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dão ao meu Pantera, a minha ”máquina de ronroms” preferida.
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Abstract

Photoswitches have become an incredibly useful tool in the fields of biology, pharmacology

and medicine due to their ability to control the activity of biological compounds with light,

an external stimulus with a high spacial and temporal resolution, orthogonal towards most

components of living systems, non-toxic and with adjustable intensity and wavelength. Upon

irradiation, photoswitches undergo a reversible configuration change and when a biomolecule

is covalently bound to it, this change is expected to lead to a difference in the affinity to its

target.

Among all photoswitches, azobenzenes that switch between trans and cis have a priv-

ileged position thanks to their high isomerization quantum yields, fast photoisomerization,

resistance to optical fatigue, synthetic versatility and difference in the dipole moment after iso-

merization. As a consequence, azobenzenes have been applied to control the activity of several

biomolecules such as ion channels, drugs and enzymes.

Another attractive use of azobenzenes is in the preparation of smart light-responsive sur-

faces, meaning surfaces that can change their physical and chemical properties in response

to light. When a biomolecule is immobilized on top of an azobenzene coated surface, the

activity of this biological compounds can also be controlled and systems that mimic biologi-

cal processes (cell adhesion for example) can be developed. In addition to control the activity

of biomolecules, azobenzene coated surfaces are promising for the development of smart self-

cleaning materials or microfluid devices since upon irradiation the surface’s polarity changes.

In this thesis, we have synthesized several azobenzenes functionalized with two different

click chemistry moieties in the para positions aiming for an easy, fast and selective binding to

biomolecules. Afterwards, we have focused on the application of these azobenzenes in the
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development of light-responsive surfaces for biological applications.

One of the double-click azobenzenes was chosen to prepare a light responsive silicon sur-

face that can be used for the immobilization of biomolecules by mild and selective chemistry

and to develop a platform for the control of a biological process in the future. Another of these

double-click azobenzenes has also been clicked to biotin in order to develop a photoswitchable

DNA origami platform for the study of T-cell activation.

One fundamental problem of this work related with the preparation of azobenzene photo-

switchable surfaces turned out to be surface overcrowding. This issue occurs when the concen-

tration of azobenzene on the surface is too high and therefore there is no space for the switching

from trans to cis. We have addressed this problem by immobilizing the azobenzene while on

the most spatially demanding configuration, the cis isomer.

We have also tried to use rough surfaces to obtain an azobenzene coated surface that could

switch between superhydrophobic and superhydrophilic so that the switching of azobenzenes

could be undoubtedly followed by the difference in the water contact angle upon irradiation.

Such a system would also be useful in the development of a smart self-cleaning surface. This

effort, however, turned out to be more complex than expected and strongly dependent on the

particular surface morphology of the rough substrate. Silicon nanowires, porous silicon and

rough aluminum were tested in this respect, but none of them showed, as hoped, a super-

hydrophobic/superhydrophilic switching upon trans/cis photoisomerization. More work is

needed here focusing on systematic surface structure variation and wetting transition studies,

which exceeded the scope of this thesis.

viii



Kurzfassung

Moleküle, die unter Einfluss von Licht unterschiedliche Konfiguration einnehmen können, so-

genannte Photoswitches, sind im letzten Jahrzehnt im Bereich der Biologie, Pharmazie und

Medizin ein nützliches Instrument geworden. Ihre Stärke zeigt sich durch ihre Fähigkeit die

Aktivität von biologischen Verbindungen durch Licht zu kontrollieren. Denn Licht ist ein ex-

terner Stimulus mit einer hohen räumlichen und zeitlichen Auflösung, besitzt keine Interaktio-

nen mit den meisten lebenden Systemen, ist nicht toxisch und seine Wechselwirkung kann über

Intensität und Wellenlänge reguliert werden. Bei der Bestrahlung gehen die Photoswitches eine

reversible Konformationsänderung ein und durch die kovalente Bindung eines Biomoleküls

daran kann davon ausgegangen werden, dass das Biomolekül dadurch seine Affinität verändert.

Unter all den zurzeit bekannten Photoswitches nehmen Azobenzene, die zwischen der

trans- und cis-Konfiguration schalten können, eine besondere Position ein und das dank ihrer

Isomerisierungs-Quantenausbeute, ihrer schnellen Photoisomerisierung, ihrer Resistenz gegen-

über optischer Ermüdung, ihrer synthetischen Vielseitigkeit und dem Unterschied in ihrem

Dipolmoment nach der Isomerisierung. Als direkte Konsequenz daraus werden Azobenzene

dafür genutzt, die Aktivität von diversen Biomolekülen zu kontrollieren, wie beispielsweise Io-

nenkanäle, Medikamente und Enzyme. Eine andere attraktive Nutzung von Azobenzenen ist

die Herstellung von sogenannten smart light-responsive surfaces. Diese ”schlauen” Oberflächen

können auf Lichtstrahlung reagieren, indem sie ihre physikalischen und chemischen Eigen-

schaften verändern. Wenn Biomoleküle auf einer Azobenzen-belegten Oberfläche immobil-

isiert sind, könnte die Aktivität dieser Biomoleküle durch Licht kontrolliert werden und Sys-

teme, welche biologische Prozesse nachahmen, könnten entwickelt werden, wie bspw. in der

Zelladhäsion. Um die Aktivität von Biomolekülen zu kontrollieren eignen sich daher auch
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Oberflächen, die mit Azobezenen besetzt sind. Dieses System scheint vielversprechend für die

Entwicklung von sogenannten selbstreinigenden Materialien oder Mikrofluid-Systeme zu sein,

da nach der Einstrahlung die Polarität der Oberfläche verändert wird.

In dieser Arbeit wurden mehrere Azobenzene synthetisiert und mit zwei unterschiedlichen

Click-Chemie Substituenten in para - Position funktionalisiert. Wodurch eine einfache, schnelle

und selektive Bindung an Biomolekülen ermöglicht wird. Des Weiteren haben wir uns auf die

Anwendung dieser Azobenzene für die Entwicklung von lichtsensitiven Oberflächen für biol-

ogische Applikationen konzentriert. Eine dieser double-click Azobenzene wurde auserwählt,

um lichtsensitive Siliziumoberflächen zu erzeugen, welche in der Zukunft für die milde und

selektive chemische Immobilisierung von Biomolekülen und als Plattform zur Kontrolle biolo-

gischer Prozesse genutzt werden könnte.

Ein anderes der synthetisierten Azobenzene wurde an ein Biotin ”geklickt”, um eine pho-

toschaltbare DNA-Origami Plattform für die Studie an T-cell Aktivierung zu entwickeln.

Im Zuge dieser Arbeiten sind wir auf ein fundamentales Problem von photoschaltbaren

Oberflächen, genannt ”Surface overcrowding”, gestossen, dessen Ursache im unterschiedlichen

Platzbedarf der beiden photoisomeren Moleküle liegt. Dieses Problem taucht dann auf, wenn

die Konzentration des Azobenzens auf der Oberfläche zu hoch ist, sodass der Übergang von

der trans- zur cis-Konfiguration nicht mehr möglich ist. Wir haben dieses Problem lösen können,

indem wir das Azobenzen in in seiner räumlich anspruchsvolleren cis-Konfiguration adsor-

bierten, indem die Adsorption unter kontinuierlicher UV-Bestrahlung der Adsorptionslösung

durchgeführt wurde.

Wir nutzten auch raue Oberflächen, um die Oberflächenkonzentration von Azobenzen

und damit die Empfindlichkeit darauf basierender, photoschaltbarer Sensoren zu erhöhen sowie

andererseits eine mit Azobenzen besetzte Oberfläche zu erzeugen, die mit Licht zwischen su-

perhydrophilen und superhydrophoben Eigenschaften geschalten werden kann und dieser

Wechsel über den Wasser-Kontaktwinkel hochempfindlich detektiert werden kann. Solche

Systeme könnten etwa in der Entwicklung von sogenannten selbstreinigenden Oberflächen

nützlich sein. Dieses Vorhaben erwies sich jedoch als wesentlich komplexer als erwartet auf-

grund des grossen Einflusses der speziellen Oberflächenmorphologie des rauen Substrats. Sili-
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zium-Nanodrähte, poröses Silizium und raue Aluminium-Substrate wurden in diesem Zusam-

menhang untersucht, jedoch konnte in keinem Fall der erhoffte, schaltbare superhydrophil/

superhydrophob Wechsel als Folge der trans/cis Photoisomerisation festgestellt werden. Sys-

tematische Untersuchungen sowie eine gezielte Steuerung der Oberflächenmorphologie und

Porenstruktur des Substrats sind hier erforderlich, welche jedoch den Umfang der vorliegen-

den Arbeit hier überstiegen.
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Chapter A

Synthetic schemes

The compounds prepared or used as starting materials in this thesis are numbered in bold ara-

bic numerals. Compounds unknown to the literature are additionally underlined. Surfaces

were named according to the material (Silicon-Si, Aluminum-Al), surface morphology (F-flat,

NW-nanowires, P-porous), the immobilization method (trans or cis) and the immobilized com-

pound.
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A.1. PREPARATION OF THE TRANS-CYCLOOCTENE BUILDING BLOCKS

A.1 Preparation of the trans-cyclooctene building blocks
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A.2. PREPARATION OF CUAAC-TETRAZINE LIGATION AZOBENZENES

A.2 Preparation of CuAAc-tetrazine ligation azobenzenes
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A.2. PREPARATION OF CUAAC-TETRAZINE LIGATION AZOBENZENES
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A.3. PREPARATION OF SPAAC-TETRAZINE LIGATION AZOBENZENE

A.3 Preparation of SPAAC-tetrazine ligation azobenzene
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A.4. PREPARATION OF CUAAC-THIOL AZOBENZENE

A.4 Preparation of CuAAc-thiol azobenzene
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A.5 Preparation of a model azobenzene for surface functionalization

and test of click reactions
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A.6 Surface preparation
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A.7 Biotin modifications
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Chapter B

Introduction

B.1 Photoswitches and photopharmacology

Light has emerged as an important stimulus in the field of biological sciences. Its high spa-

cial and temporal resolution, orthogonality towards most components of living systems, non-

toxicity and the ability to regulate its intensity and wavelength has led to the development of

tools that rely on light to study biological processes, such as fluorescent proteins (e.g. green

fluorescent protein - GFP) and fluorescent probes. Notwithstanding, tolls that rely on fluores-

cence do not allow to control the activity of the biomolecules of interest, unlike photocages

and photoswitches.[1–4] Photocages (e.g. coumarins, orto-nitrobenzyl), also known as photo-

cleavable protecting groups, are chemicals that irreversibly undergo the cleavage of a chemical

bond after the absorption of one photon, releasing the previously bound molecule and restor-

ing its biological activity.[5] Figure 1 presents an example where an orto-nitrobenzyl derivate,

α-carboxy-2-nitrobenzyl, was used to cage glutamate, an excitatory neurotransmitter that acti-

vates glutamate receptors. After irradiation the glutamate is released and regains its biological

activity. Caged glutamate has been used to study glutamate receptors and elucidate the mech-

anisms behind synapses.[6–8]

Photoswitches are another option that allows to control the activity of biomolecules. Like

photocages, they undergo a chemical reaction upon the absorption of a photon, but present two

main advantages. In the first place this reaction is reversible, which means that each photo-

switch interconverts between 2 different configurations that present different absorption max-
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Figure 1: A caged glutamate for the study of glutamate receptors.[8]

imums. These maximum wavelengths determine the wavelength required for controlling the

direction of the reaction. In the second place, photoswitches do not generate byproducts upon

irradiation, that could be toxic.[1,2,9]

Figure 2 presents several classes of photoswitches found in the literature. In a simplistic

manner the photoswitches can be divided according to the reaction they undergo: azoben-

zenes[10,11], stilbenes[12], hemithioindigos[13–15] and iminothioindoxyls (a recent photoswitch

resulting form the combination of azobenzenes and thioindigos)[16] undergo a trans-cis isomer-

ization, while diarylethenes[17,18], thiophenefulgides[19], spiropyrans[20,21] and donor-acceptor

Stenhouse adducts[22–24] undergo a cyclization-ring opening reaction.

Among all the classes of photoswitches, azobenzenes are probably the most well-studied

and applied, due to their high isomerization quantum yields, fast photoisomerization, optical

fatigue resistance (repeated photoswitching cycles), synthetic versatility and difference in the

dipole moment after isomerization (∼0 D for trans and ∼3 D for cis).[25–27]

Thanks to the importance of azobenzenes, a huge variety of synthetic methods to obtain

these chemicals has been developed. Among these the Mills reaction and the azo coupling re-

action have been the most applied. In the Mills reaction (Figure 3) a nitrosobenzene derivative

in acetic acid is coupled with an aniline, which acts as a nucleophile, and upon H2O elimination

the azobenzene is obtained. The azo coupling reaction (Figure 4) results from the coupling of a

diazonium salt and a benzene with an electron-donor group, such as hydroxyl, that directs sub-

stitution for the para position. In the first place, the nitrosonium cation is formed under strong

acidic conditions from nitrite - nitrous acid is formed upon protonation of nitrite and further

protonation and H2O elimination generates the desired cation. The aniline then attacks the

nitrosonium forming the diazonium salt. Finally, the diazonium salt undergoes electrophilic
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Figure 2: Examples of classes of photoswitches, molecules capable of a reversible chemical reaction
upon irradiation.

aromatic substitution.[28]

Azobenzenes can also be obtained by oxidation of anilines or reduction of nitrobenzene

derivatives. Nevertheless these methods are not really effective when aiming for heterocou-

pling.[10,28]

Upon irradiation azobenzenes undergo a trans-cis isomerization. More concretely, the

switch from trans to cis is performed with UV light (≈350 nm) and from cis and trans and with

visible light (>460 nm). There are 4 proposed mechanisms that explain the isomerization of the

azobenzene: rotation, inversion, concerted inversion and inversion-assisted rotation (Figure 5).
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The rotation mechanism suggests that the N=N bound is broken to form a single bond that can

freely rotate to change the angle. The inversion states that the N=N-C angle increases to 180°

and a transition state with an sp hybridized N-azo atom is formed. In the concerned inver-

sion mechanism, both N=N-C angles increase to 180° and the isomerization proceeds through

a linear transition state. Finally, the inversion-assisted rotation proceeds via both rotation and

assisted mechanisms. Regarding the cis-trans photoisomerization, most studies predict that the

photoisomerization occurs via rotation while thermal relaxation via inversion.[10,29]

Figure 6 presents the UV-Vis spectra of the unsubstituted azobenzene in the trans and cis

form. The trans isomer presents a strong absorption π → π∗ band at approximately 320 nm and

a n → π∗ weak band, due to a symmetry forbidden transition, near 420 nm. The cis presents a

slightly stronger n → π∗ also at 420 nm and two π → π∗ bands at 280 and 250 nm.[2,11] As a

consequence of these absorption bands the photoswitching from trans to cis is performed using

UV light, taking advantage of the π → π∗ absorption band, while the reverse with visible light

(>460 nm), using the n → π∗ band. Nevertheless, these spectra are overlapping and, conse-

quently, upon irradiation complete conversion to cis or switch-back to trans is not achieved.

Normally an equilibrium, named photostationary state (PSS), is reached at approximately 80%

of cis or 95% of trans.[11] In addition, the use of UV light can present a problem for biological

applications not only because of the damage to cells but also due to its low penetration in tis-
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Figure 5: Proposed mechanisms to explain azobenzene isomerization.[29]

sues. Besides the used wavelengths and the completeness of the switching, the thermal stabil-

ity of each isomer should also be considered.[30] Since the cis configuration is 10-12 kcal mol−1

thermodynamically less stable than the trans, the unmodified azobenzene undergoes thermal

relaxation under the dark at room temperature over a couple days, which may be not stable

enough in some applications.[11]

To improve the photophysical properties of azobenzenes substituents can be added to the

benzene rings or the benzene can be replaced by another heterocycle. Figure 7A shows some

examples where the photophysical properties of azobenzenes were tuned by introduction of

substituents in the benzene ring. Hammerich et al. reported an azobenzene switchable com-

pletely with visible light, 5,6-dihydrodibenzo[c,g][1,2]diazocine, a bridged azobenzene. In this

azobenzene, the n → π∗ bands of the cis and trans isomers are separated by 100 nm which al-

lows to use visible light to switch in both directions and leads to complete isomerization upon

switching. Nevertheless, the most thermodynamically stable form of this azobenzene is the

cis, which can be an inconvenience for biological applications.[31,32] Tetra-orto substitution of
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Figure 6: (A) Photoisomerization of unsubstituted azobenzene using UV light for trans-cis isomerization
and visible light or thermal relaxation for trans-cis. (B) Trans and cis azobenzene colored by electrostatic
potential (red to blue = negative to positive). (C) UV-Vis spectra of the unsubstituted trans and cis
azobenzene in ethanol.[11]

azobenzenes with cloro[33], amines[34], methoxy[35] and fluoro[36] groups has also shown to lead

to an increased separation between the n → π∗ bands of the cis and trans isomers, generating

azobenzenes addressable with visible light and with complete isomerization. When the orto-

substitution is combined with the addition of para-electron-withdrawing groups the trans and

cis n → π∗ bands can be even further separated. The tetra-orto fluoro azobenzenes present

in addition the remarkable feature of half-life times up to 2 years.[36] An azobenzene contain-

ing fused dioxan rings has also shown promise as a photoswitch completely addressable by

visible light. This dioxan combines the n → π∗ red-shift of a meta-methoxy substitution with

the increased half-life time of a orto-methoxy substitution. Furthermore, the protonation of the

amine in para position, expected under biological conditions, increases even further the n → π∗

red-shift.[37]

Figure 7B presents examples where the substitution of the benzene ring lead to improved

photophysical properties. In the BF2 adducts, unlike before, the π → π∗ is red-shifted to

the visible region, allowing a complete switch using visible light. By modifying the R groups

the wavelength can be tuned. However, the applicability of this scaffold for biological pur-

poses is limited since in water they are hydrolyzed to hydrazones.[38,39] The azobenzene ring

has also been replaced by several 5-membered nitrogen heterocycles such as pyrazoles[30,40],

pyrroles[30,40], imidazole[41,42], triazole[30], tetrazole[30] and oxazole[43]. This replacement has
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Figure 7: Azobenzenes completely addressable with visible light obtained by (A) substituent tuning on
the benzene ring and (B) benzene ring replacement.

also proven quite successful since a lot of these derivatives have become completely switch-

able with visible light, with long half-life times and have near-quantitative switched-back to

cis.[9,30]

Photopharmacology is the field that uses photoswitches to control the activity of biomole-

cules.[44,45] The photoswitch can modulate the activity of the biomolecule either by a non-

covalente or covalent interaction. In the former case, a ligand is modified with a photoswitch

forming a photochromic ligand, whose ability to interact with its target potentially depends

on the configuration of the photoswitch (Figure 8). Ideally one configuration will have a high

affinity towards the target while the other a reduced affinity. In the latter case, the photoswitch

is covalently tethered to the target biomolecule, and the change in the configuration of the pho-
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toswitch may cause the binding of the ligand to the active center or to change the conformation

of the active center itself.[2,4,46]

Figure 8: Representation of the mode of action of photochromic ligands: from the 2 configuration only
one should interact with the target and lead to a biological response.[46]

Figure 9: Tethered azobenzene for the control of a K+ channel and neural firing.[47]

Azobenzenes have been frequently applied in photopharmacology both as tethered lig-

ands and as photochromic ligands. As tethered ligands azobenzenes have been used for exam-

ple to modify oligonucleotides to control the structure and replication of DNA[48,49], aminoacids

to produce photochromic proteins and regulate cell growth or apoptosis[50–52], enzymes[53], and

oligosaccharides to switch bacterial cells adhesion to surfaces[54]. Figure 9 presents an example

where an azobenzene was tethered to a potassium channel in order to regulate neuron firing.

The azobenzene was tethered to the ion channel via a cysteine and a quaternary ammonium

group was placed on the azobenzene to block the channel. When the azobenzene is in the trans

configuration the quaternary ammonium group reaches the pore of the channel and blocks the

flow of K+ and, consequently, neuron firing. Upon irradiation with UV light, the azobenzene
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switches to cis and the ammonium is removed from the pore and the channel regains its activ-

ity.[47]
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Figure 10: Examples of azobenzene-containing photochromic ligands: trimethoprim[57], quinolone[58],
diacylglycerol[59], combretastatin A-4[60] and fentanyl[61]. On the left it is presented the original ligand
while on the right the photochromic ligand. Each ligand is labeled with its chemical name (upper line)
and its target (bottom line).

Regarding photochromic ligands, they have been used to modulate the activity of ion

channels, transporters, pumps, enzymes, antibiotics and cell adhesion, for example.[4,9,55] Fig-

ure 10 presents some specific cases where azobenzene-containing photochromic ligands have
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been used. To obtain these ligands two approaches can be used: either the azobenzene can

be attached to the biomolecule (azo-extension) or it can be incorporated in the biomolecule

(azoligation).[44,56] Looking at the examples in Figure 10, the trimethoprim and diacylglycerol

photochromic ligands were obtained by azo-extension while the remaining by azoligation.
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B.2 Smart light-responsive surfaces

Smart surfaces have attracted attention due to their ability to change their physical and chemi-

cal properties in response to specific stimulus such as temperature, pH, light and electrochem-

ical potential. Among these stimuli, light has become increasingly popular due to its non-

invasive nature and other advantages previously stated in Section B.1. One approach to obtain

these light-responsive surfaces is to coat the surface with a photoswitch. As already indicated,

azobenzenes have a privileged position among this class of molecules, therefore they have been

frequently used to develop these types of systems.[62]

Possible applications of azobenzene light-responsive surfaces include the development of

photocontrollable systems that mimic and control biological processes. This is achieved by

immobilizing on a surface a photochromic ligand to control the biological process of interest.[63]

One of the most studied biological processes with these systems is cell adhesion. The con-

trolled adhesion of several mammalian cells such as fibroblasts[64–66], endothelial[67], epithe-

lial[63,68] and osteoblasts[69] has already been achieved by immobilizing on surfaces RGD pep-

tide (arginine–glycine–aspartate) derivatives. This peptide mediates cell-adhesion by inter-

acting with integrins a class of heterodimeric transmembrane cell receptors.[66,69] Figure 11

presents one of the example where RGD peptide has been used to turn on and off cell adhe-

sion. Liu et al. have prepared a self-assembled monolayer (SAM) with a photoswitchable RGD

peptide on a gold surface. The idea is that when the azobenzene is on the trans configuration

the RGD peptide is ”exposed” and can mediate cell adhesion. Photoswitching for cis ”hides”

the RGD peptide and cell adhesion is no longer possible (Figure 11A). Figure 11B shows that

the NIH 3T3 fibroblasts bind to the surface when the azobenzene is in the trans configuration

(E configuration) while Figure 11C shows that the same does not happen on the cis configura-

tion (Z configuration). If the cis surface is irradiated with visible light to switch-back to trans,

adhesion is once again possible (Figure 11C). Notice, that from Figure 11B to Figure 11C the

cells had to be removed from the platform by addition of RGD peptide in solution (the RGD

in solution competes with the RGD on the platform for the integrin receptor). This means that

UV light is not enough to lead to the detachment of the cells from the surface.[65]

Another interesting aspect of the platform developed by Liu et al. is that the azobenzene-
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RGD peptide was immobilized on the gold together with a non-photoswitchable molecule, a

PEG chain that works as a lateral spacer (Figure 11A). This spacer intends to prevent surface

overcrowding, meaning a too high concentration of azobenzene on the surface that would lead

to a non-photoswitchable surface due to lack of space for the trans-cis isomerization.[65]

Figure 11: (A) Photoswitchable platform using the RGD peptide for the control of cell adhesion. (B),(C)
and (D) Phase contrast images of the NIH 3T3 fibroblast that show the reversible cell adhesion and
detachment using light.[62,65]

Notice that the RGD peptide is not the only motif that can be used to mediate cell ad-

hesion. Zhang et al. have immobilized mannose and galactose on a gold surface to promote

cell-adhesion via specific sugars receptors that are overexpressed in cancer cells. The same

surface can be used also to specifically recognize lectines (sugar-recognition proteins).[63]

Sugars also have the ability to promote bacterial adhesion. Despras et al. have used α-D-

mannoside to not only reversibly photocontrol the adhesion of E.coli to a gold surface but also

of oligosaccharide engineered human microvascular endothelial cells, mimicking a bacterial

infection.[70]

To produce a completely light-controlled reversible system for cell adhesion, host-guest

systems with azobenzenes can be built. Cyclodextrin for example can form inclusion com-

plexes with azobenzenes in trans, but not in cis because it does not fit any longer in its cavity.[71]
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This means that after the formation of the inclusion complex cyclodextrin/trans-azobenzene

the azobenzene can be removed from its cavity simply by irradiation with UV light and switch

to cis. Gong et al. prepared a self-assembled monolayer of α-cyclodextrin on a quartz sur-

face and the azobenzene-RGDpeptide was added to form the inclusion complex (Figure 12).

As expected if this surface was irradiated with UV light the azobenzene would be expelled

from the cyclodextrin cavity and this process is reversible. The attachment of HeLa cells

(cervical cancer cells) is verified on this surface after the formation of the inclusion complex

cyclodextrin/azobenzene-RGD and UV light leds to the expulsion of the azobenzene of the

cyclodextrin and cell detachment.[72]

Figure 12: Regulation of cell adhesion with light taking advantage of the host-guest interaction between
α-cyclodextrin and azobenzene.[72]

Although the previous system permits to reversibly photocontrol the attachment and de-

tachment of cancer cells, the RGD peptide is not a specific system for cancer cells. Bian et al.

have produced a photocontrolable platform specific for the capture and release of breast cancer

cells using the cyclodextrin/azobenzene host-guest interaction and, instead of the RGD pep-

tide, a DNA aptamer, a short DNA sequence that forms a unique 3D structure and binds a

target molecule with high affinity.[73]

In addition to the capture of mammal cells, these supramolecular systems have already
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Figure 13: A biocidal photoswitchable surface that can be reused.[71]

been used to capture and release bacteria[74]. The supramolecular platform developed by Wei

et al. not only captures and releases bacteria, but also kills the captured bacteria before re-

lease, taking advantage of a biocidal β-cyclodextrin (Figure 13).[71] This cyclodextrin contains

seven units of a quaternary ammonium salt (potent and commonly used cationic antimicro-

bial agent), that have been covalently attached to the glucopyranose units of β-cyclodextrin-

N3 via CuAAC.[75,76] After preparation of an azobenzene-containing gold surface, the biocidal

β-cyclodextrin was incorporated on this surface exploiting the azobenzene-cyclodextrin host-

guest interaction. Upon attachment of the bacteria to the biocidal surface, the Ca2+ and Mg2+ in

the bacterial cytoplasmic membrane are replaced by the quaternary ammonium salts, destabi-

lizing its intracellular matrix and leading to cell death. Using UV light, the azobenzene will be

isomerized to cis, the host-guest interaction will be destabilized and the cyclodextrin will be re-

lease together with the dead bacteria, regenerating a surface that can once again be reused.[71,76]

Azobenzene light-responsive surfaces can be used for other biological applications besides

the control of cell adhesion. For example, the control of the activity of enzymes is also possible.

Person et al. have developed a reversible photocontrolable platform that controls the activ-

ity of α-chymotrypsin, a member of the protease family. This platform was decorated with

a phenylalanine-based trifluoromethylketone capable of inhibiting the activity of the enzyme
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(Figure 14A). When the azobenzene is on the trans configuration the enzyme has a reduced

affinity to the platform but upon irradiation with UV light it increases almost 2 fold (Fig-

ure 14B). If the surface is irradiated with visible light the affinity is once again decreased.[77,78]

Figure 14: (A) Photoreversible inhibition of α-chymotrypsin using an azobenzene coated gold sur-
face.(B) Surface plasmon resonance response of the surface before irradiation (1), after irradiation with
UV (2) and after irradiation with visible light (3).[77]

The activity of enzymes has also been controlled with systems using cyclodextrin. Wan

et al. have reported a platform to control the activity of glucose oxidase, which catalyzes the

conversion of glucose to gluconic acid (Figure 15). Normally, glucose oxidase uses flavin ade-

nine dinucleotide (FAD) as a cofactor that works as an electron acceptor. Nevertheless, Wan

et al. have taken advantage of ferrocene that can act as an electron acceptor and is capable of

forming an inclusion complex with cyclodextrin. In the first place an azobenzene containing

self assembled monolayer was prepared and used to attach on the platform polymer grafted

β-cyclodextrins. The free cyclodextrins were used for the second host-guest interaction with

ferrocene, which can work as an electron acceptor. When the azobenzene is in the trans form,

the cyclodextrin and ferrocene stay on the platform and catalysis takes place. However, af-

ter irradiation with UV light, the cyclodextrin/ferrocene is expelled from the surface and the

reaction does not happen any longer.[79]

39



B.2. SMART LIGHT-RESPONSIVE SURFACES

Figure 15: Photoswitchable bioelectrocatalysis of glucose.[79]

Azobenzene smart light-responsive surfaces seem to be actually quite versatile for bio-

logical applications. Other examples include photoresponsive surfaces to control DNA hy-

bridization[80] and peptide-RNA interaction[81], to catch and release porphyrin[82], to sepa-

rate naproxen (nonsteroidal anti-inflammatory drug) enantiomers[83], to reversible immobi-

lize virus particles[84] and to produce surfaces that switch between anticoagulant and hemo-

static.[85]

Another interesting property of azobenzenes is the difference in the polarity of both iso-

mers. The trans isomer presents a dipole moment of ∼0 D while the cis isomer of ∼3 D.[25]

This means that once an azobenzene is immobilized the polarity of the surface changes with

light and, as a consequence, the switching of an azobenzene on a surface can be followed by

simply placing a drop of water on the surface. Figure 16 presents an example of a glass surface

coated with an azobenzene-RGD peptide. After irradiation with UV light the water contact

angle (WCA) of the surface decreases from approximately 82° to 74° due to the higher polarity

of the cis isomer. Over time the angle increases to 81° thanks to the back-switch to trans via

thermal relaxation.[67]

The difference in the WCA between the trans and cis isomer is highly dependent on the

hydrophobicity/hydrophilicity of the group on top of the azobenzene. If the azobenzene con-

tains on top a hydrophobic group such as a CF3 this difference is increased since the more

apolar trans isomer becomes even more apolar. However this difference is still normally less

than 10◦.[86] Increasing this difference would be convenient for two reasons. In the first place
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Figure 16: Tracking of azobenzene photoswitching on a surface by water contact angle measurements.
(A) Glass surface coated with an azobenzene-RGD peptide. (B) WCA before irradiation. (C) WCA after
irradiation with UV light and (D) WCA after 3 days on the dark.[67]

the larger the difference the better the read-out of the switching of the azobenzene. Small dif-

ferences of 1° or 2° would probably lead to doubts if the azobenzene has indeed switched or

if that value is simply the error of the measurement. In the second place a bigger difference

would make azobenzene light-responsive surfaces potentially applicable in the development

of smart self-cleaning material or microfluid devices, for example.[87]

A higher difference in the water contact angle (ΔWCA) can be achieved when the mor-

phology of the surface is changed from flat to rough (non-flat). To understand how roughness

influences the WCA, lets look at the models presented in Figure 17 that describe surface wet-

ting. While the wetting on a flat surface is described by the Young model that states that the

angle depends on the liquid surface tension (γLS), solid surface tension (γSV) and liquid-solid

tension (γSL) (Figure17A), the Cassie-Baxter (Figure17B) and the Wenzel (Figure17C) models

are normally used to describe the wetting on a rough surface. In the Cassie-Baxter state air

pockets are formed between the surface and the drop, therefore the Cassie-Baxter angle (θCB)

depends on the solid-area fraction (the solid area in contact with the drop) and is always higher
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than the angle on a flat surface (θ).[88] The Wenzel model describes a system where the drop

penetrates trough the pores and no air pockets are formed. This means that the Wenzel angle

(θW) depends on the surface roughness and it can be higher or lower than the angle on a flat

surface. If the angle on the flat surface is higher than 90◦ θW will be even higher, if lower than

90◦ θW will be even lower and if equal to 90◦ θW will be equal.[89]

Figure 17: (A) The Young model to describe the wetting on a flat surface. (B) The Cassie-Baxter and the
(C) Wenzel model that describe the wetting on rough surfaces.[89]

Rough surfaces for an increased ΔWCA can be obtained by either coating a substrate with

a rough surface layer or by modifying its morphology (roughening by chemical or mechanical

methods).

Azobenzene-containing polymers have been used to coat surfaces and create roughness.

In 2006, Lim et al. created a multilayer film that switches from superhydrophobic to su-

perhydrophilic, by coating a flat surface with several layers of a polyelectrolyte followed by

chemisorption of a photoswitchable azobenzene layer. Figure 18A shows that the ΔWCA be-

tween trans and cis increases with the number of deposited layers of polymer. While in the

flat surface the ΔWCA is about 5°, after 9 deposition cycles a ΔWCA of 147° is reached. The

increase of the ΔWCA with the number of polymer layers is explained by the increase of the

surface roughness and nanoporosity. Figure 18B shows that several irradiation cycles between

trans and cis are possible for these surfaces.[86]

Gao et al.[90] and Chen et al.[91] relied on the assembly of the azobenzene-containing poly-

mers to respectively generate nanofibers and nanogrooves that led to surfaces with an in-

creased ΔWCA. CF3Azobenzene- containing nanoparticles have also been sprayed on surfaces

aiming to create photoswitchable rough surfaces.[92]
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Figure 18: (A) The difference of the WCA between trans and cis increases with the number of poly-
mer layers. (B) Photoreversible switching between trans and cis for 5 irradiation cycles on the flat
surface (non-colored marker) and surface with 9 layers of polymer (black-colored marker). (C) Cross-
section view of the surface coated with 9 layers of polymer. The thickness of the film is approximately
250 nm.[86]

Figure 19: (A) Scanning microscope images of the silicon substrates with pillars spaced by 5, 10, 15 and
20 µm. (B) Relation between the spacing of the pillars and the ΔWCA. (C) Photoreversible switching
between trans and cis for 10 irradiation cycles on the flat surface (non-colored marker) and surface with
40 µm spacing between the pillars (black-colored marker).[93]

Regarding the direct creation of roughness on the substrate, Bian et al.[68] and Jiang et al.[93]

have used photolithography to prepare micro-patterned silicon that was later coated with one

layer of a CF3azobenzene-containing polymer via electrostatic assembly, generating surfaces

with an increased ΔWCA. Figure 19 shows the results obtained by Bian et al. They reported

that the ΔWCA strongly depends on the distance between the pillars in the substrate. From

5 till 40 µm there is a remarkable increase in the ΔWCA from 19° to 66° provoked by a su-

perhydrophobic trans state and an increasingly hydrophilic cis state. After 40 µm the ΔWCA

decreases sharply due to collapse of the trans state. As expected the photoswitching on these

surfaces was also reversible (Figure 19C).[68]
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Figure 20 shows a photoswitchable filter paper surface. Jin et al. have coated this naturally

rough substrate with a titania/azobenzene film to generate a surface that switches between

superhydrophobic and superhydrophilic.[94]

Figure 20: Filter paper coated with a titania/azobenzene monolayer.[94]
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B.3 Click chemistry

The term ”click chemistry” was firstly introduced in 2001 by K. Barry Sharpless to describe re-

actions with a high yield and selectivity, wide scope and simple reaction conditions.[95] Some re-

actions that fit these criteria such as the copper-catalyzed alkyne-azide cycloaddition (CuAAC),

strain-promoted alkyne-azide cycloaddition (SPAAC), tetrazine ligation and the thiol-Michael

addition are presented in Figure 21. Ever since the term click chemistry was introduced, this

practical and convenient approach has been frequently applied in fields such as bioconjugation,

material science and drug discovery.[96]
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Figure 21: Examples of reactions that fit the definition of a click reaction.

