving coordination and
cooperation, while adding additional knowledge to the models. It further aids traceability
by linking nodes to additional information, represented on additional layers. This section
conducts the use case from the view point of CPPS engineers that aim to represent
additional information in their models and improve the resulting quality of models.

6.5.1 Test cases
Table 6.5 shows the test case used for the evaluation of this use case. Requirement
RQ.UC3b.3, outlined in Section 4.4.5, will be covered in the evaluation of UC4a and
UC4b.

Test case number 1 This test case is closely related to the test cases used for UC3a.
This test case augments the approach, by linking nodes across different layers. This allows
to improve traceability, e.g., by linking requirements to model parts on an additional
layer.

6.5.2 Use case execution
As with UC3a, layers have been modelled on different nodes. But this time, links have
been modelled across layer boundaries, e.g., linking the Printer Requirement node to the
Printer node on the “General” layer.

As is visible in Figures 6.8, these links are visible in the GCM Editor, but can also be
toggled if needed, which also makes the links invisible. This allows users to model a

87

6. Evaluation

(a) All layers visible in the GCM Editor, with
linked nodes on different layers.

(b) Toggled Requirement layer, resulting in
visibility changes.

Figure 6.8: Screenshots showing toggling of layers in models in the GCM editor.

Nr. Name Relates to
UC4a.1 Define DSL with Markers and initiate Task. RQ.UC4a.1
UC4a.2 Cycle through marker states. RQ.UC4a.2

Table 6.6: Test cases used for evaluation of UC4a

second, overlaying model, consisting of additional information that allows improving
the underlying model. The disabling of layers also allows decluttering the GCM Editor
Frontend, which allows users to focus better on their layer.

6.5.3 Advanced Application Options
As with UC3a, many applications are possible, consisting of designing additional layers and
linking these to an existing model. The possibility to link nodes across layer boundaries
allows to build a more closely intertwined overlaying model, which aids traceability and
allows modelling of relationship between models on different layers.

6.6 Capability 4a: Coordination with Markers – Manual
Setting of Markers

Using the GQM approach, the goals of this use case can be outlined as follows.

This use case analyses the coordination and cooperation for guided tasks using stigmergic
approaches via markers. This is done for the purpose of improving coordination and
cooperation between engineers, by using the environment as an asynchronous coordination
tool. This section conducts the use case from the view point of CPPS engineers that aim
to augment their existing model, by creating tasks that can be conducted by other CPPS
engineers.

6.6.1 Test cases
Table 6.6 shows the two test cases used for the evaluation of this use case.

88

6.6. Capability 4a: Coordination with Markers – Manual Setting of Markers

Test case number 1 Test case number 1 focuses on the definition of corresponding
markers in the DSL, and the initial setup of the use case. For this, the DSL defines three
marker types, a Priority Marker, a Task Marker, and a Review Marker. For this test
case, the Priority Marker and Task Marker will be used.

Test case number 2 To guide the tasks via stigmergic coordination, this test case
uses different marker states. These marker states convey information CPPS Engineers,
that work on resolving the tasks.

6.6.2 Use case execution
To set new markers on model elements in the GCM Editor Frontend they have to
be defined in the DSL. This has been introduced in Chapter 5. Listing 6.3 shows a
representative definition of a marker. This defined marker has three states, namely
TODO, In Progress and Done and represents the states of a task. This marker can be
used to coordinate work between multiple CPPS Engineers that pick up tasks in the
model.

1 {
2 "typeName": "TaskMarker",
3 "markerStates": [
4 {
5 "stateName": "TODO",
6 "display" : "<svg width='40' height='40'></svg>"
7 },
8 {
9 "stateName": "In Progress",

10 "display" : "<svg width='40' height='40'></svg>"
11 },
12 {
13 "stateName": "Done",
14 "display" : "<svg width='40' height='40'></svg>"
15 }
16]
17 }

Listing 6.3: Representative defintion of one marker in the DSL.

Based on this marker definition, a CPPS Engineer sets a TODO Marker on a node in
the model. This is shown in Figure 6.9a. Furthermore, due to the architecture of the
GCM Editor, the CPPS Engineer can add a short description to the marker, e.g., Task:
Design the remaining parts of the printing plate.

This is visible in Figure 6.9b. Here, a CPPS Engineer picked up a task, and set the state
to In Progress. This is visible to all other engineers working on the model, which leads
to them not picking up the task and focusing on other work in the model. This leverages
the approach of stigmergic coordination using the modelling canvas of the GCM Editor
as environment.

When the CPPS Engineer finishes a task he sets the marker state to Done, as shown in
Figure 6.9c. This signals to other engineers the conclusion of that the task, and other

89

6. Evaluation

(a) TODO Marker with Priority 4 set on
Printing unit node.

(b) CPPS Engineer picked up task, state
change to In Progress.

(c) Task finished, Done marker set.

Figure 6.9: Usage of markers and marker states on models.

work can be started, e.g., reviewing these new model parts. UC4b evaluates this follow-up
task.

6.6.3 Advanced Application Options
The approach of markers is very flexible in the GCM Editor. Markers can be used in
any use case where the need for asynchronous coordination via the environment exists.

90

6.7. Capability 4b: Coordination with Markers – Program-Based Marker Setting

Nr. Name Relates to
UC4b.1 Export model to Neo4J. RQ.UC3b.3, RQ.UC4a.3, RQ.UC4b.1
UC4b.2 Set new markers semi-automatically. RQ.UC4b.1, RQ.UC4b.2

Table 6.7: Test cases used for evaluation of UC4b

Furthermore, it allows storing information specifically to a node, which can be leveraged
in other, non CPPS specific, approaches.

6.7 Capability 4b: Coordination with Markers –
Program-Based Marker Setting

Using the GQM approach, the goals of this use case can be outlined as following. UC4b
is closely related to UC4a, also leveraging the marker approach. Therefore, some goals
are similar between the two use cases.

This use case analyses the coordination of feedback using stigmergic approaches via
markers. This is done for the purpose of improving coordination between engineers,
aiming at improving the overall model quality. This section conducts the use case from
the view point of CPPS engineers that aim to collect feedback on their model.

6.7.1 Test cases
Table 6.7 shows the two test cases used for the evaluation of this use case.

Test case number 1 Test case number 1 outlines the export of models from the GCM
Editor and the import to Neo4J. This approach allows round-trip engineering as outlined
as State of the Art in Chapter 2. Furthermore, it allows external manipulation of the
model.

Test case number 2 Test case number 2 focuses on using a Graph Query Language
(GQL), specifically Cypher in Neo4J, to set markers semi-automatically. This result
has then to be imported from Neo4J back to the GCM Editor, to allow for a common
representation.

6.7.2 Use case execution
First, the model used in UC4a, containing the Done marker, is exported from the GCM
Editor and imported to Neo4J. The resulting export can be found in the documenting
repository 3. The representation of the model in Neo4J is documented in Figure 6.10.
The Figure shows the representation of the model by Neo4J. Neo4J assigns every node

3Model Configuration Repository: https://bitbucket.org/tuw-qse/
mdre-thesis-cengelbrecht

91

https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht

6. Evaluation

Figure 6.10: Result of C4b represented as a Neo4J graph2

type a specific colour automatically and stores properties set in the GCM Editor to each
node. This now allows the GCM Engineers, to use Cypher to semi-automatically set
new markers on the model. For this use case the query in Listing 6.4 is used. It finds
the node with the marker Done, and sets an In Review Marker on every node, that
is one hop away via a link. This is useful, since UC4a manipulated or affected these nodes.

MATCH (n)-[*1]-(m) WHERE n.mdreMarkerStateTaskMarker = "Done" SET m.
mdreMarkerStateReviewMarker="In Review" RETURN n,m

Listing 6.4: Setting of markers via Neo4J Cypher Query.

The GCM Editor allows a reimport of these newly set markers. Figure 6.11 shows this.
Using these markers, other CPPS Engineers can now review the nodes that are marked
via the In Review marker.

6.7.3 Advanced Application Options
Readers can leverage the proposed approach in different directions. Since Cypher as GCM
allows for many graph-based queries, e.g., path queries, different applications scenarios
are possible. Together with the GCM Editor as model representation and manipulation
tool, it allows for different application scenarios.

2https://neo4j.com/developer/get-started/ Last accessed: 15/09/2021

92

https://neo4j.com/developer/get-started/

6.8. Overall Evaluation Results

Figure 6.11: UC4b with In Review Markers set after import from Neo4J.

6.8 Overall Evaluation Results

The conclusion of this chapter summarizes the overall evaluation. To aid this, Table 6.8
shows which UC addressed which research question and overall requirement in Chapter 3.
Table 6.8 further shows that each Requirement and each Research Question in Chapter 3
is addressed in the evaluation of this thesis.

Table 6.8 shows that UC1 and UC4 focus strongly on the evaluation of coordination in a
parallel and iterative engineering in the field of CPPS Engineering. In comparison, UC2
and UC3 focused strongly on the graph and data representation and manipulation part
in the GCM Editor. Overall, by nature of the research questions and global requirements,
all UCs are involved in some way with RQ1 and RQ3, since the Coordinated Model
Analysis and Improvement (CMAI)-DSL is used for definition of the models and the
resulting software architecture of RQ3 - the GCM Editor - is used as evaluation platform.
Furthermore, UC2 and UC3 provide the foundation for UC4. Therefore, the two UCs
relate partly to Requirement R2 and RQ2, by laying the groundwork needed for conducting
and evaluating UC4.

6.9 Reproducibility of Evaluation Results

To allow for reproducibility of the conducted evaluation, three repositories provide online
resources to the interested reader.

93

6. Evaluation

R1 R2 R3 RQ1 RQ2 RQ3
UC1 X X X X X
UC2 X (X) X (X) X
UC3 X (X) X (X) X
UC4 X X X X X X

Table 6.8: Table showing the addressed requirements and research questions, as outlined
in Chapter 3, by each UC.

Frontend Repository Code defining the GCM Editor Frontend, can be found in an
external repository4. It contains all necessary information for a local installation.

Persistence and Backend Repository Code defining the GCM Editor Backend,
can be found in an external repository5. It also contains all necessary information for a
local installation and is necessary when using the GCM Editor Frontend, to allow for
storage of the models.

DSLs and models To allow a reproduction of each UC, a repository 6, containing the
DSLs and models for each UC, is provided. This allows the interested reader to use the
DSLs and models, to reproduce and reevaluate the results of this thesis.

4GCM Editor Frontend Repository: https://bitbucket.org/tuw-qse/mdre-frontend
5GCM Editor Backend Repository: https://bitbucket.org/tuw-qse/mdre-backend
6Model Configuration Repository: https://bitbucket.org/tuw-qse/

mdre-thesis-cengelbrecht

94

https://bitbucket.org/tuw-qse/mdre-frontend
https://bitbucket.org/tuw-qse/mdre-backend
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht

CHAPTER 7
Discussion

The goal of this chapter is to tie together the results of this thesis and discuss the relation
to the research questions. Furthermore, it outlines limitations of the proposed solutions.
For this, this chapter connects each research question, outlined in Chapter 3, to the
evaluation and discusses the fulfilment of the research question.

This chapter also treats the threats to validity [Höst et al., 2000] that may arise from the
solution approach of this thesis.

7.1 RQ1: Domain Specific Lanuage for Coordination
RQ1. CMAI-DSL. What domain-specific language (DSL) allows representing
and linking of multi-view graphs for coordinated multi-disciplinary engineer-
ing? RQ1 aims at the visual and data representations of models in a multi-disciplinary
domain. For this, a Domain-Specific Language (DSL) is necessary, that allows not only
the modelling of graphs, but also the linking of models in between them.

This thesis proposes the Coordinated Model Analysis and Improvement (CMAI)-DSL, as
introduced in Chapter 5. The CMAI-DSL allows defining the visual representation of
nodes and links, resulting in a graph. It also allows the definition of data properties, that
can be stored and manipulated. Therefore, the CMAI-DSL allows the representation of
engineering models.

To answer the coordinated, multi-disciplinary aspect of RQ1, the CMAI-DSL allows
linking of models. A unique ID identifies every model, which then allows building links
between models. These links are especially relevant in the method proposed by RQ2.

The CMAI-DSL has been used in all evaluated use cases in Chapter 6. Furthermore, the
resulting artefacts can be found in the documentation repository of this thesis 1.