The Huisgen 1,3-dipolar cycloaddition between alkynes and azides, first reported in 1960

by Huisgen,[97] is probably one of the most practical examples of a click reaction. Not only

are alkynes and azides easily synthetically accessible starting materials, but also stable and tol-

erant to several functional groups and reaction conditions.[96] The big breakthrough in these

reaction took place when it was discovered that copper(I) dramatically accelerates this reac-

tion and removes the needs of elevated temperatures for the reaction. Furthermore, the use of

copper(I) also circumvents the regiospecificity problem of this reaction affording only the 1,4-

disubstituted 1,2,3-triazole (without copper the 1,5 can also be formed).[98,99] The mechanism

of this copper-catalyzed alkyne-azide cycloaddition reaction is presented in Figure 22. In the
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first place there is the formation of the copper(I) acetylide I. Density functional theory calcula-

tions indicate that a concerned [2+3] cycloaddition (B-direct) is disfavored and that a step-wise

annealing process takes place. The annealing sequence starts with the binding of the azide

to the copper(I) acetyline, followed by the formation of the copper(III) metallacycle (III), ring

contraction (IV) and protonolysis to afford the desired 1,2,3-triazole.[98,100] Notice that other

metals have also been exploited to conduct this reaction such as Ruthenium, Nickel and Pal-

ladium, however, none has achieved the same efficiency as the copper catalyzed version.[101]

This reaction is also quite versatile and has been applied in polymer chemistry[102,103], drug

discovery[104], biochemistry[105,106] and material science[107,108], for example.

Figure 22: Proposed reaction mechanism of the CuAAC.[98]

Despite the versatility, selectivity, compatibility with water and the speed of the CuAAC its

applicability in biological conditions is limited since copper is toxic for both mammalian and

bacterial cells, even at low concentrations.[109] Not only is the normal function of these cells

compromised, but copper may also induce the degradation of oligonucleotides and polysac-

charides.[110,111] This problem raised the need for the development of click reactions that could

proceed without the need of a metal catalyst and are compatible with biological systems, now

known as bioorthogonal reactions.[112]

The Staudinger ligation, first reported in 1919 by Staudinger and Mayer, was probably

the first reaction considered bioorthogonal.[113,114] Figure 23 presents the reaction mechanism

of this reaction. The triaryl phosphane 1 and the azide 2 react to form the phosphazide 4,
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which will decompose by loss of nitrogen, forming iminophosphorane 3. It is supposed that

the loss of nitrogen proceeds via the formation of the 4-membered-ring transition state 5.[115,116]

The biocompatibilty of this reaction led to a panoply of applications such as modification of

cell surfaces,[117,118] labeling of nucleic acids[119] and protein engineering[120]. Nevertheless,

the phosphines are easily oxidized and the reaction kinetics are rather slow.[121] Even though

increasing the electron density of the phosphine substituents leads to higher reaction rates the

propensity to oxidation also increases.[122]

Figure 23: Proposed reaction mechanism of the Staudinger ligation.[115]

Inspired by the findings of Wittig in 1961 that cyclooctyne and phenyl azide react fast

at room temperature generating only one product[123], Bertozzi and coworkers developed an-

other click reaction, the strain-promoted alkyne-azide cycloaddition (SPAAC).[124] This reac-

tion takes advantage of the ring strain of the cyclooctyne, that destabilizes its ground state and

reduces the activation barrier energy required for the reaction. This allows to obtain a 1,2,3-

triazole without the need for a catalyst, via the 1,3-dipolar cycloaddition between the strained

alkyne and the azide (Figure 24).[124,125] However, in comparison with the CuAAC this reaction

presents a rather slower kinetics (10–100 M−1s−1 with 20 µM of Cu(I) vs 1-60 M−1s−1).[113,121]

The strained-alkyne can also be ”clicked” with a nitrone (strain-promoted alkyne nitrone cy-

cloaddition - SPANC) to achieve higher kinetics but these are still not comparable with the

CuAAC.[111,121]

The introduction of the tetrazine ligation by Devaraj et al.[126] and Blackman et al.[127] rep-

resented a milestone regarding reaction kinetics of click reactions, since it can be up to 10 000-
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Figure 24: Strain-promoted alkyne-azide cycloaddition, a 1,3-dipolar cycloaddition between a strained
alkyne and a azide.

fold faster than the CuAAC.[121] This reaction between 1,2,4,5-tetrazines and olefins is based on

the inverse electron demand Diels-Alder (iEDDA) and Figure 25 presents its reaction mecha-

nism. Unlike the normal electron demand Diels-Alder where an electron-rich diene reacts with

a electron-poor dienophile, in the iEDDA the opposite takes place. The [4+2] cycloaddition

takes place between the electron-rich tetrazine diene and the electron-poor olefin dienophile

generating the highly strained bicyclic adduct 2 (rate determining step). This is converted to

the 4,5-dihydropyridazine 3 via retro-Diels-Alder with release of nitrogen, that latter is isomer-

ized to the 1,4-dihydropyridazine 4. 1,4-dihydropyridazines can be quite stable, depending

on the used olefin, therefore the oxidation step to afford the pyridazine 5 can be rather slow.

When it is important that the obtained product is in the oxidized form, oxidation agents such as

isoamyl nitrite or hydrogen peroxide can be used to push oxidation.[127,128] Several olefins have

been tested as dienophiles for the iEDDA and so far trans-cyclooctene (TCO) derivatives have

show to be the most reactive, therefore, the tetrazine ligation is normally performed between a

tetrazine and a trans-cyclooctene.[128]

Figure 25: Proposed mechanism for the tetrazine ligation, an iEDDA between tetrazines and olefins.[128]
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Ever since the SPAAC and the tetrazine ligation have shown their potential as viable

bioorthogonal reactions several in vivo, ex vivo and in vitro applications have been developed[113],

for example to image tubulin,[129] drug targets,[130,131] glycans in the brain,[132] tumor vascular

endothelial growth factor receptor 2,[133] to analyze microvesicles from the blood of glioblas-

tomas patients[134] and to bind nucleotides in the CRIPSR-Cas9 system.[135]

The previously presented click reactions display remarkable properties. Notwithstanding

neither alkynes, azides, TCO or tetrazine can be found in biological molecules, such as proteins

or DNA. This means that when the labeling of one of these biomolecules is required, these

groups need to be specially introduced.[136] Since thiols are found in cystein-containing protein,

the thiol-Michael additions has been exploited to circumvent this obstacle. In the thiol-Michel

addition the thiol (Michael donor) reacts normally with a α,β-unsaturated carbonyl (Michael

acceptor), under basic catalysis (Figure 26). Since the difference in pKa of thiols and water is

large, the thiol-michael addition proceeds in water.[137] Besides the functionalization of pro-

teins,[138,139] the thiol-Michael addition has found a wide range of application in polymer and

material chemistry.[136,140,141]
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Figure 26: Base-catalyzed mechanism of the thiol-Michael addition .[142]
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B.4 Project overview

The field of photopharmacology has been growing at a tremendous rate in the last decades due

to its potential in the development of prodrugs,[44] the restoration of vision,[61,143] the study of

biological mechanisms by contact-less switchability(e.g. synapses)[8] and the development of

photoswitchable surfaces that mimic biological processes.[62]

When aiming to functionalize a biomolecule with a photoswitch for such an application,

the traditional approach consists in structure analysis and identification of possible groups

for functionalization (without compromising its biological activity). Once this task has been

accomplished, the design and synthesis of a suitable photoswitch can start.[45] Here the choice

of adequate functional groups to enable an easy and reliable binding to the biomolecule is

crucial.[2] Click chemistry has shown a tremendous potential with regards to reaction efficiency,

practicality, simplicity and scope, making this group of reactions an ideal choice for the such

a task.[96] Additionally, nowadays several important biomolecules already functionalized with

click moieties can be found in the catalogs of chemical companies.

Figure 27: Double-click azobenzenes as an easy approach to selectively functionalize (bio)molecules.

The aim of this project is to enable a more efficient and faster development of photophar-

macological applications by providing a library of photoswitches that not only contain func-
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tional groups for a convenient/reliable binding to the desired target biomolecule, but also

desirable photophysical behavior (photoswitching velocity, absorption wavelength and t1/2).

For this purpose several types of photoswitches with different click chemistry moieties should

be synthesized. To widen the applicability of this approach, each one of these photoswitches

should incorporate two different, orthogonal click chemistry moieties to enable the binding of

two different entities, when required, e.g. two different biomolecules or even one biomolecule

and a surface. This approach is schematized in (Figure 27) and we have named these molecules

double-click photoswitches.
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B.5 Objective

In this thesis we wish to take the first steps towards the creation of the previously stated library.

Thanks to all the advantages of azobenzenes as photoswitches (high isomerization yields, fast

photoswitching and optical fatigue resistence), we will focus on the synthesis of double-click

azobenzenes. Azobenzenes containing different and orthogonal click moieties such as TCOs,

alkynes, strained alkynes and thiols will be synthesized and their photophysical properties will

be studied. Additionally, the obtained double-click azobenzenes will be clicked with simple

model molecules to test how the photophysical properties of these compounds might chance

upon conjugation with a target biomolecule.

In the context of this thesis, these molecules will be applied in the functionalization of sur-

faces, aiming to obtain a photoswitchble platform for the immobilization of biomolecules. On

the way to reach this goal, we aim to also provide solutions for two basic problems related with

the preparation of photoswitchable surfaces: surface overcrowding and a small difference in

the WCA between the trans and cis surface. Regarding the former problem, surface overcrowd-

ing, we propose to attempt the immobilization of the azobenzene while in the cis configuration.

To address the later, we propose to test the immobilization of the azobenzenes on rough sur-

faces with difference morphologies and analyse the difference in WCA upon isomerization.

Finally, we will contribute for the development of a photoswitchable DNA origami plat-

form as a prototype application of the methods worked out within this thesis for the study of

T-cell activation - a crucial process in our adaptive immune response. More precisely, our goal

is to conjugate one of the synthesized double-click azobenzenes to biotin, a motif required for

binding of an azobenzene to the DNA origami platform. After conjugation, the ability of the

azobenzene-biotin conjugate to bind to strepavidin will be tested in solution.
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Chapter C

Results and discussion

C.1 Synthesis of double-click azobenzenes

In this chapter, we present the synthesis of several azobenzenes substituted in para position

with different known click chemistry moieties, such as a trans-cyclooctene (TCO) for tetrazine

ligation, alkyne for CuAAC, thiol for the thiol-Michael addition and a strained cyclic ring-

containing alkyne for SPAAC. Furthermore, the photoswithing and the thermal half-life time

of these azobenzenes was studied. In later chapters, possible applications of these molecules

will be explored.

C.1.1 CuAAC-tetrazine ligation

In our first design we have aimed for an azobenzene containing both an alkyne for the CuAAC

and a TCO for tetrazine ligation. In the literature, several TCOs containing a functional groupa

for subsequent modification are presented, however, we decided to use TCO [4] due to its good

balance between a high reaction rate and high stability (Figure 28A).[127,144] To synthesize this

compound, the first step is represented by an epoxidation reaction with meta-CPBA, followed

by reduction of the epoxide with LAH to afford alcohol [3]. Finally a photoisomerization is

carried out using a flow photoreactor (Figure 28B). In this reactor, starting material [3] is ex-

posed to UV light (254 nm) to isomerize from cis to trans. Afterwards, the reaction mixture

passes through a column containing AgNO3 impregnated silica gel. The product will form a
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complex with the silver and stay in the column, while the starting material will be continuously

pumped through the system untill it is isomerized and stays in the column (Figure 28C). Once

the reaction is completed, the silica is washed with aqueous ammonia to release the desired

product [4].[144,145] During the reaction two diasteromers are formed, the minor axial [4a] and

major equatorial [4e], which were separated by column chromatography

m-CPBA 
dry DCM

O
60%

[1] [2]

LAH
dry THF

84% OH

[3]

1. AgNO3, hv

OH

H
H

OH

H
H

AxialEquatorial

2. NH4OH

+

[4e] [4a]

45% 27%

OH

hv, 254 nm

[3]

OH

H H

[4a]+[4e]

Silica gel 
impregnated with 

AgNO3

OH

H H

[4a]+[4e]

O3NAgOH

H H

[4a]+[4e]

NH4OH

Release from 
AgNO3

A

B C

Figure 28: A: Synthetic route towards TCO [4a] and [4e]. B: The photochemical apparatus used for the
photoisomerization of compound [3]. C: Clarification of the photoisomerization process.[144,145]
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Scheme 1: Activation of TCO [4a] and [4e] for nucleophilic substitution.

Normally, upon isomerization compounds [4a] and [4e] are activated in the form of a car-

bonate to allow further nucleophilic substitution by the molecule of interest.[146,147] We opted

to start by following this already known route. In Scheme 1 the activation of the TCO [4a] and
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[4e] using 4-nitrophenyl-chloroformate is presented.

Compounds [6a] and [6e] could now be used as reactive intermediates for the generation of

azobenzenes containing a phenol attachment moiety. The synthesis of such azobenzene is pre-

sented in Scheme 2. The first step consisted of an azo coupling reaction between 4-iodoaniline

and phenol affording azobenzene [8], with the iodo function to allow the introduction of alkyne

for the CuAAC. This alkyne was introduced in protected form as hydroxymethylakyne via

Sonogashira coupling and deprotection was subsequently conducted by refluxing in NaOH

to afford azobenzene [10].[148] Finally, TCO [6a] and [6e] were coupled affording double-click

azobenzenes with an axial TCO [11a] and an equatorial TCO [11e].
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Scheme 2: Synthesis of the double-click azobenzenes [11a] and [11e].

Another approach to obtain an azobenzene with a TCO would be via a direct esterifica-

tion between the TCO [4a] or [4e] and an acid-containing azobenzene. Scheme 3 presents the

synthesis of an azobenzene containing an alkyne for the CuAAC and an acid for an esterifi-

cation with TCO [4]. Firstly, methyl 4-nitrosobenzoate [13] was prepared by an amine oxida-
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Scheme 3: Synthesis of double-click azobenzenes [18a] and [18e].

tion of methyl 4-aminobenzoate [12] with Oxone. A Mills reaction between nitroso [13] and

4-iodoaniline [14] afforded azobenzene [15].[149] The alkyne was introduced in TMS-protected

form via Sonogashira coupling and immediately deprotected with K2CO3, affording compound

[16]. To obtain the acid containing azobenzene [17], the ester was hydrolyzed with LiOH. Fi-

nally, a Steglich esterification using DIC as the acid-activating agent and DMAP as catalyst

afforded the desired double-click azobenzenes [18a] and [18e].

C.1.2 SPAAC-tetrazine ligation

In biological applications the presence of copper may present a problem. Therefore we also

aimed for a double-click azobenzene with two different bioorthogonal clicks: the tetrazine lig-

ation and the SPAAC.

The first step was to choose an appropriate strained-alkyne for the SPAAC. We opted for

bicyclo[6.1.0]non-4-yne [22] since it presents one of the highest rate constants for SPAAC, a high
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stability and the simplest synthetic route among all strained alkynes in the literature.[150] The

synthesis is presented in Scheme 4. The first step is a cyclopropanation of 1,5-cyclooctadiene [1]

with ethyl 2-diazoacetate and rhodium (II) acetate as catalyst, affording the endo [19endo] and

the exo product [19exo], which were separated by column chromatography.[151] From here on,

the remaining steps of the synthesis were carried out with the endo isomer due to its higher re-

activity in the SPAAC.[111] A reduction with LiAlH4 of [19endo] afforded the alcohol [20endo].

The alkyne [22endo] was obtained in 2 more steps: bromination of the alkene afforded dibromo

coumpound [21endo] followed by an elimination with KOtBu. The elimination reaction turned

out to be a challenging step. Upon the addition of KOtBu at 0°C, a first intermediate is formed,

resulting from the elimination of one bromine (confirmed by 1H NMR). However, for the sec-

ond elimination, reflux is required and under these conditions, besides product [22endo], the

formation of side products was also observed. Additionally, longer reaction times have led to

lower yields, indicating that over time [22endo] decomposes. After several attempts, the high-

est reaction yield was 33% after 2 hours under reflux. This challenge seems to be also verified

in the literature, where reported yields are not higher than 50%.[152,153] A hypothesis to try to

improve this yield in the future might be to perform a two-step elimination, using KOtBu for

the first elimination and LDA for the second. This approach avoids the need to reflux and has

been previously used in the literature for similar substrates with moderate to high yield.[154–156]

OH

H H

[22endo]

1. 1M KOtBu in THF, 
0ºC

2. reflux

33%

OH
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+
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Scheme 4: Synthesis of a strained-alkyne for SPAAC.

Taking advantage of the previously synthesized TCOs (see Section C.1.1), the next step
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Scheme 5: Synthesis of TCO-containing azobenzene [26] and first trial to obtain a double-click SPAAC-
tetrazine ligation azobenzene.

would be to assemble an azobenzene containing both [21endo] and TCO [6e]. Scheme 5 presents

a first trial for the synthesis of this azobenzene. Initially, azobenzene [24] was synthesized via

an azo coupling reaction between phenol and ethyl 4-aminobenzoate [23].[157,158] Azobenzene

[25] was obtained by hydrolysis with LiOH at 75◦C and afterwards TCO [6e] was conjugated

with [25]. However, the last step, the esterification was not successful.

In the first place, a Steglich esterification using the activating agent DIC and the catalyst

DMAP was attempted with no success. Figure 29 shows a HPLC-MS analysis of the reaction.

The activation of the azobenzene [26] by the DIC reagent takes place, as confirmed by the peak

with a retention time of 2.42 minutes with the a [M+H+] = 521.2. However, a peak with the mass

[M+H+] = 369.15 at 1.6 minutes is also found, corresponding to activated acid with a cleaved

carbonate. Over time the intensity of this peak increases, indicating that the starting material

is not stable under these reaction conditions. Furthermore, neither a peak with [M+H+] =
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526.6 (the desired product’s mass) or [M+H+] = 375.1 (successful esterification but hydrolyzed

carbonate) was found, indicating that the esterification is simply not happening under these

conditions.

A second approach relying on a mixed anhydride formation was also tested, where isobutyl

chloroformate was used as an activating agent. Even though in these conditions the azoben-

zene starting material seems to be stable and activation occurs, no product formation was de-

tected. Both the activated acid and the alcohol are not consumed. Unfortunately, harsher con-

ditions such as the formation of an acyl chloride cannot be used in this case since the double

bond of the TCO is not compatible and would be protonated, destroying the required moiety

for the tetrazine ligation.
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Figure 29: HPLC analysis of the steglich esterification between azobenzene [26] and alcohol [22endo]
using DIC/DMAP.

In the literature it is only possible to find a few examples where bicyclo[6.1.0]non-4-yne

[22] has been used in a direct esterification with the molecule of interest.[159,160] In these cases,

the esterification has taken place with an aliphatic acid, unlike our case where an intrinsi-

cally less reactive aromatic acid has been used. Therefore, a similar approach was followed
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(Scheme 6). Beta-alanine [27] was successfully introduced as an aliphatic spacer in our azoben-

zene [26] via the formation of a mixed anhydride with isobutyl chloroformate. We opted for

these conditions considering the starting material stability. Once again an esterification with

alcohol [22endo] via mixed anhydride approach was tested, but in vain. HPLC-MS shows that

the acid [28] is activated, however, as previously, the activated acid and the alcohol [22endo]

do not react.
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Scheme 6: Second approach to synthesize a double-click SPAAC-tetrazine ligation azobenzene.

Due to the apparent difficulty to further functionalize alcohol [22endo], we opted to use

the most common and well established path in the literature. In this path, the alcohol is acti-

vated for further nucleophilic substitution as a carbonate via condensation with 4-nitrophenyl

chloroformate (Scheme 7).[111] Afterwards, ethylenediamine was used as a nucleophile afford-

ing compound [32endo], which was used in an amidation with azobenzene [26] ultimately

leading to the desired double-click azobenzene [33].
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Scheme 7: Successful route towards double-click tetrazine ligation-SPAAC azobenzene.

C.1.3 CuAAC-thiol azobenzene

Another interesting combination of click chemistry is the CuAAC and the thiol/maleimide

addition. Since previously we have already synthesized azobenzenes containing an alkyne for

the CuAAC, we tried to reuse one of these to reduce the synthetic effort.

Scheme 8 presents the synthesis of this double-click azobenzene. By starting with azoben-

zene [10] it is possible to obtain the thiol in 3 steps.[161] Firstly, a nucleophilic substitution with

the azobenzene [10] and 1,5-dibromopentane affords azobenzene [34]. In the next step, alkylth-

iosulfate [35] is formed by nucleophilic displacement of the bromine. Finally, aqueous HCl

hydrolysis alkylthiosulfate [35] and the thiol [36] is obtained.The yield of this hydrolysis re-

action, 54%, is a bit lower than the 75% reported in the literature for a similar derivative.[161]

Nevertheless, the reaction was performed in a smaller scale which makes the purification via

crystallization more challenging and might explain this difference.
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Scheme 8: Synthesis of a double-click CuAAC-thiol azobenzene.

C.1.4 Photoswitching and thermal half-life time of the double-click azobenzenes

Whenever working with azobenzenes, it is important to properly characterize the key param-

eters of the photoswtiching steps, which include thermal half-life time (t1/2, which can vary

from seconds to years[30,36,162]) and photoswitching wavelengths. Therefore these photophysi-

cals properties of our double-click azobenzenes were tested (Figure 30).

Following the protocols previously developed in our research group to study the prop-

erties of photoswitchable compounds, including azobenzenes and arylazopyrazoles, we have

started by testing the trans-cis photoswitching of the synthesized azobenzenes.[163] A 0.04 mM

solution of each azobenzene in DMSO was prepared and a UV/Vis spectra was recorded, show-

ing the typical azobenzene bands: the π → π∗ at a maximum wavelength (λmax) of approxi-

mately 350 nm and the much less intense n→ π∗ at λmax ≈ 450 nm. Afterwards, this solution

was irradiated with a 365 nm LED for 10 seconds and the UV/Vis spectra was once again

recorded, showing a decrease in the intensity of the π → π∗ band and a small increase of the

n→ π∗ band. These observations are consistent with the switching from trans to cis. Since this

process should be reversible, the solution was irradiated with a 460 nm LED for 10 seconds

leading to the increase of the π → π∗ band and a decrease in the n→ π∗ band, confirming the

back-switch from cis to trans. Notice that the absorption at the λmax of the π → π∗ band after

irradiation with 460 nm is slightly lower than before irradiation, indicating that the switch-back

62



C.1. SYNTHESIS OF DOUBLE-CLICK AZOBENZENES

to trans is not complete. The increase of the irradiation time does not lead to any increase in the

absorption, indicating that the photostationary state was already reached. Nevertheless this is

expected due to the overlap of the absorption bands of the cis and trans isomers, that normally

results in a photostationary state where approximately 5% of cis isomer is left.[11] In Figure 31

the n → π∗ band of the cis and trans azobenzene [11e] is displayed as an example. Here it is

clearly noticeable that both isomers absorb at 460 nm, which means that complete switch back

to cis is not possible at 460 nm.

Figure 30: Determination of the photophysical properties of the double-click azobenzenes. The black
lines correspond to the UV/Vis spectra before irradiation, the red lines after irradiation with 365 nm
and the blue lines after irradiation with 460 nm. Below the structure of each compound the determined
thermal t1/2 can be found.

For the determination of the thermal relaxation half-life time (t1/2) the same azobenzene

concentration was used, since the absorption is still within the range where it should be di-

rectly proportional to concentration according to the Beer-Lambert law. After switching the

compound to cis, the increase of the absorption at λmax of the π → π∗ of the trans isomer was
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followed for 18 hours and the data were analyzed according to a first-order kinetics. The de-

termined t1/2 can be found as inserts in the graphs of Figure 30 below the structures and range

from 4 hours to 83 hours. As expected, azobenzene [36] has the lowest thermal t1/2 thanks to

the electron-donating effect of the oxygen. On the other side, compound [33] has the highest

thermal t1/2 due to the two electron-withdrawing groups in the azobenzene.[36]

Figure 31: n → π∗ absorption bands of the cis and trans isomers of azobenzene [11e].
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C.2 Preparation of photoswitchable azobenzene functionalized sur-

faces

As previously stated, one of the goals of this thesis is to prepare a light-responsive azobenzene

coated surface for the development of a biological application. As shown in Figure 32, for the

preparation of this surface we want to take full advantage of the potential of click chemistry to

selectively bind the azobenzene to the surface and to a bioactive compound. For that we can

select one of the previously synthesized double-click azobenzene. Since CuAAC has already

been successfully used for surface coating[67,164] and the tetrazine ligation is the fastest known

click reaction ideal for biomolecule functionalization[127,146,165,166], azobenzene [11e] was chosen

as a prototype for surface immobilization.

Figure 32: Our approach to obtain a bioactive light-responsive surface using a double-click azobenzene.

This section focuses not only on the preparation of a surface with azobenzene [11e] for

biological application, but also on approaches to deal with azobenzene surface overcrowding

and the small difference between the water contact angle (WCA) of the surface on the trans and

cis states.
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C.2.1 Synthesis of a model azobenzene for surface functionalization

Previous to immobilizing the intended azobenzene [11e], we decided to use a simpler model

system to understand the basics of azobenzene immobilization since there was no experience

in this subject in our research group and also available literature data was arbitrary.

Considering our goal to use the CuAAC to immobilize the azobenzene on an azide func-

tionalized surface, an alkyne containing azobenzene is required. The photoswitching of the

surface will be evaluated by WCA, therefore the addition of a hydrophobic group at the ”end”

of the azobenzene is beneficial because the already more hydrophobic trans configuration will

become even more hydrophobic, generating a higher response in the WCA. The synthesis of

such azobenzene is presented in Scheme 9.

The synthesis starts with the oxidation of 4-(trifluormethyl)aniline [37] using oxone, lead-

ing to 1-nitroso-4-(trifluoromethyl)benzene [38].[167] Purification of this compound was not suc-

cessful due to its high instability: proton NMR indicates that the material obtained by recrystal-

lization or sublimation contained higher amounts of the decomposition products (azoxyben-

zene and azobenzene) than the crude. Hence the crude material was used for the next step,

a Mills reaction with 4-iodoaniline [39] affording the azobenzene [40]. Finally, a Sonogashira

coupling was used to introduce a TMS-protected alkyne that was deprotected using K2CO3,

affording azobenzene [41].[168]
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THF:Et3N (1:1)

2. K2CO3, THF:MeOH (7:3)
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Scheme 9: Synthesis of a model azobenzene for surface functionalization.
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C.2.2 Test in solution of the click reactions

It is important to make sure that reaction conditions are working in solution, since reaction an-

alytics on the surface is substantially more complicated. Therefore, we synthesized two model

molecules, an aliphatic azide and a tetrazine, to test both the CuAAC and the tetrazine ligation.

For the azide, we have chosen 1-azidododecane [43] since it is a long alkane chain like the one

that will be present on the azide functionalized surface (see Section C.2.3). For its synthesis,

shown in Scheme 10A, a simple nucleophilic substitution of 1-bromododecane [42] with NaN3

was carried out.[169]. Regarding the tetrazine, we opted for a trifluormethyl-containing sym-

metric tetrazine thanks to its easy synthesis and with the expectation that the trifluormethyl

generates an increased WCA response upon photoswitching.[86,170] Scheme 10B presents the

synthesis of tetrazine [45] via Pinner synthesis, a two step-procedure: the condensation be-

tween 4-(trifluoromethyl)benzonitrile [44] and hydrazine generating a dihydrotetrazines that

is subsequently oxidized with diacetoxyiodobenzene, forming the tetrazine [45].[171]

Br
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quantitative
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CF3
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CF3
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N N

N

CF3
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[44]

53%
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2. PhI(OAc)2, DCM
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MeOH
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Scheme 10: Synthesis of a model aliphatic azide and a tetrazine for the click reaction testing.

Scheme 11 presents the tetrazine ligation between tetrazine [45] and azobenzene [11e].

A minute after both compounds being mixed in THF, there is full conversion of the azoben-

zene starting material. However, two 1,4-dihydropyridazines (regioisomers), which are a non-

oxidized forms of the desired pyridazine, are obtained as the main product of this reaction

together with small ammounts of the pyridazine (according to MS-HPLC). Since the oxidation

was apparently slow and the oxidation state of the product might affect the WCA of the func-

tionalized surface, (diacetoxyiodo)benzene was added to the reaction mixture after complete

67



C.2. PREPARATION OF PHOTOSWITCHABLE AZOBENZENE FUNCTIONALIZED
SURFACES

conversion of the starting material to push forward oxidation.[128]
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Scheme 11: Test of the tetrazine ligation between azobenzene [11e] and tetrazine [45].

11-Azidododecane [43] was clicked via CuAAC with azobenzenes [41], [11e] and [46]

(Scheme 12). Firstly, CuSO4/ascorbic acid was the chosen system for this CuAAC since the

presence of ascorbic acid prevents the oxidation of the Cu(I), therefore higher yields would be

expected.[100] Under these condition, both click products [47] and [49] were obtained, however,

azobenzene [11e] decomposed and no click product [48e] was recovered. Therefore, another

Cu(I) source, Cu(I) iodide was tested for these clicks. These conditions not only afforded click

product [48e] in 57% yield, but also led to higher yields for the click reactions of [41] and [46]

(73% to quantitative and 42% to 82%, respectively). Therefore, Cu(I) iodide was chosen as the

catalyst for subsequent surface immobilization.
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Scheme 12: Test of the CuAAC reactions of azobenzenes [11e],[41] and [46] with azide [43].

The photophysical properties of model azobenzene [41] and clicked products [46], [47],

[48e] and [49] were also determined and compared with their respective azobenzene starting

materials (Figure 33). The reversible photoswitching between trans and cis still occurs after the

click reaction as expected. It is also noticeable in the spectra before irradiation (black lines)

that the λmax of the π → π∗ band of the CuAAC click products has been red-shifted due to
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the increased conjugation of the system, when compared with their starting materials (see the

missing SM spectra in Section C.1.4).

The thermal half-life times of the click products are within the same range as the starting

materials. The determined values are always higher than 20 hours, which means that choosing

a configuration of the azobenzene and maintain it on the surface should be possible. This is

important because if the thermal half-life times were in the order of seconds, there would not

be enough time to analyze the surface on the cis configuration. Notice that the CuAAC leads to

a small reduction in the t1/2 due to the electron-donating effect of the 1,2,3-triazole.[172,173]

Figure 33: Determination of the photophysical properties of the model azobenzene [41] and the click
products. The black lines correspond to the UV/Vis spectra before irradiation, the red lines after ir-
radiation with 365 nm and the blue lines after irradiation with 460 nm. Below the structure of each
compound the determined thermal t1/2 can be found.
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C.2.3 Preparation of an azide coated flat silicon surface

For this work, silicon was chosen as the substrate due to its biocompatibility, surface tailorabil-

ity and high surface-to-volume rations.[174] As previously referred, we envisioned and ap-

proach via CuAAC to bind the azobenzenes to the surface, therefore an azide-coated silicon sur-

face was prepared (Scheme 13). A reliable approach to prepare organic monolayers on silicon is

the adsorption of organo-trichlorosilanes.[175] In this process the trichlorosilane is hydrolyzed

by catalytic amounts of water present in the solvent, forming a trisilanol which will react with

the hydroxy groups on the oxidized silicon. In our case, the oxidized silicon was coated with

11-bromoundecyltrichlorosilane (BUTS) and ellipsometry confirmed monolayer formation: the

measured thickness of the organic layer was 20.9 Å ± 0.7 (theoretical value 15.6 Å), which is

according to the literature.[170]
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Scheme 13: Preparation of a flat silicon surface coated with azide [SiF-N3].

Figure 34: Analysis of the azide coated surface [SiF-N3] by FTIR.

The azide was introduced by nucleophilic substitution with NaN3 affording the surface

[SIF-N3] and FTIR was used to confirm the success of this reaction. The FTIR of [SIF-N3]
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present in Figure 34 shows a stretching band at approximately 2130-2080 cm−1 corresponding

to the azide as well as stretching bands between 2770-3000 cm−1 corresponding to the CH. This

proves the attainment of the azide-coated surface [SiF-N3].

C.2.4 Trans immobilization on flat silicon

To obtain an azobenzene photoswitchable surface the optimization of the reaction time is cru-

cial, since too much azobenzene on the surface leads to lack of space for the trans to cis iso-

merization (surface overcrowding). Therefore, the reaction time needs to be optimized in order

to reduce the density of the azobenzene on the surface and to prevent overcrowding.[65,176,177]

Figure 35 represents the above mentioned problem.

 

Reaction time 

Photoswitchable 
surface 

Non-photoswitchable 
surface 

Figure 35: The optimization of the reaction time as a crucial step to prevent overcrowding and obtain
photoswitchable surfaces.

Model azobenzene [41], biologically relevant azobenzene [11e] and model product of the

tetrazine click [46] were immobilized on [SiF-N3] using the previously tested reaction condi-

tions with Cu(I) iodide and DIPEA (Figure 36). The surfaces obtained from this process were

named [SiF-xtrans], where Si stands for silicon, F for flat, x for the immobilized azobenzene
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and trans for the immobilization method. For clarity reasons, in this thesis the particular mode

for immobilization will be referred as trans immobilization, since the azobenzene is clicked in

the trans configuration.
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Figure 36: Immobilization of azobenzenes [41], [11e] and [46] on flat silicon by CuAAC to obtain three
distinct photoswitchable surfaces: [SiF-41trans], [SiF-11etrans] and [SiF-46trans].

The first immobilized compound was model azobenzene [41]. Following a literature prece-

dent[67], we started by running the reaction overnight and the photoswitching of the surface

was analyzed by WCA. Upon irradiation with 365 nm, there was no difference in WCA, which

indicated that no photoswitching from trans to cis occurred, presumably due to surface over-

crowding. Therefore, we reduced the reaction time to 380, 180, 60, 30, 15 and 7 minutes. The

surfaces obtained from reaction times 380, 180 and 60 minutes presented the same behavior

as overnight. Only for 30 minutes, 15 minutes and 7 minutes a difference in the WCA is ver-

ified upon irradiation with 365 nm, thus these surfaces were irradiated with a halogen lamp

to switch-back to trans since azobenzene photoswitching should be a reversible process (Fig-

ure 37A). A total of 6 cycles alternating between the 365 nm and the halogen lamp were per-

formed, proving the switchability of the obtained surfaces (Figure 37A).

In Figure 37B the previous data were condensed to present the relation between the reac-

tion time and the difference in the WCA (ΔWCA). Here we observe that ΔWCA increases from

30 minutes reaction time to 15 minutes (4◦ to 7◦) which indicates that at 30 minutes reaction
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time the concentration of the azobenzene on the surface is probably already too high leading

to inefficient photoswitching. When the reaction time is reduced from 15 minutes to 7 minutes,

the ΔWCA decreases to 3.5◦. We think that this reduction is due to a too low amount of azoben-

zene on the surface. We conclude that the ideal reaction time for the trans immobilization of

[41] is approximately 15 minutes.

O OO

Si

(CH2)10

N N

N

N
N

CF3

Si

[SiF-41trans]

Figure 37: (A) Analysis by WCA of the photoswitching of [SiF-41trans] after 7 minutes, 15 minutes
and 30 minutes reaction time. Cycle 0 corresponds to the WCA before irradiation, odd number cycles to
irradiation with 365 nm and even number cycles to irradiation with a halogen lamp (i.e.switch-back). (B)
Relation between the reaction time and ΔWCA. The presented data are the average of the 6 irradiation
cycles.

Figure 38: FTIR of the obtained [SiF-41trans] after 7, 15, 30, 60, 180, 380 minutes and overnight.
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The FTIR of all the obtained [SiF-41trans] was measured to see how much azide had been

consumed during the CuAAC (Figure 38). Overnight and after 380 minutes reaction no azide

band (2130-2080 cm−1) is observed, meaning that the surface is fully coated with azobenzene

and explaining the lack of photoswitchablity. As expected, the shorter the reaction time, the

more intense the azide stretching band becomes, indicating a reduction of overcrowding till

photoswitchable surfaces are obtained at 7, 15 and 30 minutes.
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Figure 39: (A) Analysis by WCA of the photoswitching of [SiF-46trans] after 10 minutes reaction. Cycle
0 corresponds to the WCA before irradiation, odd number cycles to irradiation with 365 nm and even
number cycles to irradiation with a halogen lamp. (B) FTIR of the obtained [SiF-46trans].

Taking into account the knowledge obtained with the trans immobilization of azobenzene

[41], for the immobilization of [46] we started with shorter reaction times: 60, 30, 15 and 10

minutes. From these, only 10 minutes produced a photoswitchable surface. Like before 6

irradiation cycles alternating between a 365 nm LED and a halogen lamp were performed and

the average of these cycles is 4.4◦. This ΔWCA is smaller than the optimized ΔWCA of [SiF-
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41trans], which we found surprising since the additional CF3 should contribute to a higher

difference. Not only that, but the absolute value of the WCA is on average 64◦, much lower

than the 84◦ obtained for [SiF-41trans]. To try to explain these results, we used chemdraw 3D

to obtain a model of the clicked azobenzene [46] (Figure 40). In this model we have observed

that the rings containing the CF3 are actually perpendicular to the azobenzene, therefore the

hydrophilic carbonyl is probably the main contributor responsible for the obtained WCA. Once

again the FTIR of the obtained [SiF-46trans] were measured (Figure 39B). As expected we have

verified that a higher reaction time has led to a higher azide consumption and that there must

be azide left on the surface in order to obtain photoswitchable surfaces.

Figure 40: Chemdraw 3D model of the click product of surface [11-N3] and azobenzene [46]. The color
code is as follows: gray = carbon, blue = nitrogen, red = oxygen, yellow = fluorine, and purple = silicon.

Finally, the compound relevant for the development of a bioapplication, azobenzene [11e],

was immobilized. In this case we started with an even smaller reaction time, 30 minutes, which

afforded a non-photoswitchable surface, therefore the time was reduced to 10 minutes and 5

minutes. Only 5 minutes afforded a photoswitchable surface (Figure 41A) with an average

ΔWCA for the 6 irradiation cycles of 3.9◦ and an average absolute WCA of 63.1◦. These results

were expected since in this case there is no hydrophobic group on ”top” to increase the apo-

larity of the trans state. The values obtained for [SiF-46trans] and [SiF-11etrans] are similar,

corroborating that in the case of [SiF-46trans] the WCA results are probably influenced by the

carbonyl group. The FTIR of the obtained [SiF-11etrans] are shown in Figure 41B and the pre-

vious observations regarding reaction and azide consumption as well as the presence of azide

on the surface and photoswitchability are still observed.
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Figure 41: (A) Analysis by WCA of the photoswitching of [SiF-11etrans] after 5 minutes reaction. Cycle
0 corresponds to the WCA before irradiation, odd number cycles to irradiation with 365 nm and even
number cycles to irradiation with a halogen lamp. (B) FTIR of the obtained [SiF-11etrans].

C.2.5 Preventing surface overcrowding - cis immobilization

As previously referred, when the density of the azobenzene on the surface is too high the

azobenzene may not have enough space to switch from the trans to the cis (surface overcrowd-

ing), making the surface useless. There are two approaches to circumvent this problem: opti-

mize the reaction time so that the density of azobenzene on the surface is low (as we have done

in C.2.4) or to immobilize the azobenzene together with a non-switchable molecule, which

acts as a lateral spacer.[65] In both cases a high amount of tedious optimization is required,

either reaction time or azobenzene:lateral spacer ratio. We hypothesized that if the azoben-

zene is immobilized in the most spatially demanding cis configuration, upon immobilization

the azobenzene moieties should always keep the necessary space required for photoswitching

(Figure 42).

To test our hypothesis we have immobilized azobenzenes [46], [11e] and [41] while in the

cis configuration (Figure 43). The reaction mixtures were prepared in analogous fashin to the

trans immobilization and irradiated with a 365 nm LED to switch the azobenzenes to cis. The

temperature of the reaction also had to be reduced to prevent overheating by the LED and
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No more space for another 
molecule 

Figure 42: Cis immobilization, a practical method to prevent surface overcrowding.

evaporation of the solvent.
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Figure 43: Immobilization of azobenzenes [41], [11e] and [46] on flat silicon using cis immobilization, to
afford [SiF-11ecis], [SiF-41cis] and [SiF-46cis].

UV/Vis spectroscopy was used to confirm the isomerization of the reaction mixture of

the cis immobilization (Figure 44). After 30 minutes irradiation there was a decrease in the

absorption of the π → π∗ band as well as a small increase in the n→ π∗ band consistent with

switching to the cis isomer. Upon confirmation of isomerization by UV/Vis, surface [SiF-N3]

was added to the reaction mixtures and kept under irradiation for 180 minutes. This reaction

time was chosen because our previous data indicates that with trans isomerization the surfaces

coated with these compounds get overcrowded way before 180 minutes ([SiF-41trans] non-

photoswitchable after 30 minutes, [SiF-11etrans] after 5 minutes and [SiF-46trans] after 10

minutes). At the end of the reaction, a new UV/Vis spectrum was recorded to make sure that

during the reaction the azobenzenes had been kept in the cis configuration.
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Figure 44: UV spectra of the reaction mixtures for cis immobilization for azobenzenes [41], [46] and
[11e]. The black lines represent the spectra before irradiation of the reaction mixture, the red ones after
30 minutes irradiation with the 365 nm LED and the blue ones the reaction mixture at the end of the
reaction (180 minutes).

Figure 45 presents the photoswitchability analysis by WCA as well as the FTIR of the ob-

tained surfaces. It seems that even though we used such a long reaction time, all the obtained

surfaces are photoswitchable. Since the azobenzenes were immobilized in the cis configura-

tion, the first irradiation cycle was performed with a halogen lamp to switch the compound

to trans. This process led to an increase in the WCA showing that the obtained surfaces are

photoswitchable and that indeed the compound was successfully immobilized on the cis con-

figuration. Like before a total of 6 irradiation cycles alternating between a halogen lamp and

a 365 nm LED were carried. The ΔWCA of these 6 cycles is 9.5◦ for [SiF-41cis], 4.3◦ for [SiF-

46cis] and 3.5◦ for [SiF-11ecis]. These values are the same as previously obtained with the trans

immobilization, except for [SiF-41cis]. In this case the cis immobilization led to a 2◦ higher

ΔWCA. This shows that with the cis immobilization we were able to obtain photoswitchable

surfaces with similar or better properties as with the trans immobilization, but with no need for

optimization.
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Figure 45: (A,C,E) Analysis by WCA of the photoswitching of [SiF-41cis], [SiF-46cis] and [SiF-11ecis],
respectively. The cycle 0 corresponds to the WCA before irradiation, odd number cycles to irradiation
with a halogen lamp and even number cycles to irradiation with 365 nm. (B,D,F) FTIR spectra of [SiF-
41cis], [SiF-46cis] and [SiF-11ecis], respectively.

Looking at the FTIR of [SiF-41cis] and [SiF-46cis] we can see that there is still azide on the
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surface after the reaction. However, for [SiF-11ecis] it seems like there is no azide left which we

found puzzling since this should mean that the surface is overcrowded and no photoswitching

is possible. Trying to explain this observation, a control experiment was performed to see if

there is any azide decomposition during azobenzene immobilization, since organic azide can

be decomposed by UV light (normally lower wavelengths than the one used for cis immobiliza-

tion).[178] For that, surface [SiF-N3] was treated under the CuAAC conditions with CuI/DIPEA

and under irradiation, but no azobenzene was added. After the usual 180 minutes a FTIR of

this surface was recorded and compared with the one obtained before irradiation (Figure 46),

showing that before and after irradiation nothing happens to the azide. Therefore the FTIR of

[SiF-11ecis] cannot be explained by any azide decomposition.
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Figure 46: Control experiment to check if the azide is not decomposed in the reaction conditions of the
cis immobilization.

Since in the cis immobilization the temperature of the reaction also had to be reduced, a

final control experiment was performed to check if the lower temperature for this step influ-

enced our results. For that azobenzene [41] was chosen as a model compound. The reaction

mixture was prepared such as in the cis immobilization but not placed under irradiation, mean-

ing that if the temperature was responsible for the prevention of the surface overcrowding we

should obtain in this case also a photoswitchable surface. As expected a photoswitchable sur-

face was not obtained (no decrease in the WCA after irradiation) and the azide on the surface

was almost completely consumed (Figure 47). Therefore we conclude that the temperature has
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not significantly affected our results.

Another possible control experiment to be performed in the future would be, after the cis

immobilization protocol, to reuse the surfaces and try to completely coat them and confirm that

no azide band is present and no photoswitching is observed.

Figure 47: FTIR of the obtained surface after the temperature control experiment.

C.2.6 Aiming for an increased difference in the WCA - immobilization on rough
surfaces

Thanks to the difference in the dipole moment of the trans and cis isomers, WCA has been

used as a simple tool to follow the photoswitching of azobenzenes immobilized on surfaces.

However, the difference in the WCA upon irradiation on flat surfaces is normally small and

highly dependent on the hydrophobicity/hydrophilicity of the group on top of the azobenzene.

As previously stated in Section B.2 several approaches have been used to increase the

difference in WCA between the trans and cis isomers. In all of the previously mentioned ap-

proaches the azobenzene has not been directly chemisorbed on a rough substrate with a mod-

ified morphology. To the best of our knowledge Bian et al. were the only ones that have tried

it, however the ΔWCA of their azobenzene-chemisorbed micropatterned-silicon was only of

4◦.[68]
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In this section we aimed to achieve an increased ΔWCA by chemisorption of azobenzene

[41]. Silicon nanowires, porous silicon and rough aluminum were tested as possible substrates

to achieve this goal.

C.2.6.1 Silicon nanowires

As previously explained silicon is an ideal substrate (see Section C.2.3). Taking that into account

and the known chemistry for the preparation of organic monolayers on silicon (used in C.2.3),

we have started by using silicon for the preparation of rough substrates.

Silicon nanowires (SiNW) were our first choice since their properties (e.g. shape, diameter,

length and orientation) can be easily tuned with metal-assisted chemical etching, a versatile

method that uses a noble metal as a catalyst to generate nanostructures on silicon.[179] Figure 48

schematically explains the metal-assisted chemical etching process used in this thesis to prepare

the SiNW. First the silicon is placed in a mixture of AgNO3 and HF to be covered with the

catalyst, silver. The silver covered silicon is afterwards transferred to H2O2/HF, leading to the

electrochemical etching of the silicon, where two main reactions take place. In the first place

the silver reduces the H2O2 (Reaction 1). The hole generated by this process is transferred to

the silicon, oxidizing it, and the HF dissolves the oxidized silicon (Reaction 2), generating the

nanowire. Here the corresponding reactions can be found:[180]

2 Ag + H2O2 + 2 H+ −−→ 2 Ag + + 2 H2O Reaction 1

Si + 4 Ag+ + 6 F– −−→ 4 Ag + SiF6
2 – Reaction 2

Si + 2 H2O2 + 6 F– + 4 H+ −−→ SiF6
2 – + 2 H2O Net Reaction

To stop the etching process the silicon is transferred to a HNO3 solution that dissolves the

silver and, finally, a strong oxidizing solution, piranha solution (H2SO4 96% : H2O2 36% = 1:4)

is used to clean and oxidize the surface.
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Figure 48: Preparation of silicon nanowires (SiNW) by metal-assisted chemical etching using AgNO3,
H2O2 and HF.

O O O

Si

(CH2)16

Toluene

OTSOH OH OH

SiNW SiNW

[SiNW-OTS]

Scheme 14: Coating of SiNW with octadecyltrichlorosilane (OTS).

Since the preparation of SiNW is a complex process, in the first place we wanted to control

the quality of the SiNW produced by us. For that nanowires were etched at different H2O2

concentrations (0.03 M, 0.06 M, 0.12 M and 0.24 M), coated with octadecyltrichlorosilane (OTS)

(Scheme 14) and analyzed by FTIR (Figure 49). If the etching procedure is working smoothly

the length of the wires should increase with the concentration of H2O2, generating a higher

area for coating. As a consequence the area of the CH stretching bands (2770-3000 cm−1) in

the FTIR should increase. Figure 49B shows the FTIR of the obtained surfaces and as expected

the area of the CH stretching bands increases with the H2O2. The area of the CH peaks was

also integrated showing that the doubling of the [H2O2] generates an area two times bigger,

meaning that the area for functionalization also doubles.

The obtained OTS coated SiNW were also analyzed by WCA. According to the literature,

SiNW etched in the previously stated conditions and coated with OTS should be superhy-

drophobic (θ > 150◦) and give a drop in the Cassie-Baxter state.[89,170] It is important that we

use a system with these properties for azobenzene immobilization since the biggest ΔWCA be-
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tween cis and trans should be obtained if we start with a superhydrophobic Cassie-Baxter state

and upon irradiation we attain a superhydrophilic Wenzel state.[92] A way to determine if the

drop is in the Cassie-Baxter or Wenzel state is to determine the angle hysteresis, meaning the

difference between the advancing and receding contact angles. These angles can be measured

by tilting the surface with a drop and the advancing and receding angles correspond to the

angles on each side of the drop just before it starts to slide. If the hysteresis is low, it is assumed

that the drop is on the Cassie-Baxter state. In the Wenzel state the drop is ”stuck” in the pores

and sliding becomes much harder.[181]

Figure 49: (A) FTIR of the OTS coated SiNW etched with 0.03 M, 0.06 M, 0.12 M and 0.24 M of H2O2.
(B) Relation between the [H2O2] and the area of the CH stretching bands (2770-3000 cm−1).

Table 1: Static, advancing and receding angles (water contact angles) as well as angle hysteresis for flat
silicon (non-etched, [H2O2] = 0 M) and SiNW etched with 0.03 M, 0.06 M, 0.12 M and 0.24 M, all coated
with OTS.

[H2O2] (M) Static angle θ

(◦)

Advancing

angle θadv (◦)

Receding

angle θrec (◦)

Angle

hysteresis (◦)

0 110.6 111.4 92.5 18.9

0.03 159.3 159.9 134.9 25

0.06 158.9 162.9 144.2 18.7

0.12 160.7 162.1 142.1 20

0.24 158.9 163.7 141.1 22.6
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Table 1 presents the static angles and the angle hysteresis (water contact angles) for the

OTS coated SiNW and flat silicon. It is possible to see that all of the obtained SiNW have a

higher angle than the flat silicon (110.6◦) and are superhydrophobic, with angles varying from

158.9◦ to 160.7◦. The angle hysteresis is also always below 25◦, therefore we assume that the

drops are in the Cassie-Baxter state. These results match relating findings in the literature.[170]

According to the literature, at [H2O2] higher than 0.06 M the wires generated during the

etching process start to clump together due to its higher length.[170] Therefore we have chosen

to use SiNW etched with 0.06 M to immobilize our azobenzene [41], due to its good balance

between increased roughness and stable structure. Before coating this SiNW with the azoben-

zene, scanning electron microscopy (SEM) was used to confirm its structure. The images of the

cross-section and the top-view of the SiNW etched with 0.06 M H2O2 are presented in Figure 50.

On the cross-section we see homogeneous wires with a length of approximately 2.24 µm and

on the top-view small pores. These results are in conformity with the literature.[170]

Figure 50: Scanning electron microscopy images of a SiNW etched with 0.06 M H2O2. On the left the
cross-section and on the right the top-view.

The next step is then to prepare an azide-coated SiNW and immobilize azobenzene [41] via

CuAAC. To obtain the azide-coated SiNW [SiNW-N3] we have employed the same protocol

used to attain the azide coated-flat silicon surface (see Section C.2.3). To confirm the formation

of the azide coated SiN [SiNW-N3] a FTIR was measured, showing the expected azide stretch-

ing band at 2130-2080 cm−1 (Figure 51). Unfortunately, the monolayer formation cannot be

checked by ellipsometry for the SiNW since ellipsometry cannot be used with rough surfaces.

Afterwards, the trans immobilization of azobenzene [41] on the [SiNW-N3] was performed

using the optimized conditions previously found for the flat surface - CuI/DIPEA and 15
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Figure 51: FTIR of an azide-coated SiNW [SiNW-N3].

minutes reaction. Figure 52A presents the analysis of the surface photoswitching by WCA.

As expected, the WCA of this surface is much higher than on the flat surface (85◦ to 136◦) since

we would expect to obtain a rough surface in the Cassie-Baxter state, where the WCA is always

higher on a rough surface. However, there is no decrease in the WCA after irradiation with

365 nm. Since the surface area is higher for the SiNW than for the flat surface, we increased

the CuAAC reaction time for 30, 60 and 180 minutes, in case the coverage of the SiNW with

the azobenzene was not high enough. The WCA of the surfaces increases with the reaction

time due to the higher amount of hydrophobic azobenzene on top of the SiNW. Unfortunately,

this has not led to a decrease of the WCA after irradiation with 365 nm. The FTIR (Figure 52B)

shows that for all the cases there is still azide left on the surfaces after reaction, even after

180 minutes, unlike on the flat surface, therefore surface overcrowding does not explain these

results.

One possible explanation for this behavior might be that the pore size of the SiNW is too

small. Jiang et al. showed that when coating a micro-patterned silicon with an CF3azobenzene-

containing polymer, the ΔWCA between trans and cis is dependent on the distance between

the pillars on the structure. They prepared structures with pillars distanced by 5, 10, 20, 40, 50

and 60 µm and the ΔWCA increased from 19◦ (5 µm) to 66◦ (40 µm). To distances higher than

40◦ the ΔWCA reduces again drastically.[93] Even their smallest size, 5 µm, is much bigger than

the pore in our nanowires. Maybe this relation is also true for chemisorption of the azobenzene
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and the pore size must be bigger in order to obtain an observable ΔWCA.[93]
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Figure 52: (A) Analysis by WCA of the photoswitching of the [SiNW41trans] obtained at different
reaction times: 15, 30, 60 min and 180 min. Cycle 0 represents the WCA before irradiation and cycle 1
after irradiation with 365 nm. (B) FTIR of [SiNW41trans] after 15, 30, 60 and 180 minutes.

C.2.6.2 Porous silicon

Porous silicon (PSi) is another type of rough silicon, which has a porous surface as the name

indicates .[182] We have decided to use a commercially available PSi with a pore size between

10-15 nm to check if this substrate would be viable to obtain an azobenzene-coated surfaces

with an increased ΔWCA. For that the SiP was coated with OTS ([SiP-OTS]) and the static

WCA was measured hoping to obtain a superhydrophobic surface. However, the WCA was of

only 116.7◦ (Table 2) which is in the same range as the WCA for a flat silicon surface coated with

OTS. Before functionalization of the SiP, it was sonicated in toluene and then oxidized. In case

the toluene is still in the pores, the oxidation will not be efficient, therefore, we introduced an

extra drying step before oxidation. After sonication the SiP was placed in acetone for 2 hours

and afterwards overnight in high-vacuum at 50◦C. Afterwards it was oxidized and coated with

OTS ([SiP-OTS]+drying). Once again we were not able to obtain a superhydrophobic surface.

In fact, the obtained WCA is even lower than before (101.3◦). This decrease may be due to the

removal of some residual water that could be on the SiP or to some structural change provoked

by the heating and vacuum.
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Table 2: Static water contact angles for [SiP-OTS].

O O O

Si

(CH2)16

SiP

Substrate Static angle θ (◦)
[SiP-OTS] 116.7

[SiP-OTS] + drying 101.3

We conclude that probably the porosity of this SiP substrate is not high enough to generate

a superhydrophobic surface. Metal-assisted chemical-etching could also be used to produce SiP

with higher porosity to try to attain a superhydrophobic SiP.[179]

C.2.6.3 Aluminum

Aluminum was another practical choice of a substrate to prepare rough surfaces. While the

etching process of silicon is somehow complex and requires the use of non-friendly chemicals

such as HF, aluminum rough surfaces can be simply obtained by boiling the flat aluminum in

water.[183–187] When it is placed in boiling water, a part of the aluminum is dissolved and alu-

minum oxy hydroxide colloidal particles (bohemite) are formed and deposit on the aluminum,

forming a porous structure. The thickness of this layer can be controlled by changing the boil-

ing times.[183,184]

In addition, several superhydrophobic surfaces have been produced in the literature by

coating rough aluminum[183,185,187,188] and there are reports of aluminum coated with trichlorosi-

lanes, indicating that the already established chemistry (Section C.2.3) could also be applicable

also for this material silicon.[186,189]

For this work, three aluminum substrates were tested: one 99.998% aluminum from ABCR,

one aluminum alloy with 97.7% Al/Mg 2%/Mn 0.3% from Sigma-Aldrich and one 99.5% alu-

minum from Conrad. For practicality reasons these substrates will be named AlA, AlS and

AlC, respectively. The name refers to the material (Al) and the first letter of the company

where the material was acquired.

In the first place, we aimed to confirm the formation of Bohemite structures on these alu-

minum substrates. For that, each one was placed in boiling water for 10 and 20 minutes and
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SEM images were obtained for these and the untreated samples. The SEM images are pre-

sented in Figure 53. Looking at the untreated samples (left column) it is possible to see that

AlA contains imperfections. Actually these imperfections can be seen by the naked eye.

AlA 10K

Untreated 10 minutes 20 minutes

AlC 10K

AlS 10K

AlS 2K

Figure 53: SEM images of the three different aluminum substrates: AlA (first row), AlC (second row)
and AlS (third and fourth row) at 2K or 10K magnification. The samples are untreated (first column),
boiled 10 minutes (second column) or boiled 20 minutes (third column).

AlS and AlC have a much more homogeneous structure. In all the substrates there is a

clear morphology change after boiling (middle and right column). In AlA it is possible to see

the pores formed on the substrate imperfections, while AlC has a very homogeneous structure.
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Surprisingly on AlS a heterogeneous surface is obtained after boiling. After 10 minutes, be-

sides the usual pores, there is the formation of localized wire structures that seem to collapse

after 20 minutes. At a lower magnification (2k) it is possible to see that the number of localized

structures also increases with the boiling time. Unlike AlA and AlC, AlS is an aluminum al-

loy with 2% Mg and 0.3% Mn. Nevertheless, other aluminum alloys (also including Mg) have

been before treated with hot water to form pores and such wire-like structures have not been

observed.[186,190] Saadi et al. found out that actually several other metals besides aluminum

can be subjected to hot water treatment to generate nanostructures such as cubes, pyramids,

plates, wires, spheres and leaf-like. In this list Mg and Mn are included, forming respectively

a leaf-like structure and spheres. Actually, magnesium forms nanostructures even faster than

aluminum when in hot water. Since the morphology of the structure depends on the crystal

structure of the formed oxide upon boiling, maybe in our AlS there is the formation of other

particles besides bohemite due to the Mg and Mn generating this wire-like structures.[190] Since

10 minutes seems to be enough to generate bohemite structures, henceforward a rough alu-

minum surface will refer to aluminum boiled for 10 minutes.

The next step was to coat the flat and rough aluminum surfaces with OTS, like the SiNW

(see Figure 49A), and check if rough superhydrophobic surfaces are obtained. Table 3 presents

the obtained static water contact angle for the obtained surfaces. [AlA-OTS] presents as ex-

pected a big difference in the static contact angle for flat and rough. While the flat surface

presents a static angle of 95◦, the rough surface is almost superhydrophobic with 143.8◦. We

also have tried to measure the angle hysteresis, however unsuccessfully. The imperfections

present on these surface seem to affect the sliding of the drop since the movement of the drop

depended on its position on the surface: sometimes it would not move, sometimes it would

move and get stuck again, probably in one of these imperfections. Regarding AlS, we have ob-

tained a flat surface with a static angle of 22.9◦ and a rough surface with 115.3◦. Since the value

for the flat surface is so low we conclude that probably these surfaces have not been completely

coated with OTS. Finally for AlC we obtained quite inconsistent results. The angle variation

between surfaces was quite big, both for the flat and rough, as displayed by the error.

Unfortunately, ellipsometry could not be used to confirm the formation of a monolayer on

top of the flat aluminum since the polarized light is scattered by the aluminum, preventing a
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Table 3: Static water contact angles for AlA, AlS and AlC, flat and rough, coated with OTS.

[AlAF-OTS]

Al

O O O

Si

(CH2)16

[AlCF-OTS]

[AlSF-OTS]

[AlAR-OTS]
[AlCR-OTS]

[AlSR-OTS]

Static angle (◦)
Flat Rough

[AlA-OTS] 95.0±4.2 143.8±3.4
[AlS-OTS] 22.9±4.2 115.3±4.9
[AlC-OTS] 83.5±12.2 128.8±13.9

proper measurement. Therefore, to better understand the previous results we could only rely

on IRRAS (Infra-red reflection absorption spectroscopy). The IR of the obtained surfaces are

presented in Figure 54. In the IRs of [AlA-OTS] the CH stretching bands are more intense for

the rough surface than for the flat. This reflects the higher coated area in the rough surface and

is consistent with the static angles. On the other hand, for [AlS-OTS] no CH stretching bands

are observable for the flat surface, explaining the low contact angle for this surface. Finally, the

IRs of the [AlC-OTS] express the inconsistent results for the static contact angle. In Figure 54

two examples of a rough and flat surfaces are presented. We have observed that the intensity

of the CH stretching bands was quite different comparing the same type of substrate (rough

or flat) and there are flat surfaces that present CH stretching bands with the same intensity as

rough.

Figure 54: IRRAS of the obtained flat and rough OTS coated Aluminum: AlA flat and rough (left), AlS
flat and rough (middle) and AlC flat and rough (right).

Taking into account the previous data, we decided to use AlA for azobenzene [41] immo-

bilization. To obtain an azide-coated AlA surface we have used the same process as for the
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silicon (see Scheme 13). First the surface is coated with BUTS and afterwards NaN3 is used to

insert the azide. Table 4 presents the static water contact angle for the obtained BUTS coated

[AlA-BUTS] and azide coated [AlA-N3] aluminum. After coating with BUTS the flat surface

presents a angle of 31.5◦±1.4 and the rough surface is superhydrophilic. Upon azide coating

the angle increases for 54.6◦±1 and 43.8◦±3.9, respectively. This increase shows that the nucle-

ophilic substitution is probably taking place as expected.

Table 4: Static water contact angles for [AlA-BUTS] and [AlA-N3]. The * sign means that a specific
angle could not be measured because the water drop would immediately completely wet the surface
and become invisible.

Static angle (◦)

Flat Rough

[AlA-BUTS] 31.5±1.4 *

[AlA-N3] 54.6±1 43.8±3.9

IR of the obtained [AlA-N3] surfaces were also measured to verify the presence of both the

CH and azide stretching bands. The spectra are presented in Figure 55. In the flat [AlA-N3] no

stretching bands are observable while on the rough one weak bands are present. This shows

that there is a problem in the coating of the surfaces. Probably, the monolayer formation is not

taking place efficiently.

Figure 55: IRRAS of the obtained flat and rough N3 coated Aluminum [AlA-N3].

Notwithstanding, the static WCA show that there must be some compound on the surface,

therefore, we have proceeded to attempt the immobilization of azobenzene [41] as described
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in Section C.2.4 (CuI/DIPEA, 15 minutes). Figure 56 shows the analysis of the photoswitch-

ability of the obtained flat surface [AlAF41trans]. It seems that a photoswitchable surface is

nevertheless obtained with a ΔWCA of 7.5◦.

Unfortunately, the immobilization of azobenzene [41] on rough [AlAR-N3] was not suc-

cessful. Upon using the same reaction conditions as to obtain [AlAF41trans] the WCA is only

of 65◦, quite distant from the hydrophobic surface we would be expecting. In addition, upon

irradiation with 365 nm no decrease in the WCA is observed. Even when coating the surface

completely (overnight reaction) the WCA only increases to 83.1◦ and once again no decrease

in the WCA is observed upon irradiation. It seems that without a complete monolayer it is not

possible to get close to the superhydrophobic range and observe a ΔWCA.

[AlAF41trans]

Al

O O O

Si

(CH2)10

N N

N

N
N

CF3

Figure 56: Immobilization of azobenzene [41] on flat [AlAF-N3] by CuAAC and analysis by WCA of
the photoswitchability of the obtained surface [AlAF41trans]. Cycle 0 corresponds to the WCA before
irradiation, odd number cycles to irradiation with 365 nm and even number cycles to irradiation with a
halogen lamp.

Acids and phosphonic acids are commonly used in the literature to coat aluminum sub-

strates, therefore being a good alternative to try to solve the previously presented coating prob-

lems.[184,185,187,191] Another improvement could also be done in the preparation of the rough

aluminum in boiling water. In the literature it is stated that treatment of aluminum in water

at 75◦C is sufficient to generate a porous structure.[190] Maybe reducing the temperature could

help with the reproducibility issues of AlC.
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C.3 Towards a photoswitchable DNA origami platform for T-cell ac-

tivation

T-cells are a component of our adaptive immune system, meaning that they take part in a

specific immune response against an antigen (foreign substance to our body). Nevertheless,

T-cells are not capable of directly recognizing an antigen. They rely on antigen-presenting

cells (APC), such as dendritic cells and macrophages, to first process the antigen and then

display it on their surface.[192] Figure 57 presents a representation of this process. The processed

antigen is presented on the APC’s cell surface by the major histocompatibility complex (MHC),

a membrane protein. The MHC with the antigen is afterwards recognized by a receptor on the

membrane of the T-cell, named T-cell receptor (TCR), initiating the immune response.

Figure 57: T-cell receptor interaction with an antigen-presenting cell via interaction with the MHC.[193]

For a long time scientists have been interested in the study of such an important biological

process.[194,195] One method to study this process consists in using DNA origami. DNA origami

is a technique that allows a relatively easy preparation of 2D and 3D nanostructures of DNA.

Taking advantage of the highly specific Watson-Crick base pairing, a single-stranded DNA

scaffold is folded into a specific shape by using smaller single-stranded DNAs called staples

(Figure 58A).[196–198] Ever since 2006, when Rothumend has for the first time used the DNA

origami technique to assemble simple 2D DNA nanostructures such as rectangles and five-

point stars and a more complex DNA smiley face, several other 2D and 3D shapes have been
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assembled.[199] Among these, pyramids, cubs, nanoflasks and even flowers and rabbits (Fig-

ure 58B-K). In addition to the creation of structurally interesting and beautiful nanostructures,

DNA origami allows to precisely spatially arrange any molecule on the nanoscale by modify-

ing its staples. Therefore, these systems have been applied to study molecule interactions (e.g.

DNA-enzyme activity, protein-protein, aptamer-protein interaction, enzymatic cascades) used

as a biosensors and for drug delivery.[196–198]

Figure 58: (A) Assembly process of DNA origami nanostructures. (B-K) Images of structures designed
using the DNA origami technique.[198]

To study T-cell activation Motsch et al. have decorated a DNA origami platform with TCR

ligands (either a single-chain antibody fragment or a peptide-loaded MHC II), forming a sur-

face that mimics an APC (Figure 59A).[200] To attach the ligands on the DNA origami, they have

taken advantage of the well-known Streptavidin(SA)-biotin technology. SA is a 56 KDa ho-

motetrameric protein from the bacterium Streptomyces avidinii, which is known for its high ther-

mostability, resistance against extreme pH and proteolytic enzymes, high tolerance for exten-

sive mutations and a highly specific and stable binding (Kd ≈10−14 M) to biotin. These features
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have led to development of several application using SA-biotin technology as a foundation,

such as the rational design of novel host–guest systems for organometallic chemistry applica-

tions, labeling, separation (affinity chromatography e.g.) and targeting of structures.[201–203]

(A) DNA origami platform for the study of T-cell activation

(B) Photoswitchable DNA origami platform for the study of T-cell activation

Figure 59: The DNA origami platform used by Motsch et al. (A)[200] vs our design of a photoswitchable
DNA origami platform (B).
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In the specific case of Motsch et al., the single-stranded DNA was folded with some staples

containing biotin to obtain a DNA origami with biotin that was used to attach a dimeric SA to

the platform. The second binding site of the SA allowed to bind a biotin functionalized TCR

ligand to the platform.[200]

Our goal was to modify the previously referred DNA origami platform to be able to tem-

porally control the activation of the T-cells by using an azobenzene. Figure 59B presents our

approach to obtain such a system. In our design an azobenzene contains both a biotin to enable

the attachment to the DNA origami and a single-chain antibody fragment or a peptide loaded

MHC II to activate the T-cell. The idea is that when the azobenzene is in the trans configuration

the T-Cell is activated while in the cis it is inactivated. This means that we hope to be able to

reversibly activate and deactivate the immune response.
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Figure 60: Target structures resulting from the coupling of azobenzenes [11] (A), [18] (B) and [33] (C)
with biotin.

To synthesize the azobenzene we have planned to take advantage of our double-click

azobenzene approach. To bind the azobenzene and the T-cell ligand we have envisioned to
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use the tetrazine ligation click since it is the fastest know click reaction and bioorthogonal.