1Model Configuration Repository: https://bitbucket.org/tuw-qse/

95

https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht

7. Discussion

The proposed solution using the CMAI-DSL leverages existing approaches for model repre-
sentation, manipulation and storing, as outlined in the state of the art in Chapter 2 [Biffl
et al., 2017, 2019b; Lüder et al., 2019; Lüder et al., 2020]. Furthermore, the proposed
solutions separate itself from Model Driven Systems Engineering (MDSE) and the Eclipse
Modeling Framework (EMF), by providing a more lightweight and modern experience. A
further difference is the focus on Cyber-Physical Production Systems (CPPS) Engineering,
while MDSE strongly focuses on Software Engineering, while providing models that can
be directly translated to code [Brambilla et al., 2012].

This research question goes beyond the state of the art introduced in Chapter 2 as
it focuses on an approach, that allows the linking and propagation of data properties
in models, while still providing a separate visual representation for each discipline in
the multi-disciplinary context. It also provides a way of synchronously keeping models
consistent between models, allowing each stakeholder to work on the most recent data.
For the data propagation, the links between CMAI-DSLs are leveraged.

This adds new knowledge to the state of research by providing a way of synchronously
keeping models up to date in a parallel, iterative, multi-disciplinary engineering approach.
Overall, this reduces risks in the production process and improves the quality of graphs
in Cyber-Physical Production Systems (CPPS) Engineering by providing up-to-date
knowledge and data for all engineering disciplines.

Limitations. The proposed solutions in Chapter 6 focus solely on real-world use cases
that can be represented in a graph using nodes and links. This means, that the CMAI-
DSL can only model in two dimensions. This limits the application scenarios, compared
to more sophisticated modelling tools used in the CPPS context, e.g., AutoCAD 2.

Furthermore, the CMAI-DSL introduces one more data structure in the field of CPPS
Engineering, that is already very heterogeneous due to its multi-disciplinary nature. To
alleviate this limitation, the proposed Generic CPPS Modeling (GCM) Editor allows
import and export to different data formats, as outlined in Chapter 5. This interface allows
to transform the stored models and integrate the GCM Editor into the multi-disciplinary
CPPS Engineering field.

7.2 RQ2: Method for Coordinated Analysis and
Improvement

RQ2. CMAI method. What method can domain experts use to define design
and validation loops to analyse and improve multi-view graphs, with links
between models in different engineering disciplines? RQ2 focuses on providing
domain experts with a method to conduct design and validation loops on engineering
models. In the current state of the art, the possibility to conduct design and validation

mdre-thesis-cengelbrecht
2https://www.autodesk.de/products/autocad/overview Last accessed: 05/09/2021

96

https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://bitbucket.org/tuw-qse/mdre-thesis-cengelbrecht
https://www.autodesk.de/products/autocad/overview

7.2. RQ2: Method for Coordinated Analysis and Improvement

loops is limited by the existing tools, as outlined in Chapter 2 [Omicini et al., 2004;
Biffl et al., 2016]. To improve on the state of the art, this thesis provides two solution
approaches, that can be integrated with each other into the CMAI method.

First, the concept of links, as already outlined in RQ1, improves on the state of the art
by providing domain experts with an automated approach to keep models up-to-date
seamlessly, regardless of engineering discipline and underlying DSL. This helps domain
experts in defining design and validation loops, by providing each domain expert with the
current underlying model element properties and avoiding working on stale information.
This propagation of properties continues through the whole design cycle of a CPPS
Engineering model, which leads to a loop that repeats itself. Section 6.1 evaluates this
propagation of properties and the resulting loops.

As a second approach to analyse and improve engineering models, this thesis proposes
an approach using coordination markers by leveraging Stigmergy. For this, the concept
of markers has been introduced in Chapter 5. Using markers and their states, a design
and validation loop can be defined. This approach has been evaluated in Section 6.6
and Section 6.7. As is evaluated, engineers can asynchronously analyse and improve
models using markers for coordination. This approach goes beyond the state of the art by
allowing engineers to use the environment, e.g., the GCM Editor canvas, as coordination
space. This improves on using external tools, e.g., Jira 3, and allows a more fine-grained
approach, setting markers on model elements directly.

Combining these two approaches allows to easily conduct a design and validation loop,
leading to the CMAI method. This method improves the state of the art by providing a
method that can be applied on existing multi-view graphs in the field of CPPS Engineering,
aids engineers in conducting design and validation loops and overall improves the quality
of the analysed and improved graphs.

Limitations. The proposed approaches work with a wide variety of use cases, but do
have some limitations.

The concept of links between CMAI-DSLs, allow a very flexible linking of models. The
limitation of using these proposed links, is that model elements representing the same
real world artifact need to have the same unique identifier in their respective model. To
overcome this, the proposed solution approach allows importing of model elements from
different models, which already have the same unique identifier set. Chapter 6 evaluates
this use case.

Using markers, they allow the definition of a set of states that can be represented. This
is enough for most basic use cases, but is limited by not allowing domain experts to
define stricter rules on how marker and their states can be used. In state of the art issue
tracking tools, such as Jira 4, more complex task states and rules can be defined.

3https://www.atlassian.com/de/software/jira Last accessed: 05/09/2021
4https://www.atlassian.com/de/software/jira Last accessed: 05/09/2021

97

https://www.atlassian.com/de/software/jira
https://www.atlassian.com/de/software/jira

7. Discussion

7.3 RQ3: Editor and Service Architecture for
Coordinated Model Analysis and Improvement

RQ3. CMAI Editor and Service Architecture. What software architecture
and solution design can provide the capabilities to efficiently analyse and
improve models? To further improve the possibilities for domain experts to analyse
and improve models, software tool support is desirable. In the current state of the art,
this software tool support only exists to a very limited amount.

First, this thesis proposes a software architecture, allowing the usage of the CMAI-DSL
and the visual representation and manipulation of graphs defined by the CMAI-DSL.
As outlined in Chapter 2, state of the art approaches in the field of CPPS Engineering
introduce DSLs such as Automation Markup Language (AML). Furthermore, approaches
for round-trip engineering exist in the state of the art. To pick up on this, this thesis
introduced model transformation using import and export from the GCM Editor in the
solution approach, allowing the transformation of models defined by the CMAI-DSL.

This thesis then leveraged the import and export of the usage of Neo4J and Cypher as
Graph Query Language (GQL), to aid the analysis and improvement of (big) models.
This is achieved by allowing domain experts to export models from the GCM Editor,
using the CMAI-DSL, to Neo4J. Using Cypher, domain experts can then efficiently
query big models. Furthermore, using the coordination markers introduced in this thesis,
domain experts can mark results of their queries, e.g., for further human-based analysis,
using Neo4J. The GCM Editor allows an import of the results from using the software
tool support, e.g., Neo4J. Modification of properties, new markers, etc. are then shown
in the GCM Editor Frontend. This has been evaluated in Section 6.7.

The improvements introduced by this software tool based approach are diverse. Due
to the strengths of query languages in general, a big amount of data can be handled in
very short time. This allows domain experts, to analyse and improve models, regardless
of their size. From a certain point, humans alone are unable to analyse and review
models efficiently, if at all. This allows domain experts to handle bigger models, but also
reduce their time needed for the task. This freed up personnel can then conduct more
human-based tasks that require human input and cannot be conducted by software tools.

Overall, this leads to an improvement in the state of the art, by providing a software
architecture that can be combined with existing models via an import/export to the
GCM Editor. It furthermore improves the effectivity of reviews conducted by domain
experts, by reducing the needed time for querying and marking big models, by providing
a software architecture that allows a semi-automatic approach using GQLs.

Limitations. Limitations of this solution approach mainly concern the integration of
GQLs with the GCM Editor. Although the import and export approach to Neo4J has
proved sufficiently robust for the evaluated use cases, it does not work seamlessly, which
might increase the difficulty of usage for domain experts. Furthermore, the data format

98

7.4. Limitations

of the CMAI-DSL has to be mapped onto the data format of Neo4J, which requires
model transformation and adds more complexity to the already very heterogeneous field
of CPPS Engineering.

To overcome this, future work can be done on integrating Cypher as GQL into the GCM
Editor. This would allow conducting analyses directly from the GCM Editor, increasing
ease of use for domain experts.

7.4 Limitations
The following limitations apply to the results of this thesis:

Property propagation on model element level. The proposed property propaga-
tion between models defined in the CMAI-DSL only allows propagation on model element
level. This means that the system only recognizes model elements that have the same
unique identifier as representing the same artefact, and only propagates properties if
they have the same name. This means that properties that the system should propagate
need to have the same name, which has its limitations in real-world scenarios, if different
engineering disciplines use different names for properties.

No rule set for marker states in coordination markers. Marker states defined
for coordination markers can be cycled through in any arbitrary order by engineers. In a
well-defined process between engineers of one engineering discipline, this may not lead
to problems, but it would be preferable to limit the allowed state transitions between
marker states. This would allow the system to enforce following certain review or task
steps instead of allowing arbitrary state changes.

Use cases focus only on CPPS Engineering as application field. The selected
use cases and the application field of this thesis is strictly limited to CPPS Engineering.
This focuses the results of this thesis to CPPS Engineering, which may introduce a bias
into the finding of this thesis.

To address these limitations, this thesis proposes future work in Section 8.2.

99

CHAPTER 8
Conclusion and Future Work

The last chapter of this thesis summarizes the conducted work and outlines future work,
to establish further research that can be conducted based on the results of this thesis.

8.1 Conclusion
This thesis investigated coordinated multi-view graph analysis and improvement. The
thesis addressed new solution approaches in the field of Cyber-Physical Production
Systems (CPPS) Engineering, an application field in need of coordinated behaviour, due
to its multi-disciplinary nature.

To achieve this, Chapter 4 outlines illustrative use cases. These use cases focused on
different aspects of coordinated multi-view graph analysis and improvement in the field of
CPPS Engineering. These use cases are a result of the issues investigated by the state of
the art in Chapter 2 of this thesis.

Based on the state of the art and resulting illustrative use cases, this thesis identifies
two main solution approaches. First, the model element propagation, and second, the
coordination markers.

The model element propagation focuses on allowing CPPS Engineers to propagate infor-
mation to colleagues automatically, regardless of boundaries between models, resulting
from different engineering disciplines and modelling approaches.

Second, coordination markers allow leveraging stigmergic coordination between engineers,
by using traces in the environment for asynchronous coordination. To further simplify the
handling of coordination markers, this thesis investigated the semi-automatic placement
approaches of markers.

To allow the definition of graphs, consisting of nodes and edges, the Coordinated Model
Analysis and Improvement (CMAI)-Domain-Specific Language (DSL) was introduced.

101

8. Conclusion and Future Work

Apart from allowing the configuration of nodes and edges, it also allows defining the
model element propagation and the coordination markers.

To evaluate the proposed solutions, this thesis proposes a technical prototype. This is
the Generic CPPS Modeling (GCM) Editor. The GCM Editor, using the CMAI-DSL,
was used to evaluate the proposed solution approaches, using the outlined illustrative use
cases. This thesis used a qualitative evaluation to investigate the results of the proposed
solution approaches.

In total, the model element propagation and the coordination markers showed promising
application fields in the domain of CPPS Engineering. The conducted use cases show
that coordination between engineers can be enhanced and aided by computers, allowing
each engineer to work on the same underlying data, being synced automatically by the
system. Furthermore, analysis and improvement of graphs in multi-disciplinary domains
can benefit of using the proposed coordination markers. It allows and aids the conduction
of analysis and improvements tasks, leveraging stigmergic approaches.

Overall, these approaches allow improving the efficiency of CPPS Engineering. Further-
more, these approaches reduce the effort used for coordination in CPPS Engineering
while reducing overall risks, since better coordination between engineering disciplines can
take place. In the future, this could be used as foundation for agile CPPS Engineering.

The following results of this thesis address the challenges introduced in Chapter 1.

C1. Limited analysis and improvement resources. The novel CMAI method
improves the efficiency of design and validation flows in Multi-View Graphs. This
leads to a better quality in CPPS Multi-View models and reduces the time domain
experts require to conduct analysis and improvement tasks on graphs. This addresses
the challenge by reducing the resources required for analysis and improvement.

C2. Large models and expensive modelling tools. The novel software architecture
and tool support introduced in Chapter 5 enable CPPS Engineers to use Graph Query
Language (GQL) to semi-automatically set markers on large models. This capability
facilitates handling large models, since CPPS Engineers can quickly and efficiently set
coordination markers on large graphs. Furthermore, the proposed technical architecture
is easily accessible and free of cost, tackling the challenge of expensive modeling tools.