Taking into account this requirement and the double-click azobenzene previously synthesized,

azobenzenes [11], [18] and [33] were considered viable targets to obtain the desired azobenzene

with biotin and TCR ligand. Figure 60 presents the target conjugation products resulting from

the coupling of the azobenzenes [11], [18] and [33] with biotin.

C.3.1 Functionalization of double-click azobenzenes with biotin

Taking into account the double-click azobenzenes that we will use in this Section ([11], [18] and

[33]), a biotin functionalized with an azide is necessary since an alkyne and a strain-promoted

alkyne are left on these azobenzenes for binding to the biotin (TCO will bind to the TCR ligand).

(A)
NO2

O

S

H
HN

H

O

NH

HN

(B) H2
N

Ir

N

O

O

S

O

S

H
HN

H

O
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HN
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Figure 61: Pymol image of the crystal strucure of SA mutant L123R (M1) complexed with biotynyl para-
nitroanilide (PDBcode 1RXH) (A)[204] and of SA mutant S112A-N118O-K121A-S122M complexed with
[Cp*Ir(biot-p-L)Cl] (PDBcode 6ESS) (B)[205].

In the design of the biotin modified azobenzene there are another two requirements that

must be fulfilled: the modified biotin-azobenzene must still be able to bind to SA and, if it

binds, the azobenzene needs to be outside of SA’s binding site in order to keep the neces-

sary space to switch to the cis configuration. According to the literature, one modification that

would respect these requirements would be to insert a benzene ring. Figure 61 presents two

examples were biotin was modified with a benzene ring.[204,205] In the images it is possible to

see that this modification does not prevent the binding of biotin and the benzene ring is al-

ready outside the binding site. Therefore, we opted to modify our biotin with a benzene and
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afterwards click the azobenzene.

Scheme 15 presents the synthesis of the modified biotin. In the first place, 4-azidoaniline

[51] was obtained from 4-iodoaniline [50] via a Ullmann-type copper-catalyzed reaction (copper-

catalyzed nucleophilic aromatic substitution).[206,207] Afterwards biotin [52] was activated us-

ing isobutyl chloroformate to form a mixed-anhydride that undergoes an amidation with 4-

azidoaniline [51], forming amide [53].[208] Amide [54] was also synthesized using the same

method from biotin [52] and 4-iodoaniline [50] since it could be used for a Sonogashira cou-

pling with azobenzenes [11] and [18].

NaN3

CuI, NaOH, L-prolin, DMSO
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81%

I

NH2

[50]
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NH
O

H

HN

H S

O
RR

NH2

+

[51] R = N3

[50] R = I

N3

NH2

[51]

[53] R = N3, 78%
[54] R = I, 81%

A

B

[52]

Scheme 15: Synthesis of 4-azidoaniline [51] (A) and modified biotin [53] and [54] (B).

In first the first place the CuAAC between biotin [53] and azobenzenes [11e] and [18e] was

performed (Scheme 16). In the case of coupling between [11e] and [53] the CuAAC happens,

nevertheless the carbonate is cleaved during the reaction. For the coupling of [18e] with biotin

[53], small amounts of the product are formed but we were not able to isolate it.

Afterwards we have tried a Sonogashira coupling between the azobenenes [11e] or [18a]

and biotin [54] (Scheme 17). Even though the coupling between azobenzene [11e] and biotin

[54] has not delivered satisfactory results, the reaction between [18a] and [54] was successful

affording compound [55] in 22% yield.

Control experiments were performed to test the stability of azobenzenes [11e] and [18e]

under these reaction conditions. In the case of the CuAAC, three diferent mixtures were
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prepared: azobenzene/DIPEA, azobenzene/CuI and azobenzene/DIPEA/CuI. After stirring

overnight, decomposition of the starting material was observed in all cases, except in the

azobenzene/DIPEA mixture (according to TLC), indicating that the azobenzenes are unsta-

ble under the presence of CuI. Regarding the Sonogashira coupling, a similar control experi-

ment was performed, where 4 mixtures were prepared: azobenzene/DIPEA, azobenzene/CuI,

azobenzene/(Ph3P)2PdCl2 and azobenzene/DIPEA/CuI/(Ph3P)2PdCl2 . Here it was verified

that whenever CuI, (Ph3P)2PdCl2 or both are present, the azobenzenes are not stable. These

observation explain the previously obtained results. We hypothesize that the instability of the

SMs may be due to the complexation of the metal catalysts to the strained double bond of the

TCO.

Finally, the SPAAC between biotin [53] and azobenzene [33] was conducted, affording

product [56] in 65% yield (Scheme 18).
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Scheme 16: Unsuccessful CuAAC between modified biotin [53] and azobenzenes [11e] and [18e].
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Figure 62: 1H and 13C NMR of azobenzene [55].
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Figure 63: 1H and 13C NMR of azobenzene [56].
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Figure 62 and 63 present the 1H and 13C NMR of conjugation products [55] and [56], re-

spectively. Here it is possible to observe the complexity of these molecules, specially [56]. Once

analyzing the NMRs of both compounds, besides aromatics, a couple of aliphatic signals stand

out at higher chemical shifts. From the TCO moiety, D/E (1H ≈ 5.5 ppm, 13C ≈ 130-135 ppm)

and A ([55]: 1H 5.02 ppm, 13C 76 ppm; [56]: 1H 4.45 ppm, 13C 86 ppm). Notice that there is

a big different in the chemical shift of the signal A for both compounds (0.5 ppm in the 1H

and 10 ppm in the 13C). This can be explained by two factors: the different diastereomers ([55]

is axial and [56] is equatorial) and the difference in the chemical group (carbonate vs ester).

Regarding the biotin moiety, the signals from the heterocyclic part xii ([55] 1H 6.45 ppm; [56]
1H 5.9 ppm), xiv ([55] 1H 6.37 ppm; [56] 1H 5.76 ppm), xv (1H 4.3 ppm, 13C 60 ppm) and

xi (1H 4.1 ppm, 13C: 62 ppm), as well as the amide proton ([55]: 1H 10.16 ppm; [56]: 1H1H

9.45 ppm) are noteworthy. Notice that the NMRs have been measured in different deuterated

solvents ([55]: DMSO-d6; [56]: CDCl3) which explains the different shifts of the NH signals in

both compounds.

For each compound, a couple of specific signals are also worth to mention. From conju-

gation product [55], in the 13C the signals from the alkyne, C-5 (88.2 ppm) and C-6 (93 ppm).

Regarding product [56], II (1H 4.12 ppm, 13C 63.1 ppm) , 8’ (1H 3.43 ppm, 13C 40.8 ppm) and

7’ (1H 3.58 ppm, 13C 41.6 ppm).

After the click reactions we have ended up with 2 possible click products to bind to the

platform, azobenzene-biotin [55] and [56]. It is important to check if the photophysical prop-

erties of these products were unaffected by the binding to biotin. Figure 64 presents the pho-

toswitching tests for these compounds. Looking at the UV/Vis spectra of azobenzene-biotin

[55] in the beginning (before irradiation), it is possible to notice that the typical π → π∗ and

n→ π∗ bands do not appear, but instead a broad band. Probably the π → π∗ and n→ π∗

bands have overlapped because of the increased conjugation of this system. As consequence, it

would be expected that the photoswitching of this compound would be quite inefficient, which

was indeed observed. Upon irradiation with 365 nm only a small decrease in the intensity of

the broad band is observed. Even when the irradiation time is increased the results do not dif-

fer. After irradiation with 460 nm a recovery of the absorption is observed. On the other hand,

azobenzene-biotin [56] presents the classic behavior of an azobenzene. In addition, the t1/2 was
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also determined to be 86.3 hours, similar to its azobenzene starting material [33]. Taking into

account these results, azobenzene-biotin [56] was decided as candidate for subsequent studies.

Figure 64: Photoswitching of compounds [55] (left) and [56] (right). The black line represents the UV-Vis
spectra before irradiation, the red light after irradiation with 365 nm and the blue line the back switch
with 460 nm.

C.3.2 Testing the binding to the DNA origami platform

As previously stated, to attain our goal the modified biotin must bind to SA. To check the bind-

ing two different experiments were carried out. The first assay is a colorimetric procedure that

uses 4-hydroxyazobenzene-2’-carboxylic acid (HABA). This compound binds to the biotin and

forms a complex with a maximum absorption at 500 nm. Since the affinity of biotin for SA

is higher, if biotin is added to the mixture it displaces HABA and the absorption at 500 nm

decreases.[209,210] Figure 65 presents the results from this assay. In Figure 65A a control experi-

ment using SA’s natural substrate, biotin [52], was performed. As expected upon the addition

of biotin [52] (100 µL of 10 mM) there is a sharp decrease in the absorption at 500 nm, indicating

that biotin has bound to the SA and displaced HABA. Figure 65B shows the same assay but for

the compound of interest [56], using also a 10 mM solution in DMSO. In this case, upon the ad-

dition of 100 µL precipitation occurred, therefore compound [56] was added in portions of 2 µL.

Upon the addition of 2 µL a decrease in the absorption at 500 nm is observed and this decrease

is even more accentuated after 4 µL. At 6 µL precipitation occurs so no more measurements

could be performed. These results indicate that the azobenzene-modified biotin [56] retained

the ability to bind to the SA, corroborating the initial design and validity of the approach.
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Figure 65: HABA assay to test the binding to SA. (A) Positive control using 10 µM biotin in DMSO. (B)
Test of the binding of [56] to SA also using a 10 µM solution in DMSO.

Afterwards, we aimed to test the direct binding of our azobenzene directly to the SA in the

DNA origami platform. For that, azobenzene [56] was conjugated with cyanine fluorophore

[57] (Scheme 19). The idea is that if compound [58] binds to the platform localized fluorescence

will be observed where SA and azobenzene-fluorophore [58] have bound. Since this reaction

had to be carried in a scale below 1 mg, purification would be a challenge. Therefore the

reaction between [56] and [57] was carried using excess of [57], since [56] can also bind to SA.

The reaction was followed by HPLC and the fluorescence and absorption chromatograms of

compounds [57], [56] and the reaction mixture [58] can be found in Figure 66. In the absorption

chromatograms it is visible that azobenzene [56] has been completely consumed, since in the

reaction mixture [58] the peak at 2.39 minutes, which corresponds to the azobenzene, is not

visible. Two new peak are also observed both in the absorption (1.20 and 1.70 minutes) and

fluorescence (1.30 and 1.78 minutes) chromatograms, which probably correspond to the desired

product [58], oxidized and non-oxidized form.
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Figure 66: HPLC analysis of the conjugation reaction to afford [58]. The first column presents the fluo-
rescence chromatograms (A) and the second column the absorption chromatograms (B) for compounds
[57] (fluorophore, first row), [56] (biotin-azobenzene, second row) and [58] (the biotin-azobenzene-
fluorophore conjugate, third row).

C.3.3 Determining the force generated by the photoswitching of a single azoben-
zene

In the previous sections we outlined a strategy towards activating and deactivating T-cells, by

using an azobenzene to break the interaction between the TCR and the T-cell ligand. Physically

this means that the force generated by the photoswitching of the azobenzene must be higher

than the force of the interaction between the TCR and T-cell ligand. Nevertheless, the force

generated by the photoswitching of an azobenzene on a single molecule level is till the moment
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not known.

Figure 67: Our approach to obtain an azobenzene-functionalized AFM tip bound to a silicon surface,
that can be used to measure the force generated by the photoswitching of the azobenzene.

Holland et al. have used atom force microscopy (AFM) to determine the force exerted by

an azobenzene polymer with 46 monomers. The polymer was covalently attached both to the

tip of the AFM cantilever and to a glass surface. Afterwards, the photoswitching from trans to

cis was tested against an external force and till 400 pN photoswitching was verified.[211,212]

In our case, we have aimed to determine the force generated by the photoswitching of a

single azobenzene molecule. Like in Holland et al., to be able to measure the force exerted

by an azobenzene we will have to bind it to an AFM tip and a surface. To attain our goal

we intend to once again take advantage of click chemistry and use one of our double-click

azobenzenes. The first step was to find an AFM tip functionalization and surface modification

that is compatible with our designs. Gruber has developed a protocol to obtain a maleimide

functionalized AFM tip that are compatible with our azobenzene [36], that contains a thiol.[213]

This azobenzene also has a alkyne, which means that we could also reuse the azide-coated

silicon surface previously obtained (see Section C.2.3). Figure 67 shows our approach using

azobenzene [36], a maleimide-functionalized AFM tip and our azide-coated silicon surface.
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After the assembly of these components the deflection of the cantilever should allow to measure

the force exerted by the switching of the azobenzene.
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CuI, DIPEA
ACN, Argon
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Scheme 20: Test of the click reactions for the surface and AFM tip functionalization in solution.

Before attaching the azobenzene to the surface [SiF-N3] and the AFM tip, we have tested

the click reactions in solution. Scheme 20 shows the test reactions. In the first place, azoben-

zene [36] was clicked with N-ethylmaleimide, a commercially available maleimide, affording

product [59] in 40% yield. Afterwards, the CuAAC catalyzed reaction with 11-azidododecane

[43] was performed affording azobenzene [60] in 80% yield.

The photophysical properties of the click products of azobenzene [36] were also tested

(Figure 68). Upon the click reactions both azobenzene [59] and [60] keep their ability to photo-

switch as expected. The t1/2 of the click products [59] and [60] are respectively 9 and 8 hours,

which is slightly higher in comparison with their SM [36] (t1/2 = 4 hours). Once again it is

verified that the introduction of the electron-donating 1,2,3-triazole leads to a small reduction

of the t1/2 (9 to 8 hours) as well as to a red shift of the maximum absorption wavelength due to

the increased conjugation of the system (367 nm for [59] and 372 nm for [60]).
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Figure 68: Determination of the photophysical properties of the click products of azobenzene [36]. The
black lines correspond to the UV/Vis spectra before irradiation, the red lines after irradiation with 365
nm and the blue lines after irradiation with 460 nm. Below the structure of each compound the deter-
mined thermal t1/2 can be found.
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Scheme 21: Immobilization of azobenzene [36] on [SiF-N3] via cis immobilization affording [SiF-36cis].

After testing the clicks and verifying the photophysical properties of azobenzenes [59] and

[60], the next step is to immobilize azobenzene [36] on surface [SiF-N3]. For the azobenzene

immobilization we have decided to use the cis immobilization method in order to save the

optimization time (Scheme 21).

Figure 69A presents the photoswitchability of [SiF-36cis]. The irradiation cycles were per-

formed like discussed in Section C.2.5 and we have obtained a surface with a ΔWCA of 4.7◦. A

FTIR of this surface was also measured and as expected we still see unreacted azide on the sur-
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face (Figure 69B). One concern that should be addressed is how much thiol has oxidized during

the immobilization process. Since thiols are prone to dimerization, the addition of a reducing

agent such as (tris(2-carboxyethyl)phosphine) could prove advantageous for this specific im-

mobilization.

Figure 69: (A) Analysis of the photoswitchability of [SiF-36cis]. The cycle 0 corresponds to the WCA
before irradiation, odd number cycles to irradiation with a halogen lamp and even number cycles to
irradiation with 365 nm. (B) FTIR spectra of [SiF-36cis].

Since the AFM measurements are based on optical beam deflection, the irradiation re-

quired for our experiments generates artifacts in the measurements. Once this question has

been addressed, the AFM tip will be connected to our surface [SiF-36cis] and the force gener-

ated by the switching will be determined by our partners in the Institute of Lightweight Design

and Structural Biomechanics at TU Wien.
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Chapter D

Summary and outlook

In this thesis 6 double-click azobenzenes were synthesized containing moieties for CuAAC,

SPAAC and maleimide-thiol Michael addition ([11a], [11e], [18a], [18e], [33] and [36]). The

photophysical properties of these azobenzenes were determined showing that photoswitching

from trans to cis is possible by irradiation with 365 nm and back-switching to trans is possible

by irradiation with 460 nm. The thermal relaxation half-life times of these compounds were

always in the range of hours, indicating that these compounds do not switch-back to cis too

fast and can be comfortably manipulated in biological applications.

The obtained azobenzenes were applied in the development of azobenzene photoswitch-

able surfaces for biological applications. In the first place, we focused on the preparation of a

silicon surface that could be used to immobilize in the future compounds of biological inter-

est. Before immobilizing the double-click azobenzene of interest [11e], azobenzene [41] was

clicked on azide coated silicon surface [SiF-N3] to better understand the process of azoben-

zene immobilization ([SiF41trans]). The results have shown that reaction time optimization

is a determining factor in this process since a too long reaction time leads to an overcrowded

not-photoswitchable surface and a too low reaction to a low concentration of azobenzene on

the surface (according to the ΔWCA between the trans and cis surface). Afterwards, azoben-

zene [11e] was immobilized and photoswitchable surface [SiF11etrans] was obtained. This

surface can serve in the future as a platform to immobilize biomolecules via mild and selective

chemistry for the development of bioapplications. A model click product of azobenzene [11e],

azobenzene [46], was also immobilized on the silicon showing the feasibility of this approach.
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Click chemistry moieties can be used to increase the scope of application of the double-

click azobenzenes. In addition, double-click azobenenes derivatives that take advantage of the

better photophysical properties of bridged azobenenes and arylazopyrazoles, arylazopyrroles

or arylazoimidazoles, for example, can be synthesized. This way a library can be developed

where an azobenzene could be chosen according not only the required click chemistry but also

the desired photophysical properties.

Trying to circumvent the problem of surface overcrowding, we have decided to immobilize

the azobenzenes while on the cis configuration by continuous UV irradiation of the azobenzene

solution during the adsorption process. We have hypothesized that if the azobenzene was im-

mobilized in the most spatially demanding configuration, it should always keep the required

space for switching while preventing surface overcrowding. Using this method we have immo-

bilized azobenzenes [41], [11e] and [46]. Not only have we obtained photoswitchable surfaces

([SiF41cis], [SiF11ecis] and [SiF46cis]) but also a ΔWCA that was the same or higher than with

the first method with no need for optimization.

Aiming for an increased difference in the WCA between the trans and cis surface we have

immobilized the azobenzene [41] (while on the trans configuration) on rough surfaces. In the

first place, we have utilized silicon nanowires as a substrate. Even though the data indicate that

the preparation and functionalization of the SiNW was successful, we have not observed any

difference in the WCA upon irradiation with UV light. A hypothesis that could explain this

observation is that the size (diameter and length) of the wires is still too small. An increase in

ΔWCA upon switching from a flat to a rough surface can only be expected, if the trans and the

cis configuration adopt two different wetting states: Cassie Baxter wetting for trans and Wenzel

wetting for cis. This requires systematic variations of the surface morphology (pore size, pore

density, etc) which was beyond the scope of this work. Therefore, it would be worth it to try

immobilization on a surface with pores with bigger diameters. Porous silicon was also tested

as a substrate. Nevertheless, upon immobilization with OTS a superhydrophobic surface was

not obtained, meaning that the porosity of this silicon is not high enough for our purpose.

Finally, 3 different rough aluminum substrates were prepared and after coating with OTS one

of the substrates ([AlA]) afforded a superhydrophobic surface. Hence, [AlA] was used for

the immobilization of the azobenzene [41] both on flat and rough [AlA]. This immobilization
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afforded a photoswitchable flat surface [AlA41trans], however not a photoswitchable rough

surface. Actually, the obtained rough surface is not even hydrophobic indicating that there is

probably a problem in the coating of the surface. This is supported by the IR of the surface that

shows really weak CH stretching bands. A way to circumvent this problem would be to use a

more common chemistry to coat the aluminum: acids or phosphonic acids instead of the used

trichlorosilanes.

The double-click azobenzenes have also been modified for the development of a photo-

switchable DNA origami platform for the study of T-cell activation. The first step was to modify

our double-click azobenzenes with biotin so that the photoswitchable compound can bind to

the SA in the DNA platform. Azobenzenes [33] and [18a] have both been successfully coupled

to biotin, notwithstanding, only the coupling product of [33], azobenzene [56], has retained the

ability to efficiently photoswitch. The binding of [56] to SA was tested via the HABA assay

which indicated that this modified biotin can still bind to SA. In the future, the direct binding

on the DNA platform should also be tested with fluorescence microscopy. For that [56] was

already conjugated with a fluorophore ans switchability of the system was confirmed, hence,

the relevant preparation steps for subsequent biological investigations could be successfully

demonstrated. If these tests confirm the binding to the platform, azobenzene [56] should be

conjugated with a single-chain antibody fragment capable of activating T-cells. Afterwards,

the activation of the T-cells will be tested upon irradiation.
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Chapter E

Experimental part

E.1 Materials and methods - chemical synthesis

Unless otherwise noted, chemicals were purchased from commercial suppliers and used with-

out further purification. The purity of the reported compounds is >95% according to NMR.

E.1.1 NMR spectroscopy

NMR spectra were recorded on a Bruker Avance Ultrashield 400 (1H: 400 MHz, 13C: 101 MHz)

and Bruker Avance IIIHD 600 spectrometer equipped with a Prodigy BBO cryo probe (1H:

600 MHz, 13C: 151 MHz). Chemical shifts are given in parts per million (ppm) and were cal-

ibrated with internal standards of deuterium labeled solvents CDCl3 (1H 7.26 ppm, 13C 77.16

ppm), MeOD (1H 3.31 ppm, 13C 49.00 ppm) and DMSO-d6 (1H 2.50 ppm, 13C 39.52 ppm). NMR

assignments of unknown compounds were confirmed by 1H - 1H COSY, 1H - 13C HSQC and
1H - 13C HMBC and by comparison to predicted spectra. Proton multiplicities are denoted

by the following abbreviations: s (singlet), br s (broad singlet), d (doublet), dd (doublet of a

doublet), t (triplet), dt (doublet of a triplet), q (quartet), pent (quintet), hep (septet), m (mul-

tiplet). Coupling constants (J) are presented in Hz (Hertz). Carbon multiplicities (suppressed

CH coupling) are denoted by the following abbreviations: s (singlet), d (doublet), t (triplet) and

q (quartet). In case of fluoro structures the coupling constant is denoted generally as “ x/y, zJCF

= . . . Hz ” whereby x represents the multiplicity of the CH coupling, y the multiplicity of the
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CF coupling and z the order of spin-spin coupling.

E.1.2 Chromatographic methods

TLC was performed using silica gel 60 aluminum plates containing fluorescent indicator from

Merck and detected either with UV light at 254 nm or by staining in ninhydrin solution (300 mg

ninhydrin, 3 mL acetic acid, 100 mL butanol), potassium permanganate (1 g KMnO4, 6.6 g

K2CO3, 100 mg NaOH, 100 mL H2O in 1M NaOH) or para-anisaldehyde (4 mL para-anisaldehyde,

5 mL H2SO4, 150 mL EtOH) with heating.

HPLC chromatography was carried out with an Autopurification system of Waters using

an ACQUITY QDa Detector in combination with a 2998 Photodiode Array Detector. Analyt-

ical separation was conducted using XSELECT CSH Fluoro-Phenyl 5 µm 4.6 x 150 mm and

XSELECT CSH C18 5 µm 4.6 x 150 mm columns. Preparative separation was performed using

XSELECT CSH Prep Fluoro-Phenyl 5 µm 30 x 150 mm and XSELECT CSH Prep C18 5 µm OBD

30 x 150 mm columns. As solvents HPLC grade methanol and HPLC grade H2O were used

with or without 0.1% formic acid.

Column chromatography was carried out with a Büchi SepacoreTM MPLC system (2 x

Büchi Pump Module C-605, Büchi Pump Manager C-615, Büchi UV Photometer C-635, Büchi

Fraction Collector C-660) or standard manual glass columns using silica gel 60 M (particle size

40-63 µm, 230-400 mesh ASTM, Macherey Nagel, Düren). Unless stated otherwise all com-

pounds were purified with a ratio of 1/100 (weight(compound)/ weight (silica)).

GC/MS spectra were measured using a Thermo Trace 1300 / ISQ LT (single quadrupole

MS (EI)) using a standard capillary column BGB 5 (30 m x 0.25 mm ID).

Some reactions were analyzed via HPLC-MS on a reverse phase Nexera X2 UHPLC system

(Shimadzu, Kyoto, Japan) comprised of LC-30AD pumps, a SIL-30AC autosampler, CTO-20AC

column oven, DGU-20A5/3 degasser module. Detection was accomplished by concerted efforts

of SPD-M20A photo diode array, a RF-20Axs fluorescence detector, an ELS-2041 evaporative

light scattering detector (JASCO) and finally via a LCMS-2020 mass spectrometer. Separations

were performed using either a XSelect CHS Fluoro-Phenyl 2.5 µm 3.0 x 15 mm column or

ACQUITY UPLC Protein BEH C4 column 300 Å 1.7 µm 2.1 mm x 50 mm. Mobile phases are
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UPLC grade grade water and acetonitrile containing 0.1% formic acid or 2.5 mM ammonium

formiate (pH = 8.5).

E.1.3 Melting points

Melting points were determined using a Leica Galen III Kofler or a Büchi Melting Point B-545.

E.1.4 HR-MS

An Agilent 6230 LC TOFMS mass spectrometer equipped with an Agilent Dual AJS ESI-Source

was used for HR-MS analysis. The mass spectrometer was connected to a liquid chromatogra-

phy system of the 1100/1200 series from Agilent Technologies, Palo Alto, CA, USA. The system

consisted of a 1200SL binary gradient pump, a degasser, column thermostat, and an HTC PAL

autosampler (CTC Analytics AG, Zwingen, Switzerland). A silica-based Phenomenex C-18

Security Guard Cartridge was used as stationary phase.

Data evaluation was performed using Agilent MassHunter Qualitative Analysis B.07.00.

Identification was based on peaks obtained from extracted ion chromatograms (extraction width

± 20 ppm).

E.2 Chemical synthesis

E.2.1 CuAAC-tetrazine ligation azobenzene

E.2.1.1 (Z)-9-Oxabicyclo[6.1.0]non-4-ene [2]

m-CPBA, dry DCM 44 11

2233

O
60%

[1] [2]

(Z)-9-Oxabicyclo[6.1.0]non-4-ene [2] was synthesized according to a literature procedure.[145]

1,5-Cyclooctadiene [1] (15.0 g, 121.0 mmol, 1 equiv.) was cooled to 0◦C and then meta-chloroperbenzoic

acid (27.12 g, 157.2 mmol, 1.3 equiv.), suspended in 200 mL of dry DCM, was slowly added.
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After 4 hours the solid was removed by filtration and washed with chloroform. The filtrate

was washed with aqueous saturated Na2SO3 solution, aqueous saturated NaHCO3 solution

and water. The organic and water phases were separated, the organic phase was dried over

Na2SO4 and the solvent was evaporated. The crude material was purified by distillation. The

analytical data are in accordance with the literature.[145]

Yield: 60% (9.0 g, 72.4 mmol)

Appearance: colorless oil

TLC analysis: R f = 0.74 (PE:EtOAc = 4:1)

Sum formula: C8H12O

1H NMR (400 MHz, CDCl3): δ = 1.97 – 2.08 (m, 4H, H-2 + H-3), 2.06 – 2.22 (m, 2H, H-2),

2.36 – 2.52 (m, 2H, H-3), 2.93 – 3.20 (m, 2H, H-1), 5.40 – 5.69 (m, 2H, H-4) ppm.

13C NMR (101 MHz, CDCl3): δ = 24.1 (t, 2C, C-3), 28.6 (t, 2C, C-2), 57.2 (d, 2C, C-1), 129.3

(d, 2C, C-4) ppm.

E.2.1.2 (Z)-Cyclooct-4-en-1-ol [3]

55

44

33 22

11

88

7766

OH

[3]

O

[2]

84%

LAH, dry THF

(Z)-Cyclooct-4-en-1-ol [3] was synthesized according to a literature procedure.[145] Lithium alu-

minum hydride (2.96 g, 78 mmol, 1.3 equiv.) was cooled to 0◦C, placed under argon and sus-

pended in 12 mL of dry THF. Afterwards, (Z)-9-oxabicyclo[6.1.0]non-4-ene [2] (7.46 g, 60.0 mmol,

1 equiv.) was added dropwise. After 3 hours stirring at room temperature, the reaction mix-

ture was cooled to 0◦C, diluted in diethyl ether, quenched by the dropwise addition of aqueous

saturated Na2SO4 solution and filtered. The organic and water phases were separated, the or-

ganic phase was dried over Na2SO4 and the solvent was evaporated. The analytical data are in

accordance with the literature.[145]

Yield: 84% (6.3 g, 51 mmol)
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Appearance: colorless oil

TLC analysis: R f = 0.36 (n-hexane:EtOAc = 4:1)

Sum formula: C8H14O

1H NMR (400 MHz, CDCl3): δ = 1.48 – 1.56 (m, 2H, H-2 + H-7), 1.59 – 1.75 (m, 2H, H-7 +

H-8), 1.79 – 1.99 (m, 2H, H-2 + H-8), 2.04 – 2.22 (m, 3H, H-3 + H-6), 2.22 – 2.39 (m, 1H, H-3),

3.75 – 3.86 (m, 1H, H-1), 5.55 – 5.63 (m, 1H, H-5), 5.65 – 5.74 (m, 1H, H-4) ppm.

13C NMR (101 MHz, CDCl3): δ = 22.9 (t, C-3), 25.0 (t, C-7), 25.8 (t, C-6), 36.4 (t, C-8), 37.9

(t, C-2), 72.9 (d, C-1), 129.7 (d, C-5), 130.3 (d, C-4) ppm.

E.2.1.3 Equatorial (E)-cyclooct-4-en-1-ol [4e] and axial (E)-cyclooct-4-en-1-ol [4a]

OH

1. AgNO3, hv
55

33 22

11

88

7766

OH
44

H
H

55

33 22

11

88

7766

OH
44

H
H

AxialEquatorial

2. NH4OH
[3]

+

[4e] [4a]

45% 27%

The isomerization of compound (Z)-cyclooct-4-en-1-ol [3] followed a protocol described in

the literature.[144] A column was filled with 35 g of AgNO3/SiO2 (10%) and flushed with n-

hexane:EtOAc (1:1). The reservoir was filled with n-hexane:EtOAc (4:1) and flushed with ar-

gon. Then the solvent was pumped through the system using a HPLC pump at a flow rate

of 100 cm3/min. After the system was filled with solvent, compound (Z)-cyclooct-4-en-1-ol [3]

(2.21 g, 17.6 mmol, 1 equiv.) and methyl benzoate (4.78 g, 35 mmol, 2 equiv.) were slowly added

to the system. After 15 minutes, the 254 nm lamps were turned on, beginning the isomeriza-

tion process. The depletion of the starting material was monitored with GC-MS. After 18 hours

the impregnated silica gel was placed under stirring in NH4OH:DCM (2:1), then the silica was

filtrated and thoroughly washed with NH4OH:DCM (2:1). The organic and water phase were

separated and the organic phase was washed with distilled water, dried over MgSO4 and the

solvent was evaporated. The crude material was purified by column chromatography (silica

gel/crude = 100:1) with n-hexane:EtOAc (4:1), affording the major equatorial [4e] and minor

axial [4a] products. The analytical data are in accordance with the literature.[144]
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Yield: 45% equatiorial [4e] (1.0 g, 8.0 mmol) and 27% axial [4a] (0.6 g, 4.7 mmol)

Appearance ([4e] and [4a]): colorless oils

TLC analysis: R f [4e] = 0.21 (n-hexane:EtOAc = 4:1) and R f [4a] = 0.45 (n-hexane:EtOAc =

4:1)

Sum formula: C8H14O

1H NMR [4e] (400 MHz, CDCl3): δ = 1.47 – 1.76 (m, 3H, H-7 + H-8), 1.75 – 2.08 (m, 4H,

H-2 + H-6 + H-7), 2.21 – 2.39 (m, 3H, H-3 + H-6), 3.40 – 3.55 (m, 1H, H-1), 5.31 – 5.44 (m, 1H,

H-5), 5.51 – 5.65 (m, 1H, H-4) ppm.

13C NMR [4e] (101 MHz, CDCl3): δ = 31.4 (t, C-7), 32.8 (t, C-3), 34.5 (t, C-6), 41.2 (t, C-8),

44.7 (t, C-2), 77.9 (d, C-1), 132.9 (d, C-5), 135.2 (d, C-4) ppm.

1H NMR [4a] (400 MHz, CDCl3): δ = 1.19 – 1.24 (m, 1H, H-8), 1.57 – 1.69 (m, 1H, H-2), 1.71

– 1.92 (m, 3H, H-6 + H-7), 1.99 – 2.15 (m, 2H, H-3 + H-8), 2.16 – 2.28 (m, 2H, H-2 + H-6), 2.28 –

2.44 (m, 1H, H-3), 3.92 – 4.07 (m, 1H, H-1), 5.48 – 5.62 (m, 2H, H-4 + H-5) ppm.

13C NMR [4a] (101 MHz, CDCl3): δ = 27.8 (t, C-7), 29.4 (t, C-3), 34.2 (t, C-6 or C-8), 34.2 (t,

C-6 or C-8), 43.1 (t, C-2), 67.5 (d, C-1), 133.2 (d, C-4), 134.4 (d, C-5) ppm.

E.2.1.4 Equatorial (E)-cyclooct-4-en-1-yl (4-nitrophenyl) carbonate [6e]

OH

H
H

Cl

O

NO2

O
dry pyridine, dry DCM,  r.t.

55

33 22

11

88

7766

O
44

H
H

O

O

1'1'

4'4'
3'3'

2'2'

NO2

+

[4e]

[6e]

83%

[5]

Equatorial (E)-cyclooct-4-en-1-yl (4-nitrophenyl) carbonate [6e] was synthesized according to

a literature protocol.[151] Equatorial (E)-cyclooct-4-en-1-ol [4e] (1.01 g, 8.0 mmol, 1 equiv.) was

dissolved in 80 mL of dry dichloromethane and then dry pyridine (1.62 mL, 20 mmol, 2.5 equiv.)

was added. The 4-nitrophenyl chloroformate [5] (1.58 g, 8.8 mmol, 1.1 equiv.) was dissolved in

20 mL of dry DCM and added dropwise to the reaction mixture. After 2 hours the reaction was

quenched with aqueous saturated NH4Cl solution and the organic and aqueous phase were
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separated. The aqueous phase was extracted twice with dichloromethane. The organic phases

were combined and dried over Na2SO4. After evaporation of the solvent, the crude material

was purified by column chromatography (silica gel/crude = 100:1) with a PE:EtOAc (95:5).The

analytical data are in accordance with the literature.[214]

Yield: 84% (1.9 g, 6.7 mmol)

Appearance: beige solid

Melting point: 76.2 - 76.4◦C (Lit.[214]: 74-75◦C)

TLC analysis: R f = 0.46 (n-hexane:EtOAc = 4:1)

Sum formula: C15H17NO5

1H NMR (400 MHz, CDCl3): δ = 1.61 – 1.77 (m, 2H, H-7 + H-8), 1.78 – 2.00 (m, 3H, H-6 +

H-7 + H-8), 2.01 – 2.17 (m, 2H, H-2), 2.28 – 2.41 (m, 3H, H-3 + H-6), 4.36 – 4.45 (m, 1H, H-1),

5.39 – 5.49 (m, 1H, H-5), 5.51 – 5.61 (m, 1H, H-4), 7.32 (d, J = 9.2 Hz, 2H, H-2’ or H-3’), 8.19 (d, J

= 9.2 Hz, 2H, H-2’ or H-3’) ppm.