C3. Limited approaches for coordinating analysis and improvement pro-
cesses. This thesis introduced the CMAI-DSL. The CMAI-DSL facilitates the propaga-
tion of properties between models. Furthermore, the CMAI-DSL enables the definition of
coordination markers. These coordination markers provide capabilities for coordinating
analysis and improvement processes by allowing the tracking of task states on graphs in
an integrated manner.

Following up on the stakeholders and readers introduced in Section 1.4, each group of
readers can pick up different results of this thesis.

102

8.2. Future Work

(1) Practitioners in the field of CPPS Engineering can use the GCM Editor, to model
their models. This could include change propagation and coordination markers, leading
to risk reduction and an overall more efficient CPPS Engineering progress. To pick up
the results of this work, this would mean that a new role of, e.g., a model curator would
need to be introduced, to define models using the CMAI-DSL.

(2) Readers working in management positions could pick up the results of this work
to track and manage progress of the CPPS Engineering progress. For this, the introduced
coordination markers could prove especially useful.

(3) Researchers can pick up the results of this work and base their further research in
the field on it. For this, Section 8.2 proposes future work, to point to further research
fields based on this thesis.

(4) Software Engineers can pick up the software architecture proposed for the GCM
Editor. The reader can see the proposed architecture as detached from a concrete
implementation, and a new implementation on a different technological stack might be
interesting to Software Engineers. Furthermore, the resulting codebase, documented in a
Repository for the GCM Editor Frontend 1 and the GCM Editor Backend 2, can be used
for further development and improvement of the GCM Editor.

8.2 Future Work
This section introduces possibilities for future work, based on the results of this thesis.

Enhance property propagation. For the prototype in this thesis, the solution ap-
proach restricts property propagation to model elements that are identified by the same
unique UUID. Furthermore, only model element properties that have the same name
in both CMAI-DSLs are propagated. This may be a limitation in some use cases. To
evaluate if a more sophisticated propagation approach also improves the coordination
between engineers, this area needs further research.

Improve rule sets of coordination markers. The current GCM Editor prototype
allows every user to cycle between all state of a coordination marker. This allows a great
flexibility for users, but might not be intended in every use case.

For this, further research should be conducted, analysing if defining rule sets for coor-
dination markers improves coordination and broadens the field of conducted use cases,
leveraging this approach.

Integrate CMAI-DSL in state of the art. As introduced in Chapter 2, data formats
like Automation Markup Language (AML) are existing approaches in the domain of

1GCM Editor Frontend Repository: https://bitbucket.org/tuw-qse/mdre-frontend
2GCM Editor Backend Repository: https://bitbucket.org/tuw-qse/mdre-backend

103

https://bitbucket.org/tuw-qse/mdre-frontend
https://bitbucket.org/tuw-qse/mdre-backend

8. Conclusion and Future Work

CPPS Engineering. To make the results of this thesis more accessible in the domain, a
better integration of the CMAI-DSL with existing standards should be strived for. This
would allow using proposed solutions by this thesis on already existing models in the
domain.

Improve representation for CPPS Engineers. Lastly, as already outlined in Chap-
ter 7, the current prototype of the GCM Editor, only allows the representation of two-
dimensional, nodes and edges graphs. This is enough for most use cases, but limits the
applications of the GCM Editor.

Future research should investigate if the proposed solutions can be leveraged in existing,
three-dimensional modelling tools, or if the CMAI-DSL can be adapted to allow three-
dimensional modelling approaches to CPPS Engineers.

104

Bibliography

Colin Atkinson, Christian Tunjic, and Torben Möller. Fundamental realization strategies
for multi-view specification environments. In 2015 IEEE 19th International Enterprise
Distributed Object Computing Conference, pages 40–49. IEEE, 2015.

Stefan Biffl, Arndt Lüder, and Dietmar Winkler. Multi-disciplinary engineering for
industrie 4.0: Semantic challenges and needs. In Stefan Biffl and Marta Sabou, editors,
Semantic Web Technologies for Intelligent Engineering Applications, pages 17–51.
Springer, 2016. doi: 10.1007/978-3-319-41490-4_2. URL https://doi.org/10.
1007/978-3-319-41490-4_2.

Stefan Biffl, Detlef Gerhard, and Arndt Lüder. Introduction to the multi-disciplinary
engineering for cyber-physical production systems. In Stefan Biffl, Arndt Lüder, and
Detlef Gerhard, editors, Multi-Disciplinary Engineering for Cyber-Physical Production
Systems, Data Models and Software Solutions for Handling Complex Engineering
Projects, pages 1–24. Springer, 2017. doi: 10.1007/978-3-319-56345-9_1. URL
https://doi.org/10.1007/978-3-319-56345-9_1.

Stefan Biffl, Arndt Lüder, Felix Rinker, and Laura Waltersdorfer. Efficient engineering
data exchange in multi-disciplinary systems engineering. In International Conference
on Advanced Information Systems Engineering, pages 17–31. Springer, 2019a.

Stefan Biffl, Arndt Lüder, Felix Rinker, Laura Waltersdorfer, and Dietmar Winkler.
Engineering data logistics for agile automation systems engineering. In Security and
Quality in Cyber-Physical Sys. Eng., pages 187–225. Springer, 2019b.

Stefan Biffl, Arndt Lüder, Elmar Kiesling, Kristof Meixner, Felix Rinker, Christian
Engelbrecht, Matthias Eckhart, and Dietmar Winkler. Multi-Aspect Risk Exploration
in Models for Positioning and Joining Simulation(Case Study) Part II. Technical
report, Technische Universität Wien, 11 2020.

Stefan Biffl, Arndt Lüder, Kristof Meixner, Felix Rinker, Matthias Eckhart, and Dietmar
Winkler. Multi-View-Model Risk Assessment in Cyber-Physical Production Systems
Engineering. In 8th Int. Conf. on Model-Driven Eng. and Softw. Dev., MODELSWARD
2021. SciTePress, 2021a.

105

https://doi.org/10.1007/978-3-319-41490-4_2
https://doi.org/10.1007/978-3-319-41490-4_2
https://doi.org/10.1007/978-3-319-56345-9_1

Stefan Biffl, Kristof Meixner, Jan Herzog, Arndt Lüder, Felix Rinker, Christian Engel-
brecht, and Dietmar Winkler. Requirements Tracing in Cyber-Physical Robot Cells for
Positioning and Joining(Case Study). Technical Report CDL-SQI-2021-03, CDL-SQI,
Institute for ISE, TU Wien, March 2021b.