13C NMR (101 MHz, CDCl3): δ = 30.9 (t, C-7), 32.2 (t, C-3), 33.9 (t, C-6), 38.1 (t, C-8), 40.4

(t, C-2), 86.1 (d, C-1), 121.6 (d, 2C, C-2’ or C-3’), 125.0 (d, 2C, C-2’ or C-3’), 132.8 (d, C-5), 134.6

(d, C-4), 145.0 (s, C-1’ or C-4’), 151.7 (s, carbonyl), 155.5 (s, C-1’ or C-4’) ppm.

E.2.1.5 Axial (E)-cyclooct-4-en-1-yl (4-nitrophenyl) carbonate [6a]

OH

H
H

Cl

O

NO2

O
dry pyridine, dry DCM,  r.t.

55

33 22

11

88

7766

O
44

H
H

O

O

1'1'

4'4'
3'3'

2'2'

NO2

+

[4a]

[6a]

22%

[5]

Axial (E)-cyclooct-4-en-1-yl (4-nitrophenyl) carbonate [6a] was synthesized according to a lit-

erature protocol.[147] Axial (E)-cyclooct-4-en-1-ol [4a] (0.5 g, 4.0 mmol, 1 equiv.) was dissolved

in 45 mL of dry DCM and then dry pyridine (0.81 mL, 10 mmol, 2.5 equiv.) was added. The

4-nitrophenyl chloroformate [5] (0.88 g, 4.4 mmol, 1.1 equiv.) was dissolved in 10 mL of dry

DCM and added dropwise. After 22 hours the reaction was quenched with aqueous saturated
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NH4Cl solution and the organic and aqueous phases were separated. The aqueous phase was

extracted twice with DCM. The organic phases were placed combined and dried with anhy-

drous Na2SO4. After evaporation of the solvent, the crude material was purified by column

chromatography (silica gel/crude = 100:1) using n-hexane:EtOAc (5:1). The analytical data are

in accordance with the literature.[215]

Yield: 22% (0.26 g, 0.8 mmol)

Appearance: beige solid

Melting point: 50.1 - 51.4◦C (Lit: not reported)

TLC analysis: R f = 0.48 (n-hexane:EtOAc = 5:1)

Sum formula: C15H17NO5

1H NMR [4e] (400 MHz, CDCl3): δ = 1.26 – 1.36 (m, 1H, H-8), 1.50 – 1.65 (m, 1H, H-7), 1.67

– 1.78 (m, 1H, H-2), 1.80 – 1.92 (m, 2H, H-6+H-7), 2.09 – 2.19 (m, 1H, H-3), 2.23 – 2.30 (m, 1H,

H-6), 2.30 – 2.46 (m, 3H, H-2 + H-3 + H-8), 4.92 – 5.00 (m, 1H, H-1), 5.49 – 5.65 (m, 2H, H-4 +

H-5), 7.37 (d, J = 9.2 Hz, 2H, H-2’ or H-3’), 8.23 (d, J = 9.2 Hz, 2H, H-2’ or H-3’) ppm.

13C NMR (101 MHz, CDCl3): δ = 27.9 (t, C-7), 29.7 (t, C-3), 32.0 (t, C-8), 34.1 (t, C-6), 40.5

(t, C-2), 75.9 (d, C-1), 121.8 (d, 2C, C-2’ or C-3’), 125.2 (d, 2C, C-2’ or C-3’), 131.4 (d, C-4), 135.3

(d, C-5), 145.2 (s, C-1’ or C-4’), 151.8 (s, carbonyl), 155.7 (s, C-1’ or C-4’) ppm.

E.2.1.6 4-((4-Iodophenyl)diazenyl)phenol [8]

NH2

I

2. Phenol, NaOH, 0°C

44 33

22

11
N

I

N 1'1' 2'2'
3'3'

4'4'

OH

59%

[7]

[8]

1. NaNO2, HCl (0°)

4-Iodoaniline [7] (5.19 g, 23.7 mmol, 1 equiv.) was dissolved in 400 mL of 2 M HCl and cooled

to 0◦C. Then NaNO2 (1.96 g, 28.4 mmol, 1.2 equiv.) was dissolved in 30 mL of H2O and added

dropwise forming a light orange solution with a precipitate. After 5 minutes, this solution
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was slowly added to a phenol (2.45 g, 26.1 mmol, 1.1 equiv.) solution in 200 mL of 2 M

NaOH, also cooled to 0◦C. After 2 hours at r.t., the reaction mixture was acidified with 2 M

HCl and extracted with EtOAc. The organic phase was separated and dried over MgSO4. Af-

ter evaporation of the solvent, the crude material was purified by column chromatography

(silica gel/crude = 100:1) with PE:EtOAc (5:1). The analytical data are in accordance with the

literature.[216]

Yield: 59% (4.56 g, 14 mmol)

Appearance: orange solid

Melting point: 161.7 - 162.7 ◦C (Lit.[216]: 163-165 ◦C)

TLC analysis: R f = 0.4 (PE:EtOAc = 6:1)

Sum formula: C12H9IN2O

1H NMR (400 MHz, CDCl3): δ = 5.22 (s, 1H, OH), 6.94 (d, J = 8.9 Hz, 2H, H-2’ or H-3’),

7.61 (d, J = 8.6 Hz, 2H, H-2 or H-3), 7.84 (d, J = 8.7 Hz, 2H, H-2 or H-3), 7.88 (d, J = 8.9 Hz, 2H,

H-2’ or H-3’) ppm.

13C NMR (101 MHz, CDCl3): δ = 97.3 (s, C-4), 116.3 (d, 2C, C-2’ or C-3’), 124.7 (d, 2C, C-2

or C-3), 125.6 (d, 2C, C-2’ or C-3’), 138.7 (d, 2C, C-2 or C-3), 147.5 (s, C-4’), 152.5 (s, C-1), 158.9

(s, C-1’) ppm.

E.2.1.7 4-((4-(3-Hydroxy-3-methylbut-1-yn-1-yl)phenyl)diazenyl)phenol [9]

2-methyl-3-butyn-2-ol, CuI, (PPh3)2PdCl2,

dry THF, Et3N
Argon, r.t.

81%

N

I

N

OH

[8]

44 33

22

11

N

55

N
1'1' 2'2'

3'3'

4'4'

OH

[9]

66

77

88
HO
99

88
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This reaction followed a protocol from the literature.[148] 4-((4-Iodophenyl)diazenyl)phenol [8]

(2.7 g, 8.3 mmol, 1 equiv.), bis(triphenylphosphine) palladium (II) dichloride (0.233 g, 0.33 mmol,

0.04 equiv.) and copper (I) iodide (31.62 mg, 1.7 mmol, 0.02 equiv.) were dissolved in 230 mL

of dry THF and 230 mL of Et3N and flushed with argon. Then 2-methyl-3-butyn-2-ol (2.09 g,

24.9 mmol, 3 equiv.) was added dropwise and the reaction was kept at room temperature

overnight. The solid was removed by filtration, washed with THF and the filtrate was evapo-

rated. The crude material was purified by column chromatography (silica gel//crude = 100:1)

using PE:EtOAc (2:1). The analytical data are in accordance with the literature.[148]

Yield: 59% (1.87 g, 6.7 mmol)

Appearance: orange solid

Melting point: 194.1 - 195.8 ◦C (Lit.: not reported)

TLC analysis: R f = 0.54 (PE:EtOAc = 1:1)

Sum formula: C17H16N2O2

1H NMR (400 MHz, DMSO-d6): δ = 1.49 (s, 6H, CH3), 5.53 (br s, 1H, H-9), 6.95 (d, J = 8.9

Hz, 2H, H-3’), 7.55 (d, J = 8.7 Hz, 2H, H-3), 7.77 – 7.83 (m, 4H, H-3 and H-6), 10.36 (s, 1H, Ar

OH) ppm.

13C NMR (400 MHz, DMSO-d6): δ = 31.5 (q,CH3), 63.7 (s, C-7), 80.18 (s, C-5), 98.4 (s, C-6),

116.0 (d, 2C,C-3’), 122.4 (d, 2C, C-2), 124.5 (d, 2C, C-4), 125.0 (2, 2C, C-2’), 132.3 (d, 2C, C-3),

145.3 (s, C-1’), 151.2 (s, C-1), 161.3 (s, C-4’) ppm.

E.2.1.8 4-((4-Ethynylphenyl)diazenyl)phenol [10]

84%

N

N

OH

[9]

HO

44 33

22

11

N

55

N
1'1' 2'2'

3'3'

4'4'

OH

[10]
66

NaOH, dioxane, 80°C
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This reaction followed a protocol from the literature.[148] 4-((4-(3-Hydroxy-3-methylbut-1-yn-

1-yl)phenyl)diazenyl)phenol [9] (1.9 g, 6.7 mmol, 1 equiv.) was dissolved in 350 mL of dry

dioxane, then NaOH (2.4 g, 60 mmol, 4.8 equiv.) was added and the mixture was heated to

80◦C. After 4 hours TLC shows full consumption of the starting material. The reaction mixture

was cooled to room temperature, the dioxane was evaporated and the crude material was dis-

solved in EtOAc and washed with water. After separation of the organic and water phases, the

organic phase was dried over MgSO4, filtered and the solvent was evaporated. The crude ma-

terial was purified by column chromatography (silica gel/crude = 100:1) with PE:EtOAc (6:1).

The analytical data are in accordance with the literature.[148]

Yield: 84% (1.25 g, 5.6 mmol)

Appearance: orange solid

Melting point: 159.4 - 160.5 ◦C (Lit[148]: not reported)

TLC analysis: R f = 0.8 (PE:EtOAc = 1:1)

Sum formula: C14H10N2O

1H NMR (400 MHz, DMSO-d6): δ = 4.40 (s, 1H, C-6), 6.96 (d, J = 8.9 Hz, 2H, H-3’), 7.65 (d,

J = 8.6 Hz, 2H, H-3), 7.77 – 7.85 (m, 4H, H-2+H-2’), 10.39 (s, 1H, OH) ppm.

13C NMR (400 MHz, DMSO-d6): δ = 82.7 (s, C-6), 82.9 (s, C-5), 115.8 (d, 2C, C-3’), 122.1 (d,

2C, C-2), 123.3 (s, C-4), 124.9 (d, 2C, C-2’), 132.6 (d, 2C, C-3), 145.0 (s, C-4’), 151.5 (s, C-1), 161.2

(s, C-1’) ppm.
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E.2.1.9 Equatorial (E)-cyclooct-4-en-1-yl (4-(4-ethynylphenyl)diazenyl)phenyl) carbonate [11e]
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O

H
H

O

O

NO2

+
N

N

OH

66

55

22

33
44

11

N
N

3'3'

2'2' 1'1'

EE

CC BB
AA

HH

GGFF

ODD

H
H

O

O

4'4'
DIPEA, dry ACN
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89%

[11e]

4-((4-Ethynylphenyl)diazenyl)phenol [10] (49.4 mg, 0.17 mmol, 1 equiv.) and equatorial (E)-

cyclooct-4-en-1-yl (4-nitrophenyl) carbonate [6e] (75.4 mg, 0.34 mmol, 2 equiv.) were dissolved

in 2.5 mL of dry ACN and then DIPEA (0.6 mL, 3.4 mmol, 20 equiv.) was added. The re-

action mixture was stirred overnight at room temperature. After evaporation of the solvent,

the crude material was purified by column chromatography (silica gel/crude = 100:1) using

n-hexane:EtOAc (7:1).

Yield: 89% (56.1 mg, 0.18 mmol)

Appearance: orange solid

Melting point: 131.1-132.8 ◦C

TLC analysis: R f = 0.51 (n-hexane:EtOAc = 10:1)

Sum formula: C23H22N2O3

HR-MS: [M+H]+ calculated = 375.1703 Da; [M+H]+ found = 375.1705; difference = 0.6 mDa

1H NMR (400 MHz, CDCl3): δ = 1.64 – 1.86 (m, 2H, H-G+H-H), 1.87 – 2.07 (m, 3H, H-F

+ H-G + H-H), 2.06 – 2.26 (m, 2H, H-B), 2.32 – 2.48 (m, 3H, H-C + H-F), 3.24 (s, 1H, H-6), 4.40

– 4.52 (m, 1H, H-A), 5.44 – 5.58 (m, 1H, H-E), 5.56 – 5.68 (m, 1H, H-D), 7.34 (d, J = 8.8 Hz, 2H,

H-2’ or H-3’), 7.63 (d, J = 8.5 Hz, 2H, H-3), 7.87 (d, J = 8.5 Hz, 2H, H-2), 7.95 (d, J = 8.8 Hz, 2H,

H-2’ or H-3’) ppm.

13C NMR (101 MHz, CDCl3): δ = 31.2 (t, C-G), 32.6 (t, C-C), 34.3 (t, C-F), 38.5 (t, C-H), 40.9
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(t, C-B), 79.7 (d, C-6), 83.4 (s, C-5), 85.9 (d, C-A), 121.9 (d, 2C, C-2’ or C-3’), 123.0 (d, 2C, C-2),

124.4 (d, 2C, C-2’ or C-3’), 124.9 (s, C-4), 133.1 (d, 2C, C-3), 133.2 (d, C-E), 135.0 (d, C-D), 150.3

(s, C-1’ or C-4’), 152.2 (s, C-1), 152.8 (s, carbonyl), 153.4 (s, C-1’ or C-4’) ppm.

E.2.1.10 Axial (E)-cyclooct-4-en-1-yl (4-(4-ethynylphenyl)diazenyl)phenyl) carbonate [11a]

[10]

[6a]

O

H
H

O

O

NO2

+
N

N

OH

66

55

22

33
44

11
N

N

3'3'

2'2'
1'1'

EE

CC BB
AA

HH

GGFF

O
DD

H
H

O

O

4'4'
DIPEA, dry ACN

r.t.

62%

[11a]

4-((4-Ethynylphenyl)diazenyl)phenol [10] (49.6 mg, 0.17 mmol, 1 equiv.) and axial (E)-cyclooct-

4-en-1-yl (4-nitrophenyl) carbonate [6a] (75.7 mg, 0.34 mmol, 2 equiv.) were dissolved in 2.5 mL

of dry ACN and then DIPEA (0.6 mL, 3.4 mmol, 20 equiv.) was added. The reaction mixture

was stirred overnight at room temperature. After evaporation of the solvent, the crude mate-

rial was purified by column chromatography (silica gel/crude = 100:1) using n-hexane:EtOAc

(10:1).

Yield: 62% (43.5 mg, 0.12 mmol)

Appearance: orange solid

Melting point: 134.5-135.8 ◦C

TLC analysis: R f = 0.66 (n-hexane:EtOAc = 6:1)

Sum formula: C23H22N2O3

HR-MS: [M+H]+ calculated = 375.1703 Da; [M+H]+ found = 375.1718 Da; difference =

1.5 mDa.

1H NMR (400 MHz, CDCl3): δ = 1.25 – 1.37 (m, 1H, H-H), 1.59 – 1.81 (m, 2H, H-B + H-G),

1.83 – 1.96 (m, 2H, H-F + H-G), 2.12 – 2.23 (m, 1H, H-C), 2.27 – 2.36 (m, 1H, H-F), 2.34 – 2.52 (m,
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3H, H-B + H-C + H-H), 3.24 (s, 1H, H-6), 4.96 – 5.05 (m, 1H, H-A), 5.49 – 5.73 (m, 2H, H-D+H-E),

7.36 (d, J = 9.0 Hz, 2H, H-2’ or H-3’), 7.64 (d, J = 8.5 Hz, 2H, H-3), 7.88 (d, J = 8.5 Hz, 2H, H-2),

7.98 (d, J = 9.0 Hz, 2H, H-2’ or H-3’) ppm.

13C NMR (101 MHz, CDCl3): δ = 28.1 (t, C-G), 29.9 (t, C-C), 32.3 (t, C-H), 34.3 (t, C-F), 40.8

(t, C-B), 75.5 (d, C-A), 79.7 (d, C-6), 83.4 (s, C-5), 122.0 (d, 2C, C-2’ or C-3’), 123.0 (d, 2C, C-2),

124.4 (d, 2C, C-2’ or C-3’), 124.9 (s, C-4), 131.6 (d, C-D or C-E), 133.1 (d, 2C, C-3), 135.6 (d, C-D

or C-E), 150.3 (s, C-1’ or C-4’), 152.2 (s, C-1), 152.8 (s, carbonyl), 153.5 (s, C-1’ or C-4’) ppm.

E.2.1.11 Methyl 4-nitrosobenzoate [13]

O O

NH2

Oxone,  DCM/H2O (1:4)

Argon, r.t.

O O

NO

11

44
33

22

[12] [13]

85%

This compound was synthesized according to a literature protocol.[149] Methyl benzoate [12]

(6.83 g, 45.2 mmol, 1 equiv.) was dissolved in 120 mL of dry DCM and placed under argon.

Oxone (41.67 g, 137 mmol, 3 equiv.) was dissolved in 250 mL of water and slowly added

to the reaction mixture. After 4 hours stirring at room temperature, the organic and water

phases were separated and the water phase was extracted with DCM. The organic phases were

combined and washed with HCl 0.5 M, water and dried over Na2SO4. After evaporation of the

solvent, the crude material was recrystallized using DCM. The analytical data are in accordance

with the literature.[149]

Yield: 85% (3.69 g, 22.3 mmol)

Appearance: yellow solid

Melting point: 141.8-142.5◦C (Lit.: 122-125 ◦C[149], 145-150 ◦C[217])

TLC analysis: R f = 0.5 (PE:EtOAc = 12:1)

Sum formula: C8H7NO3

1H NMR (400 MHz, CDCl3): δ = 3.91 (s, 3H, OCH3), 7.86 (d, J = 8.5 Hz, 2H, H-3), 8.22 (d, J
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= 8.6 Hz, 2H, H-2) ppm.

13C NMR (101 MHz, CDCl3): δ = 52.8 (q, OCH3), 120.4 (d, 2C, C-3), 131.1 (d, 2C, C-2),

135.2 (s, C-1), 164.4 (s, C-4), 165.8 (s, carbonyl) ppm.

E.2.1.12 Methyl 4-((4-iodophenyl)diazenyl)benzoate [15]

[13]

[15]

O O

NO

I

NH2

+

I

2'2'

3'3'

4'4'

1'1'
NN

11

44 33

22

O

O

[14]

CH3COOH, r.t.

quantitative

This compound was synthesized according to a literature protocol.[149] Methyl 4-nitrosobenzoate

[13] (5.65 g, 34.2 mmol, 2 equiv.) was suspended in 200 mL of glacial acetic acid and 4-

iodoaniline [14] (5.26 g, 17.1 mmol, 1 equiv.) was added, dissolved in 50 mL of glacial acetic

acid. After stirring overnight, the precipitate was collected by filtration, washed with glacial

acetic acid, water and EtOAc. The analytical data are in accordance with the literature.[149]

Yield: quantitative (7.68 g, 0.02 mmol)

Appearance: orange solid

Melting point: 216.6-216.7 ◦C (Lit.:[149] 206-208 ◦C)

TLC analysis: R f = 0.57 (PE:EtOAc = 8:1)

Sum formula: C14H11N2O2

1H NMR (400 MHz, CDCl3): δ = 3.96 (s, 3H, OCH3), 7.68 (d, J = 8.7 Hz, 2H, H-2), 7.89 (d, J

= 8.7 Hz, 2H, H-3), 7.95 (d, J = 8.8 Hz, 2H, H-2’), 8.19 (d, J = 8.7 Hz, 2H, H-3’) ppm.

13C NMR (101 MHz, CDCl3): δ = 52.5 (q, OCH3), 98.8 (s, C-1 or C-4), 122.9 (d, 2C, C-2’),

124.8 (d, 2C, C-2), 130.8 (d, 2C, C-3’), 132.3 (s, C-4’), 138.7 (d, 2C, C-3), 152.0 (s, C-1 or C-4), 155.0

(s, C-1’), 166.6 (s, carbonyl) ppm.
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E.2.1.13 Methyl 4-((4-ethynylphenyl)diazenyl)benzoate [16]

[16]

55

2'2'

3'3'

4'4'

1'1'
NN

11

44 33

22

O

O

66

1. TMS-CCH, (Ph3P)2PdCl2, CuI,
Et3N:THF (1:1), r.t., o.n.

2. K2CO3, MeOH:THF (7:3)

[15]
I

NN

O

O

62%

Methyl 4-((4-iodophenyl)diazenyl)benzoate [15] (1.76 g, 4.8 mmol, 1 equiv.), CuI (27.4 mg,

0.14 mmol, 0.03 equiv.) and (Ph3P)2PdCl2 (101 g, 0.14 mmol , 0.03 equiv.) were dissolved

in 300 mL of dry THF:Et3N (1:1) and placed under argon. Then trimethylsilylacetylene (0.95 g,

9.6 mmol, 2 equiv.) was added dropwise to the reaction mixture and the reaction was stirred

overnight. The reaction mixture was evaporated to almost dryness, diluted in DCM and fil-

tered through a pad of silica. After evaporation of the filtrate, the obtained solid was dissolved

in 500 mL of dry methanol:dry THF (3:7), K2CO3 (1.99 g, 14.4 mmol, 3 equiv.) was added

and the mixture was stirred for 2 hours. The reaction mixture was diluted with EtOAc and

the organic phase was washed with brine, dried over Na2SO4 and the solvent was evaporated.

The crude material was purified by column chromatography (silica gel/crude = 100:1) with

n-hexane:EtOAc (4:1).

Yield: 62% (0.782 g, 3 mmol)

Appearance: orange solid

Melting point: 182.1-182.5 ◦C

TLC analysis: R f = 0.54 (PE: EtOAc = 8:1)

Sum formula: C16H12N2O2

HR-MS: [M+H]+ calculated = 265.0972 Da; [M+H]+ found = 265.0981 Da; difference =

0.9 mDa

1H NMR (400 MHz, CDCl3): δ = 3.26 (s, 1H, H-6), 3.96 (s, 3H, OCH3), 7.65 (d, J = 8.6 Hz,

2H, H-3), 7.91 (d, J = 8.6 Hz, 2H, H-2), 7.95 (d, J = 8.6 Hz, 2H, H-2’), 8.19 (d, J = 8.6 Hz, 2H, H-3’)
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ppm.

13C NMR (101 MHz, CDCl3): δ = 52.5 (q, OCH3), 80.1 (d, C-6), 83.3 (s, C-5), 122.9 (d, 2C,

C-2’), 123.3 (d, 2C, C-2), 125.6 (s, C-4), 130.8 (d, 2C, C-3’), 132.2 (s, C-4’), 133.2 (d, 2C, C-3), 152.2

(s, C-1), 155.1 (s, C-1’), 166.6 (s,carbonyl) ppm.

E.2.1.14 4-((4-Ethynylphenyl)diazenyl)benzoic acid [17]

[17]

55

2'2'

3'3'

4'4'

1'1'
NN

11

44 33

22

O

OH

66

LiOH, THF:H2O (3:1)

[16]

NN

O

O

97%

Methyl 4-((4-ethynylphenyl)diazenyl)benzoate [16] (0.115 g, 0.43 mmol, 1 equiv.) was dis-

solved in 13.5 mL of THF and LiOH (0.259 g, 10.8 mmol, 25 equiv.) was added, dissolved

in 4.5 mL of water. After stirring overnight, the reaction mixture was acidified using 2 M HCl,

EtOAc was added and the organic and water phases were separated. The water phase was

extracted with EtOAc, all of the organic phases were combined, dried over MgSO4 and the

solvent was evaporated.

Yield: 97% (0.105 g, 0.40 mmol)

Appearance: orange solid

Melting point: 242.4-245.1 ◦C

TLC analysis: R f = 0.54 (DCM:MeOH = 20:1)

Sum formula: C15H10N2O2

HR-MS: [M+H]+ calculated = 251.0815 Da; [M+H]+ found = not found.

1H NMR (400 MHz, DMSO-d6): δ = 4.49 (s, 1H, H-6), 7.72 (d, J = 8.5 Hz, 2H, H-3), 7.93 (d,

J = 8.5 Hz, 2H, H-2), 7.98 (d, J = 8.5 Hz, 2H, H-2’), 8.15 (d, J = 8.5 Hz, 2H, H-3’), 13.18 (br s, 1H,

COOH) ppm.
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13C NMR (101 MHz, DMSO-d6): δ = 82.92 (d, C-6), 83.91 (s, C-5), 122.70 (d, 2C, C-2’),

123.09 (d, 2C, C-2), 125.27 (s, C-4), 130.65 (d, 2C, C-3’), 133.02 (d, 2C, C-3), 133.13 (s, C-4’),

151.36 (s, C-1), 154.17 (s, C-1’), 166.63 (s, carbonyl) ppm.

E.2.1.15 Equatorial (E)-cyclooct-4-en-1-yl 4-(4-ethynylphenyl)diazenyl)benzoate [18e]

[17]

HO O

N
N

DIC/DMAP, dry DMF
Argon

44%

O

4'4'

O

1'1'
2'2'

3'3'

N
N

11

44
33

22

55

66

AA

HHGG

FF

EE

CC

BB
DD

H

H

+
OH

H H

[18e]

[4e]

4-((4-Ethynylphenyl)diazenyl)benzoic acid [17] (0.406 g, 1.6 mmol, 2 equiv.), equatorial (E)-

cyclooct-4-en-1-ol [4e] (0.102 g, 0.81 mmol, 1 equiv.) and DMAP (0.149 g, 1.2 mmol, 1.5 equiv.)

were dissolved in 2 mL of dry DMF, placed under argon and cooled to 0◦C. After 20 minutes,

DIC (0.42 mL, 2.6 mmol, 3.2 equiv.) was added to the reaction mixture, which was then allowed

to warm to room temperature. After 4 hours, the solvent was evaporated and the crude mate-

rial was purified by column chromatography (silica gel/crude = 100:1) using n-hexane:EtOAc

(12:1).

Yield: 44% (0.129 g, 0.36 mmol)

Appearance: orange solid

Melting point: 116.5-117.6 ◦C

TLC analysis: R f = 0.52 (n-hexane:EtOAc = 12:1)

Sum formula: C23H22N2O2

HR-MS: [M+H]+ calculated = 359.1754 Da; [M+H]+ found = 359.1759 Da; difference =

0.5 mDa

1H NMR (400 MHz, CDCl3): δ = 1.67 – 1.77 (m, 1H, H-H), 1.81 – 1.93 (m, 2H, H-G + H-H),
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1.96 – 2.05 (m, 2H, H-F + H-G), 2.12 – 2.22 (m, 2H, H-B), 2.39 – 2.47 (m, 3H, H-C + H-F), 3.25 (s,

1H, H-6), 4.66 – 4.79 (m, 1H, H-A), 5.55 – 5.70 (m, 2H, H-D+ H-E), 7.65 (d, J = 8.7 Hz, 2H, H-3),

7.89 – 7.95 (m, 4H, H-2 + H-2’), 8.15 (d, J = 8.9 Hz, 2H, H-3’) ppm.

13C NMR (101 MHz, CDCl3): δ = 31.1 (t, C-G), 32.6 (t, C-C), 34.3 (t, C-F), 38.7 (t, C-H), 41.0

(t, C-B), 79.9 (d, C-6), 81.3 (t, C-A), 83.2 (s, C-5), 122.7 (d, 2C, C-2’), 123.1 (d, 2C, C-2), 125.4 (s,

C-4), 130.5 (d, 2C, C-3’), 132.9 (s, C-4’), 133.1 (d, 2C, C-3), 133.2 (d, C-E), 135.0 (d, C-D), 152.1 (s,

C-1), 154.9 (s, C-1’), 165.3 (s, carbonyl) ppm.

E.2.1.16 Axial (E)-cyclooct-4-en-1-yl 4-(4-ethynylphenyl)diazenyl)benzoate [18a]

[17]

HO O

N
N

DIC/DMAP, dry DMF
Argon

50%

O

4'4'

O

1'1'
2'2'

3'3'

N
N

11

44
33

22

55

66

AA

HHGG

FF

EE

CC

BBDD
H

H

+
OH

H H

[18a]

[4a]

4-((4-Ethynylphenyl)diazenyl)benzoic acid [17] (0.222 g, 0.89 mmol, 2 equiv.), axial (E)-cyclooct-

4-en-1-ol [4a] (0.056 g, 0.44 mmol, 1 equiv.) and DMAP (0.081 g, 0.66 mmol, 1.5 equiv.) were

dissolved in 2 mL of dry DMF, placed under argon and cooled to 0◦C. After 20 minutes, DIC

(0.22 mL, 1.4 mmol, 3.2 equiv.) was added to the reaction mixture, which was allowed to warm

up to room temperature. After 4 hours, the solvent was evaporated and the crude material was

purified by column chromatography (silica gel/crude = 100:1) using n-hexane:EtOAc (12:1).

Yield: 50% (0.080 g, 0.22 mmol)

Appearance: orange solid

Melting point: 108.2 - 109.9 ◦C

TLC analysis: R f = 0.64 (PE:EtOAc = 15:1)

Sum formula: C23H22N2O2
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HR-MS:[M+H]+ calculated = 359.1754 Da; [M+H]+ found = 359.1768 Da; difference =

1.4 mDa

1H NMR (600 MHz, CDCl3): δ = 1.34 – 1.41 (m, 1H, H-H), 1.48 – 1.57 (m, 1H, H-G), 1.79 –

1.87 (m, 2H, H-B+ H-G), 1.89 – 1.96 (m, 1H, H-F), 2.22 – 2.25 (m, 1H, H-C), 2.28 – 2.33 (m, 1H,

H-F), 2.41 – 2.48 (m, 2H, H-H + H-B), 2.49 – 2.55 (m, 1H, H-C), 3.26 (s, 1H, H-6), 5.27 – 5.31 (m,

1H, H-A), 5.63 – 5.69 (m, 1H, H-D), 5.74 – 5.81 (m, 1H, H-E), 7.66 (d, J = 8.6 Hz, 2H, H-3), 7.93

(d, J = 8.5 Hz, 2H, H-2), 7.99 (d, J = 8.6 Hz, 2H, H-2’), 8.25 (d, J = 8.7 Hz, 2H, H-3’) ppm.

13C NMR (151 MHz, CDCl3): δ = 28.5 (t, C-G), 30.4 (t, C-C), 32.6 (t, C-H), 34.5 (t, C-F), 41.1

(t, C-B), 71.3 (d, C-A), 80.1 (s, C-4), 83.3 (s, C-5), 123.0 (d, 2C, C-2’), 123.3 (d, 2C, C-2), 125.6 (s,

C-4), 130.7 (d, 2C, C-3’), 132.0 (d, C-D), 132.6 (s, C-4’), 133.2 (d, 2C, C-3), 135.4 (d, C-E), 152.2 (s,

C-1), 155.2 (s, C-1’), 165.1 (s, carbonyl) ppm.

E.2.2 SPAAC-tetrazine ligation azobenzene

E.2.2.1 Ethyl (1R,8S,9s,Z)-bicyclo[6.1.0]non-4-ene-9-carboxylate [19endo] and ethyl (1R,8S,9r,Z)-

bicyclo[6.1.0]non-4-ene-9-carboxylate [19exo]

Rh(OAc)2

N2
OEt

O

55 66

77

88

44

O

H H

55 66

77

88

44

O

22

O

H H
+

[1]
[19exo] [19endo]

O 33 11 33 11

35% 26%

2

These compounds were prepared according to the literature.[151] A round-bottomed flask was

filled with rhodium(II) acetate (1.08 g, 22.6 mmol, 0.043 equiv.) and 1,5-cyclooctadiene [1]

(45.5 g, 420.7 mmol, 8 equiv.), and placed under argon atmosphere. Ethyl 2-diazoacetate (6.90 g,

52.6 mmol, 1 equiv.) was added with a syringe pump to the reaction mixture over 60 hours.

The reaction mixture was filtered through a glass filter with silica and eluted with PE:EtOAc

(100:1). The fractions that only contained 1,5-cyclooctadiene were separated and the remaining

ones were pooled, the solvent was evaporated and the crude material was purified by column

chromatography (silica gel/crude = 100:1) using PE:EtOAc (100:1) affording the compounds
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[19endo] and [19exo]. The analytical data are in accordance with the literature.[151]

Yield: 26% [19endo] (2.7 g, 13.7 mmol) and 35% [19exo] (3.5 g, 18.1 mmol) (Lit.: 44%/54%,[151]

58%/24%[111] endo/exo )

Appearance ([19endo] and [19exo]): colorless oils

TLC analysis: R f [19endo] = 0.35 (n-heptane:EtOAc = 20:1) and R f [19exo] = 0.24 (n-heptane:EtOAc

= 20:1)

Sum formula: C12H20O2

1H NMR [19endo] (600 MHz, CDCl3): δ = 1.26 (t, J = 7.1 Hz, 3H, H-1), 1.35 – 1.43 (m, 2H,

H-5), 1.70 (t, J = 8.8 Hz, 1H, H-4), 1.79 – 1.86 (m, 1H, H-6), 2.01 – 2.10 (m, 1H, H-7), 2.13 – 2.26

(m, 1H, H-6), 2.46 – 2.54 (m, 2H, H-7), 4.11 (q, J = 7.1 Hz, 2H, H-2), 5.57 – 5.64 (m, 2H, H-8) ppm.

13C NMR [19endo] (151 MHz, CDCl3): δ = 14.6 (q, C-1), 21. (d,4 C-4), 22.8 (t, 2C, C-6), 24.3

(d, 2C, C-5), 27.2 (t, 2C, C-7), 59.9 (t, C-2), 129.6 (d, 2C, C-8), 172.5 (s, C-3) ppm.

1H NMR [19exo] (600 MHz, CDCl3): δ = 1.17 (t, J = 4.6 Hz, 1H, H-4), 1.24 (t, J = 7.1 Hz, 3H,

H-1), 1.42 – 1.50 (m, 1H, H-6), 1.52 – 1.58 (m, 2H, H-5), 2.02 – 2.13 (m, 2H, H-7), 2.15 – 2.23 (m,

2H, H-6), 2.24 – 2.34 (m, 2H, H-7), 4.08 (q, J = 7.1 Hz, 2H, H-2), 5.60 – 5.66 (m, 2H, H-8) ppm.

13C NMR [19exo] (151 MHz, CDCl3): δ = 14.4 (q, C-1), 26.8 (t, 2C, C-7), 27.8 (d, 2C, C-5),

28.0 (d, C-4), 28.4 (t, 2C, C-6), 60.4 (t, C-2), 130.0 (d, 2C, C-8), 174.5 (s, C-3) ppm.

E.2.2.2 (1R,8S,9s,Z)-Bicyclo[6.1.0]non-4-en-9-yl)methanol [20endo]

6'6'

5'5'

22

44 55

66

777'7'

33

OH

H

4'4'

H

[20endo]

OO

H H

[19endo]

LiAlH4

dry Et2O
0ºC

98%

1

This compound was prepared according to the literature.[111] Lithium aluminum hydride (0.196 mg,

23.1 mmol, 1.8 equiv.) was suspended in 10 mL of dry Et2O and cooled to 0◦C. Ethyl (1R,8S,9s,Z)-

bicyclo[6.1.0]non-4-ene-9-carboxylate [19endo] (2.5 g, 12.8 mmol, 1 equiv.) was dissolved in

55 mL of dry Et2O and added dropwise to the reaction mixture with an addition funnel. Upon
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complete addition, the reaction mixture was allowed to warm to room temperature. After

1 hour the reaction mixture was diluted with Et2O, cooled to 0◦C and quenched by the slow

addition of aqueous saturated Na2SO4 solution. The obtained suspension was filtered and the

filtrate collected. The organic and water phases were separated, the water phase was extracted

with Et2O, the organic phases were combined, dried over Na2SO4 and the solvent was evapo-

rated. The analytical data are in accordance with the literature.[111]

Yield: 98% (1.9 g, 11.4 mmol)

Appearance: beige oil

TLC analysis: R f = 0.1 (n-heptane:EtOAc = 10:1)

Sum formula: C10H16O

1H NMR (600 MHz, CDCl3): δ = 0.94 – 1.02 (m, 2H, H-4), 1.10 (p, J = 8.2 Hz, 1H, H-3), 1.52

– 1.59 (m, 2H, H-5 or H-5’), 1.93 – 2.00 (m, 2H, H-5 or H-5’), 2.05 – 2.11 (m, 2H, H-6 or H-6’),

2.31 – 2.38 (m, 2H, H-6 or H-6’), 3.69 (d, J = 7.6 Hz, 2H, H-2), 5.57 – 5.64 (m, 2H, H-7+H-7’) ppm.

13C NMR (151 MHz, CDCl3): δ = 19.1 (d, C-4), 20.8 (d, C-3), 24.0 (t, C-5), 27.8 (t, C-6), 60.3

(t, C-2), 129.8 (d, C-7) ppm.

E.2.2.3 (1R,8S,9s)-4,5-Dibromobicyclo[6.1.0]nonan-9-yl)methanol [21endo]

6'6'

5'5'

22

44 55

66777'7'

33

OH

H

4'4'

H

[21endo]

OH

H H

[20endo]

Br2

DCM
0ºC

98%

Br Br

1

This compound was prepared according to the literature.[153] (1R,8S,9s,Z)-Bicyclo[6.1.0]non-4-

en-9-yl)methanol [20endo] (1.92 g, 12.6 mmol, 1 equiv.) was dissolved in 40 mL of DCM and

cooled to 0◦C. Bromine (0.71 mL, 13.85 mmol, 1.1 equiv.) was diluted in 6 mL of DCM and

added dropwise to the reaction mixture with an addition funnel, turning the reaction mixture

yellow. The reaction mixture was quenched with aqueous saturated Na2S2O3 solution, the

organic phase was separated from the water phase, dried over Na2SO4 and the solvent was
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evaporated. The desired product was obtained pure and used without further purification

(purity >95% according to NMR). The analytical data are in accordance with the literature.[153]

Yield: 98% (3.8 g, 12.3 mmol)

Appearance: colorless solid

Melting point: 102.2 - 103.5 ◦C (Lit.:[153] 104 - 106 ◦C)

TLC analysis: R f = 0.22 (PE:EtOAc = 3:1)

Sum formula: C10H16Br2O2

1H NMR (600 MHz, CDCl3): δ = 1.06 – 1.13 (m, 1H, H-4 or H-4’), 1.14 – 1.19 (m, 1H, H-4

or H-4’), 1.20 – 1.24 (m, 1H, H-3), 1.53 – 1.69 (m, 2H, H-5 or H-5’), 1.86 – 1.98 (m, 2H, H-5 or

H-5’), 2.13 – 2.19 (m, 1H, H-6 or H-6’), 2.24 – 2.31 (m, 1H, H-6 or H-6’), 2.62 – 2.77 (m, 2H, H-6

or H-6’), 3.73 – 3.79 (m, 2H, H-2), 4.79 – 4.82 (m, 1H, H-7 or H-7’), 4.83 – 4.86 (m, 1H, H-7 or

H-7’) ppm.

13C NMR (151 MHz, CDCl3): δ = 17.3 (d, C-4 or C-4’), 19.1 (t, C-5 or C-5’), 20.1 (t, C-5 or

C-5’), 20.2 (d, C-4 or C-4’), 22.0 (d, C-3), 35.1 (t, C-6 or C-6’), 35.1 (t, C-6 or C-6’) 53.4 (s, C-7 or

C-7’), 56.3 (s, C-7 or C-7’), 59.8 (t, C-2) ppm.

E.2.2.4 (1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-yl)methanol [22endo]

11

44 55

66
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33

OH

H H

[22endo]

OH

H H

[21endo]

1. 1M KOtBu in THF, 0ºC
2. reflux

33%

BrBr

2

This compound was prepared according to the literature.[111] (1R,8S,9s)-4,5-Dibromobicyclo

[6.1.0]nonan-9-yl)methanol [21endo] (3.86 g, 12.36 mmol, 1 equiv.) was dissolved in 140 mL of

dry THF and cooled to 0◦C. 1 M KOtBu in THF (40.8 mL, 40.83 mmol, 3.3 equiv.) was added

dropwise and the reaction mixture was heated to 70◦C. After 2 hours the reaction mixture was

quenched with aqueous saturated NH4Cl solution, the organic phase was separated, dried

over NaSO4 and the solvent was evaporated. The crude material was purified by column chro-
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matography (silica gel/crude =100:1) using a PE:EtOAc gradient (3:1 till 1:1). The analytical

data are in accordance with the literature.[153]

Yield: 33% (0.612 g, 0.4 mmol)

Appearance: beige oil

TLC analysis: R f = 0.24 (PE:EtOAc = 1:1)

Sum formula: C10H14O

1H NMR (600 MHz, CDCl3): δ = 0.89 – 0.95 (m, 2H, H-4), 1.32 (m, 1H, H-3), 1.55 – 1.62 (m,

2H, H-5), 2.16 – 2.33 (m, 6H, H-6 + H-5), 3.71 (d, J = 7.9 Hz, 2H, H-2) ppm.

13C NMR (151 MHz, CDCl3): δ = 20.1 (d, 2C, C-4), 21.5 (d, C-3), 21.6 (t, 2C, C-6), 29.1 (t,

2C, C-5), 60.0 (t, C-2), 99.0 (s, 2C, C-7) ppm.

E.2.2.5 Ethyl 4-((4-hydroxyphenyl)diazenyl)benzoate [24]

51%

[23]

[24]

5'5'

2'2'

3'3'

4'4'

1'1'
N N

11 22

33

OH
44
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OO

1. NaNO2, HCl

2. Phenol

O
O

6'6'

7'7'

This compound was prepared according to the literature.[158] Ethyl-4-aminobenzoate [23] (1.44 g,

8.74 mmol, 1 equiv.) was dissolved in 20 mL of 2 M HCl and cooled to 0◦C. The NaNO2 (0.747 g,

10.82 mmol, 1.2 equiv.) was dissolved in 5 mL of water and slowly added to the reaction mix-

ture. After 30 minutes, phenol (1.0 g, 10.63 mmol, 1.2 equiv.) was added to the reaction mixture

. After 1h30 aqueous saturated NaHCO3 solution was added until reaching pH 7. The precip-

itate collected by filtration, washed with water and recrystallized from ethanol. The analytical

data are in accordance with the literature.[157]

Yield: 51% (1.15 g, 4.3 mmol)

Appearance: orange solid
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Melting point: 161.8 - 162.3 ◦C (Lit.: 162 ◦C[158], 164 ◦C[157])

TLC analysis: R f = 0.24 (PE:EtOAc = 5:1)

Sum formula: C15H14N2O3

1H NMR (600 MHz, CDCl3): δ = 1.43 (t, J = 7.1 Hz, 3H, H-7’), 4.42 (q, J = 7.1 Hz, 2H, H-6’),

5.52 (s, 1H, OH), 6.97 (d, J = 8.8 Hz, 2H, H-3), 7.89 – 7.94 (m, 4H, H-2’ + H-2), 8.18 (d, J = 8.8 Hz,

2H, H-3’) ppm.

13C NMR (151 MHz, CDCl3): δ = 14.48 (q, C-7’), 61.44 (t, C-6’), 116.08 (d, 2C, C-3), 122.50

(d, 2C, C-2’), 125.60 (d, 2C, C-2), 130.72 (d, 2C, C-3’), 131.70 (s, C-4’), 147.30 (s, C-1), 155.39 (s,

C-1’), 159.12 (s, C-4), 166.46 (s, C-5’) ppm.

E.2.2.6 4-((4-Hydroxyphenyl)diazenyl)benzoic acid [25]

98%

[25]
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N N
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Ethyl 4-((4-hydroxyphenyl)diazenyl)benzoate [24] (0.94 g, 3.7 mmol, 1 equiv.) was dissolved in

250 mL of THF and stirred, LiOH (2.1 g, 92.5 mmol, 25 equiv.) was dissolved in 75 mL of H2O

and added to the reaction mixture. After stirring overnight at 75◦C, the reaction mixture was

acidified with 2 M HCl till pH approximately 1 and diluted in DCM. The water and organic

phases were separated, the water phase was extracted with DCM, the organic phases were

combined, dried over NaSO4, filtered and the solvent was evaporated.

Yield: 98% (0.817 g, 3.4 mmol)

Appearance: orange solid

Melting point: > 220◦C

TLC analysis: R f = 0.2 (PE:EtOAc = 1:1)
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Sum formula: C13H10N2O3

HR-MS: [M+H]+ calculated = 243.0764 Da; [M+H]+ found = 243.0767; difference = 0.3 mDa

1H NMR (600 MHz, DMSO-d6): δ = 6.96 (d, J = 8.8 Hz, 2H, H-3), 7.85 (d, J = 8.8 Hz, 2H,

H-2), 7.88 (d, J = 8.6 Hz, 2H, H-2’), 8.11 (d, J = 8.5 Hz, 2H, H-3’), 10.46 (s, 1H, OH), 13.10 (s, 1H,

COOH) ppm.

13C NMR (151 MHz, DMSO-d6): δ = 116.1 (d, 2C, C-2), 122.1 (d, 2C, C-2’), 125.4 (d, 2C,

C-3), 130.6 (d, 2C, C-3’), 131.9 (s, C-1), 145.3 (s, C-1’), 154.6 (s, C-4), 161.7 (s, C-4’), 166.8 (s, C-5’)

ppm.

E.2.2.7 4-(4((((E)-Cyclooct-4-en-1-yl)oxy)carbonyl)oxy)phenyl)diazenyl)benzoic acid [26]

OHO

OH

N
N
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[25]

4-((4-Hydroxyphenyl)diazenyl)benzoic acid [25] (0.67 mg, 2.75 mmol, 2 equiv.) was dissolved

in 2.8 mL of DMF and DIPEA (4.77 mL, 27.4 mmol, 30 equiv.) was added. Compound [6e]

(0.4 g, 1.37 mmol, 1 equiv.) was dissolved in 2 mL of DMF and added to the reaction mixture.

The flask was flushed with argon and stirred overnight at 70◦C. The DMF was evaporated and

the crude material was purified by column chromatography (silica gel/ crude = 100:1) using

DCM:MeOH (100:1 till 100:5).

Yield: 60% (0.325 g, 0.8 mmol)

Appearance: orange solid

Melting point: 208.4-210.2 ◦C
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TLC analysis: R f = 0.41 (DCM:MeOH = 20:1)

Sum formula: C22H22N2O5

HR-MS: [M+H]+ calculated = 395.1601 Da; [M+H]+ found = 395.1608 Da ; difference =

0.7 mDa

1H NMR (600 MHz, DMSO-d6): δ = 1.64 – 1.74 (m, 2H, H-H + H-G), 1.79 – 1.85 (m, 1H,

H-H), 1.89 – 1.96 (m, 2H, H-G + H-F), 2.04 – 2.13 (m, 2H, H-B), 2.28 – 2.35 (m, 3H, H-C + H-F),

4.34 – 4.42 (m, 1H, H-A), 5.45 – 5.52 (m, 1H, H-E), 5.58 – 5.70 (m, 1H, H-D), 7.48 (d, J = 8.8 Hz,

2H, H-3), 7.95 – 8.01 (m, 4H, H-2 + H-2’), 8.15 (d, J = 8.6 Hz, 2H, H-3’), 13.26 (s, 1H, COOH)

ppm.

13C NMR (151 MHz, DMSO-d6): δ = 30.7 (t, C-G), 32.0 (t, C-C), 33.6 (t, C-F), 37.6 (t, C-H),

40.1 (t, C-B), 85.3 (d, C-A), 122.6 (d, 2C, C-3), 122.6 (d, 2C, C-2’), 124.2 (d, 2C, C-2), 130.6 (d, 2C,

C-3’), 132.6 (d, C-E), 133.2 (s, C-4’), 135.0 (d, C-D), 149.6 (s, C-1), 152.0 (s, C-5), 153.3 (s, C-4),

154.1 (s, C-1’), 166.7 (s, C-5’) ppm.

E.2.2.8 3-(4-((E)-(4-(((((E)-Cyclooct-4-en-1-yl)oxy)carbonyl)oxy)phenyl)diazenyl)

benzamido)propanoic acid [28]
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4-(4((((E)-Cyclooct-4-en-1-yl)oxy)carbonyl)oxy)phenyl)diazenyl)benzoic acid [26] (97.2 mg,

0.25 mmol, 1 equiv.) was dissolved in 5 mL of dry DMF and cooled to 0◦C, and the N-methyl-

morpholine (35.5 µL, 0.32 mmol, 1.3 equiv.) and the isobutyl chloroformate (52 µL, 0.39 mmol,

1.6 equiv.) were added. After 10 minutes of stirring at 0◦C, β-alanine (0.110 g, 1.2 mmol,
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5 equiv.) was added to the reaction mixture, which stirred overnight at room temperature. The

solvent was evaporated and the crude material was purified by preparative HPLC (C18 col-

umn, MeOH/H2O, 9 minutes method: 2 minutes gradient elution - 5% MeOH till 98% MeOH -

followed by 7 minutes isocratic with 98% MeOH). After evaporation of the fractions, the solid

was liophilized.

Yield: 69% (78.8 mg, 0.17 mmol)

Appearance: orange solid

Melting point: 147.2-148.6 ◦C

TLC analysis: R f = 0.34 (DCM:MeOH = 20:1)

Sum formula: C25H27N3O6

HR-MS: [M+H]+ calculated = 466.1973 Da; [M+H]+ found = 466.1980 Da; difference =

0.7 mDa

1H NMR (400 MHz, CDCl3): δ = 1.64 – 1.85 (m, 2H, H-G + H-H), 1.86 – 2.05 (m, 3H, H-F

+ H-G + H-H), 2.09 – 2.26 (m, 2H, H-B), 2.33 – 2.47 (m, 3H, H-C+ H-F), 2.76 (t, J = 5.4 Hz, 2H,

H-8’), 3.77 (q, J = 5.7 Hz, 2H, H-7’), 4.41 – 4.51 (m, 1H, H-A), 5.45 – 5.56 (m, 1H, H-E), 5.56 –

5.68 (m, 1H, H-D), 6.96 (s, 1H, H-6’), 7.33 (d, J = 8.9 Hz, 2H, H-2’), 7.86 – 8.03 (m, 6H, H-3’+ H-2

+ H-3) ppm.

13C NMR (101 MHz, CDCl3): δ = 31.1 (t, C-G), 32.5 (t, C-C), 33.7 (t, C-8’), 34.2 (t, C-F), 35.4

(t, C-7’), 38.4 (t, C-H), 40.8 (t, C-B), 85.9 (d, C-A), 121.8 (d, 2C, C-2’), 123.0 (d, 2C, C-3), 124.4

(d, 2C, C-2), 128.0 (d, 2C, C-3’), 133.1 (d, C-E), 134.9 (d, C-D), 135.9 (s, C-1, C-4’), 150.1 (s, C-1),

152.7 (s, C-5), 153.5 (s, C-4), 154.2 (s, C-1’), 167.0 (s, C-5’), 176.8 (s, C-9’) ppm.

E.2.2.9 ((1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-yl)methyl (4-nitrophenyl) carbonated [30endo]
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This compound was prepared according to the literature.[111] (1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-

9-yl)methanol [22endo] (0.116 g, 0.77 mmol, 1 equiv.) was dissolved in 15 mL of dry DCM, and

dry pyridine (0.156 mL, 1.9 mmol, 2.5 equiv.) and 4-nitrophenyl chloroformate [29] (0.194 g,

0.96 mmol, 1.25 equiv.) were added. After 10 minutes the reaction mixture was quenched with

aqueous saturated NH4Cl solution, the organic phase and the water phases were separated,

the water phase was extracted with DCM, the organic phases were combined and dried over

NaSO4, filtered and the solvent was evaporated. The crude material was purified by column

chromatography (silica gel/crude = 100:1) using PE:EtOAc (3:1). The analytical data are in

accordance with the literature.[111]

Yield: 43% (0.104 g, 0.33 mmol)

Appearance: colorless oil

TLC analysis: R f = 0.6 (PE:EtOAc = 6:1)

Sum formula: C25H27N3O6

1H NMR (400 MHz, CDCl3): δ = 0.99 – 1.12 (m, 2H, H-4), 1.45 – 1.54 (m, 1H, H-3), 1.55 –

1.66 (m, 2H, H-5), 2.19 – 2.39 (m, 6H, H-5+ H-6), 4.40 (d, J = 8.3 Hz, 2H, H-2), 7.38 (d, J = 9.2 Hz,

2H, H-B), 8.27 (d, J = 9.2 Hz, 2H, H-C) ppm.

13C NMR (101 MHz, CDCl3): δ = 17.4 (d, C-3), 20.6 (d, 2C, C-4), 21.5 (t, 2C, C-6), 29.8 (t,

2C, C-5), 68.1 (t, C-2), 98.8 (s, 2C, C-7), 121.9 (d, 2C, C-B), 125.4 (d, 2C, C-C), 145.5 (s, C-D), 152.7

(s, C-1), 155.7 (s, C-A) ppm.

E.2.2.10 ((1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-yl)methyl (2-aminoethyl)carbamate [32endo]
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This compound was synthesized by adapting a literature protocol.[111] (1R,8S,9s)-Bicyclo[6.1.0]

non-4-yn-9-yl)methyl (4-nitrophenyl) carbonated [30endo] (0.117 g, 0.37 mmol, 1 equiv.) was

dissolved in 0.6 mL of dry DMF and the triethylamine (0.148 mL, 2.2 mmol, 6 equiv.) and

ethylenediamine [31] (0.154 mL, 1.1 mmol, 3 equiv.) were added. After 20 minutes, the reaction

mixture was diluted in DCM, and washed with 1 M NaOH. The organic and water phases

were separated, the water phase was extracted with DCM, the organic phases were dried over

NaSO4, filtered and the solvent was evaporated. The crude material was purified by column

chromatography (silica gel/crude = 100:1) using DCM:MeOH (20:1 till 5:1, with 1% Et3N).

Yield: 61% (53.3 mg, 0.23 mmol)

Appearance: yellow oil

TLC analysis: R f = 0.15 (DCM:MeOH = 20:1 + 1% Et3N)

Sum formula: C13H20N2O2

HR-MS: [M+H]+ calculated = 237.1598 Da; [M+H]+ found = 237.1601 Da; difference =

0.03 mDa

1H NMR (400 MHz, CD3OD: δ = 0.89 – 0.99 (m, 2H, H-4), 1.35 – 1.41 (m, 1H, H-3), 1.56 –

1.66 (m, 2H, H-5), 2.15 – 2.28 (m, 6H, H-5+ H-6), 2.82 (t, J = 6.2 Hz, 2H, H-B), 3.24 (t, J = 6.2 Hz,

2H, H-A), 4.16 (d, J = 8.1 Hz, 2H, H-2) ppm.

13C NMR (101 MHz, CD3OD): δ = 18.9 (d, C-3), 21.4 (d, 2C, C-4), 21.9 (t, 2C, C-6), 30.2 (t,

2C, C-5), 41.9 (t, C-B), 42.6 (t, C-A), 63.9 (t, C-2), 99.5 (s, 2C, C-7), 159.6 (s, C-1) ppm.
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E.2.2.11 ((1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-yl)methyl (2-(4-((4-(((((E)-cyclooct-4-en-1-yl)oxy)

carbonyl)oxy)phenyl)diazenyl)benzamido)ethyl) carbamate [33]
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[32endo]

4-(4((((E)-Cyclooct-4-en-1-yl)oxy)carbonyl)oxy)phenyl)diazenyl)benzoic acid [26] (36.1 mg,

0.09 mmol, 1 equiv.) was dissolved in 0.6 mL of dry DMF, cooled to 0◦C and the N-methylmor-

pholine (13 µL, 1.2 mmol, 1.3 equiv.) and isobutyl chloroformate (19 µL, 1.5 mmol, 1.6 equiv.)

were added to the reaction mixture. After 10 minutes ((1R,8S,9s)-bicyclo[6.1.0] non-4-yn-9-

yl)methyl (2-aminoethyl)carbamate [32endo] was added to the reaction mixture, dissolved in

0.2 mL of DMF. After 3 hours the solvent was evaporated and the crude material was purified

by column chromatography (silica gel/crude = 100:1) using DCM:MeOH (100:1 + 1% Et3N).

Yield: 62% (35.1 mg, 0.57 mmol)

Appearance: orange solid

Melting point: 124.5-126.2◦C

TLC analysis: R f = 0.12 (PE:EtOAc (1:1) + 1% Et3N)

Sum formula: C35H42N4O5

HR-MS: [M+H]+ calculated = 613.3021 Da; [M+H]+ found = 613.3027 Da; difference =

0.06 mDa

1H NMR (400 MHz, CDCl3): δ = 0.88 – 0.92 (m, 2H, H-IV), 1.35 – 1.37 (m, 1H, H-III), 1.51 –

1.61 (m, 2H, C-V), 1.67 – 1.82 (m, 2H, H-G + H-H), 1.87 – 2.03 (m, 3H, H-F + H-G + H-H), 2.06 –

2.32 (m, 8H, H-V + H-VI + H-B), 2.38 – 2.45 (m, 3H, H-C + H-F), 3.47 – 3.53 (m, 3H, H-8’), 3.58
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– 3.67 (m, 2H, H-7’), 4.17 (d, J = 8.1 Hz, 2H, H-II), 4.41 – 4.50 (m, 1H, H-A), 5.46 – 5.56 (m, 1H,

H-E), 5.57 – 5.69 (m, 1H, H-D), 7.34 (d, J = 8.9 Hz, 2H, H-2’), 7.91 – 8.02 (m, 6H, H-3’ + H-2 +

H-3) ppm.

13C NMR (101 MHz, CDCl3): δ = 17.8 (d, C-III), 20.3 (d, 2C, C-IV), 21.5 (t, 2C, C-VI), 29.2 (t,

2C, C-V), 31.2 (t, C-G), 32.6 (t, C-C), 34.3 (t, C-F), 38.5 (t, C-H), 40.7 (t, C-8’), 40.9 (t, C-B), 42.1 (t,

C-7’), 63.5 (t, C-II), 86.0 (d, C-A), 98.9 (s, 2C, C-VII), 121.9 (d, 2C,C-2’), 123.1 (d, 2C, C-3), 124.5

(d, 2C, C-2), 128.2 (d, 2C, C-2, C-3’), 133.2 (d, C-E), 135.1 (d, C-D), 136.1 (s, C-1, C-4’), 150.3 (s,

C-1), 152.8 (s, C-5), 153.6 (s, C-4), 154.3 (s, C-1’), 158.5 (s, C-I), 167.2 (s, C-5’) ppm.

E.2.3 CuAAC-thiol azobenzene

E.2.3.1 1-(4-((5-Bromopentyl)oxy)phenyl)-2-(4-ethynylphenyl)diazene [34]

OH

NN

55

O

2'2'

3'3'

4'4'

1'1'
NN

11

44 33

22

66

AA BB

CC DD

EE
Br

1,5-dibromopentane
K2CO3, KI, 2-pentanone

100°C

95%

[10]

[34]

A literature protocol was adapted to synthesize 1-(4-((5-Bromopentyl)oxy)phenyl)-2-(4-ethynyl

phenyl)diazene [34].[161] 4-((4-ethynylphenyl) diazenyl)phenol [10] (0.294 g, 1.3 mmol, 1 equiv.),

KI (6.6 mg, 0.4 mmol, 0.03 equiv.) and K2CO3 (0.128 g, 0.9 mmol, 0.7 equiv.) were placed in

2 mL of 2-pentanone. 1,5-Dibromopentane (0.9 mL, 6.6 mmol, 5 equiv.) was added to the re-

action mixture which was placed overnight at 100◦C. The solid was removed by filtration and,

after evaporation of the filtrate, the crude material was purified by column chromatography

(silica gel/crude = 100:1) with PE:EtOAc (12:1).

Yield: 95% (0.464 g, 1.125 mmol)
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E.2. CHEMICAL SYNTHESIS

Appearance: orange solid

Melting point: 101.1-102.3 ◦C

TLC analysis: R f = 0.67 (PE:EtOAc = 4:1)

Sum formula: C19H19BrN2O

HR-MS: [M+H]+ calculated = 371.0754 Da; [M+H]+ found = 371.0769 Da; difference =

1.5 mDa

1H NMR (400 MHz, CDCl3): δ = 1.62 – 1.70 (m, 2H, H-C), 1.85 (pent., J = 7.6 Hz, 2H, H-B),

1.95 (pent., J = 7.6 Hz, 2H, H-D), 3.22 (s, 1H, H-6), 3.45 (t, J = 6.7 Hz, 2H, H-E), 4.04 (t, J = 6.3

Hz, 2H, H-A), 6.99 (d, J = 9.0 Hz, 2H, H-2’), 7.62 (d, J = 8.5 Hz, 2H, H-3), 7.84 (d, J = 8.5 Hz, 2H,

H-2), 7.91 (d, J = 9.0 Hz, 2H, H-3’) ppm.

13C NMR (101 MHz, CDCl3): δ = 24.9 (t, C-C), 28.5 (t, H-B), 32.6 (t, C-D), 33.6 (t, C-E), 68.1

(t, C-A), 79.3 (d, C-6), 83.6 (s, C-5), 114.9 (d, 2C, C-2’), 122.7 (d, 2C, C-2), 124.0 (s, C-4), 125.1 (d,

2C, C-3’), 133.1 (d, 2C, C-3), 147.0 (s, C-1’), 152.5 (s, C-1), 161.9 (s, C-4’) ppm.

E.2.3.2 Sodium S-(5-(4-((4-ethynylphenyl)diazenyl)phenoxy)pentyl)sulfurothioate [35]

55

O

2'2'

3'3'

4'4'

1'1'
NN

11

44 33
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AA BB

CC DD

EE
S

77%

O

NN

Br S
O-

O
O

Na+

Na2S2O3 . 5H2O
EtOH, H2O

reflux

[34] [35]

A literature protocol was adapted to synthesize sodium S-(5-(4-((4-ethynylphenyl)diazenyl)

phenoxy)pentyl) sulfurothioate [35].[161] 1-(4-((5-Bromopentyl)oxy)phenyl)-2-(4-ethynylphenyl)

diazene [34] (0.452 mmol, 1.2 mmol, 1 equiv.) was suspended in 16 mL of EtOH, Na2S2O3
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E.2. CHEMICAL SYNTHESIS

(0.333 g, 1.3 mmol, 1.1 equiv.) was dissolved in 2 mL of water and added to compound [34].

After 4 hours at reflux, the reaction mixture was cooled to room temperature and the solid was

collected by filtration and washed with cold Et2O.

Yield: 77% (0.340 g, 0.98 mmol)

Appearance: orange solid

Melting point: 183.1-183.2◦C

Sum formula: C19H19N2NaO44S2

HR-MS: [M+H]+ calculated = 427.0757 Da; [M+H]+ found = 427.0767 Da; difference =

1 mDa

1H NMR (400 MHz, MeOD-d4): δ = 1.53 (pent., J = 8.5 Hz, 2H, H-C), 1.71 – 1.81 (m, 4H,

H-B + H-D), 3.01 (t, J = 7.3 Hz, 2H, H-E), 3.56 (s, 1H, H-6), 3.98 (t, J = 6.4 Hz, 2H, H-A), 6.96 (d,

J = 9.0 Hz, 2H, H-2’), 7.50 (d, J = 8.6 Hz, 2H, H-3), 7.72 (d, J = 8.7 Hz, 2H, H-2), 7.79 (d, J = 9.0

Hz, 2H, H-3’) ppm.

13C NMR (101 MHz, MeOD-d4): δ = 24.9 (t, C-C), 28.4 (t, C-B), 29.0 (t, C-D), 34.4 (t, C-E),

68.0 (t, C-A), 79.4 (d, C-6), 82.7 (s, C-5), 114.6 (d, 2C, C-2’), 122.2 (d, 2C, C-2), 124.3 (s, C-4), 124.6

(d, 2C, C-3’), 132.5 (d, 2C, C-3), 146.7 (s, C-1’), 152.3 (s, C-1), 162.3 (s, C-4’) ppm.

E.2.3.3 5-(4-((4-Ethynylphenyl)diazenyl)phenoxy)pentane-1-thiol [36]
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[35] [36]
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A literature protocol was adapted to synthesize 5-(4-((4-ethynylphenyl)diazenyl)phenoxy)pen-

tane-1-thiol [36].[161] of CHCl3:HCl 1 M (1:1, 12 mL) was degassed with argon and then used to

dissolve sodium S-(5-(4-((4-ethynylphenyl)diazenyl) phenoxy)pentyl)sulfurothioate [35] (0.314 g,

0.74 mmol, 1 equiv.). The reaction was refluxed overnight. After cooling to room temperature,

the organic and water phases were separated, the water phase was extracted with chloroform

and all organic phases were collected and dried over Na2SO4. After evaporation of the solvent,

the crude material was recrystallized with n-hexane:acetone (1:1).

Yield: 54% (0.129 mg, 0.39 mmol)

Appearance: orange solid

Melting point: 194.9-196.3◦C

TLC analysis: R f = 0.68 (n-hexane:EtOAc = 4:1)

Sum formula: C19H20N2NaOS

HR-MS: [M+H]+ calculated = 325.1369 Da; [M+H]+ found = 325.1380 Da; difference =

1.1 mDa

1H NMR (600 MHz, CDCl3): δ = 1.56 – 1.63 (m, 2H, H-C), 1.69 – 1.75 (m, 2H, H-D), 1.83 –

1.87 (m, 2H, H-B), 2.58 (q, J = 7.5 Hz, 2H, H-E), 3.21 (s, 1H, H-6), 4.05 (t, J = 6.4 Hz, 2H, H-A),

7.00 (d, J = 9.0 Hz, 2H, H-3’), 7.61 (d, J = 9.2 Hz, 2H, H-3), 7.83 (d, J = 8.5 Hz, 2H, H-2), 7.91 (d, J

= 9.0 Hz, 3H, H-2’) ppm.

13C NMR (151 MHz, CDCl3): δ = 24.7 (t, C-E), 25.0 (t, C-C), 28.8 (t, C-B), 33.8 (t, C-D), 68.2

(t, C-A), 79.2 (d, C-6), 83.6 (s, C-5), 114.9 (d, 2C, C-3’), 122.7 (d, 2C, C-2), 124.0 (s, C-4), 125.1 (d,

2C, C-2’), 133.1 (d, 2C, C-3), 147.0 (s, C-1’), 152.5 (s, C-1), 162.0 (s, C-4’) ppm.
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E.2. CHEMICAL SYNTHESIS

E.2.4 Compounds for surface immobilization

E.2.4.1 1-Nitroso-4-(trifluoromethyl)benzene [38]

NH2

Oxone,  DCM/H2O (3:1)

Argon, r.t.

NO

CF3

[37] [38]

CF3

1-Nitroso-4-(trifluoromethyl)benzene [38] was prepared according to the literature.[167] 4-(Tri-

fluoromethyl)aniline [37] (5.3 g, 32.7 mmol, 1 equiv.) was dissolved in 30 mL of DCM and

placed under argon. Oxone (20.1 g, 66 mmol, 2 equiv.) was dissolved in 100 mL of water

and slowly added to the reaction mixture. After 8 hours, the organic and water phases were

separated, the organic phase was washed with HCl 0.05 M, water, dried over MgSO4 and the

solvent was carefully evaporated due to the products volatility. Upon concentration of the

solvent, the crude material was used without any further purification. The analytical data are

in accordance with the literature.[167]

Appearance: green liquid

TLC analysis: R f = 0.85 (DCMCM:PE = 1:1)

Sum formula: C7H4F3NO

1H NMR (400 MHz, CDCl3): δ = 7.92 (d, J = 8.2 Hz, 2H), 8.01 (d, J = 8.2 Hz, 2H) ppm.

E.2.4.2 1-(4-Iodophenyl)-2-(4-(trifluoromethyl)phenyl)diazene [40]

NO

CH3COOH, r.t.

[38]

CF3 NH2

I

+

[39] 44 33

22

11

N N
1'1' 2'2'

3'3'

4'4'
CF3

I
[40]

73%

152



E.2. CHEMICAL SYNTHESIS

1-(4-Iodophenyl)-2-(4-(trifluoromethyl)phenyl)diazene [40] was prepared according to the lit-

erature.[168] Methyl 4-nitrosobenzoate [38] (0.56 g, 2.6 mmol, 1 equiv.) was dissolved in 5 mL

of acetic acid. Then 4-iodoaniline [39] (2.26g, 13 mmol, 5 equiv.) was dissolved in 2 mL of

glacial acetic acid and added to the reaction mixture. The reaction was stirred at room temper-

ature overnight. The solid was filtered, washed with glacial acetic acid, water and dried under

vacuum. The analytical data are in accordance with the literature.[168,218]

Yield: 73% (0.711 g, 1.9 mmol)

Appearance: orange solid

Melting point: 147.1-147.5◦C (Lit.:[218] 150-151 ◦C)

TLC analysis: R f = 0.5 (PE)

Sum formula: C13H8F3IN2

1H NMR (400 MHz, CDCl3): δ = 7.67 (d, J = 8.6 Hz, 2H, H-2 or H-3), 7.77 (d, J = 8.4 Hz,

3H, H-3’), 7.88 (d, J = 8.6 Hz, 2H, H-2 or H-3), 7.98 (d, J = 8.0 Hz, 2H, H-2’) ppm.

13C NMR (101 MHz, CDCl3): δ = 99.3 (s, C-4), 123.6 (d, 2C, C-2’), 124.3 (s/q, 1JCF = 275.8 Hz,

CF3), 125.1 (d, 2C, C-2 or C-3), 126.8 (d/q, 3JCF = 3.8 Hz, 2C, C-3’), 132.9 (s/q, 2JCF = 32.6 Hz,

C-4’), 138.9 (d, 2C, C-2 or C-3), 152.1 (s, C-1), 154.6 (s, C-1’) ppm.