Stefan Biffl, Kristof Meixner, Dietmar Winkler, and Arndt Lüder and. Towards Efficient
Asset-Based Configuration Management with a PPR Asset Directory. In 26th IEEE
ETFA 2021, Västerås, Sweden, September 07-10, 2021, page 4 pages. IEEE, 2021c.

Bundesministerium für Bildung und Forschung BMBF. Industrie 4.0, Dec 2018. URL
https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html. (Ac-
cessed on 1.11.2020).

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software engineering
in practice. Synthesis Lectures on Software Engineering, 1(1):1–182, 2012.

Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. The goal question metric
approach. Encyclopedia of software engineering, pages 528–532, 1994.

Olivier Cardin. Classification of cyber-physical production systems applications: Propo-
sition of an analysis framework. Computers in Industry, 104:11–21, 2019.

Brian Dobing and Jeffrey Parsons. How uml is used. Communications of the ACM, 49
(5):109–113, 2006.

Rainer Drath, Arndt Luder, Jorn Peschke, and Lorenz Hundt. AutomationML - the glue
for seamless automation engineering. Part 6: AutomationML Component. 10 2020.

Emelie Engström, Margaret-Anne Storey, Per Runeson, Martin Höst, and Maria Teresa
Baldassarre. How software engineering research aligns with design science: a review.
Empirical Software Engineering, 25(4):2630–2660, 2020.

Plerre-P Grassé. La reconstruction du nid et les coordinations interindividuelles chezbelli-
cositermes natalensis etcubitermes sp. la théorie de la stigmergie: Essai d’interprétation
du comportement des termites constructeurs. Insectes sociaux, 6(1):41–80, 1959.

Ekbert Hering. Der datenflußplan nach din 66001. In Software-Engineering, pages 56–62.
Springer, 1984.

Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design science in
information systems research. MIS quarterly, pages 75–105, 2004.

Hubert F Hofmann and Franz Lehner. Requirements engineering as a success factor in
software projects. IEEE software, 18(4):58–66, 2001.

Martin Höst, Björn Regnell, and Claes Wohlin. Using students as subjects—a comparative
study of students and professionals in lead-time impact assessment. Empirical Software
Engineering, 5(3):201–214, 2000.

106

https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html

IEC 62714-1. Engineering data exchange format for use in industrial automation systems
engineering – automation markup language – part 1: Architecture and general require-
ments. Int. Standard, Second Edition, Int. Electrotechnical Commission, Geneva, 2,
2018.

ISO/IEC 9075. ISO/IEC 9075:2016 Information technology-Database languages.
ISO/IEC, 2016(E):9075–1, 2016.

ISO/IEC WD 39075. ISO/IEC WD 39075, 2020. URL https://www.iso.org/
standard/76120.html. (Accessed on 13.11.2020).

ISO/IEC/IEEE 31320-1:2012. Information technology — Modeling Languages — Part 1:
Syntax and Semantics for IDEF0. Standard, International Organization for Standard-
ization, Geneva, CH, September 2012.

Ivar Jacobson. Object-oriented software engineering: a use case driven approach. Pearson
Education India, 1993.

Ivar Jacobson. Use cases–yesterday, today, and tomorrow. Software & Systems Modeling,
3(3):210–220, 2004.

Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael Hoffmann.
Industrie 4.0. Wirtschaftsinformatik, 56(4):261–264, 2014.

Edward A Lee. Cyber-physical systems-are computing foundations adequate. In Position
paper for NSF workshop on cyber-physical systems: research motivation, techniques
and roadmap, volume 2, pages 1–9. Citeseer, 2006.

Ziqi Li. NoSQL Databases. OSF Preprints, Jul 2019. doi: 10.31219/osf.io/u5q3y.

Arndt Lüder, Johanna-Lisa Pauly, Konstantin Kirchheim, Felix Rinker, and Stefan Biffl.
Migration to automationml based tool chains–incrementally overcoming engineering
network challenges. In 4th AutomationML user conference, 2018.

Arndt Lüder, Johanna-Lisa Pauly, Felix Rinker, and Stefan Biffl. Data exchange logistics
in engineering networks exploiting automated data integration. In 2019 24th IEEE
Int. Conf. on Emerging Tech. and Factory Automation (ETFA), pages 657–664. IEEE,
2019.

Arndt Lüder, Anna-Kristin Behnert, Felix Rinker, and Stefan Biffl. Generating Industry
4.0 Asset Administration Shells with Data from Engineering Data Logistics. In 25th
IEEE Int. Conf. on Emerging Tech. and Factory Automation, ETFA, Austria, 2020.
IEEE, 2020.

Richard J Mayer. Idefø function modeling: A reconstruction of the original air force
report. College Station, TX: Knowledge Based Systems, 1990.

107

https://www.iso.org/standard/76120.html
https://www.iso.org/standard/76120.html

Kristof Meixner, Arndt Lüder, Jan Herzog, Dietmar Winkler, and Stefan Biffl. Patterns
for reuse in production systems engineering. In Proceedings of the 33rd International
Conference on Software Engineering and Knowledge Engineering, pages 37–44. World
Scientific, 2021. doi: 10.18293/SEKE2021-150.

László Monostori. Cyber-physical production systems: Roots, expectations and r&d
challenges. Procedia Cirp, 17:9–13, 2014.

Angelika Musil, Juergen Musil, and Stefan Biffl. Towards collective intelligence system
architectures for supporting multi-disciplinary engineering of cyber-physical production
systems. In 2016 1st International Workshop on Cyber-Physical Production Systems
(CPPS), pages 1–4. IEEE, 2016.

Angelika Musil, Juergen Musil, Danny Weyns, Tomas Bures, Henry Muccini, and Moham-
mad Sharaf. Patterns for self-adaptation in cyber-physical systems. In Multi-disciplinary
engineering for cyber-physical production systems, pages 331–368. Springer, 2017.

Juergen Musil, Angelika Musil, Danny Weyns, and Stefan Biffl. An architecture framework
for collective intelligence systems. In 2015 12th Working IEEE/IFIP Conference on
Software Architecture, pages 21–30. IEEE, 2015.

Neo4J. Cypher query language, 2020. URL https://neo4j.com/developer/cypher/.
(Accessed on 7.11.2020).

Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castelfranchi, and Luca
Tummolini. Coordination artifacts: Environment-based coordination for intelligent
agents. In Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems-Volume 1, pages 286–293, 2004.