E.2.4.3 1-(4-Ethynylphenyl)-2-(4-(trifluoromethyl)phenyl)diazene [41]

1. Trimethylsilylacetylene, (Ph3P)Cl2, CuI
THF:Et3N (1:1)

2. K2CO3, THF:MeOH (7:3)

44 33

22

11

N N

1'1'
2'2'

3'3'

4'4'
CF3

[41]

55%

N N

CF3

I

[40]

1-(4-Ethynylphenyl)-2-(4-(trifluoromethyl)phenyl)diazene [41] was prepared according to the

literature.[168] A flask containing 1-(4-iodophenyl)-2-(4-(trifluoromethyl)phenyl)diazene [40]

(0.30 g, 0.8 mmol, 1 equiv.), (Ph3P)2PdCl2 (17 mg, 0.02 mmol, 0.03 equiv.), CuI (4.6 mg, 0.02 mmol,

0.03 equiv.) and 15 mL THF:Et3N (1:1) was placed under argon atmosphere and trimethylsily-
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E.2. CHEMICAL SYNTHESIS

lacetylene (0.16 g, 1.6 mmol, 2 equiv.) was added dropwise. After stirring overnight at room

temperature, the reaction mixture was concentrated under vacuum, filtered through a plug

of silica and the solvent was evaporated. The obtained brown solid was dissolved in 7.5 mL

of THF:MeOH (7:3) and K2CO3 (0.34 g, 2.4 mmol, 3 equiv.) was added. After 3 hours, the

mixture was diluted in diethyl ether, washed with aqueous saturated NH4Cl solution, water,

dried over MgSO4 and the solvent was evaporated. The crude material was purified by column

chromatography (silica gel/crude = 100:1) with n-hexane:DCM (6:1).The analytical data are in

accordance with the literature.[168]

Yield: 55% (0.122 g, 0.45 mmol)

Appearance: orange solid

Melting point: 116.9-118.1◦C (Lit.: not reported)

TLC analysis: R f = 0.46 (n-hexane:DCM = 10:1)

Sum formula: C15H9F3N2

HR-MS: [M+H]+ calculated = 275.0791 Da; [M+H]+ found = 275.0794 Da; difference =

0.1 mDa

1H NMR (600 MHz, CDCl3): δ = 3.26 (s, 1H, H-6), 7.66 (d, J = 8.6 Hz, 2H, H-3), 7.79 (d, J =

8.3 Hz, 2H, H-3’), 7.92 (d, J = 8.7 Hz, 2H, H-2), 8.00 (d, J = 8.0 Hz, 2H, H-2’) ppm.

13C NMR (151 MHz, CDCl3): δ = 80.0 (d, C-6), 83.1 (s, C5), 123.1 (d, 4C, C-2+C-2’), 123.9

(s/q, 1JCF = 272.4 Hz, CF3), 125.6 (s, C-4), 126.3 (d/q, 3JCF = 3.8 Hz, 2C, C-3’), 132.5 (s/q, 2JCF =

32.5 Hz, C-4’), 133.1 (d, 2C, C-3), 151.9 (s, C-1), 154.3 (s, C-1’) ppm.

E.2.4.4 1-Azidododecane [43]

Br

NaN3, MeOH
reflux

1212

1111

1010
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88
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N
3

[43]

quantitative

[42]

1-Azidododecane [43] was synthesized according to the literature.[169] Sodium azide (28.7 mg,

0.44 mmol, 1.1 equiv.) was placed in 0.5 mL of MeOH, 1-bromododecane [42] (0.096 mL,
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E.2. CHEMICAL SYNTHESIS

0.4 mmol, 1 equiv.) was added and the reaction was kept under reflux overnight. After cooling

the solvent was evaporated and the crude material was redissolved in chloroform and filtered.

After evaporation of the solvent, the pure product was obtained (purity >95% according to

NMR). The analytical data are in accordance with the literature.[169]

Yield: quantitative (85 mg, 0.4 mmol)

Appearance: colorless oil

Sum formula: C12H25N3

1H NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 6.7 Hz, 3H, H-12), 1.24 – 1.33 (m, 18H, H-3 -

H11), 1.60 (p, J = 7.0 Hz, 2H, H-2), 3.25 (t, J = 7.0 Hz, 2H, H-1) ppm.

13C NMR (101 MHz, CDCl3): δ = 14.3 (q, C1-2), 22.8 (t, C3-C11), 26.9 (t, C-3 - C-11), 29.0 (t,

C-2), 29.3 (t,C-3 - C-11), 29.5 (t, C-3 - C-11), 29.6 (t, C-3 - C-11), 29.7 (t, C-3 - C-11), 29.8 (t, C-3 -

C-11), 29.8 (t, C-3 - C-11), 32.1 (t, C-3 - C-11), 51.7 (t, C-1) ppm.

E.2.4.5 3,6-Bis(4-(trifluoromethyl)phenyl)-1,2,4,5-tetrazine [45]

CF3

CN

44

33

22

55
CF3

11N

N

N

N

CF3

[45]

[44]

53%

1. NH2NH2.H2O, S8, EtOH
2. PhI(OAc)2, DCM

3,6-Bis(4-(trifluoromethyl)phenyl)-1,2,4,5-tetrazine [45] was synthesized according to a litera-

ture protocol.[171] 4-(Trifluoromethyl)benzonitrile [44] (2.4 g, 14.1 mmol, 1 equiv.) and sulfur

(0.27 g, 8.5 mmol, 0.6 equiv.) were dissolved in 1.1 mL of absolute EtOH, flushed with ar-

gon, placed under stirring and cooled to 0◦C. Hydrazine monohydrate (2.74 mL, 56.5 mmol,

4 equiv.) was added dropwise, the reaction mixture was stirred at room temperature dur-

ing 1 hour and 30 minutes and then placed under reflux during 6 hours. After cooling to

room temperature, the reaction mixture was diluted in water and extracted with DCM. The

organic phase was washed with brine and dried over MgSO4. After removal of the solvent,
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the material was dissolved in 300 mL of DCM and (diacetoxyiodo)benzene (1.95 g, 21.2 mmol,

1.5 equiv.) was added. After 22 hours stirring at room temperature, the reaction mixture was

adsorbed in celite gel and purified by column chromatography (silica gel/crude = 100:1) using

n-hexane:DCM (0% to 100% DCM).The analytical data are in accordance with the literature.[171]

Yield: 53% (1.38 g, 3.7 mmol)

Appearance: bright pink solid

Melting point: 283.1-283.2 ◦C (Lit.[171] 273-276 ◦C)

TLC analysis: R f = 0.6 (n-hexane:EtOAc = 10:1)

Sum formula: C16H8F6N4

1H NMR (600 MHz, CDCl3): δ = 7.91 (d, J= 8.2 Hz, 4H, H-4), 8.82 (d, J = 8.2 Hz, 4H, H-5)

ppm.

13C NMR (151 MHz, CDCl3): δ = 122.9 (s/q, 1JC,F = 272.7 Hz, 2C, CF3 ) 126.5 (d/q, 3JC,F=

3.7 Hz, 4C, C-4), 128.62 (d, 4C, C-3), 134.6 (s/q, 2JC,F = 33.2 Hz, 2C, C-5), 134.89 (s, 2C, C-2),

163.6 (s, C-1) ppm.

E.2.4.6 1,4-Bis(4-(trifluoromethyl)phenyl)-5,6,7,8,9,10-hexahydrocycloocta[d]

pyridazin-7-yl (4-((4-ethynylphenyl)diazenyl)phenyl) carbonate [46]
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3,6-Bis(4-(trifluoromethyl)phenyl)-1,2,4,5-tetrazine [45] (0.165 g, 0.45 mmol, 1 equiv.) was dis-

solved in 10 mL of THF and placed under stirring. Equatorial (E)-cyclooct-4-en-1-yl (4-(4-

ethynylphenyl)diazenyl)phenyl) carbonate [11e] (0.250 g, 0.67 mmol, 1.5 equiv.) was dissolved

in 5 mL of THF and added dropwise to the reaction vial, which was kept under stirring at room

temperature in an open vial. After 3 minutes there was complete consumption of [45], therefore

(diacetoxyiodo)benzene (1.95 g, 21.2 mmol, 1.5 equiv.) was added. The solvent was evaporated

after 2 hours and the crude material was purified by column chromatography (silica gel/crude

= 100:1) using n-hexane:EtOAc (8:1 till 2:1).

Yield: 63% (0.200 g, 0.28 mmol)

Appearance: orange solid

Melting point: 220.4 - 221.3◦C

TLC analysis: R f = 0.42 (n-hexane:EtOAc = 2:1)

Sum formula: C39H28F6N4O3

HR-MS: [M+H]+ calculated = 715.2138 Da; [M+H]+ found = 715.2142 Da; difference =

-2.1 mDa

1H NMR (600 MHz, CDCl3): δ = 1.75 – 2.00 (m, 6H, H-B + H-C + H-F), 2.06 – 2.14 (m, 1H,

H-F), 2.85 – 2.93 (m, 3H, H-D + H-E), 2.98 – 3.04 (m, 1H, H-E), 3.26 (s, 1H, CH), 4.61 – 4.67 (m,

1H, H-A), 7.33 (d, J = 8.9 Hz, 2H, H-2’ or H-3’), 7.65 (d, J = 8.5 Hz, 2H, H-3), 7.67 – 7.74 (m, 4H,

H-III + H-III’), 7.80 – 7.86 (m, 4H, H-II + H-II’), 7.89 (d, J = 8.6 Hz, 2H, H-2), 7.98 (d, J = 8.8 Hz,

2H, H-2’ or H-3’) ppm.

13C NMR (151 MHz, CDCl3): δ = 23.8 (t, C-E), 25.9 (t, C-C), 27.5 (t,C-D), 32.8 (t, C-B), 34.8

(t, C-F), 78.9 (t, C-A), 79.8 (d, C-6), 83.3 (s, C-5), 121.7 (d, 2C, C-2’ or C-3’), 123.0 (d, 2C, C-2),

124.1 (s/q, 1JCF = 272.4 Hz, 2C, CF3), 124.4 (d, 2C, C-2’ or C-3’), 125.0 (s, C-4), 125.7 (d/q, 3JCF =

3.6 Hz, 2C, C-II or C-II’), 125.8 (d/q, 3JCF = 3.5 Hz, 2C, C-II or C-II’), 129.6 (d, 2C, C-III or C-III’),

129.6 (d, 2C, C-III or C-III’), 131.2 (s/q, 2JCF = 32.7 Hz, C-I or C-I’), 131.23 (s/q, 2JCF = 32.7 Hz,

C-I or C-I’), 133.1 (d, 2C, C-3), 138.1 (s, C-VI or C-VI’), 138.4 (s, C-VI or C-VI’), 141.1 (s, C-IV or

C-IV’), 141.1 (s, C-IV or C-IV’), 150.4 (s, C-1’ or C-4’), 152.1 (s, C-1), 152.6 (carbonyl), 153.0 (s,

C-1’ or C-4’), 160.6 (s, C-V or C-V’), 160.7 (s, C-V or C-V’) ppm.
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E.2.4.7 1-Dodecyl-4-(4-((4-(trifluoromethyl)phenyl)diazenyl)phenyl)-1H-1,2,3-

triazole [47]

CF3

N
N

CuI, DIPEA,
ACN, r.t.

Argon

quantitative

[41]
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+

1-(4-Ethynylphenyl)-2-(4-(trifluoromethyl)phenyl)diazene [41] (11.1 mg, 0.04 mmol, 1 equiv.)

and copper iodide (I) (1.5 mg, 0.008 mmol, 0.2 equiv.) were dissolved in 0.8 mL of acetoni-

trile. Then N,N’-diisopropylethylamine (14 µL, 0.08 mmol, 2 equiv.) was added followed by

1-azidododecane [43] (9.4 mg, 0.045 mmol, 1.1 equiv.) and the reaction mixture was placed

under argon. After 3 hours the solvent was evaporated and the crude material was purified by

column chromatography (silica gel/crude = 100:1) using DCM:MeOH (100:1).

Yield: quantitative (20.5 mg, 0.04 mmol)

Appearance: orange solid

Melting point: 143.2-144.8◦C

TLC analysis: R f = 0.57 (DCM:MeOH = 100:1)

Sum formula: C27H34F3N5

HR-MS: [M+H]+ calculated = 486.2839 Da; [M+H]+ found = 486.2849 Da; difference =

2.1 mDa

1H NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 6.7, 6.7 Hz, 4H, H-18), 1.25 (s, 14H, aliphatic

Hs), 1.35 – 1.39 (m, 4H, H-9 + other), 1.98 (pent., J = 6.9 Hz, 3H, H-8), 4.43 (t, J = 7.2 Hz, 2H,
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H-7), 7.79 (d, J = 8.3 Hz, 2H, H-2 or H-2’), 7.86 (s, 1H, H-6), 8.00 – 8.04 (m, 6H, H-2 or H-2’+

H-3+ H-3’).

13C NMR (101 MHz, CDCl3): δ = 14.3 (q, C-18), 22.8 (t), 26.7 (t, C-9), 29.2 (t), 29.4 (t), 29.5

(t), 29.7 (t), 29.8 (t), 29.9 (t, C-8), 30.5 (t), 32.1 (t), 50.7 (t, C-7), 120.3 (d, C-6), 123.2 (d, 2C, C-2

or C-2’ or C-3), 124.0 (d, 2C, C-2 or C-2’ or C-3), 124.1 (s/q, 1JCF = 271.4 Hz, CF3), 126.2 – 126.8

(d/q, 3JCF = 3.76 Hz, 4C, C-3’+ C-2 or C-2’), 132.3 (s/q, 2JCF = 32.4 Hz, C-4’), 134.2 (s, C-1 or

C-1’ or C-4 or C-5), 146.9 (s, C-4 or C-5), 152.1 (s, C-1 or C-1’ or C-4 or C-5), 154.6 (s, C-1 or C-1’

or C-4 or C-5).

E.2.4.8 Equatorial cyclooct-4-en-1-yl (4-((E)-(4-(1-dodecyl-1H-1,2,3-triazol-4-yl)

phenyl)diazenyl)phenyl) carbonate [48e]
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+

Equatorial (E)-cyclooct-4-en-1-yl (4-(4-ethynylphenyl)diazenyl)phenyl) carbonate [11e] (15 mg,

0.04 mmol, 1 equiv.) and CuI (0.7 mg, 0.008 mmol, 0.2 equiv.) were placed in 2 mL of ACN, and

then the DIPEA (0.014 mL, 0.08 mmol, 2 equiv.) and 1-azidododecane [43] (9 mg, 0.044 mmol,

1.1 equiv.) were added. The reaction mixture was flushed with argon and stirred overnight.

The solvent was evaporated and the crude material was purified by column chromatography

(silica gel/crude = 100:1) using n-hexane:EtOAc (2:1) ppm.

159



E.2. CHEMICAL SYNTHESIS

Yield: 57% (13.4 mg, 0.03 mmol)

Appearance: orange solid

Melting point: 116.8 - 118.3◦C

TLC analysis: R f = 0.31 (n-hexane:EtOAc = 3:1)

Sum formula: C35H47N5O3

HR-MS: [M+H]+ calculated = 608.3571 Da; [M+H]+ found = 608.3570 Da; difference =

0.2 mDa

1H NMR (400 MHz, CDCl3): δ = 0.80 (s, 3H, H-18), 1.18 (s, 14H, H10 - H17), 1.27 – 1.31 (m,

4H, H-9 + H10-17), 1.57 – 1.63 (m, 3H, H-B + H-H), 1.89 – 2.15 (m, 8H, H-8 + H-C + H-G + H-F

+ H-B or H-H), 2.29 – 2.40 (m, 1H, H-F), 4.35 (t, J = 7.2 Hz, 2H, H-7), 4.74 – 4.81 (m, 1H, H-A),

5.55 – 5.69 (m, 2H, H-D + H-E), 7.27 (d, J = 8.9 Hz, 2H, H-3’), 7.77 (s, 1H, H-6), 7.88 – 7.93 (m,

6H, H-2 or H-3 or H-2’) ppm.

13C NMR (101 MHz, CDCl3): δ = 14.3 (q, C-18), 22.3 (t, C-F), 22.8 (t, C-16 or C-17), 25.0

(t, C-B or C-H), 25.7 (t, C-C or C-G), 26.7 (t, C-9), 29.2 (t, C-10-C-17), 29.5 (t, C-10-C-17), 29.5

(t, C-10-C-17), 29.7 (t, C-10-C-17), 29.7 (t, C-10-C-17), 29.8 (t, C-10-C-17), 30.5 (t, C-8), 32.0 (t,

C-10-C-17), 33.7 (t, C-B or C-H), 33.8 (t, C-C or C-G), 50.7 (d, C-7), 81.6 (d, C-A), 120.2 (d, C-6),

121.9 (d, 2C, C-3’), 123.7 (d, 2C, C-2, C-3 or C-2’), 124.2 (d, 2C, C-2, C-3 or C-2’), 126.4 (d, 2C,

C-2, C-3 or C-2’), 129.5 (d, C-D or C-E), 130.1 (d, C-D or C-E), 133.5 (s, C-1, C-4, C-4’ or C-5),

147.1 (s, C-4 or C-5), 150.4 (s, C-1’), 152.2 (s, C-1, C-4, C-4’ or C-5), 152.9 (s, C-1, C-4, C-4’ or

C-5), 153.2 (s, carbonyl) ppm.
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E.2.4.9 (1,4-Bis(4-(trifluoromethyl)phenyl)-5,6,7,8,9,10-hexahydrocycloocta[d]

pyridazin-7-yl (4-((4-(1-dodecyl-1H-1,2,3-triazol-4-yl)phenyl)diazenyl)

phenyl) carbonate [49]

[46]
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Compound [46] (21.3 mg, 0.03 mmol, 1 equiv.) and the CuI (1.1 mg, 0.006 mmol, 0.2 equiv.)

were placed in 0.5 mL of THF and then DIPEA (0.010 mL, 0.06 mmol, 2 equiv.) and the 1-

azidododecane [43] (6.9 mg, 0.03 mmol, 1.1 equiv.) were added. After 2 hours the solvent was

evaporated and the crude material was purified by column chromatography (silica gel/crude

= 100:1) using n-hexane:EtOAc (2:1).

Yield: 87% (24 mg g, 0.026 mmol)

Appearance: orange solid

Melting point: 151.3-152.8◦C

TLC analysis: R f = 0.74 (n-hexane:EtOAc = 1:1)

Sum formula: C51H53F6N7O3

HR-MS: [M+H]+ calculated = 926.4187 Da; [M+H]+ found = 926.4185 Da; difference =
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0.15 mDa

1H NMR (400 MHz, CDCl3): δ = 0.87 (t, J = 6.7 Hz, 3H, H-18), 1.25 – 1.37 (m, 18H, H9 -

H17), 1.73 – 2.02 (m, 8H, H-B + H-C + H-F+ H-8), 2.02 – 2.15 (m, 1H, H-F), 2.81 – 2.92 (m, 3H,

H-D + H-E), 2.93 – 3.05 (m, 1H, H-E), 4.42 (t, J = 7.2 Hz, 2H, H-7), 4.58 – 4.68 (m, 1H, H-A), 7.30

(d, J = 8.7 Hz, 2H, H-2, H-2’, H-3 or H-3’), 7.63 – 7.73 (m, 4H, H-III + H-III’), 7.76 – 7.86 (m, 5H,

H-II + H-II’ + H-6), 7.93 – 8.04 (m, 6H, H-2, H-2’, H-3 or H-3’) ppm.

13C NMR (101 MHz, CDCl3): δ = 14.3 (q, C-18), 22.8 (t, C-9 - C-17), 23.8 (t, C-E), 25.9 (t,

C-C), 26.7 (t, C-9 - C-17), 27.5 (t, C-D), 29.2 (t, C-9 - C-17), 29.5 (t, C-9 - C-17), 29.5 (t, C-9 - C-17),

29.7 (t, C-9 - C-17), 29.7 (t, C-9 - C-17), 29.9 (t, C-9 - C-17), 30.5 (t, C-8), 32.0 (t, C-9 - C-17), 32.8 (t,

C-B), 34.9 (t, C-F), 50.7 (t, C-7), 78.9 (d, C-A), 120.2 (d, C-6), 121.7 (d, 2C, C-2, C-3, C-2’ or C-3’),

123.7 (d, 2C, C-2, C-3, C-2’ or C-3’), 124.1 (s/q, 1JCF = 272.0 Hz, 2C, CF3), 124.3 (d, 2C, C-2, C-3,

C-2’ or C-3’), 125.7 (d/q, 3JCF = 9.8 Hz, 2C, C-II or C-II’), 125.8 (d/q, 3JCF = 9.7 Hz, 2C, C-II or

C-II’), 126.4 (d, 2C, C-2, C-3, C-2 or C-3’), 129.7 (d, 4C, C-III+C-III’), 131.24 (s/q,3JCF = 32.6 Hz,

2C, C-I or C-I’), 131.3 (s/q,3JCF = 32.7 Hz, 2C, C-I or C-I’), 133.6 (s, C-1, C-4, C-1’ or C-4), 138.1

(s, C-VI or C-VI’), 138.4 (s, C-VI or C-VI’), 141.2 (s, 2C, C-IV + C-IV’), 147.0 (s, C-5), 150.6 (s, C-1,

C-4, C-1’ or C-4’), 152.1 (s, C-1, C-4, C-1’ or C-4), 152.7 (s, carbonyl), 152.8 (s, C-1, C-4, C-1’ or

C-4), 160.6 (s, C-V or C-V’), 160.7 (s, C-V or C-V’) ppm.

E.2.5 Biotin modifications

E.2.5.1 4-Azidoaniline [51]

NaN3

CuI, NaOH, L-prolin, DMSO
60ºC

81%

I

NH2

11
22

33
44
N3

NH2

[50] [51]

A literature protocol was used to synthetize this compound.[206] 4-Iodoaniline [50] (0.461 g,

2.1 mmol, 1 equiv.), CuI (0.06 g, 0.32 mmol, 0.15 equiv.), NaOH (0.02 g, 0.5 mmol, 0.24 equiv.),

L-prolin (0.058 g, 0.5 mmol, 0.24 equiv.) and NaN3 (0.286 g, 4.4 mmol, 2.1 equiv.) were dis-

solved in 8 mL of DMSO, flushed with argon and heated overnight at 60◦C. The reaction mix-
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ture was diluted in EtOAc and washed with brine, the organic and water phases were sepa-

rated,and the organic phase was dried over MgSO4. After evaporation of the solvent, the crude

material was purified by column chromatography (silica gel/crude = 100:1) with PE:EtOAc

(7:3). The analytical data are in accordance with the literature.[206]

Yield: 81% (0.228 g, 1.7 mmol)

Appearance: brown crystals

Melting point: 59.8-61.3◦C (Lit.:[219] 60-62◦C)

TLC analysis: R f = 0.46 (PE:EtOAc = 7:3)

Sum formula: C6H6N4

1H NMR (400 MHz, CDCl3): δ = 3.65 (s, 2H, NH2), 6.67 (d, J = 8.7 Hz, 2H, H-2), 6.84 (d, J

= 8.7 Hz, 2H, H-3) ppm.

13C NMR (101 MHz, CDCl3): δ = 116.4 (d, 2C, C-2), 120.1 (d, 2C, C-3), 130.3 (s, C-1 or C-4),

143.8 (s, C-1 or C-4) ppm.

E.2.5.2 N-(4-Azidophenyl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]

imidazol-4-yl)pentanamide [53]
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The synthesis of this compound adapted a literature protocol.[208] Biotin [52] (0.124 g, 0.51 mmol,

1 equiv.) was dissolved in 4 mL of dry DMF, placed under argon and cooled to 0◦C. Then

N-methylmorpholine (0.072 mL, 0.67 mmol, 1.3 equiv.) was added, followed by isobutyl chlo-

roformate (0.106 mL, 0.81 mmol, 1.6 equiv.). After 30 minutes, 4-azidoaniline [51] (0.136 g,
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1.0 mmol, 2 equiv.), dissolved in 1 mL of dry DMF, was added dropwise to the reaction mix-

ture. After 3 hours stirring at room temperature, the solvent was evaporated affording a brown

glue which was triturated with cold water. The obtained solid was filtered and washed with

cold methanol. The analytical data are in accordance with the literature.[220]

Yield: 78% (70.2 mg, 0.98 mmol)

Appearance: beige solid

Melting point: 200.8-201.6◦C (Lit.: not reported)

TLC analysis: R f = 0.26 (DCM:MeOH = 20:1)

Sum formula: C16H20N6O2S

HR-MS: [M+H]+ calculated = 361.1441 Da; [M+H]+ found = 361,1440; difference = 0.1 mDa

1H NMR (400 MHz, DMSO-d6): δ = 1.31 – 1.42 (m, 2H, H-3), 1.44 – 1.53 (m, 1H, H-4), 1.56

– 1.68 (m, 3H, H-2 + H-4), 2.30 (d, J = 7.4 Hz, 2H, H-1), 2.58 (d, J = 12.4 Hz, 1H, H-10), 2.82 (dd,

J = 5.1 Hz, 12.4 Hz, 1H, H-10), 3.09 – 3.16 (m, 1H, H-5), 4.11 – 4.16 (m, 1H, H-6), 4.27 – 4.33 (m,

1H, H-9), 6.36 (s, 1H, H-8), 6.43 (s, 1H, H-7), 7.05 (d, J = 9.0 Hz, 2H, H-C), 7.63 (d, J = 9.0 Hz,

2H, H-B), 9.95 (s, 1H, NH amide) ppm.

13C NMR (101 MHz, DMSO-d6): δ = 25.1 (t, C-2), 28.1 (t, C-4), 28.2 (t, C-3), 36.2 (t, C-1),

39.8 (t, C-10), 55.4 (d,C-5), 59.2 (d, C-9), 61.0 (d, C-6), 119.4 (d, 2C, C-C), 120.5 (d, 2C, C-B), 133.5

(s, C-D), 136.6 (s, C-A), 162.7 (s, Carbamide), 171.1 (s, Amide) ppm.

E.2.5.3 N-(4-Iodophenyl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]

imidazol-4-yl)pentanamide [54]
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The synthesis of this compound adapted a literature protocol.[208] Biotin [52] (0.2 g, 0.82 mmol,

1 equiv.) was dissolved in 6 mL of dry DMF, placed under argon and cooled to 0◦C. Then the

N-methylmorpholine (0.117 mL, 1.1 mmol, 1.3 equiv.) was added, followed by the isobutyl

chloroformate (0.171 mL, 1.3 mmol, 1.6 equiv.). After 30 minutes, 4-iodoaniline [50] (0.359 g,

1.6 mmol, 2 equiv.), dissolved in 1 mL of dry DMF, was added dropwise to the reaction mix-

ture. After 2 hours stirring at room temperature, the solvent was evaporated, the solid was

suspended in 10 mL of DCM and sonicated, filtered and washed with DCM and MeOH.The

analytical data are in accordance with the literature.[221]

Yield: 81% (0.296 g, 0.66 mmol)

Appearance: colorless solid

Melting point: 255.1-255.9◦C (Lit. not reported)

TLC analysis: R f = 0.71 (DCM:MeOH = 20:1)

Sum formula: C16H20IN3O2S

1H NMR (400 MHz, DMSO-d6): δ = 1.29 – 1.42 (m, 2H, H-3), 1.43 – 1.55 (m, 1H, H-4), 1.55

– 1.68 (m, 3H, H-2 + H-4), 2.30 (t, J = 7.4 Hz, 2H, H-1), 2.58 (d, J = 12.4 Hz, 1H, H-10), 2.82 (dd,

J = 5.1, 12.4 Hz, 1H, H-10), 3.08 – 3.14 (m, 1H, H-5), 4.11 – 4.16 (m, 1H, H-6), 4.28 – 4.33 (m, 1H,

H-9), 6.36 (s, 1H, H-8), 6.43 (s, 1H, H-7), 7.43 (d, J = 8.8 Hz, 2H, H-B), 7.61 (d, J = 8.8 Hz, 2H,

H-C), 9.96 (s, 1H, NH amide) ppm.

13C NMR (400 MHz, DMSO-d6): δ = 25.0 (t, C-2), 28.1 (t, C-4), 28.2 (t, C-3), 36.24 (t, C-1),

39.8 (t, C-10), 55.4 (d, C-5), 59.2 (d, C-9), 61.0 (d, C-6), 86.3 (s, C-D), 121.2 (d, 2C, C-B), 137.3 (d,

2C, C-C), 139.1 (s, C-A), 162.7 (C-carbamide), 171.3 (C-amide) ppm.

165



E.2. CHEMICAL SYNTHESIS

E.2.5.4 (E)-Cyclooct-4-en-1-yl 4-((4-((4-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-

thieno [3,4-d]imidazol-4-yl)pentanamido)phenyl)ethynyl)phenyl)diazenyl)

benzoate [55]
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N-(4-Iodophenyl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d] imidazol-4-yl)pentan-

amide [54] (0.101 g, 0.23 mmol, 2 equiv.), copper (I) iodide (0.8 mg, 0.004 mmol, 0.03 equiv.)

and bis(triphenylphosphine)palladium(II) dichloride (2.8 mg, 0.004 mmol, 0.03 equiv.) were

placed under argon, dissolved in 3.5 mL of dry DMF and DIPEA (118 µL, 0.7 mmol, 5 equiv.)

was added. Axial (E)-cyclooct-4-en-1-yl 4-(4-ethynylphenyl) diazenyl)benzoate [18a] (40.7 mg,

0.14 mmol, 1 equiv.) was dissolved in 1 mL of dry DMF and added to the reaction mixture.

After 1 hour, the DMF was evaporated and the crude material was purified by preparative

HPLC (C18 column, MeOH/H2O, 20 minutes method: 0.5 minutes isocratic elution with 5%

MeOH, followed by 19 minutes gradient elution from 5% to 98% MeOH). After evaporation of

the fractions, the solid was liophilized.

Yield: 22% (20.3 mg, 0.03 mmol)
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Appearance: orange solid

Melting point: 176.1-178.3◦C z TLC analysis: R f = 0.14 (DCM:MeOH = 20:1)

Sum formula: C39H41N5O4S

HR-MS: [M+H]+ calculated = 676.2952 Da; [M+H]+ found = 676.2983; difference = 3.1 mDa

1H NMR (600 MHz, DMSO-d6): δ = 1.30 – 1.46 (m, 3H, H-viii + H-B or H-C or H-F or H-G

or H-H), 1.51 – 1.54 (m, 1H, H-ix), 1.61 – 1.67 (m, 3H, H-vii + H-ix), 1.74 – 1.91 (m, 3H, H-B or

H-C or H-F or H-G or H-H), 1.91 – 2.04 (m, 2H, H-B or H-C or H-F or H-G or H-H), 2.10 – 2.22

(m, 3H, H-B or H-C or H-F or H-G or H-H), 2.30 – 2.44 (m, 3H, H-vi + H-B or H-C or H-F or

H-G or H-H), 2.59 (d, J = 12.4 Hz, 1H, H-xvi), 2.83 (dd, J = 12.4, 5.2 Hz, 1H, H-xvi), 3.09 – 3.17

(m, 1H, H-x), 4.11 – 4.17 (m, 1H, H-xi), 4.28 – 4.33 (m, 1H, H-xv), 4.98 – 5.04 (m, 1H, H-A), 5.59

– 5.76 (m, 2H, H-D + H-E), 6.37 (s, 1H, H-xiv), 6.45 (s, 1H, H-xii), 7.53 (d, J = 8.5 Hz, 2H, H-ii),

7.68 – 7.71 (m, 2H, H-iii), 7.74 – 7.77 (m, 2H, H-3), 7.96 – 8.01 (m, 4H, H-2 + H-2’ or H-3’), 8.13 –

8.16 (m, 2H, H-2’ or H-3’), 10.16 (s, 1H, NH amide) ppm.

13C NMR (151 MHz, DMSO-d6): δ = 21.1 (t, C-B or C-C or C-F or C-G or C-H), 21.8 (t, C-B

or C-C or C-F or C-G or C-H), 24.6 (t, C-vii), 25.2 (t, C-B or C-C or C-F or C-G or C-H), 28.1 (t,

C-ix), 28.2 (t, C-viii), 33.1 (t, C-B or C-C or C-F or C-G or C-H), 33.3 (t, C-B or C-C or C-F or C-G

or C-H), 36.3 (t, C-vi), 40.1 (d, C-xvi), 55.4 (d, C-x), 59.2 (d, C-xv), 61.1 (d, C-xi), 76.2 (d, C-A),

88.2 (s, C-5), 93.0 (s, C-6), 115.8 (s, C-i), 118.9 (d, 2C, C-iii), 122.8 (d, 2C, C-2’ or C-3’), 123.2 (s,

C-1 or C-4), 123.3 (d, 2C, C-2), 129.6 (d, C-D or C-E), 130.5 (d, C-2’ or C-3’), 132.3 (d, 2C, C-ii),

132.5 (d, 2C, C-3), 132.8 (s, C-1’ or C-4’), 133.0 (d, C-D or C-E), 140.2 (s, C-iv), 151.0 (s, C-1 or

C-4), 154.4 (s, C1’ or C-4’), 162.7 (s, C-xiii), 164.4 (s, C-5’), 171.6 (s, C-v) ppm.
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E.2.5.5 ((6S)-1-(4-(5-((3aS,4S,6aR)-2-Oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)

pentanamido)phenyl)-1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6] cycloocta

[1,2-d][1,2,3]triazol-6-yl)methyl (2-(4-((4-(((((E)-cyclooct-4-en-1-yl)oxy)

carbonyl)oxy)phenyl)diazenyl)benzamido)ethyl)carbamate [56]

[56]
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Compound [33] (26.0 mg, 0.042 mmol, 1.1 equiv.) and compound [53] (13.9 mg, 0.039 mmol,

1 equiv.) were placed in a flask and dissolved in 1.2 mL of dry DMF. After 2 hours, the

DMF was evaporated and the crude material was purified by preparative HPLC (C18 column,

MeOH/H2O, 20 minutes method: 0.5 minutes isocratic elution with 5% MeOH, followed by 19

minutes gradient elution from 5% to 98% MeOH). After evaporation of the fractions, the solid

was liophilized.

Yield: 65% (24.3 mg, 0.025 mmol)

Appearance: orange solid
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E.2. CHEMICAL SYNTHESIS

Melting point: 129.0-133.4◦C

TLC analysis: R f = 0.36 (DCM:MeOH = 10:1)

Sum formula: C51H60N10O8S

HR-MS: [M+H]+ calculated = 973.4389 Da; [M+H]+ found = 973.4391; difference = 0.2 mDa

1H NMR (600 MHz, CDCl3): δ = 0.79 – 2.46 (m, 59H, H-B + H-C + H-F + H-G + H-H +

H-III + H-IV + H-IV’ + H-V + H-V + H-VI + H-VI’ + H-vi + H-vii + H-vii + H-ix), 2.83 (s, 1H,

H-xvi), 3.10 (d, J = 20.8 Hz, 1H, H-x), 3.43 (s, 2H, H-8’), 3.58 (s, 2H, H-7’), 4.05 – 4.17 (m, 3H,

H-II+ H-xi), 4.26 (s, 1H, H-xv), 4.45 (d, J = 6.1 Hz, 1H, H-A), 5.49 (m, 1H, H-E), 5.61 (m, 1H,

H-D), 5.76 (s, 1H, H-xiv), 5.90 (s, 1H, H-xii), 6.61 (s, 1H, H-6’), 7.21 (d, J = 8.4 Hz, 2H, H-ii or

H-iii), 7.29 – 7.34 (m, 2H, H-2’ or H-2 or H-3), 7.62 (s, 1H, H-9’), 7.75 (d, J = 9.0 Hz, 2H, H-ii or

H-iii), 7.87 (d, J = 8.1 Hz, 2H, H-2’ or H-2 or H-3), 7.94 (d, J = 8.6 Hz, 4H, H-3’+ H-2’ or H-2 or

H-3), 9.45 (s, 1H, NH amide biotin) ppm.

13C NMR (151 MHz, CDCl3): δ = 18.1 (d, C-III or C-IV or C-IV’), 19.2 (d, C-III or C-IV

or C-IV’), 20.3 (d, C-III or C-IV or C-IV’), 22.8 (t, C-V or C-V’ or C-VI or C-VI’), 23.5 (t, C-V or

C-V’ or C-VI or C-VI’), 25.7 (t, C-vii), 26.1 (t, C-V or C-V’ or C-VI or C-VI’), 28.1 (t, C-ix), 28.3

(t, C-viii), 29.8 (t, C-V or C-V’ or C-VI or C-VI’), 31.2 (t, C-G), 32.6 (t, C-C), 34.3 (t, C-F), 36.8 (t,

C-vi), 38.5 (t, C-H), 40.8 (2C, C-8’+ C-xvi), 40.9 (t, C-B), 41.6 (t, -7’), 55.9 (d, C-x), 60.4 (d, C-xv),

62.0 (d, C-xi), 63.1 (t, C-II), 86.0 (t, C-A), 120.6 (d, 2C, C-ii or C-iii), 121.9 (d, 2C, C-2’ or C-2 or

C-3), 123.0 (d, 2C, C-2’ or C-2 or C-3), 124.5 (d, 2C, C-3’ or C-2’ or C-2 or C-3), 126.5 (d, 2C, C-ii

or C-iii), 128.3 (d, 2C, C-3’ or C-2’ or C-2 or C-3), 131.7 (s, C-i or C-iv), 133.2 (d, C-E), 134.9 (s,

C-VII or C-VII’), 135.1 (d, C-D), 136.1 (s, C-1, C-4, C-1’ or C-4’), 140.2 (s, C-i or C-iv), 145.1 (s,

C-VII or C-VII’), 150.2 (s, C-1, C-4, C-1’ or C-4’), 152.8 (s, C-5), 153.6 (s, C-1, C-4, C-1’ or C-4’),

154.2 (s, C-1, C-4, C-1’ or C-4’), 158.2 (s, C-I), 164.5 (s, C-xiii), 167.4 (s, C-5’), 172.8 (s, C-v) ppm.
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E.2. CHEMICAL SYNTHESIS

E.2.5.6 2-((1E,3E)-5-((E)-3,3-Dimethyl-5-sulfo-1-(3-sulfopropyl)indolin-2-ylidene)

penta-1,3-dien-1-yl)-3,3,4-trimethyl-1-(6-((4-(4-methyl-7-(((4-((E)-(4-((2-(((((6S)-1-(4-(5-

((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)phenyl)-

1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]

cycloocta[1,2-d][1,2,3]triazol-6-yl)methoxy)carbonyl)amino)ethyl)carbamoyl)

phenyl)diazenyl)phenoxy)carbonyl)oxy)-4a,5,6,7,8,9,10,10a-octahydro

cycloocta[d]pyridazin-1-yl)benzyl)amino)-6-oxohexyl)-5-vinyl-3H-pyrrol-1-ium [58]
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E.2. CHEMICAL SYNTHESIS

A stock solution of azobenzene-biotin [56] in DMSO (5.02 mg [56] in 0.5 mL DMSO = 10.7 mM

and of fluorophore 6-methyl-tetrazine-sulfo-Cy5 [57] in PBS buffer (1 mg [57] in 0.9 mL PBS =

11.9 mM were prepared.

Compound [56] (13.84 µL, 0.0014 mmol, 1 equiv.) was placed in a 2 mL eppendorf tube

and fluorophore [57] (180 µL, 0.0021 mmol, 1.5 equiv.) was added in portions of 10 µL. Upon

addition of one portion of fluorophore the tube was vortexed for 30 seconds and then the

next portions was added. Afterwards, a HPLC analysis (C4 column, 5 minutes, mobile phase

acetonitrile:H2O 2:8 pH 8.5) showed complete consumption of the azobenzene [56] and forma-

tion of two new peaks.

Retention time (Fluorescence detector): 1.30 and 1.78 min

Retention time (Absorption detector): 1.20 and 1.70 min

[58]

(A) Fluorescence detector

0.0 1.0 2.0 3.0 4.0 5.0
Retention time (min)

1.30

0.37

1.78

1.17 1.66

(B) Absorption detector

0.0 1.0 2.0 3.0 4.0 5.0
Retention time (min)

0.23

0.17

1.20
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E.2. CHEMICAL SYNTHESIS

E.2.6 AFM click reactions

E.2.6.1 1-Ethyl-3-((5-(4-((4-ethynylphenyl)diazenyl)phenoxy)pentyl)thio)

pyrrolidine-2,5-dione [59]

O
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5-(4-((4-Ethynylphenyl)diazenyl)phenoxy)pentane-1-thiol [36] (0.314 g, 0.97 mmol, 1 equiv.)

was dissolved in 3 mL of chloroform (previously purged with argon), DIPEA (5 µL, 0.03 mmol,

0.03 equiv.) was added and the reaction was placed under argon. N-Ethylmaleimide (0.162 g,

1.2 mmol, 1.2 equiv.) was dissolved in 1 mL of chloroform, also purged with argon, and added

to the reaction mixture. After stirring overnight for 4 hours, the solvent was evaporated and

the crude material was purified by column chromatography (silica gel/crude = 100:1) using

PE:EtOAc (0-30%).

Yield: 40% (0.173 g, 0.38 mmol)

Appearance: orange solid

Melting point: 113.1-114.8◦C

TLC analysis: R f = 0.33 (n-hexane:EtOAc=5:1)

Sum formula: C25H27N3O3S

HR-MS: [M+H]+ calculated = 450.1846 Da; [M+H]+ found = 450.1852 Da; difference =
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E.2. CHEMICAL SYNTHESIS

0.6 mDa

1H NMR (600 MHz, CDCl3): δ = 1.18 (t, J = 7.2 Hz, 3H, H-K), 1.60 – 1.65 (m, 2H, H-C), 1.71

– 1.79 (m, 2H, H-D), 1.83 – 1.88 (m, 2H, H-B), 2.51 (dd, J = 18.6, 3.6 Hz, 1H, H-G), 2.81 (ddd, J =

12.5, 8.4, 6.6 Hz, 1H, H-E), 2.95 (ddd, J = 12.5, 8.2, 6.1 Hz, 1H, H-E), 3.12 (dd, J = 18.6, 9.0 Hz,

1H, H-G), 3.21 (s, 1H, H-6), 3.58 (q, J = 7.2 Hz, 2H, H-J), 3.70 (dd, J = 9.0, 3.6 Hz, 1H, H-F), 4.06

(t, J= 6.3 Hz, 2H, H-A), 7.00 (d, J = 9.0 Hz, 2H, H-3’), 7.61 (d, J = 8.6 Hz, 2H, H-3), 7.83 (d, J = 8.5

Hz, 2H, H-2), 7.91 (d, J = 8.9 Hz, 2H, H-2’) ppm.

13C NMR (151 MHz, CDCl3): δ = 12.9 (q, C-K), 25.3 (t, C-C), 28.7 (t, C-D), 28.8 (t, C-B), 31.6

(t, C-E), 34.1 (t, C-J), 36.1 (t, C-G), 39.0 (d, C-F), 68.0 (t, C-A), 79.1 (d, C-6), 83.4 (s, C-5), 114.8 (d,

2C, C-3’), 122.5 (d, 2C, C-2), 123.9 (s, C-4), 125.0 (d, 2C, C-2’), 133.0 (d, 2C, C-3), 146.9 (s, C-1’),

152.4 (s, C-1), 161.9 (s, C-4’), 174.6 (s, C-H or C-I), 176.5 (s, C-H or C-I) ppm.

E.2.6.2 3-((5-(4-((4-(1-Dodecyl-1H-1,2,3-triazol-4-yl)phenyl)diazenyl)phenoxy)

pentyl)thio)-1-ethylpyrrolidine-2,5-dione [60]
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E.2. CHEMICAL SYNTHESIS

1-Ethyl-3-((5-(4-((4-ethynylphenyl)diazenyl)phenoxy)pentyl)thio) pyrrolidine-2,5-dione [59]

(52.0 mg, 0.12 mmol, 1 equiv.) and copper (I) iodide (6.3 mg, 0.06 mmol, 0.5 equiv.) were

dissolved in 4 mL of dry acetonitrile, the DIPEA (101 µL, 0.58 mmol, 5 equiv.) was added

and the reaction mixture was flushed with argon. 1-azidododecane [43] (36.7 mg, 0.17 mmol,

1.5 equiv.) was dissolved in 0.5 mL of dry acetonitrile and added to the reaction mixture. After

stirring overnight at room temperature, the solvent was evaporated and the crude material was

purified by column chromatography (silica gel/crude = 100:1) using DCM:MeOH (0-1%).

Yield: 80% (61.4 mg, 0.093 mmol)

Melting point: 135.5-138.1◦C

Appearance: orange solid

TLC analysis: R f = 0.1 (DCM:MeOH = 99:1)

Sum formula: C37H52N6O3S

HR-MS: [M+H]+ calculated = 661.9212 Da; [M+H]+ found = 661.9223; difference = 1.1 mDa.

1H NMR (600 MHz, CDCl3): δ = 0.83 (t, J = 7.0 Hz, 3H, H-18), 1.14 (t, J = 7.2 Hz, 3H, H-K),

1.17 – 1.25 (m, 14H, H-10 - H-17), 1.29 – 1.34 (m, 4H, H-9 + H-10 - H-17), 1.56 – 1.61 (m, 2H,

H-C), 1.65 – 1.77 (m, 2H, H-D), 1.78 – 1.85 (m, 2H, H-B), 1.92 (pent., J = 7.2 Hz, 2H, H-8), 2.47

(dd, J = 18.6, 3.5 Hz, 1H, C-G), 2.77 (ddd, J = 12.5, 8.3, 6.6 Hz, 1H, H-E), 2.91 (ddd, J = 12.4, 8.2,

6.1 Hz, 1H, H-E), 3.08 (dd, J = 18.6, 9.0 Hz, 1H, C-G), 3.54 (q, J = 7.2 Hz, 2H, H-J), 3.67 (dd, J =

9.1, 3.6 Hz, 1H, C-F), 4.02 (t, J = 6.3 Hz, 2H, H-A), 4.37 (t, J = 7.2 Hz, 2H, H-7), 6.96 (d, J = 9.0

Hz, 2H, H-3), 7.78 (s, 1H, H-6), 7.86 – 7.95 (m, 6H, H-2+H-2’+H-3’) ppm.

13C NMR (151 MHz, CDCl3): δ = 13.0 (q, C-K), 14.2 (q, C-18), 22.8 (t, C-10-C17), 25.4 (t,

C-C), 26.6 (t, C-9), 28.8 (t, C-D), 28.9 (t, C-B), 29.1 (t, C-10 - C17), 29.5 (t, C-10 - C17), 29.5 (t, C-10

- C17), 29.6 (t, C-10 - C17), 29.7 (t, C-10 - C17), 30.5 (t, C-8), 31.7 (t, C-E), 32.0 (t, C-10-C17), 34.2

(t, C-J), 36.2 (t, C-G), 39.1 (d, C-F), 50.7 (t, C-7), 68.1 (t, C-A), 114.8 (d, 2C, C-3), 120.0 (d, C-6),

123.3 (d, 2C, C-2, C2’ or C-3), 124.9 (d, 2C, C-2, C2’ or C-3), 126.4 (d, 2C, C-2, C2’ or C-3’), 132.7

(s, C-1, C-1’, C-4 or C-4’ or C-5), 147.1 (s, C-4 or C-5), 147.2 (s, C-1, C-1’, C-4 or C-4’ or C-5),

152.4 (s, C-1, C-1’, C-4 or C-4’ or C-5), 161.7 (s, C-1 or C-4), 174.7 (s, C-H or C-I), 176.6 (s, C-H

or C-I) ppm (2 carbons overlapping in the aliphatic region).
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E.3. UV-VIS SPECTROSCOPY

E.3 UV-Vis spectroscopy

The UV-Vis spectroscopy was carried out using a UV-1800 spectrophotometer from Shimadzu

and a quartz cuvette 6040-UV-10-531 (light path 10 mm, volume 1.4 mL) or a quartz cuvette

104-002-10-40 (light path 10 mm, volume 700 µL) from Hellma analitics.

E.3.1 Azobenzene photoswitching and thermal half-life time determination

To analyze the photoswitching, a 0.04 mM solution of the azobenzene in DMSO was prepared

and a spectra between 600 and 260 nm was recorded with incremental steps of 1 nm and fast

settings. Afterwards, to photoswitch the azobenzene from the trans to the cis isomer, this solu-

tion was irradiated with a 365 nm LED connected to a LX500 (Excelitas) at 100% intensity for

10 seconds and a new spectra was recorded. To confirm the reversibility of this process and

switch-back to the trans isomer, the same solution was once again irradiated with a 460 nm

LED connected to a LX500 (Excelitas) at 100% intensity for 10 seconds and a new spectra was

recorded.

For the determination of the thermal half-life time, a 0.04 mM solution of the azobenzene

in DMSO was prepared and irradiated with the 365 nm LED for 10 seconds. Subsequently,

using the kinetic mode of the UVProbe software (instrument’s software), the absorption was

measured every hour for 18 hours at the maximum absorption wavelength of π → π* band of

the trans isomer. Finally the data were linearized (according to a first-kinetic model) using the

formula Alinearized = ln (Amax - At) and the t1/2 was found at ln(Absmax/2).

E.3.2 HABA assay

A HABA reagent was prepared dissolving 24.2 mg of HABA in 9.9 mL of H2O and 100 µL of

1 M NaOH. Streptavidin from Streptomyces avidinii (1 mg lyophilized in 50 µM NaCl) purchased

from TCI was dissolved in 2 mL of PBS buffer and 60 µL of the HABA reagent were added.

A quartz cuvette of 750 µL was loaded with 450 µL of the previously prepared SA/HABA

solution and a spectra between 260 and 700 nm was recorded. Afterwards the desired volume

from a biotin or biotin derivative solution was added to the cuvette. In our case the solutions
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E.4. PREPARATION OF THE SILICON AND ALUMINUM SAMPLES

had a 10 mM concentration, but other concentrations can be used. The mixture was shaken and

the spectra was remeasured to observe if the absorption band at 500 nm had a lower intensity.

E.4 Preparation of the silicon and aluminum samples

Silicon wafers, 1-0-0, p-type, boron-doped, 10-20 Ω cm, 500-550 µm thickness, double-sided

polished were purchased from MEMC. Porous silicon was purchased from SiLiMiXT with an

20 µm oxide layer and a pore size of 15-15 nm.

Three different aluminum substrates were purchased:

• aluminum foil, 0.5mm (0.02in) thick, Puratronic(R); 99.998% (metals basis) from ABCR;

• aluminum alloy 5251 foil, Al 97.7%/ Mg 2%/ Mn 0.3%, thickness 1.5 mm, size 250x250

mm, mirror polished on both sides from Sigma-Aldrich;

• aluminum 1050 A, 99.5% Al, 0.4 mm from Conrad.

E.4.1 Cutting and cleaning of the substrates

The silicon wafers were cut into pieces of 25x18 mm with a diamond tip, which cleaved them

along the crystallographic axes. The Porous silicon was cut the same way as the silicon wafers

but in pieces of 12.5x18 mm. The aluminum substrates were cut into 20x20 mm pieces with an

industrial guillotine from Schröder.

After cutting, a Bandelin Sonorex Super 10 P was used to sonicate the samples for 10 minutes

in toluene. The sonicated samples were rinsed with toluene and dried under a stream of ar-

gon. The substrates were finally oxidized for 10 minutes on each side in a UV/Ozone chamber

(Boekel UV clean model 135500).

E.4.2 Etching of silicon nanowires

The silicon etching followed a literature protocol[170]. The freshly cleaned silicon was placed

in 20 mL of aqueous AgNO3/HF solution ([HNO3] = 0.005 M, [HF] = 6.2 M). After 1 minute,

the samples were removed, rinsed with water and without drying placed in 20 mL of aqueous
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H2O2/HF ([H2O2] = 0.06 M, [HF] = 6.2 M) for 10 minutes, under the dark (aluminum foil cov-

ered beaker used to protect from light). After rinsing with water, the samples were transferred

to a mixture of HNO3:H2O (1:1). After 5 minutes, the substrates were once again rinsed with

water and transferred to piranha solution (H2SO4 96%: H2O2 36% = 1:4) for 30 minutes. Finally

the samples were placed for 5 minutes in water and then in acetone, rinsed with fresh acetone

and dried under a stream of argon.

E.4.3 Bohemite preparation on aluminum

A beaker was filled with 50 mL of distilled H2O and heated till the H2O reached boiling. After-

wards one surface was placed in the boiling H2O for 10 or 20 minutes. Finally the surface was

rinsed with water, acetone, dried under a stream of argon and placed in vacuum for 1 hour.

E.4.4 Surface modifications

E.4.4.1 Trichloro(octadecyl)silane modification

OH OHOH O OO

Cl Cl

Si

(CH2)16

Toluene

Cl Si

(CH2)16

[OTS]

This modification was carried as described in the literature[175]. Three substrates (either silicon,

silicon nanowires, porous silicon or aluminum) were placed in a beaker containing 10 mL of a

1 mM solution of trichloro(octadecyl)silane (OTS) in toluene. After 1 hour the substrates were

removed, rinsed with toluene, dried under a stream of argon and placed under vacuum for 5

minutes.
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E.4.4.2 Azide modification

OH OHOH O OO

Cl Cl

Si

(CH2)10

Br

Toluene

Cl
Si

(CH2)10

Br

DMF

NaN3 O OO

Si

(CH2)10

N3

[11-N3][11-BUTS]

This modification was carried as described in the literature[164]. Three substrates (either silicon,

silicon nanowires or aluminum) were placed in a beaker containing 10 mL of a 1 mM solution of

11-bromoundecyltrichlorosilane (BUTS) in toluene. After 4 hour the substrates were removed,

rinsed with toluene, dried under a stream of argon and placed under vacuum for 5 minutes.

After measuring ellipsometry (see E.4.6.1 ) to confirm the layer thickness, the substrates were

transferred to 10 mL of a DMF saturated solution of NaN3. After an overnight reaction the

surfaces were removed from the solution, cleaned with acetone, water, acetone again, dried

under a stream of argon and placed in the vacuum during 5 minutes. Finally, FTIRs (see section

E.4.6.2) of the surfaces were measured.

E.4.5 Azobenene immobilization

E.4.5.1 Trans immobilization

O OO

Si

(CH2)10

N3

[11-N3]

N

N R

CuI (0.5 equiv.), DIPEA (5 equiv.)
Acetonitrile or THF

O OO
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(CH2)10

N

trans immobilization

N

N

N
N
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In the trans immobilization, a 0.5 mM solution of the desired azobenzene was prepared in

acetonitrile or THF (11 mL) and 0.5 equivalents of CuI and 0.05 equivalents of DIPEA were

added. After 5 minutes under stirring at room temperature in a round bottom vial, the azide

functionalized surface 11-N3 was added and the reaction was stirred for the desired time. The

substrate was removed form the solution, rinsed with acetone, water, acetone again, dried

under a stream of argon and placed under vacuum for 5 minutes.

E.4.5.2 Cis immobilization

O OO

Si

(CH2)10

N3

[11-N3]

N N

CuI (0.5 equiv.), DIPEA (5 equiv.)
Acetonitrile or THF

hv

O OO

Si

(CH2)10

N

cis immobilzation

N

N

N
N

R

R

In the cis immobilization, a 0.5 mM solution of the desired azobenzene was prepared in ace-

tonitrile or THF (11 mL) and 0.5 equivalents of CuI and 0.05 equivalents of DIPEA were added.

The reaction mixture, in a round bottom vial covered with aluminum foil, was cooled in an ice

bath and irradiated with a 365 nm LED connected to a LX500 ommnicure controller (Excelitas)

from 10 cm away at 100% intensity. The LED was kept always under cooling by a fan. After 30

minutes, a 0.04 mM sample was prepared and analyzed by UV/Vis (blank containing the sol-

vent, CuI and DIPEA). Once isomerization to the cis configuration was confirmed by UV/Vis,

the azide functionalized silicon surface 11-N3 was added. The reaction mixture was kept un-

der irradiation and the temperature maintained between 10-15◦C. After the desired reaction

time, the substrate was removed, washed with acetone, water, acetone again, dried under a

stream of argon and placed under vacuum for 5 minutes. This surface kept under the dark

with aluminum foil till analysis.
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E.4.6 Surface analysis

E.4.6.1 Ellipsometry

A Sentech SE 500adv with a He-Ne laser as a light source was used to perform ellipsometry.

The measurements were performed at 632.8 nm and the data analysis was carried out with

the instrument software SE400advanced 2.16 with the McCracking algorithm. For the silicon

surfaces the optical constants were: Si ( η = 3.865, κ = 0.02), SiO2 (η = 1.465, κ = 0), organic layer

η = 1.465, κ = 0). For the aluminum the optical constants were: Al ( η = 1.3736, κ = 7.619), AlO3

(η = 1.650 κ = 0). For each surface, at least four different points of the surface were measured.

E.4.6.2 FTIR and IRRAS

The measurements were performed with a Bruker Vertex 80 FTIR using the provided OPUS 7.5

software. For silicon the FTIRs were measured with a narrow band MCT detector and a reso-

lution of 4 cm−1. For each sample 256 scans at a 40◦ angle of incidence were recorded. For the

flat silicon surfaces an uncoated cleaned sample was used as a blank. For the silicon nanowires

a spectra was always recorded after etching which was later used as its own reference. Be-

fore each measurement the chamber was purged with dry air for 2 minutes. The programs’s

software was used to remove the CO2 peak.
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For the aluminum substrates IRRAS was performed using LN-MCT Narrow 45◦ COSTUM

external detector and 4 cm−1 resolution. In total, 256 scans were measured at a 80◦ angle of

incidence. As a reference a cleaned uncoated aluminum sample was used.

E.4.6.3 Optical goniometry and surface photoswitching

Static water contact angles were measured using a Krüss DSA 30 goniometer in combination

with the provided Krüss ADVANCE 1.5.1.0 software. The surfaces were placed on the sample

stage and a software-controlled equipment containing a needle placed a 7 µL water drop on the

surface from 28 mm distance. The device’s camera, with a resolution of 780x582, recorded a pic-

ture of the drop that was analyzed using the Young-Laplace method (θ > 10◦) of the instrument

software. For each drop 5 different images were recorded.

For the determination of the advancing and receding water contact angles the sample stage

was tilted at a rate of 30◦/min. During the measurement pictures were continuously recorded

until the drop rolled of the surface. The last frame which showed the still stationary drop was

then used to determine the advancing and receding contact angle using the tangent method.

For the photoswitching experiments, the static WCA was measured immediately after

surface preparation as previously described. Afterwards, the surface was cleaned with ace-

tone, dried under a stream of argon, placed under vacuum for 5 minutes and irradiated with a

365 nm LED connected to a LX500 controller (4 minutes, from 5 cm distance, 100 % intensity).

On the one hand, when no difference in the WCA was observed after irradiation, the surface

was considered non-photoswitchablle and discarded. On the other hand, if a difference was

verified the surface was cleaned with acetone, dried under a stream of Argon and irradiated

with a halogen lamp Philips 7748XHP (2 hours, from 10 cm distance). A total of 6 irradia-

tion cycles alternating between 365 nm LED and halogen lamp were performed measuring the

WCA in between.

E.4.6.4 SEM

The SEM images were obtained with a FEI Quanta 200 MK2 electron microscope equipped

with a Everhardt-Thornley detector. The samples were placed in the sample holder at a 8-
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11 mm working distance. The electron beam voltage was set at 10 KeV for the silicon and at 5

KeV for the aluminum substrates. The top-views were obtained without any further treatment.

The side-views of the silicon were obtained by freshly cleaving the silicon with a diamond tip

and measuring the newly exposed area.
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[143] K. Hüll, T. Benster, M. B. Manookin, D. Trauner, R. N. Van Gelder, L. Laprell, “Photopharmacologic Vision
Restoration Reduces Pathological Rhythmic Field Potentials in Blind Mouse Retina”, Scientific Reports 2019,
9, 13561.

[144] D. Svatunek, C. Denk, V. Rosecker, B. Sohr, C. Hametner, G. Allmaier, J. Fröhlich, H. Mikula, “Efficient
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[162] D. Bléger, J. Schwarz, A. M. Brouwer, S. Hecht, “o-Fluoroazobenzenes as Readily Synthesized Photoswitches
Offering Nearly Quantitative Two-Way Isomerization with Visible Light”, J. Am. Chem. Soc. 2012, 134, 20597–
20600.

[163] D. Dreier, PhD thesis, Institute of Applied Synthetic Chemistry, TU Wien, 2018.
[164] T. Lummerstorfer, H. Hoffmann, “Click Chemistry on Surfaces: 1,3-Dipolar Cycloaddition Reactions of

Azide-Terminated Monolayers on Silica”, J. Phys. Chem. B 2004, 108, 3963–3966.
[165] R. Rossin, S. M. J. van Duijnhoven, W. ten Hoeve, H. M. Janssen, L. H. J. Kleijn, F. J. M. Hoeben, R. M.

Versteegen, M. S. Robillard, “Triggered Drug Release from an Antibody–Drug Conjugate Using Fast “Click-
to-Release” Chemistry in Mice”, Bioconjug. Chem. 2016, 27, 1697–1706.

[166] S. A. Albu, S. A. Al-Karmi, A. Vito, J. P. K. Dzandzi, A. Zlitni, D. Beckford-Vera, M. Blacker, N. Janzen, R. M.
Patel, A. Capretta, J. F. Valliant, “125I-Tetrazines and Inverse-Electron-Demand Diels–Alder Chemistry: A
Convenient Radioiodination Strategy for Biomolecule Labeling, Screening, and Biodistribution Studies”,
Bioconjug. Chem. 2016, 27, 207–216.
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tion of an Artificial Imine Reductase”, Angew. Chem. Int. Ed. 2018, 57, 1863–1868.
[206] R. Eychenne, S. Guizani, J.-H. Wang, C. Picard, N. Malek, P.-L. Fabre, M. Wolff, B. Machura, N. Saffon, N.

Lepareur, E. Benoist, “Rhenium Complexes Based on an N2O Tridentate Click Scaffold: From Synthesis,
Structural and Theoretical Characterization to a Radiolabelling Study”, Eur. J. Inorg. Chem. 2017, 2017, 69–
81.

[207] W. Zhu, D. Ma, “Synthesis of aryl azides and vinyl azides via proline-promoted CuI-catalyzed coupling
reactions”, Chem. Commun. 2004, 888–889.
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Chapter G

Appendix

G.1 Half-life time calculations - linear regressions

(A) Compound [11a] (B) Compound [11e]

(C) Compound [18a] (D) Compound [18e]
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G.1. HALF-LIFE TIME CALCULATIONS - LINEAR REGRESSIONS

(E) Compound [33] (F) Compound [36]

(G) Compound [41] (H) Compound [46]

(I) Compound [47] (J) Compound [48e]
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G.1. HALF-LIFE TIME CALCULATIONS - LINEAR REGRESSIONS

(K) Compound [49] (L) Compound [56]

(M) Compound [59] (N) Compound [60]
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G.2. WCA PHOTOSWITCHABLE SURFACES - RAW DATA

G.2 WCA photoswitchable surfaces - raw data

G.2.1 Trans immobilization

G.2.1.1 Surface [SiF-41trans]

Cycle
7 min 15 min 30 min

WCA Error WCA Error WCA Error

0 90.8 0.51 85.3 0.88 87.1 0.20

1 86.9 0.58 80.4 0.56 82.4 0.37

2 89.4 0.20 87.5 0.19 85.1 0.53

3 86.7 0.43 81.2 0.63 80.6 0.22

4 91.5 0.78 87.2 0.11 84.7 0.92

5 86.8 0.11 78.6 0.92 80.7 0.20

6 88.9 0.29 86.9 0.32 85.0 0.41

G.2.1.2 Surface [SiF-46trans] and [SiF-11etrans]

Cycle
[SiF-46trans] [SiF-11etrans]

WCA Error WCA Error

0 65.8 0.15 64.5 0.19

1 61.1 0.35 61.5 0.04

2 64.7 1.45 64.4 0.17

3 60.5 0.16 60.2 0.07

4 66.0 0.23 65.1 0.21

5 63.5 0.45 61.9 0.18

6 67.7 0.36 64.6 0.11
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G.2. WCA PHOTOSWITCHABLE SURFACES - RAW DATA

G.2.2 Cis immobilization

Cycle
[SiF-41cis] [[SiF-46cis] [SiF-18ecis]

WCA Error WCA Error WCA Error

0 79.5 0.35 58.3 0.17 56.3 0.23

1 89.2 0.86 60.7 0.13 59.2 0.19

2 78.8 1.11 56.2 0.21 54.9 0.20

3 88.1 0.11 61.1 0.31 57.6 0.09

4 77.8 0.28 56.5 0.17 52.6 0.17

5 86.8 0.79 61.7 0.50 56.5 0.19

6 77.90 0.45 57.7 0.26 54.2 0.15
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G.3 Publications and conference activities resulting from this thesis

Journal articles

R.C.O Conceição, H. Hoffmann, M.D. Mihovilovic: ”Azobenzene cis immobilization: a

practical approach to obtain azobenzene light-responsive surfaces while avoiding over-

crowding”; in preparation.

Poster presentations

R.C.O. Conceição, H. Hoffmann, M.D. Mihovilovic: ”Azobenzene Cis Immobilization: A

New Practical Approach To Obtain Azobenzene Light Responsive Surfaces”; 14th inter-

national conference on material chemistry; Birmingham, England, UK, July 2019.

R.C.O. Conceição, M.D. Mihovilovic: ”Synthesis Of Double-Click Azobenzenes For An

Easy Functionalization Of Biomolecules”, 21st Symposium on Organic Chemistry; Vi-

enna, Austria, July 2019

R.C.O. Conceição, H. Hoffmann, M.D. Mihovilovic: ”Silicon Nanowires As An Alter-

native For The Development Of Light Responsive Smart Surfaces”; 27th PhotoIUPAC;

Dublin, Ireland, July 2018.
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G.4 List of abbreviations

λmax maximum absorption wavelength MeOH methanol

AFM atom force microscopy MHC
major histocompability

complex

Al aluminum OTS octadecyltrichlorosilane

APC antigen-presenting cell PBS phosphate buffered saline

BUTS 11-bromoundecyl trichlorosilane PE petroleum ether

CuAAC
copper-catalyzed alkyne-azide

cycloaddition
PhI(OAc)2 (diacetoxyiodo)benzene

DCM dicloromethane RGD arginylglyculaspartic acid

DIPEA N,N-diisopropylehtylamine r.t room temperature

DMF dimethyl formamide SA streptadivin

ΔWCA difference in the WCA SAM self-assembled monolayer

equiv. equivalent(s) SEM
scanning electron

microscopy

EtOAc ethyl acetate SiF silicon flat

EtOH ethanol SiNW silicon nanowires

FAD flavin adenine nucleotide SPAAC
strain-promoted

alkyne-azide cycloaddition

FTIR
Fourier-transform infrared

spectroscopy
t1/2

thermal relaxation half-life

time

HABA

4-hydroxyazobenzene-2’-

carboxylic

acid

TCR T-cell receptor

HPLC
high-performance liquid

chromatography
THF tetrahydrofuran

iEDDA
inverse electron-demand

Diels-Alder
TMS trimethylsilane

IRRAS
Infra-Red Reflection Absorption

Spectroscopy
UV/Vis

ultraviolet/visible

spectroscopy

LED light-emitting diode WCA water contact angle
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G.5 Reference list of compounds

[2] RC058 [30endo] RC195

[3] RC068 [32endo] RC198

[4a] and [4e] RC084 [33] RC199

[6e] RC085 [34] RC173

[6a] RC086 [35] RC174

[8] RC043 [36] RC175

[9] RC047 [38] RC028

[10] RC061 [40] RC052

[11e] RC091 [41] RC056

[11a] RC096 [43] RC095

[13] RC151 [45] RC073

[15] RC152 [46] RC098

[16] RC153 [47] RC103

[17] RC154 [48e] RC115

[18a] RC187 [49] RC121

[18e] RC167 [51] RC126

[19exo] and

[19endo]
JER001 [53] JER008

[20endo] JER004 [54] RC181

[21endo] JER005 [55] RC188

[22endo] JER006 [56] RC200

[24] JER002 [58] RC201

[25] JER003 [59] RC189

[26] JER007 [60] RC190

[28] RC192
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G.6 Curriculum vitae

Name: Rafaela Conceição

Phone: 067763402656

E-mail: rafaela.carinaoc@gmail.com

Address: Veronikagasse 29, top 2, 1170 Vienna, Austria

LinkedIn: https://www.linkedin.com/in/rafaela-conceição-a3213766/

Date and place of birth: 16.12.1991, Santa Maria da Feira, Portugal

Relevant work experience

12/2020-
present Material Engineer at Cubicure GmbH

• Member of the Research and Development Team
• Synthesis of new monomers for application in 3D printing
• Study of the properties of newly synthesized photopolymers

02/2017-
11/2020 University Assistant, TU Wien, Institute of Applied Synthetic Chemistry

• Development of photoswitchable surfaces
• Synthesis of photoswitches and determination of their photophysical

properties
• Teaching of undegraduate students
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06/2016-
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Researcher for a joint project between University of Minho and Fibromade
(wood veneer manufacturer, http://www.fibromade.com)

• Development of chemical treatments to control the natural color of oak wood
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present PhD in Technical chemistry at TU Wien

• Research field of organic synthesis, photopharmacology and
photoswitchable surfaces
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02/2017-
03/2019 Member of the BioInterface Doctoral program
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2012-2015 Master’s degree, Medicinal Chemistry, University of Minho
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June 2015
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September
2017
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Software skills:
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