H Van Dyke Parunak. A survey of environments and mechanisms for human-human
stigmergy. In International workshop on environments for multi-agent systems, pages
163–186. Springer, 2005.

Douglas T Ross. Structured analysis (sa): A language for communicating ideas. IEEE
Transactions on software engineering, (1):16–34, 1977.

Thomas Schäffler, Matthias Foehr, Arndt Lüder, and Kristin Supke. Engineering process
evaluation: Evaluation of the impact of internationalisation decisions on the efficiency
and quality of engineering processes. In 2013 IEEE International Symposium on
Industrial Electronics, pages 1–6. IEEE, 2013.

Alexander Schatten, Stefan Biffl, Markus Demolsky, Erik Gostischa-Franta, Thomas
Östreicher, and Dietmar Winkler. Best Practice Software-Engineering: Eine praxis-
erprobte Zusammenstellung von komponentenorientierten Konzepten, Methoden und
Werkzeugen. Springer-Verlag, 2010.

108

https://neo4j.com/developer/cypher/

Miriam Schleipen, Arndt Lüder, Olaf Sauer, Holger Flatt, and Jürgen Jasperneite.
Requirements and concept for plug-and-work. at-Automatisierungstechnik, 63(10):
801–820, 2015.

Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse
modeling framework. Pearson Education, 2008.

Guy Theraulaz and Eric Bonabeau. A brief history of stigmergy. Artificial life, 5(2):
97–116, 1999.

Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and Dawn
Wilkins. A comparison of a graph database and a relational database: a data provenance
perspective. In Proceedings of the 48th annual Southeast regional conference, pages
1–6, 2010.

Birgit Vogel-Heuser, Thomas Bauernhansl, and Michael Ten Hompel. Handbuch industrie
4.0 bd. 4. Allgemeine Grundlagen, 2, 2020.

Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper
Saddle River, 2001.

Danny Weyns, Andrea Omicini, and James Odell. Environment as a first class abstraction
in multiagent systems. Autonomous agents and multi-agent systems, 14(1):5–30, 2007.

Dietmar Winkler, Manuel Wimmer, Luca Berardinelli, and Stefan Biffl. Towards model
quality assurance for multi-disciplinary engineering. In Multi-disciplinary engineering
for cyber-physical production systems, pages 433–457. Springer, 2017.

Eric Yu. Agent orientation as a modelling paradigm. Wirtschaftsinformatik, 43(2):
123–132, 2001.

Eric Siu-Kwong Yu. MODELLING STRATEGIC RELATIONSHIPS FOR PROCESS
REENGINEERING. PhD thesis, University of Toronto, 1995.

Eric SK Yu. Towards modelling and reasoning support for early-phase requirements
engineering. In Proceedings of ISRE’97: 3rd IEEE International Symposium on
Requirements Engineering, pages 226–235. IEEE, 1997.

Eric SK Yu and John Mylopoulos. Understanding "why" in software process modelling,
analysis, and design. In Proceedings of 16th international conference on software
engineering, pages 159–168. IEEE, 1994.

Tao Yue, Lionel C Briand, and Yvan Labiche. A use case modeling approach to facilitate
the transition towards analysis models: Concepts and empirical evaluation. In Interna-
tional conference on model driven engineering languages and systems, pages 484–498.
Springer, 2009.

109

List of Figures

1.1 Simple use case outlining main issues addressed by this thesis. The question
marks represent the challenges outlined by the use case. 3

1.2 Outlook on work results and work packages. 5

2.1 Schema of Cyber Physical Systems (CPS), based on [Monostori, 2014]. . . . 11
2.2 Round Trip Engineering flow in the context of a Model Analysis and Im-

provement (MAI) task in the context of a CPPS Engineering Network (CEN).
Based on Winkler et al. [2017] and Lüder et al. [2019]. Due to the usage
of domain-specific DSLs by each Engineer between each engineer, a trans-
formation step happens. This allows each engineer to work in its own DSL.
. 14

2.3 Main building block of IDEF0, the Structured Analysis (SA) box, based on Ross
[1977]. 20

2.4 Knowledge sharing and coordination between engineering disciplines using a
software platform, based on Musil et al. [2017]. 26

3.1 Visual Abstract, based on [Engström et al., 2020]. Template used from online
repository3. 30

3.2 Refined work packages of this thesis, based on Figure 1.2. 33

4.1 Dependencies between actors in the conducted use cases, modelled using the
I-Star (I*) framework [Yu, 1997]. 41

4.2 Flow of the conducted use cases, modelled using the Integration Definition 0
(IDEF0) framework. 42

4.3 CPPS Powertrain Design: Multi-view model elements and dependencies. 43
4.4 Paper mockup of the models to be modelled in UC2a and UC2b. The Figure

shows the assets and links between the assets. Based on [Biffl et al., 2021b]. 47
4.5 Paper mockup of the use case presented in UC3a and UC3b. Represents a

4-color printer, based on [Biffl et al., 2020]. 51
4.6 Mock-up of a model containing markers as coordination artefacts, based

on Biffl et al. [2020]. 58

5.1 CMAI metamodel, based on Biffl et al. [2021c]. following the Entity-Relationship
Diagram standard; Legend: cardinality between entities: an open arrow end
means Can have zero to many entities. 63

110

5.2 CMAI method flow. Modeled using a flowchart based on Hering [1984]. . 65
5.3 Technical architecture of the GCM editor. 66
5.4 Exemplary graph from the GCM Editor, represented in Neo4J. This graph

will be reused in Chapter 6 . 74

6.1 Import of model elements in the GCM Editor. 79
6.2 Result of import of model element into requirements view. 79
6.5 Product-Process-Resource (PPR) Asset Directory modelled in the GCM

Editor. Based on mock-up in Figure 4.4. 82
6.6 PPR Asset Network (PAN) modelled in the GCM Editor. Based on mock-up

in Figure 4.4 and Figure 6.5. 85
6.9 Usage of markers and marker states on models. 90
6.10 Result of C4b represented as a Neo4J graph4 92
6.11 UC4b with In Review Markers set after import from Neo4J. 93

111

List of Tables

2.1 Query time for a structural query in milliseconds. The graph consists of 100
000 nodes. Based on the results of Vicknair et al. [2010]. 16

2.2 Restricted Use Case Modeling (RUCM) use case template, based on Yue et al.
[2009] . 21

2.3 Distinctions of different Stigmergy types, based on Parunak [2005] 24

4.1 RUCM table, representing UC1 - Connected CPPS modelling. 45
4.2 RUCM table, representing UC2a - PPR Asset Directory 48
4.3 RUCM table, representing UC2b - PPR Asset Network (PAN). 49
4.4 RUCM table, representing UC3a - PAN application, risk mitigation . . . 52
4.5 RUCM table, representing UC3b - PAN application – requirements network. 54
4.6 RUCM table, representing UC4a - Guided task with markers 57
4.7 RUCM table, representing UC4b - Feedback with markers 60

5.1 Key concepts to address the requirements introduced in Chapter 3 and
Chapter 4, based on Biffl et al. [2020]. 62

6.1 Test cases used for evaluation of UC1 . 78
6.2 Test cases used for evaluation of UC2a . 82
6.3 Test cases used for evaluation of UC2b . 83
6.4 Test cases used for evaluation of UC3a . 85
6.5 Test cases used for evaluation of UC3b . 87
6.6 Test cases used for evaluation of UC4a . 88
6.7 Test cases used for evaluation of UC4b . 91
6.8 Table showing the addressed requirements and research questions, as outlined

in Chapter 3, by each UC. 94

113

Listings

5.1 Properties shared by Nodes and Links in the DSL. 69
5.2 Properties optionally defined on Nodes in the DSL. 70
5.3 Properties optionally defined on Links in the DSL. 71
5.4 Properties defined on Markers in the DSL. 71
5.5 Shortened example of a model DSL . 72
5.6 Example export from the GCM editor to cypher. Some properties omitted

for readability. 73
5.7 Example query to modify a model via cypher. 75
5.8 Export query for Neo4J. 75
5.9 Example for a comma-separated values (CSV) import into the GCM editor. 76
5.10 Example for a link CSV export. 76
6.1 Definition of properties for UC2b in the DSL. Some properties omitted for

brevity. 84
6.2 Defined layer in the DSL for the Risk node. Some properties omitted for

brevity. 86
6.3 Representative defintion of one marker in the DSL. 89
6.4 Setting of markers via Neo4J Cypher Query. 92

115

Acronyms

AML Automation Markup Language. 15, 16, 35, 43, 68, 98, 103

CEN CPPS Engineering Network. 11, 13, 14, 34, 35, 44, 110

CIS Collective Intelligence Systems. 9, 22, 24–27

CMAI Coordinated Model Analysis and Improvement. xi, xiii, 4–6, 12, 24, 31–35, 40,
56, 61, 63–65, 67, 93, 95–99, 101–104, 110

CPPS Cyber-Physical Production Systems. xi, xiii, xv, 1, 2, 4, 6, 9–13, 15, 17, 22, 25,
27, 29, 31–34, 36, 39–44, 46, 48, 50, 52, 54, 56, 58, 59, 61, 63, 65, 77, 78, 85, 87–93,
96–99, 101–104

CPS Cyber Physical Systems. 9–11, 110

CSV comma-separated values. 15, 73, 75, 76, 115

DSL Domain-Specific Language. xi, xiii, 2, 5, 13, 14, 16, 29, 31–35, 37, 40, 43–45, 47–49,
52, 53, 56, 60, 61, 63–73, 76–78, 80, 83–86, 88, 89, 93–99, 101–104, 110, 115

EMF Eclipse Modeling Framework. 15, 96

GCM Generic CPPS Modeling. xi, xiii, 6, 7, 16, 32, 33, 35, 37, 56, 60, 66–70, 72–76,
78–94, 96–99, 102–104, 111, 115

GDBMS Graph Database Management System. 16

GQL Graph Query Language. 16, 73, 74, 91, 98, 99, 102

GQM Goal Question Metric. 58, 77, 81, 83, 84, 86, 88, 91

I* I-Star. 17, 18, 39–41, 110

ICAM Integrated Computer Aided Manufacturing. 19

IDEF0 Integration Definition 0. 17, 19, 20, 39–43, 110

117

JSON JavaScript Object Notation. 35, 68, 75

MAI Model Analysis and Improvement. 2, 4, 11, 14, 23, 33, 35, 61, 110

MARE Multi-Aspect Risk Exploration. 50

MDSE Model Driven Systems Engineering. 15, 96

NoSQL Not only SQL. 16, 68

PAN PPR Asset Network. 39, 47–54, 83–85, 111, 113

PPR Product-Process-Resource. 39, 44, 46–49, 52, 81–83, 111, 113

RUCM Restricted Use Case Modeling. 17, 19–22, 39, 44–46, 48, 49, 51–54, 56, 57, 59,
60, 78, 82, 113

SA Structured Analysis. 19, 20, 110

SVG Scalabale Vector Graphic. 67, 69, 70, 72

118

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Overview on Expected Results
	Reader Guidance
	Thesis Structure

	State of the Art
	cpps Engineering
	Multi-view Graphs in cpps Engineering
	Model Representation, Storage, and Querying
	Requirements Engineering
	Stigmergy and Coordination

	Research Questions and Approach
	Design Science
	Research Questions
	Work Packages
	Requirements
	Evaluation Concept

	Illustrative Use Cases for Evaluation
	Use Case Context
	UC 1: Data Propagation between Model Views
	UC 2: Linking of Model Elements to Engineering Artefacts
	UC 3: Linking Requirements and Design Networks
	UC 4: Coordination with Markers

	Coordinated Model Analysis and Improvement Approach
	CMAI-DSL Metamodel (RQ1)
	CMAI Method (RQ2)
	Software Architecture and Design (RQ3)

	Evaluation
	Capability 1: Change Propagation
	Capability 2a: Linking of Model Elements to Engineering Artefacts
	Capability 2b: Model Element Properties
	Capability 3a: Model Layers by Model Element Type
	Capability 3b: Connections between layers
	Capability 4a: Coordination with Markers – Manual Setting of Markers
	Capability 4b: Coordination with Markers – Program-Based Marker Setting
	Overall Evaluation Results
	Reproducibility of Evaluation Results

	Discussion
	RQ1: Domain Specific Lanuage for Coordination
	RQ2: Method for Coordinated Analysis and Improvement
	RQ3: Editor and Service Architecture for Coordinated Model Analysis and Improvement
	Limitations

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Tables
	Listings
	Acronyms

